Сопротивление бетона сжатию таблица: Расчётное сопротивление бетона сжатию таблица

Содержание

Расчётное сопротивление бетона сжатию таблица

Бетонные конструкции изготавливаются в расчете на то, что они способны переносить высокие нагрузки без каких-либо разрушений. Характеристики сооружений из бетона закладываются в проект — это сопротивление бетона сжатию, прочность, плотность, долговечность и т.д. Бетон – материал разнородный, поэтому различные локальные участки конструкции могут обладать разной прочностью и разным сопротивлением к нагрузкам. И расчет прочности необходим, чтобы уточнить нормативные показатели материала. Что такое расчетные параметры, и как их узнают?

Что такое расчетное сопротивление

Этот параметр можно узнать и рассчитать методом простого деления указанных в ГОСТ 12730.0-78 сопротивлений на надежность, которая отражается в виде определенного коэффициента. При вычислениях сопротивления бетона этот коэффициент зависит от типа стройматериала.

График прочности на растяжение по осям

[ads-pc-1]
[ads-mob-2]

Значения расчетных сопротивлений материалов обозначаются, как Rb и Rbt

, их показатели можно менять в сторону уменьшения или увеличения методом умножения на коэффициент состояния эксплуатации бетона γbi, который отражает пропорциональность значений от времени прикладывания нагрузки; цикличность нагружений; параметры, свойства и временной отрезок эксплуатации сооружения; метод изготовления; сечение, площадь, и т. д. Узнать конкретное расчётное сопротивление бетона сжатию таблица значений которых отражает математические вычисления, а не физические данные, можно для востребованных промышленностью классов:

Сопротивление, типТипРасчетные показатели для максимально нагруженных состояний 1-й группы Rb и Rbt, МПа, для разных классов прочности
B 10B 12,5B 15B 20B 25B 30B 35
Сжатие по оси, R
b
Мелкофракционный тяжелый бетон6,07,508,511,514,5017,019,50
Растяжение по оси, RMТяжелый бетон0,570,660,750,901,0501,201,30

Как рассчитывается прочность? Существуют определенные значения прочности, заниженные для обеспечения надежности. Эти установленные параметры и есть расчетные показатели, зависящие от фактических результатов испытаний.

Нормативное сопротивление

  1. Параметр отражает показатель материала по сжатию (сжатие бетонной призмы по оси при испытаниях) Rbn и Rbtn по растяжению;
  2. Значения для максимально нагруженных состояний 1-го состава Rb, Rbt и 2-го состава Rb,ser, Rbt,ser вычисляются методом деления этих параметров согласно ГОСТ на прикрепленные коэффициенты надежности – соответственно g
    bc
    и gbt;
  3. Значение по ГОСТ Rbn, зависящие от класса по прочности на сжатие;
  4. Установленное значение Rbtn при неконтролируемой прочности материала определяется по классу прочности, и воспринимается как обеспеченная прочность при растяжении;
  5. Согласно п.2 параметры 1-го типа Rb и Rbt могут изменяться. Для этого Rb и Rbt умножаются на параметр gbi;
  6. Параметры 2-го типа Rb,ser и Rbt,ser зависят от показателя gbi, и при нормальной нагруженности материала в 1,0. Для некоторых легких бетонов используются и другие показатели Rb,ser и Rbt,ser по согласованию с проектировщиками;
  7. Первоначальный модуль упругости Eb определяется по таблице ниже. Если бетонный объект эксплуатируется в климатическом регионе IVА, и не обеспечен защитой от УФ излучения, то параметры E
    b
    умножаются на 0,85.
Тип сопротивления Rb,n и Rbt,n согласно ГОСТ, и Rb,ser и Rbt,ser (Мпа)
B 10B 15B 20B 25B 30B 35B 40B 45B 50B 55B 60
Сжатие по оси Rb,m и Rb,ser7,5111518,5022,025,5029323639,5043
Растяжение по оси Rbt,r и Rbt,ser0,85111,351,551,751,95292,252,452,2,75
Структура бетона

 

[ads-pc-1]
[ads-mob-3]

В таблице указано расчетное сопротивление бетона осевому сжатию по СП 52-101-2003

Тип сопротивленияСопротивление согласно ГОСТ Rb и Rbt,и Rb,ser и Rbt,ser (Мпа)
B 10B 15B 20B 25B 30B 35B 40B 45B 50B 55
Сжатие по оси Rb68,511,514,51719,5222527,530
Растяжение по оси Rbt0,560,750,91,0501,151,301,401,501,601,70

Сопротивление по ГОСТ или СП зависит от прочности испытываемых образцов (кубиковая нормативная прочность).

Rb и Rbt для осевых растяжений при определении класса бетона устанавливается с зависимостью от прочности согласно ГОСТ испытываемых образцов типов бетона с контролем приготовления раствора. Нормативная кубиковая и призменная прочность на сжатие и на растяжение имеют определенное соотношение, устанавливаемое при стандартных испытаниях бетонных образцов.

Требования к автоклавному бетону

Марка

 

Первоначальный модуль упругости Еb автоклавного материала
Сжатие и растяжение, МПа
B 1,5B 2B 2,5B 3,5B 5B 7,5
D 3009001000
D 400110012001300
D 5001300150016001700
D 60015001600170018001900
D 700190022002500290032003400
Ячеистый бетон

[ads-pc-1]
[ads-mob-2]

Рассчитывая класс бетона по прочности на растяжение по осям, стандартные значения Rb и Rbt берутся как свойство класса, выраженное в цифрах, которые идут после символа «B». Определяющие свойства деформаций бетона — это:

  • Максимальные относительные деформации при сжатии-растяжении по осям: Ɛbo,n и Ɛbto,n;
  • Первоначальный модуль упругости Eb,n;

Дополнительные свойства деформаций бетона:

  • Первичный коэффициент поперечных деформаций «v»;
  • Сдвиг по модулю «G»;
  • Коэффициент температурных деформаций αbt;
  • Деформации, зависящие от свойств ползучести раствора Ɛсг;
  • Деформации, зависящие от усадки материала εshr.

Характеристики деформаций определяются, исходя из класса и марки, плотности и технологических показателей бетона. Механические показатели бетона для напряженного состояния по одной оси в общих случаях характеризуются диаграммой деформирования материала, отражающей зависимость напряжений Σb,n (Σbt,n) и относительных продольных деформаций Εb,n (Εbt,n) бетона в растянутом или сжатом состоянии при импульсном приложении нагрузки.

Виды деформаций

[ads-pc-1]
[ads-mob-3]

При расчетах прочности бетонных конструкций основные характеристики, влияющие на конечный результат – это окончательное и фактическое сопротивление бетона Rb и Rbt. Характеристики прочности, полученные в результате вычислений, рассчитываются как стандартные сопротивления материала R

b,m и Rb,ser, а также Rbt,r и Rbt,ser, поделенные на gbc и gbt и. Показания gbc и gbt зависят от типа бетона, просчитанных свойств материала, предельных состояний при различных нагрузка, но должны не выходить за следующие рамки:

Для коэффициента gbc:

  1. 1,3 — для максимальных и минимальных нагрузок 1-го состава бетона;
  2. 1,0 — для максимальных и минимальных нагрузок 2-го состава;

Для коэффициента gbt:

  1. 1,5 — для максимальных и минимальных нагрузок 1-го состава при определении класса на сжатие по осям;
  2. 1,3 – для максимальных и минимальных нагрузок 1-го состава при определении класса на растяжение по осям;
  3. 1,0 — для максимальных и минимальных нагрузок 2-го состава бетона.

Для максимальных и минимальных нагрузок 1-го и 2-го состава показатели деформаций материала берутся из их значений, указанных в ГОСТ и СНиП. Также при вычислении значений R свойства нагрузок, влияние атмосферных осадков, температуры, напряженности материала и конструкции из бетона корректируются коэффициентами условий эксплуатации конструкции γbi, и отражаются на расчетных деформационных и прочностных параметрах строительного материала.

Диаграммы деформаций конструкций из бетона вычерчиваются, опираясь на метод замены стандартных показателей на расчетные параметры.

Диаграммы деформаций

[ads-pc-1]
[ads-mob-3]

Характеристики прочности при двухосном или трехосном приложении напряжений определяются по типу и классу бетона, исходя из связи между максимальными и минимальными значениями напряже­ний, приложенных в 2-х или 3-х перпендикулярах. Деформирование бетонного объекта вычисляется по плоскому или объемному приложению напряжений. Если конструкция имеет дисперсно-армированное состояние, то для нее принимаются характеристики, как для обычных бетонных или ж/б сооружений.

При работе с фибробетоном его свойства определяются, исходя из физико-эксплуатационных характеристик смеси, также берется в расчет форма, габариты, геометрия и распределение фибр в составе, сцепление фибр с раствором. Определяющие характеристики прочности и возможности деформирования армирования — это стандартные параметры прочности и свойства деформа­ции.

Неупругие деформации

Основное определение прочности материала армирования при нагрузках на растя­жение-сжатие — это установленное ГОСТ сопротивление Rs,n, которое принимается равным показателю эксплуатационного предела текучести или такого же условного предела, который будет соответствовать окончательному удлинению или укорочению, принимаемому как 0,2%. Также ограничение Rs,n происходит по показателям, соответствующим деформирующим нагрузкам, которые равны максимальным показателям деформации бетона вокруг сжатой арматуры при укорочении.

Понятия прочности и класса

Прочность по марке использовалась до введения евростандартов, и ею обозначалась средняя устойчивость на сжатие. Новые СНиП регламентируют классы прочности при сжатии-растяжении.

Нарастание прочности

[ads-pc-1]
[ads-mob-3]

Понятие «класс» означает сопротивление материала согласно СП сжатию бетонного куба по оси. Эталонные габариты куба – 15 х 15 см. Из-за неравномерности распределения параметров прочности по всему материалу использование среднеарифметических показателей прочности не рекомендовано, так как на локальном участке объективная прочность может быть меньше.

Основная характеристика длительности эксплуатации бетонного объекта – это его класс. При определении класса принимается во внимание и осевое сжатие, и осевое растяжение, значения которых определяются с запасом прочности через удельное сопротивление элементов.

Предельно допустимые напряжения

Формула определения сопротивления нагрузкам сжатия: R = Rn /g;

Где g – коэффициент прочности материала, принимаемый как 1,0. Чем однороднее бетон, тем коэффициент g ближе к единице.

Дополнительные параметры для расчетов:

  1. Электрическое удельное сопротивление раствора;
  2. Влагостойкость – ее параметры необходимы, чтобы знать максимальное давление жидкой среды, которое может выдержать бетон;
  3. Воздухопроницаемость связана с прочностью, и имеет постоянное значение в диапазоне 3-130 c/см3.
  4. Морозостойкость обозначается символом «F» и числами от 50 до 1000, означающими количество циклов заморозки-разморозки;
  5. Теплопроводность влияет на плотность материала. Чем больше воздуха в бетоне, тем меньше плотность и теплопроводность;
Визуальное выявление трещин в образцах

[ads-pc-1]
[ads-mob-3]

Продольные трещины в испытываемых призменных образцах появляются под действием поперечных нагрузок. Прочность образца увеличивается при стягивании бетона хомутами, но разрушение произойдет в любом случае, и трещины появятся позже. Такое отодвигание разрушения во времени называется эффектом обоймы. Хомут, сжимающий элемент, можно заменить укладкой в раствор поперечной стержневой арматуры, металлической сетки или спирали из стали.

  1. Марка обозначается символом «M», и означает среднюю кубиковую прочность Rв, которая выражается в кг/см2. Следующие за латинской буквой числа – это прочность;
  2. Класс – символ «B», обозначающий кубиковую прочность (Мпа) с вероятностью 0,95. Неоднородность прочности материала колеблется в пределах Rmin-Rmax.

Предварительно напряженные железобетонные конструкции

Конструкция или элемент из железобетона, нагруженный искусственно созданными внутренними напряжениями, направленные обратно реальным физическим нагрузкам при эксплуатации объекта. Искусственные напряжения появляются после внедрения в тело конструкции предварительно напряженной арматуры. Сделать это можно так:

  1. При заливке раствора в конструкции оставляют пазы, в которые укладывается арматура (сетка, стержни, спирали). Набор прочности завершается натягиванием арматурной сетки или другого типа арматуры с креплением концов по бокам элемента. Натягивание арматуры сопровождается сжатием бетона. Усилие натяжения обозначается символом «Р»;
  2. Арматура натягивается перед заливкой раствора (т.н. натяжение на упоры), а после отвердения смеси отпускается, что и создает напряжение сжатия.

Еще один вариант создания предварительного напряжения – заливка специального напрягающего цемента марки НЦ. Затвердевая, объем конструкции из цемента этой марки увеличивается, при этом растягивается и арматура, создавая напряжение растяжения.

Расчетное сопротивление бетона сжатию — марка и класс на сжатие

Структура тяжелого бетона испытуемого образца

Расчетное сопротивление бетона сжатию – одна из ключевых характеристик, которые необходимо учитывать при проектировании какой-либо конструкции из данного материала, и в начале любого строительства. При этом, нужно обращать на нее внимание не только профессионалам, но и обычным мастерам-подсобникам, решившимся на возведение дома своими руками.

Содержание статьи

Определения

Прочность – основное качество, которое точно описывает его несущую способность. Определяется она пределом на сжатие – это наивысший предел нагрузки, при котором наступают разрушения образца. И это основной показатель, который и учитывают при его использовании.

Расчетное сопротивление  – это показатель стойкости материала нагружающим воздействиям. Используется он при проектировочных расчетах, и неотъемлемо связан с нормативными показателями сопротивления сжатию.

До 2000−х годов ориентировались только на марки материала, которые и принимали как расчетный показатель, но по новым техническим документам, каждой марке присвоен новый критерий соответствия образца сжимающим нагрузкам.

Он выявлен в лабораторных условиях, узаконен специалистами и отражен в СП 52−101−2003. Согласно этому техническому документу, нормативное сопротивление материала осевому сжатию – это и есть класс на сжатие, заданный с 95%-ой обеспеченностью. Условие означает, что оно выполняется в 95% тестируемых случаев, и только в 5% может отклоняться от установленных показателей.

Но даже такой процент доказывает, что пользоваться при проектировании средними расчетными показателями неоправданно рискованно. А при выборе наименьшего значения, увеличится сечение конструкции или изделия, что в свою очередь отразится на перерасходе денежных и энергоресурсов.

Согласно СП 52−101−2003, нормативные значения сопротивления представлены на фото ниже.

Нормативные и расчетные значения сопротивления

Есть еще такое определение, как предел прочности на растяжение. По своей природе, данный материал в разы хуже выдерживает растягивающие нагрузки. Поэтому его и армируют в ЖБИ, стяжках пола большой толщины, фундаментах и прочее.

При расчетах используют в приоритете показатель при сжатии. В принципе, любое изделие или конструкция, испытывают большие нагрузки именно от сжимающих статических или динамических воздействий. Но сопротивление к изгибающим воздействиям учитывают при проектировании. В таких случаях, просто пользуются таблицей соответствия классов.

Таблица 6.7 из СП 63.13330.2012″СНиП 52-01-2003, в которой указаны марки сопротивление к сжатию, растяжению.

ВидБетонНормативные сопротивления МПа, и расчетные сопротивления для предельных состояний второй группы и МПа, при классе материалапо прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60В70В80В90В100
Сжатие осевое растяжениеТяжелый, мелкозернистый и напрягающий2,73,55,57,59,5111518,52225,529323639,54350576471
Легкий1,92,73,55,57,59,5111518,52225,529
Ячеистый1,41,92,43,34,66,99,010,511,5
Растяжение осевоеТяжелый, мелкозернистый и напрягающий0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80
Легкий0,290,390,550,700,851,001,101,351,551,751,952,10
Ячеистый0,220,260,310,410,550,630,891,001,05

От прочности в срезе при скалывании, зависит устойчивость к сжатию от корреляционных показателей.

Примечание. Сопротивление сжатию В25 наиболее часто встречающийся показатель при проектировании материала.

Осевое сжатие. Расчеты и значения

При расчетах нужно учитывать, что класс (В) напрямую зависит от его средней прочности R, МПа. Соответственно, используется следующая формула:

В= R (1−tV), где, t – класс обеспеченности, заложенный при проектировании, в основном берут значение 0,95, соответственно t=1,64; V – коэффициент вариации прочности. 1 – постоянная.

Если в расчетах использовался нормативный коэффициент V = 13,5% (0,135), то средняя прочность равна R = В/0,778.

Другое дело, когда рассчитываются всевозможные железобетонные конструкции. Особо тщательно просчитывается граничная высота оговариваемой зоны. Она выражает такую высоту, при которой перед разрушением напряжения в сжатом материале и растянутой арматуре, достигают своих максимальных значений одновременно. Только при таком условии можно считать сечение нормально армированным.

Согласно СНиП 2.03.01 – 84, высота зоны формула:

Формула высоты сжатой зоны

При этом относительная высота этой зоны (таблица), используется для определенного изделия своя. Их можно найти в нормативных документах, и применять данные при расчетах. В принципе, представленная информация вкратце разъяснила, что представляет собой зона сжатия и сопротивление осевому сжатию.

Методы определения прочности по контрольным образцам бетона

Разобравшись с тем, что такое сопротивление материала на сжатие, рассмотрим основные методы определения данного показателя.

Испытание бетона разрушающим способом

Проверка на сжатие проводится, как правило, в аккредитованных строительных лабораториях на поверенном оборудовании. Главное, что для него понадобится −  пресс.

Также будут необходимы точные лабораторные весы, штангенциркуль и испытуемые образцы. Последние готовятся заранее из нужной партии. Форма стандартная – куб со сторонами 10 см. Согласно техническим документам, используют от 3 до 5 штук образцов для одной партии.

Совет. Изначально их нужно подготовить, отчищая от загрязнения и взвешивают для определения соответствия плотности, веса и проектной марки материала. Если эти значения в норме, то на 95% можете быть уверены в должном уровне устойчивости.

Абсолютно ровными гранями образец устанавливается на пресс, включается и начинается проверка. Максимальная нагрузка, при которой началось разрушение образца – это и есть предельное сжатие.

Среднее значение устанавливается по результатам контроля всех отобранных образцов. По конечной цифре определяется, соответствует или нет фактическая прочность нормативным и проектным значениям. После чего она заносится в журнал.

Галерея: процесс испытания разрушающим методом с помощью пресса.

Более подробная инструкция по тестированию бетонных образцов, представлена в видео в этой статье.

Контроль неразрушающими методами

Предыдущий метод обязателен на любом строительном производстве и на любом этапе строительства.

Он считается наиболее достоверным:

  • На результаты протоколов, лабораторных разрушающих исследовании, опираются конструкторы и архитекторы при возведении зданий и изготовлении железобетонных изделий.
  • Когда же нет возможности определить прочность образцов разрушающим методом, или же требуется через определенное время повторный анализ характеристик, используют специальные устройства.
  • Они необходимы для того, чтобы протестировать материал на сжатие непосредственно на месте. Одним легким нажатием они определяют числовое значение и при желании другие необходимые характеристики, касающиеся однородности и уплотнения тела материала.
  • Существует масса подобного оборудования, но наиболее распространённый в строительных кругах – прибор ИПС − МГ различной модификации. Он прост в использовании, точен и цена на него вполне доступна.

Фото автоматизированного аппарата.

Преимущественно его используют на строительной площадке. Этот электронный измеритель позволяет в короткие сроки определить показатели плотности, прочности и упруго−пластические свойства методом ударного импульса. Этот способ хоть и не является приоритетным, но все же, предусмотрен ГОСТ 22690.

Совет. Обязательно перед «простреливанием» бетона необходимо выбрать или подготовить поверхность. Она должна быть ровной без шероховатостей, вмятин, пустот, трещин и прочих дефектов площадью не меньше 100 см2. При необходимости нужно зашкурить поверхность.

Количество участков должно приниматься по программе испытаний, но их должно быть не менее трех. Обычно для объемной железобетонной конструкции берут среднее значение 15 проб.

Это количество зависит от площади, так как точки контроля должны находиться на расстоянии друг от друга 15 мм и от края не менее 50 мм. Идеальные места – между гранулами щебня и крупными раковинами в бетонном теле.

Чтобы провести тестирование конструкции, необходимо:

  • включить прибор, при этом он сразу будет в режиме испытания;
  • ввести данные об испытываемом материале;
  • взвести рычаг на «пистолете»;
  • плотно прижать перпендикулярно к тестируемой поверхности и отпустить рычаг;
  • на табло появится результат, он запоминается с последующими испытаниями;
  • после 15 проб выводится автоматически среднее значение, если количество «прострелов» меньше, то можно заранее просмотреть средний результат.

Чем хорош такой прибор – все данные на нем могут сохраняться на компьютере и архивироваться. В любой момент можно просмотреть предыдущие испытания на компьютере и составить протокол.

Другие характеристики бетона

Прочность на сжатие – это не самостоятельная характеристика. Она, как и прочие, зависима от многих обстоятельств и других свойств материала.

От чего зависит прочностной показатель бетона

Основные факторы:

  • качество компонентов, а именно, активность и прочность цемента, чистота и правильность выбора модуля крупности заполнителя, химический состав воды, верность подбора пластифицирующих добавок;

Компоненты тяжелого бетона

  • оптимальный подбор состава, отвечающий главному девизу технологов ЖБИ: «максимальное качество при минимальной себестоимости»;
  • теловлажностный режим обработки изделий;
  • верность проведения испытаний образцов в лаборатории;
  • правильный алгоритм снятия с напряжения ЖБИ;
  • последующая выдержка изделий при определенных условиях.

Трещины – признак низкокачественного бетона

Если при измерении прочности, марка на сжатие по факту оказалась намного ниже нормативной, обязательно пересмотрите качество изделия по вышеперечисленным пунктам, чтобы выявить причину брака.

Какие показатели нужно предусмотреть вместе с расчетной прочностью бетона

Прочность – основной, но далеко не единственный показатель качества материала, на который нужно опираться при его проектировании.

Также необходимо учитывать следующие значения:

  • Морозостойкость и водопроницаемость – от них напрямую зависит насколько долговечным будет бетонное изделие или конструкция. Чем выше марка по морозостойкости и водопроницаемости, тем лучше. Узнать ее соответствие определенным маркам по прочности, можно из технических документов, или из таблицы ниже.

Таблица соответствий марок, классов по прочности, маркам морозоустойчивости и водонепроницаемости бетона

  • Теплопроводность и воздухопроницаемость напрямую влияют на то, насколько теплым и комфортным будет будущее строение. Поэтому их тоже нужно учитывать. Причём, чем больше значение, тем холоднее материал.

Теплопроводность и паропроницаемость разных марок бетона

  • Удельное электрическое сопротивление необходимо при дополнительном прогреве бетонной смеси. Чем выше будет показатель, тем лучше будет прогреваться смесь.

В статье мы рассмотрели такую характеристику, как расчетное сопротивление материала сжатию, и сопутствующие свойства, на нее влияющие. Это ключевая характеристика, на которую нужно опираться в строительных расчетах. Воспользоваться ей помогут технические документы, в которых прописаны все формулы и значения необходимых данных.

что такое, как рассчитать и нормативы?

Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.

Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?

Что такое расчетное сопротивление?

Специалисты получают показатели сопротивления строительного материала, разделяя нормативные сопротивления на коэффициенты. При определении прочности деталей конструкций к расчетному сопротивлению некоторых бетонных растворов иногда уменьшают либо увеличивают за счет умножения на определенные коэффициенты, учитывающие ряд факторов: многократные нагрузки, длительность воздействия нагрузок, способ изготовления изделия, его размеры и пр.

Вернуться к оглавлению

Как производить расчеты?

Каким образом нужно производить расчеты прочности конструкции, например, на ее сжатие? С этой целью строители используют специальные расчетные показатели. Для обеспечения достаточной устойчивости бетонных изделий при проведении расчетов, пользуются параметрами прочности стройматериала, которые чаще всего ниже параметров самих конструкций. Такие значения именуют расчетными. Они зависят непосредственно от нормативных (фактических) значений.

Вернуться к оглавлению

Нормативные показатели

Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.

Класс – нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.

Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.

Вернуться к оглавлению

Характеристики расчетного значения

Чтобы сделать надежные и долговечные конструкции, рассчитывают значения с запасом. Для получения этого значения строители прибегают к удельным сопротивлениям изделий: они разделяют их на коэффициент. Сопротивление стройматериала растяжению либо сжатию вычисляют при помощи формулы, которая выглядит следующим образом: R = Rn /g (g – коэффициент прочности). Чаще всего этот параметр равняется одному. От однородности материала зависит величина коэффициента. При этом выполнять соответствующие расчеты необязательно, поскольку получить необходимые параметры можно при помощи таблицы.

Вернуться к оглавлению

Другие характеристики

Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:

  1. Определение удельного электрического сопротивления бетонного раствора может понадобиться, если вы решили самостоятельно осуществить обогрев смеси при помощи электродов. И чем больше показатель, тем сильнее будет нагреваться цементный раствор.
  2. Влагопроницаемость смесей позволяет определить самое сильное давление жидкости, которому способен противостоять стройматериал. Иными словами, это значение показывает, может ли влага проникнуть сквозь бетон. Водонепроницаемыми марками считаются с W2 по W20. При этом цифры указывают на давление воды, которое способна выдержать конструкция.
  3. Воздухонепроницаемость бетонного состава будет зависеть от прочности изделия. Согласно государственному стандарту, сопротивление бетона проникновению воздуха составляет 3-130 с/см3.
  4. Морозоустойчивость позволяет конструкциям из бетона выдерживать многократное замерзание, оттаивание с сохранением свойств. На рынке строительных материалов представлены марки F50-F1000 (цифры означают число циклов, которые выдерживает строительный материал). Как показывает практика, в среднем морозостойкость изделий равна показателю F200.
  5. Теплопроводимость – важная характеристика изделий, от которой будет зависеть плотность строения. Материалы, содержащие больше пор, обладают меньшей теплопроводностью, поскольку воздух, который их заполняет, является прекрасным теплоизолятором. Лучше всего теплоизоляцию обеспечивают газоблоки или пеноблоки, в структуре которых есть множество пор.
Вернуться к оглавлению

Заключение

Прочность изделий способна отличаться в зависимости от компонентов, входящих в состав материала и их пропорций. Также это объясняется тем, что стройматериал представляет собой неоднородную смесь. Вне зависимости от способа перемешивания бетонного раствора, невозможно равномерно распределить компоненты. Поэтому при проведении работ необходимо учитывать расчетное сопротивление.

Этот параметр является важным для проектирования несущих стен и других конструкций. Расчеты значений просты: они сводятся к делению нормативных значений на определенные коэффициенты.

Расчётное сопротивление бетона сжатию таблица


Бетонные конструкции изготавливаются в расчете на то, что они способны переносить высокие нагрузки без каких-либо разрушений. Характеристики сооружений из бетона закладываются в проект — это сопротивление бетона сжатию, прочность, плотность, долговечность и т.д. Бетон – материал разнородный, поэтому различные локальные участки конструкции могут обладать разной прочностью и разным сопротивлением к нагрузкам. И расчет прочности необходим, чтобы уточнить нормативные показатели материала. Что такое расчетные параметры, и как их узнают?

Что такое расчетное сопротивление

Этот параметр можно узнать и рассчитать методом простого деления указанных в ГОСТ 12730.0-78 сопротивлений на надежность, которая отражается в виде определенного коэффициента. При вычислениях сопротивления бетона этот коэффициент зависит от типа стройматериала.


График прочности на растяжение по осям

[ads-pc-1] [ads-mob-2]

Значения расчетных сопротивлений материалов обозначаются, как Rb и Rbt, их показатели можно менять в сторону уменьшения или увеличения методом умножения на коэффициент состояния эксплуатации бетона γbi, который отражает пропорциональность значений от времени прикладывания нагрузки; цикличность нагружений; параметры, свойства и временной отрезок эксплуатации сооружения; метод изготовления; сечение, площадь, и т.д. Узнать конкретное расчётное сопротивление бетона сжатию таблица значений которых отражает математические вычисления, а не физические данные, можно для востребованных промышленностью классов:

Сопротивление, типТипРасчетные показатели для максимально нагруженных состояний 1-й группы Rb и Rbt, МПа, для разных классов прочности
B 10B 12,5B 15B 20B 25B 30B 35
Сжатие по оси, RbМелкофракционный тяжелый бетон6,07,508,511,514,5017,019,50
Растяжение по оси, RMТяжелый бетон0,570,660,750,901,0501,201,30

Как рассчитывается прочность? Существуют определенные значения прочности, заниженные для обеспечения надежности. Эти установленные параметры и есть расчетные показатели, зависящие от фактических результатов испытаний.

Нормативные данные для расчетов железобетонных конструкций:

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)

В таблице 6 приведены регрессии и значения полученных коэффициентов корреляции. Заметим, что коэффициенты корреляции получили удовлетворительные значения, т.е. значения, близкие к значению. Проверено, что, как и ожидалось, регрессии почти параллельны друг другу и создают семейства кривых, зависящих от диаметра стержня. Наблюдается, что все полученные угловые коэффициенты всегда положительны, т.е. для всех диаметров стержней наблюдается тенденция заметного поведения, характеризующаяся увеличением максимального натяжения адгезии пропорционально увеличению осевой прочности на сжатие бетона, в тестируемом диапазоне сопротивления.

Примечания

: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см 2 .

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Е
b
принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

Статистический анализ показал, что максимальное напряжение сцепления зависит от изменения диаметра стержня, состава и возраста бетона. При анализе корреляций можно сделать вывод, что рост максимального натяжения адгезии пропорционален росту прочности на сжатие бетона, однако, наблюдая особенности испытаний, как выяснилось в начале этой работы.

Считается, что внедрение такого типа теста быстрой адгезии в дополнение или даже альтернативном способе испытаний на сжатие, традиционно используемое в гражданском строительстве, может значительно улучшить контроль качества работ, позволяя контроль качества бетона выполняться в более короткие сроки, быстро и безопасно, «в локомотиве».

4. Для напрягающего бетона значения Е b

принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

Между этими переменными существует сильная и четкая связь, если другие факторы, такие как диаметр стержней, сохраняются постоянными. Исследования включают в себя не только экспериментальные действия, но и численное моделирование, проводимое с целью выявления упрощенных и надежных способов проведения теста на строительных площадках.

Изученные аспекты включают формат и подготовку тестовой формы, а также процедуру вытягивания планшета. Странность Бонда — состояние искусства. Руководство по дозировке и контролю бетона. Бетонные конструкции — Основные принципы лесов железобетонных конструкций.

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Контроль качества строительных бетонов: испытание на адгезию стали и бетона. Оценка прочности на сжатие, основанная на результатах испытаний на увязку проводов для контроля качества бетона на месте. Прочность связи и геометрия ребер: сравнительное исследование влияния деформационных рисунков на прочность сцепления.

Анализ влияния изменений геометрии арматуры на прочность сцепления в испытании на выталкивание. Облицовка деформированных стержней к бетону: воздействие на удержание и прочность бетона. Диссертация на соискание ученой степени кандидата исторических наук Паулиста, Ильха Солтейра.

Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Нормативное сопротивление

  1. Параметр отражает показатель материала по сжатию (сжатие бетонной призмы по оси при испытаниях) Rbn и Rbtn по растяжению;
  2. Значения для максимально нагруженных состояний 1-го состава Rb, Rbt и 2-го состава Rb,ser, Rbt,ser вычисляются методом деления этих параметров согласно ГОСТ на прикрепленные коэффициенты надежности – соответственно gbc и gbt;
  3. Значение по ГОСТ Rbn, зависящие от класса по прочности на сжатие;
  4. Установленное значение Rbtn при неконтролируемой прочности материала определяется по классу прочности, и воспринимается как обеспеченная прочность при растяжении;
  5. Согласно п.2 параметры 1-го типа Rb и Rbt могут изменяться. Для этого Rb и Rbt умножаются на параметр gbi;
  6. Параметры 2-го типа Rb,ser и Rbt,ser зависят от показателя gbi, и при нормальной нагруженности материала в 1,0. Для некоторых легких бетонов используются и другие показатели Rb,ser и Rbt,ser по согласованию с проектировщиками;
  7. Первоначальный модуль упругости Eb определяется по таблице ниже. Если бетонный объект эксплуатируется в климатическом регионе IVА, и не обеспечен защитой от УФ излучения, то параметры Eb умножаются на 0,85.
Тип сопротивленияRb,n и Rbt,n согласно ГОСТ, и Rb,ser и Rbt,ser (Мпа)
B 10B 15B 20B 25B 30B 35B 40B 45B 50B 55B 60
Сжатие по оси Rb,m и Rb,ser7,5111518,5022,025,5029323639,5043
Растяжение по оси Rbt,r и Rbt,ser0,85111,351,551,751,95292,252,452,2,75


Структура бетона
[ads-pc-1] [ads-mob-3]

В таблице указано расчетное сопротивление бетона осевому сжатию по СП 52-101-2003

Тип сопротивленияСопротивление согласно ГОСТ Rb и Rbt,и Rb,ser и Rbt,ser (Мпа)
B 10B 15B 20B 25B 30B 35B 40B 45B 50B 55
Сжатие по оси Rb68,511,514,51719,5222527,530
Растяжение по оси Rbt0,560,750,91,0501,151,301,401,501,601,70

Сопротивление по ГОСТ или СП зависит от прочности испытываемых образцов (кубиковая нормативная прочность).

Rb и Rbt для осевых растяжений при определении класса бетона устанавливается с зависимостью от прочности согласно ГОСТ испытываемых образцов типов бетона с контролем приготовления раствора. Нормативная кубиковая и призменная прочность на сжатие и на растяжение имеют определенное соотношение, устанавливаемое при стандартных испытаниях бетонных образцов.

Требования к автоклавному бетону

МаркаПервоначальный модуль упругости Еb автоклавного материала
Сжатие и растяжение, МПа
B 1,5B 2B 2,5B 3,5B 5B 7,5
D 3009001000
D 400110012001300
D 5001300150016001700
D 60015001600170018001900
D 700190022002500290032003400


Ячеистый бетон
[ads-pc-1] [ads-mob-2]

Рассчитывая класс бетона по прочности на растяжение по осям, стандартные значения Rb и Rbt берутся как свойство класса, выраженное в цифрах, которые идут после символа «B». Определяющие свойства деформаций бетона — это:

  • Максимальные относительные деформации при сжатии-растяжении по осям: Ɛbo,n и Ɛbto,n;
  • Первоначальный модуль упругости Eb,n;

Дополнительные свойства деформаций бетона:

  • Первичный коэффициент поперечных деформаций «v»;
  • Сдвиг по модулю «G»;
  • Коэффициент температурных деформаций αbt;
  • Деформации, зависящие от свойств ползучести раствора Ɛсг;
  • Деформации, зависящие от усадки материала εshr.

Характеристики деформаций определяются, исходя из класса и марки, плотности и технологических показателей бетона. Механические показатели бетона для напряженного состояния по одной оси в общих случаях характеризуются диаграммой деформирования материала, отражающей зависимость напряжений Σb,n (Σbt,n) и относительных продольных деформаций Εb,n (Εbt,n) бетона в растянутом или сжатом состоянии при импульсном приложении нагрузки.


Виды деформаций

[ads-pc-1] [ads-mob-3]

При расчетах прочности бетонных конструкций основные характеристики, влияющие на конечный результат – это окончательное и фактическое сопротивление бетона Rb и Rbt. Характеристики прочности, полученные в результате вычислений, рассчитываются как стандартные сопротивления материала Rb,m и Rb,ser, а также Rbt,r и Rbt,ser, поделенные на gbc и gbt и. Показания gbc и gbt зависят от типа бетона, просчитанных свойств материала, предельных состояний при различных нагрузка, но должны не выходить за следующие рамки:

Для коэффициента gbc:

  1. 1,3 — для максимальных и минимальных нагрузок 1-го состава бетона;
  2. 1,0 — для максимальных и минимальных нагрузок 2-го состава;

Для коэффициента gbt:

  1. 1,5 — для максимальных и минимальных нагрузок 1-го состава при определении класса на сжатие по осям;
  2. 1,3 – для максимальных и минимальных нагрузок 1-го состава при определении класса на растяжение по осям;
  3. 1,0 — для максимальных и минимальных нагрузок 2-го состава бетона.

Для максимальных и минимальных нагрузок 1-го и 2-го состава показатели деформаций материала берутся из их значений, указанных в ГОСТ и СНиП. Также при вычислении значений R свойства нагрузок, влияние атмосферных осадков, температуры, напряженности материала и конструкции из бетона корректируются коэффициентами условий эксплуатации конструкции γbi, и отражаются на расчетных деформационных и прочностных параметрах строительного материала.

Диаграммы деформаций конструкций из бетона вычерчиваются, опираясь на метод замены стандартных показателей на расчетные параметры.


Диаграммы деформаций

[ads-pc-1] [ads-mob-3]

Характеристики прочности при двухосном или трехосном приложении напряжений определяются по типу и классу бетона, исходя из связи между максимальными и минимальными значениями напряже­ний, приложенных в 2-х или 3-х перпендикулярах. Деформирование бетонного объекта вычисляется по плоскому или объемному приложению напряжений. Если конструкция имеет дисперсно-армированное состояние, то для нее принимаются характеристики, как для обычных бетонных или ж/б сооружений.

При работе с фибробетоном его свойства определяются, исходя из физико-эксплуатационных характеристик смеси, также берется в расчет форма, габариты, геометрия и распределение фибр в составе, сцепление фибр с раствором. Определяющие характеристики прочности и возможности деформирования армирования — это стандартные параметры прочности и свойства деформа­ции.


Неупругие деформации

Основное определение прочности материала армирования при нагрузках на растя­жение-сжатие — это установленное ГОСТ сопротивление Rs,n, которое принимается равным показателю эксплуатационного предела текучести или такого же условного предела, который будет соответствовать окончательному удлинению или укорочению, принимаемому как 0,2%. Также ограничение Rs,n происходит по показателям, соответствующим деформирующим нагрузкам, которые равны максимальным показателям деформации бетона вокруг сжатой арматуры при укорочении.

Прочность бетона

Прочность бетона – это ключевой показатель несущей способности бетона. Ее вычисляют экспериментальным путем, определяя предел материала на сжатие – максимальный предел нагрузки, в результате которой образец начинает разрушаться.

Под расчетным сопротивлением бетона осевому сжатию подразумевают его показатель стойкости нагружающим воздействиям. Данный показатель связан с нормативными параметрами и применяется в ходе проектировочных расчетов.

До 2003 года проектировщики опирались на марки материала, но затем была введена новая классификация. Марка бетона на сжатие обозначается литерой «М» и обозначает предел прочности, выраженный в кгс/см2, а класс бетона обозначается буквой «В» и выражается в МПа.

Разница заключается не только в единицах измерения. Основным различием классификаций служит гарантия подтверждения прочности материала. Марка указывает на среднее значение, а класс бетона на сжатие гарантирует, что в 95% случаев тестирования указанная прочность обеспечивается, и риск отклонения от нормативных показателей составляет не более 5%.

Класс бетона по прочностиМарка бетонаСредняя прочность бетона данного класса (кгс/см2)
В7,5М10098
В10М150131
В12,5М150164
В15М200196
В20М250262
В22,5М300302
В25М350327
В30М400393

Действующие нормативы отражены в СП 52−101−2003 «Бетонные и железобетонные конструкции без предварительного напряжения арматуры». Современная классификация помогает проектировать бетонные и железобетонные конструкции с оптимальными характеристиками.

Использование средних показателей прочности (марка бетона) несет в себе риск, что реальные характеристики материала окажутся ниже расчетных. Если же средние показатели использовать в качестве наименьших, для перестраховки, приходится увеличивать размеры бетонной конструкции, что ведет к ее заметному удорожанию.

Понятия прочности и класса

Прочность по марке использовалась до введения евростандартов, и ею обозначалась средняя устойчивость на сжатие. Новые СНиП регламентируют классы прочности при сжатии-растяжении.


Нарастание прочности

[ads-pc-1] [ads-mob-3]

Понятие «класс» означает сопротивление материала согласно СП сжатию бетонного куба по оси. Эталонные габариты куба – 15 х 15 см. Из-за неравномерности распределения параметров прочности по всему материалу использование среднеарифметических показателей прочности не рекомендовано, так как на локальном участке объективная прочность может быть меньше.

Основная характеристика длительности эксплуатации бетонного объекта – это его класс. При определении класса принимается во внимание и осевое сжатие, и осевое растяжение, значения которых определяются с запасом прочности через удельное сопротивление элементов.


Предельно допустимые напряжения

Формула определения сопротивления нагрузкам сжатия: R = Rn /g;

Где g – коэффициент прочности материала, принимаемый как 1,0. Чем однороднее бетон, тем коэффициент g ближе к единице.

Дополнительные параметры для расчетов:

  1. Электрическое удельное сопротивление раствора;
  2. Влагостойкость – ее параметры необходимы, чтобы знать максимальное давление жидкой среды, которое может выдержать бетон;
  3. Воздухопроницаемость связана с прочностью, и имеет постоянное значение в диапазоне 3-130 c/см3.
  4. Морозостойкость обозначается символом «F» и числами от 50 до 1000, означающими количество циклов заморозки-разморозки;
  5. Теплопроводность влияет на плотность материала. Чем больше воздуха в бетоне, тем меньше плотность и теплопроводность;


Визуальное выявление трещин в образцах
[ads-pc-1] [ads-mob-3]

Продольные трещины в испытываемых призменных образцах появляются под действием поперечных нагрузок. Прочность образца увеличивается при стягивании бетона хомутами, но разрушение произойдет в любом случае, и трещины появятся позже. Такое отодвигание разрушения во времени называется эффектом обоймы. Хомут, сжимающий элемент, можно заменить укладкой в раствор поперечной стержневой арматуры, металлической сетки или спирали из стали.

  1. Марка обозначается символом «M», и означает среднюю кубиковую прочность Rв, которая выражается в кг/см2. Следующие за латинской буквой числа – это прочность;
  2. Класс – символ «B», обозначающий кубиковую прочность (Мпа) с вероятностью 0,95. Неоднородность прочности материала колеблется в пределах Rmin-Rmax.

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Β — угол наклона угла. И — расстояние между максимальными высотами ребер. Ø — диаметр стального стержня. Долговечность в зависимости от воздействия дождя. Устойчивость к пожару, которая рассматривает блоки, с одной стороны, как негорючие, а с другой стороны, что стены должны в течение определенного времени гарантировать следующие функции: устойчивость к огню, порезание пламени и порезание огня.

Кроме того, они должны быть покрыты и не должны подвергаться вторжениям. Бетонный блок широко используется в Бразилии. Это был первый блок, на котором бразильский стандарт для расчета структурной кладки. С другой стороны, поскольку существует множество поставщиков, у него возникает недостаток качественной проблемы. Высокое сопротивление доступно только на некоторых заводах, а блок тяжелее. В Бразилии уже более 20 этажей со структурной кладкой из бетонных блоков. Что касается других узлов, стена из бетонных блоков выполняет структурные и закрывающие функции, устраняя столбы и балки и уменьшая использование арматуры и форм.

Примечания

:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см 2).

Блок должен обеспечивать качество и экономичность зданий. Это означает, что он должен представлять адекватные размеры и формы, компактность, прочность, хорошую геометрическую отделку, хороший внешний вид, особенно когда проект не предотвращает покрытие. Кроме того, он должен гарантировать термоакустическую изоляцию. Эти параметры являются решающими для качества блоков и имеют свои пределы, установленные в соответствующих технических стандартах.

Некоторые характеристики составляют нормативные требования и служат индикаторами качества или для указания блоков. Компактность зависит от критериев дозировки и непосредственно влияет на прочность блока, а также на показатель поглощения. Сопротивление — это способность стенки кладки выдерживать различные механические действия, предусмотренные в конструкции, такие как нагрузки на конструкцию, ветер, деформации, удары и т.д. это сопротивление напрямую связано с некоторыми факторами, такими как: характеристики компонентов и соединений, адгезия сборки, гибкость стены, соединение между стенами и другие.

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

Примечания

: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*. 2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице. 3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Он напрямую связан с непроницаемостью продуктов, непредвиденным добавлением веса и насыщенной стены и долговечностью. Индекс поглощения используется как показатель долговечности. Индивидуальное поглощение бетонных блоков должно быть меньше или равно 10%.

Начальное поглощение соответствует всасывающей способности блока. Это поглощение зависит от пористости блоков, которые выше для более пористых блоков. Таким образом, важно найти точку равновесия, поскольку поглощение в правильной величине способствует проникновению связующих веществ, которые при затвердевании делают блок, раствор и покрытие вместе монолитными. Однако, когда поглощение слишком велико, это может поставить под угрозу химические реакции, необходимые для упрочнения. Для обеспечения баланса важно использовать раствор с адекватными удерживающими свойствами.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно .

Список использованной литературы:

1. СНиП 2.03.01-84 «Бетонные и железобетонные конструкции»

2. СП 52-101-2003

3. СНиП II-23-81 (1990) «Стальные конструкции»

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. — 2003.

Точность размеров и геометрическое совершенство

Качество и тип бетонного блока являются основополагающими для хорошей работы конструкционной системы. Поэтому важно знать, имеет ли регион предприятия блокировки производителей, которые предлагают соответствующий продукт и в рамках технических норм. Производственный процесс придает продуктам большую регулярность форм и размеров, позволяя модулировать работу уже из проекта, избегая импровизаций и обычных отходов, возникающих в результате этого. Важно соблюдать размеры, установленные в стандарте, а также их пределы допуска.
5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. — 1982.

С точки зрения математической статистики прочность бетона или арматуры является величиной случайной, колеблющейся в опреде­лённых пределах.

Прочностные характеристики бетона в силу существенной неод­нородности его структуры обладают значительной изменчивостью. За нормативное сопротивление бетона осевому сжатию прини­мают предел прочности осевому сжатию бетонных призм размерами 150´150´600 мм с обеспеченностью 0,95. Эта характеристика кон­тролируется путём проведения испытаний.

При утечке также наблюдайте толщину стенок, которые составляют блоки, чтобы не скомпрометировать их прочность. Стандартизованные размеры блоков допускают допуски, указанные в таблице. Если в размерах блоков обнаружены несоответствия, это означает, в общем, отказ в производственном процессе, то есть: при изготовлении или проверке лотов. Проблемы точности размеров непосредственно влияют на модульную координацию и способствуют увеличению блочных отходов.

Блоки должны быть однородными, компактными и острыми. Они должны быть свободны от трещин, переломов, чтобы не ухудшить их сидения, прочность и долговечность. Текстура поверхности важна для непокрытой кладки, где блок представляет собой отделку, или в каменной кладке с покрытием, где он должен иметь шероховатость, текстуру и поверхностную пористость, подходящую для адгезии с раствором и способствующую монолитичности в целом. В общем, текстура варьируется от гладкой до тонкой в ​​зависимости от используемых материалов и условий производства.

Теоретическая кривая плотности распределения прочности бето­на при испытании большого количества образцов обычно представ­ляет собой кривую, соответствующую нормальному закону распределения случайных величин по Гауссу (рис. 33).

Рис. 33. К установлению значений нормативных и расчётных со­противлений бетона при сжатии

Предварительно напряженные железобетонные конструкции

Конструкция или элемент из железобетона, нагруженный искусственно созданными внутренними напряжениями, направленные обратно реальным физическим нагрузкам при эксплуатации объекта. Искусственные напряжения появляются после внедрения в тело конструкции предварительно напряженной арматуры. Сделать это можно так:

  1. При заливке раствора в конструкции оставляют пазы, в которые укладывается арматура (сетка, стержни, спирали). Набор прочности завершается натягиванием арматурной сетки или другого типа арматуры с креплением концов по бокам элемента. Натягивание арматуры сопровождается сжатием бетона. Усилие натяжения обозначается символом «Р»;
  2. Арматура натягивается перед заливкой раствора (т.н. натяжение на упоры), а после отвердения смеси отпускается, что и создает напряжение сжатия.

Еще один вариант создания предварительного напряжения – заливка специального напрягающего цемента марки НЦ. Затвердевая, объем конструкции из цемента этой марки увеличивается, при этом растягивается и арматура, создавая напряжение растяжения.

Расчетное сопротивление бетона: осевому сжатию, растяжению

Конструкции из бетона возводятся с учетом того, что они смогут выдерживать большие нагрузки и не разрушаться. В проектной документации указываются все качества материала, включая сопротивление бетона сжатию, а также степень прочности, надежности, плотности и длительность службы бетонного изделия.

Бетон — это неоднородный материал, поэтому в каких-то местах он может быть менее прочным и не выдерживать возлагаемые на него нагрузки. Рассчитать его прочность необходимо для того, чтобы определить, какие значения имеет материал в норме.

Что такое расчетное сопротивление

Способность изделия противостоять различным механическим нагрузкам показывает расчетное сопротивление бетона.

Значения, которые получаются при расчете, обозначают аббревиатурой RB и RBT, они необходимы для разработки проектов для различных коммерческих и промышленных объектов. Это значение получается из показателей по норме противодействия нагрузкам указанной марки бетона посредством деления на табличный коэффициент γbi.

Узнать точное расчетное сопротивление бетона сжатию можно с помощью таблицы, которая содержит цифры математических расчетов, использующихся для строительства различных объектов.

Этот коэффициент может быть выражен в таких цифрах:

  • 1,3 — для наибольших показателей по несущей способности;
  • 1 — для наибольших величин по эксплуатационной пригодности.

Надежность бетона при физическом растяжении γbt выражается в таких коэффициентах:

  • 1,5 — для наибольших показателей несущей способности бетона при установлении его класса на степень сжатия;
  • 1,3 — для наибольших показателей несущей способности на степень растяжения по оси;
  • 1 — для наибольших показателей по эксплуатационной способности.

Для того чтобы узнать точное расчетное сопротивление бетона осевому сжатию, следует определить его класс.

Из табличных данных следует взять показатели по норме и рассчитать по формуле Rb=Rbn/γb, где:

  • Rb — расчетные цифры сжатия по оси;
  • Rbn — множитель по норме;
  • γb — табличный коэффициент.

Сопротивление бетонных изделий осевому растяжению считается по формуле Rbt=Rbtn/γbt, где:

  • Rbt — расчетные цифры на растяжение по оси;
  • Rbtn — множитель по норме;
  • γbt — табличный коэффициент.

В зависимости от факторов, которые будут влиять на эксплуатационные способности бетонных изделий,

могут применяться и другие коэффициенты γbi:

  • 1 — для кратковременных нагрузок;
  • 0,9 — для нагрузок, которые действуют длительное время;
  • 0,9 — для изделий, которые заливаются вертикально;
  • коэффициенты, которые указывают природные условия, назначение бетонного изделия и площадь сечения, в проекте прописываются отдельно.

Нормативное сопротивление

Ранее качеством бетона, отражавшим его противодействие различным видам нагрузок, была марка М. Затем ввели другое свойство, которое получило название класса прочности В. Определить свойства бетонных элементов и ЖБК можно по нормативам, указанным в СП.

Для того чтобы узнать, к какому классу принадлежит бетон, его подвергают испытаниям:

  1. Раствор заливают в кубическую емкость высотой 15 см.
  2. Затем его уплотняют и оставляют на 28 суток до окончательного затвердения. Температура должна быть +18…+20ºС.
  3. После этого бетон испытывают путем разрушения под прессом.

Сопротивление изделий из бетона нагрузке по оси (Мпа) — это и есть свойство материала, определяющее данную характеристику. В некоторых случаях, для того чтобы узнать класс раствора, берут образец из призмы высотой 60 см.

Также образец проверяют на растяжение по оси. Это необходимо сделать при расчете сопротивления БК.

Таблицы содержат классы бетона и их значения по норме, поэтому испытания проводить не нужно.

Вид сопротивленияНормативные и расчетные показатели для бетона 2 группы на сжатие
класс В1015202530354045505560
сжатие по оси7,5111518,52225,529323639,543
растяжение по оси0,851,11,351,551,751,952,12,252,452,62,75

В таблице представлены значения бетона растяжению. Они необходимы при составлении проектной документации.

Показатели могут изменяться в зависимости от различных условий, которые определяются коэффициентами.

Вид сопротивленияРасчетные показатели RB и RBT 1 группы класса на сжатие
класс В1015202530354045505560
сжатие по оси RB68,511,514,51719,5222527,53033
растяжение по оси RBT0,560,750,91,051,151,31,41,51,61,71,8

Таблица показывает, что расчетные сопротивления бетона растяжению и сжатию меньше констант по норме, т. к.

они учитывают и другие факторы, такие как:

  • тип воздействия на сооружение;
  • расположение центра тяжести объекта;
  • неоднородность материала.

Определяя противодействие материала нагрузкам, следует учитывать степень его возможной деформации. Для этого берут первоначальное значение этого показателя и делят на коэффициент, который состоит из степени ползучести, возможной деформации изделия в поперечнике и деформации при температурном колебании (-40…+50ºС).

Понятия прочности и класса

До появления европейских стандартов прочность определялась только по марке, и она показывала среднюю цифру сопротивления на сжатие. Новые стандарты предусматривают определение классов по прочности на степень сжатия и растяжения.

Класс — это способность осевого сопротивления 1 м³ бетона по СП. Неравномерное распределение по всему объему изделия прочности бетона не дает возможности использовать среднеарифметические значения, т. к. на отдельном участке данный показатель может быть больше или меньше.

Класс — это один из главных показателей, который определяет срок службы БК. Определяя класс, учитывается как сжатие элемента по оси, так и растяжение бетона, показатели, которые рассчитываются, учитывая запас прочности посредством его сопротивления в удельных единицах измерения.

По формуле рассчитывается возможность сопротивления конструкций из бетона сжатию: R=Rn/g, где g — коэффициент степени прочности, который принимается за 1 при условии, что структура раствора является однородной.

Для расчетов берут и дополнительные данные, такие как:

  1. Удельное электросопротивление раствора.

  2. Влагостойкость.

    С помощью этих показателей определяется наибольшее давление жидких субстанций, которые способны выдержать ЖБК.
  3. Воздухопроницаемость.

    Она имеет отношение к прочности, и ее постоянное значение колеблется от 3 до 130 с/см³.
  4. Морозоустойчивость.

    Обозначается латинской буквой F, а цифры от 50 до 1000 указывают число замораживаний и размораживаний.
  5. Теплопроводность.

    Чем больший объем воздуха содержит изделие, тем меньше его плотность и теплопроводные характеристики.

Трещины по вертикали в тестируемых изделиях из призмы возникают под действием силы тяжести поперечных нагрузок. Прочностные качества бетона увеличиваются при его стягивании металлическими обручами.

Но в период эксплуатации изделия на нем появятся трещины, и оно разрушится. Такая отсрочка разрушения имеет название «эффект обоймы». Стальной обруч, который сжимает конструкцию, можно заменить металлической арматурой различных видов (сетка, спираль, прутья).

Она укладывается в раствор горизонтально:

  1. Марка указывает среднюю степень прочности куба раствора RB и выражается в кг/см².
  2. Класс указывает на прочность куба раствора с точностью до 0,95 и выражается в Мпа. Неоднородность его прочности варьируется от Rmin до Rmax.

Бетон класса В20 относится к виду «тяжелых» и используется в различных областях строительства, т. к. имеет высокую степень прочности, обеспечивая длительный срок эксплуатации различных промышленных и жилых объектов. Благодаря его прочности конструкции имеют высокую степень сопротивления сдвигам и нагрузкам на изгиб. Такие изделия смогут выдерживать наибольшие нагрузки.

Прочность бетона класса В25 составляет 327 кгс/см², поэтому он предназначен для заливки фундамента, изготовления плит, балок и других монолитных изделий.

Предварительно напряженные железобетонные конструкции

Это ЖБК, которые нагружены искусственно сформированными напряжениями внутри конструкций и направлены назад существующим нагрузками, возникающими в процессе их эксплуатации. Такие напряжения возникают после того, как внутрь конструкции была установлена арматура.

Делается это таким образом:

  1. Заливая раствор в емкости, оставляют пустоты, в которые затем укладывают арматуру. Конструкция набирает прочности после того, как арматура натягивается и закрепляется по всем бокам изделия. При этом бетон сжимается. Натяжение обозначается буквой «P».
  2. Перед тем как залить раствор, натягивают арматуру, т.е. создают натяжение на упоры, а после того, как смесь затвердеет, ее отпускают, в результате чего создается напряжение сжатия.

Кроме этого, предварительное напряжение можно создать путем заливки специального цемента марки НЦ, который после отвердения увеличивается в объеме, растягивая и арматуру.

Сопротивление можно определить в зависимости то того, какие на него действую силы тяжести.

Они бывают:

  • сжимающими;
  • поперечными;
  • изгибающими.

Для изделий, которые сжимаются и растягиваются вне центра, а также находятся под изгибом, показатель определяется для сечений, расположенных перпендикулярно их вертикальной оси.

Для прямоугольных, квадратных или тавровых сечений конструкций используются формулы, по которым рассчитывается предельная нагрузка каждой детали. Для других типов сечений применяются различные виды диаграмм.

Расчетное сопротивление изделий из бетона поможет выбрать его класс и марку для разработки проектной документации будущего объекта. Данные цифры показывают параметры объекта в геометрической проекции, условия его эксплуатации и типы возможных деформаций.

Кроме этого, применяются коэффициенты степени надежности материала, виды используемой арматуры и прочие параметры, которые могут повлиять на итоговую прочность конструкции, где использовался литой бетон.

определение значений по таблицам, нормативные характеристики материала

Для обеспечения прочности и долговечности конструкций из бетона на стадии проектирования производятся расчёты, учитывающие основные характеристики материала. К ним относятся морозоустойчивость, водонепроницаемость, прочностные характеристики. Расчётное сопротивление бетона определяется в зависимости от нормативного сопротивления для этого класса материала.

Расчетные значения

Прочность является определяющей характеристикой бетона. От неё зависят эксплуатационные качества возводимых сооружений, их долговечность и надёжность. Проверка прочности производится в лабораторных условиях по образцам. При проверке прочности на сжатие проверяется марка бетона. Цифровое значение марки является пределом прочности на сжатие, выраженным в Мегапаскалях.

При проектировании бетонных сооружений производят расчёты по двум группам предельных состояний. Первая группа — это полная непригодность к эксплуатации, включая разрушение. Вторая группа — это непригодность, которая определяется появлением трещин и недопустимых деформаций.

В зависимости от группы предельных состояний выбираются коэффициенты надёжности, которые вводятся, чтобы снизить допустимые нагрузки на конструкцию.

Расчётные сопротивления бетона сжатию в таблицах 1 и 2 вычисляются путём деления величин нормативного сопротивления бетона на коэффициенты надёжности. В формулы для определения прочности вводят коэффициенты, зависящие от характера нагрузок, условий эксплуатации и учитывающие характер разрушений этого типа строений. Расчётные сопротивления бетона осевому сжатию Rb, Rb, ser и осевому растяжению Rbt, Rbt, ser приводятся в таблицах 1 и 2. Характеристики предельных состояний первой группы приводятся в таблице 2, а второй группы — в таблице 1.

Таблица 1.

Таблица 2.

Характеристики материала

Информация о характеристиках материала необходима при строительстве объектов. Недостаточная прочность может привести к образованию трещин и досрочному выходу сооружения из строя. Прочностные характеристики материала определяются в испытаниях по образцам в лабораторных условиях. Способы исследования бывают разрушающие и неразрушающие.

Для разрушения используются образцы, изготовленные из пробы испытуемой бетонной смеси или полученные бурением поверхности бетонной конструкции. Образцы сжимаются прессом. Нагрузка увеличивается постепенно до того момента, пока образец полностью не разрушится. По величине критической нагрузки и рассчитываются значения прочности материала. Для этого величину нагрузки делят на площадь поперечного сечения испытуемого объекта и умножают на масштабный коэффициент.

Неразрушающие методы проводятся прямо на бетонной поверхности, для них не требуются образцы. Исследование проводится следующими методами:

  1. частичное разрушение;
  2. ударный метод;
  3. ультразвуковое исследование.

Это способы местного воздействия, не наносящие большого вреда бетонной конструкции. Но они имеют меньшую точность, чем разрушающие методики. При сдаче здания в эксплуатацию обязательным является исследование методом разрушения проб.

Факторы прочности

Скорость химических процессов, протекающих в водных растворах, оказывает большое влияние на характеристики бетона. Причинами, способствующими увеличению прочности, можно считать следующие:

  1. Главным фактором является активность цемента. Чем он активнее, тем прочнее получится материал. Точным считается метод определения активности в лабораторных условиях. Существуют различные экспресс-технологии, способные дать ответ на вопрос о возможности использования материала. Для частного и неответственного строительства можно составить представление о качестве цемента путём осмотра. Хороший материал должен быть серо-зеленоватого цвета и хорошо сыпаться. Если присутствуют небольшие комки, то их легко раздавить пальцами. Если же есть большие твёрдые комья, то можно сделать вывод, что цемент потерял активность и не может быть использован в строительстве.
  2. Большое значение имеет также процентное соотношение цемента в растворе. Чем выше процент цемента, тем лучше будут прочностные характеристики бетона. Очень важным является соотношение воды и цемента в смеси. Бетон способен связывать только 15−20% воды, входящей в его состав. Это значительно меньше, чем количество воды, присутствующее в растворе. Из-за этого образуются поры, и прочность материала уменьшается.
  3. Применение в качестве наполнителей крупнофракционного материала хорошо сказывается на свойствах бетона.
  4. Время застывания тоже играет важную роль. Стопроцентные показатели предела прочности бетон приобретает только через 28 суток. Испытания бетонных образцов проводятся на третьи сутки, когда материал достигает 30% от своих максимальных прочностных характеристик.
  5. Условия внешней среды тоже влияют на процесс отвердевания бетона. Наилучшие условия отвердевания создаются при температуре 15−20 °C и высокой влажности. Увеличение прочности продолжается до тех пор, пока материал полностью не высохнет или не замёрзнет.

Долговечность и надёжность конструкций из бетона во многом зависит от качества проектирования. Необходимо учитывать все характеристики материалов, подбирать наиболее пригодные в существующих условиях и учитывать особенности работы материалов с разными видами нагрузок.

Материал хорошо работает на сжатие, а расчётное сопротивление растяжению у бетона на порядок хуже. Поэтому нужно избегать внецентренных нагрузок и изгибающих моментов.

Расчетное и нормативное сопротивления бетона сжатию, растяжению

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbnb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtnbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Прочность бетона на сжатие через 28 суток.

Теплоизоляция автомобильных дорог (TIG) на проезжей части — это эффективный метод региональной защиты от термической опасности в шахтах. Разработка шахтных материалов для аргонодуговой сварки — основа теплоизоляции. Однако некоторые традиционные и современные изоляционные материалы неприменимы для глубоких шахт, которые довольно влажны, с высоким напряжением на месте и высокой геотемпературой. В этом исследовании была разработана разновидность неорганического минерального материала TIG из золы-уноса, который был применен для моделирования дороги с высокой геотемпературой.Кроме того, был проанализирован эффект теплоизоляции слоя TIG и обсуждены характеристики температурного поля окружающей породы TIG. Результаты показывают, что (1) слой TIG оказывает значительное влияние на тепловыделение стенки и стабильность температурного поля окружающей породы; (2) время начальных температурных возмущений, диапазоны температурных возмущений и скорости падения температуры различаются в зависимости от того, существует ли слой TIG или нет; (3) после начала вентиляции проезжей части TIG плотности теплового потока имеют тенденцию к постоянству, что указывает на окончание температурных возмущений; кроме того, безразмерная температура имеет экспоненциальную связь с безразмерным радиусом; и (4) характеристики перепадов температуры меняются в зависимости от радиального положения окружающей породы.Результаты исследования служат определенным ориентиром для контроля термической опасности, прогнозирования температуры и настройки вентиляционной сети. 1. Введение Термические опасности, одна из распространенных проблем на современных рудниках, представляют собой неизбежную геологическую катастрофу в процессе разработки рудника на большую глубину [1–3]. Проблема термических опасностей возникла ранее в развитых горнодобывающих странах, таких как США [4], Австралия [5], Польша [6] и Южная Африка [7]. На сегодняшний день в Китае действует около 140 высокогеотемпературных шахт [8, 9].Высокая геотемпература является основной причиной возникновения термических опасностей, неизбежно вызываемых глубокими разработками [10–12]. К 2016 г. в Китае насчитывалось 47 угольных шахт с глубиной более 1000 м [13, 14], таких как угольная шахта Сунцунь (1501 м, геотемпература 48 ° C), угольная шахта Санхэцзян (1010 м, геотемпература). 46,8 ° C), угольная шахта Чжанцзи (1260 м, геотемпература 51,5 ° C) [8] и более 150 угольных шахт, глубина которых превышает 1000 м за рубежом, таких как угольная шахта Пниовек (1000 м, геотемпература 45 ° C) в Польше [6].Кроме того, некоторые угольные шахты на глубине 600–1000 м имеют высокие геотемпературы в результате локального накопления тепла, например, угольная шахта Пиндиншань № 8 (660 м, геотемпература 43 ° C) [1]. Отечественные и зарубежные исследования по охлаждению высокогеотемпературных шахт в основном сосредоточены на технике механического охлаждения [7, 15], включая охлаждение центрального кондиционирования воздуха, охлаждение льдом, воздушное охлаждение [16], электротермино-гликолевое охлаждение и охлаждение глубоких скважин. Охлаждение HEMS [17]. Однако высокая стоимость, большие потери холодопроизводительности и большое энергопотребление механического охлаждения ложатся серьезным бременем на предприятия.Теплоизоляция и охлаждение проезжей части заключается в попадании теплоизоляционных материалов шахты на поверхность проезжей части с высокой температурой окружающей породы, чтобы уменьшить передачу тепла от высокотемпературной породы к воздушному потоку. Этот метод в сочетании с регулировкой параметров вентиляции позволяет добиться хорошего охлаждающего эффекта при относительно невысокой стоимости [9]. Таким образом, исследования в области теплоизоляции и охлаждения дорог имеют большое значение для контроля региональных термических опасностей и эффективного использования ресурсов в шахтах.Разработка шахтного теплоизоляционного огнестрельного материала (TIG-материала) является основой для применения теплоизоляции и охлаждения проезжей части. От шахтных материалов для сварки TIG требуется не только легкий вес, теплоизоляция и огнестойкость, но и высокие механические свойства. Эти требования делают некоторые материалы, которые обычно используются в строительстве и химической промышленности, непригодными для использования на проезжей части шахт, такие как формовочные материалы (EPS, XPS, фенольная пена и полиуретан), волокнистые материалы (каменная вата и стекловата) и современные материалы. (вакуумные изоляционные панели, газовые панели, аэрогель) [18, 19].Иностранные ученые редко проводили исследования материалов TIG, а китайские ученые в основном сосредоточились на неорганических минеральных материалах, таких как расширенный перлит, застеклованные микросферы и вермикулит. Летучая зола, твердые отходы, образующиеся в результате быстрого окисления пылевидного угля при выработке тепловой энергии [20], в огромных количествах производится в Китае (686 млн т, 2017 г.). Он имеет множество отверстий, низкую плотность и низкую теплопроводность, а также довольно экономичен [21, 22]. Поэтому неорганические минеральные изоляционные материалы из летучей золы имеют преимущество в горнодобывающей промышленности.В предыдущей литературе больше внимания уделялось разработке материалов и в качестве стандарта оценки принималась теплопроводность, но разработанные материалы редко применяются в полевых условиях. Ли и др. [23] разработали вид материала TIG, взяв в качестве сырья застеклованные микросферы, цемент, песок и алюминиевый порошок. Затем, благодаря промышленному применению материала, они обнаружили, что тепловыделение от торкретбетона проезжей части сократилось на 64%. Изучая состав и соотношение сырьевых материалов, Чжан [24], Ян [25] и Чжу [26] получили теплоизоляционные материалы с лучшими характеристиками.Лю [27] и Ван [28] смоделировали распределение температуры дороги TIG с помощью программного обеспечения Fluent. Чжоу [29] обсуждал влияние теплофизических параметров слоя TIG на его теплоизоляционный эффект. Можно сделать вывод, что ученые в основном оценивали теплоизоляционный эффект TIG-материалов на дорогах с высокой геотемпературой с помощью численного моделирования. Тем не менее, поскольку неустойчивые коэффициенты теплопередачи проезжей части трудно определить, результаты моделирования заметно отличаются от реальной ситуации.Поэтому, несмотря на некоторые предыдущие достижения в области разработки материалов для сварки TIG, до сих пор нет исследований теплоизоляционного эффекта шахтных материалов TIG и влияния слоев TIG на температурное поле окружающей горной породы. Эксперименты по физическому моделированию дают нам решения. Ван [30], Чжан [31], Чжу [32] и Ван [33] проанализировали поля температуры и влажности воздушного потока и окружающей породы с помощью аналогичных устройств моделирования, но все их выводы были нацелены на не-TIG проезжей части.На основе предыдущих исследований влияние слоя TIG на геотемпературное поле было исследовано с помощью устройства моделирования подобия (Рисунок 1) в этой статье. Исследование может служить для оценки теплоизоляционного эффекта материалов TIG. Кроме того, это важно для прогнозирования воздушного потока и температуры породы, а также для настройки и оптимизации вентиляционной сети. В конечном итоге это способствует контролю термических опасностей в шахтах.

Прочность бетонных кубов на сжатие

Общая прочность конструкции, такая как сопротивление изгибу и истиранию, напрямую зависит от прочности бетона на сжатие.

Согласно Википедии, Прочность бетона на сжатие определяется как характеристическая прочность бетонных кубов размером 150 мм, испытанных в течение 28 дней.

Почему мы проводим тестирование через 7, 14 и 28 дней?

Бетон представляет собой макрокомпонент с песком, цементом и крупнозернистым заполнителем в качестве микрокомпонентов (соотношение смеси) и со временем приобретает 100% прочность в затвердевшем состоянии.

Взгляните на приведенную ниже таблицу.

Прочность бетона сверхурочно

Дней после литья Прирост силы
День 1 16%
3 день 40%
День 7 65%
День 14 90%
28 день 99%

Как видите, бетон быстро набирает прочность до 7 и 14 дней.Затем постепенно увеличивается оттуда. Таким образом, мы не можем предсказать прочность, пока бетон не придет в это стабильное состояние.

Как только он достигнет определенной силы через 7 дней, тогда мы знаем (согласно таблице) только 9% силы увеличится. Поэтому на объектах мы обычно тестируем бетон с этим интервалом. Если бетон выйдет из строя через 14 дней, мы откажемся от замеса.

Таблица прочности на сжатие бетона через 7 и 28 дней

Марка бетона Минимальная прочность на сжатие Н / мм2 через 7 дней Нормативная прочность на сжатие (Н / мм2) через 28 суток
M15 10 15
M20 13.5 20
M25 17 25
M30 20 30
M35 23,5 35
M40 27 40
M45 30 45

Лабораторное испытание бетона на прочность при сжатии

Цель

Найти значение прочности бетонных кубов на сжатие.

Требуемое оборудование и аппаратура

  • Форма для куба 150 мм (с маркировкой IS)
  • Электронные весы
  • Лист G.I (для изготовления бетона)
  • Вибрирующая игла и другие инструменты
  • Машина для испытания на сжатие


Процедура
Отливка куба
  • Измерьте сухую пропорцию ингредиентов (цемент, песок и крупнозернистый заполнитель) в соответствии с проектными требованиями.Ингредиентов должно хватить для отливки тестовых кубиков
  • Тщательно перемешайте сухие ингредиенты для получения однородной смеси
  • Добавьте расчетное количество воды к сухой пропорции (водоцементное соотношение) и хорошо перемешайте для получения однородной текстуры
  • Залить бетон в форму с помощью вибратора для тщательного уплотнения
  • Обработайте верхнюю часть бетона шпателем и хорошо постучите до тех пор, пока цементный раствор не достигнет вершины кубиков.

Лечение
  • Через некоторое время форму следует накрыть красным мешком и поставить в покое на 24 часа при температуре 27 ° C ± 2
  • Через 24 часа выньте образец из формы.
  • Держите образец погруженным в пресную воду с температурой 27 ° Цельсия. Образец следует хранить 7 или 28 дней. Каждые 7 дней воду следует обновлять.
  • Образец следует вынуть из воды за 30 минут до испытания.
  • Перед проведением испытания образец должен быть в сухом состоянии.
  • Вес куба не должен быть меньше 8,1 кг

Тестирование
  • Теперь поместите бетонные кубики в испытательную машину. (централизованно)
  • Кубики должны быть правильно размещены на плите машины (проверьте отметки кружков на машине). Тщательно совместите образец со сферической пластиной.
  • Нагрузка будет приложена к образцу в осевом направлении.
  • Теперь медленно прилагайте нагрузку со скоростью 140 кг / см 2 в минуту, пока куб не рухнет.
  • Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.

Расчет

Прочность бетона на сжатие = максимальная сжимающая нагрузка / площадь поперечного сечения

Площадь поперечного сечения = 150 мм X 150 мм = 22500 мм2 или 225 см 2

Предположим, что сжимающая нагрузка составляет 450 кН,

Прочность на сжатие = (450000 Н / 225) / 9.81 = 204 кг / см 2

Примечание — 1 кг равен 9,81 N

Результат наблюдения (лабораторный отчет)

Детали Образцы
Образец 1 Образец 2 Образец 3

Сжимающая нагрузка

(кН)

375 кН 425 кН 435 кН

Прочность на сжатие

(кг / см2)

(375000/225) / 9.81

= 170 кг / см 2

(425000/225) / 9,81

= 192,5 кг / см 2

(435000/225) / 9,81

= 197,0 кг / см 2

Средняя прочность на сжатие = (170 + 192,5 + 197) / 3

= 186,5 кг / см 2

Банкноты
  • Описанный выше эксперимент следует проводить при температуре 27 ° C ± 2 °.
  • Согласно IS 516 индивидуальное изменение сжимающей нагрузки не должно превышать плюс минус 15% от среднего значения.

Частота отбора проб

Согласно IS 456: 2000, минимальная частота отбора проб бетона

Количество бетона в работе (м3) Количество образцов
1-5 1
6-15 2
16-30 3
31-50 4
51 и выше 4 плюс одна дополнительная проба на каждые дополнительные 50 м3

Видео эксперимента

Надеюсь, вам понравился контент.Поддержите нас, поделившись.

Счастливого обучения 🙂

Какая минимальная требуемая прочность на сжатие для бетонной кладки?

Если у вас есть вопросы о конкретных продуктах или услугах, которые мы предоставляем, не стесняйтесь обращаться к нам.

FAQ 05-14

С последней редакцией Спецификации каменных конструкций (TMS 602-13 / ACI 530.1-13 / ASCE 6-13) в сочетании с требованиями Строительных норм и правил для каменных конструкций (TMS 402-13 / ACI 530-13 / ASCE 5-13) произошли заметные изменения в отрасли бетонных работ. На протяжении десятилетий проектировщикам были предоставлены два метода оценки прочности на сжатие блоков каменной кладки. Эти две формы соответствия заключались либо в испытании призм (либо призм, построенных на строительной площадке, либо призм, удаленных из существующей кладки) для оценки прочности на сжатие, либо метода измерения прочности на единицу.Последний обычно является предпочтительным методом для многих проектов из-за относительно быстрого и простого процесса с минимальными затратами. Несмотря на простоту и удобство, метод измерения удельной прочности уже давно признан наиболее консервативным из двух вариантов.

Что такое метод единицы измерения прочности?
Метод единицы прочности был разработан с использованием данных испытаний на прочность на сжатие, собранных с 1950-х по 1980-е годы. Проще говоря, результирующий метод, полученный на основе данных испытаний, определил общую прочность сборки на сжатие на основе прочности отдельных единиц и типа раствора, который будет использоваться при проектировании.

Что изменилось?
В течение многих лет таблица метода удельной прочности, опубликованная в TMS 602, оставалась неизменной и основывалась на исходном наборе исторических данных. Осознавая ограничительный консерватизм в расчетных значениях, был начат исследовательский проект [1] по составлению нового набора данных, отражающих текущие методы испытаний и свойства материалов. Это исследование, в свою очередь, было включено в издание TMS 402/602 2013 г., как показано в следующей таблице, которая иллюстрирует корреляцию между прочностью на сжатие единицы, типом раствора и прочностью на сжатие сборки.

1 Для блоков с номинальной высотой менее 4 дюймов (102 мм) используйте 85 процентов перечисленных значений.

Повышение окончательной проектной прочности блоков каменной кладки — не единственное недавнее изменение. В 2014 году ASTM C90 был пересмотрен, чтобы увеличить минимальную прочность на сжатие устройства с 1900 фунтов на квадратный дюйм (13,1 МПа) до 2000 фунтов на квадратный дюйм (13.8 МПа). При использовании перекалиброванной таблицы прочности блока, приведенной выше, бетонный блок, соответствующий минимальным требованиям ASTM C90 и уложенный в растворе типа S или M, обеспечивает прочность на сжатие в сборе в 2000 фунтов на квадратный дюйм (13,8 МПа), что значительно больше, чем историческое значение по умолчанию. минимум 1500 фунтов на квадратный дюйм (10,3 МПа), используемый для указанной прочности бетонной кладки на сжатие.

Как эти изменения повлияют на меня?
Благодаря увеличению не только удельной прочности и общей прочности сборки на сжатие, бетонная кладка может оставаться конкурентоспособной среди других строительных материалов, используемых в строительстве.Производство агрегатов практически не изменилось. Увеличение прочности связано с уменьшением неопределенности в данных, используемых для разработки этих расчетных значений, и проверкой прочности, уже присутствующей в современных бетонных элементах кладки.

Список литературы

  1. Повторная калибровка метода измерения прочности блока для проверки соответствия указанной прочности бетонной кладки на сжатие, MR37, Национальная ассоциация бетонных кладок, 2012.(www.ncma.org)
  2. Стандартные технические условия для несущих бетонных блоков, ASTM C90-14. ASTM International, 2014.

Таблица проектных свойств бетона (fcd, fctm, Ecm, fctd)

Расчетные значения свойств бетонного материала согласно EN 1992-1-1

Масса устройства

γ

Удельный вес бетона γ указан в EN1991-1-1, приложение A.Для простого неармированного бетона γ = 24 кН / м 3 . Для бетона с нормальным процентным содержанием арматуры или предварительно напряженной стали γ = 25 кН / м 3 .

Характеристическая прочность на сжатие

f ck

Характеристическая прочность на сжатие f ck является первым значением в обозначении класса бетона, например 30 МПа для бетона C30 / 37. Значение соответствует характеристической прочности цилиндра (5% разрывной прочности) согласно EN 206-1.Классы прочности согласно EN 1992-1-1 основаны на характеристических классах прочности, определенных для 28 дней. Изменение характеристической прочности на сжатие f ck ( t ) со временем t указано в EN1992-1-1 §3.1.2 (5).

Характеристическая прочность на сжатие куба

f ck, куб

Характеристическая кубическая прочность на сжатие f ck, cube — второе значение в обозначении класса бетона, e.г. 37 МПа для бетона C30 / 37. Значение соответствует характеристической прочности куба (5% хрупкости) согласно EN 206-1.

Средняя прочность на сжатие

f см

Средняя прочность на сжатие f см связана с характеристической прочностью на сжатие f ck следующим образом:

f cm = f ck + 8 МПа

Изменение средней прочности на сжатие f см ( t ) со временем t указано в EN1992-1-1 §3.1.2 (6).

Расчетная прочность на сжатие

f cd

Расчетная прочность на сжатие f cd определяется в соответствии с EN1992-1-1 §3.1.6 (1) P:

f cd = α cc f ck / γ C

где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN1992-1-1 §2.4.2.4 и Национальное приложение.

Коэффициент α cc учитывает долгосрочное влияние на прочность на сжатие и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Он указан в EN1992-1-1 §3.1.6 (1) P и в национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (101) P и национальное приложение).

Нормативная прочность на разрыв

Прочность на растяжение при концентрической осевой нагрузке указана в таблице 3 стандарта EN 1992-1-1.1. Вариабельность прочности бетона на разрыв определяется следующими формулами:

Формула средней прочности на разрыв
f ctm

f ctm [МПа] = 0,30⋅ f ck 2/3 для бетона класса ≤ C50 / 60

f ctm [МПа] = 2,12⋅ln [1+ ( f cm / 10MPa)] для класса бетона> C50 / 60

Формула для 5% прочности на разрыв
f ctk, 0.05

f ctk, 0,05 = 0,7 f ctm

Формула для 95% прочности на разрыв
f ctk, 0,95

f ctk, 0,95 = 1,3 f ctm

Расчетная прочность на разрыв

f ctd

Расчетная прочность на разрыв f ctd определяется в соответствии с EN1992-1-1 §3.1.6 (2) P:

f ctd = α ct f ctk, 0.05 / γ C

где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN1992-1-1 §2.4.2.4 и Национальном приложении.

Коэффициент α ct учитывает долгосрочное влияние на предел прочности при растяжении и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Это указано в EN1992-1-1 §3.1.6 (2) P и в Национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (102) P и Национальное приложение).

Модуль упругости

E см

Упруго-деформационные свойства железобетона зависят от его состава и особенно от заполнителей. Приблизительные значения модуля упругости E см (значение секущей между σ c = 0 и 0,4 f см ) для бетонов с кварцитовыми заполнителями, приведены в EN1992-1-1, таблица 3 .1 по следующей формуле:

E см [МПа] = 22000 ⋅ ( f см /10 МПа) 0,3

Согласно EN1992-1-1 §3.1.3 (2) для заполнителей известняка и песчаника значение E см должно быть уменьшено на 10% и 30% соответственно. Для базальтовых заполнителей значение E см следует увеличить на 20%. Значения E см , приведенные в EN1992-1-1, следует рассматривать как ориентировочные для общих применений, и их следует специально оценивать, если конструкция может быть чувствительна к отклонениям от этих общих значений.

Изменение модуля упругости E см ( t ) со временем t указано в EN1992-1-1 §3.1.3 (3).

Коэффициент Пуассона

ν

Согласно EN1992-1-1 §3.1.3 (4) значение коэффициента Пуассона ν можно принять равным ν = 0,2 для бетона без трещин и ν = 0 для бетона с трещинами.

Коэффициент теплового расширения

α

Согласно EN1992-1-1 §3.1.3 (5) значение линейного коэффициента теплового расширения α можно принять равным α = 10⋅10 -6 ° K -1 , если нет более точной информации.

Минимальная продольная арматура

ρ мин. для балок и перекрытий

Минимальное продольное растяжение арматуры для балок и основное направление плит указано в EN1992-1-1 §9.2.1.1 (1).

A с, мин = 0.26 ⋅ ( f ctm / f yk ) ⋅ b t d

где b t — средняя ширина зоны растяжения, а d — эффективная глубина поперечного сечения, f ctm — средняя прочность бетона на растяжение, а f yk — характерный предел текучести стали.

Минимальное усиление требуется, чтобы избежать хрупкого разрушения.Обычно требуется большее количество минимальной продольной арматуры для контроля трещин в соответствии с EN1992-1-1 §7.3.2. Секции с меньшим армированием следует рассматривать как неармированные.

В соответствии с EN1992-1-1 §9.2.1.1 (1) Примечание 2 для балок, для которых возможен риск хрупкого разрушения, A с, мин. можно принять как 1,2-кратную площадь, требуемую в ULS. проверка.

Минимальная арматура при сдвиге

ρ w, мин. для балок и перекрытий

Минимальная поперечная арматура для балок и плит указана в EN1992-1-1 §9.2.2 (5).

ρ w, min = 0,08 ⋅ ( f ck 0,5 ) / f yk

где f ck — характеристическая прочность бетона на сжатие, а f yk — характеристический предел текучести стали.

Коэффициент усиления сдвига определен в EN1992-1-1 §3.1.3 (5) как:

ρ w = A sw / [ s b w ⋅sin ( α )]

где b w — ширина стенки, а s — расстояние между поперечной арматурой по длине элемента.Угол α соответствует углу между поперечной арматурой и продольной осью. Для типичной поперечной арматуры с перпендикулярными ветвями α = 90 ° и sin ( α ) = 1.

границ | Адаптация искусственного интеллекта для улучшения оценки прочности бетона на сжатие при испытаниях на удар отскоком

Введение

Бетон — это искусственный композитный материал, состоящий в основном из заполнителя, воды и цемента.Поскольку бетон относительно дешев и обеспечивает высокую прочность на сжатие, он является одним из наиболее часто используемых материалов в строительной отрасли. Он широко используется в зданиях, мостах, дорогах и многих других сооружениях. Для обеспечения безопасности конструкций качество бетонного материала, особенно его прочность, имеет большое значение для строительной отрасли. Один из самых популярных способов оценки характеристик бетона — измерение его прочности на сжатие.Прочность на сжатие — один из наиболее важных критериев, используемых для проверки того, будет ли данная бетонная смесь соответствовать проектным требованиям. Прочность на сжатие обычно измеряется путем разрушения цилиндрических бетонных образцов в компрессорной машине. Эти образцы случайным образом отбираются из различных партий товарного бетона, доставленных на строительную площадку. Тем не менее, для существующих конструкций необходимо пробурить образцы керна, чтобы получить прочность бетона на сжатие в полевых условиях.Взятие образцов керна наносит определенный ущерб существующим конструкциям, а иногда невозможно отобрать образцы керна (например, когда вы не можете получить согласие владельца). В таких условиях для оценки прочности бетона на сжатие желательны альтернативные методы испытаний, такие как неразрушающие испытания. Среди неразрушающих испытаний бетона на прочность на сжатие в промышленности обычно используются испытания отбойным молотком (RH) и ультразвуковой импульсной скоростью (UPV). Основными преимуществами тестов RH и UPV являются их способность исследовать состояние бетонной конструкции, не вызывая повреждений (Shariati et al., 2011).

При испытании на относительную влажность подпружиненный стальной молоток прижимается к поверхности бетона. При отпускании молоток ударяет по бетону с заданным количеством энергии. Твердость бетона влияет на степень упругого отскока массы. Это расстояние отскока измеряется и используется для оценки прочности бетона (ASTM C805 / C805M — 18, 2020). В тесте UPV сначала измеряется скорость распространения импульсов продольной волны напряжения через бетон. Затем прочность бетона на сжатие оценивается с использованием измеренного UPV.UPV-тест проводится путем передачи ультразвуковых импульсов через испытуемый образец, а затем измеряется время, необходимое импульсу для прохождения через бетон. Более высокие скорости указывают на хорошее качество и целостность материала, а более низкие скорости могут указывать на трещины или пустоты в бетоне (ASTM C597 — 16, 2020). По сравнению с другими неразрушающими методами испытания на относительную влажность дешевле (с точки зрения испытательного оборудования), быстрее и проще в проведении (Hamidian et al., 2012). Кроме того, испытания на относительную влажность приняты Американским обществом испытаний и материалов (ASTM 805) (ASTM C597 — 16, 2020) и национальными стандартами Китая (CNS 10732) в качестве альтернативного способа оценки прочности бетона на сжатие.Таким образом, это исследование использует тесты относительной влажности для оценки прочности бетона на сжатие.

Как правило, измеренное расстояние отскока используется для оценки прочности бетона на сжатие либо с помощью таблицы преобразования, либо по формулам, предоставленным производителем. Тем не менее, несмотря на удобство, оценки прочности на сжатие по результатам испытаний на относительную влажность не очень точны, и сообщается в среднем более 20% средней абсолютной процентной ошибки (MAPE) (Huang et al., 2011). В свете этого, данное исследование пытается дополнительно изучить взаимосвязь между измерениями относительной влажности и фактической прочностью на сжатие.

В предыдущих исследованиях предпринимались попытки различных подходов к исследованию взаимосвязи между измерениями относительной влажности и фактической прочностью на сжатие. Для достижения этой цели многие исследователи применяют линейные и нелинейные статистические регрессии для улучшения оценки прочности бетона на сжатие в тесте RH (Hajjeh, 2012; Rojas-Henao et al., 2012; El Mir and Nehme, 2017; Xu and Li, 2018). ; Kocáb et al., 2019). Кроме того, некоторые исследователи успешно применили нетрадиционные статистические методы, такие как искусственные нейронные сети (ИНС), для улучшения оценок прочности бетона на сжатие в тестах на относительную влажность (Yılmaz and Yuksek, 2008; Iphar, 2012; Asteris and Mokos, 2019).Тем не менее, в большинстве исследований используются новые образцы кубов или цилиндров, полученные в лаборатории. В результате могут быть некоторые ограничения при применении результатов этих исследований к тестам на относительной влажности in situ. В свете этого данное исследование направлено на изучение взаимосвязи между показателями относительной влажности и фактической прочностью на сжатие для существующих конструкций. На месте Испытания на относительную влажность и отбор образцов керна проводятся на здании большого жилого комплекса. Для разработки моделей прогнозирования прочности на сжатие проводятся как традиционные (линейная / нелинейная регрессия), так и нетрадиционные (искусственный интеллект или ИИ) статистический анализ.Результаты исследования показывают, что, внедряя методы искусственного интеллекта в испытания RH, оценки прочности бетона на сжатие могут быть улучшены для in situ тестовых объектов. Следует отметить, что основное внимание в этом исследовании уделяется изучению взаимосвязи между измерениями относительной влажности на месте и прочностью бетона; поэтому природа самого теста на относительную влажность в данном исследовании не обсуждается.

Обзор литературы

Используя методы искусственного интеллекта, это исследование направлено на изучение взаимосвязи между результатами испытаний на месте при испытании RH и фактической прочностью бетона на сжатие.Во-первых, рассматриваются предыдущие исследования, связанные с испытаниями на относительную влажность и оценкой прочности бетона на сжатие. Затем проводится обзор литературы, связанной с методами искусственного интеллекта.

Испытание отбойным молотком

Когда меры разрушающего контроля неосуществимы, методы неразрушающего контроля были приняты в качестве альтернативы для изучения свойств строительных материалов. За прошедшие годы исследователи, использующие неразрушающие методы оценки свойств материалов, получили успешные результаты (Kumar et al., 2019). Для бетонного материала испытание на относительную влажность часто выбирают в качестве альтернативного метода неразрушающего контроля для оценки прочности на сжатие. Стандарты испытаний на относительную влажность установлены в разных странах и регионах, например, ASTM 805 в США (ASTM C805 / C805M — 18, 2020), BS 1881: часть 202 в Великобритании (Британский институт стандартов (BSI), 1986). , EN 12504-2 в Европе (Европейский комитет по нормализации (En), 2012) и CNS 10732 в Тайване, Национальные стандарты Китайской Республики, 1986.Тест на относительную влажность легко провести, и результаты теста можно получить практически мгновенно. Измерения относительной влажности можно использовать для оценки прочности бетона на сжатие с использованием таблицы преобразования или уравнения преобразования, предоставленного производителем прибора. Однако эти оценки прочности бетона на сжатие не очень точны при использовании измерений относительной влажности (Huang et al., 2011). Некоторые исследователи пытались улучшить оценки прочности бетона на сжатие путем введения факторов, отличных от значения относительной влажности, таких как соотношение вода: цемент, возраст и типы добавок (Atoyebi et al., 2019). Другие пытались использовать различные методы прогнозирования, чтобы лучше коррелировать значение относительной влажности с фактической прочностью на сжатие. Среди них традиционные статистические регрессии являются наиболее популярными методами, принятыми исследователями (Hajjeh, 2012; Rojas-Henao et al., 2012; El Mir and Nehme, 2017; Xu and Li, 2018; Kocáb et al., 2019). Сообщается, что в последние годы нетрадиционные методы статистической регрессии, такие как ИНС, дают лучшие оценки прочности на сжатие по сравнению с традиционными методами регрессии (Yılmaz and Yuksek, 2008; Iphar, 2012; Asteris and Mokos, 2020).В дополнение к традиционным методам регрессии и ИНС в этом исследовании также используются альтернативные методы искусственного интеллекта, поддержка векторной регрессии и адаптивные сетевые системы нечеткого вывода (ANFIS) для разработки конкретных моделей прогнозирования сжатия. Эти методы представлены в следующем разделе.

Методы искусственного интеллекта

В некоторых предыдущих исследованиях по оценке относительной влажности использовались традиционные статистические методы для корреляции измерений относительной влажности и прочности бетона на сжатие. Однако до сих пор результаты не были удовлетворительными (Qasrawi, 2000; Szilágyi et al., 2011; Brencich et al., 2013; Брейсс и Мартинес-Фернандес, 2014). В этом исследовании делается попытка использовать методы искусственного интеллекта для изучения взаимосвязи между измерениями относительной влажности и прочностью бетона на сжатие. В качестве приложения ИИ алгоритмы машинного обучения используют образцы данных для разработки (или обучения) математических моделей. Изучение выборки данных позволяет модели делать прогнозы без явного программирования (Bishop, 2006). Для этого исследования проводятся эксперименты с RH для получения выборочных данных для моделей прогнозирования машинного обучения.Среди различных методов машинного обучения для регрессии для разработки моделей прогнозирования выбраны ИНС, машины опорных векторов (SVM) и ANFIS. Для данного исследования эти методы были выбраны, потому что, как сообщается, ИНС, SVM и ANFIS успешно применялись во многих различных областях, таких как финансы, инженерия, медицина и производство. Результаты прогнозирования моделей с помощью этих методов искусственного интеллекта также превзошли традиционные методы статистической регрессии (Shirsath and Singh, 2010; Balabin, Lomakina, 2011; Yilmaz and Kaynar, 2011; Rezaeianzadeh et al., 2014).

На основании литературных данных, это исследование адаптирует методы регрессии AI для улучшения оценки прочности бетона на сжатие для испытаний на месте RH. В следующем разделе кратко представлены методы теста RH и регрессии AI.

Методология

Испытания на относительную влажность — популярные неразрушающие испытания для измерения твердости поверхности и сопротивления бетону проникновению. Измерения при испытаниях относительной влажности могут быть связаны с упругими свойствами или прочностью испытуемого объекта.При испытаниях на относительную влажность молоток сначала прижимается к бетонной поверхности (в данном исследовании это небольшие неструктурные балки). Затем подпружиненная масса молота ударяет с определенной энергией, а затем измеряется отскок. Измеренное значение отскока называется числом отскока. Путем обращения к таблице преобразования или уравнению, предоставленным производителем, прочность бетона на сжатие может быть затем оценена с использованием числа отскока. Для цифровой относительной влажности прочность на сжатие может быть рассчитана автоматически (Информация о, 2012 г.).RH указывает на твердость поверхности испытуемого объекта. При использовании RH для проверки прочности бетона на сжатие более низкое значение отскока получается для бетона с низкой прочностью и жесткостью из-за большего поглощения энергии (Brencich et al., 2013).

Для этого исследования исследовательская группа сначала провела испытания на относительную влажность неструктурных балок в подвале большого жилого комплекса. После испытаний на относительную влажность образцы керна были тщательно просверлены, а затем испытаны в лаборатории для получения фактической прочности на сжатие.Из-за деструктивного характера процесса колонкового бурения, данные испытаний на месте RH собрать трудно. Чтобы получить более надежные оценки прочности бетона, собираются данные по 100 образцам. Цифровой RH (Silver Schmidt Type N-PC) используется для этого исследования, как показано на рисунке 1. Цифровой молоток предлагает интуитивно понятное управление с помощью меню; электронная обработка данных; автоматическая коррекция тестовых позиций; и хранение тестовых данных (Информация о, 2012 г.). Этот инструмент выбран потому, что его точность и повторяемость улучшены по сравнению с традиционными молотками для испытаний бетона.Собранные данные затем используются для разработки и проверки регрессионных моделей ИИ.

РИСУНОК 1 . Отбойный молоток типа N-PC Silver Schmidt.

ИНС — это методы машинного обучения, основанные на биологических нейронных системах мозга. ИНС состоит из взаимосвязанных узлов (искусственных нейронов), и эти узлы могут принимать, обрабатывать и передавать сигналы искусственным нейронам, подключенным к ним. Каждый искусственный нейрон имеет взвешенные входы, одну передаточную функцию и один выход.Хотя отдельный нейрон может выполнять определенные простые задачи, реальная вычислительная мощность исходит от взаимосвязанных нейронов. Обычно эти взаимосвязанные нейроны объединяются во входной слой, скрытый слой (и) и выходной слой. Сигналы принимаются входным слоем, а затем передаются через скрытый слой (и) и выходной слой. Такие системы могут учиться на примерах, не будучи запрограммированными правилами для конкретных задач (Zupan and Gasteiger, 1991; Gurney, 2014). Типичная трехслойная нейронная сеть показана на рисунке 2 с одним входным слоем, одним скрытым слоем и одним выходным слоем.

РИСУНОК 2 . Трехслойные ИНС.

В скрытом слое нейроны получают сигналы активации от нейронов входного слоя. Сигнал активации, поступающий в каждый нейрон, представляет собой взвешенную сумму всех сигналов от входного слоя. Эта взвешенная сумма всех сигналов (также известная как сигнал активации) показана в формуле. 1. В формуле. 1, x j — сигнал активации, который принимает нейрон j в скрытом слое; I i — это i -й нейрон во входном слое, а W ij — вес связи между нейроном j в скрытом слое и нейроном входного слоя I i .После получения сигналов активации нейрон генерирует выходной сигнал с помощью заранее определенной функции активации. Одной из наиболее распространенных функций активации является сигмовидная функция, показанная в формуле. 2. В формуле. 2, x j — вход для нейрона j в скрытом слое, а h j — выход нейрона j . Сигмоидные функции преобразуют входные значения в выходные значения от 0 до 1.

Выходные данные нейронов скрытого слоя затем передаются на выходной уровень.Как показано в формуле. 3, h j — выход нейрона j и W jk — вес связи между нейронами j и k. y k — сигнал активации, полученный нейроном выходного слоя k , взвешенная сумма входов в нейрон выходного слоя k . На уровне вывода функция активации преобразует полученные сигналы активации и генерирует выходные данные нейронных сетей.Как показано в формуле. 4, o k — результат модели нейронной сети после преобразования сигмоидной функции. Для контролируемых нейронных сетей ошибка модели E ( W ) затем вычисляется путем сравнения желаемого (или фактического) значения d k и выходных данных модели o k , как рассчитано. в формуле. 5.

При разработке модели нейронной сети функция ошибок E ( W ) сводится к минимуму, чтобы найти наиболее подходящую модель.Одним из наиболее популярных методов минимизации ошибки является алгоритм обратного распространения (BP). В алгоритме BP ошибки, полученные на выходных слоях, распространяются назад на скрытый слой, а затем на входной уровень. Во время процесса BP обновляются веса связи между всеми нейронами в сетях. С обновленными весами выходной сигнал сети пересчитывается. Ошибка, полученная от обновленной нейронной сети, распространяется обратно для повторного обновления весов. Этот процесс повторяется для минимизации ошибки до тех пор, пока не будет найдена наиболее подходящая модель.

ИНС успешно применяются во многих областях исследований для прогнозирования. Некоторые исследователи успешно адаптировали ИНС для прогнозирования прочности бетона на сжатие с использованием входных переменных, таких как возраст, портландцемент, вода, песок, щебень, высокодисперсный водоредуцирующий агент и летучая зола (Topçu and Sarıdemir, 2008). В этом исследовании также используются ИНС для разработки модели прогнозирования прочности бетона.

SVM, впервые разработанные Вапником (2013), представляют собой контролируемые методы машинного обучения, основанные на теории статистического обучения.Как показано на рисунке 3, SVM сначала выполняют нелинейное отображение выборочных данных в пространство признаков более высокой размерности, а затем выборочные данные могут быть классифицированы с использованием линейной модели. Φ указывает функцию преобразования для нелинейного отображения.

РИСУНОК 3 . Отображение SVM более высокого измерения.

SVM были впервые разработаны для классификации; Drucker et al. далее предложил использовать концепции регрессии (Drucker et al., 1997), также известной как регрессия опорных векторов.Концепции регрессии опорных векторов кратко описаны ниже (Smola and Schölkopf, 2004).

Для данного набора данных D = {(xi, di)} in, x i — входной вектор, d i — желаемое (целевое) значение и n — размер набора данных. С помощью нелинейного отображения (Φ) входного вектора, нелинейная регрессия в пространстве более низкой размерности может быть затем представлена ​​линейной регрессией в пространстве признаков более высокой размерности, как показано в уравнении.6.

, где ω — вектор весов, Φ — пространство признаков более высокой размерности, а b — смещение.

Основные концепции регрессии опорного вектора — минимизация структурных рисков. Путем минимизации функции штрафа за риск можно получить ω и b , как показано ниже (Smola and Schölkopf, 2004):

RSVR (C) = C × 1n∑i − 1nLε (di, yi) + 12‖ω ‖2, (7)

где

Lε = {| d − y | −εif | d − y | ≥ε0, в противном случае, (8)

где C × 1 / n∑i − 1nLε (di, yi) — оценка риска на основе ( ε -нечувствительная функция потерь) в уравнении.7, y i — это цель, 1 / 2‖ω‖2 — это штрафная статья для оценки структурного риска, а C — штрафная константа.

Путем введения переменных запаса можно оценить ξ и ξ * , ω и b . Затем новая целевая функция отображается как.

Минимизировать

RSVM (ω, ξ (∗)) = C × 1n∑i − 1n (ξi + ξi ∗) + 12‖ω‖2 (9)

С учетом

di − ωφ (xi) −bi≤ε + ξiωφ (xi) + bi − di≤ε + ξi ∗ ξ (∗) ≥0 (10)

Множители Лагранжа, a i и a i * , затем может быть включена, и решающая функция SVM принимает вид

f (x, ai, ai ∗) = ∑i = 1n (ai − ai ∗) K (x, xi) + b (11)

Затем множители Лагранжа , a i и a i * , приняты в целевой функции штрафа, как показано ниже:

Максимизировать

R (ai, ai ∗) = ∑i = 1ndi (ai − ai ∗) — ε (ai + ai ∗) — 12∑i = 1n∑j = 1n (ai − ai ∗) (aj − aj ∗) K (x, xi) (12)

С учетом

∑i = 1n (ai − ai ∗) = 0,0≤ai≤Ci = 1,2 ,…, n0≤ai ∗ ≤Ci = 1,2, …, n (13)

Функция ядра, K ( x i , x j ), является внутреннее произведение x i и x j в соответствующих пространствах признаков ψ ( x i ) и ψ ( x j (xi, xj) = φ (xi) ∗ φ (xj).

По сравнению с ИНС, которые иногда критикуют как приближения черного ящика, регрессию опорных векторов можно теоретически проанализировать с помощью теории вычислительного обучения (Smola and Schölkopf, 2004; Anguita et al., 2010). Результаты нескольких исследований показали, что SVM могут обеспечивать лучшие результаты прогнозирования по сравнению с ANN (Kim, 2003; Huang et al., 2005). В результате в этом исследовании используется опорная векторная регрессия в качестве одного из методов прогнозирования ИИ при разработке модели.

ANFIS — это разновидность ИНС, основанная на системе нечеткого вывода Такаги – Сугено (Jang, 1993). Это гибридная интеллектуальная система, которая объединяет человеческий стиль рассуждений нечетких систем и структуру обучения нейронных сетей.Нечеткие правила «если – то» включаются в систему вывода, чтобы система могла научиться аппроксимировать нелинейные функции на основе выборочных данных. ANFIS основан на нечеткой модели Сугено первого порядка, предложенной Такаги и Сугено. Рассматривая две входные переменные (x и y) и одну выходную переменную (z), с нечеткой моделью Сугено, ANFIS включает алгоритмы обучения в ИНС для определения параметров в предпосылках и последующих частях нечетких правил (Abraham, 2005). . Структура модели ANFIS с двумя входными переменными (x и y) и одной выходной переменной (z) показана на рисунке 4.

РИСУНОК 4 . Модель ANFIS.

Функции каждого уровня в этой структуре ANFIS представлены ниже (Abdulshahed et al., 2015):

Уровень 1 — это входной уровень, который предназначен для фаззификации входных данных. На этом уровне входные переменные отображаются в нечеткие множества. Каждый узел представляет собой адаптивный узел с функцией узла.

O1, i = µAi (x) для i = 1, 2 (14) или O1, i = µBi (y) для i = 1,2 (15)

x и y являются входами для узла i ; O 1, i — это степень принадлежности для нечеткого множества A (функции принадлежности A1, A2) или нечеткого множества B (функции принадлежности B1, B2).Типичная колоколообразная функция принадлежности в этом слое может быть выражена как

мкА (x) = 11 + | x − ciai | 2bi (16)

В уравнении. 16, a , b и c — параметры для функции принадлежности u (x) . Эти параметры определяют форму функции принадлежности и называются параметрами предпосылки.

Уровень 2 — это уровень правил, который вычисляет произведение всех сигналов, поступающих на узлы. Каждый узел на этом уровне является фиксированным узлом, и выходные данные этого уровня являются произведением всех входящих сигналов или полученных от min (И) в нечетких наборах.Каждый узел представляет собой силу действия правила. Его можно вычислить как

O2, i = wi = µAi (x) µBi (y) для i = 1,2 (17) или O2, i = wi = min (µAi (x), µBi (y)) для i = 1,2 (18)

Третий уровень — это уровень нормализации, который нормализует силу стрельбы каждого узла. Каждый узел в этом слое также является фиксированным узлом, и выходной сигнал называется нормализованной активностью этого узла. Выходной сигнал узла i -й получается путем вычисления отношения силы стрельбы по правилу i -го к сумме мощностей стрельбы всех правил.Его можно вычислить как

O3, i = w¯ = wiw1 + w2 для i = 1, 2 (19)

Слой 4 — это слой вывода, который предназначен для дефаззификации. Каждый узел на этом уровне является адаптивным узлом. Он берет выходные данные из уровня 3 и затем умножает их на соответствующие параметры. Его можно рассчитать как

O4, i = w¯ifi = w¯i (pix + qiy + ri) (20)

В уравнении. 20, wi ¯ — нормализованная огневая сила из слоя 3, и { p i , q i , r i } являются соответствующими последующими параметрами для этого узла.

Уровень 5 — это выходной уровень, который вычисляет общий результат. В этом слое есть только один фиксированный узел. Он рассчитывает общий выход как сумму всех входящих сигналов и может быть выражен как

O5, i = ∑iw¯ifi = ∑iwifi∑iwi (21)

В структуре ANFIS параметры помещения обычно являются нелинейными, а соответствующие параметры обычно линейны. Это очень усложняет процесс оптимизации параметров. Джанг (Jang, 1993) предлагает гибридный алгоритм обучения для решения этой проблемы.Он включает в себя прямой и обратный процесс. В прямом проходе параметры предпосылки сначала фиксируются, и алгоритм использует метод наименьших квадратов для определения последующих параметров на уровне 4. После сравнения выходных данных модели и желаемых выходных данных и получения ошибок, ошибки распространяются обратно на первый уровень, и параметры предпосылки обновляются методом градиентного спуска в обратном проходе. Этот прямой / обратный процесс повторяется много раз, пока ошибки не попадут в пределы допуска.С момента своего появления ANFIS был принят для разработки моделей прогнозирования во многих различных исследовательских дисциплинах и способен давать хорошие результаты прогнозирования (Vural et al., 2009; Boyacioglu and Avci, 2010; Abdulshahed et al., 2015).

Основываясь на соответствующих исследованиях, в данном исследовании предпринимается попытка применить три метода искусственного интеллекта (ИНС, SVM и ANFIS) для дальнейшего изучения взаимосвязи между измерениями относительной влажности на месте и фактической прочностью бетона на сжатие.

Сбор данных

Для сбора данных исследователи сотрудничали с сертифицированной государством лабораторией по испытанию материалов и Китайской ассоциацией профессиональных инженеров-строителей.Испытания относительной влажности проводились на неструктурных балках в подвале большого жилого комплекса, как показано на Рисунке 5. Для единообразия все измерения с помощью молотков проводились одним и тем же персоналом. Тщательно соблюдались спецификации ASTM 805 и CNS 10732 для испытаний на относительную влажность. После испытаний на относительную влажность были взяты образцы керна для определения фактической прочности на сжатие. Чтобы ограничить структурное повреждение из-за образования керна, профессиональные инженеры тщательно выбрали места для проведения испытаний. Чертежи проекта были тщательно проверены, чтобы избежать появления арматуры в испытательных зонах.Перед проведением испытания участки для испытаний были повторно исследованы, чтобы избежать сильно текстурированных или мягких поверхностей или поверхностей с рыхлым строительным раствором. Цифровой правый датчик удерживали так, чтобы поршень располагался перпендикулярно испытуемой поверхности. Для каждой испытательной зоны было снято десять показаний, и все расстояния между точками удара превышали 25 мм. После каждого удара отпечаток, сделанный на поверхности, исследовался, чтобы увидеть, раздавил ли удар или пробил воздушную пустоту у поверхности. Если да, то показание не принималось во внимание и бралось другое показание.

РИСУНОК 5 . Испытание на месте отбойным молотком.

Чтобы получить фактическую прочность на сжатие, образцы керна были взяты в том же месте, а затем возвращены в лабораторию для испытаний на разрушающее сжатие. Чертежи проекта были тщательно изучены, и при определении мест проведения испытаний (в основном в средней трети секции балки) проконсультировались с профессиональными инженерами. Чтобы избежать повреждения арматуры, детекторы арматуры использовались для подтверждения местоположения арматуры до того, как началось бурение.Кроме того, сразу после бурения пустота была заполнена малоусадочным бетоном. Все колонковые бурения проводились одной и той же профессиональной командой из местной лаборатории по испытанию материалов. Все образцы керна были взяты и подготовлены в соответствии со спецификациями CNS 1238 A3051 (метод испытаний для получения и испытания пробуренных образцов керна из бетона). После бурения керна поверхностная вода была вытерта, и образец хранился в неабсорбирующем контейнере. Перед испытаниями на сжатие концы образцов керна распиливали так, чтобы они были плоскими и перпендикулярными продольной оси.Размер образцов для испытаний 7,5 Φ × 10 см.

Подвал в основном предназначен для парковки, и на момент проведения испытаний строительство здания приближалось к завершению. Всего для испытаний RH было выбрано 100 малых балок, и эти балки имеют одинаковые размеры (50 см в ширину и 70 см в глубину). Для каждого луча было выполнено в общей сложности 10 измерений относительной влажности в одном месте. Для проведения испытаний использовался электронный RH Silver Schmidt N-Type. После испытаний на относительную влажность образцы керна были взяты в тех же местах, что и на Рисунке 6.Испытания на относительную влажность, сбор образцов керна и испытания на сжатие проводились в течение 4 недель. Эти пробуренные образцы керна были доставлены обратно в лабораторию и тщательно обработаны после сверления. Для определения прочности на сжатие были проведены испытания на разрушающее сжатие на 200-тонной машине для испытания бетона на сжатие HT-8391. Собранные данные были использованы для разработки и тестирования моделей прогнозирования ИНС, SVM и ANFIS.

РИСУНОК 6 . Отбойный молоток и расположение образца керна.

Следует отметить, что перед проведением экспериментов исследовательская группа попросила владельца установки подписать конфиденциальное соглашение. В результате общественности может быть раскрыта только ограниченная информация о результатах исследования. Описательная статистика испытаний на относительную влажность и испытаний на прочность на сжатие образцов керна представлена ​​в Таблице 1.

ТАБЛИЦА 1 . Сводка результатов испытаний отбойного молотка и образца керна.

Разработка и проверка модели

Для этого исследовательского анализа было собрано 100 данных тестовых образцов RH.Данные используются для разработки и проверки моделей прогнозирования регрессии и искусственного интеллекта (ИНС, SVM и ANFIS). Среди 100 образцов 80 из них случайным образом выбираются в качестве обучающего набора данных, а оставшиеся 20 образцов назначаются как набор тестовых данных. Для согласованности все модели прогнозирования используют одни и те же 80 случайно выбранных выборок для разработки моделей, а те же 20 выборок используются для проверки моделей.

Некоторые исследователи включили дополнительные факторы (такие как соотношение вода: цемент, размер заполнителя и возраст) в качестве входных переменных в свои модели прогнозирования.Тем не менее получить эти свойства для существующих конструкций сложно (иногда невозможно). Таким образом, это исследование использовало только измерения относительной влажности в качестве входных данных для модели. Для каждого места испытаний было проведено в общей сложности 10 измерений отскока, как показано на Рисунке 6. Эти измерения сначала были записаны в испытательном молотке, а затем были рассчитаны средние значения и стандартные отклонения. Все модели, предложенные в этом исследовании, имеют две входные переменные (среднее и стандартное отклонение измерений относительной влажности) и одну выходную переменную (фактическая прочность бетона на сжатие).Что касается меры точности предсказания модели, это исследование использует MAPE для сравнения точности предсказания между предложенными моделями. MAPE широко используются для оценки точности прогнозов для моделей искусственного интеллекта (Nurcahyo, Nhita, 2014; Priya, Iqbal, 2015; Ramasamy et al., 2015). MAPE рассчитывается с использованием следующего уравнения:

MAPE = 1n∑i = 1n | Ai − PiAi | (22)

, где A i — фактическая прочность на сжатие, P i — модель вывод, а n — общее количество данных.

В дополнение к MAPE, среднеквадратичная ошибка (RMSE) также вычисляется в качестве альтернативного измерения прогнозирования для моделей. По сравнению с MAPE, RMSE подчеркивает большие ошибки, как показано в следующем уравнении:

RMSE = 1n∑i = 1n (Ai-Pi) 2 (23)

Кроме того, учтенная дисперсия (VAF) между фактическим (желаемым) значением и прогноз модели (выход) также рассчитывается с использованием следующего уравнения (Kumar et al., 2013):

VAF = (1-var (A-P) Var (A)) × 100% (24)

Если выходные значения все равны желаемым значениям, MAPE и RMSE равны 0; VAF равен 100%.

Регрессионные модели

Во-первых, диаграммы рассеяния собранных данных строятся и исследуются на предмет возможных взаимосвязей между средними измерениями относительной влажности и фактической прочностью на сжатие. Затем проводятся простые линейные и нелинейные регрессии, чтобы увидеть, могут ли простые регрессионные модели дать хорошие результаты прогнозирования. Случайно выбранные 80 обучающих данных используются для разработки моделей линейной и нелинейной регрессии, как показано на рисунках 7, 8.

РИСУНОК 7 . Диаграмма рассеяния линейной регрессии.

РИСУНОК 8 . Диаграмма рассеяния нелинейной регрессии.

Полученная функция линейной регрессии равна

. Для модели линейной регрессии MAPE, полученное из данных обучения, составляет 17,88%, а RMSE составляет 90,81 кгс / см 2 .

Полученная функция нелинейной регрессии:

y = 181,38 e0,0182 x (26)

Для модели нелинейной регрессии MAPE, полученное из данных обучения, составляет 16,62%, а RMSE составляет 92,4 кгс / см 2 .

После получения уравнений регрессии оставшиеся 20 данных тестирования используются для проверки моделей регрессии.Средние значения отскока из набора данных испытаний вводятся в уравнения для получения прогнозов прочности бетона на сжатие. Затем результаты прогноза сравниваются с фактической прочностью на сжатие, полученной в результате испытаний на разрушающее сжатие образца керна. MAPE, VAF и RMSE, рассчитанные для модели линейной регрессии, составляют 15,67%, 21,58% и 103,07 кгс / см 2 соответственно. Для моделей нелинейной регрессии полученные MAPE, VAF и RMSE составляют 16,75%, 19,13% и 110.79 кгс / см 2 соответственно.

Результаты прогноза показывают, что как модели линейной, так и нелинейной регрессии имеют MAPE более 15%. Аналогичные результаты наблюдаются в других исследованиях, указывающих на то, что традиционные методы линейной и нелинейной регрессии могут не дать хороших результатов прогнозирования (Wei, 2012; Mishra et al., 2019). Для повышения точности прогнозирования в этом исследовании предлагаются альтернативные модели прогнозирования, основанные на методах искусственного интеллекта (ИНС, SVM и ANFIS).

Модели искусственных нейронных сетей

В данном исследовании используется NeuroSolutions 7.0 для разработки модели сети BP (BPN) для оценки прочности бетона на сжатие. В процессе разработки модели ИНС изучаются такие параметры, как количество скрытых слоев, количество нейронов в каждом слое, тип передаточных функций и правила обучения, чтобы получить лучшие модели прогнозирования. Для этого исследования разработаны модели ИНС как с одним, так и с двумя скрытыми слоями. Также исследуются разное количество нейронов в каждом слое, передаточные функции и правила обучения. Другими словами, применяется метод проб и ошибок, чтобы получить лучшую настройку параметров модели.Пожалуйста, обратитесь к Таблице 2 для получения подробной информации о настройке параметров модели ИНС.

ТАБЛИЦА 2 . Настройка модели ИНС.

В наборе обучающих данных 80 образцов (включая 10 образцов перекрестной проверки) и 20 образцов в наборе данных тестирования. Чтобы найти лучшую модель прогнозирования ИНС, параметры ИНС исследуются методом проб и ошибок. После нескольких испытаний было обнаружено, что лучшие результаты (меньшие ошибки обучения) получаются при использовании передаточной функции «TanhAxon» и правила обучения «Levenberg-Marquardt» (LM).Передаточная функция TanhAxon применяет функцию смещения и tanh к каждому нейрону в слое. Это сокращает диапазон каждого нейрона в слое до значений от -1 до 1. Алгоритм LM является стандартной техникой для нелинейных задач наименьших квадратов и может рассматриваться как комбинация наискорейшего спуска и метода Гаусса-Ньютона.

Наилучшие результаты обучения, полученные из сети с одним скрытым слоем, составляют от 2 до 5-1 (два входа, пять элементов процесса в скрытом слое и один выход) модели ИНС.Полученные MAPE и RMSE составляют 16,82% и 101,21, соответственно, из набора обучающих данных. Эта модель проверена на 20 образцах с использованием набора данных тестирования. MAPE, VAF и RMSE, полученные из модели ИНС с одним скрытым слоем, составляют 14,77%, -33,88% и 92,67, соответственно, при проверке с данными тестирования.

Модели ИНС с двумя скрытыми слоями также разрабатываются с использованием того же набора обучающих данных. Изучены различные настройки параметров, чтобы уменьшить ошибки обучения. Наилучшие результаты обучения, полученные от сети с двумя скрытыми слоями, относятся к модели ИНС от 2-5 до 5-1 (два входа, пять элементов процесса в первом и втором скрытых слоях и один выход).Соответствующие MAPE и RMSE, полученные из обучающих данных, составляют 11,9% и 85,36 ​​соответственно, что ниже, чем для модели с одним скрытым слоем. Ошибки обучения и проверки для этой модели ИНС показаны на рисунке 9.

РИСУНОК 9 . Ошибка обучения и проверки модели ИНС (2-5-5–1).

Затем модель с двумя скрытыми слоями проверяется на 20 образцах из набора данных тестирования. MAPE, VAF и RMSE, полученные из данных тестирования, составляют 12,37%, -30,68% и 88.45 соответственно, что также ниже, чем у модели с одним скрытым слоем. Желаемые значения (фактическая прочность на сжатие) и выходные данные модели представлены на диаграмме рассеяния, как показано на рисунке 10. Если выходные данные модели равны желаемому значению, они должны попадать на красную линию. На Рисунке 11 также представлена ​​линейная диаграмма желаемой и выходной прочности на сжатие модели. Чтобы лучше понять отдельные ошибки между желаемыми значениями и выходными данными модели, на рисунке 12 представлена ​​остаточная гистограмма тестовых выборок.

РИСУНОК 10 . Диаграмма рассеяния модели ИНС (2-5-5–1).

РИСУНОК 11 . Линейный график модели ИНС (2-5-5–1).

РИСУНОК 12 . Остаточная гистограмма модели ИНС (2-5-5–1).

Из вышесказанного можно заметить, что в большинстве случаев прогнозируемые значения (выходы модели) меньше желаемых значений. Это указывает на то, что эта модель ИНС имеет тенденцию к недооценке. Кроме того, имеется 10 образцов с остатками более 50 кгс / см 2 , что может способствовать низкой точности прогноза.Результаты обучения и тестирования моделей ИНС с одним и двумя скрытыми слоями приведены в таблице 3.

ТАБЛИЦА 3 . Результаты модели ИНС.

Модели регрессии опорных векторов

В данном исследовании используется SVM наименьших квадратов (LSSVM) в Matlab R2018a для разработки модели регрессии опорных векторов. Те же 80 обучающих данных, которые использовались при разработке модели ИНС, используются для разработки регрессионной модели LSSVM.

Для регрессионных моделей SVM обычно существует четыре типа функций ядра: линейные, полиномиальные, сигмоидальные и ядра радиальной базисной функции (RBF).Среди них RBF благоприятен своей способностью справляться с нелинейностью и высокоразмерными вычислениями, а также эффективностью снижения сложности входных данных путем корректировки C и γ (Hsu et al., 2003), где C — стоимость функции потерь SVM с мягким запасом, а гамма — это свободный параметр RBF. Для этого исследования параметры регрессии опорных векторов получены методом проб и ошибок. Различные значения C и γ исследуются для получения наилучшей модели SVM с набором обучающих данных, как показано в таблице 4.

ТАБЛИЦА 4 . Настройки параметров SVM и ошибка обучения.

Из таблицы 4, наилучшее обучающее MAPE, полученное для модели SVM, составляет 15,13%, а соответствующие значения C и γ равны 2 и 5000 соответственно.

Затем эта модель проверяется на 20 образцах из набора данных тестирования. Желаемые значения (фактическая прочность на сжатие) и выходные данные опорной векторной регрессионной модели представлены на диаграмме рассеяния, как показано на рисунке 13. Красная линия указывает на 100% точность прогноза.MAPE, VAF и RMSE, полученные для этой модели регрессии поддержки, составляют 16,08%, 6,05% и 99,05 соответственно. Линейная диаграмма желаемой прочности на сжатие и выходной прочности модели представлена ​​на рисунке 14. Гистограмма остатков тестовых образцов представлена ​​на рисунке 15. Результаты показывают, что регрессионная модель опорного вектора не так точна по сравнению с моделью ИНС.

РИСУНОК 13 . Диаграмма рассеяния модели опорной векторной регрессии

РИСУНОК 14 .Линейный график модели регрессии вектора поддержки.

РИСУНОК 15 . Поддержка гистограммы остатков модели векторной регрессии.

Адаптивные сетевые модели нечеткого вывода

Модель ANFIS разработана в среде Matlab 2018a. Те же 80 обучающих выборок, которые использовались при разработке моделей ИНС и SVM, также используются для разработки модели ANFIS. При разработке моделей ANFIS исследователи могут выбирать различное количество и типы функций принадлежности. Исследователи разработали три различных набора моделей (модели с тремя, пятью и восемью функциями принадлежности).Для каждой настройки функции принадлежности в Matlab 2018 есть восемь различных типов на выбор: треугольный (trimf), трапециевидный (trapmf), обобщенный колоколообразный (gbell), гауссовский (gauss1), гауссовский (gauss2), pi-образный. (pimf), разница между двумя сигмоидальными функциями (dsigmf) и произведение двух сигмоидальных функций принадлежности (psigmf). Каждый из них опробован при разработке модели ANFIS, чтобы найти лучшие результаты прогнозирования.

В настройке модели уровень допуска установлен на 0, а обучение настроено на повторение 1000, 2000 и 3000 раз.Диаграмма ошибок обучения для модели с тремя сигмовидными функциями принадлежности (dsigmf) показана на рисунке 16.

РИСУНОК 16 . Ошибка обучения модели ANFIS.

Модели ANFIS с тремя, пятью и восемью функциями принадлежности разработаны с использованием различных типов функций принадлежности. Модели, которые дают наилучшие результаты обучения, приведены в Таблице 5. Для моделей с тремя функциями принадлежности ([3, 3]) лучший MAPE, 10,45%, достигается с помощью сигмоидальных функций принадлежности (dsigmf).Для моделей с пятью функциями принадлежности ([5, 5]) лучший MAPE, 10,10%, получается с трапецеидальными функциями принадлежности (trapmf). Для моделей с восемью функциями принадлежности ([8, 8]) наилучшее значение MAPE, 9,11%, достигается с функцией принадлежности trapmf.

ТАБЛИЦА 5 . Результаты обучения модели ANFIS.

После того, как лучшая обучающая модель ([8, 8], функция принадлежности trapmf) определена, оставшиеся 20 тестовых образцов (невидимые для модели данные) используются для получения прогнозов прочности бетона на сжатие.Желаемые значения (фактическая прочность на сжатие) и выходные данные опорной векторной регрессионной модели представлены на диаграмме рассеяния, как показано на рисунке 17. Линейная диаграмма желаемых выходных данных и выходных данных модели ANFIS представлена ​​на рисунке 18. Представлена ​​гистограмма остатков для тестовых образцов. на рисунке 19. Полученные значения MAPE, VAF и RMSE составляют 10,01%, -58,58% и 62,46 соответственно.

РИСУНОК 17 . Диаграмма рассеяния модели ANFIS

РИСУНОК 18 . Линейный график модели ANFIS.

РИСУНОК 19 . Остаточная гистограмма модели ANFIS.

Результаты прогноза показывают, что MAPE в наборах данных для обучения и тестирования, полученных из трех моделей на основе ИИ, лучше, чем 20% MAPE, наблюдаемые в ходе предыдущих исследований. Среди них модель ANFIS дает лучшую точность прогнозов как с самым низким обучающим MAPE (9,11%), так и с тестированием MAPE (10,01%).

Чтобы проверить надежность результатов прогноза, K-кратная перекрестная проверка используется для тестирования модели ANFIS.При K-кратной перекрестной проверке часть доступных данных используется для разработки модели, а другая часть данных используется для ее тестирования. K-кратная перекрестная проверка также известна как перекрестная проверка с исключением по одному (Hastie et al., 2009). Для этого исследования данные разделены на пять частей равного размера. В каждой из пяти частей по 20 сэмплов, всего 100 сэмплов. Сначала выбираются четыре части для разработки модели прогнозирования, а пятая часть используется для вычисления ошибки прогнозирования.Затем для разработки модели выбираются еще четыре части, а оставшаяся часть используется для тестирования модели. Этот процесс повторяется пять раз, пока все пять частей не будут использованы для тестирования модели прогнозирования. Среднее значение MAPE и стандартное отклонение пятикратной перекрестной проверки составляют 9,90% и 2,28% соответственно. Среднее значение RMSE и стандартное отклонение пятикратной перекрестной проверки составляют 58,67 и 8,93 соответственно. Этот результат показывает, что с различными комбинациями данных обучения и тестирования модели ANFIS могут обеспечивать согласованную точность прогнозов.

Таким образом, это исследование собрало в общей сложности 100 данных испытаний относительной влажности и керна на месте для разработки конкретных моделей оценки сжатия. Из них 80 образцов были случайным образом отобраны для обучения моделей, а оставшиеся 20 образцов были использованы для проверки модели. Сначала были разработаны и протестированы модели линейной и нелинейной регрессии. Точности прогноза прочности на сжатие (измеренные с помощью MAPE), полученные из моделей линейной и нелинейной регрессии, составляют 15,66 и 16.75%, соответственно, что не показывает значительного улучшения по сравнению с предыдущими исследованиями. Впоследствии модели на основе ИИ (ИНС, SVM и ANFIS) были разработаны и проверены с использованием тех же наборов данных для обучения и тестирования. Для каждой модели были исследованы различные параметры модели, чтобы добиться более низкой ошибки обучения и более высокой точности прогнозирования. Среди этих моделей модель ANFIS дала лучшие результаты обучения и тестирования с самыми низкими MAPE для обучения и тестирования — 9,11 и 10,01% соответственно.Результаты разработки и проверки модели в результате этого исследования приведены в таблице 6. Из таблицы 6 можно заметить, что как модели ANN, так и ANFIS способны генерировать более высокую точность прогнозов по сравнению с традиционными моделями линейной и нелинейной регрессии. Подобно результатам исследования Вэй (Wei, 2012), модель ANFIS может давать самые низкие ошибки прогноза при использовании измерения относительной влажности для измерения прочности бетона на сжатие.

ТАБЛИЦА 6 . Сводка результатов проверки модели.

Выводы и рекомендации

Для дальнейшего изучения взаимосвязи между измерениями при испытании RH на месте и фактической прочностью бетона на сжатие, в этом исследовании используются методы искусственного интеллекта для разработки моделей прогнозирования прочности бетона на сжатие. Всего в большом жилом комплексе собрано 100 тестовых данных. Собранные данные используются для разработки и проверки традиционных регрессионных моделей, а также моделей на основе ИИ (модели ANN, SVM и ANFIS).Для традиционных регрессионных моделей MAPE, рассчитанные для линейной и нелинейной моделей, составляют 15,66 и 16,75% соответственно. Для модели ИНС наилучшие результаты прогнозирования получаются для сети с двумя скрытыми уровнями (2-5–5-1), а полученное значение MAPE составляет 12,37%. Для модели регрессии опорного вектора наилучшее полученное значение MAPE составляет 16,08%. Соответствующие параметры для лучшей регрессионной модели опорного вектора: C = 2 и γ = 5000. Для этого исследования модель ANFIS дает наилучшую точность прогнозов с MAPE, равным 10.01%, когда модель проверена с использованием данных тестирования. Этот результат получается из модели ANFIS с восемью функциями принадлежности для двух входных переменных ([8, 8]), а тип функции принадлежности — trapmf. Также проводится K-кратная перекрестная проверка, и результаты показывают, что модель ANFIS имеет последовательные ошибки прогнозирования при проверке с различными данными. Результаты исследования показывают, что методы искусственного интеллекта могут быть использованы для разработки моделей прогнозирования прочности бетона на сжатие с использованием результатов испытаний на месте RH.Точность прогнозов выше по сравнению с результатами предыдущих исследований.

Следует отметить, что измерения относительной влажности в значительной степени связаны с ближней поверхностью тестового объекта. Поэтому рекомендуется комбинировать испытания RH с другими методами неразрушающего контроля (такими как испытания UPV) для улучшения оценок прочности бетона на сжатие. Результаты исследований показали, что метод SonReb (тест UPV + RH) (Rilem Report TC43-CND, 1993) может улучшить оценки прочности бетона при неразрушающем контроле (Nobile, 2015; Rashid and Waqas, 2017; Pereira and Romão, 2018).Для этого исследования результаты получены из 100 собранных данных. Для повышения надежности предлагается собрать больше выборочных данных для разработки и проверки модели.

Заявление о доступности данных

Наборы данных, представленные в этой статье, недоступны, поскольку конфиденциальные соглашения подписываются до того, как авторам будет разрешено проводить эксперименты. Запросы на доступ к наборам данных следует направлять по адресу [email protected].

Заявление об этике

Письменное информированное согласие было получено от лица (лиц) на публикацию любых потенциально идентифицируемых изображений или данных, включенных в эту статью.

Вклад авторов

Y-RW разработал представленную идею, руководил экспериментами и анализом. Y-LL и D-LC провели эксперимент, разработали модели и проанализировали данные. Y-RW взял на себя инициативу в написании рукописи с помощью Y-LL и D-LC.

Конфликт интересов

Авторы заявляют, что исследование проводилось в отсутствие каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Благодарности

Этот материал основан на работе, поддержанной Министерством науки и технологий Тайваня в рамках гранта №. МОСТ 103-2221-Е-151-053.

Ссылки

Абдулшахед А. М., Лонгстафф А. П. и Флетчер С. (2015). Применение прогнозных моделей ANFIS для компенсации тепловых ошибок на станках с ЧПУ. Заявл. Soft Comput. 27, 158–168. DOI: 10.1016 / j.asoc.2014.11.012.

CrossRef Полный текст | Google Scholar

Abraham, A.(2005). Адаптация системы нечеткого вывода с использованием нейронного обучения. Stud. Мягкое вычисление нечеткости. 181, 53–83. DOI: 10.1007 / 11339366_3.

CrossRef Полный текст | Google Scholar

Anguita, D., Ghio, A., Greco, N., Oneto, L., and Ridella, S. (2010). «Выбор модели для опорных векторных машин: преимущества и недостатки теории машинного обучения», в Международной совместной конференции по нейронным сетям (IJCNN) 2010 г., Барселона, Испания, 18–23 июля 2010 г. (IEEE), 1–8.

Google Scholar

Asteris, P. G., and Mokos, V. G. (2019). Прочность бетона на сжатие с использованием искусственных нейронных сетей. Neural Comput. Applc. 32, 11807–11826. doi: 10.1007 / s00521-019-04663-2

CrossRef Полный текст | Google Scholar

Атоэби, О. Д., Аянринде, О. П., и Олувафеми, Дж. (2019). Сравнение надежности отбойного молотка Шмидта в качестве неразрушающего испытания с испытаниями на прочность на сжатие для различных бетонных смесей. J. Phys.Конф. 1378 (3), 032096. DOI: 10.1088 / 1742-6596 / 1378/3/032096.

CrossRef Полный текст | Google Scholar

Балабин Р. М., Ломакина Е. И. (2011). Поддержка векторной машинной регрессии (SVR / LS-SVM) — альтернатива нейронным сетям (ИНС) для аналитической химии? Сравнение нелинейных методов по данным спектроскопии в ближней инфракрасной области (NIR). Аналитик 136 (8), 1703–1712. DOI: 10.1039 / c0an00387e.

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бишоп, К.М. (2006). Распознавание образов и машинное обучение . Берлин, Германия: Springer.

Google Scholar

Boyacioglu, M. A., and Avci, D. (2010). Адаптивная сетевая система нечеткого вывода (ANFIS) для прогнозирования доходности фондового рынка: пример Стамбульской фондовой биржи, Expert Syst. Прил. 37 (12), 7908–7912. DOI: 10.1016 / j.eswa.2010.04.045.

CrossRef Полный текст | Google Scholar

Brencich, A., Cassini, G., Pera, D., and Riotto, G.(2013). Калибровка и надежность испытания молотком отскока (Шмидта). Civil Eng. Arch. 1 (3), 66–78. DOI: 10.13189 / cea.2013.010303

Google Scholar

Брейсс, Д., и Мартинес-Фернандес, Дж. Л. (2014). Оценка прочности бетона с помощью отбойного молотка: обзор ключевых вопросов и идей для более надежных выводов. Mater. Struct. 47 (9), 1589–1604. DOI: 10.1617 / s11527-013-0139-9.

CrossRef Полный текст | Google Scholar

Британский институт стандартов (BSI) (1986). Испытание бетона — Часть 202: Рекомендации по испытанию твердости поверхности отбойным молотком . BS 1881-202

Google Scholar

Друкер, Х., Берджес, К. К., Кауфман, Л., Смола, А. Дж., И Вапник, В. (1997). «Поддержка машин векторной регрессии» в Достижения в системах обработки нейронной информации . М., Мозер М., Джордан и Т. Петше (Кембридж, Массачусетс: MIT Press), 155–161.

Google Scholar

Эль-Мир, А., и Нехме, С. Г. (2017). Повторяемость отскока поверхностной твердости бетона при изменении параметров бетона. Construct. Строить. Матер. 131, 317–326. DOI: 10.1016 / j.conbuildmat.2016.11.085.

CrossRef Полный текст | Google Scholar

Европейский комитет по нормализации (En) (2012). Испытание бетона в конструкциях — Часть 2: неразрушающий контроль — определение числа отскока . EN 12504-2: 2012

Google Scholar

Герни, К. (2014). Введение в нейронные сети . Бока-Ратон, Флорида: Пресса CRC.

Google Scholar

Hajjeh, H.Р. (2012). Корреляция между разрушающей и неразрушающей прочностью бетонных кубов с использованием регрессионного анализа. Contemp. Англ. Sci. 5 (10), 493–509.

Google Scholar

Хамидиан, М., Шариати, А., Хануки, М.А., Синаи, Х., Тогроли, А., и Нури, К. (2012). Применение отбойного молотка Шмидта и ультразвуковых методов измерения скорости пульса для мониторинга состояния конструкций. Sci. Res. Очерки 7 (21), 1997–2001. doi: 10.5897 / SRE11.1387

CrossRef Полный текст | Google Scholar

Hastie, T., Тибширани Р. и Фридман Дж. (2009). Элементы статистического обучения: интеллектуальный анализ данных, вывод и прогнозирование . Берлин, Германия: Springer Science & Business Media.

Google Scholar

Hsu, C. W., Chang, C. C., and Lin, C. J. (2003). Практическое руководство по классификации векторов . Tech. Представитель Департамента компьютерных наук, Национальный университет Тайваня.

Google Scholar

Хуанг, В. Л., Чанг, К. Ю., Чен, В. К., и Мы, К.Н. (2011). Использование ИНС для повышения точности прогнозов отбойных молотков. Тайваньское дорожное строительство 37 (2), 2–18.

Google Scholar

Хуанг В., Накамори Ю. и Ван С.-Й. (2005). Прогнозирование направления движения фондового рынка с помощью машины опорных векторов. Comput. Опер. Res. ,; 32 (10), с. 2513–2522. DOI: 10.1016 / j.cor.2004.03.016.

CrossRef Полный текст | Google Scholar

Ифар, М. (2012). Модели прогнозирования характеристик ANN и ANFIS для гидравлических ударных молотов. Tunn. Undergr. Space Technol. 27 (1), 23–29. DOI: 10.1016 / j.tust.2011.06.004.

CrossRef Полный текст | Google Scholar

Jang, J.-S. Р. (1993). ANFIS: система нечеткого вывода на основе адаптивных сетей. IEEE Trans. Syst. Мужчина. Киберн. 23 (3), 665–685. DOI: 10.1109 / 21.256541.

CrossRef Полный текст | Google Scholar

Ким, К. Дж. (2003). Прогнозирование финансовых временных рядов с использованием опорных векторных машин. Нейрокомпьютеры 55 (1-2), 307–319.DOI: 10.1016 / s0925-2312 (03) 00372-2.

CrossRef Полный текст | Google Scholar

Коджаб Д., Мисак П. и Цикрле П. (2019). Характеристическая кривая и ее использование для определения прочности бетона на сжатие посредством испытания ударным молотком. Материалы 12 (17), 2705. doi: 10.3390 / ma12172705.

CrossRef Полный текст | Google Scholar

Кумар Б. Р., Вардхан Х., Говиндарадж М. и Виджай Г. С. (2013). Регрессионный анализ и модели ИНС для прогнозирования свойств горных пород на основе уровней звука, производимого во время бурения. Внутр. J. Rock Mech. Мин. Sci. 58, 61–72. doi: 10.1016 / j.ijrmms.2012.10.002

CrossRef Полный текст | Google Scholar

Кумар, К. В., Вардхан, Х., и Мурти, К. С. (2019). Модель множественной регрессии для прогнозирования свойств горных пород с использованием акустической частоты во время операций колонкового бурения. Геомеханика и геоинженерия 15, 1–16. doi: 10.1080 / 17486025.2019.1641631

CrossRef Полный текст | Google Scholar

Mishra, M., Bhatia, A. S., and Maity, D.(2019). Сравнительное исследование регрессии, нейронной сети и нейронечеткой системы вывода для определения прочности на сжатие кирпичной кладки путем объединения данных неразрушающего контроля. Eng. Вычислить . DOI: 10.1007 / s00366-019-00810-4.

CrossRef Полный текст | Google Scholar

Нобиле, Л. (2015). Прогноз прочности бетона на сжатие комбинированными неразрушающими методами. Meccanica 50 (2), 411–417. DOI: 10.1007 / s11012-014-9881-5.

CrossRef Полный текст | Google Scholar

Нуркахио, С., и Нхита, Ф. (2014). «Прогнозирование количества осадков в кемайоране, Джакарта с использованием гибридного генетического алгоритма (ga) и частично подключенной нейронной сети прямого распространения (pcfnn)», 2-я Международная конференция по информационным и коммуникационным технологиям (ICoICT). Бандунг, Индонезия, 28–30 мая 2014 г., стр. 166–171.

Google Scholar

Перейра, Н., и Ромао, X. (2018). Оценка изменчивости прочности бетона в существующих конструкциях по результатам неразрушающего контроля. Construct. Строить. Матер. 173, 786–800.DOI: 10.1016 / j.conbuildmat.2018.04.055.

CrossRef Полный текст | Google Scholar

Прия, С.С., Икбал, М.Х. (2015). Прогноз солнечной радиации с помощью искусственной нейронной сети. Внутр. J. Comput. Прил. 116 (16), стр. 28–31. doi: 10.5120 / 20422-2722

CrossRef Полный текст | Google Scholar

Qasrawi, H. Y. (2000). Прочность бетона комбинированными неразрушающими методами просто и надежно предсказывается. Цемент Конкр. Res. 30 (5), 739–746. DOI: 10.1016 / с0008-8846 (00) 00226-х.

CrossRef Полный текст | Google Scholar

Рамасами П., Чандель С. С. и Ядав А. К. (2015). Прогноз скорости ветра в горном районе Индии с использованием модели искусственной нейронной сети. Обновить. Энергия 80, 338–347. DOI: 10.1016 / j.renene.2015.02.034.

CrossRef Полный текст | Google Scholar

Рашид К. и Вакас Р. (2017). Оценка прочности на сжатие неразрушающими методами: автоматизированный подход в строительстве. J.Build. Англ. 12, 147–154. DOI: 10.1016 / j.jobe.2017.05.010.

CrossRef Полный текст | Google Scholar

Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., and Kalin, L. (2014). Прогнозирование паводков с использованием ИНС, ANFIS и регрессионных моделей. Neural Comput. Прил. 25 (1), 25–37. DOI: 10.1007 / s00521-013-1443-6.

CrossRef Полный текст | Google Scholar

Рекомендация RILEM. (1993). Проект рекомендаций по определению прочности монолитного бетона комбинированными неразрушающими методами. Mater. Struct , 26, 43–49.

Google Scholar

Рохас-Энао, Л., Фернандес-Гомес, Дж., И Лопес-Аги, Дж. К. (2012). Отбойный молоток, скорость пульса и испытания керна в самоуплотняющемся бетоне. ACI Mater. J. 109 (2), 235–243. DOI: 10.14359 / 51683710

Google Scholar

Шариати, М., Рамли-Сулонг, Н. Х., Х., М. М. А., Шафиг, П. и Синаи, Х. (2011). Оценка прочности железобетонных конструкций с помощью ультразвуковых импульсов и испытаний отбойным молотком Шмидта. Sci. Res. Очерки 6 (1), 213–220. doi: 10.5897 / SRE10.879

CrossRef Полный текст | Google Scholar

Ширсат П. Б. и Сингх А. К. (2010). Сравнительное исследование суточной оценки испарения с использованием ИНС, регрессионных и климатических моделей. Водные ресурсы. Manag. 24 (8), 1571–1581. DOI: 10.1007 / s11269-009-9514-2.

CrossRef Полный текст | Google Scholar

Смола, А. Дж., И Шёлкопф, Б. (2004). Учебник по опорной векторной регрессии. Stat. Comput. 14 (3), 199–222. DOI: 10.1023 / b: stco.0000035301.49549.88.

CrossRef Полный текст | Google Scholar

Szilágyi, K., Borosnyói, A., and Zsigovics, I. (2011). Поверхностная твердость бетона отскока: введение эмпирической конститутивной модели. Construct. Строить. Матер. 25 (5), 2480–2487. DOI: 10.1016 / j.conbuildmat.2010.11.070.

CrossRef Полный текст | Google Scholar

Национальные стандарты Китайской Республики (1986). Национальные стандарты Китая (CNS). Методы испытания числа отскока затвердевшего бетона . CNS 10732-1984, Тайвань: CNS

Google Scholar

Topçu, İ. Б. и Саридемир М. (2008). Прогнозирование прочности на сжатие бетона, содержащего летучую золу, с использованием искусственных нейронных сетей и нечеткой логики. Comput. Матер. Sci. 41 (3), 305–311. DOI: 10.1016 / j.commatsci.2007.04.009.

CrossRef Полный текст | Google Scholar

Вапник, В. (2013). Природа теории статистического обучения .Берлин, Германия: научные и деловые СМИ Springer.

Google Scholar

Вурал, Ю., Ингам, Д. Б., и Пуркашанян, М. (2009). Прогнозирование производительности топливного элемента с протонообменной мембраной с использованием модели ANFIS. Внутр. J. Hydrogen Energy 34 (22), 9181–9187. DOI: 10.1016 / j.ijhydene.2009.08.096.

CrossRef Полный текст | Google Scholar

Wei, S.H. (2012). Применение адаптивной модели системы нейро-нечеткого вывода для прогнозирования прочности бетона на сжатие от молота Сильвершмидта.Магистерская диссертация. Гаосюн (Тайвань): Национальный университет прикладных наук Гаосюн

Google Scholar

Xu, T., and Li, J. (2018). Оценка пространственной изменчивости бетона с помощью испытания ударным молотком и испытания на сжатие просверленных кернов. Construct. Строить. Матер. 188, 820–832. DOI: 10.1016 / j.conbuildmat.2018.08.138.

CrossRef Полный текст | Google Scholar

Йылмаз И. и Юксек А. Г. (2008). Пример применения искусственной нейронной сети (ИНС) для косвенной оценки параметров горных пород. Rock Mech. Rock Eng. 41 (5), 781–795. doi: 10.1007 / s00603-007-0138-7

CrossRef Полный текст | Google Scholar

Йилмаз, И., и Кайнар, О. (2011). Множественная регрессия, модели ANN (RBF, MLP) и ANFIS для прогнозирования потенциала набухания глинистых почв. Экспертные системы с приложениями 38 (5), 5958–5966. DOI: 10.1016 / j.eswa.2010.11.027.

CrossRef Полный текст | Google Scholar

Зупан Дж. И Гастайгер Дж. (1991). Нейронные сети: новый метод решения химических задач или просто переходный этап ?. Анал. Чим. Acta 248 (1), 1–30. DOI: 10.1016 / s0003-2670 (00) 80865-х.

CrossRef Полный текст | Google Scholar

Как рассчитать прочность на сжатие

Обновлено 26 ноября 2018 г.

Лиза Мэлони

Прочность на сжатие — это эффективный способ измерения нагрузки, которую может выдержать поверхность или материал. Испытание на такую ​​силу проводится путем приложения силы вниз к верхней части объекта в сочетании с равной и противоположной силой, действующей снизу вверх.Другими словами, вы раздавливаете его, а затем используете простую математическую формулу для определения сжимающей нагрузки, которая была принята до разрушения материала.

TL; DR (слишком длинный; не читал)

Формула напряжения сжатия:

CS = F ÷ A, где CS — прочность на сжатие, F — сила или нагрузка в точке отказ и A — начальная площадь поперечного сечения.

Соображения при испытании сжимающей нагрузки

Испытание на прочность на сжатие требует точных измерений, поэтому процесс «сжатия» при испытании на сжимающее напряжение должен проводиться в тщательно контролируемых условиях, включая равные и противоположные силы, прилагаемые для сжатия материала от как сверху, так и снизу.

Из-за этого, а также из-за того, что испытание проводится до момента отказа или остаточной деформации, вы не сможете тестировать реальную конструкцию на месте; вместо этого вы бы испытали кубический или цилиндрический образец. Форма куба или цилиндра гарантирует, что у вас будут плоские параллельные поверхности вверху и внизу вашего образца, и обе стороны должны быть поперечными, то есть взятыми под прямым углом к ​​вертикальной оси образца.

Точки данных в формуле сжимающего напряжения

После того, как вы настроили образец в соответствующем аппарате для вашего научного процесса «раздавливания», вам необходимо принять к сведению две точки данных.Первый — это площадь поперечного сечения образца, который вы пересекаете, или, другими словами, площадь поверхности только одной из его граней.

Другая точка данных, которую вам нужно будет измерить, — это сила, приложенная к вашему образцу в момент его разрушения. Вы будете прилагать усилие медленно до отказа, который обычно определяется как остаточная деформация. Другими словами, деформация, которая не вернется к своей исходной форме после снятия сжимающей силы. Часто «остаточная деформация» имеет место, когда объект ломается.

Расчет прочности на сжатие

Когда у вас есть эти точки данных — независимо от того, измерили ли вы их сами в лаборатории или получили их в виде задачи с текстом — вы можете рассчитать прочность на сжатие вашего объекта. Формула:

CS = F ÷ A, где CS — прочность на сжатие, F — сила или нагрузка в точке разрушения, а A — начальная площадь поперечного сечения.

Пример: Вас попросили рассчитать прочность на сжатие бетонного цилиндра.Каждая из граней поперечного сечения цилиндра имеет 6 дюймов в диаметре, и цилиндр разрушился при силе 71 000 фунтов. Какова прочность на сжатие этого образца бетона?

Вы можете пойти дальше и заменить значение силы 71 000 фунтов в свое уравнение на F . Но не спешите и вставьте 6 дюймов для площади поперечного сечения, A . Вам дан диаметр грани цилиндра, но вам нужна площадь поверхности этой грани.

Чтобы вычислить площадь поверхности, запомните, что площадь круга равна πr 2 , где r — радиус круга, равный 1/2 диаметра круга. Итак, при диаметре 6 дюймов радиус вашего круга составляет 3 дюйма, а его площадь равна π (3) 2 = 28,26 в 2 .

Теперь, когда у вас есть эта информация, ваше уравнение выглядит следующим образом:

CS = 71000 фунтов ÷ 28,26 дюйма 2 = 2512 фунтов на квадратный дюйм

Таким образом, прочность на сжатие вашего образца составляет 2512 фунтов на квадратный дюйм.Между прочим, это соответствует стандартной прочности бетона на сжатие 2500 фунтов на квадратный дюйм для жилых помещений; бетон для коммерческих структур может иметь прочность на сжатие 4000 фунтов на квадратный дюйм и более.

Прочность на сжатие и изгиб | Журнал Concrete Construction

A. Можно провести корреляцию между литыми образцами сжатия (кубами или цилиндрами) и образцами с сердечником, что будет первым, что вам нужно будет установить. Корреляция результатов испытаний на изгиб и сжатие также может быть определена, но это только приближение.

Как и в предыдущем случае, обычно предполагается, что бетон на 10% прочнее на растяжение, чем на сжатие. Эта прочность на разрыв является основой его способности противостоять изгибу или прочности на изгиб. ACI 207R, Влияние ограничения, изменения объема и армирования на растрескивание массового бетона. В главе 3 говорится, что прочность бетона на растяжение часто принимается равной 6,7 квадратному корню из его прочности на сжатие. Также отмечается, что там, где уместна консервативная оценка, вы можете использовать минимальную прочность на растяжение, равную 4-кратному квадратному корню из прочности на сжатие.

Для конкретных случаев применения на тротуарах вы также можете ознакомиться с Разделом 2.5 ACI 330-R, , Руководство по проектированию и строительству бетонных парковок . Взаимосвязь дана в терминах модуля разрыва, более прямого измерения прочности на изгиб, который можно найти, увеличив прочность на сжатие до 2/3 степени и умножив полученное значение на 2,3.

Для бетона с прочностью на сжатие 3000 фунтов на квадратный дюйм соответствующие расчетные значения прочности на растяжение с использованием этих четырех приближений составляют 300, 367, 219 и 478 фунтов на квадратный дюйм, соответственно.

Тип крупного заполнителя в бетоне также существенно влияет на соотношение прочности на сжатие / растяжение. При прочих равных условиях бетон, сделанный из заполнителя округлой формы, будет иметь меньшую прочность на разрыв, чем бетон, сделанный из заполнителя щебня.

Вернемся к вашей конкретной ситуации: вам, вероятно, придется сказать что-то вроде того, что прочность образцов керна составляет 80% от прочности образцов на сжатие, а прочность на изгиб составляет 10% от этого значения.Оба соотношения должны быть установлены, и комбинирование приближений дает много места для ошибки.

Если вы используете цилиндры для образцов, может быть проще определить корреляцию между непрямым пределом прочности на разрыв и прочностью на изгиб. В качестве альтернативы, если вы столкнулись с проблемой отбора керна, вы можете подумать о том, чтобы отрезать балки от дорожного покрытия и проверить их, чтобы получить на месте прочности на изгиб и продолжить работу оттуда.

Aggregate Research Industries
Веб-сайт Aggregate Research Industries (www.aggregateresearch.com) включает тематические форумы, где участники форума могут задавать вопросы и отвечать, создавая интерактивную дискуссионную группу. Вопросы и ответы в этом отделе были основаны на сообщениях на форуме ARI по бетонному строительству.

.