Теплопроводность пенобетона и газобетона: Сравнение газобетона и пенобетона: основные характеристики

Содержание

Пенобетон или газобетон: сравнение

Компания «Строительные технологии» — на сегодняшний день единственное в России предприятие, производящее недорогое и доступное оборудование, как для производства пенобетона, так и для производства газобетона. Поэтому мы даем наиболее объективное сравнение пенобетона и газобетона!
Итак, сравним:

  1. По прочности. При одинаковой плотности газобетон прочнее пенобетона! Этот факт производителями оборудования для пенобетона обычно умалчивается. Однако именно поэтому во времена Советского Союза предпочтение отдавалось производству газобетонов. Знаменитые блоки «HEBEL», производимые сейчас в России на оборудовании и по технологии одноименной немецкой фирмы, – сделаны именно из газобетона!
  2. По теплопроводности и морозостойкости. Характеристики материалов примерно одинаковы. Здесь нужно понимать, что эти показатели фактически напрямую зависят от плотности (объемного веса) материала. Например,
    СНиП II-3-79* Строительная теплотехника
    Скачать файл в ZIP-архиве (277Кб). Он вообще не делает различий по теплопроводности пенобетонов и газобетонов. При равной плотности материала коэффициенты теплопроводности пенобетона и газобетона равны.
  3. По водопоглощению. Газобетон по этому показателю уступает, но незначительно. Некоторые производители оборудования для производства пенобетона чрезмерно раздувают этот факт. На самом деле различия незначительны и при реальном использовании в строительстве особой роли не играют. К примеру, заявляют, что кусок пенобетона в воде плавает и не тонет дольше, чем газобетон. Да, это так. Но, в итоге, он все равно наберет влагу и утонет — это же не материал для строительства кораблей. Иногда даже упоминают, что пенобетон, дескать, воду вообще не впитывает, но при этом еще и «дышит», т.е. воздухопроницаем. Этого не может быть в принципе. Любой воздухопроницаемый материал все равно будет обладать и определенным водопоглощением.
  4. По себестоимости материала. Себестоимость производства пенобетона примерно на 20-25% ниже, чем у газобетона (неавтоклавные технологии). В этом – очень серьезный плюс пенобетона! Объясняется это в основном тем, что применяемые при производстве пенобетона пенообразователи гораздо дешевле газообразующих добавок, необходимых для получения газобетона. Это относится как к автоклавному, так не к автоклавному газобетону.
    Здесь нужно отметить, что при производстве автоклавного газобетона, производитель может экономить за счет более дешевого связующего. Вместо цемента здесь обычно используется более дешевая известь. Получаем уже разновидность газобетона — газосиликат. Однако, сразу же добавляются затраты на автоклавную обработку (пропаривание) производимых газосиликатных блоков. 
  5. По стоимости оборудования для производства. Обычно считается, что оборудование для производства газобетона очень дорого и недоступно для малого бизнеса. Это не совсем так. Если использовать для открытия производства оборудование, выпускаемое нашей компанией, начальные вложения окажутся примерно на одном и том же уровне.

Подведем итоги. Однозначно сказать, что какой-то из материалов лучше другого, нельзя. Пенобетон дешевле, однако он проигрывает в прочности. По всем остальным показателям – абсолютная ничья.

Именно поэтому, в Германии, например, часто используют совместно и пено- и газобетон. Несущие стены кладут из более прочных газобетонных блоков. Именно они несут основную конструкционную нагрузку. Пенобетонные блоки используют для перегородок, не несущих значительных нагрузок. Получается и прочно и дешево!

В связи с вышесказанным, Компания Строительные Технологии предлагает Вам не выбирать между производством того или другого материала, а организовать многопрофильное производство ячеистых бетонов – наладить выпуск одновременно пенобетона и газобетона.

Выгоды такого производства очевидны:

  • Вы сможете предложить покупателю выбор – более дешевый материал или более прочный? Таким образом, Вы сразу же окажетесь на голову выше всех своих возможных конкурентов, делающих что-то одно!
  • Вам понадобится только один комплект форм, если Вы будете производить блоки из ячеистых бетонов. В зависимости от пожеланий потребителя, Вы сможете заливать в одни и те же формы газо- или пенобетон.
  • При одновременной покупке у нас оборудования для пенобетона и для газобетона мы дадим Вам максимальную скидку — 10% со всей суммы приобретения!

Вы также можете посмотреть следующие разделы

  1. Пенобетон. Сроки набора прочности
  2. О неавтоклавном методе производства пенобетона
  3. Почему пенобетон лучше, чем пенополистирол (пенопласт)
  4. Характеристики пенобетона
  5. Области применения пенобетона
  6. Применение пенобетона для заливки крыш и полов
  7. Применение пенобетона для теплоизоляции трубопроводов

Теплопроводность газобетона: коэффициент теплопроводности

Газобетон, теплопроводность

Газобетон и изделия из него получили популярность, благодаря высоким показателям свойств и качеств, одним из которых является теплопроводность. Материал обладает высокой способностью к сохранению тепла, которая обусловлена особой структурой, составом и технологией производства изделий.

Давайте разберемся: теплопроводность газобетона — отчего конкретно она зависит? Какими преимуществами будет обладать строение, возведенное из данного материала? И почему тысячи застройщиков, несмотря на высокую конкуренцию, отдают предпочтение именно изделиям из газобетона, опираясь, в первую очередь, на показатель теплопроводности?

Содержание статьи

Краткая характеристика газобетона

Газобетон является разновидностью ячеистого бетона, и отличается от схожих стеновых материалов составом сырья и методом порообразования. Несмотря на схожесть его с аналогами, показатели теплопроводности и иных свойств, иногда существенно отличаются.

Для того, чтобы понять, что именно способно оказывать влияние на изменения числовых показателей характеристик, следует рассмотреть предварительно индивидуальные особенности материала.

Газобетон

Обзор основных свойств и качеств

Воспользуемся таблицей.

Основные характеристики газобетона:

Наименование характеристикиСреднее ее значение
Морозостойкость35-150
Марка прочностиДля неавтоклава – от В1,5, в соответствии с ГОСТ21520-89; для автоклавного газобетона, в среднем — В3,5
УсадкаОт 0,3 мм/м2
Минимальная рекомендуемая толщина стеныОт 0,4 м
ТеплопроводностьОт 0,09
Экологичность2
ПожароопасностьНе горит

Характеристики достаточно конкурентные. Однако все они колеблются в определенных пределах и, как уже было сказано, зависят от некоторых условий. В таблице указаны средние и минимальные значения.

Теплопроводность газобетонного блока в 0,09, характерна исключительно для теплоизоляционных изделий в сухом виде. А как она будет изменяться с повышением плотности, мы рассмотрим ниже.

Классификация и сфера применения

Учитывая тему данной статьи, актуальным будет разобраться, какие же существуют виды материала. Ведь теплопроводность газобетонных блоков зависит от многих факторов.

В соответствии со способом твердения, газобетонный блок может быть:

  1. Автоклавным;
  2. Неавтоклавным.

Автоклавный и неавтоклавный газобетон

Обратите внимание! Автоклавный газобетон еще также называют газобетоном синтезного твердения. Отличается он тем, что на заключительном этапе производства его обрабатывают в специальном оборудовании – автоклаве, при воздействии высокой температуры и давления. Как следствие, изделия обладают более высокими характеристиками, в том числе и более качественным соотношением плотности и теплопроводности. Но об этом поговорим позже.

Неавтоклавные изделия, или газобетон гидратационного твердения, достигают технической прочности естественным способом. Требования к нему, в соответствии с ГОСТ, несколько ниже. Сравним показатели данных видов газобетона при помощи таблицы.

Сравнение автоклавного и неавтоклавного газобетона:

Наименование показателяЗначение для автоклавного газобетонаЗначение для неавтоклавного газобетона
Прочность, маркаВ2,5-5В1,5-2,5
Морозостойкость35-15015-35
Паропроницаемость0,20,18
Теплопроводность эксплуатационная0,096-0,155
0,17-0,25
ОгнестойкостьНе горитНе горит
Рекомендуемая минимальная толщина стены, метрыОт 0,4От 0,65
ДолговечностьДо 200 летДо 50 лет

Как видно, газобетон синтезного твердения во многом опережает своего конкурента — неавтоклава, и это касается практически всех характеристик. Следует отметить, что цена на последний также значительно ниже, и изготовление его возможно произвести своими руками.

Характеристика газобетона разной плотности

Также газобетон разделяют в зависимости от плотности.

В соответствии с этим, материал может быть:

  1. Теплоизоляционным. Такие изделия отличаются низкой плотность (до 400) и теплопроводностью. Используются они в качестве материала для утепления, так как никаких существенных нагрузок блок выдержать не способен.
  2. Конструкционно-теплоизоляционный газобетон обладает более высокой плотностью. Числовой показатель варьируется от 400 до 800. Однако коэффициент теплопроводности газобетонных блоков также вырастает. Используется материал при возведении стен и перегородок.
  3. Конструкционный газобетон – наиболее прочный из всех. Плотность его равна 900-1200. Может выдержать значительные нагрузки, однако при этом, стены требуют дополнительного утепления, так как способность к сохранению температуры у таких блоков достаточно низкая.

Отличия газобетона разной плотности

Помимо вышеуказанных классификаций, существуют и иные, связанные с особенностью состава и внешнего вида изделий. Рассмотрим кратко.

В зависимости от типа вяжущего, газобетон бывает:

  • На цементном вяжущем;
  • На известковом;
  • На шлаковом;
  • На зольном;
  • На смешанном.

Это указывает на то, что содержание основного компонента варьируется в пределах от 15 до 50%.

В соответствии с типом кремнеземистого компонента:

  1. На песке;
  2. На золе;
  3. На иных вторичных продуктах промышленности.

Также хотелось бы отметить классификацию, основанную на геометрии блока.

Газобетон может быть:

  1. Первой категории точности;
  2. Второй категории точности;
  3. Третьей категории точности.

Категория указывает на возможные геометрические отклонения, максимальные значения которых продиктованы ГОСТ.

Важно! Блоки первой категории – самые ровные, отклонения по размеру не должны превышать 1,5 мм. Укладывают их на клей с минимальной толщиной слоя. И заметьте, что для теплотехники стен в целом это оказывает значительное влияние!

Вторая категория имеет большие отклонения: до 2-х мм – по размеру, до 3-х – по диагонали.

Блоки третьей категории обычно используются при возведении хозяйственных построек. Повышенные отклонения диктуют необходимость возведения стен с использованием раствора со значительно большей толщиной шва. Это увеличивает мостики холода и теплопроводность помещения.

Обратите внимание! Блоки различной категории отличаются между собой только геометрическими отклонениями. Различий в технических характеристиках существенных нет. Теплопроводность, прочность, морозостойкость и иные показатели будут идентичными. Отличаться они могут только ввиду сравнения изделий различных производителей.

Понятие теплопроводности и ее значение

Теплопроводность – это способность материала к сохранению температуры. Например, если коэффициент ее высок, то в холодное время года, затраты на отопление помещения значительно возрастут, так как тепло будет быстро выходить наружу — и здание, соответственно, будет быстро остывать.

Давайте разберемся, насколько практичным является использование газобетона в качестве материала для утепления либо возведения стен в данном случае.

Что такое теплопроводность

Показатели теплопроводности газобетона. Зависимость коэффициента теплопроводности от технико-механических показателей

Коэффициент теплопроводности газобетона продиктован ГОСТ 25485-89. Бетоны ячеистые. Технические условия. Как уже упоминалось, данный показатель напрямую зависит от плотности изделий и, более того, от типа кремнеземистого компонента. Рассмотрим таблицу.

Зависимость теплопроводности от плотности газобетона и типа кремнеземистого компонента:

Вид газобетонаМарка прочностиКоэффициент теплопроводности газобетона, изготовленного на золеКоэффициент теплопроводности газобетона, изготовленного на песке
Теплоизоляционный3000,080,08
4000,090,1
Конструкционно-теплоизоляционный5000,10,12
6000,130,14
7000,150,15
8000,180,21
9000,200,24
Конструкционный10000,230,29
11000,260,34
12000,290,38

Вывод напрашивается сам собой: чем больше плотность, тем выше и показатель теплопроводности.

График зависимости теплопроводности от плотности

  • В соответствии с ГОСТ, производителем должен быть учтен тот факт, что теплопроводность изделий не должна превышать вышеуказанных показаний более чем на 20%.
  • Также в таблице видно, что газобетон, изготовленный на золе, более способен к сохранению температуры.
  • Возьмем, к примеру, блоки газозолобетонные d=600: коэффициент теплопроводности у них равен значению в 0,13. А у блоков той же плотности, но изготовленных на песке, данный показатель — на 0,1 выше
  • Немаловажным фактом является то, что теплопроводность блока значительно ухудшается при его увлажненности. А так как газобетон впитывает влагу достаточно сильно, стоит обратить внимания на подобные изменения.
  • Например, коэффициент теплопроводности газобетона d500 равен 0,12, но это – при стандартных условиях измерения. При эксплуатационной влажности, этот показатель увеличивается минимум на 0,2.

Теплопроводность газобетона d500

То есть, чем выше влажность, тем выше и коэффициент теплопроводности. В соответствии с ГОСТ, отпускная влажность газобетонных изделий не должна превышать показателя в 25%, при производстве изделий на песке, и 30% — на основе золы и иных вторичных продуктов промышленности.

Отдельно стоит обратить внимание на такой материал как монолитный газобетон. Он также может быть разной плотности, и обладать различным коэффициентом теплопроводности. Во многом это зависит от марки используемого при изготовлении цемента, пористости и соотношения компонентов.

Его активно используют при:

  • Устройстве стяжки. Монолитные полы из газобетона прочны, материал прост в обращении. Нередко с его помощью производят подготовку основания под теплый пол.
  • Для изоляции кровли. При этом применяют материал меньшей плотности.

Это, разумеется, не все возможные сферы применения материала, их существует достаточно большое количество. Фактом остается то, что популярность газобетона растет с каждым годом все больше, именно благодаря соотношениям плотности и теплопроводности, высоким показателям морозостойкости и других эксплуатационных характеристик.

Сравнение способности газобетона к сохранению тепла с различными стеновыми материалами

А теперь давайте сравним показатели теплопроводности газобетона с другими стеновыми изделиями, а также проанализируем соотношение плотности к данной характеристике. Достоин ли газобетон находиться в лидерах?

Сравнение физико-технических показателей газобетона и других стеновых материалов:

Наименование материалаПлотность кг/м3Коэффициент теплопроводности
Газобетон600-8000,18-0,28
Силикатный кирпич1700-19500,85-1,16
Арболит400-8500,08-0,18
Шлакобетон900-14000,2-0,58
Пенобетон400-12000,14-0,39
Керамзитобетон900-12000,5-0,7
Кирпич пустотелый1500-19000,56-0,95

Фактически выходит, если сравнивать вышеперечисленные материалы и газобетон, теплопроводность его несколько превышает лишь аналогичный показатель у арболита и пенобетона. Остальные стеновые материалы остаются далеко позади.

Сравнение теплопроводности материалов

 

Сравнение газобетона

Как уже говорилось, газобетон низкой плотности используют в качестве материала для утеплителя. Давайте сравним теперь обоснованность его применения.

Теплопроводность материалов, предназначенных для утепления, в сравнении с теплоизоляционным газобетоном:

Наименование материалаКоэффициент теплопроводности, м2*С/Вт
Газобетон теплоизоляционный, Д300От 0,08
Эковата0,014
Изовер0,044
Пенопласт0,037
Керамзит0,16
Стекловата0,033-0,05
Минеральная вата0,045-0,07

Теплопроводность строительных материалов

Даже в качестве теплоизоляционного материала, газобетон может быть достойным конкурентом.

Часто выбирая утеплитель, застройщики задаются вопросом: керамзит или газобетон, что лучше? Ответить однозначно достаточно сложно. В первую очередь, следует обратить внимание на приоритеты в показателях. Оба материала – легкие, недорогие и способны сохранять тепло.

Однако, если учитывать данные, указанные в таблице, то теплоизоляционный газобетон все же выигрывает в последнем показателе. А выбор, остается за вами.

Расчет оптимальной толщины стены

Рекомендуемая минимальная толщина стены из газобетона, как мы уже выяснили, составляет 400 мм. Однако для разных регионов, этот показатель может значительно отличаться. В местах, где температура воздуха более низкая, стена должна быть значительно толще, при сохранении оптимальной температуры.

Давайте разберемся, как же правильно посчитать нужную толщину стены, с учетом всех необходимых факторов, в том числе требований СНиП 23-02-2003 Тепловая защита зданий, СП 23-101-2004 Проектирование тепловой защиты зданий.

Для начала рассмотрим, каким будет показатель теплопроводности, в соответствии со СНиП, при условиях изготовления с использованием различного кремнеземистого компонента и кладки готовых изделий на различные растворы.

Расчетные коэффициенты теплопроводности в условиях эксплуатации при возведении стен с использованием раствора и клея и соответствующие условия эксплуатации А-В:

Вид блокаМарка плотностиКоэффициент теплопроводности, при условии укладки на известково- песчаный раствор (условия эксплуатации А-В).Коэффициент теплопроводности, при условии укладки на цементно-песчаный раствор

(условия эксплуатации А-В).

Коэффициент теплопроводности, при условии укладки изделий на клей

(условия эксплуатации А-В).

Газобетон, изготовленный из кварцевого пескаД5000,25-0,30,24-0,280,18-0,23
Д6000,27-0,320,26-0,310,22-0,26
Д7000,35-0,40,34-0,390,27-0,31
ГазозолобетонД5000,28-0,330,27-0,320,19-0,25
Д6000,31-0,370,3-0,360,25-0,31
Д7000,39-0,450,38-0,440,3-0,36

Далее, для проведения расчетов необходимо определить, к какой зоне влажности относится ваш регион. Для этого можно воспользоваться картой зон влажности и следующей таблицей:

Влажностный режим регионов:

РежимВлажность воздуха при температуре до 12 градусовВлажность воздуха при температуре от 12 до 24 градусовВлажность воздуха при температуре более 24 градусов
Влажный – 1Более 75От 60 до 75От 50 до 60
Нормальный -2От 60 до 75От 50 до 60От 40 до 50
Сухой -3Менее 60Менее 50Менее 40

Теперь следует заглянуть в СНиП 23-02-2003 и определить, к каким условиям эксплуатации ограждающих конструкций относится регион в зависимости от влажности.

Карта зон влажности, фото

Эксплуатационные условия конструкций А, Б в зависимости от влажностного режима в регионе:

Режим влажностиУсловия эксплуатации во влажной зонеУсловия эксплуатации в нормальной зонеУсловия эксплуатации в сухой зоне
Влажный – 1БББ
Нормальный – 2ББА
Сухой — 3БАА

Теперь стоит вернуться в таблице 6, в которой мы сможем найти нужный для себя показатель.

  • Например, предположим, что наш регион – Смоленск. Его территория относится к зоне нормальной влажности – 2, влажность в помещении – тоже нормальная, значит, в этом случае, для региона характерны условия В.
  • Теперь переходим к расчетам. Нам потребуется значение нормируемого сопротивления теплоотдаче. Для Москвы это – 3,29.
  • Возводить мы будет стену из блоков плотностью Д500, укладку производить – на клей. Находим в таблице 6 необходимое значение. В данном случае оно равно – 0,23.
  • Теперь определяем толщину стены, для чего перемножаем коэффициент теплопроводности и показатель сопротивления теплоотдаче: 3.29*0.23=0,7567 метра.
  • То есть, для того, чтобы не нарушить нормы СНиП, толщина стены, при вышеописанных условиях, должна составлять 0,76 метра!

Так почему же все производители в один голос заявляют, что толщина стены может быть от 400 мм, а на практике выходит по-другому? Все просто!

Во-первых, теплопроводность газоблока в условиях эксплуатации – повышается, так как изменяется влажность, во-вторых, изготовителями, при подсчетах показателей для рекламы продукции, не учитываются мостики холода и иные определяющие факторы. Теоретически, толщина стены может быть и тоньше, но, чтобы сохранить нужное значение теплопроводности, необходимо будет компенсировать разницу при утеплении конструкции.

Газобетонные блоки теплопроводность: вариант утепления, схема

Видео в этой статье расскажет подробнее о методах утепления газобетона, и сохранения оптимального показателя качества теплопроводности

Обзор основных достоинств и недостатков строений, возведенных из газобетона

Итак, мы выяснили, что коэффициент теплопроводности газобетона достаточно хорош, относительно других материалов, предназначенных, в первую очередь, для возведения стен. Однако это не может являться единственным аргументом при выборе изделий.

Давайте кратко рассмотрим, какими же еще сильными сторонами обладают газоблоки:

  1. Изделия — легкие, что значительно сократит нагрузку на фундамент;
  2. Как уже упоминалось выше, материал прост в обращении, он легко пилится, режется, шлифуется;
  3. Состав газоблока – немаловажный аспект. Он не содержит ядовитых и вредных для окружающих веществ, а, значит, является экологически чистым;
  4. Газобетон не горит и не поддерживает огня. При возгорании может в течение нескольких часов находиться под воздействием высокой температуры;
  5. Высокие показатели морозостойкости. Изделия могут выдержать до 150 циклов размораживания и оттаивания;
  6. Паропроницаемость обеспечит максимально комфортный микроклимат;
  7. Звукоизоляционные характеристики – также достаточно неплохие. Стены из газобетона смогут оградить пребывающих в помещении от посторонних шумов извне;
  8. Доступность и распространенность материала среди производителей. Это – тоже значительный плюс. Практически в любом регионе можно найти изготовителя или дилера, находящегося по близости. Это поможет сэкономить на доставке;
  9. Вариативность выбора размеров;
  10. Еще одно весомое преимущество – возможность самостоятельного изготовления изделий. Для желающих сэкономить или просто попробовать свои силы – отличный шанс;

Основными недостатками являются:

  1. Высокое водопоглощение материала. В этом случае, пористость является отрицательной стороной в особенности, при отрицательных температурах воздуха. В это время, влага может кристаллизироваться и разрушительно воздействовать на структуру блока.
  2. Хрупкость изделий. Это достаточно заметно при проведении работ и транспортировке.
  3. Усадка здания имеет место быть достаточно часто и, в следствие этого, а также некоторых других факторов, могут появиться трещины.
  4. Необходимость поиска и приобретения специального крепежа, а при желании закрепить особо тяжелых предметы, необходимость планирования и укрепления узлов фиксации.

Метод испытания теплопроводности изделий

Метод контроля теплопроводности осуществляется в соответствии с ГОСТ 7076, а отбор проб – в соответствии с ГОСТ 10180. Документы содержат всю информацию о порядке отбора проб, их испытаний и протоколировании результатов.

Суть метода заключается в следующем: создается стационарный тепловой поток, который проходит через образец выбранной толщины. Направление его – перпендикулярно наибольшим граням образца. В результате производят измерение плотности этого потока тепла, а также температуру лицевых граней образца и его толщину.

Необходимое количество образцов, подлежащих испытанию, должно быть указано в сертификате на материал. Если же такое указание отсутствует, испытания проводятся на образцах в количестве пяти штук.

Прибор для измерения теплопроводности твердых тел

Краткая инструкция о порядке проведения испытания выглядит так:

  • Производят подготовку образцов и необходимого оборудования, согласно технической документации;
  • Образец помещают в прибор, предварительно градуированный;
  • Каждые 300 секунд производят измерения сигналов тепломера и датчика температуры;
  • После установления стационарного теплового потока, толщина образца подлежит измерению;
  • Заключительным этапом является определение массы образца.

Основные итоги

От показателя теплопроводности стенового материала зависят расходы на утепление помещения при строительстве, а в будущем — и величина расходов на отопление. Ведь данная характеристика отвечает за способность здания к сохранению температуры.

Газобетон обладает завидным числовым показателем в сравнении с другими материалами для стен — но, все же, совсем без утепления все равно не обойтись. Теплопроводность зависит от иных показателей качеств, таких, например, как плотность, или влажность. А это значит, что при возведении здания, данный факт должен быть обязательно учтен.

Помимо вышеуказанного, газоблок наделен большим количеством сильных сторон, поэтому если ваш выбор пал на него, то вы не прогадали. Материал позволит возвести практичное, долговечное строение — а теплопроводность газобетонных блоков при этом, является крайне важной характеристикой.

расчет стены, сравнение с другими материалами, характеристики

В течение многих десятилетий и даже веков в строительстве отдавалось предпочтение кирпичу, как самому износоустойчивому, прочному и долговечному кладочному материалу. Никто и не оспаривает его достоинств, но при строительстве малоэтажного жилья совсем другие приоритеты. Вряд ли кому-то нужна «крепость» в прямом смысле слова. Главное, чтобы ограждающие конструкции как можно лучше сопротивлялись теплопередаче, с чем успешно справляются ячеистые бетоны. Коэффициент теплопроводности газобетона позволяет строить теплые комфортные частные дома без дополнительного утепления. При этом стены получаются достаточно прочные и долговечные со сроком эксплуатации от 100 лет и выше, срок эксплуатации до первого ремонта от 50 лет.

Активное использование газоблоков в отечественном строительстве началось с середины 20 века, после того, как в Европе смогли создать бетонные панели с плотностью, сниженной до 300 кг/м³. При этом в нашей стране была наработана прогрессивная научно-техническая база по производству и применению газобетона. С началом перестройки была даже принята программа по созданию систем эффективного строительства из автоклавных ячеистых бетонов, и увеличения объёмов их производства путём строительства новых заводов-изготовителей.

В то время выпускали блоки только плотностью 600-700 кг/м³, но девиз программы гласил, что при 7-кратном увеличении количества выпускаемой продукции нужно стремиться к 2-х кратному снижению плотности, что автоматически влекло и снижение теплопроводности газоблока.

С развалом Советского Союза и закрытия многих производственных площадок весь опыт наших инженеров остался на бумаге. Уже в 2000х годах начинают открываться на территории России коммерческие производства с патентами и оборудованием западных компаний. Их число продолжает расти, а это значит, что продукция пользуется спросом и качество построенного из газобетона жилья оказалось на высоте. Именно поэтому теплопроводность и другие характеристики газоблока так интересуют потенциальных застройщиков.

Технология его производства несколько схожа с получением силикатного кирпича: компоненты те же — только к цементу, песку и извести добавляются ещё ингредиенты, провоцирующие процесс порообразования. Это алюминиевая пыль или паста, а также сульфат и гидроксид натрия, взаимодействие которых запускает химическую реакцию с высвобождающимся кислородом.

При этом блоки не подвергаются прессованию, так как требуется получить не максимально плотные, а наоборот, воздухонаполненные изделия. Созревание бетона происходит в автоклавах – камерах, где он в течение 12 часов обрабатывается подаваемым под давлением высокотемпературным паром. Это обеспечивает ускоренное твердение камня и более высокую, чем при естественной гидратации прочность.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

На заметку: В процессе автоклавирования в бетоне образуется новый минерал под названием тоберморит (силикат кальция), который встречается в составе камня базальтовых пород и портландцементе. При реакции с водой он принимает участие в связывании цемента, что позволяет получить более высокую прочность.

По этой причине преимущество на стороне автоклавного газобетона, и обсуждая его характеристики, мы по умолчанию будем вести речь именно о нём.

Представляем таблицу с перечнем положительных свойств газобетона и его недостатков:

Достоинства Недостатки
Низкий коэффициент теплопроводности газоблока. Зависит от марки изделия по плотности, но в среднем составляет 0,14 Вт/м*С, что втрое меньше, чем у керамзитобетона и в 6 раз – чем у полнотелого кирпича. Применяемость. Характеристики, безусловно являющиеся достоинствами материала, можно рассматривать и как недостатки. В частности, из-за относительно невысокой прочности ограничена применяемость поризованного бетона в многоэтажном строительстве. Здесь их используют только для заполнения пролётов несущих каркасов из железобетона.
Теплоемкость газобетона. Цифра характеризует количество тепла, необходимого, чтобы нагреть материал на 1 градус. При условии влажности, не превышающей 5-6%, теплоемкость газобетона d400 составляет не более 1,10 кДж/кг, в абсолютно сухом состоянии — до 0,84, как и у кирпича. Повышенная чувствительность к влаге. Наличие открытых пор делает камень гигроскопичным, а это требует принятия мер для защиты стен от воздействия паров и насыщения водой. Этот недостаток легко нивелируется за счёт правильного структурирования стенового пирога.
Сопротивление теплопередаче газобетона d500 (среднее значение). Чем выше цифра, тем лучше слои материала сопротивляются отдаче тепла. Составляет 2,67 м²*С/Вт при толщине стены 300 мм. Для примера, у кирпичной стены в два кирпича эта цифра составляет всего 1,09 м²*С/Вт. Трещиностойкость. Газобетон – материал довольно хрупкий, и сильно реагирует на перепады температуры и влажности. В результате возникающих напряжений появляются трещины, которые хоть и не ослабляют прочность кладки, но портят её внешний вид. Именно поэтому для ячеистобетонной кладки предусматривают наружное утепление – а не потому, что теплоизоляционные свойства газобетона не позволяют без него обойтись. Примечание: Однако трещины могут появляться и из-за недостаточно жёсткого основания. Поэтому фундаменты для газобетонных домов всегда нужно проектировать в монолите.
Геометрия блоков на самом высоком уровне. Погрешности в параметрах составляют не более 2 мм, что позволяет производить монтаж на тонкий слой клея. При наличии у блоков пазогребневых соединений, вертикальные клеевые швы и вовсе отсутствуют. Морозостойкость. Чем ниже прочность бетонного камня, тем меньше циклов заморозки и оттайки он выдерживает. Газобетон D600 соответствует классу прочности В2,5, что обеспечивает только 25 циклов. Но это распространяется только на незащищённый от увлажнения материал — а в таких условиях даже и кирпич не всегда служит дольше.
Трудоёмкость и скорость возведения стен. Благодаря малому весу и крупному формату блоков, в процессе кладки не приходится пользоваться грузоподъёмными механизмами. Работа продвигается быстро, 1 м² кладки в час – это в 4 раза быстрее, чем с использованием кирпича. Ограничения по выбору материалов для утепления и внешней отделки. Чтобы дать пару беспрепятственно проходить через кладку, не конденсируясь в её толще, коэффициент паропроницаемости каждого следующего слоя в направлении от стены к улице должен быть более высоким.
Экологичность. Больше всего поборников экологичности волнует радиоактивность материала, которая в общепринятой норме составляет 370 Бк/кг. Фон газобетона далеко не дотягивает до этой цифры и составляет чуть больше 50 Бк/кг. У того же кирпича в зависимости от вида глины он варьируется в пределах 126-840 Бк/кг. Необходимость в специальном крепеже. Стены из пористого бетона имеют слабую устойчивость к вырывающим нагрузкам. По этой причине повесить тяжёлый предмет на обычные дюбель-гвозди невозможно. Нужны более дорогие спиральные, распорные или забивные дюбели.
Огнестойкость. Поризованный бетон имеет класс пожарной устойчивости К0 – как не представляющий опасности. Показатель REI (предел огнестойкости) составляет 4 часа при толщине стен более 20 см. Именно столько времени они выдержат воздействие открытого огня без деформации. При этом газобетон не выделяет токсичных веществ. Слабая адгезия. Очень гладкая поверхность блоков снижает сцепляемость бетона со штукатуркой. Делать насечки бучардой, как в случае с тяжёлым бетоном, здесь нежелательно, проще всего использовать грунтовки с кварцевым наполнителем.
Затраты на фундамент. Достаточно высокие, если учесть, что кладка из ячеистого материала чувствительна к подвижкам основания, и надо обязательно заливать монолит. Но высокое сопротивление теплопередаче газобетона позволяет уменьшать толщину стен — а это реальная экономия на количестве бетона.  
Затраты на кладочный материал. Несмотря на то, что клеевая смесь обходится вдвое дороже аналогичного количества обычного ЦПС, за счёт более низкого расхода (в 5-6 раз) получается немалая экономия.  
Простота обработки. С газобетонными блоками легко работать, так как их можно пилить и штробировать ручным инструментом. Камню несложно придать нужную форму, что позволяет быстро изготовить доборный элемент и выкладывать стены радиусной формы.  
Стоимость. Всё, конечно, относительно. Однако по цене кубометр газобетонных блоков в три раза дешевле кирпича и более чем в 5 раз – пиломатериала.  

Перечень недостатков не так велик по сравнению с количеством преимуществ, да и те не столь существенны, чтобы быть помехой для постройки прочного, долговечного, а главное — тёплого жилого дома.

Коэффициент теплопроводности газобетонных блоков, как и любого другого материала, характеризует его возможность проводить тепло. Численно он выражается плотностью теплового потока при определённом температурном градиенте. Способность удерживать тепло зависит от влияния таких факторов, как:

  1. степень паропроницаемости;
  2. плотность материала;
  3. способность усваивать тепло;
  4. коэффициент водопоглощения.

Последнее особенно хорошо видно в представленной ниже таблице:

Марка газобетона по плотности Теплопроводность газоблока в сухом состоянии (Вт/м*С) Коэффициент теплопроводности газобетона при влажности до 6% (ВТ/м*С) Теплоемкость газобетона (Вт/м²*С) за 24 часа Паропроницаемость (мг/м ч Па)
d400 0,09 0,14 3,12 0,23
d500 0,11 0,16 3,12 0,20
d600 0,12 0,18 3,91 0,17
D700 0,14 0,19 3,91 0,16

Как видите, чем более плотная у бетонного камня структура, тем меньше он пропускает пара и больше тепла. Поэтому, выбирая материал для строительства дома, не стоит стремиться покупать блоки с запасом прочности без необходимости.

Теплопроводность газобетонного блока во многом обусловлена структурой материала, который более чем на 80% состоит из заполненных воздухом пор. Воздух является лучшим утеплителем, благодаря его присутствию меняется характеристика бетонного камня. Влажность воздуха тоже оказывает влияние на показатели теплопроводности – они будут тем ниже, чем суше климат.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: При стабильно высокой влажности всё преимущество пористого материала может быть сведено к нулю, и его способность пропускать тепло станет такой же, как у кирпича. Поэтому в районах с климатически обусловленной высокой влажностью внешние ограждающие конструкции увеличивают в толщине.

  • Очень важно предварительно сделать теплотехнический расчет стены из газобетона – чтобы в итоге проживание в доме не оказалось некомфортным. При этом обязательно учитывают параметры применяемых для кладки блоков, округляя итоги в большую сторону до ближайшего показателя толщины.
  • Теплопроводность готовой стены может отличаться от теплопроводности газобетона d400, если, к примеру, блоки смонтировали не на клею, и на растворе. Затвердевшая пескоцементная стяжка имеет коэффициент теплопроводности 0,76 Вт/м*С – и это при расчётном коэффициенте газобетона этой марки 0,12 Вт/м*С!
  • Разница очевидна, и не надо быть великим специалистом, чтобы понять, что тепло будет уходить если не через блоки, то через их стыки. Вывод напрашивается сам: чем тоньше слой, тем лучше. А это возможно только при использовании тонкослойных клеёв.

Это же касается и армирующего пояса из тяжёлого бетона. Чтобы он не оказался одним большим мостом холода, монтировать его лучше по несъёмной опалубке. Её роль исполняют газобетонные U-блоки, внутрь которых укладывается арматура и производится уже заливка обычного бетона.

Низкая теплопроводность газобетонных блоков даёт возможность получить экономию не только за счёт уменьшенной толщины стен и ширины фундамента, но и снизить расходы на эксплуатацию дома. Ведь для поддержания комфортной температуры в помещениях будет тратиться гораздо меньше электричества или газа.

Как этого добиться, мы расскажем чуть позже, а пока предлагаем оценить теплопроводность газоблока в сравнении с другими материалами:

Характеристика Газобетон Пенобетон Керамзитобетон Полистиролбетон Пустотелый кирпич Керамоблок Древесина
Плотность кг/м³ 300-600 400-700 850-1800 350-550 1400-1700 400-1000 500
Теплопроводность Вт/м*С 0,08-0,14 0,14-0,22 0,38-0,08 0,1-0,14 0,5 0,18-0,28 0,14

Как видите, теплопроводность газобетона в сравнении с группой популярных теплоэффективных материалов стен соответствует показателю древесины. Из кладочных материалов конкурировать с ним могут только пенобетон и полистиролбетон.

Если теплопроводность газобетона в большинстве случаев обеспечивает комфорт проживания в доме, зачем тогда утеплять стены? Выше уже было сказано, что поризованный материал необходимо защитить от перепадов температур и влажности. Но это лишь один аспект, второй заключается в стремлении снизить расходы на отопление помещений.

Для дачного дома, который в зимнее время практически не эксплуатируется, толщины стен в 200 мм более чем достаточно. Что касается жилья постоянного проживания, то имеет смысл сделать стены более толстыми. Теплопроводность газоблока 30 см будет при аналогичной плотности такой же, но уменьшится количество теплопотерь.

По этой причине, особенно в холодных регионах, для возведения стен берут более толстые блоки. Теплопотери дома из газобетона 375 мм снижаются ещё на треть, и стены получаются гораздо теплее тех нормативов, что применяются в официальном строительстве. При плотности 400 кг/м³ теплопроводность такой кладки составит 0,08 Вт/м*С, а сопротивление передаче тепла установится на уровне 3,26 м²*С/Вт.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Чтобы получить точные цифры, необходимо произвести теплотехнический расчет газобетонной стены, с учётом среднезимних температур, характерных для данной местности. Приобретая типовой, или заказывая индивидуальный проект для будущего дома, заказчик вместе с рабочей документацией получает и такой расчёт.

Однако в частном строительстве многие предпочитают обходиться без проектирования. Для самостоятельного расчёта можно использовать онлайн калькулятор теплопотерь дома из газобетона.

Вот когда газобетонные стены однозначно нуждаются в утеплении:

  1. При плотности блоков d500 и выше.
  2. При толщине стены менее 30 см.
  3. Когда газоблоками производится заполнение пролётов железобетонного каркаса.
  4. Когда кладка производится не на клей, а на раствор.
  5. При использовании неавтоклавных изделий более низкого качества.

В таком случае, автоматически возникает вопрос: чем утеплять?

В силу ячеистой структуры газобетон называют дышащим материалом, в среднем, его коэффициент паропроницаемости составляет 0,20 мг/м*ч*Па (это в 3,5 раза выше, чем у дерева поперёк волокон).

  • Чтобы пар не задерживался в толще бетона и не конденсировался в нём, утеплитель должен иметь ещё больший показатель паропроницаемости. У пенопласта, даже невысокой плотности, этот коэффициент намного ниже – порядка 0,023 мг/м*ч*Па, то есть пар он практически не пропускает.
  • Если утеплить ячеистобетонные стены пенопластом снаружи, сырость и грибок вам будут обеспечены. Уж если и использовать пенопласт в качестве утеплителя, то только изнутри. Там он будет препятствовать попаданию пара в стены, но для этого нужно, чтобы все стыки между плитами были хорошо герметизированы, и использовалась пароизоляционная плёнка.
  • Толщина утеплителя для блоков D400 толщиной 300 мм должна быть не менее 100 мм. Но если при этом стены не будут утеплены снаружи, влажность кладки с нормативных 6% увеличится до 12%.

Это значит, что в итоге теплопроводность газоблока окажется выше расчётной, ухудшив теплоэффективность стен в целом.

Минвата – самый надёжный и подходящий по паропроницаемости вариант, её показатели в зависимости от плотности варьируются в пределах 0,30-0,60 мг/м*ч*Па. Это выше, чем у газобетона, поэтому для пара этот утеплитель не создаёт никаких препон.

Здесь важно, чтобы сама минвата не аккумулировала в себе влагу и не отсыревала. Поэтому, поверх неё монтируют паропроницаемую мембрану с ещё большей степенью проходимости. Так же, если для наружной отделки будет использоваться навесной материал или кирпич, для хорошей вентиляции предусматривают технологический зазор.

Если же по утеплителю будет выполняться штукатурка, то её коэффициент паропроницаемости должен быть выше, чем у минваты. При толщине плит в 50 мм, влажность газобетона может достигать 7%. Это хоть и незначительно, но превышает норму, поэтому лучше всего в расчёт закладывать утеплитель толщиной 100 мм.

Эковатой называют рыхлый целлюлозный утеплитель, обработанный для биологической стойкости борной кислотой. У него аналогичный минеральной вате коэффициент паропроницаемости и теоретически он подходит для наружного утепления ячеистобетонных стен.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Внимание: На практике же любой насыпной материал неудобен для утепления стен, так как имеет способность самоуплотняться, в результате чего в теплоизоляционной прослойке образуются пустоты. Эковата сильнее минваты подвержена сорбционному увлажнению, поэтому проектировщиками в качестве материала для утепления стен она вообще не рассматривается.

Существует такое понятие, как тёплая штукатурка, которая получила своё название за счёт применения в качестве крупного заполнителя гранул перлита или пеностекла – материалов, которые сами по себе являются утеплителем. Если вы взяли для строительства дома блоки толщиной 375 мм, можно прекрасно обойтись теплоизоляционной штукатуркой, используя её и внутри, и снаружи.

Для внутренних работ применяют составы на основе цемента, гипса или извести с более низкой паропроницаемостью. Фасадные штукатурки имеют цементно-карбонатно-перлитовый состав с коэффициентом паропроницаемости 0,17 мг/м*ч*Па. Это немного меньше, чем у газобетона, но учитывая его толщину и наличие почти непроницаемого слоя штукатурки внутри, стена будет работать как надо.

Вопрос, как правильно утеплять дом из газобетона, является одним из самых важных, потому что от выбора теплоизоляционного материала зависит и долговечность конструкций, и комфорт эксплуатации жилья в целом. Надеемся, что представленная здесь информация окажется полезной, хотя окончательное решение, конечно же, остаётся за вами.

от чего зависит, сравнение с другими материалами

Одна из характеристик, по которой выбирают газобетонные блоки – это теплопроводность. По ее показателю определяют, насколько хорошо материал способен удерживать тепло внутри здания. Один из самых низких коэффициентов теплопроводности имеет воздух. Именно благодаря его наличию в структуре блоков газобетона, они хорошо теплоизолирует стены. Воздух, находящийся в порах, замедляет процесс теплообмена между частицами материалов. Поэтому блоки имеют низкий коэффициент теплопропускаемости, более лучший, чем у кирпича, дерева или пеноблоков.

От чего зависит теплопроводность газоблока?

Газобетон состоит из пористой структуры. Появляются поры в результате выделения газа во время химической реакции раствора с алюминиевой пудрой. Занимают они около 80-85% всего его объема. Но в отличие от пенобетона, из-за такого способа производства создаются открытые, а не закрытые ячейки. По этой причине газобетон быстрее впитывает влагу по сравнению с пеноблоком. Прочность же зависит от толщины перегородок между ячейками.

Производится трех видов:

  • теплоизоляционный;
  • конструкционный;
  • конструкционно-теплоизоляционный.

Каждый из них имеет разный коэффициент теплопропускаемости, и, соответственно, сферу применения. Первый тип используется только в качестве теплоизоляции уже отстроенных стен зданий, маркируется D400. Второй и третий вид применяются для возведения домов и перегородок.

На теплопроводность газобетона влияют следующие факторы:

  • плотность;
  • влажность;
  • толщина;
  • пористость и структура пор.

Теплоизоляционные блоки имеют наибольшее количество ячеек в своей структуре, причем крупного размера. Из-за этого утепляющий газобетон имеет наименьшую плотность и низкую прочность. Так как для его изготовления использовалось небольшое количество цемента. В итоге перегородки между порами получились недостаточно прочными. Этот тип газоблоков нельзя применять для возведения несущих конструкций. Но зато они обладают наилучшими теплоизолирующими свойствами, благодаря большому количеству воздуха внутри.

Конструкционные газобетонные блоки имеют повышенную плотность, из-за чего их ячейки очень маленькие и их количество меньше, чем в теплоизоляционных, поэтому они хуже удерживают тепло. Этот тип материала используется для строительства оснований и несущих конструкций.

На теплопроводность также влияет влажность. Чем больше воды впитали газоблоки, тем меньше сухого воздуха осталось в ячейках, а значит, тем больше тепла сможет проходить через них. От толщины также меняется способность удерживать нагретый воздух, так, например, блоки шириной 30 см имеют более высокую теплосберегаемость, чем 20 см.

Сравнение газобетона с другими стройматериалами

Теплопроводность газоблока в сравнении с другими материалами заметно отличается. Она меняется в зависимости от структуры и плотности стройматериала. Коэффициент теплопропускаемости полнотелого силикатного кирпича (1800 кг/м3) составляет 0,87 Вт/м·К, пустотелого глиняного – 0,44 Вт/м·К, дерева (500 кг/м3) – 0,18 Вт/м·К, газоблоков D500 – 0,14 Вт/м·К. Чтобы стены одинаково удерживали тепло, то из кирпича потребуется построить сооружение толщиной 210 см, а из газобетона шириной чуть больше 40.

Различается теплопроводность кирпича и газоблока и других материалов с изменением влажности. При показателе 0% газобетон марки D600 имеет коэффициент 0,141 Вт/м·К, D500 – 0,0112 Вт/м·К, D400 – 0,096 Вт/м·К, пенобетон D600 – 0,151 Вт/м·К. Если влажность достигла 5%, то теплопропускаемость заметно ухудшается. У газобетона D500 составляет 0,147 Вт/м·К, D400 – 0,117 Вт/м·К, у пенобетона D600 – 0,211 Вт/м·К. На стены из дерева влага влияет еще значительнее. При плотности 500 кг/м3 и 0% влажности коэффициент теплопроводности – 0,146 Вт/м·К, при 5% – 0,183 Вт/м·К.

Толщину стен из газоблоков определяют в зависимости от климатического региона. Если это северные, то для наилучшей теплоизоляции дома потребуется дополнительное утепление. Иначе здание будет слишком быстро терять тепло. Стена шириной 20 см из D600 имеет показатель теплосберегаемости 0,72 Вт/м·К, 30 см – 0,46, 40 см – 0,35. Если конструкция построена из D400: 20 см – 0,51 Вт/м·К, 30 см – 0,32, 40 см – 0,25.

Чтобы не снижать утепляющие характеристики газоблоков, рекомендуется укладывать их на специальный клей. Тогда швы будут получаться минимальной ширины. Так как именно из-за толстых швов из цементно-песчаных растворов в кладке теряется больше тепла.

Для утепления стен из газобетона и пенобетона рекомендуется использовать влагопроницаемые утепляющие материалы, чтобы между теплоизоляцией и конструкций не образовывался конденсат. Из-за избыточной влажности не только повышается теплопроводность блоков, но и ухудшается микроклимат в доме. Наилучшим вариантом считается теплоизоляция из минеральной ваты. Ее толщина подбирается в зависимости от климатической зоны. Отделка газобетона гидроизоляционным слоем обязательна.

от чего зависит и какой коэффициент

Индустрия строительства сегодня обеспечена многочисленными высокотехнологичными материалами, имеющими выдающиеся свойства. Одним из них является ячеистый бетон. Одна из разновидностей — газобетон. Производители гарантируют материалу высокие эксплуатационные характеристики. Например, обеспечивать сбережение комфортного внутреннего теплового режима зданий или передачу лишнего тепла за его пределы. Постоянное удорожание энергоресурсов делает все более актуальным фактором строительства снижение теплопроводности материалов.

Что такое теплопроводность?

Стены зданий предназначены стабилизировать комфортную температуру внутри помещений. Высокая теплопроводность стен холодной порой года будет быстро передавать тепло отопления наружу. Стоимость потребленных энергоресурсов вырастет, однако, жилое строение будет по-прежнему холодным. По этой же причине жаркие дни станут причиной внешнего нагрева стен. Материал передаст тепло внутрь строения, потребовав непременного охлаждения воздуха. Газобетону присущи иные свойства.

Само название подтверждает, что объем материала равномерно заполнен порами. Примерно 85% тела блоков — пустоты. Они заполнены воздухом, именно поэтому изделия имеют незначительный вес. По этому параметру продукция объединяет качества дерева, камня. Как известно «запертый» воздух является плохим проводником тепла. Значит, структура материала обладает ярко выраженной низкой теплопроводностью.

Показатель имеет наименьшую величину среди используемых стеновых материалов. Термин “теплопроводность” определяет способность передавать тепло внутри материала от одной более нагретой части объема к другой менее нагретой за счет теплового движение молекул. Измерение производится в Вт/(м °С). Показатель имеет название — коэффициент теплопроводности.

Фактически речь идет о количестве теплоты, которая передается через грань образца объемом 1 м. куб. за установленное время (например, 1 час) при формировании разности температур в 1 градус на противоположных сторонах. Технология изготовления газобетона задает макроструктурное качество, характеристики плотности, влажности материала. Именно от этих параметров зависит теплопроводность продукции.

Вернуться к оглавлению

Зависимость от плотности

Влияние плотности на теплопроводность.

Теплопроводность изделий формируется плотностью их материала. Чем они плотнее, тем быстрее передают холод (тепло) через свой объем. Стены из разных материалов, которые одинаково препятствуют теплопотерям, имеют разную толщину. Для сравнения: стены кирпичная шириной 210 см, из блоков газобетона сечением 44 см, из листов пенополистирола толщиной 12 см имеют практически равные показатели теплопропускания.

Сравнение стандартных величин теплопроводности кирпича — 0,35 Вт/(м °С) с газобетоном марки D400 — 0,10 Вт/(м °С) показывают, что условная кирпичная стена выпускает тепло из постройки быстрее, примерно от 3 до 4 раз. Одна из особенностей газоблоков в том, чем большую плотность он имеет, тем быстрее сооружение охлаждается. Есть обратная связь. Важно выдержать оптимум при выборе марки блоков, чтобы дом стал долговечным, теплым.

Вернуться к оглавлению

Зависимость от влажности

Влияние влажности на теплопроводность газобетона.

Формирование из блоков наружных стен сооружений предполагает взаимодействие, в первую очередь, с переменчивой влажностью окружающей среды. Хотя гигроскопичность материала достаточно низкая, однако, его структура все же подвержена впитыванию влаги. Реальные теплоизоляционные свойства изделий становятся несколько ниже, чем в стандартных условиях измерений. Величина равновесной эксплуатационной влажности наружных газобетонных стен может составлять до 10%. Поэтому, например, стандартный коэффициент теплопроводности, равный 0,12 Вт/(м °С) для блоков марки D500 в стандартных условиях, отличается от величины в условиях эксплуатационной влажности на 0,2 Вт/(м °С) и больше. Однако, это не много по сравнению, к примеру, с пустотелым строительным кирпичом, для которого в аналогичных условиях величина данного показателя ухудшается на 70-90%.

Вернуться к оглавлению

Зависимость от качества макроструктуры

Данная разновидность блоков отличается от пенобетонных тем, что содержит характерные вытянутые пустоты неправильной формы. Такому образованию их формы материал обязан выходу газа в процессе отвердения. Газ выходит через образовавшиеся в порах трещинки, а значит, есть обратная сторона вопроса — подверженность продукции поглощению влаги.

Структуризацию материала определяют технологии изготовления. Определяющим фактором являются размеры внутренних пустот. Теплосберегающие свойства материала тем выше, чем больше пустотелых сфер в материале, а также чем меньших они размеров.

Вернуться к оглавлению

Коэффициент теплопроводности марки D500

Газоблоки данной марки классифицируются как конструкционно-теплоизоляционный материал. Величина показателя продукции в среднем равна 0,12 Вт/(м °С). Теплоизоляционные свойства стен, состоящих из уложенных блоков, могут достигать до 0,28 Вт/(м °С), что уже приближает их к кирпичу. Вместе с тем в соответствии с современными строительными нормами (к примеру, СТО 501-52-01-2007, ГОСТ 31360-2007 для РФ) газоблоки марок от D500 и выше могут быть использованы для кладки самонесущих стен высотой более 3-х этажей.

Вернуться к оглавлению

Коэффициент теплопроводности марки D600

Дом из газобетонных блоков сохраняет комфортную температуру в помещениях, как в зимний, так и в летнее время.

Данные изделия также являются конструкционно-теплоизоляционными. Средняя величина показателя для продукции составляет около 0,14 Вт/(м °С). Расчетные теплоизоляционные характеристики стен, состоящих из изделий марки D600, могут достигать до 0,31 Вт/(м °С). Для минимизации теплопотерь требуется точное выполнение рекомендаций по гидроизоляции материала от влаги воздуха, атмосферных осадков.

К сожалению, не только газоблоки составляют тело стен. Мостики передачи тепла создаются армопоясами, бетонными перемычками (поясами), кладочными швами. Последние резко понижают теплоизоляционные качества конструкции стен в целом.

Использование при монтаже специальных клеев снижает теплопроводность стен по сравнению с кладкой на цементные растворы. Вместе с тем повышение точности изготовления единиц продукции при одновременном увеличении их стандартных размеров позволяет сократить количество мостиков холода.

Вернуться к оглавлению

Заключение

За газобетоном настоящее и будущее жилищного строительства ввиду совершенствования норм, требований теплосбережения, роста цен на энергоносители. Простота возведения стен, отсутствие необходимости проводить дополнительное утепление, малые значения теплопроводности автоклавного газобетона позволяют существенно удешевить конструкцию сооружений.

Однако специфика строения пустот в газоблоках способствует впитыванию материалом влаги, поэтому их гидроизоляция обязательна. Конкретная климатическая зона строительства формирует индивидуальный подход как к выбору марки газоблоков, расчету толщины стен зданий, так и определяет их реальную теплопроводность.

коэффициент газоблока d500, d400, паропроницаемость газобетонных блоков, что лучше, таблица

Для определения оптимальной толщины стен из газобетона, нужно точно знать требования, которым она должна соответствовать. Это требуется для того, чтобы защитить стены от низких и слишком высоких температурных показателей. Именно по этой причине при выборе газобетона стоит учитывать такой параметр, как теплопроводность.

Если вы строите несущую конструкцию, то на нее возложено удержание всех перекрытий, для этого важны показатели прочности. Чтобы определить все эти параметры, нужно выполнять необходимый расчет, который позволит оценить целесообразность применения рассматриваемого материала.

На что он влияет

Газобетон – это строительный материал, который обладает пористой структурой и может похвастаться низкими показателями теплопроводности. Благодаря этому удается удерживать тепловую энергию в комнате. Одним из преимуществ рассматриваемого материала остается его легкий вес, благодаря чему удается выполнять все строительные работы быстро и просто. Здесь можно ознакомиться с плюсами и минусами газобетонных блоков. Тут перечислены отличия газобетона от пенобетона. Также читайте, что лучше: что лучше газобетон или шлакоблок или пенобетон.

Кроме этого, по сравнению со стенами, построенными из кирпича и бетона, в конструкцию из газобетона можно вбивать такие крепежные элементы, как гвозди и скобы.

Так как сегодня остается очень актуальным вопрос о сохранении тепла в доме, то нужно разобраться, что собой представляет термин «теплопроводности» и на что оказывает влияние?

Теплопроводность – это способность материала преобразовывать тепло и выполнять, а затем транспортировать его по всему дому. Другими словами, если вы хотите, чтобы в доме постоянно сохранялось тепло в течение длительного времени, то нужно, чтобы показатель теплопроводности был минимальным. Для того чтоб вычислить рассматриваемой параметр, нужно измерить количество тепловой энергии, которое за 1 секунду может проходить через материал, толщиной 1 м и площадью 1 м2. Здесь можно прочитать о других технических характеристиках газобетонных блоков.

На видео рассказывается о теплопроводности газобетона:

Несмотря на то, что вы будет строить, нужно понимать, что газобетон – это очень действенный теплоизоляционный материал. Для того чтобы дом получился очень теплым, а все вычисления не были сравнены к нулю, необходимо соблюдать определенные правила:

  1. Дл соединения блоков необходимо задействовать специальный клей. Его стоит наносить на поверхность блока, а толщина слоя будет составлять несколько миллиметров.
  2. Когда шва образовались слишком толстыми, то они станут своеобразными мостиками холодами, в результате чего это слишком понизить качество газобетона.
  3. Во время строительства дома при умеренных условиях климата нужно позаботиться про утепление стен как снаружи, так и внутри.
  4. Когда вы выполняете расчет на прочность, то необходимо принимать во внимание дополнительную массу, которая будет образовываться при теплоизоляции стен.

Когда вы осуществляете выбор покрытия для строительства фасада на стенах из газобетона, то нужно всегда следовать одному правилу: каждый следующий слой обязан иметь больший коэффициент паропроницаемости по сравнению с предыдущим.

Как правило, может применяться несколько вариантов конструкций наружных стен из блоков:

  1. В один слой, с применением внешней штукатурки и армирующей сеткой. 
  2. В два слоя, с применением теплоизолятора и внешней штукатурки. 
  3. В два слоя, с отделкой кирпичом. 
  4. В три слоя, где необходимо позаботиться про монтаж вентилируемого фасада и использование теплоизолятора.

Если вы хотите обеспечить своей постройке уют и тепло, то недостаточно максимально увеличить толщину стены. Чаще всего применяют блоки Д600, марки В2,5 или же В3,5, толщина которых 300 мм. Но не стоит полагаться на опыт других, а выбирать газобетонные блоки после того, как были выполнены все расчеты на определение прочность и теплопроводность. Тут можно посмотреть, какая должна быть толщина несущей стены из газобетона. Если вы только планируете строительство, то читайте, какой фундамент нужен для дома из газобетона.

Показатели разных видов

Несмотря на то, что газобетон – это очень прочное и надежное изделие, перед его выбором важно ознакомиться со всеми техническими характеристиками и подобрать вариант, который сочетается с условиями эксплуатации. Перед постройкой любого строения необходимо правильно выполнить расчет на прочность и определение некоторых теплотехнических показателей. Однако произвести все эти манипуляции своими руками не всегда удается. Можно также нанять работников, которые смогут все сделать, но для этого нужно платить деньги, а не каждый рассчитывать на такие дополнительные расчеты. Здесь описаны размеры и вес газобетонных блоков.

В сложившейся ситуации необходимо учитывать примерные значения классов прочности и правильно выбрать толщину стены, учитывая назначение будущего строения.

На видео рассказывается о теплопроводности дерева и газобетона:

Многие производители советуют свои потребителям применять следующие виды газобетона:

  1. При строительстве одноэтажного дома в теплом климате, дач, гаражей можно использовать блоки с толщиной 200 мм. С учетом норм, представленная толщина применяться не может, а вот строительство дома из газобетона, параметр толщины у которых 300 мм.
  2. Когда нужно возвести подвальное помещение или цокольный этаж, то стоит задействовать блоки Д600, марка которых В3,5 с толщиной 300- 400 мм.
  3. Для межквартирных перегородок стоит применять газобетон Д500-Д600, марка которых В2,5 с параметром толщины 200-300 мм.
  4. Перегородки между комнатами можно построить с использованием таких же блоков, что и для стен, ограждающих квартиры. Единственное различие состоит в том, что их толщина должна быть 100-150 мм. При возведении стены в уже существующем доме необходимо позаботиться про звукоизоляцию, а не прочность.
  5. При строительстве нежилых комнатах стоит применять газобетон Д500. В этом случае расчет толщины материал должен быть выполнен с учетом возможных нагрузок, минимальное значение толщины будет составлять 300 мм.

Таблица 1 – Значение теплопроводности для различных видов газобетона

Марка по плотностиD300D400D500D600
Коэффициент теплопроводности в сухом состоянии, λ0[Вт/(м · ºС)]0,0720,0960,120,14
Коэффициент теплопроводности при влажности 4%, λА [Вт/(м · ºС)]0,0840,1130,1410,160

Газобетонные блоки сегодня набирают широкую популярность в области строительства. И это не удивительно, так как для него характерны такие свойства, как прочность, надежность и длительный срок службы. Но перед тем как производить процесс возведения дома, важно точно выполнить расчеты на прочность, а также определить показатель теплопроводности, при котором удастся сохранить тепло в доме в течение длительного времени. Возможно, вам также будет нужна информация о деревянных перекрытиях в доме из газобетона. Также читайте, чем штукатурить стены из газобетона внутри. По ссылке описано, какой клей для газобетона лучше.

в чем разница, чем отличается, отличие, что лучше, газобетон

При строительстве жилого дома всегда возникает вопрос о выборе подходящего материала. Очень часто люди отдают предпочтение пеноблокам и газоблокам. При выборе этих материалов очень сложно понять, в чем же их отличие. Стоит отметить, что для них характерна низкая теплопроводность, отличные показатели теплопроводности. Кроме этого, процесс возведения домов из пеноблоков и газоблоков осуществляется очень легко и быстро. Здесь нет необходимости задействовать тяжелую технику. Именно это и позволило применять материалы при строительстве домов и коттеджей. В статье можно узнать чем отличается пеноблок от газоблока, какая разница, что дешевле и теплее, что легче.

Сравнение размеров

Производство газоблоков осуществляется в заводе, то размеры у них стандартные, чего нельзя сказать про оппонента. Изготовление пеноблока может вестись непосредственно на строительной площадке с использованием специальных приспособлений. Результатом такого процесса становятся отличия в способе укладки и расходе материала у пеноблока и газоблока. Но это никак не указывает, что в этом сражении побеждает газобетон.

Узнать что лучше пеноблок или газоблок для дома при его строительстве можно прочитав статью.

На видео рассказывается о разнице между пеноблоками и газоблоками:

Сравнение прочности

Оба материала могут иметь прочностные показатели от 300 до 1200 кг/м3. Если провести сравнительный анализ для этих материалов, взятых с одинаковой плотностью, то пенобетон в этом случае менее надежен и крепок, поэтому фундамент для дома из газобетона будет прочнее. Также на прочность этого материала оказывает влияние качество пенообразующих компонентов. У хорошего пенообразователя высокая цена, отсюда многие изготовители хитрят и меняют его на дешевый. В результате прочностные характеристики пенобетона нестабильны и по всей поверхности блока. Что касается газоблока, то он обладает однородной структурой и одинаково проявляет себя.

Чем отличаются пеноблоки от газосиликатных блоков можно узнать и понять для себя из статьи.

На видео рассказывается, что прочнее газоблок или пеноблок:

Сравнение теплопроводности

Теплоизоляционная способность определяется таким критерием, как плотность структуры ячеистого бетона. Чем она плотнее, тем хуже теплоизоляция. Пенобетон, обладает незначительной плотностью, следовательно, его теплоизоляционная способность лучше, чем у газобетона. Однако несущие стены нельзя выстроить из этого материала, так как прочностные характеристики небольшие. Для этого стоит применять более плотный материал. Но тогда приходится стены делать толще, чтобы повысить теплопроводность. Например, если строить дом в Новосибирске и использовать пеноблоки D600, то их минимальная толщина должна составлять 65 мм. Только так можно добиться тепла в доме.

Имеет ли  дом из газоблока плюсы и минусы и какие конкретно можно узнать из статьи.

На видео рассказывается, что теплее: газоблок или пеноблок:

Если при таких же условиях выполнять кладку стен из газобетона, то их толщина будет не больше, чем 45-50 см. Кроме этого, плотность также будет достаточной D 400 или D 500. Газобетон – прекрасная возможность удерживать тепло, а стены получаются прочными и легкими. Ну а какой вариант понравился вам, решить сможете лишь сами, с учетом климатических условий в вашем регионе.

Для того, что бы узнать какие имеют газоблоки размеры и цены за штуку, можно прочитав статью.

Сравнение по ценам

Цена пеноблоков намного ниже, чем у газоблоков, примерно на 20%. Причина в том, что компоненты, применяемые в процессе его производства, недорогие, а оснащение несложное. Однако при возведении дома пеноблоков понадобится больше, чем газоблоков. Поэтому здесь необходимо учитывать не только цену кубометра, а и рассчитать весь проект будущего строения. 

Отличие пеноблока от газоблока что лучше можно узнать прочитав статью.

Важным является и то, что кладка газобетона ведется на клеевой состав, а вот для пеноблоков требуется дешевый цементный раствор. Но с клеем процесс кладки происходит быстро, да и количество его понадобится меньшее, чем цементного раствора. Благодаря тонкому слою клея удается избавиться от мостиков холода, в результате чего дом становится энергосберегающим.

При любом строительстве важно знать каков расход клея для газосиликатных блоков.

Другие отличия

Кроме указным отличительных характеристик, газобетон и пеноблок могут отличаться еще по таким параметрам, как экологичность, огнестойкость, влагостойкость и морозостойкость.

Впитывание влаги и морозостойкость

Так как процесс производства у двух материала различный, то это не может оставить след на этих двух критериях. Газобетон впитывает влагу, как губка. По этой причине во время морозов его характеристики не самые лучшие. Что касается пеноблока, то у него уровень поглощения влаги ниже.

Но здесь нужно понимать, что стены, возведенные из ячеистых материалов, нельзя оставлять в таком виде, их обрабатывают защитным слоем. Здесь можно задействовать штукатурку, сайдинг или облицовку плиткой. В результате разница в водопоглащении незаметна. Говоря про устойчивость к морозам, то газобетон в этом плане надежнее в несколько раз.

Важно и интересно знать какие блоки можно использовать для перегородок в квартире.

Экологический фактор

При изготовлении газобетона наблюдается реакция между известью и алюминием. Результатом такой реакции становится выделение водорода, причем выделяется он далеко не весь, некоторая его часть может выделяться во время строительства или же в процессе эксплуатации дома. Но, как известно, водород не является ядовитым газом, следовательно, никакого негативного влияния газобетон в себе не несет.

При ремонте внутри помещения интересно будет знать какую конкретно шпаклёвку под обои необходимо использовать.

В составе пенобетона присутствуют вспениватели – искусственного и белкового происхождения. В их составе также нет вредных компонентов. Также поры у пеноблока закрыты и герметичны. В плане экологичности два материала не имеют недостатков, поэтому совершенно идентичны.

Интересно будет узнать из данной статьи, чем вообще можно приклеить бетон к бетону.

Огнестойкость

И пеноблок, и газобетон в этом плане проявляют себя с отличной стороны. Кроме этого, ячеистые бетоны обладают отличной способностью пропускать воздух, они обладают легким весом и просты в использовании.

При любом ремонте по газоблоку можно наносить структурную штукатурку для внутренних работ и какова его цена и как это сделать можно узнать из статьи.

Отзывы об отличиях

  • Андрей, 27 лет: «Я долго не мог выбрать, из какого материала мне построить дом: пенобок или газобетон. После длительного анализа я понял, что для моих условий проживания мне подходит газобетон. Причина в том, что пенобетон обладает низкими теплоизоляционными качествами, поэтому его нужно будет доутеплять. А вот газобетон благодаря его кладке на клеящем составе будет прекрасно задерживать тепло».
  • Максим, 36 лет: «Когда нужно было построить дом, то вначале я повелся на цену и решил приобрести пеноблоки. Но друзья меня отговорили, и я приобрел газобетон. Хотя на первый взгляд может показаться, что разница между материалами небольшая, она имеется и очень велика. В пеноблоке дырку можно сделать одним движением пальца, а вот в пеноблоке палец можно сломать. Кроме этого процесс возведения дома с газобетоном идет намного быстрее и легче, ведь для этого я применяю специальный клей».
  • Анатолий, 45 лет: «Хотя многие убеждали в применении газобетона, я решил все-таки воспользоваться пеноблоком. Начну с того, что проживаем в городе с мягким климатом, поэтому утеплять дом мне не нужно. Стоимость у этого материала ниже, чем у газобетона, благодаря чему я могут сэкономить. Но и под конец хотелось бы отметить легкость и простоту монтажа, благодаря чему мне удалось построить дом за короткий промежуток времени».

Такие материалы, как пеноблок и газоблок – очень востребованные сегодня при возведении домов. Кроме этого, у них очень схожие свойства, в результате чего выбрать подходящий бывает очень тяжело. Чтобы возведенный дом радовал вас каждый день своими звукоизоляционными, теплоизоляционными и другими качествами, стоит применять материал, который удачно подходит под ваши условия климата.

(PDF) Тепловые свойства пенобетона различной плотности и добавок при температуре окружающей среды

Тепловые свойства пенобетона различной плотности и

добавок

при температуре окружающей среды

Шанкар Ганесан

1, a

, Мид Азри Отуман

1, b *

,

Mohd Yazid Mohd Yunos

2, c

, Mohd Nasrun Mohd Nawi

3, d

1

Школа жилищного строительства и планирования в Малайзии, Малайзия Пенанг, Малайзия

2

Кафедра ландшафтной архитектуры, Факультет дизайна и архитектуры, Университет Путра

Малайзия

3

Школа менеджмента технологий и логистики, Колледж бизнеса, Университет Утара

Малайзия, 06010 Синток, Кедах , Малайзия

a

shan27donz @ gmail.com,

b

[email protected],

c

[email protected],

d

[email protected]

Ключевые слова: пенобетон, тепловые свойства, огнестойкость , легкий бетон, плотность

Аннотация. В этой статье основное внимание будет уделено экспериментальному исследованию влияния различных плотностей

и добавок на термические свойства пенобетона с помощью анализатора констант Hot Disk Thermal

, чтобы получить несколько фундаментальных термических свойств для прогнозирования возгорания.

сопротивление сопротивление.Для этого исследования были исследованы образцы трех различных плотностей: 700 кг / м

3

, 1000 кг / м

3

и 1400 кг / м

3

и различные добавки, чтобы изучить влияние плотности и

. добавки по тепловым свойствам пенобетона. В качестве добавок, используемых в этом исследовании, использовались пылевидная зола (PFA)

, микрокремнезем, топливная зола пальмового масла (POFA), древесная зола, полипропиленовое волокно, стальное волокно

и кокосовое волокно.Следует отметить, что самая низкая плотность пенобетона

(700 кг / м

3

) обеспечивает лучшие теплоизоляционные свойства из-за большого количества пор и высокого процента захвата воздуха

, потому что воздух является самым плохим проводником тепло, чем твердое и жидкое. Кроме того, пенобетон

с кокосовым волокном имеет самую низкую теплопроводность, поскольку он обладает высокой термостойкостью

из-за большого процента гемицеллюлозы и лигнина и демонстрирует высокую теплоемкость, как

, хорошо из-за образования однородных пор и пустот во вспененном материале. конкретный.

Введение

В наши дни критически важной проблемой для общества является изменение климата и необходимость значительной экономии энергии

в строительстве. Выбор подходящих строительных материалов, которые могут действовать в качестве теплового барьера в

, чтобы предотвратить нагревание и пожар, должен быть сделан для минимизации использования энергии и увеличения зоны комфорта

внутренней среды [1]. Пенобетон имеет отличные теплоизоляционные свойства

, а значение типичной теплопроводности находится между 0.23 и 0,42 Вт / мК при

1000 кг / м

3

до 1200 кг / м

3

соответственно [2]. Изменения значения плотности из-за образования пор

оказывают значительное влияние на тепловые характеристики пенобетона. Практически, толщина бетона нормального веса

должна быть в пять раз больше, чем у пенобетона, чтобы получить аналогичную теплоизоляцию

[3]. Пенобетон может широко использоваться в неструктурных приложениях [4], таких как уклон крыши

, выравнивание полов и изоляционные слои стен и проекты заполнения пустот [5].Более того, термические свойства пенобетона

могут быть рассчитаны путем изменения таких параметров материала, как цементная паста

, размер пены и объем фракции [6]. По своим механическим свойствам эти материалы

могут использоваться в качестве изоляционного материала как для полунесущих, так и для изоляционных элементов

[7]. Наконец, фундаментальные значения термической стойкости были экспериментально исследованы для

, предсказывая его характеристики огнестойкости и восполняя пробел в знаниях об использовании различных типов добавок

.

Прикладная механика и материалы Vol. 747 (2015) pp 230-233 Отправлено: 11.12.2014

© (2015) Trans Tech Publications, Швейцария Принято: 11.12.2014

doi: 10.4028 / www.scientific.net / AMM.747.230

Все права защищены. Никакая часть содержания этого документа не может быть воспроизведена или передана в любой форме и любыми средствами без письменного разрешения TTP,

www.ttp.net. (ID: 103.5.182.15-01 / 03 / 15,04: 25: 04)

Характеристики и применение пенобетона

Пенобетон, также известный как пенобетон или легкий бетон, вспенивается через систему вспенивания бетона.Пенообразователь полностью вспенивается механическим путем, и пена равномерно смешивается с цементным раствором. Затем новый легкий теплоизоляционный материал, содержащий большое количество закрытых пор, был сформирован с помощью насосной системы вспенивающей машины и формовки отливки на месте или формы. Пенобетон — это разновидность полимера с двойной непрерывной структурой, который состоит из пенообразователя, цемента, летучей золы, каменного порошка и других органических вяжущих материалов и содержит однородные воздушные отверстия; пенобетон применяют для утепления кровли и устройства откосов, подушки утепления грунта, засыпки котлована верхней поворотной балки, заливки стен и других энергосберегающих материалов.

Благодаря большому количеству закрытых пор в пенобетоне он обладает следующими хорошими физико-механическими свойствами.

1. Облегченный

Плотность пенобетона невелика и обычно составляет 300-1800 кг / м3. Плотность обычно применяемого пенобетона составляет 300-1200 кг / м3. В последние годы в строительных проектах применяется сверхлегкий пенобетон плотностью 160 кг / м3.Из-за низкой плотности пенобетона количество строительного материала может быть уменьшено примерно на 25% за счет использования материала для внутренних и внешних стен, полов, полов и колонн здания. Для конструктивных элементов, если вместо обычного бетона используется пенобетон, несущая способность элементов может быть улучшена.

2. Хорошая теплоизоляция

Поскольку в пенобетоне имеется большое количество мелких закрытых пор, он обладает хорошими теплоизоляционными характеристиками, то есть хорошими теплоизоляционными характеристиками.Теплопроводность пенобетона составляет 0,08-0,3 Вт / (м · К), а тепловое сопротивление примерно в 10-20 раз больше, чем у обычного бетона.

3. Хорошая звукоизоляция и огнестойкость

Пенобетон — это пористый материал, поэтому он также является хорошим звукоизоляционным материалом. Может использоваться в качестве звукоизоляционного слоя в перекрытиях зданий, в панелях звукоизоляции скоростных автомагистралей и в верхних этажах подземных построек.Пенобетон — это неорганический материал. Он не горит, поэтому обладает хорошей огнестойкостью. Это может улучшить огнестойкость зданий.

4. Низкая эластичность и хорошая амортизация

Пористость пенобетона обуславливает его низкий модуль упругости, поэтому он хорошо поглощает и рассеивает ударную нагрузку.

5. Высокая водонепроницаемость

Низкое водопоглощение, относительно независимые закрытые пузыри и хорошая целостность придают монолитный пенобетон определенную водонепроницаемость.

6. Хорошая износостойкость

Срок службы такой же, как и у основного проекта.

7. Удобство производства и обработки

Пенобетон можно не только производить на заводе в различные изделия, но также можно прямо монтировать в крышу, пол и стену.

8. Хорошие экологические характеристики

Сырье для пенобетона — цемент и пенообразователь.Пенообразователь нейтрален и не содержит вредных веществ, таких как бензол и формальдегид, чтобы избежать загрязнения окружающей среды и опасности возгорания.

Теплопроводность пенобетона

Используйте этот идентификатор для цитирования или ссылки на этот элемент: https://scholarbank.nus.edu.sg/handle/10635/17572

Название: Теплопроводность пенобетона Авторы: WONG KIT HAN Ключевые слова: теплоизоляция, пенобетон, теплопроводность, полимер, пустотная доля, FLUENT Дата выдачи: 5 января 2007 г. Образец цитирования: WONG KIT HAN (05.01.2007).Теплопроводность пенобетона. Репозиторий ScholarBank @ NUS. Abstract: Систематическое исследование теплопроводности пенобетона для различных значений (i) содержания пены (25%, 50% и 70%), (ii) водоцементного отношения (0,35-0,55) и (iii) ) содержание полимера (от 5 до 20% от веса вяжущего материала). Эксперименты проводились с использованием измерителя теплового потока в соответствии с ASTM C 518-02. Результаты экспериментов показывают, что теплопроводность уменьшается с увеличением содержания пены, водоцементного отношения и увеличения содержания полимера.Численный анализ с использованием программного обеспечения FLUENT показывает, что теплопроводность определяется общей пустой фракцией пенобетона и теплопроводностью цементной матрицы, а не размером или формой пузырьков воздуха в образце. Пенобетон оказался подходящим и эффективным теплоизоляционным материалом для кровельных систем зданий. URI: http://scholarbank.nus.edu.sg/handle/10635/17572
Встречается в коллекциях: Магистерские диссертации (Открытые)

Показать всю запись об элементе

Элементы в DSpace защищены авторским правом, все права защищены, если не указано иное.

Прочность, теплопроводность и звукопоглощение ячеистого легкого геополимерного бетона с высоким содержанием кальциевой золы-уноса

[1] Невилл А.М., Брукс Дж. Дж. Бетонные технологии. 2-е изд. Нью-Йорк: Longman Scientific & Technical; 1987.

[2] Демирбога Р., Гуль Р. Влияние вспученного перлитового заполнителя, микрокремнезема и летучей золы на теплопроводность легкого бетона. Cement Concr Res. 2003; 33 (5): 723-27.

[3] Ким Х. К., Чон Дж. Х., Ли Х. К..Технологичность, механические, акустические и термические свойства бетона на легком заполнителе с большим объемом увлеченного воздуха. Постройте Строительный матер. 2012; 29: 193-200.

[4] Posi P, Lertnimoolchai S, Sata V, Phoo-ngernkham T, Chindaprasirt P. Исследование свойств легкого бетона с прокаленным заполнителем диатомита. KSCE J Civ Eng. 2014; 18 (5): 1429-35.

[5] ASTM. ASTM C330 / C330M-17a, Стандартная спецификация для легких заполнителей для конструкционного бетона.Западный Коншохокен: ASTM International; 2017.

[6] Амран Й.Х.М., Фарзадня Н., Али ААА. Свойства и области применения пенобетона; Обзор. Постройте Строительный матер. 2015; 101 (1): 990-1005.

[7] Нараянан Н., Рамамурти К. Структура и свойства газобетона: обзор. Цемент Конкр Компос. 2000; 22 (5): 321-29.

[8] Отуман М.А., Ван Ю.С. Высокотемпературные термические свойства легкого пенобетона. Постройте Строительный матер. 2011; 25 (2): 705-16.

[9] Piyaphanuwat R, Ruayruay E.Использование извести и летучей золы заменило OPC в легком бетоне алюминиевой пылью и чистым алюминием. Eng Appl Sci Res. 2012; 39: 139-45.

[10] Сюй З., Чен З., Янг С. Влияние нового типа высокопрочного легкого пенобетона на сейсмические характеристики холодногнутых стальных стен, подвергающихся сдвигу. Constr Build Mater. 2018; 181: 287-300.

[11] Бинг Ц., Чжэнь В., Нин Л. Экспериментальные исследования свойств высокопрочного пенобетона. J Mater Civ Eng. 2012; 24 (1): 113-18.

[12] Панесар ДК.Свойства ячеистого бетона и действие синтетических и белковых пенообразователей. Постройте Строительный матер. 2013; 44: 575-84.

[13] Чиндапрасирт П., Чарират Т., Сирививатнанон В. Технологичность и прочность грубодисперсного геополимера летучей золы с высоким содержанием кальция. Цемент Конкр Компос. 2007; 29 (3): 224-29.

[14] Malhotra VM. Введение: Устойчивое развитие и технологии бетона. Concr Int. 2002; 24 (7): 1-22.

[15] Чжан З., Провис Дж. Л., Цзоу Дж., Рид А., Ван Х. К подходу индексации для оценки летучей золы для производства геополимеров.Cement Concr Res. 2016; 85: 163-73.

[16] Си Ф., Дэвис С.Дж., Сиаис П., Кроуфорд-Браун Д., Гуан Д., Паде С. и др. Существенное глобальное поглощение углерода карбонизацией цемента. Нат Геоши. 2016; 9 (12): 880-3.

[17] Давидовиц Ю. Геополимеры — новые неорганические полимерные материалы. J Therm Anal. 1991; 37 (8): 1633-56.

[18] Sathonsaowaphak A, Chindaprasirt P, Pimraksa K. Технологичность и прочность геополимерного раствора золы на основе бурого угля. J Hazard Mater. 2009; 168 (1): 44-50.

[19] Раттанасак У, Чиндапрасирт П.Влияние раствора NaOH на синтез геополимера летучей золы. Майнер Eng. 2009; 22 (12): 1073-78.

[20] Хандзицуван С., Инджорхор Б., Пху-нгернкхам Т., Дамронгвирианупап Н., Ли Л.-Й, Суконтасуккул П. и др. Усадка при сушке, прочность и микроструктура активированной щелочами высококальциевой летучей золы с использованием FGD-гипса и доломита в качестве расширяющей добавки. Цемент Конкр Компос. 2020; 114: 103760.

[21] Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. Активированный NaOH геополимер измельченной золы-уноса, отвержденный при температуре окружающей среды.Топливо. 2011; 90 (6): 2118-24.

[22] Го Х, Ши Х, Дик В.А. Прочность на сжатие и микроструктурные характеристики геополимера золы уноса класса С. Цемент Конкр Компос. 2010; 32 (2): 142-7.

[23] Чиндапрасирт П., Де Силва П., Сагое-Кренцил К., Хандзицуван С. Влияние SiO2 и Al2O3 на схватывание и твердение геополимерных систем на основе летучей золы с высоким содержанием кальция. J Mater Sci. 2012; 47 (12): 4876-83.

[24] Кадела М., Кукиелка А., Малек М. Характеристики легкого бетона на основе синтетического полимерного вспенивателя.Матер (Базель). 2020; 13 (21): 4979.

[25] Чен Б., Лю Н. Новое изготовление легкого бетона и его термические и механические свойства. Постройте Строительный матер. 2013; 44: 691-8.

[26] ASTM. ASTM C618-19, Стандартные спецификации для угольной золы-уноса и сырого или кальцинированного природного пуццолана для использования в бетоне. Западный Коншохокен: ASTM International; 2012.

[27] ASTM. ASTM C138 / C138M-17a, Стандартный метод испытаний для определения плотности (удельный вес), текучести и содержания воздуха (гравиметрический) в бетоне.Западный Коншохокен: ASTM International; 2014.

[28] ASTM. ASTM C109 / C109M-20b, Стандартный метод испытаний гидравлических цементных растворов на сжатие (с использованием кубических образцов размером 2 дюйма или [50 мм]). Западный Коншохокен: ASTM International; 2016.

[29] Бродхерст Д. Переход на эластомерный инфузионный насос в домашних условиях: научно-обоснованный подход. J Infusion Nurs. 2012; 35 (3): 143-51.

[30] ASTM. ASTM D5930-17, Стандартный метод испытания теплопроводности пластмасс с использованием переходной технологии линейного источника.Западный Коншохокен: ASTM International; 2009.

[31] Шин А.Х., Кодид У. Теплопроводность тройных смесей для бетонных покрытий. Цемент Конкр Компос. 2012; 34 (4): 575-82.

[32] Wongkeo W, Thongsanitgarn P, Pimraksa K, Chaipanich A. Прочность на сжатие, прочность на изгиб и теплопроводность автоклавного бетонного блока, изготовленного с использованием зольной пыли в качестве материалов для замены цемента. Mater Des. 2012; 35: 434-39.

[33] Заетанг Я., Вонгса А., Сата В., Чиндапрасирт П.Использование легких заполнителей в проницаемом бетоне. Постройте Строительный матер. 2013; 48: 585-91.

[34] Posi P, Ridtirud C, Ekvong C, Chammanee D, Janthowong K, Chindaprasirt P. Свойства легких геополимерных бетонов с высоким содержанием кальция и летучей золы, содержащих переработанную упаковочную пену. Постройте Строительный матер. 2015; 94: 408-13.

[35] Парк С.Б., Сео Д.С., Ли Дж. Исследования характеристик звукопоглощения пористого бетона на основе содержания переработанного заполнителя и заданного коэффициента пустотности.Cement Concr Res. 2005; 35 (9): 1846-54.

[36] Мерич К., Эрол Х., Озкан А. О звукопоглощающих характеристиках войлочного звукопоглотителя. Appl Acoust. 2016; 114: 275-80.

[37] ASTM. ASTM E1050-12, Стандартный метод испытаний импеданса и поглощения акустических материалов с использованием трубки, двух микрофонов и цифровой системы частотного анализа. Западный Коншохокен: ASTM International; 2012.

[38] Кирсли Е.П., Уэйнрайт П.Дж. Влияние пористости на прочность пенобетона.Cement Concr Res. 2002; 32 (2): 233-39.

[39] Джитчайяпхум К., Синсири Т., Чиндапрасирт П. Ячеистый легкий бетон, содержащий пуццолановые материалы. Процедуры Eng. 2011; 14: 1157-64.

[40] Аль Бакри Абдулла М.М., Хусин К., Бнхуссейн М., Исмаил К.Н., Яхья З., Разак Р.А. Геополимерный легкий бетон на основе летучей золы с применением пенообразователя. Int J Mol Sci. 2012; 13 (6): 7186-98.

[41] Лю MYJ, Alengaram UJ, Jumaat MZ, Mo KH. Оценка теплопроводности, механических и транспортных свойств легковесного пеногеополимерного бетона.Энергетика. 2014; 72: 238-45.

[42] Huiskes DMA, Keulen A, Yu QL, Brouwers HJH. Расчет и оценка характеристик сверхлегкого геополимерного бетона. Mater Des. 2016; 89: 516-26.

[43] Шавним П.А., Мохаммад Ф. Прочность пенобетона на сжатие в зависимости от пористости с использованием изображений SEM. J Civ Eng Sci Tech. 2019; 10 (1): 34-44.

[44] Хилал А.А., Том Н.Х., Доусон АР. О пустотной структуре и прочности пенобетона без / с добавками. Постройте Строительный матер.2015; 85: 157-64.

[45] Фу-нгернкхам Т., Чиндапрасирт П., Сата В., Хандзитсуван С., Хатанака С. Влияние добавления нано-SiO2 и нано-Al2O3 на свойства геополимера летучей золы с высоким содержанием кальция, отвержденного при температуре окружающей среды. Mater Des. 2014; 55: 58-65.

[46] Тхо-ин Т., Сата В., Чиндапрасирт П., Джатурапитаккул С. Проницаемый геополимерный бетон с высоким содержанием кальциевой золы-уноса. Постройте Строительный матер. 2012; 30: 366-71.

[47] ASTM. ASTM C331 / C331M-17, Стандартная спецификация для легких заполнителей для бетонных блоков.Западный Коншохокен: ASTM International; 2017.

[48] Суконтасуккул П. Использование резиновой крошки для улучшения тепловых и звуковых свойств сборных бетонных панелей. Постройте Строительный матер. 2009; 23 (2): 1084-92.

[49] Дулсанг Н., Касемсири П., Пози П., Хизироглу С., Чиндапрасирт П. Характеристика экологически чистого легкого бетона, содержащего отходы этилвинилацетата. Mater Des. 2016; 96: 350-56.

[50] Grabiec AM, Zawal D, Szulc J. Влияние типа и максимального размера заполнителя на некоторые свойства высокопрочного бетона из пуццоланового цемента в отношении индексов интенсивности вяжущего и углекислого газа.Постройте Строительный матер. 2015; 98: 17-24.

[51] Демирбога Р. Теплопроводность и прочность на сжатие бетонной заделки с минеральными добавками. Сборка Environ. 2007; 42 (7): 2467-71.

[52] Британская цементная ассоциация. Пенобетон — состав и свойства, Реф. 46.042. Кемберли: Британская цементная ассоциация; 1994.

[53] Уйсал Х., Демирбога Р., Шахин Р., Гул Р. Влияние различных дозировок цемента, осадка и соотношений заполнителей пемзы на теплопроводность и плотность бетона.Cement Concr Res. 2004; 34 (5): 845-48.

[54] Топчу И.Б., Уйгуноглу Т. Свойства автоклавного бетона на легком заполнителе. Сборка Environ. 2007; 42 (12): 4108-16.

[55] Ким К. Х., Чон С. Е., Ким Дж. К., Ян С. Экспериментальное исследование теплопроводности бетона. Cement Concr Res. 2003; 33 (3): 363-71.

[56] Намбияр ЭКК, Рамамурти К. Определение характеристик воздушных пустот в пенобетоне. Cement Concr Res. 2007; 37 (2): 221-30.

[57] Чжан З., Провис Дж. Л., Рид А., Ван Х. Механические, теплоизоляционные, термическое сопротивление и свойства звукопоглощения геополимерного пенобетона.Цемент Конкр Компос. 2015; 62: 97-105.

[58] Ким Х. К., Ли Х. К.. Моделирование звукопоглощения пористого бетона с учетом градации и формы заполнителей и коэффициента пустотности. J Sound Vib. 2010; 329 (7): 866-79.

[59] Ким Х. К., Ли Х. К.. Влияние текучести цемента и типа заполнителя на механические и акустические характеристики пористого бетона. Appl Acoust. 2010; 71 (7): 607-15.

[60] Лаукайтис А., Фикс Б. Акустические свойства газобетона автоклавного твердения. Appl Acoust.2006; 67 (3): 284-96.

[61] Пху-нгернкхам Т., Фиангпхимай К., Интарабут Д., Хандзицуван С., Дамронгвирианупап Н., Ли Л. и др. Недорогой и надежный ремонтный материал из активированной щелочами высококальциевой летучей золы с остатками карбида кальция. Постройте Строительный матер. 2020; 247: 118543.

% PDF-1.4 % 1 0 объект > поток 2021-10-23T02: 04: 51-07: 002019-08-28T10: 27: 45-04: 002021-10-23T02: 04: 51-07: 00Acrobat PDFMaker 15 для Worduuid: 5c47339b-6b83-44d4-a51a- ff86ebbb392duuid: ce882802-9c3d-4443-ace0-27d25c24d479uuid: 5c47339b-6b83-44d4-a51a-ff86ebbb392d

  • 140
  • сохраненныйxmp.iid: 3154AB445AD5E911B82EA0DDD7EEDB112019-09-12T18: 08: 49 + 05: 30 Adobe Bridge CS6 (Windows) / метаданные
  • application / pdfiText 4.2.0 от 1T3XTD: 20190827093816PPI
  • Devansh Jain
  • Anubhav Kumar Hindoriya
  • Sudhir S. Bhadauria
  • конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > поток xXˎ [7 + DH = «= fĻ Mt /) QW7% 3 ~ ߟ v2:! 8eOYoOf9 @ gQ`r $ ^ + QW%: hz)] + L / ei -? q / Qa0ryZ> ~ Hω | 笵 7 = װ | ޜ; ܹ3 ޽ e = ُ zk?> M [= i kFiɷLPl : 8 ، TT’Kqa $ d @ yr% (X [? `= PO΁u # YL * M1cΫ @ bE + \>» mByQ⮻J8a / P_AKaʆD] J2s ـ $% + Ȃv.% U 膬 JC e / {. U rZk 꺇 ​​dinnpc4Q ߥ4 QptqFSv () \ 3bĊC-FgLFQzvh5b4k`ACd MhT? QX̲j * q * q = uYt.wNt $ .Y Ֆ YJZ) ֶ` [[kkt, Zm6Dm (/ tKA ᒪ Aecf # @ FG $ 4YYnX ׵ @ 8

    Улучшение механических и термических свойств геополимерного пенобетона с помощью пористых легких заполнителей — C-Therm Technologies Ltd.

    Основные

    • Изучено влияние легких заполнителей ЭП на свойства GFC.
    • EP уменьшает количество пены для достижения низкой плотности.
    • Тонкое и однородное распределение воздушных пустот, достигаемое применением противозадирной присадки.
    • Значительно улучшены механические и тепловые характеристики интегрированного GFC EP.

    Абстракция

    Это исследование демонстрирует разработку геополимерного пенобетона (GFC) путем введения двойной иерархической пористой структуры с использованием готовой пены и легких пористых заполнителей. Гидрофобный вспученный перлит (EP) использовался в качестве пористого заполнителя, и было исследовано добавление 10% и 20% связующего (путем удаления соответствующих объемов песка).

    Было отмечено, что включение EP принесло очевидные преимущества в улучшении механических и термических свойств GFC. Количество пены, необходимое для достижения аналогичной плотности GFC, было уменьшено на 19% и 53% для 10% и 20% EP, соответственно, из-за наличия большого количества открытых пор в EP. Прочность на сжатие кубических образцов увеличилась на 75% и 180% через 7 дней и 65% и 188% через 28 дней, соответственно. Кинетика реакции геополимеров, изученная с помощью FT-IR, показывает, что скорость реакции геополимерных связующих увеличивается с увеличением количества EP.

    Также показано, что увеличение количества частиц геополимерного геля, окружающих пузырьки, является основной причиной получения мелких воздушных пустот и прочного связывающего каркаса в GFC-20EP по сравнению с двумя другими группами. Следовательно, показатель однородности пор, измеренный по скорости ультразвука в различных направлениях, улучшился с 50% до 90%. Испытания тепловых характеристик, проведенные с использованием прототипов испытательных ячеек, показывают, что тепловые условия в помещении значительно улучшатся, если GFC-20EP используется в качестве элементов здания.Это особенно демонстрируется снижением пиковой температуры в помещении на 1,8 ° C и увеличением тепловой инерции на 1,7 ° C с GFC-20EP по сравнению с GFC-s.

    Заполните форму ниже, чтобы получить доступ к загрузке:

    Численное моделирование пористости по тепловым свойствам и огнестойкости пенобетона

    Ли, Цян и Ван, Хао и Чжан, Зухуа и Рид, Эндрю (2013) Численное моделирование пористости по тепловым свойствам и огнестойкости пенобетона. Журнал устойчивых материалов на основе цемента, 2 (1). С. 13-19. ISSN 2165-0373


    Абстрактные

    Была построена взаимосвязь между теплоизоляционными свойствами и пористостью пенобетона на основе летучей золы, в которой эффективная плотность, эффективная теплопроводность и эффективная удельная теплоемкость пенобетона на основе летучей золы были выведены как функции пористости. Используя модель, эффективная теплопроводность пенобетона на основе летучей золы плотностью 580 кг / м3 была теоретически рассчитана как 0.145 Вт / (м · К), в то время как экспериментально измеренное значение составляло 0,142 Вт / (м · К). Относительная погрешность теплопроводности была очень низкой и составляла 2,1%. Эффективная удельная теплоемкость в модели составила 967,05 Дж / кг К, а экспериментальное значение — 920 Дж / кг К с относительной погрешностью 5,1%. Затем модели эффективной теплопроводности и удельной теплоемкости были включены в модель теплопередачи для расчета температурного поля пенобетонной стены на основе летучей золы во время пожара. Наконец, было рассчитано и сопоставлено температурное поле пенобетонной стены на основе летучей золы и традиционной плотной бетонной стены во время пожара.Сравнивая температурное поле стены из пенобетона на основе летучей золы с традиционной бетонной стеной, было обнаружено, что вблизи поверхности из пенобетона на основе летучей золы температура в стене из пенобетона на основе летучей золы может достигать 1039 ° C, в то время как самая низкая температура в пенобетоне на основе летучей золы стены оставались при 20 ° C на толщину 7 мм.