Характеристики пластичности материала – 2. Определение характеристик пластичности

Характеристики прочности

Предел пропорциональности:

. (2.21)

Наибольшее напряжение, до которого справедлив закон Гука.

Предел текучести:

. (2.22)

Наименьшее напряжение, при котором деформация образца происходит при постоянном растягивающем усилии.

Предел прочности (временное сопротивление):

. (2.23)

Наибольшее напряжение, отмеченное в процессе испытания.

Напряжение в момент разрыва:

. (2.24)

Определяемое таким образом напряжение при разрыве весьма условно и не может быть использовано в качестве характеристики механических свойств стали. Условность состоит в том, что получено оно делением силы в момент разрыва на первоначальную площадь поперечного сечения образца, а не на действительную его площадь при разрыве, которая значительно меньше начальной вследствие образования шейки.

Характеристики пластичности

Напомним, что пластичность – это способность материала деформиро­ваться без разрушения. Характеристики пластичности – деформационные, по­этому определяются по данным измерения образца после разрушения:

∆ℓос = ℓ1 — ℓ0 – остаточное удлинение,

–площадь шейки.

Относительное удлинение после разрыва:

. (2.25)

Эта характеристика зависит не только от материала, но и от соотношения размеров образца. Именно поэтому стандартные образцы имеют фиксированное отношение ℓ0 = 5d0 или ℓ0 = 10d0 и величина δ всегда приводится с индексом – δ5 или δ10, причём δ5 > δ10.

Относительное сужение после разрыва:

. (2.26)

Удельная работа деформации:

. (2.27)

где А – работа, затраченная на разрушение образца; находится как площадь, ограниченная диаграммой растяжения и осью абсцисс (площадь фигуры OABCDKLMR). Удельная работа деформации характеризует способность материала сопротивляться ударному действию нагрузки.

Из всех полученных при испытании механических характеристик основными характеристиками прочности являются предел текучести σт и предел прочности σпч, а основными характеристиками пластичности – относительное удлинение δ и относительное сужение ψ после разрыва.

Разгрузка и повторное нагружение

При описании диаграммы растяжения было указано, что в точке К испыта­ние остановили и произвели разгрузку образца. Процесс разгрузки описы­вался прямой KN (рис.2.16), параллельной прямолинейному участку OA диаграммы. Это означает, что удлинение образца ∆ℓ′П, полученное до на­чала разгрузки, полностью не исчезает. Исчезнувшая часть удлинения на диаграмме изображается отрезком NQ, оставшаяся – отрезком ОN. Следовательно, полное удлинение образца за пределом упругости состоит из двух частей – упругой и остаточной (пластической):

∆ℓ′П = ∆ℓ′уп + ∆ℓ′ос.

Так будет вплоть до разрыва образца. После разрыва упругая составляющая полного удлинения (отрезок ∆ℓ

уп) исчезает. Остаточное удлинение изображается отрезком ∆ℓос. Если же прекратить нагружение и разгрузить образец в пределах участка OB, то процесс разгрузки изобразится линией, совпадающей с линией нагрузки – деформация чисто упругая.

При повторном нагружении образца длиною ℓ0 + ∆ℓ′ос линия нагружения практически совпадает с линией разгрузки NK. Предел пропорциональности повысился и стал равным тому напряжению, от которого производилась разгрузка. Далее прямая NK перешла в кривую KL без площадки текучести. Часть диаграммы, расположенная левее линии NK, оказалась отрезанной, т.е. начало координат переместилось в точку N. Таким образом, в результате вытяжки за предел текучести, образец изменил свои механические свойства:

1). повысился предел пропорциональности;

2). исчезла площадка текучести;

3). уменьшилось относительное удлинение после разрыва.

Такое изменение свойств называется наклёпом.

При наклёпе повышаются упругие свойства и понижается пластичность. В некоторых случаях (например, при механической обработке) явление наклёпа нежелательно и его устраняют термообработкой. В других случаях его создают искусственно для улучшения упругости деталей или конструкций (обработка дробью рессор или вытяжка тросов грузоподъёмных машин).

studfiles.net

Характеристики прочности

Предел пропорциональности:

. (2.21)

Наибольшее напряжение, до которого справедлив закон Гука.

Предел текучести:

. (2.22)

Наименьшее напряжение, при котором деформация образца происходит при постоянном растягивающем усилии.

Предел прочности (временное сопротивление):

. (2.23)

Наибольшее напряжение, отмеченное в процессе испытания.

Напряжение в момент разрыва:

. (2.24)

Определяемое таким образом напряжение при разрыве весьма условно и не может быть использовано в качестве характеристики механических свойств стали. Условность состоит в том, что получено оно делением силы в момент разрыва на первоначальную площадь поперечного сечения образца, а не на действительную его площадь при разрыве, которая значительно меньше начальной вследствие образования шейки.

Характеристики пластичности

Напомним, что пластичность – это способность материала деформиро­ваться без разрушения. Характеристики пластичности – деформационные, по­этому определяются по данным измерения образца после разрушения:

∆ℓос = ℓ1 — ℓ0 – остаточное удлинение,

–площадь шейки.

Относительное удлинение после разрыва:

. (2.25)

Эта характеристика зависит не только от материала, но и от соотношения размеров образца. Именно поэтому стандартные образцы имеют фиксированное отношение ℓ0 = 5d0 или ℓ0 = 10d0 и величина δ всегда приводится с индексом – δ

5 или δ10, причём δ5 > δ10.

Относительное сужение после разрыва:

. (2.26)

Удельная работа деформации:

. (2.27)

где А – работа, затраченная на разрушение образца; находится как площадь, ограниченная диаграммой растяжения и осью абсцисс (площадь фигуры OABCDKLMR). Удельная работа деформации характеризует способность материала сопротивляться ударному действию нагрузки.

Из всех полученных при испытании механических характеристик основными характеристиками прочности являются предел текучести σт и предел прочности σпч, а основными характеристиками пластичности – относительное удлинение δ и относительное сужение ψ после разрыва.

Разгрузка и повторное нагружение

При описании диаграммы растяжения было указано, что в точке К испыта­ние остановили и произвели разгрузку образца. Процесс разгрузки описы­вался прямой KN (рис.2.16), параллельной прямолинейному участку OA диаграммы. Это означает, что удлинение образца ∆ℓ′П, полученное до на­чала разгрузки, полностью не исчезает. Исчезнувшая часть удлинения на диаграмме изображается отрезком NQ, оставшаяся – отрезком ОN. Следовательно, полное удлинение образца за пределом упругости состоит из двух частей – упругой и остаточной (пластической):

∆ℓ′П = ∆ℓ′уп + ∆ℓ′ос.

Так будет вплоть до разрыва образца. После разрыва упругая составляющая полного удлинения (отрезок ∆ℓуп) исчезает. Остаточное удлинение изображается отрезком ∆ℓос. Если же прекратить нагружение и разгрузить образец в пределах участка OB, то процесс разгрузки изобразится линией, совпадающей с линией нагрузки – деформация чисто упругая.

При повторном нагружении образца длиною ℓ0 + ∆ℓ′ос линия нагружения практически совпадает с линией разгрузки NK. Предел пропорциональности повысился и стал равным тому напряжению, от которого производилась разгрузка. Далее прямая NK перешла в кривую KL без площадки текучести. Часть диаграммы, расположенная левее линии NK, оказалась отрезанной, т.е. начало координат переместилось в точку N. Таким образом, в результате вытяжки за предел текучести, образец изменил свои механические свойства:

1). повысился предел пропорциональности;

2). исчезла площадка текучести;

3). уменьшилось относительное удлинение после разрыва.

Такое изменение свойств называется наклёпом.

При наклёпе повышаются упругие свойства и понижается пластичность. В некоторых случаях (например, при механической обработке) явление наклёпа нежелательно и его устраняют термообработкой. В других случаях его создают искусственно для улучшения упругости деталей или конструкций (обработка дробью рессор или вытяжка тросов грузоподъёмных машин).

studfiles.net

Лекция №6

Тема: «Механические свойства материалов»

Вопросы:

1. Диаграмма растяжения малоуглеродистой стали. Условный предел текучести

2. Характеристики пластичности

3. Диаграмма растяжения хрупких материалов

1. Диаграмма растяжения малоуглеродистой стали

Для определения механических свойств материалов проводят механические испытания образцов, форма и размеры которых устанавливаются стандартами (ГОСТами). Наиболее распространенными являются испытания на растяжение, так как они легко осуществимы и дают важнейшие характеристики материала.

Разрывные испытательные машины рисуют графики (диаграммы) зависимости между усилием F и абсолютным удлинением . Такая диаграмма имеет один существенный недостаток она не позволяет сравнивать результаты испытания образцов различной площади сечения А. Поэтому полученную на машине диаграмму перерисовывают в условных осях: по оси абсцисс откладывают относительное удлинение:

,

а по оси ординат  нормальное напряжение:

,

где l и A0  начальная длина и площадь поперечного сечения образца.

Для низкоуглеродистой строительной стали марки Ст.3 (содержание углерода не более 0.22%) диаграмма имеет вид, представленный на рис.1.

В начальной стадии нагружения, на участке ОА, зависимость между иносит линейный характер, деформация прямо пропорциональна напряжению, т.е. следует закону Гука. Наибольшее напряжение, до которого соблюдается этот закон (точка А на диаграмме), называется пределом пропорциональности. Обозначения механических характеристик материала стандартизованы с тем, чтобы можно было пользоваться технической литературой без пояснений. Однако в СССР и в странах Запада обозначения отличались. Поэтому мы будем приводить обозначения, которые были приняты в СССР, (так как почти вся выпушенная техническая литература имеет такие обозначения), а в скобках давать обозначения, принятые в странах Запада.

Рис. 1

Из рисунка нетрудно видеть, что:

,

т.е. модуль продольной упругости Е графически представляет собой тангенс угла наклона прямолинейного участка диаграммы к оси абсцисс.

При нагружении образца до точки В в нем не появляется остаточных деформаций. Если его разгрузить, то он примет исходные размеры. Наибольшее напряжение, до которого в образце не возникает остаточных деформаций называется пределом упругости и обозначается .

Точки А и В лежат столь близко друг к другу, что на практике их обычно считают совпадающими, полагая . К тому же следует иметь в виду, что выявление обоих пределов представляет немалые трудности. Даже при достаточно точных измерениях далеко не все точки ложатся на прямую ОА вследствии неизбежной неоднородности материала и конструктивных несовершенств испытательной машины. Отчасти по этим же причинам и деформация при разгрузке полностью не исчезает. Поэтому опытным путем устанавливают лишь условные, технические значения указанных пределов.

После точки В продолжается дальнейшее искривление диаграммы и в точке С она переходит в горизонтальный участок  площадку текучести. Стрелка силоизмерительного аппарата машины останавливается, т.е. образец удлиняется при постоянной нагрузке. Соответствующее напряжение называют пределом текучести . Он является одной из основных характеристик материала. Для стали Ст. 3=215—255 МПа в зависимости от способа раскисления (кипящая, полуспокойная, спокойная), вида поката (листовой, фасонный) и его толщины.

Ряд материалов при растяжении дает диаграмму без выраженной площадки текучести (см. рис. 2.). Для них устанавливается так называемый условный предел текучести . За него принято напряжение, при котором остаточная деформация составляет 0,2%. Для его нахождения на оси абсцисс откладывают 0,2% и проводят прямую ВС, параллельную участку ОА до пересечения с диаграммой.

Рис. 2

Точку пересечения сносят на ось ординат. Это и будет условный предел текучести . Площадка текучести отсутствует для сталей с содержанием углерода менее 0,1% и более 0,3%, а также в алюминиевых сплавах, бронзе и некоторых других материалах.

Как показывают исследования образцов из сталей, текучесть сопровождается значительными взаимными сдвигами кристаллов, в результате чего на поверхности образца появляются линии (так называемые линии Людерса-Чернова), наклоненные к оси образца под углом 45° (см. рис. 3,а.).

Рис. 3

После прекращения текучести сталь снова способна противостоять деформированию  она как бы самоупрочняется. В стадии самоупрочнения материал работает упруго-пластически. Зависимость между напряжением и деформациями подчиняется, как на участке ДЕ (см. рис. 1.), криволинейному закону; но с большим нарастанием деформаций, т.е. диаграмма имеет более пологий характер.

Точка Е диаграммы соответствует наибольшему условному напряжению, называемому пределом прочности или временным сопротивлением . Предел прочности это некоторая условная характеристика, она не является напряжением, при котором материал разрушается, так как при разрушении площадь сечения образца значительно меньше первоначальной.

До достижения предела прочности продольные и поперечные деформации образца равномерно распределяются по его длине. После достижения точки Е диаграммы эти деформации концентрируются в наиболее слабом месте, где начинает образовываться шейка  местное значительное сужение (см. рис. 3, б), которое быстро прогрессирует.

С этого момента продольная деформация зависит уже не столько от длины образца, сколько от его диаметра. Этим объясняется необходимость иметь для нормальных образцов определенное отношение между длиной и диаметром для сравнимости результатов испытаний.

С образованием шейки (после точки Е) нагрузка падает и в точке М происходит разрушение образца (см. рис. 1).

При разрыве образца образуется поперечная трещина в центре поперечного сечения в самом узком месте шейки, а остальное сечение скалывается под углом в 45° к оси стержня, так что на одной части разорванного образца образуется выступ, на другой  кратер (рис. 3.в). Такая форма разрушения образцов из малоуглеродистой стали показывает, что разрушение связано со сдвигом по площадкам, наклонным под углом 45° к оси стержня, где касательные напряжения будут наибольшими.

С удлинением образца его поперечное сечение уменьшается. Поэтому истинное напряжение, определяемое как отношение силы F к действительной площади поперечного сечения А, будет выше, условного (на диаграмме показано пунктирной линией), что особенно различается для точки разрыва М (см. рис. 1).

studfiles.net

Механические и пластические свойства материалов

При проектировании элементов конструкции и деталей машин необходимо знать механические и пластические свойства материалов. Для этого изготавливаются стандартные образцы, которые подвергаются разрушению в испытательной машине.          Для испытания на растяжение рекомендуется применять цилиндрические и плоские образцы. Расчетная длина цилиндрических образцов должна быть равной ℓ0=5d0 или ℓ0=10d0. Образцы с расчетной длиной ℓ0=5d0 называются короткими, а образцы с ℓ0=10d0 – длинными. Применение коротких образцов предпочтительнее. В качестве основных применяют образцы диаметром d0=10 мм. Образцы с меньшими (иногда большими) диаметрами или некруглого поперечного сечения называются пропорциональными. Расчетная длина ℓ0 на образце отличается рисками.

Расчетную длину образца можно выразить через площадь поперечного сечения:

Таким образом, для коротких образцов:

для длинных образцов:

Эти соотношения используются для определения расчетной длины образцов прямоугольного поперечного сечения.

Соотношения между рабочей ℓ и расчетной ℓ0 длинами принимают:

для цилиндрических образцов: от ℓ = ℓ0 + 0,5d0 до ℓ = ℓ0 + 3d0;

для плоских образцов толщиной 4 мм и больше:

Основной задачей испытания на растяжение является построение диаграммы растяжения, т. е. зависимости между силой, действующей на образец и его удлинением.

Испытательная машина сообщает образцу принудительное удлинение и регистрирует силу сопротивления образца, т. е. нагрузку, соответствующую этому удлинению. Результаты опыта записываются с помощью диаграммного аппарата на бумагу в виде диаграммы растяжения в координатах F – Δℓ. Типичная для малоуглеродистой стали диаграмма растяжения образца показана на рисунке.

Данную кривую условно можно разделить на четыре участка. Прямолинейный участок ОА называется участком упругости. Здесь материал образца испытывает только упругие деформации. Зависимость между нагрузкой на образец и его деформацией подчиняется закону Гука:

Δℓ=Fℓ/ЕА

Удлинение Δℓ на участке ОА очень мало.

Участок ВК называется участком общей текучести, а отрезок ВК – площадкой текучести. Здесь происходит существенное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести является характерным для малоуглеродистой стали.

Участок КС называется участком упрочнения. Здесь материал вновь обнаруживает способность повышать сопротивление при увеличении деформации. Область упрочнения материала на диаграмме растяжения простирается до точки С, ордината которой равна наибольшей нагрузке на образец Fmax.

Начиная с точки С резко меняется характер деформации образца. При возрастании нагрузки на образец от 0 до F все участки образца удлинялись одинаково – образец испытывал равномерную деформацию. По достижении максимальной нагрузки деформация образца начинает сосредотачиваться в каком-то наиболее слабом месте по его длине. В дальнейшем удлинение образца происходит с уменьшением силы (участок СД). Удлинение образца при этом носит местный характер. В этом месте образца интенсивно уменьшаются размеры поперечного сечения (образуется так называемая шейка) и увеличивается длина этого участка. Поэтому участок СД называется участком местной текучести. Точка Д на диаграмме соответствует разрушению образца.

Если испытуемый образец не доводить до разрушения, разгрузить (например, в точке Н), то в процессе разгрузки зависимость между силой Р и удлинением Δℓ изобразится прямой НМ, которая будет параллельна ОА. Длина разгруженного образца будет больше первоначальной на величину ОН. Отрезок ОМ представляет собой остаточное или пластическое удлинение. При  повторном  нагружении образца диаграмма растяжения принимает вид прямой НМ и далее – кривой НСД, как будто промежуточной разгрузки и не было.

Ряд пластичных материалов (легированные стали, бронзы, латуни, алюминиевые сплавы, титановые сплавы и др.) не имеют физического предела текучести. На диаграмме растяжения таких материалов , после точки В происходит быстрое возрастание пластической деформации. Уловный предел текучести Fт соответствует точке В на диаграмме растяжения, определяется как нагрузка, при которой пластическая деформация равна 0,2 %.

Чтобы дать количественную оценку механическим свойствам материала диаграмму растяжения F= f (Δℓ) (перестраивают в координатах . Для этого значения силы F делят на первоначальную площадь образца А0, т. е.   = F/ А0 , а удлинение Δℓ делятся на первоначальную длину расчетной части образца ℓ0,

В результате получаем диаграмму зависимости нормального напряжений от относительной продольной деформации, которая будет характеризовать свойства материала, а не свойства конкретного образца . Эта диаграмма называется условной, так как при вычислении   и  не учитываются изменения длины и площади поперечного сечения образца в процессе растяжения.

Основными механическими характеристиками являются:

Предел пропорциональности:       σпц =  Fпц   /  А0                                                        

Предел текучести:     σт =  Fт  / А0  

Предел прочности:    σв =  Fв  / А0                                                           

Характеристики пластичности:

относительное удлинение   

относительное сужение                      

где Аш – площадь сечения образца (шейки) в самом узком месте после разрушения.

Удельная работа деформации:  а =        Fв Δℓ / V,

где V – объем испытуемого образца,

V = А0·ℓ0.

Напомним, что максимальные напряжения σв не могут превышать 1200 МПа у конструкционных материалов.

Диаграмма сжатия пластичных материалов

Образцы из стали закладывают в испытательную машину и подвергают сжатию.

В первой стадии нагружения стального образца материал испытывает упругие деформации. Зависимость между прикладываемой силой и деформацией на диаграмме линейная. Через некоторое время после начала испытания материал достигает состояния текучести. Стрелка силометра при этом останавливается, и на диаграмме ординаты перестают расти. Образец деформируется при постоянной нагрузке. Нагрузку, соответствующую состоянию текучести FТ материала записываем в журнал испытаний. При дальнейшем сжатии образца  показания силометра вновь начинают возрастать. Образец непрерывно сжимается,  поперечное сечение его увеличивается, и при отсутствии смазки по торцам образца он приобретает бочкообразную форму. Это объясняется тем, что между опорными плитами и торцами образца действует сила трения, которая не дает возможности частям образца, примыкающим к опорным плитам, двигаться в поперечном направлении. Смазкой торцов образца это явление можно ослабить.

Стальной образец довести до разрушения не удается.  Испытание прекращается при нагрузке примерно в два раза больше предела текучести FТ. Вид образцов до и после испытания показан на рисунке. Типичная диаграмма сжатия малоуглеродистой стали в координатах  F – Δℓ показана на рис. справа.

Диаграмма растяжения и сжатия хрупких материалов

Методика испытания хрупких материалов такова, как и для испытания пластичных. Поэтому остановимся на основных отличиях в поведении хрупких материалов. На рисунке показана диаграмма сжатия (кривая 1) и растяжения (кривая 2).

У хрупких материалов всегда отсутствует площадка текучести, хотя многие материалы обладают определенными пластическими свойствами. Для этих материалов за опасное состояние принимается предел прочности. Следует всегда помнить, что предел прочности у хрупких материалов во много раз больше при сжатии. У чугуна эта величина достигает 3-4 раза. Что касается строительных материалов, то эта разница может достигать десятикратного  размера.

prosopromat.ru

Механические и пластические свойства материалов

Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние.

Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643—81, ГОСТ 1497-73. По результатам испытаний строится зависимость σ=f (ε) между напряжениями σ=F/A и деформациями ε=Δl/l , которая называется диаграммой деформирования.

Опыты на растяжение образцов выявляют некоторые общие свойства конструкционных материалов—свойства упругости и пластичности. Рассмотрим типичные кривые деформирования при растяжении образцов из материала сталь 30 и сталь 40Х.

Характерные диаграммы растяжения

Если напряжения не превышают  предела пропорциональности (первая точка на диаграмме), и зависимость между напряжениями и деформациями линейна, то она описывается законом Гука σ=εЕ , где Е — модуль продольной упругости материала. Размерность модуля упругости — Н/м2 (Паскаль). Значение модуля упругости Е на кривой деформирования численно равно тангенсу угла наклона линейного участкаЕ = tgβ. Таким образом, величину Е можно рассматривать как характеристику упругого сопротивления или как характеристику интенсивности нарастания напряжения с увеличением деформации.

Физический смысл коэффициента Е определяется как напряжение, необходимое для увеличения длины образца в два раза. Такое толкование довольно искусственно, поскольку величина упругого удлинения у большинства твердых тел редко достигает даже 1%.

Напряжения, являющиеся верхней границей проявления чисто упругих деформаций, соответствуют точке 2 диаграммы и называются пределом упругости σупр .

Точка 3 диаграммы характерна тем, что при достижении напряжениями величины σ = σт ( σт — предел текучести), дальнейшее удлинение образца (для малоуглеродистых сталей) происходит практически без увеличения нагрузки. Это явление носит название текучести, а участок диаграммы, расположенный непосредственно правее точки 3, называется площадкой текучести. При этом полированная поверхность образца мутнеет, докрывается ортогональной сеткой линий (линии Чернова—Людерса), расположенных под углом 45o к продольной оси образца—по направлению плоскостей действия максимальных касательных напряжений.

У многих конструкционных материалов площадка текучести не выражена столь явно, как у малоуглеродистых сталей. Для таких материалов вводится понятие условного предела текучести σs; это напряжение, которому соответствует остаточная (пластическая) деформация, равная s %. Обычно принимается s = 0,2%. Поэтому условный предел текучести часто обозначается как σ0,2.

После площадки текучести для дальнейшего увеличения деформации необходимо увеличение растягивающей силы. Материал снова проявляет способность сопротивляться деформации; участок за площадкой текучести (до точки 4) называется участком упрочнения. Точка 4 соответствует максимальной нагрузке, выдерживаемой образцом. Соответствующее напряжение называется временным сопротивлением σв (или пределом прочности σпч ).

Дальнейшая деформация образца происходит без увеличения или даже с уменьшением нагрузки вплоть до разрушения (точка 5). Точке 4 на диаграмме соответствует начало локального уменьшения размеров поперечного сечения образца, где, в основном, сосредоточивается вся последующая пластическая деформация.

Диаграмма, приведенная на рисунке выше, является диаграммой условных напряжений, условность состоит в том, что все силы относились к первоначальной площади поперечного сечения образца; в действительности же при растяжении площадь поперечного сечения образца уменьшается. Если учитывать текущее значение площади поперечного сечения при определении напряжений, то получим диаграмму истинных напряжений.

Диаграмма истинных напряжений

Если в некоторый момент нагружения (точка А на рисунке «Характерные диаграммы растяжения») прекратить нагружение и снять нагрузку, то разгрузка образца пойдет по линии АВ, параллельной линейному участку диаграммы 0—1. При этом полная деформация в точке А равна:

ε =ε(е) + ε(р)  

где ε(е) = σ/Е —  упругая деформация, ε(р)пластическая (остаточная деформация). Уравнение это справедливо для любой точки диаграммы.

Эффект Баушингера. После того как материал испытал воздействие осевого усилия одного знака (например, растяжение) в области пластических деформаций (σ>σт), сопротивляемость этого материала пластической деформации при действии сил другого знака (сжатие) понижается. Это явление носит название эффекта Баушингера.

При растяжении образца происходит не только увеличение его длины, но и уменьшение размеров поперечного сечения, т. е. в упругой области деформация в поперечном направлении ε’ = -με, где ε— деформация в продольном направлении, μкоэффициент Пуассона. Для изотропных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 .

Характеристиками пластичности материала являются относительное удлинение δ и относительное сужение ψ при разрыве:

,где l0, А0 длина рабочей части образца и площадь поперечного сечения до деформации; lк — длина рабочей части образца после разрыва; АК — конечная площадь поперечного сечения в шейке образца после разрыва.

По величине относительного удлинения δ при разрыве проводится разделение состояния материалов на пластичное и хрупкое. Материалы, имеющие к моменту разрушения достаточно большие значения δ>10%, относят к пластическим материалам; к хрупким относят материалы с относительным удлинением δ<3%.

Оценка пластических свойств материала может быть проведена по такой характеристике, как ударная вязкостьравная отношению работы, затрачиваемой на ударное разрушение образца [Дж или H·м] к площади поперечного сечения образца в месте концентратора, [м2 или см2].

Работа деформации W при разрушении образца может быть определена по диаграмме растяжения σ=f (ε). Так, если первоначальная длина образца l0, то работа деформации, совершаемая силой F на перемещении и:

где uк — перемещение в момент, предшествующий разрушению. Тогда по зависимости  σ= F/A0=f (ε) и ε=u/l0, находим

где W1площадь диаграммы деформирования (работа деформации на единицу объема материала).

Для сталей ударная вязкость 50—100 Н·м/см2. Материалы с ударной вязкостью менее 30 Н· м/см2относят к числу хрупких.

Некоторые пластичные материалы в районе площадки текучести обнаруживают особенность (например, титан), называемую «зубом текучести»; для таких материалов вводится понятие верхнего и нижнего предела текучести.

Экспериментальное изучение свойств материалов при сжатии проводится на коротких образцах с тем, чтобы исключить возможность искривления образца. Для пластичных материалов характер диаграммы σ=f (ε при сжатии примерно до возникновения текучести такой же, как и при растяжении. В процессе деформации сжатия образец укорачивается; при этом размеры поперечного сечения увеличиваются. Из-за трения между опорными плитами нагружающего устройства и торцевыми поверхностями образца он принимает бочкообразную форму. Для ряда пластичных материалов обнаружить напряжение, аналогичное временному сопротивлению при растяжении, не удается, так как образец сплющивается.

Хрупкие материалы проявляют значительно лучшую способность сопротивляться деформациям сжатия, чем деформациям растяжения; для них разрушающее напряжение при сжатии превышает предел прочности при растяжении в несколько раз. Разрушение хрупких материалов при сжатии происходит за счет образования трещин.

prosopromat.ru

Характеристики прочности и пластичности.

Прочностьспособность тела (металла) сопротивляться деформациям и разрушению. Большинство технических характеристик прочности определяют в результате статического испытания на растяжение.

При нагрузке, соответствующей начальной части диаграммы, материал испытывает только упругую деформацию, которая полностью исчезает после снятия нагрузки. До точки «а» эта деформация σ пропорциональна нагрузке или действующему напряжению σ=P/F0, где — приложенная нагрузка; F0— начальная площадь поперечного сечения образца. Прямолинейную зависимость между напряжением и деформацией можно выразить законом Гука: σ= Еε, где ε=(Δl/l0) — относительная деформация; Δl- абсолютное удлинение; l0— начальная длина образца(мм), Е- модуль продольной упругости (модуль Юнга).

В точке «а» упругая деформация переходит в пластическую деформацию, которая не исчезает после снятия нагрузки. Напряжение, при которой этот переход имеет место, называют “предел текучести” и обозначают σа.

Для некоторых мягких металлов характерно наличие площадки текучести.

Большая часть технических металлов и сплавов не имеет площадки текучести. Для них чаще определяют условный предел текучести — напряжение, вызывающее рост длины образца (см. рисунок 3.1): σ0,2=P0,2/F0.

 

Ψ –поперечное сужение образца.

Рисунок 3.1.- Диаграмма истинных(S) и условных (σ) напряжений.

 

При дальнейшем нагружении пластическая деформация все больше увеличивается, равномерно распределяясь по всему объему образца. В точке , где нагрузка достигает максимального значения, в наиболее слабом месте образца начинается образование “шейки” – сужения поперечного сечения; деформация сосредотачивается на одном участке. Напряжение в материале в этот момент испытания называют “ предел прочности” и обозначают σе.

Предел прочности соответствует максимальной нагрузке, которую выдерживает образец до разрушения: За точкой С вследствие развития шейки нагрузка уменьшается, в точке k при нагрузке Pk происходит разрушение образца.

Пластичность способность тела (металла) к пластической деформации, т.е. способность получать остаточное изменение формы и размеров без нарушения сплошности.Это свойство используют при обработке металлов давлением. Характеристиками пластичности являются:

δ — относительное удлинение

Где l0 и lk — начальная и конечная длина образца; lост — абсолютное удлинение образца, определяемое измерением образца после разрыва или по диаграмме растяжения

Твердость материалаэто сопротивление проникновению в его поверхность стандартного тела – наконечника (индентора), например шарика, конуса и т.п., не деформирующегося при испытании.

Наибольшее распространение на практике получили методы Бринелля, Роквелла, Виккерса и метод микротвердости.

Твердость по Бринеллю определяют статическим вдавливанием в испытуемую поверхность под нагрузкой Р стального закаленного шарика диаметром . Число твердости по Бринеллю HB определяют отношением нагрузки P к сферической поверхности отпечатка – лунки (шарового сегмента) E диаметром d, т.е.

 

Диаметр шарика = 10; 5; 2,5 мм выбирают в зависимости от толщины изделия.

Ударная вязкость. Очень часто детали в процессе работы испытывают действие не только плавно возрастающих нагрузок, но одновременно и ударных (динамических) нагрузок. Испытание на удар проводят на специальном маятниковом копре. Образец с надрезом устанавливают на опорах копра, затем наносят удар посередине образца со стороны, противоположной надрезу, падающим с определенной высоты маятником

Работа удара Ан (в Дж или кгс×м), затраченная на разрушение образца, определяется из разности энергии маятника в положении его до и после удара. Ударную вязкость ан (в Дж/м2 или кгс×м/см2), т.е. работу, израсходованную на разрушение образца, отнесенную к площади поперечного сечения образца в месте надреза F (в м2 или см2), определяют по формуле ан = Ан / F.

Чугуны

Чугуном называют железоуглеродистые сплавы, содержащие более 2 % углерода (С). Наиболее значительную часть выплавляемого чугуна перерабатывают в сталь, однако не менее 20 % его используют для изготовления литых деталей машин и других изделий. В практике машиностроения в большинстве случаев используют чугун с содержанием 2,5-4 % С. В промышленном чугуне, кроме углерода, обязательно содержатся кремний, марганец, сера и фосфор (в большем количестве, чем в стали).

Чугун отличается высокими литейными свойствами, изделия из него изготавливают различными методами литья. Из-за низкой пластичности чугун не подвергается обработке давлением. В зависимости от формы выделения углерода чугун подразделяют на белый, половинчатый и серый.

Белымназывают такой чугун, в котором при комнатной температуре весь углерод находится в связанном состоянии, в основном в форме цементита. Такой чугун в изломе имеет белый цвет и металлический блеск.

Серымназывают такой чугун, в котором весь углерод или большая его часть находятся в виде графита, а в связанном состоянии (в форме цементита) углерода содержится не более 0,8 %. Из-за большого количества графита, входящего в состав такого чугуна, его излом имеет серый цвет.

В половинчатом чугуне часть углерода находится в форме графита, но при этом не менее 2 % С присутствует в форме цементита.

В ряде случаев находят применение детали, изготовленные из чугуна с отбеленной поверхностью. Основная масса металла в таких деталях имеет структуру серого чугуна и только в поверхностном слое почти весь углерод находится в форме цементита. Типичным примером являются прокатные валки для холодной прокатки листов.

Структура чугунов существенно зависит от их химического состава и скорости охлаждения.

Кремний способствует графитизации чугуна. Содержание кремния в чугунах колеблется от 0,5 до 4,5 %. Марганец препятствует графитизации, способствует получению в структуре чугуна цементита. Содержание марганца в чугунах — от 0,4 до 1,3%.

Сера в чугунах является нежелательным элементом. Она снижает жидкотекучесть, способствует отбеливанию чугуна, как и марганец. Содержание серы допускается не более 0,08-0,12 %.

Фосфор в чугунах — полезная примесь, так как улучшает жидкотекучесть. Участки фосфидной эвтектики увеличивают твердость и износостойкость чугуна. Содержание фосфора в чугунах колеблется от 0,3 до 0,8 %..

Иногда в чугуны вводят легирующие элементы (никель, хром, алюминий, молибден и т. д.), тем самым улучшая их свойства.

Скорость охлаждения. Кроме регулирования содержания углерода и кремния, необходимо также учитывать скорость охлаждения отливок. Известно, что быстрое охлаждение способствует получению белого чугуна, замедленное — серого чугуна.


Похожие статьи:

poznayka.org

Материаловедение | Оценка пластичности материалов

В предыдущих параграфах было показано, что при нагружении твердого тела выше определенного значения в нем возникают деформации, связанные с нарушением энергетического равновесия и изменением межатомного взаимодействия элементов системы. Деформации, появляющиеся после достижения телом предела текучести sТ и развивающиеся вплоть до момента нарушения сплошности структуры Rпр называют пластическими.

Если предел прочности R какого-либо тела значительно превышает предел текучести sТ, то будут иметь место преимущественно пластические деформации и тело называться пластическим (у идеально пластического тела sТ= 0).

Определить меру пластичности твердого тела с достаточной степенью точности весьма сложно. Немецкий физик Ауербах предложил упрощенно характеризовать пластичность модулем m, показывающим разность между пределом прочности и пределом текучести твердого тела и числом пластичности n, показывающим отношение модуля пластичности к пределу прочности:

m = R — sТ; n = (R — sТ ) / R.

Для условно идеально пластического тела m = R и n = 1. Для реальных тел 0<m<R и 0 <n< 1. При этом чем ближе к единице пластическое число тела, тем выше его пластичность.

Предложенные Ауербахом характеристики пластичности дают ее оценку с точки зрения действующих напряжений, которые более точно определены понятием модуль сдвига G (см. раздел «Упругость). Для практических же целей не менее важно учесть величину остаточных деформаций, ради которых собственно и используются его пластические свойства.

Пластические деформации могут быть выражены либо в долях первоначальных размеров, либо в процентах от них. При растяжении пластические деформации, как известно, выражаются отношением величины деформации к первоначальной длине, т.е. eпл. = (l — l0)/l0·100, %. Комбинируя две различные оценки пластичности: число пластичности n и пластическую деформацию eпл, получаем более полную характеристику пластичности, включающую напряженное состояние тела и его пластическую деформацию, называемую степенью пластичности твердого тела.:

(R-sпл) (l-l0) / R·eпл или n·eпл= Епл.

Пластическая деформация, предел текучести и предельное напряжение при разрушении измеряются чаще всего при нормальной температуре в процессе наблюдения за ходом деформации образца, на который действует с постоянной или равномерно увеличивающейся скоростью нагрузка. Графически это выражается кривыми «напряжение – деформация», изображенными на рис. 4.21 и 4.22.

Рис. 4.21. Кривая деформации кристаллов MgO и KBr

Рис. 4.22. Кривая деформации кристалла LiF

Сравнение условных кривых деформации различных кристаллов, изображенных на рис. 4.21 показывает, что оба кристалла обладают относительно высокими пластическими свойствами: один за счет высокой пластической деформации, другой – за счет большого различия между пределом прочности и пределом текучести.

На рис. 4.22 изображена кривая деформации кристалла с резко выраженным порогом текучести, свойственным углеродистым сталям, а также многим кристаллам и кристаллическим материалам, в частности, высокоглиноземистым и магнезиальным огнеупорам, работающим в условиях высоких температур.

Таким образом, пластичность, наряду с упругостью, является важнейшей характеристикой твердых тел. Пластические деформации, возникающие в теле под действием внешних сил, позволяют судить о характерных особенностях структуры того или иного материала в двух основных аспектах.

1. Появление пластических деформаций свидетельствует о начале разрушения структуры материала. Это позволяет:

– определить запасы прочности, деформируемости и устойчивости структуры;

– снизить материалоемкость изделий и конструкций;

– обеспечить их наиболее рациональное функционирование, надежность и безопасность;

– повысить сопротивляемость тел ударным нагрузкам, снизить концентрацию напряжений в материале.

2. Наличие значительных пластических деформаций позволяет обеспечить качественное формование и обработку твердых тел давлением (прокатка, штамповка, ковка и т.п.).

3ys.ru