Расчет объема прямоугольника в м3: Расчет объема прямоугольника — онлайн калькулятор

Содержание

Как рассчитать объём — онлайн калькулятор объёма воды

Как рассчитать объём ёмкости, воды или другой жидкости … несколько онлайн калькуляторов для расчёта объёма, формулы, а также конвертер единиц объёма.

Как рассчитать объём любой прямоугольной емкости, в том числе куба — онлайн калькулятор расчёта объема воды в аквариуме, баке …

Формула расчёта объёма прямоугольной ёмкости

V = X * Y * Z, где V — объём, а X, Y, и Z это длины сторон ёмкости (длина, ширина, высота).

При этом мы помним, что у куба все стороны равны — X=Y=Z . Соответственно формула объёма куба имеет такой вид — V = X3 , где X — длина стороны куба.

Внимание! При расчёте объёма жидкости в ёмкости необходимо учитывать реальную заполненность ёмкости и привязывать величины непосредственно к самой жидкости.

Для конвертации единиц объёма вы можете воспользоваться нашим ОНЛАЙН КОНВЕРТЕРОМ ЕДИНИЦ ОБЪЁМА →

Как рассчитать объём цилиндра — онлайн калькулятор расчёта объёма воды в трубе, бочке, круглом бассейне …

Для конвертации единиц объёма вы можете воспользоваться нашим ОНЛАЙН КОНВЕРТЕРОМ ЕДИНИЦ ОБЪЁМА →

Формулы расчёта объёма цилиндра:

Объём воды в цилиндре и других ёмкостях, имеющих цилиндрическую форму, рассчитывается таким образом.

Вначале рассчитываем площадь основания (площадь внутреннего сечения) по формуле — S = π * R2
Где, R — радиус трубы, π — число ПИ равное 3,1415926535 .

Затем вычисляем объём — V = S * L
Где, L — длина (высота) цилиндра (трубы, бочки, бассейна).

Внимание! При расчёте объёма жидкости в ёмкости необходимо учитывать заполненность ёмкости и привязывать величины непосредственно к самой жидкости.

Единицы измерения объёма

Вначале кратко ознакомимся с единицами измерения объёма как таковыми.

Официальной единицей измерения объема в системе СИ является м3 — метр кубической. Объём так же может быть выражен и в других единицах. Наиболее популярными из них являются — дм3 — кубические дециметры, см3 — кубические сантиметры, литры …

Отметим, что такая популярная единица измерения объёма жидкостей как литр не входит в Международную систему измерений (СИ). Тем не менее, поскольку литр является весьма популярной мерой жидкостей, он считается официальной внесистемной единицей.

Один литр — это объём куба стороны которого равны 10 см. Полезно также знать, что 1 литр воды вести приблизительно 1 кг при температуре + 4 °C

Соотношение единиц объёма

1 м3 = 1000 дм3 = 1 000 000 см3 = 1 000 000 000 мм3 = 1000 литров
1 литр = 0,001 м3 = 1 дм3 = 1 000 см3 = 1 000 000 мм3

Конвертер единиц объёма

Конвертация кубических метров ( м

3 ) в кубические сантиметры ( см3 ) и литры

Конвертация литров в метры кубические ( м

3 ) и кубические сантиметры ( см3 )

Конвертация кубических сантиметров ( см

3 ) в кубические метры ( м3 ) и литры

Заключение

Практически каждый человек рано или поздно сталкивается с необходимостью рассчитать объём того или другого объекта. Для удобства и экономии времени предлагаем Вам воспользоваться нашими онлайн калькуляторами.

Как рассчитать объём — калькулятор объёма куба, прямоугольной ёмкости, объёма цилиндра, объёма воды в трубе …

Статья опубликована: 2021-06-07 Автор: Waterman

Как найти Объем Параллелепипеда?

Понятие объема

Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.

Объём

— это количественная характеристика пространства, занимаемого телом или веществом.

Другими словами, это то, сколько места занимает предмет.

Объём измеряется в единицах измерения объема (единицах измерения размера пространства, занимаемого телом), то есть в кубических метрах, сантиметрах, миллиметрах.

За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см3), кубический миллиметр (1 мм3), кубический метр (1 м3).

Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, вина в бочке, земли в клумбе.

Два свойства объёма


  1. У равных тел равные объёмы. Если два тела одинаковы, и имеют равное количество единиц измерения — их объёмы равны. Например, у двух одинаковых пакетов сока равные объемы.

  2. Если геометрическое тело состоит из нескольких геометрических тел, то его объём равен сумме объёмов этих тел.

Любое объемное тело имеет объем. Получается, при желании мы можем вычислить объем кружки, смартфона, вазы, кота — чего угодно.

Объем прямоугольного параллелепипеда

Давайте вспомним, какие виды параллелепипедов бывают.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань которой называется параллелограмм.

Призма — это многогранник, в основаниях которого лежат равные многоугольники, а его боковые грани — это параллелограммы.

Какие бывают призмы:


Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.


Прямоугольным параллелепипедом называют параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.



Формула объема прямоугольного параллелепипеда

Чтобы вычислить объем прямоугольного параллелепипеда, найдите произведение его длины, ширины и высоты:

V = a * b * h

Чтобы не запутаться в формулах, запоминайте табличку с условными обозначениями.

a

длина параллелепипеда

b

ширина параллелепипеда

h

высота параллелепипеда

P (осн)

периметр основания

S (осн)

площадь основания

S (бок)

площадь боковой поверхности

S (п.п.)

площадь полной поверхности

V

объем

Пример 1. Чему равен объем параллелепипеда со сторонами 9 см, 6 см, 3 см.


a = 9 см

b = 6 см

h = 3 см

V = a * b * h

V = 9 * 6 * 3 = 162 см3.

Ответ: объем прямоугольного параллелепипеда равен 162 см3.

Следствие 1

Объем параллелепипеда равен произведению площади основания на высоту.

V = S осн * h

Из этого следствия выведем формулу нахождения площади основания параллелепипеда.

S осн = V : h

Пример 2. Найдите площадь основания параллелепипеда, если его объем равен 82 см3, а высота 8 см.


V = 82 см3

h = 8 см

V = S осн * h

S осн = V : h

S осн = 82 см3: 8 см = 10,25 см2.

Ответ: площадь основания параллелепипеда равна 10,25 см2.

Следствие 2

Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

V = S осн * h

Пример 3. Основанием прямой призмы служит прямоугольный треугольник с катетами 6 и 8 см. Боковое ребро равно 5. Найдем объем призмы.


V = S * h = 12* a * b * h

a = 6

b = 8

h = 5

V = 1/2 * 6 * 8 * 5 = 120 см3.

Ответ: объём прямой призмы, основанием которой является прямоугольный треугольник, равен 120 см3.


Вычисление площади

Как вы уже поняли, вычисление объёма параллелепипеда напрямую зависит от вычисления его площади. Давайте разберемся, сколько всего площадей можно найти в параллелепипеде.

Чтобы найти площадь боковой поверхности параллелепипеда, вычислите по отдельности площадь каждой боковой грани, а затем найдите сумму получившихся значений.

Чтобы вычислить площадь полной поверхности параллелепипеда, сложите площадь боковой поверхности и две площади основания.

  • S п.п. = 2 (ab + ac + bc)

Пример 4. Найдем площадь поверхности параллелепипеда, если длина основания равна 6 сантиметров, ширина — 4 см соответственно, а высота — 3 см.


S п.п. = 2 (ab + ac + bc)

S п.п. = 2(6 * 4 + 6 * 3 + 4 * 3) = 2 * (24 + 18 + 12) = 2 * 54 = 108 см2.

Ответ: площадь поверхности параллелепипеда — 108 см2.

Как видите, вычислить объём и найти площадь параллелепипеда совсем не трудно. В интернете есть много онлайн-калькуляторов, которые помогут вам быстро вычислить объем:

Задачи на самопроверку

Пользоваться онлайн-калькуляторами можно, когда вы уже натренировались в решении задачек и с закрытыми глазами можете вычислить объем любого параллелепипеда. Давайте разберем еще несколько примеров.

Задачка 1. Найдите объём параллелепипеда со сторонами 18 см, 10 см, 7 см.


Как решаем:

a = 18 см

b = 10 см

h = 7 см

Формула нахождения объема параллелепипеда:

V = a * b * h

Подставляем наши числа:

V = 18 * 10 * 7 = 1260 см3.

Ответ: объём параллелепипеда = 1260 см3.

Задачка 2. Найдите площадь основания параллелепипеда, если его объём = 120 см3, а высота — 15 см.


Как решаем:

V = 120 см3

h = 15 см

V = S осн * h

S осн = V : h

S осн = 120 см3: 15 см = 8 см2.

Ответ: площадь основания параллелепипеда = 8 см2.

Задачка 3. Найдите площадь полной поверхности прямоугольного параллелепипеда, если длина основания = 30 сантиметров, ширина = 12 см, а высота = 5 см.

Как решаем:

S п.п. = 2 (ab + ac + bc)

S п.п. = 2(30 * 12 + 30 *5 + 12 * 5) = 2 * (360 + 150 + 60) = 2 * 570 = 1140 см2.

Ответ: площадь полной поверхности параллелепипеда = 1140 см2.

Пусть все необходимые формулы будут под рукой в нужный момент. Сохраняйте табличку-шпаргалку на гаджет или распечатайте ее и храните в учебнике.

V параллелепипеда

V = a * b * h

 

V = S осн * h

S боковой поверхности

S б.п. = 2(ac + bc)

S полной поверхности

S п.п. = 2 (ab + ac + bc)

Диагональ параллелепипеда

d2 = a2+ b2 + c2

Онлайн урок: Объемы. Объем прямоугольного параллелепипеда по предмету Математика 5 класс

За единицу измерения объема принимают кубическую единицу.

Кубическая единица представляет собой куб, стороны которого выражены линейными единицами.

Объем такого куба находится как V = abh.

Исходные линейные меры могут быть любыми: миллиметрами, сантиметрами, дециметрами и т.д.

По правилу, при вычислении объема тела, единицы измерения длины, ширины и высоты должны совпадать.

Значение объема будет непосредственно зависеть от выбранной единицы измерения.

К основным единицам объема относят:

1. Кубический метр- это основная единица измерения объема в системе СИ.

Кубический метр (кубометр)- это куб, у которого ребро равно одному метру (1 м).

Русское обозначение: м3.

Международное обозначение: m3.

V = 1 м ∙ 1 м ∙ 1 м = 1 м3.

Широко используется кубический метр в быту, в науке и технике, в строительстве и архитектуре, на производстве и др.

Обычно в кубических метрах измеряют расход и потребление воды и бытового газа.

В кубометрах измеряют объемы древесины и пиломатериалов, объемы различных сыпучих строительных материалов (гравий, песок и т.д.), объемы самых разнообразных жидкостей и емкостей под них и т.д.

Существуют и другие производные от метра единицы измерения объемов, которые так же являются единицами измерения системы СИ.

2. Кубический миллиметр- это куб, у которого ребро равно одному миллиметру (1 мм).

Русское обозначение: мм

3.

Международное обозначение: mm3.

V = 1 мм ∙ 1 мм ∙ 1 мм = 1 мм3.

3. Кубический сантиметр- это куб, у которого ребро равно одному сантиметру (1 см).

Русское обозначение: см3.

Международное обозначение: сm3.

V = 1 ∙ 1 ∙ 1 cм = 1 см3.

В кубических сантиметрах измеряют, например, объем двигателя.

Шкала медицинского одноразового шприца выражается в кубических сантиметрах.

В медицине существует разговорное обозначение кубического сантиметра, его называют «кубик».

4. Кубический дециметр- это мера объема, равная объему куба с ребром один дециметр (1 дм).

Русское обозначение: дм3.

Международное обозначение: dm3.

V = 1 дм ∙ 1 дм ∙ 1 дм = 1 дм3.

Например, воздухопроницаемость тканей измеряют в дециметрах кубических.

Воздухопроницаемость- это способность материалов пропускать один кубический дециметр (дм3) воздуха через 1 м2 материала за одну секунду.

Этот показатель учитывают при производстве одежды, обуви, упаковочных материалов и т.д.

Например, воздухопроницаемость больше у летней одежды и обуви, чем у зимней.

5. Кубический километр представляет собой куб, у которого ребро равно одному километру (1 км).

Русское обозначение: км3.

Международное обозначение: km3.

V = 1 км ∙ 1 км ∙ 1 км = 1 км3.

Используют данную единицу измерения не часто, в основном для замеров больших объемов водных объектов.

Существуют единицы объема, которые не являются единицами Международной системы единиц СИ (их называют внесистемными единицами), однако они допускаются к применению вместе с единицами системы СИ.

Такой единицей объема является литр.

Литр (от лат.- «мера емкости»)- метрическая единица измерения объема.

Русское обозначение: л.

Международное обозначение: l.

В некоторых странах используют в качестве альтернативного варианта обозначения объема заглавную латинскую букву L.

У меня есть дополнительная информация к этой части урока!

Закрыть