Сп деформационные швы в монолитных железобетонных конструкциях: Деформационные швы в монолитных железобетонных конструкциях СП

Содержание

Деформационный шов в железобетонных конструкциях

Вернуться на страницу «Деформационные швы»

Рассмотрим следующие нормативные требования.

СП 27.13330.2011 БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

Актуализированная редакция СНиП 2.03.04-84

6.27 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов должны устанавливать расчетом. Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в таблице 6.3, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40 °С, относительной влажности воздуха 60% и выше и высоте колонн 3 м.

Таблица 6.3

Тип конструкций
Наибольшие расстояния между температурно-усадочными швами, м, допускаемые без расчета для конструкций, находящихся
внутри отапливаемых зданий или в грунте внутри неотапливаемых зданий на наружном воздухе
Бетонные:
а) сборные 40 35 30
б) монолитные при конструктивном армировании 30 25 20
в) монолитные без конструктивного армирования 20 15 10
Железобетонные:
а) сборные и сборно-каркасные одноэтажные 72 60 48
б) сборные и сборно-каркасные многоэтажные 60 50 40
в) сборно-блочные, сборно-панельные 55 45 35
г) сборно-монолитные и монолитные каркасные 50 40 30
д) сборно-монолитные и монолитные сплошные 40 30 25
Примечания

1 Для железобетонных конструкций (позиция 2), расчетная температура внутри которых не превышает 50 °С, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1 °С увеличивают соответственно на 10, 20, 40 и 60% и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10% уменьшают соответственно на 20, 40 и 60%.

2 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами увеличивают при высоте колонн 5 м — на 20%, 7 м — на 60% и 9 м — на 100%. Высоту колонн определяют: для одноэтажных зданий — от верха фундамента до низа подкрановых балок, а при их отсутствии — до низа ферм или балок покрытия; для многоэтажных зданий — от верха фундамента до низа балок первого этажа.

3 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри 70, 120, 300, 500 и 1000 °С уменьшают соответственно на 20, 40, 60, 70 и 90%.

     Отдельные конструктивные требования

9.35 Ширину температурно-усадочного шва b в зависимости от расстояния между швами l определяют по формуле

b = εil  (9.6)

Относительное удлинение оси элемента εi  вычисляют в зависимости от вида конструкции и характера нагрева по 6.21-6.24.

Ширину температурно-усадочного шва, вычисленную по формуле (9.6), увеличивают на 30%, если шов заполняется асбестовермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рисунок 9.2).

а — шов, заполненный шнуровым асбестом; б — то же, с бетонным бруском; в — то же, с металлическим компенсатором; 1 — шнуровой асбест, смоченный в глиняном растворе; 2 — бетонный брусок; 3 — компенсатор; 4 — стальной стержень диаметром 6 мм

Рисунок 9.2 — Температурные швы в конструкциях из жаростойкого бетона

Температурно-усадочные швы в бетонных и железобетонных конструкциях принимают шириной не менее 20 мм.

Когда давление в рабочем пространстве теплового агрегата не равно атмосферному,

температурно-усадочный шов должен иметь уширение для установки бетонного бруса. Брус устанавливают насухо без раствора. Между брусом и менее нагретой поверхностью шов заполняют легко деформируемым теплоизоляционным материалом.

В печах, где требуется герметичность рабочего пространства, с наружной поверхности в температурно-усадочном шве должен предусматриваться компенсатор.

назначение, расстояние и примеры узлов

В железобетонных конструкциях деформационный шов используется для снижения давления на элементы в тех местах, где может произойти деформация материала. Причиной нарушения изначального состояния изделия могут стать температурные колебания, очаговая усадка грунта, сейсмическая активность и прочие воздействия, создающие собственные небезопасные нагрузки, которые уменьшают несущую функцию конструкции.

Особенности и назначение

Конструкция разделяется на самостоятельные блоки при помощи усадочных швов, что делает все сооружение более упругим. Герметизация стыков проводится гибким изолирующим материалом.

Строения из железобетона деформируются под влиянием температурных перепадов, могут сжиматься или расширяться. Усадка бетона также приводит к укорачиванию материала. Происходит смещение элементов конструкции при любой вертикальной осадке.

Большая часть железобетонных сооружений является статически неопределимой, и при осадке бетона и фундамента, смене температуры появляются усилия, приводящие к возникновению трещин и изменению структуры конструкции.

Максимальный промежуток между швами

Расчет на усадку и температурные показатели не проводится для стандартных конструкций и имеющих трещиностойкость третьей категории, если межшовное расстояние меньше установленных пределов.

Деформационные промежутки могут располагаться вертикально и горизонтально. Без расчета в монолитных конструкциях между деформационными швами расстояния являются приемлемыми, если соответствуют следующим параметрам:

  • Каркасные сборные конструкции, включающие элементы из дерева и металла: 60 м для отапливаемых и 40 м для наружных построек.
  • Сплошные сборные: 50 м для утепленных и 30 м для неотапливаемых сооружений.
  • Каркасные цельные строения из тяжелого бетона: 50 м и 30 м, из легкого — 40 м и 25 м.
  • Сплошные монолитные конструкции из твердого состава: 40 м и 25 м, из ячеистого — 30 м и 20 м.

Размер блоков в строении из железобетона определяется нормами, установленными следующими справочными материалами:

  • Пунктом 1.17 СНиП 2.03.04−84, п. 6.27 СП 27.13330.2011, СП 52−110−2009.
  • Пунктом пособия 1.19 (1.22) к СНиП 2.03.01−84. Здесь берутся во внимание характеристики здания. Отапливаемые сооружения из монолитного железобетона могут иметь длину блока до 90 м.
  • Дополнением к СНиП 2.08.01−85. Пунктами 1.16 и 1.18 из выпуска 3 по проектированию зданий жилого типа.

В железобетонных монолитных конструкциях деформационные швы с трещиностойкостью 1 и 2 категории имеют свои особенности размещения:

  • Без исключения устанавливаются после расчетов на трещиностойкость конструкции.
  • Размещаются на здании по всей высоте, что позволяет деформации проходить свободно на отдельных частях сооружения. Швы проходят от вершины фундамента до начала кровли, разделяя стены и возможные перекрытия.
  • Стандартная ширина шва составляет 2−3 см, он
  • заполняется несколькими слоями рубероида, паклей, пропитанной смолой или толем.

Установка парных балок на двух колоннах обеспечивает оптимальный и правильный температурный шов в конструкциях монолитного и сборного типа. В каркасных сооружениях он более удобен при возникновении динамических и больших нагрузок на элементы перекрытия.

Размещение осадочных разделителей необходимо между элементами зданий, расположенными на грунтах с разной высотой и качеством. В этом случае они проходят и через фундамент. В железобетонных конструкциях усадочно-температурные швы также требуются, если проводится соединение старого здания и новой пристройки.

Раздвижка пар колонн с опорой на отдельные фундаменты и установка встречных балочных консолей позволяет создать оптимальный по качеству деформационный разделитель. Можно разместить между частями строения вкладной пролет, созданный из балок и плит.

Все представленные варианты исключают разрушение материала зданий и повышение нагрузки на отдельные элементы конструкции.

В строениях монолитного типа возможна следующее формирование усадочного шва: конец балки от одной части сооружения опирается свободно на консоль, являющуюся продолжением перекладины другой части здания. Соприкасающиеся элементы должны быть соединены максимально аккуратно, чтобы их трение не привело к разрушению консолей.

Примеры узлов

В тоннелях и каналах также предусматриваются усадочные швы. Промежуток между ними рассчитывается (его минимальная длина должна составлять 50 м).

Шпонки осадочного шва устанавливаются по проектно-конструкторским документам. Между ними и арматурой оставляется промежуток от 20 мм. Монтаж осуществляется с использованием проволоки на расстоянии от 250 мм.

Цианакрилатный клей применяется по всей длине для фиксации шпонок. В качестве усиления выступает каучук. После монтажа шпонок нужно составить на внутренние работы с материалом акт приемки. Все дальнейшие манипуляции предусматривают сохранность конструкции шва.

Размещение деформационных швов позволяет защитить конструкции зданий от разрушения и перекосов. Их правильное расположение значительно повышает эксплуатационный период железобетонных сооружений и сохраняет качество материала.

Деформационные швы в монолитных железобетонных конструкциях СП

Здравствуйте, уважаемый читатель блога, в статье деформационный шов разберемся, какой он имеет значение в сооружениях, и подробно рассмотрим устройство швов в бетонных полах.


Деформационный шов – необходим для снижения нагрузок на конструкции в зданиях в местах возможных деформаций. От чего возникают деформации, которые проявляются в виде трещин по всему зданию:

  1. Колебание температуры воздуха, нагрев здания от солнца происходит не равномерно и бетон или метал, в одной части расширяется, в другой температура не меняется и происходит деформация.
  2. Сейсмические явления, не большое землетрясение может сломать здание, или треснуть.
  3. Неравномерные осадки грунта, здание может иметь различную этажность и какая то его часть просядает сильнее, какая то медленнее из-за этого появляются трещины на всю высоту стен.

Чтоб избежать трещин делают деформационный шов в зданиях, который разделяет все конструкции на отдельные блоки и проходит по стенам, полам, кровли и в некоторых случаях фундаментов. Деформационные швы делятся на температурные, осадочные, антисейсмические и усадочные.

Если у вас дом не более 10 метров в длину, то не стоит беспокоиться об этих швах и в данной статье я хотел поговорить об устройстве швов в бетонных полах или стяжках.

Деформационные швы в полах

Для чего режут в свежеуложеном бетонном полу швы? Все для того же чтоб избежать трещин. Думаю, не ошибусь, если скажу, что все видели в полах трещины. Сейчас фирмы занимающиеся производством бетонных полов дают минимум пять лет гарантии на полы.

И производитель не хочет лишний раз приезжать на сделанный когда то объект чтоб отремонтировать трещины. С этой целью в бетонных полах режут усадочные швы, картами в основном 6 на 6 метров. Усадочный шов ослабляет бетонную плиту в месте его нарезки и дает направление трещине в бетоне, которая проявляется при его деформации.

Раньше резали на всех объектах швы, недавно узнал такую фишку, что бетонный пол не режут. Производитель договаривается с заказчиком о том, что когда полы треснут, он приедет и отремонтирует их.

Аргумент такой, что трещины все равно проявятся в других местах. Производителю экономнее отремонтировать трещины, чем потратиться на алмазные диски по бетону, затраты на зарплату рабочим и потом еще раз приехать ремонтировать. Многие заказчики соглашаются.

Что пишут СНиПы о деформационных швах в полах?

10.13. В помещениях, при эксплуатации которых возможны резкие перепады температур (положительная и отрицательная температуры воздуха) в стяжке должны быть предусмотрены деформационные швы, которые должны совпадать с осями колонн, со швами плит перекрытий, деформационными швами в подстилающем слое. Деформационные швы должны быть расшиты полимерной эластичной композицией.

3.14 Устройство деформационных швов рекомендуется выполнять методом пропила бетона подстилающего слоя фрезой на глубину не менее 1/3 толщины бетона через 2 суток твердения. Допускается при устройстве деформационных швов в бетонном подстилающем слое в местах расположения разрывов перед укладкой бетона разместить рейки, обмазанные антиадгезионным составом или обёрнутые рулонным кровельным материалом, которые удаляют после затвердевания бетонной смеси. Образовавшиеся швы заполняют герметизирующими материалами

по проектированию полов (в развитие СНиП 2.03.13-88 «Полы») МДС 31-1.98

10.5. В бетонных подстилающих слоях полов помещений, при эксплуатации которых возможны резкие перепады температур, предусматривают устройство деформационных швов, располагаемых между собой во взаимно перпендикулярных направлениях на расстоянии 8—12 м.

Деформационные швы в полах должны совпадать с деформационными швами зданий, а в полах с уклонами для стока жидкостей — с водоразделом полов.


Снипы пишут, что надо резать. И обратите внимание, что бетонный пол разрезается через двое суток твердения. Скажу по своему опыту, часто через двое суток бетонные полы не резались на усадочные швы. Разрезали через неделю, а то и под конец объекта все залитые карты полов не зависимо, когда в них укладывали бетон.

После такой нарезки можно было увидеть трещину рядом с нарезанным швом, лучше бы не нарезали тогда.

Кроме усадочных швов в бетонных полах есть тот же деформационный шов, конструктивные или холодные и изоляционные.

Деформационные швы делают согласно проекту, применяют заводские вставки или из двух металлических уголков в промышленных зданиях. В деформационном шве бетон между картами заливок не соприкасается, это отдельные конструкции.

Конструктивные или холодные швы разделяют карты заливок. При производстве бетонных полов на складах надо продумать, как устраивать карты заливок, чтоб холодные швы попадали в зону наименьших нагрузок.

Холодный шов со временем расширяется, все швы усадочные, изоляционные заполняют герметикам через месяц. Так как в течение месяца происходит деформация бетонных плит и швы увеличиваются. Но холодные швы расширяются в течение года, точно объяснить это не могу скорее всего из-за того что бетон набирает прочность в течение года и деформируется наверно столько же.

Изоляционные швы нарезаются в местах нагрузок и возможных деформаций от колонн здания и просадки фундамента. Колонны обрезают ромбом примерно на расстояние 1,5 метра. Перед заливкой бетонного пола конструкции, колонны, стены, которые возможно просядут, обматывают полипропиленом толщиной 1 сантиметр.

Деформационные швы заделают герметикам в несколько этапов, первое нарезают, через два дня после укладки бетона, второе через месяц чистят от пыли, грязи и укладывают велотерм диаметром 5-8 миллиметров и последний этап закрывают герметикам.

Приложение Д (рекомендуемое) Требования по армированию кладки лицевого слоя

на углах каждый из слоев кладки должен быть армирован Г-образными сварными сетками на длину не менее 1 м от угла или до вертикального деформационного шва, если он расположен ближе. На прямолинейных участках допускается укладывать сетки внахлест. Длина перехлеста должна составлять не менее 15 см.

Требования по устройству деформационных швов

Д.4 Горизонтальные швы устраиваются в несущих многослойных стенах со средним слоем из эффективного утеплителя – в облицовочном кирпичном слое, в ненесущих стенах – по всей толщине стены.

Горизонтальные деформационные швы во внутреннем и наружном слоях ненесущих многослойных стен следует выполнять в уровне опорных конструкций (между вышележащей конструкцией и верхним рядом кладки).

Д.5 Горизонтальные швы по высоте здания в облицовке несущих многослойных стен со средним слоем из эффективной теплоизоляции допускается устраивать следующим образом:

первый шов – под перекрытием 2-го этажа;

далее поэтажно, под плитой монолитного железобетонного перекрытия и под консольной балкой, устанавливаемой под сборной железобетонной плитой перекрытия.

Д.6. Вертикальные температурно-деформационные швы устраиваются в лицевом слое многослойных наружных стен, отделенных от основного слоя утеплителя.

Д.7. Рекомендуемые максимальные расстояния между вертикальными температурными швами для прямолинейных участков стен 6 – 7 м. Вертикальные швы на углах здания следует располагать на расстоянии 250 – 500 мм от угла по одной из сторон. При толщине облицовочного слоя 250 мм расстояние между швами может быть увеличено.

При необходимости увеличения расстояния между температурными швами требуется проведение расчетов температурных деформаций с учетом конструктивных особенностей стен, конструкции здания, ориентации его по сторонам света и климатических условий.

СП 14.13330.2018 Строительство в сейсмических районах

6 Жилые, общественные, производственные здания и сооружения

6.1 Общие положения

6.1.1 Требования раздела 6 должны выполняться независимо от результатов расчета в соответствии с разделом 5. Требования раздела 6 следует применять в зависимости от расчетной сейсмичности, выраженной в целочисленных баллах сейсмической шкалы интенсивности MSK-64. Если в результате геологических изысканий при сейсмическом микрорайонировании получены дробные значения сейсмической интенсивности, расчетные значения сейсмической балльности следует принимать путем математического округления до целого значения. 6.1.2 Здания и сооружения следует разделять антисейсмическими швами в случаях, если: здание или сооружение имеет сложную форму в плане; смежные участки здания или сооружения имеют перепады высоты 5 м и более, а также существенные отличия друг от друга по жесткости и (или) массе. Допускается устройство антисейсмических швов между высокой частью и 1 – 2 этажными пристраиваемыми частями зданий путем шарнирного опирания перекрытия пристройки на консоль высокой части. Глубина опирания должна быть не менее суммы взаимных перемещений плюс минимальная глубина опирания с обязательным устройством аварийных связей. Для случаев, когда устройство осадочного шва не требуется, допускается не устраивать антисейсмические швы между зданием и стилобатом при расчетном обосновании совместности их работы и выполнении соответствующих конструктивных мероприятий. Не допускается устройство антисейсмических швов внутри помещений, которые предназначены для постоянного проживания или длительного нахождения маломобильных групп населения. В одноэтажных зданиях высотой до 10 м при расчетной сейсмичности 7 баллов антисейсмические швы допускается не устраивать. 6.1.3 Антисейсмические швы должны разделять здания или сооружения по всей высоте. Допускается не устраивать шов в фундаменте, за исключением случаев, когда антисейсмический шов совпадает с осадочным. 6.1.4 Расстояния между антисейсмическими швами не должны превышать для зданий и сооружений: из стальных каркасов – по требованиям для несейсмических районов, но не более 150 м; из деревянных конструкций и из мелких ячеистых блоков – 40 м при расчетной сейсмичности 7 – 8 баллов и 30 м – при расчетной сейсмичности 9 баллов. Для зданий остальных конструктивных решений, приведенных в таблице 7, – 80 м при расчетной сейсмичности 7 – 8 баллов и 60 м – при расчетной сейсмичности 9 баллов.

6.1.6 Антисейсмические швы следует выполнять путем возведения парных стен или рам, либо рам и стен.

Ширину антисейсмического шва следует назначать по результатам расчетов в соответствии с 5.5, при этом ширина шва должна быть не менее суммы амплитуд колебаний смежных отсеков здания. При высоте здания или сооружения до 5 м ширина такого шва должна быть не менее 30 мм. Ширину антисейсмического шва здания или сооружения большей высоты следует увеличивать на 20 мм на каждые 5 м высоты. 6.1.7 Конструкции примыкания отсеков здания или сооружения в зоне антисейсмических швов, в том числе по фасадам и в местах переходов между отсеками, не должны препятствовать их взаимным горизонтальным перемещениям. 6.1.8 Конструкция перехода между отсеками здания может быть выполнена в виде двух консолей из сопрягающихся блоков с устройством расчетного шва между концами консолей или переходов, надежно соединенных с элементами одного из смежных отсеков. Конструкцией их опирания на элементы другого отсека должно быть обеспечено взаимное расчетное смещение элементов, исключена возможность их обрушения и соударения при сейсмическом воздействии. Переход через антисейсмический шов не должен являться единственным путем эвакуации из зданий или сооружений.

6.4.1 Лестничные клетки устраивают, как правило, закрытыми с естественным освещением через окна в наружных стенах на каждом этаже. Расположение и число лестничных клеток – в соответствии с нормативными документами по противопожарным нормам проектирования зданий и сооружений, но не менее одной между антисейсмическими швами в зданиях высотой более трех этажей.

6.5 Перегородки 6.5.3 Для обеспечения независимого деформирования перегородок следует предусматривать антисейсмические швы между вертикальными торцевыми и верхней горизонтальной гранями перегородок и несущими конструкциями здания. Ширину швов принимают по максимальному значению перекоса этажей здания при действии расчетных нагрузок с учетом прогиба перекрытия в эксплуатационной стадии, но не менее 20 мм. Швы заполняют упругим эластичным материалом.

6.14.13 В сопряжениях стен в кладку должны укладываться арматурные сетки сечением продольной арматуры общей площадью не менее 1 см2, длиной 1,5 м через 700 мм по высоте при расчетной сейсмичности 7 – 8 баллов и через 500 мм – при 9 баллах. Участки стен и столбы над чердачным перекрытием высотой более 400 мм должны быть армированы или усилены монолитными железобетонными включениями, заанкеренными в антисейсмический пояс. Стены по верху должны иметь обвязочный железобетонный пояс, связанный с вертикальными железобетонными сердечниками. Кирпичные столбы допускаются только при расчетной сейсмичности 7 баллов. При этом марка раствора должна быть не ниже М50, а высота столбов – не более 4 м. В двух направлениях столбы следует связывать заанкеренными в стены балками.

СП 52-110-2009 Бетонные и железобетонные конструкции, подвергающиеся технологическим повышенным и высоким температурам

6.27

Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов должны устанавливаться расчетом. Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в табл. 6.3, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40 °С, относительной влажности воздуха 60 % и выше и высоте колонн 3 м.


Что такое деформационный шов

Шов представляет собой разрез (искусственный зазор) в монолитной, бетонной плите, который разделяет ее на участки, способные независимо друг от друга перемещаться в небольших пределах.

Зачем нужен разрез в напольной стяжке? По сути, это монолитная, бетонная плита, которая подвержена таким серьезным нагрузкам, как давление со стороны всего строения, усадка, температурное расширение, набухание. Неоднородная структура большого монолита вызывает неравномерное расширение (сжатие) разных участков, что вызывает внутренние напряжения, приводящие к растрескиванию.

Разрез большой плиты на несколько элементов снижает внутренние напряжения. Каждый блок может смещаться относительно соседнего участка, независимо от него. В результате этого вероятность растрескивания снижается.

Наибольшие расстояния между швами в стяжке пола

По своему назначению деформационные зазоры делятся на 3 основные категории:

  1. Изоляционный тип. Такой зазор формируется по периметру помещения, возле стен, а также вокруг колонн и других архитектурных элементов. Он предназначен для компенсации расширения, как стен, так и самой стяжки.
  2. Усадочные. Они должны предотвратить разрушение бетона в результате неравномерной усадки при застывании. Эти зазоры разделяют бетонную плиту на отдельные квадраты с соотношением длины и ширину порядка 1,2-1,5. Они выполняются в форме прямых зазоров, без ответвлений. Наибольшее расстояние между деформационными швами в стяжке пола составляет 3 м. Если ширина плиты 3,5-4 м, то шов делается посредине. Глубина зазора обычно составляет не менее 1/3 толщины покрытия.
  3. Конструкционный. Он устраивается при перерыве в заливке бетона в том месте, где работа приостановлена. Конструкционный шов может совпадать с усадочным зазором.

Параметры деформационных зазоров зависят от коэффициента температурного расширения материала, усадочных характеристик, нагрузки, эксплуатационных факторов. Расстояние между ними принято рассчитывать из выражения (25-37)h, где h — толщина стяжки. При значительной усадке бетонного раствора параметр берется на нижнем пределе. Ширина шва выбирается в пределах 4-6 см.

Как выполняются

Термический и усадочный (а также сейсмический и осадочный) типы швов могут совмещаться в конструкции – получается усадочно-температурный (и сейсмически-осадочный) шов. Первый проходит по ширине и длине здания от верхней части фундамента до кровли, второй же предполагает полное деление конструкции на независимые один от другого блоки.

В таком случае железобетонный короб делится на вертикальные швы шириной 2-3 сантиметра, заполненные гидрофобным упругим герметиком. Правильное размыкание может обеспечить монтаж в смежных областях соседних частей парных балок и колонн.

В постройках разной высоты и на разных грунтах даже при условии объединения вкладным пролетом делают осадочные швы. Температурное расширение в отмостке из армированного бетона компенсируют делением на двухметровые квадраты посредством монтажа в опалубке пропитанных битумом брусков из дерева. Примыкание опалубки к стенам должно быть подвижным и герметичным.

Бетонные полы деформируются, если их площадь превышает 30 квадратных метров, провоцируя распространение трещин. Поверхность стяжки режут на глубину четверти-половины высоты, чтобы материал разорвался под швами. Площадки стяжки могут быть размером до 6 метров и не только квадратными, но и с соотношением сторон 1:1.5. Стыки разных материалов, залитых в разное время стяжек выполняют демпферами.

Изоляционные швы отделяют стяжку от стен на всю высоту по периметру здания, их заполняют упругими материалами. Также изолируются от стяжки пола колонны, лестничные марши. Плиты перекрытий монолитного типа отделяются разрезами от несущего каркаса конструкции, оптимальная ширина высчитывается индивидуально.

Межэтажные перекрытия заливаются фрагментами определенного размера. Все пустоты заполняют герметиком, заделывают. Делятся по всей высоте на отдельные блоки и ленточные основания, что компенсирует напряжения и нагрузки.

Шаг разрезания фундамента: 30 метров на слабо- и 15 метров на пучинистых грунтах. Швы заполняют долговечными герметиками. Вертикальными конструкциями наружных/внутренних стен создаются горизонтальные сечения, делящие здание на отсеки. Высота отсека для внутренней стены – 30 метров, для фасадной – 20.

  • В проездах/проходах швы делают на расстоянии, идентичном ширине стяжки (в случае, когда проход больше 3.6 метров, в центре можно сделать продольный шов).
  • Расстояние между швами на открытых площадках – максимум 3 метра по всем направлениям.
  • Деформационные швы выполняются с использованием формующих реек, в противном случае разрезы создают после завершающей обработки бетона.
  • Стандартные швы по стяжке нарезают блоками 6х6 метров в треть толщины слоя бетона.
  • Место расположения и число швов устанавливают, исходя из усадки бетона, коэффициента температурного расширения, вероятных деформаций мест сопряжения стен и пола, фундамента и колонн, и т.д.
  • Все швы обязательно герметизируются, исходя из условий эксплуатации и требований.
  • Могут использоваться специальные рельс-рейки, укладывающиеся в каркас на этапе заливки.

Железобетонные конструкции в процессе эксплуатации могут быть подвержены различным нагрузкам и воздействиям, компенсировать которые удается за счет выполнения деформационных швов.

Особенности нарезки швов


Вопрос о том, как выполняются деформационные швы, решается в зависимости от вида стяжки (полусухая, наливная и т.д.), размеров помещения и конкретных условий. Вероятность растрескивания бетона растет по мере повышения влажности раствора и увеличения скорости отвердения, при нарушении пропорций ингредиентов. Снижается риск за счет правильного ухода после заливки, предусматривающего постепенное застывание бетона. Важная роль отводится контролю влажности и температурного режима в помещении.
Деформационные швы разного типа выполняются на различных стадиях возведения пола. Схема их расположения разрабатывается заранее с расчетом расстояния между ними и глубины нарезки. При формировании канала следует помнить, что растрескивание характерно для острых углов, а потому надо избегать их.

Все швы можно разделить на 2 типа:

  1. Технологические элементы. Они нужны только на стадии изготовления бетонной стяжки и ее полного застывания. В последующем необходимость в них отпадает, а потому их надо загерметизировать. К этой категории относятся конструкционные и усадочные швы.
  2. Постоянный тип. Основной представитель — изоляционный шов. Деформирующие нагрузки сохраняются в течение всего срока эксплуатации здания, что требует постоянного наличия компенсационного зазора.

Исходя из назначения швов, планируются и соответствующие работы. Зазоры технологического характера будут мешать и их приходится устранять. Для этого обеспечивается этап заделки и герметизации на определенной стадии строительства. Постоянные швы необходимо сохранить в рабочем состоянии, но замаскировать для придания надлежащего внешнего вида.

В полусухой стяжке


Наиболее типичная для частного строительства полусухая стяжка производится из густого раствора с минимальным содержанием воды. Это несколько снижает усадочные проблемы, но не избавляет от них. Такие стяжки требуют нарезания всех указанных видов деформационных зазоров:

  1. Изоляционный шов формируется на стадии изготовления стяжки. Для этого перед заливкой бетона по всему периметру помещения, впритык к стене, укладывается полоса (рейка), не имеющая адгезии с раствором. Толщина ее выбирается в пределах 10-20 мм. После схватывания бетонного раствора она извлекается, открывая полость между стяжкой и стеной. Далее, шов маскируется плинтусом.
  2. Усадочные разрезы нарезаются после заливки, но до полного отвердения массы. Они не нужны в период активного испарения влаги, когда усадка еще не происходит, но необходимы на этапе структурных превращений. Формировать швы необходимо в период 2-6 суток после заливки. Для их нарезания лучше всего использовать специальный швонарезчик по бетону. Можно воспользоваться болгаркой. Иногда используется следующая технология. Через несколько часов после заливки, когда масса еще сохраняет определенную пластичность, в нее вдавливается планка. Глубина усадочного шва выбирается в пределах 1/3-1/4 от толщины стяжки.
  3. Конструкционные швы — это особые элементы. Они необходимы только при вынужденном перерыве в заливке бетона. В этом случае после завершения работы на границе заливки устанавливаются поперечные рейки или металлические конусы. В результате шов формируется по системе «паз-шип». По сути, это единственная разновидность деформационного зазора с неровными стенками канала. При планировании работ следует заранее продумывать расположение конструкционных разрезов.

Марка бетона и класс бетона. Таблица зависимости марок и классов

Марка бетона определяется исходя из характеристик вяжущего компонента, водоцементного соотношения и плотности наполнителя. Бетон классифицируют на обычный и легкий.

Статья по теме:


Таблица «Пропорции бетона на 1м³». Качественные бетонные смеси.

Состав бетонного раствора. Показатели прочности. Соответствие марок применению бетона. Расчет ингредиентов смеси. Приготовление раствора.

Кавабанга! Что лучше газобетон или керамзитобетон — принципиальные отличия

Таблица соответствия марок и классов бетона:Рассмотрим связь марки и класса бетона. Таблица соответствия марки и класса бетона поможет перевести марку в класс и наоборот.

Таблица соответствия марок и классов бетона

По прочности на сжатие, измеряемой в МПа, назначается класс бетона. Так, определение В20 показывает: буква В — обозначение класса, цифра 20 — выдерживаемое испытываемым кубиком давление в 20 МПа.

Соответствие прочности бетона на сжатие по классам в МПа маркам бетона назначается условиями технической документации.

Ниже приведены две таблицы «Класс бетона по прочности на сжатие в МПа».

Таблица №1 – от 4,5 (МПа) до 32,7 (МПа):

Класс бетона по прочности на сжатие от 4,5 до 32,7 МПа

Таблица №2 – от 39,2 (МПа) до 78,6 (МПа):

Класс бетона по прочности на сжатие от 39,2 до 78,6 МПа

Герметизация деформационных швов

Герметизация необходима для устранения канала для воды и придания зазорам эстетичного внешнего вида. Используются такие способы:

  1. Герметизирующий жгут. Это наиболее простой способ. Он реализуется путем укладки в полость разреза уплотнителя в виде жгута. Чаще всего используется жгут из вспененного полиэтилена, имеющий достаточную эластичность и низкую цену.

  2. Герметики. Можно использовать специальные герметизирующие мастики, реализуемые в готовом виде. После отвердения масса превращается в монолит, обеспечивая гидроизоляционные свойства. Заполнение швов производится с помощью резиновых шпателей.

  3. Гидрошпонки. Они изготавливаются в форме ленты из пластика или резины. Специальный профиль позволяет их плотное и прочное размещение в полости канала.
  4. Профильные элементы. По сути, это специальная система из резиновых вставок и профилей. Главное преимущество — защита от существенных механических нагрузок.

Каким методом загерметизировать шов следует решать с учетом конкретных условий. Надо учитывать размеры зазоров, реальные нагрузки. Не следует забывать о внешнем виде.

Деформационные зазоры необходимы при изготовлении бетонной стяжки пола. Компенсационный, изоляционный зазор должен сохраняться на протяжении всего срока эксплуатации дома. Другие типы швов необходимы только на стадии строительства. Их придется аккуратно и элегантно загерметизировать.

Распространенным вариантом перекрытий зданий, сооружений и покрытий в производственных помещениях с интенсивными механическими воздействиями является бетонный пол. Материал, из которого создаются эти конструктивные элементы, подвержен усадке и обладает низкой прочностью к деформации, вследствие чего возникают трещины. Во избежание повторного ремонта создаются искусственные разрезы в монолитных конструкциях. Например, деформационный шов в бетонных полах, в стенах здания, кровлях, мостах.

Максимальный промежуток между швами

Расчет на усадку и температурные показатели не проводится для стандартных конструкций и имеющих трещиностойкость третьей категории, если межшовное расстояние меньше установленных пределов.

Деформационные промежутки могут располагаться вертикально и горизонтально. Без расчета в монолитных конструкциях между деформационными швами расстояния являются приемлемыми, если соответствуют следующим параметрам:

  • Каркасные сборные конструкции, включающие элементы из дерева и металла: 60 м для отапливаемых и 40 м для наружных построек.
  • Сплошные сборные: 50 м для утепленных и 30 м для неотапливаемых сооружений.
  • Каркасные цельные строения из тяжелого бетона: 50 м и 30 м, из легкого — 40 м и 25 м.
  • Сплошные монолитные конструкции из твердого состава: 40 м и 25 м, из ячеистого — 30 м и 20 м.

Размер блоков в строении из железобетона определяется нормами, установленными следующими справочными материалами:

  • Пунктом 1.17 СНиП 2.03.04−84, п. 6.27 СП 27.13330.2011, СП 52−110−2009.
  • Пунктом пособия 1.19 (1.22) к СНиП 2.03.01−84. Здесь берутся во внимание характеристики здания. Отапливаемые сооружения из монолитного железобетона могут иметь длину блока до 90 м.
  • Дополнением к СНиП 2.08.01−85. Пунктами 1.16 и 1.18 из выпуска 3 по проектированию зданий жилого типа.

В железобетонных монолитных конструкциях деформационные швы с трещиностойкостью 1 и 2 категории имеют свои особенности размещения:

  • Без исключения устанавливаются после расчетов на трещиностойкость конструкции.
  • Размещаются на здании по всей высоте, что позволяет деформации проходить свободно на отдельных частях сооружения. Швы проходят от вершины фундамента до начала кровли, разделяя стены и возможные перекрытия.
  • Стандартная ширина шва составляет 2−3 см, он
  • заполняется несколькими слоями рубероида, паклей, пропитанной смолой или толем.

Установка парных балок на двух колоннах обеспечивает оптимальный и правильный температурный шов в конструкциях монолитного и сборного типа. В каркасных сооружениях он более удобен при возникновении динамических и больших нагрузок на элементы перекрытия.

Размещение осадочных разделителей необходимо между элементами зданий, расположенными на грунтах с разной высотой и качеством. В этом случае они проходят и через фундамент. В железобетонных конструкциях усадочно-температурные швы также требуются, если проводится соединение старого здания и новой пристройки.

Раздвижка пар колонн с опорой на отдельные фундаменты и установка встречных балочных консолей позволяет создать оптимальный по качеству деформационный разделитель. Можно разместить между частями строения вкладной пролет, созданный из балок и плит.

Все представленные варианты исключают разрушение материала зданий и повышение нагрузки на отдельные элементы конструкции.

В строениях монолитного типа возможна следующее формирование усадочного шва: конец балки от одной части сооружения опирается свободно на консоль, являющуюся продолжением перекладины другой части здания. Соприкасающиеся элементы должны быть соединены максимально аккуратно, чтобы их трение не привело к разрушению консолей.

Примеры узлов

В тоннелях и каналах также предусматриваются усадочные швы. Промежуток между ними рассчитывается (его минимальная длина должна составлять 50 м).

Шпонки осадочного шва устанавливаются по проектно-конструкторским документам. Между ними и арматурой оставляется промежуток от 20 мм. Монтаж осуществляется с использованием проволоки на расстоянии от 250 мм.

Цианакрилатный клей применяется по всей длине для фиксации шпонок. В качестве усиления выступает каучук. После монтажа шпонок нужно составить на внутренние работы с материалом акт приемки. Все дальнейшие манипуляции предусматривают сохранность конструкции шва.

Размещение деформационных швов позволяет защитить конструкции зданий от разрушения и перекосов. Их правильное расположение значительно повышает эксплуатационный период железобетонных сооружений и сохраняет качество материала.

Для чего они нужны?

Бетонный пол представляется на вид прочным и долговечным основанием. Однако под воздействием температурных колебаний, усадочных процессов, влажности воздуха, эксплуатационных нагрузок, осадки грунта теряется его целостность – он начинает трескаться.

Чтобы предать некоторую степень упругости этой конструкции здания, создаются деформационные швы в бетонных полах. СНиП2.03.13-88 и Пособие к нему содержат информацию о требованиях к проектированию и устройству полов с указанием необходимости устройства разрыва в стяжке, подстилающем слое или покрытии, который обеспечивает относительное смещение разрозненных участков.

  • Минимизация внезапных деформаций, посредством деления монолитной плиты на определенное количество карт.
  • Возможность избежать дорогостоящего ремонта с заменой чернового и основного покрытия.
  • Повышение устойчивости к динамическим нагрузкам.
  • Обеспечение долговечности конструктивной основы.

Виды бетона и их классификация

По использованию в смеси вяжущего компонента бетон подразделяют на цементный, известковый, гипсовый, асфальтный, силикатный, глиняный и др.

Присутствие в составе наполнителя пыли и органических включений снижает прочность бетона

Использование тех или иных наполнителей делит бетон на виды:

По свойствам бетоны делят на водонепроницаемые, морозостойкие и огнестойкие, степень густоты бетонной смеси разделяет их на жесткие и пластичные.

В каждом виде строительства необходимо применять бетон соответствующего класса и марки

Основные виды: изоляционный шов

Деформационный шов в бетонных полах в зависимости от своего предназначения делится на три вида: изоляционный, конструкционный и усадочный.

Изоляционные разрезы выполняются в местах примыкания конструктивных элементов помещения. То есть они являются промежуточным швом между стенами, фундаментами под оборудование, колоннами и полом. Это дает возможность избежать трещин при усадке бетона в местах прилегания горизонтальных и вертикальных элементов комнаты. Если пренебречь их обустройством, то стяжка при высыхании и уменьшении объема при жестком сцеплении со стеной, например, вероятнее всего, даст трещину.

Вдоль стен, колонн и в местах, где бетонный пол граничит с другими видами оснований, создается изоляционный шов. Причем возле колонн нарезается шов не параллельно граням столбовидного элемента, а таким образом, чтобы на угол колонны приходился прямой рез.

Рассмотренный вид шва заполняется изоляционными материалами, способными позволить горизонтальное и вертикальное движение стяжки относительно фундамента, колонн и стен. Толщина шва зависит от линейного расширения стяжки и составляет около 13 мм.

Основные виды: усадочный шов

Если изоляционные швы предотвращают деформацию монолитного бетонного пола в местах его соприкосновения со стенами, то усадочные резы необходимы для недопущения хаотичного растрескивания бетона по всей поверхности. То есть предотвращения повреждений, вызванных усадкой материала. По мере высыхания бетона сверху вниз, появляется внутри него напряжение, создаваемое твердением верхнего слоя.

Устройство деформационных швов в бетонных полах такого типа происходит по осям колонн, где разрезы стыкуются с углами швов по периметру. Карты, то есть части монолитного пола, ограниченные со всех сторон усадочными швами, должны быть квадратными, следует избегать Г-образных и вытянутых прямоугольных их форм. Работы выполняются как во время укладки бетона с помощью формирующих реек, так и нарезкой швов после высыхания стяжки.

Технические характеристики бетона

К базовым свойствам бетона относятся:

  • прочность на сжатие — B,
  • водонепроницаемость — W,
  • морозостойкость — F.

Прочность бетона на сжатие — B

Марки товарного бетона, применяемые в строительстве: М50, М75, М100, М150, М200, М250, М350, М400, М450, М550, М600, М6ОО, М700, М800.

Классы бетона, применяемые в строительстве: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60.

Таблица 1. Соотношение между классом прочности и маркой бетона
Класс прочности бетонаМарка товарного бетонаПоказатель средней прочности, кгс/см2
В5М7565
В7,5М10098
В10М150131
В12,5М150164
В15М200196
В20М250262
В25М350327
В30М400393
В35М450458
В40М550524
В45М600589
В50М600655
В55М700720
В60М800786

Марка бетона по водонепроницаемости – W

Водонепроницаемость бетона отображается маркировкой – W2, W4, W6, W8 и W12.

Марка бетона по морозостойкости – F

Бетон, используемый в массовом строительстве, может обозначаться комбинациями F50, F75, F100, F150, F200, F300, F400, F500.

Необходимо помнить, что бетон теряет качество в следующих случаях:

Основные виды: конструкционный шов

Подобная защита монолитных полов создается при возникновении технологических перерывов в работе. Исключение составляют помещения с небольшой площадью заливки и непрерывная подача бетона. Деформационный шов в бетонных полах конструкционного типа нарезается в местах соединения стяжки, выполненной в разное время. Форма торца такого соединения создается по типу «шип-паз». Особенности конструкционной защиты:

  • Шов устраивается на расстоянии 1,5 м параллельно другим типам деформационных разграничений.
  • Создается лишь при условии укладки бетона в разное время суток.
  • Форма торцов должна быть выполнена по типу «шип-паз».
  • Для толщины стяжки до 20 см, на деревянных боковых выступах делается конус в 30 градусов. Допускается использовать металлические конусы.
  • Конусные швы защищают монолитный пол от незначительных подвижек по горизонтали.

Маркировка морозостойкости

Такое определение, как марка является главным показателем. Каждой марке отведены определенные цифры. По ГОСТу обозначают специальные марки бетона: f50, f100, f150, f200, f300. Их объединяют в группы, зависящие от уровня эксплуатации:

Кавабанга! Срок службы, срок годности и гарантийный срок — сроки ответственности


Марка бетона по морозостойкости.

Деформационные швы в бетонных полах промышленных зданий

Повышенные к износостойкости требования предъявляются к полам, укладываемым на заводах, складах и других объектах промышленного назначения. Это связано с появлением влияния разной интенсивности механического воздействия (движение транспортных средств, пешеходов, удары при падении твердых предметов) и возможного попадания жидкости на пол.

Как правило, конструктивная особенность пола представляет собой стяжку и покрытие. Но под стяжкой располагается подстилающий слой, который в жестком исполнении укладывается из бетона. В нем нарезается во взаимно перпендикулярных направлениях шов чрез 6-12 м, глубиной 40 мм при этом не менее 1/3 толщины подстилающего слоя (СНиП 2.03.13-88). Обязательное условие – это совпадение деформационного шва пола с аналогичными защитными разрывами здания.

Отличительной чертой структуры полов в промышленных зданиях является создание верхнего слоя из бетона. В зависимости от интенсивности механического воздействия проектируют покрытия разной толщины. При толщине в 50 мм и более деформационный шов в бетонных полах (СНиП «Полы» п.8.2.7) создается в поперечном и продольном направлении с повторением элементов через 3-6 м. Рез пропиливается шириной 3-5 мм, глубина его составляет не менее 40 мм или треть толщины покрытия.

Марка бетона и класс бетона. Таблица зависимости марок и классов

Марка бетона определяется исходя из характеристик вяжущего компонента, водоцементного соотношения и плотности наполнителя. Бетон классифицируют на обычный и легкий.

Статья по теме:


Таблица «Пропорции бетона на 1м³». Качественные бетонные смеси.

Состав бетонного раствора. Показатели прочности. Соответствие марок применению бетона. Расчет ингредиентов смеси. Приготовление раствора.

Кавабанга! Пропорция бетона м200 на 1 куб

Таблица соответствия марок и классов бетона:Рассмотрим связь марки и класса бетона. Таблица соответствия марки и класса бетона поможет перевести марку в класс и наоборот.

Таблица соответствия марок и классов бетона

По прочности на сжатие, измеряемой в МПа, назначается класс бетона. Так, определение В20 показывает: буква В — обозначение класса, цифра 20 — выдерживаемое испытываемым кубиком давление в 20 МПа.

Соответствие прочности бетона на сжатие по классам в МПа маркам бетона назначается условиями технической документации.

Ниже приведены две таблицы «Класс бетона по прочности на сжатие в МПа».

Таблица №1 – от 4,5 (МПа) до 32,7 (МПа):

Класс бетона по прочности на сжатие от 4,5 до 32,7 МПа

Таблица №2 – от 39,2 (МПа) до 78,6 (МПа):

Класс бетона по прочности на сжатие от 39,2 до 78,6 МПа

Требования при создании деформационной защиты полов

Пропил бетона необходимо выполнять фрезой через двое суток твердения. Глубина резов по нормам составляет 1/3 толщины бетона. В подстилающем слое допускается в местах предполагаемых разрывов перед заливкой бетона применять рейки, обработанные составами против адгезии, которые после твердения материала удаляются и в итоге получаются защитные швы.

Нижние части колонн и стен на высоту будущей толщины покрытия следует обклеивать рулонными гидроизоляционными материалами или вспененным листовым полиэтиленом. В тех местах, где проектом предусмотрены деформационные швы в бетонных полах. Технология нарезки начинается с разметки мелом и линейкой мест искусственных разрывов.

Индикатором своевременной нарезки служит пробный шов: если зерна заполнителя не выпадают из бетона, а перерезаются лезвием резчика, тогда время создания деформационных швов выбрано правильное.

Обработка швов

Нормальное функционирование шва достигается с помощью его герметизации. Заделка деформационных швов в бетонных полах реализуется при помощи следующих материалов:

  • Гидрошпонка – это профилированная лента из резины, полиэтилена или ПВХ, закладываемая при заливке бетонной стяжки;
  • Уплотняющий шнур из вспененного полиэстера закладывается в прорезь и при перепадах температуры сохраняет свою эластичность, обеспечивая безопасное движение бетонного покрытия;
  • Акриловая, полиуретановая, латексная мастика;
  • Деформационный профиль, состоящий из резины и металлических направляющих. Бывает встроенным или накладным.

Перед герметизацией рабочая поверхность зазоров должна быть очищена и продута сжатым воздухом (компрессором). Также для увеличения срока службы бетонных полов желательно упрочнить верхний слой топпингом или полиуретановым материалом.

Особенности и назначение

Конструкция разделяется на самостоятельные блоки при помощи усадочных швов, что делает все сооружение более упругим. Герметизация стыков проводится гибким изолирующим материалом.

Строения из железобетона деформируются под влиянием температурных перепадов, могут сжиматься или расширяться. Усадка бетона также приводит к укорачиванию материала. Происходит смещение элементов конструкции при любой вертикальной осадке.

Большая часть железобетонных сооружений является статически неопределимой, и при осадке бетона и фундамента, смене температуры появляются усилия, приводящие к возникновению трещин и изменению структуры конструкции.

Деформационный шов в железобетонных конструкциях

Деформационный шов в монолитных железобетонных конструкциях

В железобетонных конструкциях деформационный шов используется для снижения давления на элементы в тех местах, где может произойти деформация материала. Причиной нарушения изначального состояния изделия могут стать температурные колебания, очаговая усадка грунта, сейсмическая активность и прочие воздействия, создающие собственные небезопасные нагрузки, которые уменьшают несущую функцию конструкции.

Особенности и назначение

Конструкция разделяется на самостоятельные блоки при помощи усадочных швов, что делает все сооружение более упругим. Герметизация стыков проводится гибким изолирующим материалом.

Строения из железобетона деформируются под влиянием температурных перепадов, могут сжиматься или расширяться. Усадка бетона также приводит к укорачиванию материала. Происходит смещение элементов конструкции при любой вертикальной осадке.

Большая часть железобетонных сооружений является статически неопределимой, и при осадке бетона и фундамента, смене температуры появляются усилия, приводящие к возникновению трещин и изменению структуры конструкции.

Максимальный промежуток между швами

Расчет на усадку и температурные показатели не проводится для стандартных конструкций и имеющих трещиностойкость третьей категории, если межшовное расстояние меньше установленных пределов.

Деформационные промежутки могут располагаться вертикально и горизонтально. Без расчета в монолитных конструкциях между деформационными швами расстояния являются приемлемыми, если соответствуют следующим параметрам:

  • Каркасные сборные конструкции, включающие элементы из дерева и металла: 60 м для отапливаемых и 40 м для наружных построек.
  • Сплошные сборные: 50 м для утепленных и 30 м для неотапливаемых сооружений.
  • Каркасные цельные строения из тяжелого бетона: 50 м и 30 м, из легкого — 40 м и 25 м.
  • Сплошные монолитные конструкции из твердого состава: 40 м и 25 м, из ячеистого — 30 м и 20 м.

Размер блоков в строении из железобетона определяется нормами, установленными следующими справочными материалами:

  • Пунктом 1.17 СНиП 2.03.04−84, п. 6.27 СП 27.13330.2011, СП 52−110−2009.
  • Пунктом пособия 1.19 (1.22) к СНиП 2.03.01−84. Здесь берутся во внимание характеристики здания. Отапливаемые сооружения из монолитного железобетона могут иметь длину блока до 90 м.
  • Дополнением к СНиП 2.08.01−85. Пунктами 1.16 и 1.18 из выпуска 3 по проектированию зданий жилого типа.

В железобетонных монолитных конструкциях деформационные швы с трещиностойкостью 1 и 2 категории имеют свои особенности размещения:

  • Без исключения устанавливаются после расчетов на трещиностойкость конструкции.
  • Размещаются на здании по всей высоте, что позволяет деформации проходить свободно на отдельных частях сооружения. Швы проходят от вершины фундамента до начала кровли, разделяя стены и возможные перекрытия.
  • Стандартная ширина шва составляет 2−3 см, он
  • заполняется несколькими слоями рубероида, паклей, пропитанной смолой или толем.

Установка парных балок на двух колоннах обеспечивает оптимальный и правильный температурный шов в конструкциях монолитного и сборного типа. В каркасных сооружениях он более удобен при возникновении динамических и больших нагрузок на элементы перекрытия.

Размещение осадочных разделителей необходимо между элементами зданий, расположенными на грунтах с разной высотой и качеством. В этом случае они проходят и через фундамент. В железобетонных конструкциях усадочно-температурные швы также требуются, если проводится соединение старого здания и новой пристройки.

Раздвижка пар колонн с опорой на отдельные фундаменты и установка встречных балочных консолей позволяет создать оптимальный по качеству деформационный разделитель. Можно разместить между частями строения вкладной пролет, созданный из балок и плит.

Все представленные варианты исключают разрушение материала зданий и повышение нагрузки на отдельные элементы конструкции.

В строениях монолитного типа возможна следующее формирование усадочного шва: конец балки от одной части сооружения опирается свободно на консоль, являющуюся продолжением перекладины другой части здания. Соприкасающиеся элементы должны быть соединены максимально аккуратно, чтобы их трение не привело к разрушению консолей.

Примеры узлов

В тоннелях и каналах также предусматриваются усадочные швы. Промежуток между ними рассчитывается (его минимальная длина должна составлять 50 м).

Шпонки осадочного шва устанавливаются по проектно-конструкторским документам. Между ними и арматурой оставляется промежуток от 20 мм. Монтаж осуществляется с использованием проволоки на расстоянии от 250 мм.

Цианакрилатный клей применяется по всей длине для фиксации шпонок. В качестве усиления выступает каучук. После монтажа шпонок нужно составить на внутренние работы с материалом акт приемки. Все дальнейшие манипуляции предусматривают сохранность конструкции шва.

Размещение деформационных швов позволяет защитить конструкции зданий от разрушения и перекосов. Их правильное расположение значительно повышает эксплуатационный период железобетонных сооружений и сохраняет качество материала.

Как сделать деформационный шов в железобетонных монолитных и сборных конструкциях

Деформационный шов в железобетонных конструкциях выполняется с целью снятия давления на элементы в зонах, где материал может деформироваться под воздействием различных негативных факторов.

Чаще всего изначальное состояние железобетона нарушается по причине сильных температурных скачков, при наличии очаговой усадки грунта, в местах с высокой сейсмической активностью, в других ситуациях, когда наблюдаются небезопасные нагрузки, существенно уменьшающие несущие функции монолита.

Что такое деформационный шов

Деформационные швы – это предусмотренное проектом деление конструкции здания на фрагменты в горизонтальной (вертикальной) плоскости, благодаря которому удается компенсировать напряжение в определенных зонах несущего каркаса. Если это напряжение не устранить, то могут существенно измениться геометрические размеры, положение, свойства железобетона.

Благодаря швам удается придать зданиям проектную величину упругой подвижности. Деформационные швы бывают разных видов в соответствии с типом напряжения, которое призваны компенсировать: сейсмические, осадочные, конструкционные, усадочные швы, температурные.

Когда выполняется деформационный шов, конструкция делится на отдельные блоки, придавая монолиту упругость и способность выдерживать серьезные нагрузки без деформации. Стыки герметизируются специальным изолирующим материалом, который должен быть гибким и стойким к разным воздействиям.

Визуально деформационный шов в монолитном железобетоне представляет собой разрезы в поверхности, делящие конструкцию на блоки определенной величины. У каждого шва есть задача, которую он призван выполнить. Усадочный шов делают в железобетонных стяжках для предупреждения образования трещин на поверхности при постепенном затвердевании и наборе прочности бетоном.

Из-за особенностей расположения и параметров конструкции в зданиях могут применяться комбинации разных видов швов, которые одновременно защищают сразу от нескольких причин возможной деформации. Особенно актуален такой подход при строительстве высоких протяженных зданий, с большим числом разных элементов и конструкций.

Виды деформационных швов в железобетонной конструкции:

  1. Температурно-деформационные – защищают от воздействия скачков температуры и часто нужны даже там, где отмечен умеренный климат. Низкие температуры зимой и высокие летом приводят к появлению трещин разных глубины и размеров, которые деформируют фундамент и коробку. Температурные швы выполняются на расстоянии, определяемом, исходя из материала и особенностей конструкции, температур. Обычно швы выполняют лишь на стенах.
  2. Усадочные – выполняются реже, чаще всего при создании бетонного монолитного каркаса. В процессе затвердевания и набора прочности бетон может покрываться трещинами, увеличивающимися до полостей. Когда в фундаменте становится много трещин, конструкция может рухнуть. Шов делают до момента затвердевания основания, он разрастается на протяжении всего времени превращения бетона в монолит, позволяя ему усаживаться и не покрываться трещинами.
  3. Сейсмические деформационные швы выполняются там, где есть риск землетрясений, оползней, цунами, извержений вулканов. Швы защищают дом от разрушений при толчках из-под земли. Швы всегда создаются по индивидуальному проекту, создавая внутри конструкции отдельные сосуды без сообщения, поделенные по периметру деформационными швами. Довольно часто выглядит схема как куб с одинаковыми гранями. Грани уплотняют двойной кирпичной кладкой и в момент толчков они должны удержать конструкцию.
  4. Осадочный – чаще всего применяется в зданиях с разным числом этажей (одно крыло здания с двумя этажами, другое – с тремя, к примеру). Получается, что части постройки оказывают разное давление на грунт и он проседает неравномерно, давя на основание и стены, провоцируя появление трещин. Осадочный деформационный шов укрепляет конструкцию, защищает от деформации. Выполняется вертикально, от основания до крыши. Фиксирует разные части здания. Швы обязательно заполняются герметиком.

Когда осадочный шов нужен обязательно:

  • Размещение частей конструкции на грунте с разными свойствами
  • При выполнении пристроек к уже существующему зданию
  • Если отдельные части строения имеют разницу по высоте больше 10 метров
  • Все случаи, в которых можно ожидать неравномерной просадки фундамента

Наибольшие расстояния между деформационными швами в ЖБ конструкциях

Расчет на температурные показатели и усадку не осуществляется для конструкций стандартного типа с трещиностойкостью третьей категории с напряженными/ненапряженными изделиями, но при условии, что расстояние между швами меньше нормативных пределов. Деформационные швы могут быть горизонтальными и вертикальными.

Оптимальные расстояния между швами (без расчета):

  • Для каркасных конструкций из дерева и металла – 40 метров для наружных построек, 60 метров для отапливаемых
  • Сборные сплошные конструкции – 30 метров для неотапливаемых зданий и 50 метров для отапливаемых
  • Монолитные каркасные конструкции из тяжелых марок бетона – 30 и 50 метров соответственно
  • Каркасные монолитные конструкции из легкого бетона – 25 и 40 метров соответственно
  • Монолитные здания из твердых составов – 25 метров для неотапливаемых помещений и 40 для отапливаемых
  • Ячеистый бетон – 20 и 30 метров соответственно

Если возводится одноэтажное здание из армированного каркасного бетона, расстояние между швами можно увеличивать в среднем на 20% относительно значений в таблице. Табличные данные можно применять, когда создаются вертикальные связи в средине отделенного блока в каркасных зданиях. Такие связи размещаются по краям блока и при воздействии деформаций приближают работу каркаса к цельному сооружению аналогичного типа.

Особенности выполнения деформационных швов:

  • Выполняются во всех зданиях с трещиностойкостью первой и второй категорий.
  • Проходят по всей высоте на здании, благодаря чему деформация на отдельных зонах конструкции проходит свободно. Швы могут проходит от вершины основания до начала крыши, деля стены и все перекрытия.
  • Ширина стандартного шва равна 2-3 сантиметрам, шов заполняется пропитанной толем либо смолой паклей, несколькими слоями рубероида, герметиком.
  • Монтаж парных балок на 2 колоннах гарантирует правильный температурный шов в сборных и монолитных конструкциях. В каркасных зданиях он комфортен при появления серьезных и динамических нагрузок на перекрытия.
  • Осадочный шов нужен при нахождении здания на разной высоте или грунте.

  • Температурно-усадочный шов нужен при соединении новой пристройки к старой конструкции.
  • Раздвижение пар колонн с выполнением опоры на отдельные основания, а также монтаж встречных балочных консолей дают возможность сделать качественный деформационный шов. Также часто между отдельными частями здания делают вкладной пролет из плит и балок.
  • В монолитных зданиях усадочный шов формируют так: от одной части сооружения конец балки опирается на консоль свободно, она является продолжением перекладины другой части конструкции. Элементы, которые соприкасаются, соединяются аккуратно, чтобы избежать трения, разрушающего консоли.

Как выполняются

Термический и усадочный (а также сейсмический и осадочный) типы швов могут совмещаться в конструкции – получается усадочно-температурный (и сейсмически-осадочный) шов. Первый проходит по ширине и длине здания от верхней части фундамента до кровли, второй же предполагает полное деление конструкции на независимые один от другого блоки.

В таком случае железобетонный короб делится на вертикальные швы шириной 2-3 сантиметра, заполненные гидрофобным упругим герметиком. Правильное размыкание может обеспечить монтаж в смежных областях соседних частей парных балок и колонн.

В постройках разной высоты и на разных грунтах даже при условии объединения вкладным пролетом делают осадочные швы. Температурное расширение в отмостке из армированного бетона компенсируют делением на двухметровые квадраты посредством монтажа в опалубке пропитанных битумом брусков из дерева. Примыкание опалубки к стенам должно быть подвижным и герметичным.

Бетонные полы деформируются, если их площадь превышает 30 квадратных метров, провоцируя распространение трещин. Поверхность стяжки режут на глубину четверти-половины высоты, чтобы материал разорвался под швами. Площадки стяжки могут быть размером до 6 метров и не только квадратными, но и с соотношением сторон 1:1.5. Стыки разных материалов, залитых в разное время стяжек выполняют демпферами.

Изоляционные швы отделяют стяжку от стен на всю высоту по периметру здания, их заполняют упругими материалами. Также изолируются от стяжки пола колонны, лестничные марши. Плиты перекрытий монолитного типа отделяются разрезами от несущего каркаса конструкции, оптимальная ширина высчитывается индивидуально.

Межэтажные перекрытия заливаются фрагментами определенного размера. Все пустоты заполняют герметиком, заделывают. Делятся по всей высоте на отдельные блоки и ленточные основания, что компенсирует напряжения и нагрузки.

Шаг разрезания фундамента: 30 метров на слабо- и 15 метров на пучинистых грунтах. Швы заполняют долговечными герметиками. Вертикальными конструкциями наружных/внутренних стен создаются горизонтальные сечения, делящие здание на отсеки. Высота отсека для внутренней стены – 30 метров, для фасадной – 20.

  • В проездах/проходах швы делают на расстоянии, идентичном ширине стяжки (в случае, когда проход больше 3.6 метров, в центре можно сделать продольный шов).
  • Расстояние между швами на открытых площадках – максимум 3 метра по всем направлениям.
  • Деформационные швы выполняются с использованием формующих реек, в противном случае разрезы создают после завершающей обработки бетона.
  • Стандартные швы по стяжке нарезают блоками 6х6 метров в треть толщины слоя бетона.
  • Место расположения и число швов устанавливают, исходя из усадки бетона, коэффициента температурного расширения, вероятных деформаций мест сопряжения стен и пола, фундамента и колонн, и т.д.
  • Все швы обязательно герметизируются, исходя из условий эксплуатации и требований.
  • Могут использоваться специальные рельс-рейки, укладывающиеся в каркас на этапе заливки.

Железобетонные конструкции в процессе эксплуатации могут быть подвержены различным нагрузкам и воздействиям, компенсировать которые удается за счет выполнения деформационных швов.

Деформационный шов в железобетонных конструкциях

СНиП 2.03.04-84
________________
Зарегистрирован Росстандартом в качестве СП 27.13330.2010. –
Примечание изготовителя базы данных.

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

____________________________________________________________________
Текст Сравнения СНиП 2.03.04-84 с СП 27.13330.2011см. по ссылке.
– Примечание изготовителя базы данных.
____________________________________________________________________

РАЗРАБОТАНЫ НИИЖБ Госстроя СССР (д-р техн. наук, проф. А. Ф. Милованов руководитель темы; кандидаты техн. наук В. Н. Горячев, В. М. Милонов, В. Н. Сямойленко) с участием ВНИПИ Теплопроект Минмонтажспецстроя СССР (В. А. Тарасова), Макеевского ИСИ Минвуза Украинской ССР (канд. техн. наук А. П. Кричевский), Харьковского Промстройннипроекта Госстроя СССР (кандидаты техн. наук И. Н. Заславский, С. Л. Фомин).

ВНЕСЕНЫ НИИЖБ Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР (В. М. Скубко).

С введением в действие СНиП 2.03.04-84 “Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур” с 1 января 1986 г. утрачивает силу “Инструкция по проектированию бетонных и железобетонных конструкций, предназначенных для работы в условиях воздействия повышенных и высоких температур” (СН 482-76).

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале Бюллетень строительной техники Госстроя СССР и информационном указателе Государственные стандарты СССР Госстандарта.

Настоящие нормы и правила распространяются на проектирование бетонных и железобетонных конструкций, предназначенных для работы в условиях систематического воздействия повышенных (от 50 до 200°С включительно) и высоких (свыше 200°С) технологических температур (далее – воздействия температур).

Нормы устанавливают требования по проектированию указанных конструкций, изготовляемых из конструкционного тяжелого бетона средней плотности от 2200 до 2500 включительно (далее – обычный бетон) и из жаростойкого бетона плотной структуры средней плотности 900 и более.

Требования настоящих норм не распространяются на конструкции из жаростойкого бетона ячеистой структуры.

Проектировать железобетонные дымовые трубы, резервуары и фундаменты доменных печей, работающие при воздействии температуры свыше 50°С, следует с учетом дополнительных требований, предъявляемых к этим сооружениям соответствующими нормативными документами.

Основные буквенные обозначения, принятые в настоящих нормах согласно СТ СЭВ 1565-79, приведены в справочном приложении 1.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

ОБЩИЕ УКАЗАНИЯ

1.1. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных температур, следует предусматривать, как правило, из обычного бетона.

Фундаменты, которые при эксплуатации постоянно подвергаются воздействию температуры до 250°С включительно, допускается принимать из обычного бетона.

Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия высоких температур, следует предусматривать из жаростойкого бетона.

Несущие элементы конструкций тепловых агрегатов, выполняемые из жаростойкого бетона, сечение которых может нагреваться до температуры выше 1000°С, допускается принимать только после их опытной проверки.

Жаростойкие бетоны в элементах конструкций тепловых агрегатов следует применять в соответствии с рекомендуемым приложением 2.

Классы жаростойкого бетона по предельно допустимой температуре применения в соответствии с ГОСТ 20910-82* в зависимости от вида вяжущего, заполнителей, тонкомолотых добавок и отвердителя приведены в табл. 9.
__________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 20910-90, здесь и далее по тексту. – Примечание изготовителя базы данных.

1.2. Для конструкций, работающих под воздействием температуры выше 50°С в условиях периодического увлажнения паром, технической водой и конденсатом, необходимо соблюдать требования пп. 1.8, 2.4, 2.6 – 2.8, 2.11 и 5.7. При невозможности обеспечения указанных требований расчет таких конструкций допускается производить только на воздействие температуры и нагрузки без учета периодического увлажнения. При этом в расчете сечения не должны учитываться крайние слои бетона толщиной 20 мм с каждой стороны, подвергающиеся замачиванию в течение 7 ч, и толщиной 50 мм при длительности замачивания бетона более 7 ч или должна предусматриваться защита поверхности бетона от периодического замачивания.

Окрашенная поверхность бетона или гидроизоляционные покрытия этих конструкций должны быть светлых тонов.

1.3. Циклический нагрев – длительный температурный режим, при котором в процессе эксплуатации конструкция периодически подвергается повторяющемуся нагреву с колебаниями температуры более 30 % расчетной величины при длительности циклов от 3 ч до 30 дней.

Постоянный нагрев – длительный температурный режим, при котором в процессе эксплуатации конструкция подвергается нагреву с колебаниями температуры до 30 % расчетной величины.

1.4. При проектировании конструкций из жаростойких бетонов по ГОСТ 20910-82 необходимо учитывать дополнительные требования к исходным материалам для жаростойких бетонов, подбору их состава и технологии приготовления, а также особенности производства работ по требованиям СН 156-79.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.5. Бетонные и железобетонные конструкции, работающие в условиях воздействия повышенных и высоких температур, следует рассчитывать на основе положений СНиП 2.03.01-84 с учетом дополнительных требований, изложенных в настоящих нормах и правилах.

При расчете бетонных и железобетонных конструкций необходимо учитывать изменения механических и упругопластических свойств бетона и арматуры в зависимости от температуры воздействия. При этом усилия, деформации, образование, раскрытие и закрытие трещин определяют от воздействия нагрузки (включая собственный вес) и температуры.

Расчетные схемы и основные предпосылки для расчете бетонных и железобетонных конструкций должны устанавливаться в соответствии с условиями их действительной работы в предельном состоянии с учетом в необходимых случаях пластических свойств бетона и арматуры, наличия трещин в растянутом бетоне, а также влияния усадки и ползучести бетона как при нормальной температуре, так и при воздействии повышенных и высоких температур.

1.6. Расчет конструкций, работающих в условиях воздействия повышенных и высоких температур, должен производиться на все возможные неблагоприятные сочетания нагрузок от собственного веса, внешней нагрузки и температуры с учетом длительности их действия и в случав необходимости – остывания.

Расчет конструкций с учетом воздействия повышенных и высоких температур необходимо производить для следующих основных расчетных стадий работы:

кратковременный нагрев – первый разогрев конструкции до расчетной температуры;

длительный нагрев – воздействие расчетной температуры в период эксплуатации.

Расчет статически определимых конструкций по предельным состояниям первой и второй групп (за исключением расчета по образованию трещин) следует вести только для стадии длительного нагрева. Расчет по образованию трещин необходимо производить для стадий кратковременного и длительного нагрева с учетом усилий, возникающих от нелинейного распределения температуры бетона по высоте сечения элемента.

Расчет статически неопределимых конструкций и их элементов по предельным состояниям первой и второй групп должен производиться:

а) на кратковременный нагрев конструкции по режиму согласно СНиП III-15-76*, когда возникают наибольшие усилия от воздействия температуры (см. п. 1.10). При этом жесткость элементов в конструкции определяется по указаниям пп. 4.17 и 4.18 как от кратковременного действия всех нагрузок и в зависимости от скорости нагрева;
_____________________
* На территории Российской Федерации документ не действует. Действуют СНиП 3.03.01-87. – Примечание изготовителя базы данных.

б) на длительный нагрев – воздействие на конструкцию расчетной температуры в период эксплуатации, когда происходит снижение прочности и жесткости элементов в результате воздействия длительного нагрева и нагрузки.

При этом жесткость элементов определяется по указаниям пп. 4.17 и 4.18 как от длительного воздействия всех нагрузок.

Расчетная технологическая температура принимается равной температуре среды цеха или рабочего пространства теплового агрегата, указанной в задании на проектирование.

Расчетные усилия и деформации от кратковременного и длительного нагревов определяются с учетом коэффициента надежности по температуре по указаниям п. 1.27.

1.7. Величины нагрузок и воздействий, значения коэффициентов надежности, коэффициентов сочетаний, а также подразделение нагрузок на постоянные и временные длительные, кратковременные, особые следует принимать в соответствии с требованиями СНиП II-6-74 с учетом дополнительных указаний СНиП 2.03.01-84.

Нагрузки и воздействия температуры, учитываемые при расчете конструкции по предельным состояниям первой и второй групп, следует принимать по табл. 1 и 2.

При расчете по прочности в необходимых случаях должны учитываться особые нагрузки с коэффициентами надежности по нагрузке , принимаемыми по соответствующим нормативным документам. При этом усилия, вызванные действием температуры, не учитываются.

1.8. К трещиностойкости конструкций (или их частей) должны предъявляться требования СНиП 2.03.01-84 с учетом дополнительных указаний настоящего пункта.

Категории требований к трещиностойкости железобетонных конструкций в зависимости от условий их работы, вида арматуры, а также величины предельно допустимой ширины раскрытия трещин с учетом воздействия температуры на элементы, эксплуатируемые в условиях неагрессивной среды, для обеспечения сохранности арматуры приведены в табл. 3.

1.9. Определение усилий в статически неопределимых конструкциях от внешней нагрузки, собственного веса и воздействия повышенных и высоких температур производят по правилам строительной механики методом последовательных приближений. При этом жесткость элементов определяют с учетом неупругих деформаций и наличия трещин в бетоне от одновременного действия внешней нагрузки, собственного веса и температуры.

1.10. При кратковременном нагреве усилия от воздействия температуры в элементах статически неопределимых конструкций должны определяться в зависимости от состава бетона (см. табл. 9) и температуры нагрева, вызывающей наибольшие усилия:

а) при нагреве бетона № 1 свыше 50 до 250°С – по расчетной температуре;

б) при нагреве бетонов № 2-11, 23 и 24 свыше 200 до 500°С по расчетной температуре; при нагреве свыше 500°С – при 500°С;

в) при нагреве бетонов № 12-21, 29 и 30 свыше 200 до 400°С – по расчетной температуре, при нагреве свыше 400°С – при 400°С.

Для конструкций, находящихся на наружном воздухе, расчет наибольших усилий от воздействия температур выполняют по расчетной температуре воздуха по требованию п. 1.40.

Статическая схема конструкции

и расчетная стадия работы

Нагрузки и коэффициенты надежности по нагрузке

, температурные воздействия
и коэффициенты надежности по температуре ,
принимаемые при расчете

Устройство 4 видов зазоров и расстояние между деформационными швами в железобетоне

В недавно построенных домах вследствие влияния определенных факторов появляются трещины. Температурные швы в железобетонных конструкциях, усадочные, осадочные и прочие носят название деформационных, и являются профилактикой этих нежелательных последствий, возникающих в сейсмических зонах, местностях с большой амплитудой перепадов температуры, и в зданиях, построенных на разных видах грунта или на гористом рельефе.

Деформационный шов предназначается для снижения нагрузок на части конструктивных элементов в зонах вероятных деформаций.

Что это такое?

Это своеобразный разрез полов, стен и потолков построек, заполненный изоляционным материалом (герметиком, замазкой, эластичными лентами), который делит фасад постройки на отдельные секторы. Его главная функция — предотвратить деформацию, смещение или разрушение постройки, забрать часть напряжения каркаса и повысить упругость блоков.

Существует много видов швов, различающихся по цели применения, но самые популярные из них следующие:

Некоторые виды стыков используются чаще других.

  • температурно-усадочные швы;
  • осадочные;
  • антисейсмические.

Устройство деформационных швов

Температурные

Используют в помещениях с частыми изменениями уровня влаги и температуры. В качестве материала для деформационной конструкции применяют древесину, потому что она обеспечивает прочность бетонной стяжки и предотвращает трещины между блоками. Деревянные рейки размещают по отметкам, перерезая постройку по длине и ширине от крыши до верха основы.

При формировании такого стыка необходимо использовать деревянные рейки.

Антисейсмические

Ставятся в постройках, строящихся в районах, подверженных частым землетрясениям. Они делят здание по всей высоте, затрагивая наземную часть. Расстояние между антисейсмическими швами и их параметры утверждены в проекте строительства. По линиям таких швов ставят двойные стены или подобные сооружения несущих конструкций, которые входят в число горизонтальных и вертикальных поддерживающих элементов.

Усадочные

При затвердевании бетона стены уменьшается в размерах, что является одной из самых распространенных причин возникновения трещин, которые ослабляют мощь монолитных держателей. Для из устранения используют усадочные швы. При высыхании этого стройматериала они расширяются вместе с ним, а после окончательной усадки стен — наглухо заделываются герметиком.

Формирование такого типа стыка необходимо для предупреждения появления трещин на стенах.

Осадочные

Используются в сооружениях, имеющих блоки разной высоты, этажности и установленных на разных типах грунта. Эти швы укладываются при заливке фундамента и разрезают дом начиная от основы, и заканчивая последними этажами. При затвердевании бетона, его расширение — главная причина появления трещин. Для предотвращения нежелательных последствий и обеспечения возможности разрывам пролечь по специальным ущельям или под ними, необходимо сделать надрез на глубину ¼—½ высоты фундамента. Демпфера принимают на себя тепловые и усадочные горизонтальные расширения материалов при их стыках.

Расстояние и основные положения

Нормы построения деформационных конструкций, соотношения в размерах, формулы для вычисления персональных параметров, в том числе и расстояние между деформационными швами, детально описано в строительных нормах и правилах (сокращенно СНиП). Еще подробная информация содержится в своде правил (далее СП). Согласно СП 27.13330.2011 (п. 6.27), расстояние между температурно-усадочными деформационными швами в железобетоне определяются формулой. Ее можно не соблюдать, если выбранные расчеты не больше значений, обозначенных в таблице (при показателе температуры -40 °С, относительной влажности воздуха 60%, и высоте потолка 3 м).

Расстояния между швами
ТипОтапливаемые постройки или грунт, мНеотапливаемые помещения, мНа улице, м
Сборные и сборно-каркасные одноэтажные726048
Те же многоэтажные605040
Сборно-блочные/сборно-панельные554535
Сборно-монолитные/монолитные каркасные504030
Те же сплошные403025

Размер блоков, между которыми размещаются деформационные швы, определен параметрами, описанными в следующих нормативных документах:

Например, температурно-усадочные швы укладываются шириной от 20 мм, постройка делится на равные блоки, деление начинается от фундамента. В осадочных же разрез идет по вертикали и его ширина также не должна быть меньше 20 мм. Для их поддержания и профилактики возникновения трещин в них же вставляют металлическую конструкцию, которая является герметиком и усилителем.

Деформационные швы в железобетоне

Здания становятся все выше, строятся в особых условиях, но даже применение монолитных железобетонных конструкций не гарантирует им прочность и долговечность. Различные внешние и внутренние воздействия, ведут к возникновению структурных напряжений, которые деформируют их каркасы и могут привести к разрушениям. Решение — устройство деформационных швов.

Что такое деформационный шов?

Это предусмотренное проектом фрагментирование конструкции здания в вертикальной (горизонтальной) плоскости, компенсирующее напряжения в несущем каркасе, последствия которых — изменения геометрических размеров и взаимного положения железобетона. Такие швы задают постройкам проектную величину упругой подвижности. Они подразделяются в зависимости от компенсируемого ими напряжения на температурные, усадочные, конструкционные, осадочные и сейсмические.

Наибольшие расстояния между деформационными швами в железобетонных конструкциях

Постройки, в каркас которых включены предварительно напряженные изделия 1-й (2-й) групп в отношении стойкости к образованию трещин, разделяются деформационными швами, расстояние между которыми рассчитывается в отношении значений трещиностойкости. Дистанция между разрезами в пределах одного отапливаемого здания не должна превышать:

  • для сборных конструкций — 150 м;
  • для сборно-монолитных и монолитных конструкций — 90 м.

Если постройка не обогревается, приведенные значения снижаются на 20%.

Деформационные швы разделяют протяженные по фасаду и поперечнику сооружения на отдельные блоки. Когда проектные числовые параметры габаритов меньше соответствующих показателей из таблицы 1 (при значениях температуры воздуха от – 40 град. и выше), их не рассчитывают. Последнее допустимо, если в конструкцию включены предварительно напряженные и ненапряженные изделия, трещиностойкость которых отнесена к 3-й группе. Максимально допустимые расстояния между деформационными разъединителями в железобетонных конструкциях, которые можно не рассчитывать, показаны в таблице 1.

Таблица 1.

При возведении зданий в один этаж из каркасного армированного бетона расстояние от одного до другого шва разрешается увеличивать на 20% относительно данных таблицы 1. Также табличные данные применимы при создании в каркасных сооружениях вертикальных связей в середине отдельного блока. Размещение подобных связей по краям такого блока приближает работу его каркаса (при воздействии типовых деформаций) к аналогичному цельному сооружению.

Как выполняются?

Усадочный и термический (осадочный и сейсмический) швы в сооружении могут совмещаться в один — температурно-усадочный (осадочно-сейсмический) разрез. Первый перерезает постройку по длине и ширине от кровли до верха фундамента, а второй делит ее на полностью независимые блоки. Допустимую деформацию в железобетоне обеспечивает вертикальный разрез перекрытий, стен шириной 20 – 30 мм. Данное свободное пространство заполняется упругим гидрофобным материалом. Монтирование парных колонн и балок в смежных частях соседних корпусов формирует правильное размыкание.

Осадочный шов обустраивается в постройках, имеющих блоки разной высоты, и тех, что установлены в разнородные грунты, даже если блоки объединены вкладным пролетом. В отмостке температурное расширение армированного камня компенсируется ее фрагментированием с шагом до 2-х метров путем размещения деревянных брусков, пропитанных битумом, в опалубке. Пристенное примыкание опалубки делается герметичным и подвижным. Бетонные полы подвержены усадочным деформациям, когда площадь помещения превышает 30 м2.

Расширение бетона при твердении вызывает появление трещин. Прорезание поверхности стяжки на глубину от 1/4 до 1/2 высоты обеспечивает возможность разрывам материала пройти по созданным разрезам или под ними в глубине. Отдельные площадки стяжки при этом могут иметь длину одной стороны до 6-ти метров и соотношение сторон не более 1:1,5. Стыки различных материалов, уложенных в пол, как и конструкционные стыки залитого в разное время бетона, обеспечиваются демпферами, которые принимают на себя усадочные и тепловые горизонтальные расширения материалов.

Изоляционные швы отделяют бетонную стяжку на всю ее высоту от стен вдоль периметра помещения. Разрез заполняется упругими материалами или остается пустым. Аналогично прорезанием шов обеспечивается изоляция колонн, лестничных маршей от стяжки на полу. Монолитные плиты перекрытий разъединяются швами от несущего каркаса сооружения. Расчеты помогают определить ширину типового элемента перекрытия.

Фрагментами такого размера заливаются межэтажные перекрытия. Пустоты заполняются эластичными гидроизоляционными составами, материалами и заделываются. Ленточные фундаменты также разделяются на всю высоту деформационными швами на независимые элементы. Они должны обеспечить надежную гидроизоляцию и компенсацию нагрузок и напряжений. Количество сечений фундамента и их частота определяются проектом. Шаг разрезания фундамента зависит от типа грунта.

К примеру, на пучинистых — 15 м, на слабопучинистых — 30 м. Герметики, которые укладываются в швы, должны длительное время сохранять эластичность и герметичность. Вертикальными конструкциями внутренних и наружных стен формируются горизонтальные сечения, которыми они разделяются на отсеки.

Для несущих фасадных стен высота отсека — до 20 м, для внутренних — до 30 м. В подобные размыкания каркаса закладывается шпунт, завернутый дважды в толь, который забивается паклей и герметизируется глиной. В зависимости от типа швов их ширина лежит в пределах от 3-х мм до 100 см.

Заключение

Железобетонные конструкции при эксплуатации подвергаются деформационным воздействиям, имеющим разную природу. Вместе с тем правильная их компенсация обустройством деформационных разрезов обеспечивает сооружениям упругую подвижность, прочность и долговечность.

Сайт инженера-проектировщика

Деформационные швы в зданиях из железобетонных конструкций

Рассмотрим следующие нормативные требования.

СП 27.13330.2011 БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

Актуализированная редакция СНиП 2.03.04-84

6.27 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов должны устанавливать расчетом. Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в таблице 6.3, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40 °С, относительной влажности воздуха 60% и выше и высоте колонн 3 м.

Тип конструкцийНаибольшие расстояния между температурно-усадочными швами, м, допускаемые без расчета для конструкций, находящихся
внутри отапливаемых зданий или в грунтевнутри неотапливаемых зданийна наружном воздухе
Бетонные:
а) сборные403530
б) монолитные при конструктивном армировании302520
в) монолитные без конструктивного армирования201510
Железобетонные:
а) сборные и сборно-каркасные одноэтажные726048
б) сборные и сборно-каркасные многоэтажные605040
в) сборно-блочные, сборно-панельные554535
г) сборно-монолитные и монолитные каркасные504030
д) сборно-монолитные и монолитные сплошные403025
Примечания

1 Для железобетонных конструкций (позиция 2), расчетная температура внутри которых не превышает 50 °С, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1 °С увеличивают соответственно на 10, 20, 40 и 60% и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10% уменьшают соответственно на 20, 40 и 60%.

2 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами увеличивают при высоте колонн 5 м — на 20%, 7 м — на 60% и 9 м — на 100%. Высоту колонн определяют: для одноэтажных зданий — от верха фундамента до низа подкрановых балок, а при их отсутствии — до низа ферм или балок покрытия; для многоэтажных зданий — от верха фундамента до низа балок первого этажа.

3 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри 70, 120, 300, 500 и 1000 °С уменьшают соответственно на 20, 40, 60, 70 и 90%.

Отдельные конструктивные требования

9.35 Ширину температурно-усадочного шва b в зависимости от расстояния между швами l определяют по формуле

Относительное удлинение оси элемента εi вычисляют в зависимости от вида конструкции и характера нагрева по 6.21-6.24.

Ширину температурно-усадочного шва, вычисленную по формуле (9.6), увеличивают на 30%, если шов заполняется асбестовермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рисунок 9.2).

а — шов, заполненный шнуровым асбестом; б — то же, с бетонным бруском; в — то же, с металлическим компенсатором; 1 — шнуровой асбест, смоченный в глиняном растворе; 2 — бетонный брусок; 3 — компенсатор; 4 — стальной стержень диаметром 6 мм

Рисунок 9.2 — Температурные швы в конструкциях из жаростойкого бетона

Температурно-усадочные швы в бетонных и железобетонных конструкциях принимают шириной не менее 20 мм.

Когда давление в рабочем пространстве теплового агрегата не равно атмосферному, температурно-усадочный шов должен иметь уширение для установки бетонного бруса. Брус устанавливают насухо без раствора. Между брусом и менее нагретой поверхностью шов заполняют легко деформируемым теплоизоляционным материалом.

В печах, где требуется герметичность рабочего пространства, с наружной поверхности в температурно-усадочном шве должен предусматриваться компенсатор.

Деформационный шов в железобетонных конструкциях

В недавно построенных домах вследствие влияния определенных факторов появляются трещины. Температурные швы в железобетонных конструкциях, усадочные, осадочные и прочие носят название деформационных, и являются профилактикой этих нежелательных последствий, возникающих в сейсмических зонах, местностях с большой амплитудой перепадов температуры, и в зданиях, построенных на разных видах грунта или на гористом рельефе.

Деформационный шов предназначается для снижения нагрузок на части конструктивных элементов в зонах вероятных деформаций.

Что это такое?

Это своеобразный разрез полов, стен и потолков построек, заполненный изоляционным материалом (герметиком, замазкой, эластичными лентами), который делит фасад постройки на отдельные секторы. Его главная функция — предотвратить деформацию, смещение или разрушение постройки, забрать часть напряжения каркаса и повысить упругость блоков.

Существует много видов швов, различающихся по цели применения, но самые популярные из них следующие:

Некоторые виды стыков используются чаще других.
  • температурно-усадочные швы;
  • осадочные;
  • антисейсмические.

Устройство деформационных швов

Температурные

Используют в помещениях с частыми изменениями уровня влаги и температуры. В качестве материала для деформационной конструкции применяют древесину, потому что она обеспечивает прочность бетонной стяжки и предотвращает трещины между блоками. Деревянные рейки размещают по отметкам, перерезая постройку по длине и ширине от крыши до верха основы.

При формировании такого стыка необходимо использовать деревянные рейки.

Антисейсмические

Ставятся в постройках, строящихся в районах, подверженных частым землетрясениям. Они делят здание по всей высоте, затрагивая наземную часть. Расстояние между антисейсмическими швами и их параметры утверждены в проекте строительства. По линиям таких швов ставят двойные стены или подобные сооружения несущих конструкций, которые входят в число горизонтальных и вертикальных поддерживающих элементов.

Усадочные

При затвердевании бетона стены уменьшается в размерах, что является одной из самых распространенных причин возникновения трещин, которые ослабляют мощь монолитных держателей. Для из устранения используют усадочные швы. При высыхании этого стройматериала они расширяются вместе с ним, а после окончательной усадки стен — наглухо заделываются герметиком.

Формирование такого типа стыка необходимо для предупреждения появления трещин на стенах.

Осадочные

Используются в сооружениях, имеющих блоки разной высоты, этажности и установленных на разных типах грунта. Эти швы укладываются при заливке фундамента и разрезают дом начиная от основы, и заканчивая последними этажами. При затвердевании бетона, его расширение — главная причина появления трещин. Для предотвращения нежелательных последствий и обеспечения возможности разрывам пролечь по специальным ущельям или под ними, необходимо сделать надрез на глубину ¼—½ высоты фундамента. Демпфера принимают на себя тепловые и усадочные горизонтальные расширения материалов при их стыках.

Расстояние и основные положения

Нормы построения деформационных конструкций, соотношения в размерах, формулы для вычисления персональных параметров, в том числе и расстояние между деформационными швами, детально описано в строительных нормах и правилах (сокращенно СНиП). Еще подробная информация содержится в своде правил (далее СП). Согласно СП 27.13330.2011 (п. 6.27), расстояние между температурно-усадочными деформационными швами в железобетоне определяются формулой. Ее можно не соблюдать, если выбранные расчеты не больше значений, обозначенных в таблице (при показателе температуры -40 °С, относительной влажности воздуха 60%, и высоте потолка 3 м).

Расстояния между швами
ТипОтапливаемые постройки или грунт, мНеотапливаемые помещения, мНа улице, м
Сборные и сборно-каркасные одноэтажные726048
Те же многоэтажные605040
Сборно-блочные/сборно-панельные554535
Сборно-монолитные/монолитные каркасные504030
Те же сплошные403025

Посмотреть «СП 27.13330.2011» или cкачать в PDF (14.6 MB)

Размер блоков, между которыми размещаются деформационные швы, определен параметрами, описанными в следующих нормативных документах:

  • СНиП 2.03.04—84 (п. 17);
  • СП 52—110—2009.

Посмотреть «СНиП 2.03.01-84» или cкачать в PDF (1.3 MB)

Посмотреть «СП 52-110-2009» или cкачать в PDF (2.7 MB)

Например, температурно-усадочные швы укладываются шириной от 20 мм, постройка делится на равные блоки, деление начинается от фундамента. В осадочных же разрез идет по вертикали и его ширина также не должна быть меньше 20 мм. Для их поддержания и профилактики возникновения трещин в них же вставляют металлическую конструкцию, которая является герметиком и усилителем.

Наибольшие расстояния между деформационными швами в железобетонных конструкциях

Устройство 4 видов зазоров и расстояние между деформационными швами в железобетоне

В недавно построенных домах вследствие влияния определенных факторов появляются трещины. Температурные швы в железобетонных конструкциях, усадочные, осадочные и прочие носят название деформационных, и являются профилактикой этих нежелательных последствий, возникающих в сейсмических зонах, местностях с большой амплитудой перепадов температуры, и в зданиях, построенных на разных видах грунта или на гористом рельефе.

Деформационный шов предназначается для снижения нагрузок на части конструктивных элементов в зонах вероятных деформаций.

Что это такое?

Это своеобразный разрез полов, стен и потолков построек, заполненный изоляционным материалом (герметиком, замазкой, эластичными лентами), который делит фасад постройки на отдельные секторы. Его главная функция — предотвратить деформацию, смещение или разрушение постройки, забрать часть напряжения каркаса и повысить упругость блоков.

Существует много видов швов, различающихся по цели применения, но самые популярные из них следующие:

При формировании такого стыка необходимо использовать деревянные рейки.

Антисейсмические

Ставятся в постройках, строящихся в районах, подверженных частым землетрясениям. Они делят здание по всей высоте, затрагивая наземную часть. Расстояние между антисейсмическими швами и их параметры утверждены в проекте строительства. По линиям таких швов ставят двойные стены или подобные сооружения несущих конструкций, которые входят в число горизонтальных и вертикальных поддерживающих элементов.

Усадочные

При затвердевании бетона стены уменьшается в размерах, что является одной из самых распространенных причин возникновения трещин, которые ослабляют мощь монолитных держателей. Для из устранения используют усадочные швы. При высыхании этого стройматериала они расширяются вместе с ним, а после окончательной усадки стен — наглухо заделываются герметиком.

Формирование такого типа стыка необходимо для предупреждения появления трещин на стенах.

Осадочные

Используются в сооружениях, имеющих блоки разной высоты, этажности и установленных на разных типах грунта. Эти швы укладываются при заливке фундамента и разрезают дом начиная от основы, и заканчивая последними этажами. При затвердевании бетона, его расширение — главная причина появления трещин. Для предотвращения нежелательных последствий и обеспечения возможности разрывам пролечь по специальным ущельям или под ними, необходимо сделать надрез на глубину ¼—½ высоты фундамента. Демпфера принимают на себя тепловые и усадочные горизонтальные расширения материалов при их стыках.

Расстояние и основные положения

Нормы построения деформационных конструкций, соотношения в размерах, формулы для вычисления персональных параметров, в том числе и расстояние между деформационными швами, детально описано в строительных нормах и правилах (сокращенно СНиП). Еще подробная информация содержится в своде правил (далее СП). Согласно СП 27.13330.2011 (п. 6.27), расстояние между температурно-усадочными деформационными швами в железобетоне определяются формулой. Ее можно не соблюдать, если выбранные расчеты не больше значений, обозначенных в таблице (при показателе температуры -40 °С, относительной влажности воздуха 60%, и высоте потолка 3 м).

Деформационные швы в железобетоне

Здания становятся все выше, строятся в особых условиях, но даже применение монолитных железобетонных конструкций не гарантирует им прочность и долговечность. Различные внешние и внутренние воздействия, ведут к возникновению структурных напряжений, которые деформируют их каркасы и могут привести к разрушениям. Решение — устройство деформационных швов.

Что такое деформационный шов?

Это предусмотренное проектом фрагментирование конструкции здания в вертикальной (горизонтальной) плоскости, компенсирующее напряжения в несущем каркасе, последствия которых — изменения геометрических размеров и взаимного положения железобетона. Такие швы задают постройкам проектную величину упругой подвижности. Они подразделяются в зависимости от компенсируемого ими напряжения на температурные, усадочные, конструкционные, осадочные и сейсмические.

Наибольшие расстояния между деформационными швами в железобетонных конструкциях

Постройки, в каркас которых включены предварительно напряженные изделия 1-й (2-й) групп в отношении стойкости к образованию трещин, разделяются деформационными швами, расстояние между которыми рассчитывается в отношении значений трещиностойкости. Дистанция между разрезами в пределах одного отапливаемого здания не должна превышать:

  • для сборных конструкций — 150 м;
  • для сборно-монолитных и монолитных конструкций — 90 м.

Если постройка не обогревается, приведенные значения снижаются на 20%.

Деформационные швы разделяют протяженные по фасаду и поперечнику сооружения на отдельные блоки. Когда проектные числовые параметры габаритов меньше соответствующих показателей из таблицы 1 (при значениях температуры воздуха от – 40 град. и выше), их не рассчитывают. Последнее допустимо, если в конструкцию включены предварительно напряженные и ненапряженные изделия, трещиностойкость которых отнесена к 3-й группе. Максимально допустимые расстояния между деформационными разъединителями в железобетонных конструкциях, которые можно не рассчитывать, показаны в таблице 1.

Таблица 1.

При возведении зданий в один этаж из каркасного армированного бетона расстояние от одного до другого шва разрешается увеличивать на 20% относительно данных таблицы 1. Также табличные данные применимы при создании в каркасных сооружениях вертикальных связей в середине отдельного блока. Размещение подобных связей по краям такого блока приближает работу его каркаса (при воздействии типовых деформаций) к аналогичному цельному сооружению.

Как выполняются?

Усадочный и термический (осадочный и сейсмический) швы в сооружении могут совмещаться в один — температурно-усадочный (осадочно-сейсмический) разрез. Первый перерезает постройку по длине и ширине от кровли до верха фундамента, а второй делит ее на полностью независимые блоки. Допустимую деформацию в железобетоне обеспечивает вертикальный разрез перекрытий, стен шириной 20 – 30 мм. Данное свободное пространство заполняется упругим гидрофобным материалом. Монтирование парных колонн и балок в смежных частях соседних корпусов формирует правильное размыкание.

Осадочный шов обустраивается в постройках, имеющих блоки разной высоты, и тех, что установлены в разнородные грунты, даже если блоки объединены вкладным пролетом. В отмостке температурное расширение армированного камня компенсируется ее фрагментированием с шагом до 2-х метров путем размещения деревянных брусков, пропитанных битумом, в опалубке. Пристенное примыкание опалубки делается герметичным и подвижным. Бетонные полы подвержены усадочным деформациям, когда площадь помещения превышает 30 м2.

Расширение бетона при твердении вызывает появление трещин. Прорезание поверхности стяжки на глубину от 1/4 до 1/2 высоты обеспечивает возможность разрывам материала пройти по созданным разрезам или под ними в глубине. Отдельные площадки стяжки при этом могут иметь длину одной стороны до 6-ти метров и соотношение сторон не более 1:1,5. Стыки различных материалов, уложенных в пол, как и конструкционные стыки залитого в разное время бетона, обеспечиваются демпферами, которые принимают на себя усадочные и тепловые горизонтальные расширения материалов.

Изоляционные швы отделяют бетонную стяжку на всю ее высоту от стен вдоль периметра помещения. Разрез заполняется упругими материалами или остается пустым. Аналогично прорезанием шов обеспечивается изоляция колонн, лестничных маршей от стяжки на полу. Монолитные плиты перекрытий разъединяются швами от несущего каркаса сооружения. Расчеты помогают определить ширину типового элемента перекрытия.

Фрагментами такого размера заливаются межэтажные перекрытия. Пустоты заполняются эластичными гидроизоляционными составами, материалами и заделываются. Ленточные фундаменты также разделяются на всю высоту деформационными швами на независимые элементы. Они должны обеспечить надежную гидроизоляцию и компенсацию нагрузок и напряжений. Количество сечений фундамента и их частота определяются проектом. Шаг разрезания фундамента зависит от типа грунта.

К примеру, на пучинистых — 15 м, на слабопучинистых — 30 м. Герметики, которые укладываются в швы, должны длительное время сохранять эластичность и герметичность. Вертикальными конструкциями внутренних и наружных стен формируются горизонтальные сечения, которыми они разделяются на отсеки.

Для несущих фасадных стен высота отсека — до 20 м, для внутренних — до 30 м. В подобные размыкания каркаса закладывается шпунт, завернутый дважды в толь, который забивается паклей и герметизируется глиной. В зависимости от типа швов их ширина лежит в пределах от 3-х мм до 100 см.

Заключение

Железобетонные конструкции при эксплуатации подвергаются деформационным воздействиям, имеющим разную природу. Вместе с тем правильная их компенсация обустройством деформационных разрезов обеспечивает сооружениям упругую подвижность, прочность и долговечность.

Отдельные конструктивные требования

9.35 Ширину температурно-усадочного шва b в зависимости от расстояния между швами l определяют по формуле

Относительное удлинение оси элемента εi вычисляют в зависимости от вида конструкции и характера нагрева по 6.21-6.24.

Ширину температурно-усадочного шва, вычисленную по формуле (9.6), увеличивают на 30%, если шов заполняется асбестовермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рисунок 9.2).

а — шов, заполненный шнуровым асбестом; б — то же, с бетонным бруском; в — то же, с металлическим компенсатором; 1 — шнуровой асбест, смоченный в глиняном растворе; 2 — бетонный брусок; 3 — компенсатор; 4 — стальной стержень диаметром 6 мм

Рисунок 9.2 — Температурные швы в конструкциях из жаростойкого бетона

Температурно-усадочные швы в бетонных и железобетонных конструкциях принимают шириной не менее 20 мм.

Когда давление в рабочем пространстве теплового агрегата не равно атмосферному, температурно-усадочный шов должен иметь уширение для установки бетонного бруса. Брус устанавливают насухо без раствора. Между брусом и менее нагретой поверхностью шов заполняют легко деформируемым теплоизоляционным материалом.

В печах, где требуется герметичность рабочего пространства, с наружной поверхности в температурно-усадочном шве должен предусматриваться компенсатор.

Деформационные швы в железобетоне

Здания становятся все выше, строятся в особых условиях, но даже применение монолитных железобетонных конструкций не гарантирует им прочность и долговечность. Различные внешние и внутренние воздействия, ведут к возникновению структурных напряжений, которые деформируют их каркасы и могут привести к разрушениям. Решение — устройство деформационных швов.

Что такое деформационный шов?

Это предусмотренное проектом фрагментирование конструкции здания в вертикальной (горизонтальной) плоскости, компенсирующее напряжения в несущем каркасе, последствия которых — изменения геометрических размеров и взаимного положения железобетона. Такие швы задают постройкам проектную величину упругой подвижности. Они подразделяются в зависимости от компенсируемого ими напряжения на температурные, усадочные, конструкционные, осадочные и сейсмические.

Наибольшие расстояния между деформационными швами в железобетонных конструкциях

Постройки, в каркас которых включены предварительно напряженные изделия 1-й (2-й) групп в отношении стойкости к образованию трещин, разделяются деформационными швами, расстояние между которыми рассчитывается в отношении значений трещиностойкости. Дистанция между разрезами в пределах одного отапливаемого здания не должна превышать:

  • для сборных конструкций — 150 м;
  • для сборно-монолитных и монолитных конструкций — 90 м.

Если постройка не обогревается, приведенные значения снижаются на 20%.

Деформационные швы разделяют протяженные по фасаду и поперечнику сооружения на отдельные блоки. Когда проектные числовые параметры габаритов меньше соответствующих показателей из таблицы 1 (при значениях температуры воздуха от – 40 град. и выше), их не рассчитывают. Последнее допустимо, если в конструкцию включены предварительно напряженные и ненапряженные изделия, трещиностойкость которых отнесена к 3-й группе. Максимально допустимые расстояния между деформационными разъединителями в железобетонных конструкциях, которые можно не рассчитывать, показаны в таблице 1.

Таблица 1.

При возведении зданий в один этаж из каркасного армированного бетона расстояние от одного до другого шва разрешается увеличивать на 20% относительно данных таблицы 1. Также табличные данные применимы при создании в каркасных сооружениях вертикальных связей в середине отдельного блока. Размещение подобных связей по краям такого блока приближает работу его каркаса (при воздействии типовых деформаций) к аналогичному цельному сооружению.

Как выполняются?

Усадочный и термический (осадочный и сейсмический) швы в сооружении могут совмещаться в один — температурно-усадочный (осадочно-сейсмический) разрез. Первый перерезает постройку по длине и ширине от кровли до верха фундамента, а второй делит ее на полностью независимые блоки. Допустимую деформацию в железобетоне обеспечивает вертикальный разрез перекрытий, стен шириной 20 – 30 мм. Данное свободное пространство заполняется упругим гидрофобным материалом. Монтирование парных колонн и балок в смежных частях соседних корпусов формирует правильное размыкание.

Осадочный шов обустраивается в постройках, имеющих блоки разной высоты, и тех, что установлены в разнородные грунты, даже если блоки объединены вкладным пролетом. В отмостке температурное расширение армированного камня компенсируется ее фрагментированием с шагом до 2-х метров путем размещения деревянных брусков, пропитанных битумом, в опалубке. Пристенное примыкание опалубки делается герметичным и подвижным. Бетонные полы подвержены усадочным деформациям, когда площадь помещения превышает 30 м2.

Расширение бетона при твердении вызывает появление трещин. Прорезание поверхности стяжки на глубину от 1/4 до 1/2 высоты обеспечивает возможность разрывам материала пройти по созданным разрезам или под ними в глубине. Отдельные площадки стяжки при этом могут иметь длину одной стороны до 6-ти метров и соотношение сторон не более 1:1,5. Стыки различных материалов, уложенных в пол, как и конструкционные стыки залитого в разное время бетона, обеспечиваются демпферами, которые принимают на себя усадочные и тепловые горизонтальные расширения материалов.

Изоляционные швы отделяют бетонную стяжку на всю ее высоту от стен вдоль периметра помещения. Разрез заполняется упругими материалами или остается пустым. Аналогично прорезанием шов обеспечивается изоляция колонн, лестничных маршей от стяжки на полу. Монолитные плиты перекрытий разъединяются швами от несущего каркаса сооружения. Расчеты помогают определить ширину типового элемента перекрытия.

Фрагментами такого размера заливаются межэтажные перекрытия. Пустоты заполняются эластичными гидроизоляционными составами, материалами и заделываются. Ленточные фундаменты также разделяются на всю высоту деформационными швами на независимые элементы. Они должны обеспечить надежную гидроизоляцию и компенсацию нагрузок и напряжений. Количество сечений фундамента и их частота определяются проектом. Шаг разрезания фундамента зависит от типа грунта.

К примеру, на пучинистых — 15 м, на слабопучинистых — 30 м. Герметики, которые укладываются в швы, должны длительное время сохранять эластичность и герметичность. Вертикальными конструкциями внутренних и наружных стен формируются горизонтальные сечения, которыми они разделяются на отсеки.

Для несущих фасадных стен высота отсека — до 20 м, для внутренних — до 30 м. В подобные размыкания каркаса закладывается шпунт, завернутый дважды в толь, который забивается паклей и герметизируется глиной. В зависимости от типа швов их ширина лежит в пределах от 3-х мм до 100 см.

Заключение

Железобетонные конструкции при эксплуатации подвергаются деформационным воздействиям, имеющим разную природу. Вместе с тем правильная их компенсация обустройством деформационных разрезов обеспечивает сооружениям упругую подвижность, прочность и долговечность.

Устройство деформационных швов Пеноплэкс в зданиях

Многоэтажные и многосекционные здания, обладающие значительным весом и протяженностью, в течение срока эксплуатации могут подвергаться различным деформациям, которые возникают под воздействием ряда факторов: колебаний температуры воздуха, неравномерной осадки грунта или сейсмической активности (что особенно актуально для Кавказа, Крыма, южной части Сибири и Дальнего Востока России).

В результате деформаций снижается несущая способность здания и могут появиться трещины в стенах и других конструкциях. Для уменьшения нагрузок на элементы конструкций в местах возможных деформаций в современном монолитном домостроении активно применяется система деформационных швов.

Деформационные швы представляют собой своего рода разрез в конструкции здания, разделяющий сооружение на отдельные блоки и тем самым придающий ему некоторую степень упругости. В зависимости от специфики архитектурно-технического решения здания, природно-климатических условий и инженерно-геологических возможностей строительства объектов при работе с наружными стенами и остальными конструкциями здания выделяют деформационные швы следующих видов:

  • температурные;
  • усадочные;
  • осадочные;
  • антисейсмические.

Температурные швы делят здание на отсеки от уровня земли до кровли включительно, не затрагивая фундамента, который, находясь ниже уровня земли, испытывает температурные колебания в меньшей степени и, следовательно, не подвергается существенным деформациям. Расстояние между температурными швами определяется в зависимости от материала стен и расчетной зимней температуры региона строительства.

Усадочные швы делают в стенах, возводимых из монолитного бетона различного типа. Монолитные стены при затвердевании бетона уменьшаются в объеме. Усадочные швы препятствуют возникновению трещин, снижающих несущую способность стен. В процессе достижения необходимой прочности монолитных стен ширина усадочных швов увеличивается, а после завершения усадки стен швы тщательно заделывают.

Неравномерная деформация грунта может привести к появлению трещин в стенах и других конструкциях здания. Другой причиной неравномерной осадки грунтов основания сооружения могут быть различия в его составе и структуре в пределах площади застройки здания. Во избежание появления опасных деформаций в зданиях формируют осадочные швы. Эти швы, в отличие от температурных, разрезают здания по всей их высоте, включая фундаменты.

Антисейсмические швы применяются в зданиях, строящихся в районах, которые подвержены землетрясениям. Они разрезают здание на отсеки, конструктивно представляющие собой самостоятельные устойчивые «объемы». По линиям антисейсмических швов располагают двойные стены или двойные ряды несущих стоек, входящих в систему несущего остова соответствующего отсека.

Применение ПЕНОПЛЭКС® в системах деформационных швов

С целью герметизации деформационные швы заполняются упругим изоляционным материалом. Идеальным заполнителем для систем деформационных швов является теплоизоляция ПЕНОПЛЭКС®, поскольку она обладает следующими техническими характеристиками:

  • Высокая прочность на сжатие (не менее 0,20 Мпа). Прочность на сжатие у ПЕНОПЛЭКС® – не менее 20 тонн на кв. м, материал не крошится и не осыпается как в процессе монтажа, так и в течение всего срока службы.
  • Низкое водопоглощение. За счет замкнутой ячеистой структуры теплоизоляция ПЕНОПЛЭКС® обладает практически нулевым водопоглощением.
  • Биостойкость. Теплоизоляция ПЕНОПЛЭКС® обладает абсолютной биостойкостью и не подвержена биоразложению. По результатам тестирования образцов стройматериалов на биостойкость в присутствии влаги доказано, что ПЕНОПЛЭКС®, за счет минимального водопоглощения, не является матрицей для размножения разного вида микроорганизмов.
  • Неизменно низкий коэффициент теплопроводности (λ (лямбда) = 0,034 Вт/м-К), что обеспечивает стабильные теплотехнические свойства, независимо от условий эксплуатации.
  • Долговечность материала – более 50 лет. Еще в 2001 году компания «ПЕНОПЛЭКС» провела испытание теплоизоляционных плит в Научно-исследовательском институте строительной физики г. Москвы на предмет определения долговечности материала при реальных условиях эксплуатации. Результаты испытаний показали, что материал сохраняет свои свойства в течение как минимум 50 лет (НИИСФ, г. Москва, протокол испытаний № 132-1 от 29 октября 2001 года).

Принципиальные схемы устройства деформационных швов

Основные преимущества ПЕНОПЛЭКС® в системах деформационных швов:

  • применение ПЕНОПЛЭКС® в деформационных и температурных швах позволяет конструкции выдерживать высокие нагрузки и значительные температурные колебания;
  • ПЕНОПЛЭКС® способен компенсировать напряжения сопрягаемых элементов усадочных швов с большой амплитудой колебания;
  • благодаря тому, что теплоизоляция ПЕНОПЛЭКС® обладает нулевым водопоглощением, влага не скапливается в толще утеплителя, не расширяется в объеме под воздействием сезонных и суточных температурных колебаний и не разрушает структуру материала на протяжении всего срока службы;
  • широкая продуктовая линейка теплоизоляции ПЕНОПЛЭКС® дает возможность подобрать материал, отвечающий проектным, климатическим и сейсмическим условиям.

Система деформационных швов с ПЕНОПЛЭКС® в качестве наполнителя активно применяется в современном монолитном домостроении. Например, с использованием данной технологии были возведены элитные жилые комплексы в Санкт-Петербурге: «Три ветра» и «Смольный проспект». Новые кварталы кардинально различаются своим внешним видом и месторасположением: «Три ветра» со зданиями в стиле "модерн" располагается на небольшом мысе в акватории Финского залива, а величественный классический «Смольный проспект» – в историческом центре Северной столицы. Объединяют их высокие стандарты строительства и активное применение современных материалов и технологий.

C применением системы деформационных швов также возводились знаковые объекты в Москве, среди которых проект комплексной реконструкции и приспособления под современное использование Центрального стадиона «Динамо» и прилегающей к нему территории – «ВТБ Арена парк», а также гостиничный комплекс на Софийской набережной, прямо напротив Кремля – «Царев сад».

ЦНИИСК им. В.А.Кучеренко совместно с Техническим отделом ООО «ПЕНОПЛЭКС СПб» были разработаны «Рекомендации по применению плит ПЕНОПЛЭКС® в качестве эффективного заполнителя систем деформационных швов конструкций фундаментов и стен зданий и сооружений». Рекомендации разработаны в соответствии с требованиями актуальных СП: СП 20.13330.2011 «Нагрузки и воздействия», СП 15.13330.2012 «Каменные и армокаменные конструкции», СП 22.13330.2011 «Основания зданий и сооружений». Разработанный документ является готовым справочником в области проектирования деформационных швов различного типа и может представлять большой интерес для представителей строительных и проектных организаций.

Основные элементы конструкции деформационного шва


Construction Joint - обзор

ВОЗМОЖНОСТИ ДЛЯ СОТРУДНИЧЕСТВА ПО РАЗРАБОТКЕ РЕАКТОРА

Когда Атен сделал свой первый отчет Рабочей группе, он был вынужден признать, что предложения международной группы по разработке реакторов не оказались удовлетворительными. «Очевидно, - продолжил он, - что каждая страна хочет самостоятельно развивать свои самые привлекательные идеи». Возможно, удастся получить опору для высокотемпературного реактора, предположительно работающего на жидком металле, или двигательных реакторов, или реактора для испытаний материалов с очень высокой плотностью потока.Реакторы на быстрых нейтронах и реакторы с кипящей водой были интересны, но Великобритания активно участвовала в первом, а Норвегия - во втором, и пока эти две страны не заявили о своей позиции, было трудно делать выводы. Он пришел к выводу, что «область, в которой технические разработки вряд ли произойдут в ближайшем будущем, но которые могут сыграть важную роль на более отдаленной стадии, вероятно, будет наиболее приемлемой».

Тем не менее была сделана попытка сравнить затраты на разработку различных типов реакторов, и впервые было кратко упомянуто о высокотемпературных реакторных системах, основанных на охлаждении газа и работающих на оксиде или карбиде урана.В американском журнале Nucleonics были опубликованы две статьи, в которых анализировалась система и предполагаемые затраты на электроэнергию от станции, основанной на ней (10) . В значительной степени на основании этих свидетельств система фигурирует в примечании, приложенном к сводке Атона, в котором указано, что стоимость создания научно-исследовательского института для разработки реактора с кипящей водой, двигательной установки или высокотемпературного реактора была примерно такой же, в то время как институт быстрых реакторов выйдет примерно вдвое.

Тем временем рабочая группа комитета по электроэнергии под председательством Франко Кастелли из Edisonvolta рассматривала вопрос о совместных предприятиях с точки зрения производителей и поставщиков электроэнергии.Начиная с продвинутой позиции постоянного комитета с установленными линиями связи, он смог подготовить вдумчивый и актуальный отчет в кратчайшие сроки. Это заслуживает более серьезного рассмотрения, чем это, по-видимому, было уделено при составлении основного отчета Специального комитета Совету, даже с учетом того факта, что комментарии Комитета по электроэнергии были приложены в виде приложения, и его рекомендации о создании исследовательской группы. был одобрен.

Комитет по электричеству предвидел три возможности для совместных действий:

1.

совместное строительство уже испытанного типа для обмена опытом;

2.

совместная разработка малых новых типов реакторов;

3.

серия автономных разработок в рамках скоординированной программы работы, в которой будут разделены опыт и, возможно, даже коммерческие риски.

Они не должны рассматриваться как взаимоисключающие. Для типа сотрудничества, предусмотренного в пунктах 1 и 2, смешанная компания с частным и государственным участием могла бы быть лучшей структурой, но на первом этапе было предложено создать пилотную компанию для составления планов для одной или нескольких станций без предвзятое отношение к любому принятому в конечном итоге решению.В своем резюме Комитет заявил, что «эксперты стран-членов как единое целое проявляют большой интерес к заключению соглашений о сотрудничестве и разработке совместной программы между заинтересованными странами по развитию производства электроэнергии на основе ядерных технологий. энергия ».

В окончательном проекте (11) Специального комитета, объединяющем выводы Рабочих групп, раздел, посвященный реакторам, был довольно нерешительным, и не было предпринято никаких попыток определить политику.Среди экспертов по реакторам было широко распространено предположение, что совместная разработка реактора потребовала создания нового совместного института, и только в приложении по административным и правовым вопросам, касающимся совместных предприятий в целом, рассматривались альтернативные процедуры, в том числе идея передачи проекта на рассмотрение. забота о национальной организации. Здесь модель была выдвинута с некоторой твердостью. Скорее всего, речь шла в основном о совместном предприятии по обогащению или переработке топлива, и пока эта идея не перекинулась в зону реактора.

Три месяца были очень коротким сроком для Специального комитета, чтобы подготовить отчет, охватывающий все указанные сектора, из которых совместные предприятия были лишь одним. Тем не менее, это было сделано и представлено на 3-м заседании Специального комитета в конце июня. Неизбежно идеи были размыты, и когда делегат из Великобритании проводил различие между совместными проектами по выработке электроэнергии как таковыми и совместными проектами по разработке реакторных систем, даже он заявил, что если он был первым в стадии рассмотрения, то единственным вариантом был бы вариант с газовым охлаждением. Реактор с графитовым замедлителем, работающий на слегка обогащенном уране - якобы британская система, но на самом деле это новый тип, который еще никто не пробовал.

(PDF) ОБРАБОТКА ШВОВ РАСШИРЕНИЯ: МАТЕРИАЛЫ И ТЕХНИКИ

Конференция «Тенденции и вызовы гражданского строительства в современном меняющемся мире»

1

29 марта 2014 г., Отдел гражданского строительства S.N.P.I.T. & RC, Umrakh

ОБРАБОТКА РАСШИРЕНИЯ СОЕДИНЕНИЯ: МАТЕРИАЛ И

МЕТОДЫ

Фархана М. Сайед 1, Ашиш Х. Маквана2, Джайешкумар Питрода3, Четна М. Вяс4

, студент последнего курса инженерно-строительного факультета Б.М. Видьянагар, Гуджарат, Индия 1

Студент последнего курса, ME CE & M., Инженерный колледж BVM, Валлаб Видьянагар, Гуджарат, Индия 2

Доцент кафедры гражданского строительства, Инженерный колледж BVM, Валлаб Видьянагар, Гуджарат, Индия 3

Доцент кафедры гражданского строительства, Технологический институт А.Д. Патела, Нью Валлаб Видьянагар,

Гуджарат, Индия 4

Аннотация: Хотя здания часто строятся с использованием гибких материалов, крыша и конструкционные компенсаторы

требуются при больших размерах в плане.Невозможно установить точные требования к

относительно расстояний между компенсаторами из-за множества задействованных переменных

, таких как температура окружающей среды во время строительства и ожидаемый диапазон температур

в течение срока службы здания. Деформационные швы - это периодические разрывы в конструкции

зданий. Деформационный шов - это зазор в конструкции здания, предоставленный архитектором или инженером

для обеспечения возможности перемещения здания из-за изменений температуры

.Деформационный шов представляет собой конструкцию, предназначенную для безопасного поглощения теплового расширения и сжатия

различных строительных материалов. Обычно они встречаются

между секциями плит, мостов и других конструкций. «Сборка» может быть такой же простой, как

- герметичное разделение между двумя секциями из одинаковых материалов. Совсем недавно расширительные швы

были включены в конструкцию существующих кирпичных наружных стен или добавлены к ним для аналогичных целей

.В строительстве из бетона и бетонных блоков применяется термин «контроль стыка

», но он служит аналогичным целям. В течение года фасады зданий и бетонные плиты

будут расширяться и сжиматься из-за сезонного потепления и похолодания на нашей планете.

Конструкции потрескались бы под действием теплового расширения и сжатия, если бы в конструкции не были встроены

зазоров для компенсационных швов. Даже сегодня зазоры компенсаторов

часто игнорируются в процессе проектирования, и для заполнения этих зазоров используется простая герметизация

для завершения проекта.Это простое уплотнение не может справиться с тепловым расширением из-за смены сезонов

, в конечном итоге оставляя место утечки в конструкции. Этот компенсатор

становится основным источником протечек в конструкции, которые могут испортить внутреннее пространство здания

, если не герметизировать или не обращаться с ним должным образом. Гидроизоляция этих швов часто упускается из виду при проектировании и детализации гидроизоляции.

Ключевые слова: Строительство, Деформационные швы, Материал, Методы

Бетонные швы - Типы и назначение швов в бетоне

Швы в бетоне могут служить как для предотвращения растрескивания, так и в качестве декоративного элемента.

Бетон не является пластичным материалом - он не растягивается и не изгибается без разрушения. В этом его величайшая сила и величайшая слабость. Его твердость и высокая прочность на сжатие - вот почему мы так много его используем в строительстве. Но бетон действительно движется - он сжимается, расширяется, и разные части здания движутся по-разному. Здесь в игру вступают суставы.

Хотя многие элементы здания спроектированы и построены с использованием стыков, включая стены и фундамент, мы ограничим это обсуждение стыками в бетонных плитах.Вот обзор типов шарниров, их функции и советы по поиску и установке шарниров.

Нужна помощь с вашим проектом? Найдите подрядчиков по бетону рядом со мной.

Информация о бетонных швах

Различные стыки в бетонных плитах имеют одну и ту же цель - предотвратить образование трещин.

Назначение швов в бетонных плитах

Когда бетон движется, если он привязан к другой конструкции или даже к самому себе, мы получаем то, что называется ограничением, которое вызывает силы растяжения и неизменно приводит к растрескиванию.Ограничение просто означает, что бетонный элемент (будь то плита, стена или фундамент) не имеет возможности свободно сжиматься при высыхании, расширяться и сжиматься при изменении температуры или немного оседать в земляном полотне (см. ).

Соединения позволяют одному бетонному элементу перемещаться независимо от других частей здания или конструкции. Швы также позволяют бетону давать усадку во время высыхания, предотвращая то, что называется внутренним ограничением. Внутреннее ограничение создается, когда одна часть плиты сжимается больше, чем другая, или сжимается в другом направлении.Подумайте, как плохо вы себя чувствуете, когда часть вас хочет сделать одно, а другая - другое! Бетон чувствует то же самое.

Различные стыки в бетонных плитах имеют одну и ту же цель - предотвратить образование трещин.

В плитах различают три типа стыков:

Декоративные швы

Чисто пропиленное соединение практически не ухудшает внешний вид штампованной плиты. Супер-Крете Интернэшнл

Декоративные бетонные плоские поверхности все еще нуждаются в стыках, чтобы предотвратить растрескивание, что будет даже менее приемлемо, чем в типичном сером бетоне.Изоляционные и строительные швы в декоративном бетоне точно такие же, как и в любом другом бетоне.

Это лезвие со скошенной кромкой превращает стандартный распил в декоративный элемент. Husqvarna Soff-Cut.

Вот несколько советов по выполнению усадочных швов в декоративном бетоне:

  • Не путайте штампованный узор или гравированный узор с узорами, штампованными для стыков, а гравированные надрезы недостаточно глубоки, чтобы создать ослабленную плоскость для стыковочного соединения.Убедитесь, что глубина шва составляет не менее толщины плиты.
  • Шаг и расположение швов для штампованного бетона такие же, как и для любого другого типа бетона.
  • Для штампованного бетона, если узор имеет прямые линии, например узор из шифера, кирпича или дерева, разрежьте стыки, чтобы максимально точно следовать штампованному узору. Соединения могут отличаться по местоположению на несколько дюймов или даже на фут или два, не приводя к появлению трещин. Некоторые подрядчики по штамповке используют изготовленные на заказ долота для вырезания стыков по штампованному рисунку.
  • Для рисунков из полевого камня или булыжника резка стыка по штампованному образцу вряд ли будет работать должным образом, поскольку усадочное движение не всегда перпендикулярно стыку. Любое движение параллельно суставу, скорее всего, заблокирует сустав, что приведет к неконтролируемому растрескиванию.
  • При штампованном бетоне, пожалуй, лучший способ разрезать стыки - это отрезная пила. Неровная поверхность затрудняет управление прокатной пилой. Чтобы узнать об этом, посмотрите видео Боба Харриса или получите копию его Руководства по штампованным бетонным швам, которые рассматриваются в главе 23.
  • Усадочные швы, пропиленные пилой, идеально подходят для декоративного бетона, потому что шов уже и чище, чем шов с обработкой.
  • Пилы для ранней обработки делают красивый и чистый пропил для декоративных бетонных швов. Пила Soff-Cut 150D предназначена для декоративных распилов.
  • Soff-Cut также производит лезвие со скошенной кромкой, которое используется на второй день для превращения типичного стыка пропила (или стыка раннего входа) в декоративный стык. Узнайте больше о пилах для резки бетона с ультра-ранним входом и алмазных дисках Soff-Cut.
  • Для клееных перекрытий вырежьте стыки точно по стыкам в фундаментной плите. Никаких дополнительных стыков не требуется.
  • Для несвязанных покрытий ACI 360R-06 рекомендует следующее: «Для тонких, неармированных, несвязанных покрытий необходимо рассмотреть дополнительные стыки между существующими стыками в нижней плите, чтобы минимизировать напряжение скручивания в покрывающей плите. Покрытие плита может иметь высокое напряжение скручивания из-за того, что нижняя плита является твердым основанием для верхней плиты.Кроме того, следует отремонтировать любые неустойчивые трещины в фундаментной плите, чтобы они не отражались на неармированную верхнюю плиту ».

Бесшовные плиты

Этот топпинг не имеет стыков и трещин благодаря большому количеству структурных синтетических волокон. Forta Corp.

Хотя для большинства применений необходимы усадочные суставы, существуют методы, позволяющие устранить или уменьшить количество суставов.

Передача нагрузки

Эти пластиковые втулки прибиваются к деревянной переборке, чтобы обеспечить место для штифта для передачи нагрузки.Гринстрик.

Для большинства легких плит, даже проездов, мы не слишком беспокоимся о передаче нагрузок по стыкам, иначе мы рассчитываем на совокупную блокировку, чтобы выполнить эту работу. Но между строительными швами или усадочными швами в плитах, которые будут испытывать более высокие нагрузки, нам нужен способ удерживать плиты вертикально выровненными при пересечении дорожного движения. Проблема в том, что если одна сторона шарнира прогибается под нагрузкой, тогда колеса будут слегка подниматься с другой стороны шарнира, и в конечном итоге края шарнира сломаются.В тех случаях, когда возникает необходимость перенести грузы, следует подумать о чем:

Ромбовидные силовые плиты передают нагрузки через строительный шов, не создавая ограничений в любом направлении. Обратите внимание на активированный сужающийся сустав. Строительные технологии ПНА.

  • Совокупная блокировка создается в активированном сужающем суставе. Сломанный край под стыком имеет достаточно неровную форму, чтобы выступающий заполнитель защелкнулся на другой стороне. Если стыки расположены близко друг к другу (или бетон не сильно усаживается), так что они не открываются слишком сильно, блокировка заполнителя может быть эффективной.Однако для более тяжелых нагрузок используйте метод механической передачи сдвига.
  • Существует множество устройств для передачи механической нагрузки (или передачи сдвига), включая дюбели (квадратные и круглые), грузовые пластины ромбовидной формы и шпоночные пазы.
  • Шпоночные пазы упомянуты в разделе о строительных швах. Обычно они не рекомендуются, но могут быть эффективны в строительных швах, которые остаются герметичными.
  • Дюбели должны быть правильно выровнены, чтобы быть эффективными. Дюбели должны быть перпендикулярны стыку как по вертикали, так и по горизонтали.Неровно выровненные дюбели могут привести к порче стыка.
  • Дюбели должны быть гладкими, без острых краев, которые могут зацепиться за бетон. Из арматуры плохие дюбели. Одна половина дюбеля внутри бетона с одной или другой стороны не должна быть приклеена к бетону, чтобы позволить стыку открыться при усадке бетона. Обычно используются разрыхлители или смазка. Не наносите смазку слишком густо.
  • Лучший способ правильно выровнять дюбели в строительном шве - это просверлить отверстия в переборках или использовать фирменную форму переборки, которая выравнивает дюбели.
  • Для усадочных швов, пропиленных распилом, лучше всего использовать корзины для дюбелей, а затем снова прорезать шов над дюбелями.
  • Ромбовидные нагрузочные плиты для строительных швов - это новый и очень эффективный метод, позволяющий плите сжиматься в двух направлениях, устраняя любые ограничения.
  • Размеры и расстояние для круглых. квадратные и прямоугольные дюбели и для ромбовидных нагрузочных плит приведены в ACI 302.1R-04, Руководстве по устройству бетонных перекрытий и перекрытий или ACI 360R-06, Проектирование перекрытий на земле.

Центр CE - Библиотека Центра CE

Все курсыТемаСтатьиМультимедиаВебинарыНано кредитыСпонсорыПодкасты

10 августа 2021 г., 14:00 EDT

10 августа 2021 г., 14:00 EDT

, 12 августа 2021 г., 14:00 EDT

17 августа 2021 г., 14:00 EDT

18 августа 2021 г., 14:00 EDT

Проектирование для обеспечения готовности

18 августа 2021 г., 14:00 EDT

, 25 августа 2021 г., 14:00 EDT

, 26 августа 2021 г., 14:00 EDT

Эти проекты используют доступ к природе как часть процесса исцеления

, 31 августа 2021 г., 14:00 EDT

7 сентября 2021 г., 14:00 EDT

Модернизация салона кабины в крупных проектах

30 сентября 2021 г., 14:00 EDT

Как кожа и отделка делают металлические композитные материалы визуально и функционально прочными

5 октября 2021 г., 14:00 EDT

Материалы и стратегии для создания безопасного и комфортного отдыха на свежем воздухе

Экологичное решение для борьбы с изменением климата, объединяющее солнечные батареи с изолированными металлическими панелями

Заполнители для бетонных швов - полимочевина и эпоксидная смола

Достижения в области наполнителей швов

Очень гибкие заполнители бетонных швов, используемые для различных типов наружного бетона, существуют уже несколько десятилетий и используются также для внутренних бетонных полов.Однако они лучше всего подходят для более легких условий эксплуатации в закрытых помещениях, поскольку не выдерживают интенсивного движения колес. Хотя заполнители швов с высокой эластичностью идеально подходят для наружного бетона, они не способны передавать нагрузку или понижающее давление. Разработка полужестких заполнителей швов дала ответ.

В условиях интенсивного движения внутри помещений управляющие шарниры подвергаются постоянным нагрузкам в виде нагрузок вилочного погрузчика, груженых тележек и т.п. Если стыки не заполнены должным образом, края могут стать помехой для движения и угрозой безопасности и в конечном итоге получить сколы, сколы и трещины, что еще больше ухудшит движение пешеходов и колесных транспортных средств, что затем приведет к дополнительным повреждениям и так далее.Это цикл, который может привести к замене всей бетонной плиты задолго до ее срока.

Благодаря усовершенствованным полужестким заполнителям для швов от Tennant Coatings, установленным одним из наших сертифицированных подрядчиков, внутренние управляющие швы получают поддержку, необходимую им, чтобы выдерживать тяжелое промышленное, коммерческое и институциональное движение. Наши эластичные наполнители хорошо сцепляются с каждой стенкой стыка, предотвращая попадание влаги, пролитых химикатов, грязи и песка в зазор. Инновационные полужесткие материалы могут расширяться и сжиматься вместе с соединением, должным образом перекрывая зазор, обеспечивая плавное прохождение интенсивного движения, но одновременно защищая края соединения от повреждений.

Линия заполнения швов (зазоров) Tennant Coatings для бетонных плит

Линия

Tennant Coatings для напольных покрытий предлагает заполнители швов, подходящие для удовлетворения потребностей в деформационных, строительных и контрольных швах. В нашем ассортименте:

  • Eco-EFJ ™: полужесткая эпоксидная шпатлевка, предназначенная для заполнения и защиты усадочных и строительных швов в бетонных полах. Eco-EJF, предназначенный для объектов с большими нагрузками и движением, может справиться с повседневными нагрузками на производственных и промышленных объектах.
  • Eco-PFJ ™: полужесткая шпатлевка из полимочевины, предназначенная для заполнения и защиты усадочных и строительных швов в бетонных полах на объектах с интенсивным движением, таких как промышленные, розничные и коммерческие объекты.

Наша линия заполнителей швов идеально подходит для защиты полов на различных объектах и ​​помогает продлить срок службы полов, а также поддерживает безопасность. За дополнительной информацией свяжитесь с нами сегодня!

различных типов бетонных соединений

Joint - это разделение, предусмотренное в здание, которое позволяет его составным частям перемещаться относительно друг друга; а стык, где встречаются два бетонных основания.Назначение конструкции соединение должно допускать некоторое горизонтальное движение, будучи жестким по отношению к вращательное и вертикальное движение.

Необходимость в швах в бетоне;

Отсутствие или ненадлежащее использование строительный шов приведет к разрушению плиты с постоянными дефектами и стыком. износ из-за относительных горизонтальных, вертикальных и вращательных деформаций и давления. Постоянное движение автотранспорта через плохо расположенную строительный шов приведет к растрескиванию и растрескиванию.Исправляя эти последующие проблемы могут быть очень дорогостоящими, и в некоторых случаях весь бетон плиту, возможно, придется разрушить и заменить. Использование запатентованного идеального сустава системы обеспечат долгосрочную выгоду и экономию средств для каждой плиты на уровне проект.

Соединения будут обозначаться терминологией, основанной на следующих характеристики: сопротивление, конфигурация, формирование, расположение и тип структура.

  • Сопротивление: Связанный или усиленный, с шпонками, без шпонок, простой
  • Конфигурация: Стык, перехлест, шпунт и паз.
  • Формовка: Пила, ручная формовка, резьба, канавки, формованная пластина.
  • Расположение: Поперечное, продольное, вертикальное, горизонтальное
  • Тип конструкции: Мост, тротуар, монолитное здание и т. Д.

Предпосылка для швов в бетоне

Ниже приведены некоторые из предпосылки, которые необходимо соблюдать при наложении швов.

  • The поверхность всех строительных швов должна быть очищена и все цементное молоко должно быть очищено. удаленный.
  • Перед можно укладывать новый бетон, все строительные швы должны быть увлажнены, и все стоячая вода удалена.
  • The Строительные швы не должны ухудшать прочность конструкции.
  • Все строительные швы, расположенные в средней трети пролетов плит, балок, а балки должны быть чистыми и сухими.
  • Вертикальный Опорные элементы, которые все еще являются пластиковыми, не должны использоваться для поддержки балок, фермы или плиты.
  • Если на дизайне не указано иное чертежи или спецификации, балки, балки, подковы, откидные панели и капители должны быть размещены монолитно как часть системы перекрытий.

Различные типы соединений в бетоне

Бетон расширяется и сжимается при изменении влажности и температуры. Стыки в бетонных плитах можно создавать путем формовки, распиловки, оснастки и установки формирователей стыков. Ниже рассматриваются различные типы бетонных швов.

Строительные швы

Строительный шов - это стык между плитами, который образуется при укладке бетона в разное время. Этот тип стыка можно разделить на поперечные и продольные строительные стыки.Продольные строительные швы также допускают коробление плит без заметного расслоения или растрескивания плит. Строительные швы предусмотрены на поверхностях, где происходит два последовательных укладки бетона. Обычно их кладут в конце рабочего дня или когда укладка бетона прекращается на время, превышающее время первоначального схватывания бетона. Для плит они могут быть предназначены для перемещения и / или передачи нагрузки. Следует заранее определить места стыков конструкции.

Есть два типа строительных швов.

Стыковые соединения: Самый простой тип строительного шва - это стык, образованный обычной переборкой. Этот шов подходит для тонких плит.

Соединения "шпунт и паз": в плитах можно использовать соединение, напоминающее конструкцию деревянных конструкций с пазом и шпунтом. Шпоночный паз может быть сформирован путем крепления металла, дерева или предварительно отформованного ключевого материала к деревянной переборке. Бетон над стыком должен быть обработан вручную или сохранен, чтобы он по внешнему виду соответствовал контрольному стыку.

Деформационные швы

Деформационные швы используются для компенсации расширения и сжатия бетона в период отверждения и эксплуатации. Эти соединения используются для обеспечения возможности изменения размеров бетона из-за нагрузки. Это соединение помогает отделить или изолировать области или элементы, которые могут быть затронуты любыми такими изменениями размеров.

Усадочные суставы

Усадочные суставы предназначены для создать в бетоне ослабленные плоскости и отрегулировать место появления трещин, может произойти в результате изменения размеров.Сокращенные / контрольные суставы помещается в бетонные плиты для предотвращения случайного растрескивания. Свежая бетонная смесь представляет собой жидкую пластичную массу, которой можно придать практически любую форму, но как материал затвердевает, происходит уменьшение объема или усадка. При усадке сдерживается контактом с несущими грунтами, сыпучей насыпью, прилегающими конструкции или арматура в бетоне, растягивающие напряжения развиваются в пределах конкретного раздела. Сокращенные суставы состоят из области с уменьшенное поперечное сечение бетона и уменьшенная арматура.Бетонный крест раздел должен быть уменьшен минимум на 25 процентов, чтобы гарантировать, что раздел достаточно слабый, чтобы образовалась трещина.

Изоляционные муфты

Изоляционные или компенсирующие швы предназначены для отделения или изоляции плит от других частей здания, таких как стены и опоры или колонны; также проезды и внутренние дворики от тротуаров, гаражных плит, фонарных столбов или других точек ограничения. Соединения допускают свободное вертикальное и горизонтальное перемещение между соседними частями конструкции и помогают уменьшить растрескивание, когда эти движения сдерживаются.Изолирующий стык используется для уменьшения сжимающих напряжений, которые возникают на Т- и несимметричных перекрестках, пандусах, мостах, фундаменте зданий, дренажных отверстиях, люках и в любом месте, где может иметь место дифференциальное движение между дорожным покрытием и конструкцией (или другим существующим покрытием). Обычно они заполнены материалом-заполнителем для предотвращения проникновения воды и грязи.

Сейсмические соединения

Сейсмические швы - это широкие компенсаторы, предназначенные для разделения частей зданий, различающихся по массе и жесткости.Сейсмическое покрытие стыка должно допускать движение и быть приемлемым с архитектурной точки зрения. Ширина сейсмического стыка должна быть равна сумме полных прогибов на уровне от основания двух зданий, но не менее произвольного правила 1 дюйм для первых 20 футов высоты над землей. плюс 1/2 дюйма на каждые 10 футов дополнительной высоты. Определение этих прогибов будет суммированием дрейфа этажа в дополнение к изгибному прогибу здания до соответствующего уровня.Здания со сдвигающимися стенами, будучи гораздо более жесткими, нуждаются в сейсмическом стыке, скажем, вдвое меньшей ширины, поскольку землетрясения зданий со сдвигающимися стенами будут намного меньше, чем колебания каркасных зданий.

Заключение

детализация стыков - важный аспект проектирования здания, и это предоставляется только опытными специалистами. Хорошо спроектированные и сконструированные стыки будут улучшить внешний вид здания и добиться желаемых характеристик.

Что такое компенсатор? Глоссарий компенсационных швов

Деформационный шов в здании на приведенной выше фотографии проходит через кирпичную брусчатку, а также через структурную плиту, поддерживающую площадь.Гидроизоляция осуществляется на конструкционной плите заглубленной гидроизоляционной мембраной. Деформационный шов делит пополам все элементы здания, включая конструкционную плиту, мембрану и слой износа (кирпичи). Для герметизации стыков этого типа требуется специализированная система. Деформационные швы настила платформы FP от EMSEAL гарантируют, что стык должным образом интегрирован с гидроизоляционной мембраной, при этом компенсируя структурное расширение и сжатие движения сборной конструкции палубы из раздельных плит.

В строительстве компенсационный шов представляет собой разделение средней части конструкции, предназначенное для снятия нагрузки на строительные материалы, вызванной движением здания. Движение здания в компенсационных швах в первую очередь вызывается:

  • тепловым расширением и сжатием, вызванным изменениями температуры,
  • раскачиванием, вызванным ветром
  • сейсмическими событиями
  • отклонением статической нагрузки
  • отклонением временной нагрузки

Поскольку стык делит пополам всю конструкцию, обозначает щель через все конструкции - стены; палубы; площади или вестибюли из двухэтажных перекрытий; фундаментные перекрытия и стены; крыши, плантаторы и зеленые крыши; огнестойкие стены и полы; внутренние полы; и т.п.Этот зазор необходимо заполнить, чтобы восстановить гидроизоляцию, противопожарную, звукоизоляцию, воздушный барьер, кровельную мембрану, проходимую поверхность и другие функции элементов здания, которые она делит пополам.

Системы деформационных швов используются для устранения разрыва и восстановления функций сборки здания с учетом ожидаемых перемещений.

Термин «деформационный шов» получил широкое распространение, поскольку он более уместно охватывает тот факт, что движение здания приводит как к сжатию, так и к расширению уложенного материала.Например, когда конструкция нагревается, строительные материалы, из которых она построена, расширяются. Это вызывает закрытие «компенсационного шва», тем самым сжимая соединительную систему, установленную в зазоре.

Это стеновой компенсатор. Этот структурный проем делит пополам не только фасад, но и конструктивные элементы здания. Шовные материалы, используемые для заполнения деформационных швов в стенах, компенсируя движение, должны восстанавливать предусмотренные функции фасада и конструктивных элементов здания.Эти функции включают в себя: гидроизоляцию, сопротивление ураганным ветрам и воде, герметизацию воздушного барьера, звукоизоляцию и во многих случаях противопожарную защиту. Кроме того, поскольку материалы стеновых компенсаторов соприкасаются с фасадными материалами, в которые нельзя проникать крепежными деталями, неинвазивное крепление является желательной характеристикой.

И наоборот, когда температура падает, материалы охлаждаются, вызывая размыкание стыка. Это требует, чтобы суставная система расширялась, чтобы следовать за совместным движением.

Переходы для расширительных швов

Переходы для деформационных швов необходимы для обеспечения герметичной, безопасной и энергоэффективной оболочки здания.

Непрерывность уплотнения при изменении плоскости и направления, а также между системами компенсационных швов, достигается при спецификации и установке заводских переходных узлов.

По возможности переходы должны привариваться на заводе к концам прямолинейных участков максимально возможной длины. Это сводит к минимуму количество сварных соединений, экономя время и снижая риски.

Детали САПР компенсаторов, трехмерные файлы изобретателей, изометрические, аксонометрические и BIM-файлы могут помочь в проектировании для обеспечения непрерывности уплотнения.

Совместная методика проектирования трехмерных компенсаторов гарантирует, что все стороны, участвующие в поставке безотказных компенсаторов, работают вместе для достижения этой общей цели.

Теперь проектировщики могут обернуть всю ограждающую конструкцию здания, а также обеспечить безопасность жизнедеятельности, указав системы компенсационных швов, которые связаны друг с другом и гарантируют непрерывность уплотнения между схожими или разнородными технологиями.