Утепленная шведская плита (УШП) своими руками — схема заливки по технологии | Своими руками
Содержание ✓
- ✓ Теплый фундамент своими руками или шведская плита – схема и технология
- ✓ Весомые плюсы и технология строительства шведской плиты
- ✓ Минус шведской плиты как фундаментной технологии
- ✓ Конструкция утепленного фундамента – шведской плиты
- ✓ Технология шведская плита – видео о плюсах и минусах (очень толковое)
Теплый фундамент своими руками или шведская плита – схема и технология
Технология возведения теплых фундаментов появилась в России не так давно и пока не получила широкого распространения.
Не вдаваясь в дискуссии профессионалов, постараемся рассказать о сути данного метода.
Утепленная шведская плита (УШП) представляет собой железобетонный монолит мелкого заложения, устроенный под всей площадью постройки. По сути это усовершенствованная версия старого доброго плитного фундамента.
От своего хорошо известного сородича УШП отличается наличием утеплителя типа экструдированного пенополистирола, изолирующего бетонную плиту от грунта. Благодаря системе утепления, гидроизоляции и дренажа фундаменту не страшно морозное пучение, и его можно возводить на пучи-нистых грунтах с большой глубиной промерзания.
ВСЕ ЧТО НЕОБХОДИМО ДЛЯ ЭТОЙ СТАТЬИ НАХОДИТСЯ ЗДЕСЬ >>>
В толще утеплителя заранее скрытым образом разводятся все коммуникации, а в бетонном основании монтируется система водяного отопления. В результате готовая плита одновременно играет две роли – фундамента и пола первого этажа.
Как любой плитный фундамент, УШП хорошо распределяет нагрузку дома по всей поверхности застройки, обеспечивая конструкции прочность, устойчивость к осадке и деформациям стеновых элементов.
Читайте также: Фундамент шведская плита – конструкция и чертежи (фундамент для любого грунта)
Причем фундамент такого типа можно возводить не только на пучинистых грунтах, но и на любой твердой почве.
Область применения не ограничивается сооружением «тяжелых» домов из бетона или кирпича, плита вполне подходит и для строительства деревянных и каркасных домов.
Пол первого этажа не нуждается в дополнительном выравнивании и готов к финишной отделке. Благодаря интегрированной системе «теплого пола» снижаются расходы на отопление. Работы по возведению фундамента занимают 2-4 недели.
Весомые плюсы и технология строительства шведской плиты
Сначала выбирают грунт на глубину 60 см и выравнивают поверхность с минимальными отклонениями от плоскости не более 1 см/м. Затем укладывают песок и гравий, основательно трамбуя каждый слой. На выровненном основании укладывают коммуникации (канализация, водопровод, электрика). Устанавливают опалубку и выставляют по периметру бортики из утеплителя.
Первый слой утеплителя толщиной 10 см выкладывают по всей площади. Второй слой застилают везде, за исключением полос под усиление для стен, формируя дополнительные ребра жесткости по периметру фундамента и под несущими стенами.
Вяжут арматурный каркас для ребер жесткости и арматурную сетку на всю площадь плиты.
По арматурной сетке раскладывают трубки теплого пола и, чтобы избежать деформации при заливке бетона, опрессовывают их воздухом, подав 4 атмосферы. Осталось залить бетон.
Минус шведской плиты как фундаментной технологии
Для возведения УШП обязательно нужен проект и строители с соответствующей квалификацией. Качество основания зависит оттого, насколько тщательно будет выполнен каждый этап, начиная с утрамбовки песчаной подушки и выведения общей плоскости.
Инженерные коммуникации следует предусмотреть заранее – после того, как фундамент будет готов, изменить их положение станет невозможным. К сожалению, ремонтопригодность коммуникаций, проложенных в толще утепленной плиты, практически нулевая.
К тому же в экструдированном пенополистироле нередко разводятся муравьи. Дополнительную защиту от насекомых можно предусмотреть еще на этапе строительства фундамента, но она увеличит стоимость конструкции.
Читайте также: Дом на утепленной шведской плите – строительство и проект
Конструкция утепленного фундамента – шведской плиты
Технология шведская плита – видео о плюсах и минусах (очень толковое)
УШП (утеплённая шведская плита). Обзор фундамента. Часть 1.
Watch this video on YouTube
© Автор: О.Сарина
ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И МАСТЕРИЦ, И ТОВАРЫ ДЛЯ ДОМА ОЧЕНЬ ДЕШЕВО. БЕСПЛАТНАЯ ДОСТАВКА. ЕСТЬ ОТЗЫВЫ.Подпишитесь на обновления в наших группах и поделитесь.
Будем друзьями!
что такое, плюсы и минусы, схема
УШП фундамент является энергоэффективным и функциональным основанием для возведения современного дом. Ведь так в доме становится значительно теплее даже с полом на грунте. Рассмотрим особенности такого решения подробнее.
Содержание
- Утеплённая шведская плита или УШП — что это за технология
- Преимущества и недостатки
- Конструкция плитного шведского фундамента
- Как он устроен, схема
- Технология заливки утепленной шведской плиты
- Подготовка площадки и прокладка коммуникаций
- Теплоизоляция
- Формирование плиты
- Потенциальные проблемы и возможности их предотвращения
Утеплённая шведская плита или УШП — что это за технология
Технология подразумевает устройство шведской плиты с утеплением. Это разновидность монолитного фундамента под здание без подвального помещения. Характерной особенностью конструкции является жесткость. Это качество позволяет строить малоэтажные дома в условиях:
- близкого к поверхности протекания грунтовых вод;
- высокого содержания песка в почве;
- рыхлости, пучения и подвижности почвенных пластов.
Здесь за счет утепления предусмотрена профилактика деформации шведской монолитной плиты от периодической смены давления со стороны грунта.
То есть здание будет надежно стоять на основании без проседания.
Преимущества и недостатки
Благодаря особенностям конструктивного и функционального характера УШП технология обладает положительными характеристиками, которые особенно ценятся в северных регионах:
- котлован выкапывается с минимальным заглублением, это можно сформировать своими руками без аренды спецтехники;
- утеплитель снижает уровень перепадов температур, что положительно сказывается на долговечности железобетона и расходах на теплоизоляцию строения, отопление;
- монолит надежно защищает инженерные коммуникации, протянутые до заливки бетона в тело будущего фундамента;
- герметичный шведский фундамент на всей площади не имеет мостиков холода, риск появления которых сведен к минимальному;
- сформированная утепленная шведская плита пригодна для использования в качестве чернового основания под декоративную отделку пола (не требуется упрочнение, усиленная гидроизоляция, устройство стяжки или выравнивание, если это не предусмотрено проектом).
В России шведская инструкция повсеместного применения не имеет из-за минусов, которые отмечают мастера или владельцы земельного участка под строительство жилого дома:
- В большей степени уклон делается на итоговую стоимость по смете. Это касается не только объема бетона и теплоизоляционных материалов.
- Выбор конкретных материалов. Например, мягкий утеплитель провоцирует усадку, пенополистирол прогрызают мыши, визуально контролировать состояние утеплителя невозможно в целом. Приходится ограничиваться хорошими жесткими плитами с длительным сроком службы, проводить защитные мероприятия от грызунов.
- Для любителей садоводства под плитой не хватает подвала. Для проектировщиков сложность представляет наклонная поверхность. А для желающих построить вместительный коттедж мешает ограниченность двумя этажами либо легковесными бревнами, блоками.
Конструкция плитного шведского фундамента
УШП плита формируется толщиной всего в 10 см, поэтому послойная заливка исключается. Конструктивно она представлена бетоном и армирующей сердцевиной из сетки и металлических прутьев. Между монолитом и грунтом прокладывается подушка для амортизации.
Подоснова в случае УШП фундамента кроме привычного щебня с песком предполагает добавление глины. Между слоями простилается геотекстиль (для армирования и защиты минералов от биологической активности). Разрушение полотна предупреждает последний влагостойкий и долговечный компонент.
По технологии подушка укрывается теплоизоляционными материалами. В толще песка прокладывают коммуникационные каналы под канализацию, водоснабжение, реже под кабельные провода. Поверх утеплителя устраивают шведскую фундаментную плиту. На ней под стяжку часто монтируют системы «теплый пол».
Как он устроен, схема
Наглядно в разрезе на рисунке (комбинация схемы и чертежа) рассмотрено устройство УШП фундамента с общими коммуникациями частного дома.
Здесь щебень с песком в уплотненной массе сформированы слоем до 20 см. Далее следует трехслойное утепление плитным пенополистиролом толщиной 100 мм каждая. До декоративного покрытия от грунта с учетом монолита и стяжки с «теплым полом» выходит всего 0,6 м.
Под несущие конструкции рекомендуется локально увеличивать заглубление плиты за счет снижения объема теплоизоляционной прослойки. Это незначительно повлияет на свойства УШП фундамента, но увеличивает прочностные характеристики основы под возведение стен и перегородок.
Технология заливки утепленной шведской плиты
Технология возведения УШП фундамента под строительство дома состоит из нескольких этапов.
Пошаговый алгоритм такой:
- земляные работы,
- устройство подосновы,
- теплоизоляция,
- проведение работ по заливке бетона с армированием.
Все действия можно выполнить самостоятельно. Здесь не нужны большой опыт и спецтехника. Исключением может быть аренда бетономешалки или заказ автосмесителя, так как заливка проводится единовременная.
Ввиду большой площади возможен вариант проведения заливки послойно. Но необходимо при этом соблюдать строгую горизонтальность покрытия. Только так можно избежать образования мостиков холода.
Подготовка площадки и прокладка коммуникаций
Начинается работа с удаления плодородного слоя почвы. Это можно сделать обычной штыковой лопатой. Это необходимо для исключения усадочного явления из-за естественного перегнивания корней, травы и листьев. Чтобы растения не беспокоили конструкции, проводится обработка химикатами.
Далее формируют подоснову толщиной в среднем 15 см:
- формируется уплотненный слой гравия;
- насыпается песок, трамбуется с периодическим увлажнением;
- аналогичным образом устраивается глиняная прослойка.
Крупный минеральный слой по толщине должен быть равным или превышать размеры проведенных коммуникаций. Вся подушка должна создавать в итоге прочное и плотное, ровное основание под плиту.
Если инженерные коммуникации будут проводиться под монолитом, то это делают в песчаной прослойке.
После высыхания зернистый настил укрывают геотекстилем. Он в одностороннем порядке проводит влагу, упрочняет подоснову, предупреждает прорастание растений. Кромки полотна должны выступать за пределы будущей плиты на 30 см. Дополнительно проводится гидроизоляция рулонными материалами (чаще это рубероид). Края здесь превышают размеры основы под дом с каждой стороны на 15 см.
Устройство плитного фундамента обязательно сопровождается системой отвода дождевых, талых, грунтовых вод. Дренажная система представлена траншеями по периметру здания глубиной на уровне расположения сточных коммуникаций. При этом соблюдается уклон для естественного стока в сторону от здания. По углам практичнее будет установить смотровые колодцы, соединенные гофрированными трубами. Каналы засыпают щебнем, накрывают геотканью.
Теплоизоляция
Утеплять УШП лучше стойким к механическим нагрузкам пенополистиролом. Для защиты утеплителя от грызунов можно использовать стекольный бой, металлическую сетку, пенокерамику. Первый слой формируют с захватом площади под отмостку. Далее оставляют отступы в 45 см под ребра жесткости (для несущих стен). Листы укладывают в шахматном порядке с перекрыванием предыдущих стыков. Для фиксации применяются пластиковые дюбеля «парашюты».
Формирование плиты
Процесс начинается со сборки армирующего каркаса (размер меньше плиты по плоскостям на 3 см). Это две сетки, соединенные поперечными прутьями за счет прямоугольных хомутов. Если планируется отдельная заливка ленты, то на нее должен быть оформлен отвод на дополнительную обвязку.
Далее строят невысокую опалубку с расчетом на стяжку поверх «теплого» (если он предусмотрен для монтажа поверх плиты). По периметру обязательно снаружи устанавливаются раскосы шагом в 50 мм, внутри протягивают пленку для упрощения демонтажа формующей конструкции. Можно проложить маты сразу на верхнюю сетку. Крепятся они нейлоновыми хомутами. После этого заливают бетон, выгоняют воздух, уплотняют смесь.
Набор прочности у бетона составляет 28 дней. В процессе исключаются ветер, переувлажнение, замерзание или чрезмерно быстрое высыхание площадки. Для этого используют укрывные материалы, утепление или смачивают плиту водой.
Строители рекомендуют заниматься возведением УШП фундамента в конце лета. В эту пору наблюдаются, как правило, относительно одинаковые температура и влажность. А также отмечается самый низкий уровень протекания грунтовых вод.
Перед проведением отделочных работ мастера проводят шлифовку поверхности. Это объясняет, почему не нужны ровнители. Здесь сразу укладывают плитку, ламинат с подложкой или ковролин.
Потенциальные проблемы и возможности их предотвращения
Толщина утепленной плиты армированного бетона ориентировочно составляет 10 см. Однако параметр должен быть вычислен с учетом конкретных проектных данных. Например, под мастерскую можно сделать тоньше полотно, но оно же вызовет перекос стен в двухэтажном доме. А превышение высоты отразится на увеличении общей сметы на строительство.
Также важно рассматривать вопрос поведения и состава почвы. Если скалистые характеризуются надежностью, то песок и глина вымываются, двигаются при сезонном изменении температур.
Близкие к поверхности грунтовые воды вынуждают прибегнуть к осушению площадки под строительство. Дренажная система здесь должна будет включать трубы, проходящие и под шведским теплым фундаментом из плиты.
4 схемы простых источников бесперебойного питания (ИБП)
В этом посте мы исследуем 4 простых схемы источников бесперебойного питания (ИБП) на 220 В, использующих батарею 12 В, которые может понять и сконструировать любой начинающий энтузиаст. Эти схемы можно использовать для управления соответствующим образом выбранным устройством или нагрузкой, давайте рассмотрим схемы.
Схема №1: Простой ИБП на одной микросхеме
Простая идея, представленная здесь, может быть реализована в домашних условиях с использованием самых обычных компонентов для получения приемлемого результата. Его можно использовать для питания не только обычных электроприборов, но и таких сложных гаджетов, как компьютеры. Его инверторная схема использует модифицированную синусоидальную конструкцию.
Источник бесперебойного питания с продуманными функциями может быть не критичен для работы даже сложных гаджетов. Скомпрометированная конструкция системы ИБП, представленная здесь, вполне может удовлетворить потребности. Он также включает в себя встроенное универсальное интеллектуальное зарядное устройство.
Разница между ИБП и инвертором
В чем разница между источником бесперебойного питания (ИБП) и инвертором? Ну, вообще говоря, оба предназначены для выполнения основной функции преобразования напряжения батареи в переменный ток, который может использоваться для работы различных электрических устройств в отсутствие нашей домашней сети переменного тока.
Однако в большинстве случаев инвертор не может быть оснащен многими функциями автоматического переключения и мерами безопасности, обычно присущими ИБП.
Кроме того, инверторы в большинстве случаев не имеют встроенного зарядного устройства, в то время как все ИБП имеют встроенное автоматическое зарядное устройство для облегчения мгновенной зарядки соответствующей батареи при наличии сети переменного тока и возврата питания батареи в инверторном режиме в момент входная мощность не работает.
Кроме того, все ИБП предназначены для выработки переменного тока, имеющего синусоидальную форму волны или, по крайней мере, модифицированную прямоугольную волну, очень похожую на синусоидальную форму волны. Это, возможно, становится самой важной особенностью ИБП.
Имея в наличии так много функций, эти удивительные устройства, несомненно, должны стать дорогими, и поэтому многие из нас, принадлежащих к среднему классу, не могут их достать.
Я попытался создать ИБП, хотя и не сравнимый с профессиональными, но однажды построенный, он определенно сможет достаточно надежно заменить перебои в сети, а также, поскольку выход представляет собой модифицированную прямоугольную волну, подходит для работы со всеми сложными электронными устройствами. , даже компьютеры.
Все приведенные здесь конструкции относятся к автономному типу, вы также можете попробовать эту простую онлайн-схему ИБП. включает в себя важные черты.
Микросхема SN74LVC1G132 имеет один вентиль И-НЕ (триггер Шмитта), заключенный в небольшой корпус. По сути, он образует сердце каскада генератора и требует только одного конденсатора и резистора для необходимых колебаний. Значение этих двух пассивных компонентов определяет частоту генератора. Здесь он рассчитан примерно на 250 Гц.
Вышеупомянутая частота применяется к следующему каскаду, состоящему из одного декадного счетчика/делителя Джонсона IC 4017. IC сконфигурирована таким образом, что ее выходы производят и повторяют набор из пяти последовательных логических высоких выходов. Поскольку вход представляет собой прямоугольную волну, выходные данные также генерируются как прямоугольные волны.
Перечень деталей инвертора ИБП
R1=20K
R2,R3=1K
R4,R5 = 220 Ом
C1=0,095Uf
C2,C3,C4=10UF/25V
Т0 = BC557B
Т1, Т2=8050
T3,T4=BDY29
IC1=SN74LVC1G132 или один вентиль от IC4093
IC2=4017
IC3=7805
ТРАНСФОРМАТОР=12-0-12В/10А/230В
Зарядное устройство Секция 9 0011
Базовые выводы двух комплектов Сдвоенные транзисторы Дарлингтона с высоким коэффициентом усиления и высокой мощностью настроены на ИС таким образом, что она принимает и проводит к альтернативным выходам.
Транзисторы проводят ток (в тандеме) в ответ на эти переключения, и соответствующий сильный переменный ток проходит через две половины соединенных обмоток трансформатора.
Поскольку базовые напряжения на транзисторах от ИС пропускаются попеременно, результирующий прямоугольный импульс от трансформатора имеет только половину среднего значения по сравнению с другими обычными инверторами. Это измеренное среднеквадратичное значение генерируемых прямоугольных волн очень напоминает среднее значение сетевого переменного тока, которое обычно доступно в наших домашних розетках, и, таким образом, становится подходящим и благоприятным для большинства сложных электронных устройств.
Существующая конструкция источника бесперебойного питания является полностью автоматической и вернется в режим инвертора в момент пропадания входного питания. Делается это через пару реле RL1 и RL2; RL2 имеет двойной набор контактов для реверсирования обеих выходных линий.
Как объяснялось выше, ИБП должен также включать встроенное универсальное интеллектуальное зарядное устройство, которое также должно регулироваться по напряжению и току.
На следующем рисунке, который является составной частью системы, показана умная маленькая схема автоматического зарядного устройства. Схема не только контролируется напряжением, но также включает в себя конфигурацию защиты от перегрузки по току.
Транзисторы T1 и T2 в основном образуют точный датчик напряжения и никогда не позволяют верхнему пределу зарядного напряжения превышать установленный предел. Этот предел фиксируется соответствующей настройкой предустановки P1.
Транзисторы T3 и T4 вместе контролируют возрастающий ток, потребляемый аккумулятором, и никогда не позволяют ему достичь уровней, которые могут считаться опасными для срока службы аккумулятора. В случае, если ток начинает дрейфовать за установленный уровень, напряжение на R6 пересекает -0,6 вольта, достаточно для срабатывания T3, который, в свою очередь, подавляет базовое напряжение T4, тем самым ограничивая дальнейшее увеличение потребляемого тока. Величину R6 можно найти по формуле:
R = 0,6 / I, где I — номинальный зарядный ток.
Транзистор Т5 выполняет функцию монитора напряжения и включает (деактивирует) реле в действие в момент пропадания сети переменного тока.
Перечень запчастей для зарядного устройства
R1,R2,R3,R4,R7=1K
P1=4K7 ПРЕДУСТАНОВКА, ЛИНЕЙНАЯ
R6=СМ. ТЕКСТ
T1,T2,=BC547
T3=8550
Т4=TIP32C
T5=8050
RL1=12В/400 Ом, SPDT
RL2=12В/400 Ом, SPDT, D1—D4=1N5408
D5,D6=1N4007
TR1=0-12В, ТОК 1/10 БАТАРЕИ Ач
С1 =2200 мкФ/25 В
C2 = 1 мкФ/25 В
Схема №2: ИБП с одним трансформатором для инвертора и зарядки аккумуляторов
В следующей статье подробно описана простая схема ИБП на основе транзисторов со встроенной схемой зарядного устройства, которую можно использовать для обеспечения бесперебойного питания. выходная мощность дешево, в ваших домах и офисах, магазинах и т. д. Схема может быть модернизирована до любого желаемого более высокого уровня мощности. Идею разработал г-н Сайед Хаиди.
Основным преимуществом этой схемы является то, что она использует один трансформатор для зарядки аккумулятора, а также для работы инвертора. Это означает, что вам не нужно включать в эту схему отдельный трансформатор для зарядки аккумулятора
Следующие данные были предоставлены г-ном Сайедом по электронной почте:
Я видел, что люди получают образование благодаря вашему посту. Итак, я думаю, вы должны объяснить людям об этой схеме.
В этой схеме как и у вас нестабильный мутивибратор на транзисторах. Конденсаторы c1 и c2 имеют емкость 0,47 для получения выходной частоты около 51,xx Гц, как я измерил, но она не постоянна во всех случаях.
МОП-транзистор имеет обратный диод большой мощности, который используется для зарядки аккумулятора. Нет необходимости добавлять в цепь специальный диод. Принцип переключения с реле я показал на схеме. RL3 должен использоваться с цепью отключения.
Эта схема очень проста, и я уже протестировал ее. Я собираюсь протестировать еще один мой дизайн, и я поделюсь с вами, как только тест будет завершен. Он контролирует выходное напряжение и стабилизирует его с помощью ШИМ. Также в этой конструкции я использую обмотку трансформатора 140В для зарядки и ВТА16 для управления током зарядки. Будем надеяться на Добро.
Вы делаете лучше всего.
Вариант №3: схема ИБП на основе IC 555 и т. д. Весь блок будет стоить вам около 3 долларов. В конструкцию также включено встроенное зарядное устройство, которое всегда поддерживает аккумулятор в заряженном состоянии и в режиме ожидания. Давайте изучим всю концепцию и схему.
Концепция схемы довольно проста, все дело в том, чтобы заставить выходные устройства переключаться в соответствии с примененными хорошо оптимизированными импульсами ШИМ, которые, в свою очередь, переключают трансформатор для создания эквивалентного индуцированного напряжения сети переменного тока, имеющего параметры, идентичные стандартной синусоидальной волне переменного тока. форма.
Работа схемы:
Принципиальную схему можно понять с помощью следующих пунктов:
Схема ШИМ использует очень популярную микросхему IC 555 для необходимой генерации импульсов ШИМ.
Предустановки P1 и P2 могут быть установлены точно так, как требуется для питания устройств вывода.
Выходные устройства будут точно реагировать на приложенные импульсы ШИМ от схемы 555, поэтому тщательная оптимизация предустановок должна привести к почти идеальному коэффициенту ШИМ, который можно считать вполне эквивалентным стандартной форме волны переменного тока.
Однако, поскольку обсуждаемые выше ШИМ-импульсы подаются на базы обоих транзисторов, расположенных для переключения двух отдельных каналов, это означает полный беспорядок, поскольку мы никогда не захотим переключать обе обмотки трансформатора вместе.
Использование вентилей НЕ для индуцирования переключения 50 Гц
Поэтому была введена еще одна ступень, состоящая из нескольких вентилей НЕ из IC 4049, которая гарантирует, что устройства проводят или переключаются попеременно, а не все одновременно.
Осциллятор из N1 и N2; выполнять идеальные прямоугольные импульсы, которые дополнительно буферизируются N3—N6. Диоды D3 и D4 также играют важную роль, заставляя устройства реагировать только на отрицательные импульсы от вентилей НЕ.
Эти импульсы попеременно выключают устройства, позволяя работать только одному каналу в любой конкретный момент.
Предустановка, связанная с N1 и N2, используется для установки выходной частоты переменного тока ИБП. Для 220 вольт он должен быть установлен на 50 Гц, а для 120 вольт — на 60 Гц.
Перечень запасных частей для ИБП
R1, R2, R3 R4, R5 = 1K,
P1, P2 = по формуле,
P3 = 100K предварительно задано
D1, D2 = 1N4148,
D3, D4 = 1N4007, 90 043 Д5 , Д6 = 1Н5402,
D7, D8 = стабилитрон 3 В
C1 = 1 мкФ/25 В
C2 = 10 н,
C3 = 2200 мкФ/25 В
T1, T2 = TIP31C,
T3, T4 = BDY29
IC1 = 555, 9 0043 N1…N6 = ИС 4049 , пожалуйста, обратитесь к техническому описанию для номеров выводов.
Трансформатор = 12–0–12 В, 15 А
Цепь зарядного устройства:
Если это ИБП, включение цепи зарядного устройства становится обязательным.
Принимая во внимание низкую стоимость и простоту конструкции, в эту схему источника бесперебойного питания была включена очень простая, но достаточно точная конструкция зарядного устройства.
Глядя на рисунок, мы видим, насколько проста конфигурация.
Вы можете получить полное объяснение в этой статье схемы зарядного устройства. Два реле RL1 и RL2 расположены так, чтобы сделать схему полностью автоматической. Когда питание от сети доступно, реле включают и переключают сеть переменного тока непосредственно на нагрузку через там N /O контакты. В то же время батарея также заряжается через цепь зарядного устройства. В момент сбоя питания переменного тока реле переключаются в исходное положение и отключают линию электросети и заменяют ее инверторным трансформатором, так что теперь инвертор берет на себя ответственность за подачу сетевого напряжения на нагрузку. , в течение миллисекунд.
Введено еще одно реле RL4, которое переключает свои контакты при сбое питания, чтобы аккумулятор, который находился в режиме зарядки, переключался в режим инвертора для необходимой выработки резервной мощности переменного тока.
Список деталей для зарядного устройства
R1 = 1K,
P1 = 10K
T1 = BC547B,
C1 = 100 мкФ/25 В
D1—D4 = 1N5402
D5, 6, 7 = 1N4007,
Все реле = 12 В, 400 Ом, SPDT
Трансформатор = 0–12 В, 3 А
Исполнение №4: ИБП 1 кВА Исполнение
Последняя разработка, но, безусловно, самая мощная, представляет собой схему ИБП мощностью 1000 Вт с питанием от входного напряжения +/- 220 В, в которой последовательно используются 40 аккумуляторов 12 В/4 Ач. Работа при высоком напряжении делает систему относительно менее сложной и бестрансформаторной. Идея была запрошена Водолеем.
Технические характеристикиЯ ваш фанат, с успехом построил много проектов для личного пользования и получил большое удовольствие. Будьте здоровы. Теперь я намерен построить ИБП мощностью 1000 Вт с другой концепцией (инвертор с высоковольтным входом постоянного тока).
Я буду использовать аккумуляторную батарею из 18-20 последовательно соединенных герметичных аккумуляторов по 12 В/7 А·ч, чтобы получить 220+ вольт в качестве входного сигнала для бестрансформаторного инвертора.
Можете ли вы предложить простейшую возможную схему для этой концепции, которая должна включать в себя зарядное устройство + защиту и автоматическое переключение при отключении сети. Позже я включу и вход солнечной энергии.
Конструкция
Предлагаемая схема ИБП мощностью 1000 Вт может быть построена с использованием следующих двух цепей, где первая представляет собой секцию инвертора с необходимыми реле автоматического переключения. Вторая конструкция предусматривает этап автоматического заряда аккумуляторов.
Первая схема, изображающая инвертор мощностью 1000 Вт, состоит из трех основных каскадов.
T1, T2 вместе со связанными компонентами образуют каскад входного дифференциального усилителя, который усиливает входные сигналы ШИМ от генератора ШИМ, который может быть синусоидальным генератором.
Резистор R5 становится источником тока для обеспечения оптимального тока дифференциального каскада и последующего каскада драйвера.
Секция после дифференциального каскада является драйверным каскадом, который эффективно повышает усиленный ШИМ от дифференциального каскада до уровня, достаточного для срабатывания следующего силового MOSFET каскада.
МОП-транзисторы выровнены двухтактным образом между двумя батареями 220 В и, следовательно, переключают напряжения на своих выводах сток/исток для получения требуемого выходного напряжения 220 В переменного тока без включения трансформатора.
Вышеупомянутый выход подключается к нагрузке через ступень переключения реле, состоящую из 12-вольтового 10-амперного реле DPDT, вход запуска которого поступает от сети общего пользования через адаптер 12 В переменного/постоянного тока. Это напряжение срабатывания подается на катушки всех 12-вольтовых реле, которые используются в цепи для предполагаемых действий по переключению сети на инвертор.
Перечень деталей для вышеуказанной схемы ИБП мощностью 1000 Вт
Все резисторы CFR мощностью 2 Вт, если не указано иное.
R1, R3, R10, R11, R8 = 4 кОм
R2, R4, R5 = 68 кОм
R6, R7 = 4 кОм
R9 = 10 кОм
R13, R14 = 0,22 Ом 2 Вт
R12, R15 = 1K, 5 Вт
C1 = 470 пФ
C2 = 47 мкФ/100 В
C3 = 0,1 мкФ/100 В
C4, C5 = 100 пФ
D1, D2 = 1N4148
T1, T2 = BC556
T5, T6 = MJE350 9 0043 Т3, Т4 = MJE340
Q1 = IRF840
Q2 = FQP3P50
реле = DPDT, контакты 12 В/10 А, катушка 400 Ом
Цепь зарядного устройства для зарядки аккумуляторных батарей 220 В постоянного тока.
Хотя в идеале задействованные 12-вольтовые аккумуляторы следует заряжать по отдельности от источника 14 В, с учетом простоты универсальное одиночное зарядное устройство на 220 В в конечном итоге оказалось более желательным и простым в сборке.
Как показано на диаграмме ниже, поскольку требуемое зарядное напряжение находится в пределах 260 В, выходное напряжение сети 220 В можно использовать непосредственно для этой цели.
Несмотря на то, что прямое подключение к сети может быть опасным для батарей из-за большой силы тока, в конструкцию включено простое решение с использованием 200-ваттной лампочки.
Сетевой ввод осуществляется через один диод 1N4007 и через 200-ваттную лампу накаливания, которая проходит через переключающие контакты реле.
Изначально однополупериодное выпрямленное напряжение не может достичь батарей из-за того, что реле находится в выключенном состоянии.
При нажатии кнопки PB1 питание на мгновение достигает батарей.
При этом на 200-ваттной лампе генерируется соответствующий уровень напряжения, который определяется оптосветодиодом.
Оптосистема мгновенно срабатывает и запускает сопровождающее реле, которое мгновенно активируется и фиксируется во включенном состоянии и поддерживает его даже после отпускания кнопки PB1.
Лампа на 200 ватт слегка светилась, интенсивность которой зависела от заряженного состояния аккумуляторной батареи.
Когда аккумуляторы начинают заряжаться, напряжение на 200-ваттной лампочке начинает падать до тех пор, пока реле не выключится, как только будет достигнут уровень полного заряда аккумуляторов. Это можно настроить, настроив предустановку 4k7.
Выход вышеуказанного зарядного устройства подается на блок батарей через пару реле SPDT, как показано на следующей диаграмме.
Реле обеспечивают перевод батарей в режим зарядки до тех пор, пока доступен вход сети, и возвращают их в режим инвертора при отказе входа сети.
Как спроектировать схему источника бесперебойного питания (ИБП)
Вы здесь: Главная / Схемы инверторов / Как спроектировать схему источника бесперебойного питания (ИБП)
Искать на этом веб-сайте
Последнее обновление от Swagatam 51 Комментарии
В этом кратком руководстве мы узнаем, как разработать индивидуальную схему ИБП в домашних условиях, используя обычные компоненты, такие как несколько микросхем NAND и несколько реле. .
Что такое ИБП
ИБП, что означает источник бесперебойного питания, представляют собой инверторы, предназначенные для бесперебойной подачи сетевого питания переменного тока на подключенную нагрузку без малейших перебоев, независимо от внезапных сбоев в подаче электроэнергии, колебаний или даже отключения электроэнергии.
ИБП становится полезным для ПК и другого подобного оборудования, которое связано с обработкой важных данных и не может допустить прерывания сетевого питания во время операции обработки жизненно важных данных.
Для этого оборудования ИБП становится очень удобным благодаря мгновенному резервному питанию нагрузки и предоставлению пользователю достаточного времени для сохранения важных данных компьютера до тех пор, пока не будет восстановлено фактическое питание от сети.
Это означает, что ИБП должен очень быстро переключаться с сети на инвертор (резервный режим) и наоборот при возможном сбое сетевого питания.
В этой статье мы узнаем, как сделать простой ИБП со всеми минимальными функциями, гарантируя, что он соответствует вышеизложенным принципам и обеспечивает пользователя бесперебойным питанием хорошего качества на протяжении всей его работы.
Ступени ИБП
Базовая схема ИБП будет состоять из следующих основных ступеней:
1) Цепь инвертора
2) Батарея
3) Цепь зарядного устройства батареи
4) Ступень цепи переключения с использованием реле или другого устройства, такие как симисторы или SSR.
Теперь давайте узнаем, как вышеперечисленные этапы схемы могут быть построены и объединены вместе для реализации достаточно приличной системы ИБП.
Блок-схема
Упомянутые функциональные этапы источника бесперебойного питания могут быть подробно поняты с помощью следующей блок-схемы:
Здесь мы видим, что основная функция переключения ИБП выполняется парой ступеней реле DPDT.
Оба реле DPDT питаются от блока питания или адаптера 12 В переменного тока в постоянный.
Видно реле DPDT с левой стороны, управляющее зарядным устройством. Зарядное устройство батареи получает питание, когда сеть переменного тока доступна через верхние контакты реле, и подает зарядный вход на батарею через нижние контакты реле. При сбое в сети переменного тока контакты реле переключаются на нормально-замкнутые контакты. Верхние контакты реле отключают питание зарядного устройства, а нижние контакты теперь соединяют аккумулятор с инвертором, чтобы инициировать работу в инверторном режиме.
Правые контакты реле используются для переключения с сети переменного тока на сеть переменного тока инвертора и наоборот.
Практичная схема ИБП
В следующем обсуждении мы попытаемся понять и разработать практическую схему ИБП.
1) Инвертор.
Поскольку ИБП должен иметь дело с критически важными и чувствительными электронными приборами, задействованный инверторный каскад должен иметь разумную форсированную форму сигнала, другими словами, обычный прямоугольный инвертор не может быть рекомендован для ИБП, и поэтому для нашей конструкции мы делаем уверен, что об этом условии позаботятся.
Хотя я разместил на этом веб-сайте много инверторных схем, включая сложные синусоидальные типы ШИМ, здесь мы выбираем совершенно новый дизайн, просто чтобы сделать статью более интересной, и добавляем новую инверторную схему в список
В конструкции ИБП используются только один IC 4093, и все же он способен выполнять на выходе хорошие синусоидальные функции, модифицированные ШИМ.
Список деталей
- N1—N3 вентили NAND от IC 4093
- Мосфеты = IRF540
- Трансформатор = 9–0–9 В / 10 А / 220 В или 120 В
- R3/R4 = потенциометр 220 кОм
- C1/C2 = 0,1 мкФ/50 В
- Все резисторы 1 кОм 1/4 Вт 903 42
Работа цепи инвертора
IC 4093 состоит из 4 вентилей И-НЕ типа Шмидта, эти вентили соответствующим образом сконфигурированы и размещены в показанной выше инверторной схеме для реализации требуемых спецификаций.
Один из вентилей N1 настроен как генератор для генерации 200 Гц, а другой вентиль N2 подключен как второй генератор для генерации импульсов с частотой 50 Гц.
Выход N1 используется для управления подключенными мосфетами с частотой 200 Гц, а затвор N2 вместе с дополнительными затворами N3/N4 попеременно переключает мосфеты с частотой 50 Гц.
Это делается для того, чтобы мосфеты никогда не могли работать одновременно с выхода N1.
Выходы N3, N4 разбивают 200 Гц от N1 на чередующиеся блоки импульсов, которые обрабатываются трансформатором для создания ШИМ переменного тока с заданным напряжением 220 В.
На этом завершается этап работы с инвертором в нашем учебном пособии по созданию ИБП.
На следующем этапе объясняется схема реле переключения, а также то, как указанный выше инвертор должен быть подключен к реле переключения для облегчения автоматического резервного копирования инвертора и операций зарядки аккумулятора при сбое сети, и наоборот.
Ступень переключения реле и цепь зарядного устройства
На приведенном ниже рисунке показано, как секция трансформатора схемы инвертора может быть сконфигурирована с несколькими реле для реализации автоматического переключения для предложенной конструкции ИБП.
На рисунке также показана простая схема автоматического зарядного устройства с использованием микросхемы IC 741 в левой части рисунка.
Сначала давайте узнаем, как подключаются переключающие реле, а затем мы можем перейти к объяснению зарядного устройства.
Всего на этом этапе используется 3 набора реле:
1) 2 реле SPDT в виде RL1 и RL2
2) Одно реле DPDT в виде RL3a и RL3b.
RL1 подключается к цепи зарядного устройства аккумулятора и контролирует отключение высокого/низкого уровня заряда аккумулятора и определяет, когда аккумулятор должен быть готов к использованию для инвертора, а когда его необходимо снять.
SPDT RL2 и DPDT (RL3a и RL3b) используются для действий по мгновенному переключению при сбое и восстановлении питания. Контакты RL2 служат для соединения или отключения центрального отвода трансформатора с аккумуляторной батареей в зависимости от наличия или отсутствия сети.
RL3a и RLb, которые представляют собой два набора контактов реле DPDT, отвечают за переключение нагрузки через сеть инвертора или сетевую сеть во время перерывов в подаче электроэнергии или периодов восстановления.
Катушки RL2 и DPDT RL3a/RL3b подключены к источнику питания 14 В таким образом, что эти реле быстро активируются и деактивируются в зависимости от состояния входной сети и выполняют необходимые действия по переключению. Этот источник питания 14 В также используется в качестве источника для зарядки аккумуляторной батареи инвертора при наличии сетевого питания.
Видно, что катушка RL1 соединена со схемой операционного усилителя, которая управляет зарядкой батареи и обеспечивает отключение питания батареи от источника 14 В, как только оно достигает того же значения.
Он также следит за тем, чтобы, пока батарея находится в инверторном режиме и потребляется нагрузкой, ее нижний уровень разряда никогда не опускался ниже 11 В, и отключает батарею от инвертора, когда она достигает этого уровня. Обе эти операции выполняются реле RL1 в ответ на команды операционного усилителя.
Процедуру настройки приведенной выше схемы зарядного устройства ИБП можно узнать из этой статьи, в которой обсуждается, как сделать зарядное устройство с отсечкой низкого и высокого уровня с использованием IC 741
Теперь нужно просто соединить все вышеперечисленные этапы вместе, чтобы получился прилично выглядящий небольшой ИБП, который можно использовать для обеспечения бесперебойного питания вашего ПК или любого другого подобного гаджета.
Вот и все, на этом мы завершаем наше руководство по проектированию схемы персонального ИБП, которое может легко сделать любой начинающий любитель, следуя приведенному выше подробному руководству.