Виды и свойства чугуна таблица – Свойства чугуна

Содержание

Виды чугуна, классификация, состав, свойства, маркировка и применение

Сегодня почти нет ни одной сферы жизни человека, где бы не применялся чугун. Этот материал известен человечеству уже достаточно давно и превосходно зарекомендовал себя с практической точки зрения. Чугунное литье – основа великого множества деталей, узлов и механизмов, а в некоторых случаях даже самодостаточное изделие, способное выполнять возложенные на него функции. Поэтому в данной статье мы уделим самое пристальное внимание данному железосодержащему соединению. Также выясним, какие бывают виды чугуна, их физические и химические особенности.

Определение

Чугун – это поистине уникальный сплав железа и углерода, в котором Fe более 90%, а C — не более 6,67%, но и не менее 2,14%. Также углерод может находиться в чугуне в виде цементита или же графита.

Углерод дает сплаву достаточно высокую твёрдость, однако, вместе с тем, понижает ковкость и пластичность. В связи с этим чугун является хрупким материалом. Также в определенные марки чугуна добавляют специальные присадки, которые способны придать соединению определенные свойства. В роли легирующих элементов могут выступать: никель, хром, ванадий, алюминий. Показатель плотности чугуна равен 7200 килограмм на метр кубический. Из чего можно сделать вывод, что вес чугуна – показатель, который никак нельзя назвать маленьким.

Историческая справка

Выплавка чугуна уже достаточно давно известна человеку. Первые упоминания о сплаве датируются шестым веком до нашей эры.

В Китае в древние времена получали чугун с довольно низкой температурой плавления. В Европе чугун стали получать примерно в 14 веке, когда впервые начали использовать доменные печи. На тот момент такое чугунное литье шло на производство оружия, снарядов, деталей для строительства.

На территории России производство чугуна активно началось в 16 столетии и далее быстро расширялось. Во времена Петра I Российская империя по объему производства чугуна смогла обойти все государства мира, однако уже через сто лет начала снова сдавать свои позиции на рынке черной металлургии.

Чугунное литье использовалось для создания разнообразных художественных произведений ещё в эпоху Средневековья. В частности, в 10 веке китайские мастера отлили поистине уникальную фигуру льва, вес которого превысил 100 тонн. Начиная с 15 века на территории Германии, а после и в других странах литье из чугуна получило широчайшее распространение. Из него делали оградки, решетки, парковые скульптуры, садовую мебель, надгробия.

В последние годы 18 века чугунное литье максимально задействовано в архитектуре России. А 19 столетие так и вообще прозвали «чугунным веком», так как сплав очень активно использовался в зодчестве.

Особенности

Существуют различные виды чугуна, однако средняя температура плавления этого металлического соединения составляет порядка 1200 градусов Цельсия. Этот показатель на 250-300 градусов меньше, чем требуется для выплавления стали. Такая разница связана с достаточно высоким содержанием углерода, что приводит к его менее тесным связям с атомами железа на молекулярном уровне.

В момент выплавки и последующей кристаллизации углерод, содержащийся в чугуне, не успевает полностью проникнуть в молекулярную решётку железа, и потому чугун в итоге получается довольно хрупким. В связи с этим он не применяется там, где имеют место постоянные динамические нагрузки. Но при этом он отлично подходит для тех деталей, которые имеют повышенные требования к прочности.

Технология производства

Абсолютно все виды чугуна производятся в доменной печи. Собственно, сам процесс плавки – довольно трудоемкая деятельность, требующая серьёзных материальных вложений. Одна тонна чугуна требует примерно 550 килограмм кокса и почти тонну воды. Объем загружаемой в печь руды будет зависеть от содержания железа. Чаще всего применяют руду, в которой железа не менее 70%. Меньшая концентрация элемента нежелательна, поскольку ее будет невыгодно экономически использовать.

Первый этап производства

Выплавка чугуна происходит следующим образом. В первую очередь в печь засыпают руду, а также коксующиеся марки угля, которые служат для нагнетания и поддержания требуемой температуры внутри шахты печи. Помимо этого, эти продукты в процессе горения активно принимают участие в протекающих химических реакциях в роли восстановителей железа.

Параллельно в печь отгружается флюс, служащий в качестве катализатора. Он помогает породам быстрее расплавляться, что содействует скорейшему высвобождению железа.

Важно заметить, что руда перед загрузкой в печь подвергается специальной предварительной обработке. Ее измельчают на дробильной установке (мелкие частицы быстрее плавятся). После она промывается с целью удаления частиц, не содержащих металл. После чего сырье обжигают, за счет этого из него удаляется сера и прочие чужеродные элементы.

Второй этап производства

В загруженную и готовую к эксплуатации печь подают природный газ через специальные горелки. Кокс разогревает сырье. При этом выделяется углерод, который соединяется с кислородом и образует оксид. Этот оксид впоследствии принимает участие в восстановлении железа из руды. Отметим, что с увеличением количества газа в печи скорость протекания химической реакции снижается, а при достижении определённого соотношения и вовсе останавливается.

Избыток углерода проникает в расплав и входит в соединение с железом, формируя в конечном счете чугун. Все те элементы, которые не расплавились, оказываются на поверхности и в итоге удаляются. Эти отходы именуют шлаком. Его также можно использовать для производства других материалов. Виды чугуна, получаемые таким образом, называются литейным и передельным.

Дифференциация

Современная классификация чугунов предусматривает разделение данных сплавов на следующие типы:

  • Белые.
  • Половинчатые.
  • Серые с пластинчатым графитом.
  • Высокопрочные с шаровидным графитом.
  • Ковкие.

Давайте рассмотрим каждый вид по отдельности.

Белый чугун

Таким чугуном называется тот, у которого практически весь углерод химически связан. В машиностроении этот сплав применяется не очень часто, потому что он твёрдый, но очень хрупкий. Также он не поддается механической обработке различными режущими инструментами, а потому используется для отливания деталей, которые не требуют какой-либо обработки. Хотя этот вид чугуна допускает шлифование абразивными кругами. Белый чугун может быть как обыкновенным, так и легированным. При этом сварка его вызывает затруднения, поскольку сопровождается образованием различных трещин во время охлаждения или нагрева, а также по причине неоднородности структуры, формирующейся в точке сварки.

Белые износостойкие чугуны получают за счет первичной кристаллизации жидкого сплава при скоротечном охлаждении. Чаще всего они используются для работы в условиях сухого трения (например, тормозные колодки) или для производства деталей, обладающих повышенной износостойкостью и жаростойкостью (валки прокатных станов).

Кстати, белый чугун получил свое название благодаря тому, что внешний вид его излома – светло-кристаллическая, лучистая поверхность. Структура этого чугуна представляет собой совокупность ледебурита, перлита и вторичного цементита. Если же данный чугун подвергают легированию, то перлит трансформируется в троостит, аустенит или мартенсит.

Половинчатый чугун

Классификация чугунов будет неполной, если не упомянуть об этой разновидности металлического сплава.

Для указанного чугуна характерно сочетание карбидной эвтектики и графита в его структуре. В целом же, полноценная структура имеет следующий вид: графит, перлит, ледебурит. Если же чугун подвергнуть термической обработке или легированию, то это приведет к образованию аустенита, мартенсита или игольчатого троостита.

Этот вид чугуна достаточно хрупок, поэтому его применение весьма ограничено. Само же название сплав получил потому, что его излом – сочетание темных и светлых участков кристаллического строения.

Самый распространенный машиностроительный материал

Серый чугун ГОСТ 1412-85 содержит в своем составе около 3,5% углерода, от 1,9 до 2,5% кремния, до 0,8% марганца, до 0,3% фосфора и менее 0,12% серы.

Графит в таком чугуне имеет пластинчатую форму. При этом не требуется специального модифицирования.

Пластинки графита имеют сильно ослабляющее действие и потому серому чугуну характерны очень низкая ударная вязкость и практически полное отсутствие относительного удлинения (показатель составляет мене 0,5%).

Серый чугун хорошо подвергается обработке. Структура сплава может быть следующей:

  • Феррито-графитовой.
  • Феррито-перлито-графитовой.
  • Перлито-графитовой.

На сжатие серый чугун работает гораздо лучше, нежели на растяжение. Также он довольно хорошо сваривается, но для этого требуется предварительный подогрев, а в качестве присадочного материала следует использовать специальные чугунные стержни с высоким содержанием кремния и углерода. Без предварительного разогрева сварка будет затруднена, поскольку будет происходить отбеливание чугуна в зоне шва.

Из серого чугуна производят детали, работающие при отсутствии ударной нагрузки (шкивы, крышки, станины).

Обозначение данного чугуна происходит по такому принципу: СЧ 25-52. Две буквы сигнализируют о том, что это именно серый чугун, число 25 – показатель предела прочности при растяжении (в Мпа или кгс/мм2), число 52 – предел прочности в момент изгиба.

Высокопрочный чугун

Чугун с шаровидным графитом принципиально отличается от других своих «собратьев» тем, что в нем содержится графит шаровидной формы. Она получается за счет введения в жидкий сплав специальных модификаторов (Mg, Се). Количество графитных включений и их линейные размеры могут быть различными.

Чем хорош шаровидный графит? Тем, что такая форма минимально ослабляет металлическую основу, которая, в свою очередь, может быть перлитной, ферритной или перлитно-ферритной.

Благодаря применению термической обработки или легирования основа чугуна может быть игольчато-трооститной, мартенситной, аустенитной.

Марки высокопрочного чугуна бывают различны, но в общем виде обозначение его таково: ВЧ 40-5. Легко догадаться, что ВЧ – это высокопрочный чугун, число 40 – показатель предела прочности при растяжении (кгс/мм2), число 5 – относительно удлинение, выражаемое в процентах.

Ковкий чугун

Структура ковкого чугуна заключается в наличии в нем графита в хлопьевидной или шаровидной форме. При этом хлопьевидный графит может иметь различную дисперсность и компактность, что, в свою очередь, оказывает непосредственное влияние на механические свойства чугуна.

В промышленности ковкий чугун производится зачастую с ферритной основой, которая обеспечивает большую пластичность.

Внешний вид излома ферритного ковкого чугуна имеет черно-бархатистый вид. Чем выше количество перлита в структуре, тем светлее будет становиться излом.

В целом же, ковкий чугун получается из отливок белого чугуна благодаря длительному томлению в печах, нагретых до температуры 800–950 градусов Цельсия.

На сегодняшний день есть два способа изготовления ковкого чугуна: европейский и американский.

Американский метод заключается в томлении сплава в песке при температуре 800-850 градусов. В этом процессе графит располагается между зернами чистейшего железа. В итоге чугун приобретает вязкость.

В европейском методе отливки томятся в железной руде. Температура при этом составляет около 850-950 градусов Цельсия. Углерод переходит в железную руду, за счет чего поверхностный слой отливок обезуглероживается и становится мягким. Чугун становится ковким, а сердцевина сохраняет хрупкость.

Маркировка ковкого чугуна: КЧ 40-6, где КЧ — это, разумеется ковкий чугун; 40 – показатель прочности при растяжении; 6 – относительное удлинение, %.

Прочие показатели

Что касается разделения чугунов по прочности, то здесь применяется следующая классификация:

  • Обычная прочность: σв до 20 кг/мм2.
  • Повышенная прочность: σв = 20 — 38 кг/мм2.
  • Высокая прочность: σв = 40 кг/мм2 и выше.

По пластичности чугуны разделяются на:

  • Непластичные – относительное удлинение менее 1%.
  • Малопластичные – от 1% до 5%.
  • Пластичные – от 5% до 10%.
  • Повышенной пластичности – более 10%.

В заключение также хотелось бы обязательно отметить, что на свойства любого чугуна довольно существенное влияние оказывает даже форма и характер заливки.

fb.ru

Характеристика и классификация чугунов | Сварка и сварщик

Чугун
сплав железа с углеродом, содержащий углерода от 2,14 до 6,67%. Наряду с углеродом в чугуне содержится кремний (Si), марганец (Mn), сера (S) и фосфор (Р). Содержание серы (S) и фосфора (Р) в чугуне больше, чем в стали. В специальные (легированные) чугуны вводят легирующие добавки — никель (Ni), молибден (Mo), ванадий (V), хром (Сr) и др.

Чугун делят:

  • по структуре — на белый, серый и ковкий;
  • по химическому составу — на легированный и нелегированный.
Белый чугун
это такой чугун, в котором большая часть углерода химически соединена с железом в виде цементита Fe3C. Цементит имеет светлый цвет, обладает большой твердостью и хрупкостью. Поэтому белый чугун также имеет в изломе светло-серый, почти белый цвет, очень тверд, не поддается механической обработке и сварке, поэтому ограниченно применяется в качестве конструкционного материала. Белые чугуны используются для получения ковких чугунов.
Серый чугун
это такой чугун, в котором большая часть углерода находится в свободном состоянии в виде графита. Серый чугун мягок, хорошо обрабатывается режущим инструментом, в изломе имеет темно-серый цвет. Температура плавления серого чугуна 1100-1250°С.

Чем больше в чугуне углерода, тем ниже температура его плавления и выше жидкотекучесть.

Кремний уменьшает растворимость углерода в железе, способствует распаду цементита с выделением свободного графита. При сварке происходит окисление кремния, оксиды кремния имеют температуру плавления более высокую, чем свариваемый металл, и тем самым затрудняют процесс сварки.

Марганец связывает углерод и препятствует выделению графита. Этим самым он способствует отбеливанию чугуна. Марганец образует сернистые соединения (MnS), нерастворимые в жидком и твердом чугунах и легкоудаляемые из металла в шлак. При содержании марганца более 1,5% свариваемость чугуна ухудшается.

Сера в чугунах является вредной примесью, она затрудняет сварку, понижает прочность и способствует образованию горячих трещин. Сера образует с железом химическое соединение — сернистое железо, препятствует выделению графита и способствует отбеливанию чугуна. Верхний предел содержания серы в чугунах 0,15%. Для ослабления вредного влияния серы в чугунах содержание марганца должно быть в три раза больше.

Фосфор в чугуне увеличивает жидкотекучесть и улучшает его свариваемость, но одновременно понижает температуру затвердевания, повышает хрупкость и твердость. Содержание фосфора в серых чугунах не должно превышать 0,3%.

По ГОСТ 1412-79 марку серого чугуна обозначают буквами СЧ и двумя числами, из которых первое обозначает величину временного сопротивления чугуна при растяжении в МН/м2, а второе — то же, при изгибе.

Ковкий чугун

получают из белого чугуна термической обработкой — длительной выдержкой при температуре 800-850°С. При этом углерод в чугуне выделяется в виде хлопьев свободного углерода, располагающихся между кристаллами чистого железа. В зависимости от режима термической обработки получают ковкий чугун ферритной или перлитной структуры. При нагреве ковких чугунов свыше 900°С в зависимости от скорости охлаждения графит может распадаться и образовывать химическое соединение с железом — цементит (Fe3C), при этом деталь теряет свойства ковкого чугуна. Это затрудняет сварку ковкого чугуна, так как для получения первоначальной структуры ковкого чугуна его приходится после сварки подвергать полному циклу термообработки.

Ковкий чугун обозначают буквами КЧ и двумя числами: первое — указывает временное сопротивление при растяжении, МН/м, второе — относительное удлинение, %.

Легированные чугуны имеют специальные примеси Сr, Ni, благодаря которым повышаются его кислотостойкость, прочность при ударных нагрузках и др.

Высокопрочный чугун получают из серого чугуна специальной обработкой — введением в жидкий чугун при температуре не ниже 1400°С чистого магния (Mg) или его сплавов. Графит в высокопрочном чугуне имеет сфероидальную форму.

Свариваемость чугуна

Чугун является трудносвариваемым сплавом. Трудности при сварке чугуна обусловлены его химическим составом, структурой и механическими свойствами, при сварке чугуна необходимо учитывать следующие его свойства: жидкотекучесть, поэтому сварка выполняется только в нижнем положении; малая пластичность, характеризующаяся возникновением в процессе сварки значительных внутренних напряжений и закалочных структур, которые часто приводят к образованию трещин; интенсивное выгорание углерода, что приводит к пористости сварного шва; в расплавленном состоянии чугун окисляется с образованием тугоплавких оксидов, температура плавления которых выше, чем чугуна. Сварка чугуна применяется в основном для исправления литейных дефектов, при ремонте изношенных и поврежденных деталей в процессе эксплуатации и при изготовлении сварных конструкций.

weldering.com

Удельный вес чугуна, его свойства, виды, а также таблица значений

     Чугун представляет собой сплав углерода с железом, а также другими дополнительными элементами. Содержание углерода в чугуне не должны быть ниже 2,14 процентов. Чугун отличный материал для изготовления деталей литейного типа и использования при малых динамических нагрузках и невысоких напряжениях.

     По сравнению со сталью, чугун отличается небольшой стоимостью и отличными литейными свойствами. Он также хорошо обрабатывается, чем большая часть сталей, однако, плохо сваривается и обладает меньшей прочностью, пластичностью и жесткостью.

Таблица удельного веса чугуна

    Так как, чугун является сложным материалом, рассчитать его удельный вес в полевых условиях самостоятельно не представляется возможным. Эти вычисления проводят в специальных химических лабораториях. Однако, при этом его средний удельный вес известен. Этот параметр составляет: для серого чугуна от 6,6 до 7,8 г/см3, для белого от 7,0 до 7,8 г/см3.

     Для упрощения подсчетов ниже представлена таблица с значениями таких параметров, как вес чугуна, удельный вес чугуна, а также эти значения в зависимости от единиц исчисления.

Удельный вес и вес 1 м3 чугуна в зависимости от единиц измерения
МатериалУдельный вес (г/см3)Вес 1 м3 (кг)
Чугун белого типаОт 7 до 7,8От 7000 до 7800
Чугун серого типаОт 6,6 до 7,8От 6600 до 7800

Свойства чугуна

     Содержание углерода в составе придает сплаву повышенной твердости, снижая при этом вязкость и пластичность. Углерод может применятся двух типов: графита и цементита. Чугуны содержат примеси постоянного типа, такие как марганец, кремний, фосфор и сера, а также, редко, элементы легирующего типа, такие как никель, алюминий, хром, ванадий и другие.

     Температура плавления чугуна составляет от 1150 до 1200 градусов Цельсия, что является на 300 градусов Цельсия ниже чем у железа чистого типа.

Виды чугуна

     В зависимости от количества цементита и формы графита различают четыре вида чугуна:

  • Белый чугун. Углерод в составе этого вида находится в состоянии связанного типа. Этот чугун обладает светлыми тоннами благодаря светлому цементиту в составе. Этот вип подразделяется на эвтектичексие, в составе 4,3 процента углерода и заэвтектические, в составе от 4,3 до 6,67 процентов углерода. Данный вид применяется для изготовления путем обжига ковких чугунов.
  • Серый чугун. Этот вид представляет собой сплав от 1,2 до 3,5 процентов кремния, остальное — железо и углерод, а также различные примеси серы, марганца и фосфора. Практически весь кислород в сером чугуне находится в состоянии пластинчатой формы. Обладает ярко выраженным серым цветом.
  • Ковкий чугун. Данный вид получается благодаря дополнительному обжигу белого чугуна, в результате образуется графит хлопьевидного типа. Для металлической основы служат перлит и феррит. Название данный вид получил благодаря повышенным характеристикам вязкости и пластичности, а также повышенной прочности и большим сопротивлением к ударам. Из этого випа изготавливаются детали сложного типа, такие как: тормозные колодки, угольник, тройники и картеры для заднего моста автомобилей.
  • Высокопрочный чугун. В состав этого вида входит графит шаровидного типа, образованный в процессе кристаллизации. Этот вид графита не так сильно ослабляет основу из металла и не концентрирует напряжение.
  • naruservice.com

    Физические и химические свойства чугуна

    Физические свойства чугуна (плотность, теплофизические и электромагнитные свойства) зависят от состава и структуры, а следовательно, от вида и марки чугуна.

    Плотность чугуна.

    Пренебрегав сравнительно малым влиянием ряда элементов в обычном чугуне, можно рассчитать плотность чугуна.

    где С, S, Р — массовые доли элементов,%;
    Сr — массовая доля графита, %;
    П0 — пористость, %;
    15 Ссв; 2,7 S; 14,5 (Р—0,1) — количество карбидов железа, сульфидов марганца н фосфидной эвтектики соответственно.

    Приведенная формула дает вполне удовлетворительные совпадения с экспериментальными данными.

    В табл. 1 приведена плотность различных групп чугунов.

    Наибольшей плотностью характеризуются белые чугуны, не содержащие свободных графитовых включений, а некоторые легированные чугуны (хромовые, никелевые, хромоникелевые).

    Таблица 1. Плотность чугуна
    Группа чугуна Марка чугуна Структура Плотность, т/м2
    Белый Перлит, карбиды 7,4-7,75
    С пластинчатым графитом СЧ15, СЧ18 Ферритная, ферритноперлитная 6,8-7,2
    СЧ20-СЧ25 Перлитная 7,0-7,3
    СЧ30, СЧ35 Перлитная 7,2-7,4
    Высокопрочный с вермикулярным или шаровидным графитом
    ВЧ 35-ВЧ 45 Ферритная 7,1-7,2
    ВЧ 60-ВЧ 80 Перлитная 7,2-7,3
    ВЧ 100 Бейнитная 7,2-7,35
    Ковкий КЧ 30-6/КЧ 37-12 Ферритная 7,2-7,24
    КЧ 45-7/КЧ 65-3 Перлитная 7,3-7,5
    Легированный Никелевый с 34-36% Ni Аустенитная 7,5-7,7
    Никелевый с медью типа ЧН15Д7Х2 — нерезист 7,4-7,6
    Хромовый тип ЧХ28, ЧХ32 7,3-7,6
    Хромово-никелевый 7,6-7,8
    Кремнистый типа С15, С17 Ферритная 6,7-7,0
    Чугун с 12% Mn 7,1-7,3
    Алюминиевый: с 5-8% Al типа ЧЮ22Ш — чугаль 6,4-6,7
    Ферритная 5,6-6,0

    У серых чугунов плотность обычно тем больше, чем выше прочность чугуна.

    Высокопрочный чугун при прочих равных условиях (одинаковом содержании кремния, перлита и графита) характеризуется большей плотностью, чем чугун с пластинчатым графитом. Однако во многих случаях эта плотность может оказаться на практике ниже, чем у серых чугунов, вследствие более высокого содержания углерода и кремния или большей ферритизации матрицы.

    Большей плотностью также характеризуются аустенитные чугуны, вследствие более плотного строения, особенно при легировании никелем и мелью, плотность которых больше, чем у железа.

    При легировании марганцем плотность аустенита несколько понижается. Еще меньше плотность ферритных кремнистых и алюминиевых чугунов.

    Во всех случаях на плотность отливок влияет пористость (газовая, усадочная), величина которой колеблется обычно от 0,5 До 1,2% в зависимости от состава чугуна, характера кристаллизации и технологических факторов (эффективности питания, толщины стенки и т. п.), которые, в свою очередь, определяются технологичностью конструкции отливки. Наибольшее значение имеют условия питания, гидростатический напор, под которым происходит затвердевание отливки. Поэтому плотность в верхних частях крупных отливок может быть на 5% меньше, чем в нижних частях, а в центре — на 10% меньше, чем на периферии.

    Плотность графитизированного чугуна уменьшается также с увеличением толщины стенки отливки вследствие увеличения степени графитизации и укрупнения графита:

    Толщина стенки, мм 10 12,5 25 37
    Плотность, т/м3 7,23 7,14 7,08 7,02

    С увеличением жесткости форма Уменьшается предусадочное расширение, а следовательно, и усадочная пористость. Поэтому отливки, полученные в металлические формы, при прочих равных условиях более плотные, чем отливки, изготовленные в песчаных формах.


    metiz-bearing.ru

    Основные свойства и области применения серого чугуна

    Основные свойства и области применения серого чугуна

    В основу стандартизации серого чугуна заложен принцип регламентирования минимально допустимого значения временного сопротивления разрыву при растяжении (В). В соответствии с этим принципом обозначение марки чугуна содержит минимально допустимое значение

    В определенного в стандартной пробной литой заготовке. Механические свойства серого чугуна регламентируются ГОСТ 1412-85 и приведены в табл.1.2. Необходимо учитывать, что порядок подготовки и проведения механических испытаний серого и других чугунов отличаются от методов испытания стали. Например, для чугунных отливок контроль свойств проводят по ГОСТ 27208-87 «Отливки из чугуна. Методы механических испытаний», а способы получения заготовок для образцов из каждого чугуна регламентированы соответствующим стандартом (для серого – ГОСТ 24648 –81).

    Таблица 1.2 — Механические свойства и рекомендуемые составы серого чугуна (ГОСТ 1412-85)

    K большинству чугунных отливок в силу особенностей их эксплуатации часто предъявляются различные условия, включающие другие (не предусмотренные ГОСТ 1412-85) требования по механическим свойствам, а также по физическим и теплофизическим показателям. На практике достаточно часто удается проследить связь между определенной группой физико-механических и теплофизических свойств чугуна и эксплуатационными показателями конкретного изделия. Наиболее часто встречающиеся показатели механических свойств серого чугуна, часть из которых не регламентируется ГОСТ 1412-85, приведены в табл.1.3-1.5.

    Большое влияние на механические свойства чугуна имеет скорость охлаждения металла, а, следовательно, и толщина стенок отливок. В этом случае при оценке реальной прочности отливок рекомендуется изготавливать различного рода тестовые заготовки, которые соответствуют толщине отливок, и из них вырезать образцы для испытаний. Определенные представления о влиянии толщины стенки отливки на прочность и твердость чугуна можно получить, воспользовавшись данными табл.1.6.

    Таблица 1.3 – Механические свойства серого чугуна при растяжении и изгибе

    Основные показатели, характеризующие физические свойства чугуна (плотность, удельная теплоемкость, теплопроводность и коэффициент линейного расширения), приведены в табл.1.7 в соответствии с приложением № 2 ГОСТ 1412-85. Данные такого рода имеются также в стандартах других стран, например, Британский стандарт BS 1452 1977.

    Модуль упругости чугуна зависит от размеров графитных пластин и уменьшается с увеличением их размера. Более высокий уровень пластичности серый чугун с пластинчатым графитом показывает при сжатии. Например, осадка серого чугуна в холодном состоянии при сжатии может составлять 20 – 40 %. При растяжении пластичность, как видно из табл. 1.3, не достигает и 1 % удлинения.

    Таблица 1.4 – Механические свойства серого чугуна при сжатии

    Таблица 1.5 – Механические свойства серого чугуна при кручении

    Обобщая имеющиеся в литературе данные, необходимо заметить, что плотность чугуна тем выше, чем ниже содержания в нем углерода и кремния. Коэффициенты теплового расширения и удельной теплоемкости зависят не столько от химического состава чугуна, сколько от его структуры. При этом легирующие элементы слабо влияют на эти коэффициенты. Исключение составляет только медь. Теплопроводность чугуна, связанная с теплопроводностью структурных составляющих, оказывается наибольшей при максимальном содержании графита.

    Таблица 1.6 — Зависимость прочности (В) и твердости (НВ) серого чугуна от толщины стенок отливок

    Таблица 1.7 – Физические свойства чугуна с пластинчатым графитом (ГОСТ 1412-85)

    Как конструкционный материал серый чугун используются для широкого спектра изделий практически во всех отраслях машиностроительного комплекса. К числу наиболее крупных потребителей чугунного литья следует отнести автомобилестроение, станкостроение, тяжелое и металлургическое машиностроение, санитарно-техническую промышленность и пр.

    В конструкции автомобилей и тракторов масса литых деталей из серого чугуна, например, составляет 15-25% от общей массы. Преимущественное применение серого чугуна обусловлено тем фактом, что в нем сочетаются высокая износостойкость и противозадирные свойства при трении с ограниченной смазкой, демпфирующая способность. Основная номенклатура изделий — это блоки, головки и гильзы цилиндров, крышки коренных подшипников двигателей, тормозные диски и диски сцепления, тормозные барабаны и другие детали, для которых серый чугун яв-ляется оптимально технологичным и экономичным конструкционным материалом.

    Блоки цилиндров карбюраторных и дизельных двигателей изготавливают из низколегированных чугунов марки СЧ20, СЧ25, которые обеспечивают в стенках отливок толщиной 15-25 мм В =200-250 Н/мм2, а в более тонких стенках до 270 Н/мм2. Такого же типа чугуны обычно применяют для головок цилиндров дизельных двигателей и гильз цилиндров карбюраторных и дизельных двигателей. Основными требованиями к чугуну для гильз являются: перлитная структура матрицы (не более 5% феррита), графит среднепластинчатый неориентированный, твердость в пределах 200-250 НВ. В конструкции автомобильных дизельных, карбюраторных, а также тракторных двигателей широко применяют гильзы цилиндров из специальных легированных чугунов, чаще всего — фосфористые.

    Для блоков и головок цилиндров тяжело нагруженных дизельных двигателей (автомобильных и судовых) применяют специальные легированные чугуны, а для головок цилиндров — высокоуглеродистые (более 3,5% С) легированные термостойкие чугуны. Эти требования выполняются при использовании для отливки гильз низколегированных чугунов, химический состав которых выбирают с учетом технологии формы, метода плавки, сечения отливки.

    Чугунные распределительные валы дизельных и карбюраторных двигателей (легированные чугуны марки СЧ 25 и СЧ 30) имеют высокую износостойкость и широко применяются в автомобилестроении. Легирование молибденом, хромом, никелем обеспечивает хорошую закаливаемость и прокаливаемость чугуна, и заданную глубину отбеленного слоя (в отбеленных кулачках). Высокая твердость и износостойкость кулачков достигаются либо за счет поверхностной закалки чугуна, в структуре которого (в носике кулачков) имеются игольчатые карбиды, либо за счет поверхностного отбела чугуна в кулачках при кристаллизации в контакте с холодильником. Отбеленные кулачки предпочтительны в тяжелых условиях работы.

    Тормозные диски, барабаны и нажимные диски сцепления, работающие в условиях сухого трения с высокими скоростями скольжения должны обеспечивать в паре с фрикционной пластмассой стабильный коэффициент трения и износостойкость. При многократных циклах торможения, во время которых в контакте фрикционной пары выделяется тепло, а затем быстро отводится, на поверхности чугунной детали образуются термические трещины, снижающие прочность. Для тормозных барабанов и дисков средней нагруженности чаще всего применяют серый чугун марки СЧ20 или СЧ25. В условиях высокой нагруженности деталей, когда на поверхности трения образуются термические трещины, применяют специальные высокоуглеродистые термостойкие чугуны с повышенным уровнем легирования. Для наиболее тяжелых условий работы рекомендуется использовать перлитные чугуны с вермикулярным графитом.

    Маховики в процессе работы вращаются с частотой порядка 2500-8000 об/мин. Соответственно, в них возникают большие растягивающие напряжения, а поверхность маховика периодически трется о сопряженную рабочую поверхность. Трение с большими скоростями приводит к выделению тепла на поверхности трения, образованию усталостных термических трещин, снижающих прочность маховика. Требования повышенной прочности с учетом большой массы маховиков и толщины сечения обусловили применение для их изготовления серых чугунов марки СЧ25, СЧ30, СЧ35 (чем больше сечение отливки, тем выше марка). Выбранная марка чугуна должна обеспечивать получение в теле отливки прочности не ниже 200-250 Н/мм2. Если прочность чугуна СЧ 35 недостаточна для обеспечения условий работы маховиков, то необходимо применять чугуны с вермикулярным или шаровидным графитом.

    Крышки коренных подшипников из серого чугуна применяют в основном в карбюраторных двигателях легковых автомобилей. Для обеспечения перлитной структуры и твердости не менее 200 НВ крышки подшипников отливают из серого чугуна марки СЧ25. Для тяжело нагруженных карбюраторных двигателей и для дизельных двигателей применяют крышки подшипников из ковкого чугуна или чугуна с шаровидным графитом.

    Выпускные коллекторы подвергаются воздействию горячих агрессивных выхлопных газов и в процессе работы подвержены окислению, термическим деформациям, а иногда — растрескиванию. Во многих случаях серый чугун является экономичным и достаточно долговечным материалом для этих деталей. Учитывая, что коллекторы имеют тонкие стенки (3-7 мм), их отливают из чугунов марки СЧ15, СЧ20, которые для повышения жаростойкости легируют небольшими добавками хрома и никеля. Для термически нагруженных коллекторов применяют ковкий чугун, чугун с шаровидным графитом, а иногда — аустенитный чугун с шаровидным графитом, имеющим высокую термостойкость и стойкость против окисления.

    В станкостроении серый чугун применяют для широкой номенклатуры литых деталей с массой от 0,1 кг до 100 тонн с толщиной стенок от 4 до 200 мм, работающих в самых разнообразных условиях. Классификация станкостроительных литых деталей из серого чугуна с учетом этого разнообразия конструкций и условий работы осуществляется в соответствии с ОСТ 2 МТ 21-2-83. При выборе марки чугуна конструктор в зависимости от класса, группы детали и приведенной толщины стенки отливки определяет необходимый минимальный уровень твердости и микроструктуры.

    С учетом специфики большинства станкостроительных деталей, работающих преимущественно на жесткость, а не на прочность, предпочтение отдают чугунам, обладающим повышенной твердостью и пониженной пластичностью. Такие чугуны по химическому составу отличаются повышенным (против рекомендаций ГОСТ 1412-85) содержанием кремния и марганца при пониженном содержании углерода. Если невозможно получить необходимый уровень твердости чугуна, в направляющих применяют легирование, формовку с холодильниками и др.

    Отливки из серого чугуна весьма широко и успешно используются для определенной номенклатуры деталей сменного металлургического оборудования: сорто- и листопрокатные валки, всевозможные изложницы для разливки слитков, шлаковые чаши и т.п.


    uas.su

    Влияние элементов на свойства чугуна

    Микроструктура чугунов (табл. 1) зависит от скорости охлаждения металла: при быстром охлаждении будет белый чугун (углерод находится в химически связанном состоянии в виде цементита и ледебурита), а при медленном охлаждении будет серый чугун (углерод находится в виде графита).

    Табл. 1. Марки и механические свойства чугуна разлиных типов.

     

    ГруппаМарка чугунаσВ, МПаНВδ
    серыеСЧ10100120…150
    СЧ15150130…241
    СЧ35350179…290
    ВысокопрочныеВЧ35350140…17022
    ВЧ40400140…20215
    ВЧ1001000270…3602
    КовкиеКЧ30-63001636
    КЧ33-83301638
    КЧ37-1237016312
    КЧ63-26302692

    Кремний Si способствует графитизации чугуна, и улучшает его литейные свойства. В серых чугунах содержится 0,8 …4,5 % Si.

    Марганец Mn способствует отбеливанию чугуна, но содержание Mn до 1,2% полезно, т.к. увеличиваются твердость и прочность чугуна.

    Фосфор Р повышает жидкотекучесть чугуна, поэтому допустимо его содержание до 0,4%, но в ответственных чугунных отливках содержится фосфора менее 0,15%, т.к. с ростом содержания его увеличивается хрупкость чугуна.

    Сера S затрудняет графитизацию, увеличивает хрупкость и ухудшает жидкотекучесть чугуна, поэтому серы в чугунах должно быть не более 0,1%.

    Серые чугуны делятся на модифицированные, высокопрочные и ковкие (табл. 2).

    В серых чугунах графит имеет пластинчатую форму, в высокопрочных — шаровидную, а в ковких — хлопьевидную.П римеры обозначения чугунов:

    Формирование структуры чугуна происходит при затвердевании отливки. Основными факторами, влияющими на структурообразование чугуна, являются его химический состав (см. табл. ниже) и скорость охлаждения отливки в форме.

    Табл. 2 — Влияние химических элементов на свойства чугуна

    Серый чугунВысокопрочный чугунКовкий чугун
    Углерод
    Повышенное содержание углерода приводит к уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугунаУвеличенное содержание углерода улучшает литейные свойства чугунаУглерод — основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегрева
    Кремний
    Кремний (с учетом содержания углерода) способствует выделению графита и снижает твердость, а также уменьшает усадку; повышенное содержание кремния снижает пластичность и несколько увеличивает твердостьС повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания — уменьшаются предел прочности при растяжении и относительное удлинениеДля ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаются
    Марганец
    Марганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении — снижаются. Марганец увеличивает усадку сплаваС повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном — 1,0%
    Магний
    Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния — 0,04-0,08%
    Сера
    Сера снижает прочность и пластичность, но несколько повышает износостойкость сплава, считается вредной примесью, придает чугуну красноломкость (образование трещин при высоких температурах), препятствует выделению графитаЧем выше содержание серы в исходном чугуне, тем труднее получить полностью шаровидную форму графита и, следовательно, высокие механические свойстваСодержание серы в ферритном ковком чугуне, модифицированном алюминием, может быть повышено до 0,2 %; при этом механические свойства возрастают за счет улучшения формы графита. Определяющее влияние на механические свойства чугуна оказывает отношение содержания марганца и серы, которое должно быть в пределах 0,8-3,0
    Фосфор
    Фосфор на процесс графитизации углерода влияет слабо, но повышает жидкотекучесть сплава, придает чугуну хладноломкость, т. е. хрупкостьФосфор оказывает существенное влияние на структуру и механические свойства. Чтобы получить чугун с высокой пластичностью, содержание фосфора не должно превышать 0,08%. Для получения чугуна с невысокой пластичностью содержание фосфора увеличивают до 0,12-0,15%Фосфор оказывает такое же, как для серого чугуна влияние на структуру и механические свойства сплава
    Никель
    Никель — легирующий элемент, благоприятно влияет на выравнивание механических свойств в отливках с различной толщиной стенок, повышает твердость на 10 НВ. С увеличением содержания никеля возрастает коррозионная стойкость и улучшается обрабатываемость сплаваНикель влияет на тепло- и электропроводность, а также на коррозионную стойкость и жаростойкость сплава. С увеличением содержания никеля эти свойства повышаютсяНикель способствует графитизации углерода и увеличивает количество перлита в металлической основе сплава
    Хром
    Хром — карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углеродаС увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплаваХром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов
    Молибден
    Молибден — легирующий элемент; замедляет процесс графитизации углерода и способствует карбидообразованию. С увеличением содержания молибдена повышается твердость без ухудшения обрабатываемости и возрастает сопротивление износуМолибден способствует измельчению перлита и графитовых включений, увеличивает предел прочности на 3-7 кгс/мм2 при содержании молибдена 0,5%; замедляет процесс графитизации углерода
    Медь
    Медь способствует графитизации углерода, увеличивает жидкотекучесть, повышает прочность и твердость сплаваПри содержании в сплаве 1 % меди прочность при растяжении повышается до 40%, а текучесть — до 50 % и соответственно при 2% меди — до 65% и до 70%. Содержание меди более 2% препятствует образованию в структуре сплава шаровидного графитаМедь способствует графитизации углерода и увеличивает содержание в сплаве перлита

    Небольшие количества множества элементов могут попасть в состав литейного чугуна и оказывать заметное воздействие на структуру и свойства отливок. Добавки некоторых из этих элементов производят специально, в то время как другие представляют собой примеси, привнесенные в металл из шихты. Некоторые из этих элементов оказывают положительное воздействие, особенно в сером чугуне, в то время как другие оказывают отрицательное воздействие и попадания их с расплав следует избегать. В таблице перечислены обычные источники этих элементов, часто встречающиеся уровни их содержания и основное воздействие на чугун. Результаты применения некоторых элементов в качестве основных легирующих (например, хром), в таблице не указаны.

    ЭлементОбычный источникОбычное содержание (%)Воздействие на литейный чугун
    Алюминий AlСтальной лом, раскисленный Al, модификаторы, ферросплавы, добавки алюминияДо 0,03Способствует образованию водородных газовых пор в тонких сечениях при содержании Al выше 0,005%. Нейтрализует азот. Способствует образованию дросса. При Al свыше 0,08% оказывает отрицательное воздействие на форму шаровидных включений графита. Может быть нейтрализован церием. Сильный стабилизатор графита.
    Сурьма SbСтальной лом, эмалированный лом, корпуса подшипников, добавки сурьмыДо 0,02Сильный стабилизатор перлита и карбидов. Препятствует образованию шаровидного графита в отсутствие РЗМ.
    Мышьяк
    As
    Чугун, стальной ломДо 0,05Сильный стабилизатор перлита и карбидов. Улучшает форму шаровидного графита.
    Барий
    Ba
    Модификаторы с бариемДо 0,003Усиливает образование центров графитизации графита и увеличивает продолжительность действия модификатора. Снижает тенденцию к отбелу и способствует образованию графита.
    Висмут
    Bi
    Специальные добавки, покрытие литейной формы, содержащее висмутСвыше 0,01Способствует образованию отбела и нежелательных форм графита. Увеличивает число включений шаровидного графита в ВЧ, содержащем РЗМ (церий). Чрезмерное число шаровидных включений графита может спровоцировать усадку.
    Бор
    B
    Эмалированный лом, специальные добавки (например, FeB).До 0,01Свыше 0.001 % способствует образованию карбидов особенно в ВЧ. 0,002 % B улучшает способность к отжигу ковкого чугуна.
    Кальций
    Ca
    Ферросплавы, модификаторыДо 0,01Улучшает степень шаровидности включений графита. Снижает тенденцию к отбелу и способствует образованию графита.
    Церий
    Ce
    Большинство магниевых сплавов, мишметалл или другие источники РЗМДо 0,02Как правило, не используется в сером чугуне. Подавляет отрицательное воздействие нежелательных элементов в ВЧ. Улучшает степень шаровидности графита. Стабилизатор карбидов из-за сегрегации.
    Хром
    Cr
    Легированная хромом сталь, некоторые чугуны, феррохромДо 0,3Способствует образованию отбела и перлита. Повышает прочность. Образует скопления карбидов в ВЧ при содержании выше 0,05 %.
    Кобальт
    Co
    Инструментальная стальДо 0,02Не оказывает существенного воздействия на чугун.
    Медь
    Cu
    Медная проволока, сплавы на основе меди, стальной лом, специальные добавки меди.До 0,5Способствует образованию перлита. Повышает прочность. Ослабляет процесс ферритизации в ВЧ. Отсутствие вредного воздействия.
    Водород
    H
    Сырые огнеупоры, материалы литейных форм и влажные добавки.Образует подповерхностные газовые поры. В незначительной степени способствует образованию отбела. Способствует отбелу при недостатке марганца для нейтрализации серы. Способствует образованию крупных включений графита.
    Свинец
    Pb
    Старые краски, некоторые виды эмалей, автоматная сталь, припой, отложения на бензиновом двигателе.До 0,005Способствует образованию нежелательных структур графита в сером чугуне и существенно снижает прочность при содержании > 0,004 %. Способствует образованию перлита и карбидов. Вызывает образование дегенеративных форм шаровидных включений графита. Отрицательное воздействие на графит в ВЧ нейтрализуется РЗМ (церием).
    Магний
    Mg
    Добавки магний содержащих модификаторов.0,03 — 0,08Способствует образованию шаровидных включений графита и стабилизирует карбиды в ВЧ. Не используется в серых чугунах.
    Марганец
    Mn
    Большинство чугунов, стальной лом, добавки кускового или брикетированного ферромарганца.0,2 — 1,0Нейтрализует серу, образуя MnS. Способствует образованию перлита. Образует скопления карбида в ВЧ. При высоком содержании способствует образованию газовых пор в сочетании с высоким содержанием серы.
    Молибден
    Mo
    Рафинированный чугун, легированная сталь, добавки ферромолибденаДо 0,1Способствует образованию перлита. Повышает прочность. Может способствовать формированию усадки и образованию карбидов.
    Никель
    Ni
    Никелированный лист, стальной лом, специальные чугуны. Сплав Ni/MgДо 0,5В небольших количествах слабое воздействие на расплав. Графитизирующий эффект в больших количествах.
    Азот
    N
    Кокс, науглероживатели, связующие, стальной лом, добавки азотированного ферромарганца.До 0,015Способствует формированию компактных структур графита. Способствует образованию перлита. Повышает прочность. Высокое содержание приводит к образованию трещин в толстых сечениях. Может быть нейтрализован Al, Ti и Zr. Оказывает незначительное влияние на ВЧ.
    Фосфор
    P
    Фосфористый чугун и лом, добавки FeP.До 0,1Повышает углеродный эквивалент. Повышает жидкотекучесть. Формирует фосфидную эвтектику. Оказывает отрицательное воздействие на ВЧ при содержании > 0,05 %. При содержании > 0,04 % вызывает образование пригара.
    Кремний
    Si
    Сплавы ферросилиция, стальной лом, чугун.0,8-4,0Способствует графитизации, снижает отбел, стабилизирует феррит, повышает литейные свойства.
    Сера
    S
    Кокс, науглероживатели, чугун, чугунный лом, добавки сульфида железа.До 0,15 (серый чугун)Оказывает сильное отрицательное воздействие на структуры и свойства, если не сбалансирована марганцем. Повышает чувствительность СЧ к модифицированию. Может требовать увеличения навесок Mg в ВЧ. Содержание серы в ВЧ не должно превышать 0,03 %.
    Стронций
    Sr
    Стронций содержащие модификаторыДо 0,003Способствуют формированию графита в СЧ и ВЧ. В значительной степени снижает отбел в сером чугуне.
    Теллур
    Te
    Автоматная медь, покрытия литейной формы, остатки от проб при термическом анализе.До 0,003Сильный стабилизатор карбидов. Вызывает образование многих нежелательных форм графита. Влияние Те выражено при содержании с 0,0003 %. Влияние уменьшается в сочетании Те с Mg и Ce в ВЧ
    Олово
    Sn
    Припой, жестяной лом, бронзовые компоненты, добавки олова.До 0,15В значительной степени способствует образованию перлита. Повышает прочность. Охрупчивает ВЧ при содержании > 0,08%. Не отмечено других вредных проявлений.
    Титан
    Ti
    Некоторые чугуны, некоторые краски и эмали, возврат ЧВГ, добавки титана и ферротитана.До 0,10Нейтрализует азот в сером чугуне. Вызывает формирование водородной пористости в присутствии алюминия. Вызывает образование переохлажденного графита в сером чугуне. Подавляет формирование шаровидных включений графита при производстве ЧВГ.
    Вольфрам
    W
    Быстрорежущая инструментальная стальДо 0,05Редко присутствует в существенных объемах. Средний по силе стабилизатор перлита.
    Ванадий
    V
    Лом, инструментальной стали, некоторые чугуны, добавки феррованадия.До 0,10Вызывает образование отбела. Измельчает включения пластинчатого графит. Существенно повышает прочность.

     

    Предлагаем услуги по оптимизации геометрии разливочной оснастки с целью обеспечения повышения коэффициента использования металла и снижения осевой пористости слитков

    подробнее

    steelcast.ru

    Основные свойства и области применения ковкого чугуна

    Основные свойства и области применения ковкого чугуна

    Основной особенностью микроструктуры ковкого чугуна (КЧ), определяющей его свойства, является наличие компактных включений графита, что придает чугуну высокую прочность и пластичность. Обезуглероженный КЧ является единственным конструкционным чугуном, который хорошо сваривается и может быть использован для получения сварнолитых конструкций. Детали можно соединять дуговой сваркой в среде защитного газа и стыковой сваркой с оплавлением. Ковкий чугун хорошо поддается запрессовке, расчеканке и легко заполняет зазоры. Отливки из ферритного КЧ можно подвергать холодной правке, а из перлитного – правке в горячем состоянии.

    Применяемый в промышленности ковкий чугун получается в результате графитизирующего отжига белого чугуна. Матрица ковкого чугуна может быть как ферритной, так и перлитной. Основные преимущества ковкого чугуна заключаются в однородности его свойств по сечению, практическом отсутствии напряжений в отливках, высоких механических свойствах и очень хорошей обрабатываемости резанием.

    Механические свойства ковкого чугуна регламентируются ГОСТ 1215-79 (табл.1.14). В основу маркировки и стандартизации ковкого чугуна положен принцип регламентирования допустимых значений механических свойств при растяжении В и . Так же, как в сером и высокопрочном, в ковком чугуне твердость зависит главным образом от матрицы, а прочность и пластичность — от матрицы и графита.

    В отличие от чугуна с шаровидным графитом, большое влияние оказывает не только форма, но и количество графита. В связи с этим максимальной прочности можно достичь при дисперсном перлите и малом количестве наиболее компактного графита, а наибольшей пластичности — при феррите и таком же графите.

    Таблица 1.14 — Механические свойства ковкого чугуна по ГОСТ 1215-79

    Кроме свойств, обусловленных ГОСТом, в некоторых случаях представляют интерес и другие свойства, приведенные в табл.1.15-1.17.

    Таблица 1.15 – Механические свойства ковкого чугуна при растяжении и сжатии (не вошедшие в ГОСТ 1215-79)

    Влияние химического состава на механические свойства ковкого чугуна проявляется в изменении структуры металла и степени легированности феррита и перлита.

    Таблица 1.16 – Механические свойства ковкого чугуна при изгибе (не вошедшие в ГОСТ 1215-79)

    Таблица 1.17 – Механические свойства ковкого чугуна при кручении и срезе (не вошедшие в ГОСТ 1215-79)

    Углерод в ковком чугуне является главным элементом, изменение содержания которого непосредственно определяет механические свойства. Чем выше марка ковкого чугуна, тем ниже должно быть содержание углерода, так как при этом не только уменьшаются количество графита и его размеры, но и улучшается его форма.

    Основные физические свойства ковкого чугуна различных типов приведены в табл.1.18.

    Таблица 1.18 — Физические свойства ковкого чугуна

    Влияние кремния на свойства ковкого чугуна в целом подобно рассмотренному выше его влиянию на свойства чугуна с шаровидным графитом. Повышение содержания кремния в допускаемых пределах увеличивает предел прочности и твердость и понижает коэффициент температурного расширения вследствие легирования феррита.

    Марганец сверх количества, необходимого для связывания серы, оказывая тормозящее влияние на графитизацию и легируя феррит, снижает пластичность ковкого чугуна и повышает при этом прочность и твердость.

    Сера, способствуя перлитизации структуры, повышает прочность и твердость ковкого чугуна. В КЧ сера, препятствуя ферритизации структуры, улучшает форму графита. Более совершенная форма графита при повышенном содержании серы делает перлитный ковкий чугун с отношением серы к марганцу в пределах 1,0-2,0 благоприятным конструкционным материалом.

    Допустимое содержание фосфора в ковком чугуне обычно принимается до 0,12%. При повышении содержания фосфора в ковком чугуне механические свойства изменяются подобно механическим свойствам чугуна с шаровидным графитом. Понижение содержания фосфора вызывает смещение порога хрупкости ковкого чугуна в сторону отрицательных температур.

    Действие большинства легирующих элементов на механические свойства ковкого чугуна в целом подобно рассмотренному ранее легированию серого чугуна. При этом следует, конечно же, иметь в виду, что технология производства ковкого чугуна предусматривает отжиг.

    Отливки из ковкого чугуна широко используются во многих отраслях промышленности для широкого спектра номенклатуры деталей ответственного назначения: автомобилестроение, тракторное и сельскохозяйственной машиностроение, вагоностроение, судостроение, электропромышленность, станкостроение, санитарно-техническое и строительное оборудование, тяжелое машиностроение и пр. При этом масса отливок может быть от нескольких граммов до 250 кг, минимальная толщина стенок отливки 3 мм, максимальная для обезуглероженного чугуна 25 мм, для графитизированного 60 мм, а в отдельных случаях до 100 мм. Можно с уверенностью утверждать, что, обладая механическими свойствами, близкими к литой стали и ЧШГ, высоким сопротивлением ударным нагрузкам при комнатной и низких температурах, износостойкостью, лучшей, чем ЧШГ, обрабатываемостью резанием и свариваемостью, КЧ сохранит в ближайшие годы свое применение, особенно для мелких отливок, сварных конструкций, несмотря на склонность к образованию трещин и энергоемкость получения готовых отливок.


    uas.su