Расчет фундамента монолитной плиты: Онлайн калькулятор расчета монолитного плитного фундамента: инструкция

Содержание

Расчет монолитного фундамента: бетон, арматура

Фундаментальная основа дома

Плитный фундамент является самым прочным и надежным основанием. Он закладывается под всей площадью строения и представляет собой сплошную бетонную конструкцию с усиленным армирующим каркасом. Основание в виде монолитной железобетонной плиты имеет несложную конструкцию, сравнительно низкую себестоимость, высокие теплоизоляционные характеристики и морозоустойчивость. Чтобы фундаментальная основа дома была качественной, крепкой и долговечной, необходимо правильно рассчитать параметры этой части. Одним из основных параметров является толщина плитного основания.

Особенности выполнения расчетов толщины монолитной плиты

Толщина монолитного плитного фундамента рассчитывается на основании трех параметров:

  • Расстояние между верхним и нижним уровнем арматурного каркаса.
  • Диаметр прутьев арматуры, используемых для каркаса.
  • Толщина бетонного слоя над армирующим каркасом и под ним.

Зная показатели этих характеристик, можно без труда определить толщину фундаментной плиты. Идеальным считается значение, равное 20-30 см, но следует знать, что такое значение может использоваться при строительстве на твердом и устойчивом грунте.

Помимо основных критериев при расчете толщины плитного фундамента учитывается этажность основной конструкции и материал, который будет использоваться для возведения стен. Большое значение имеет также тип грунта на участке и величина временных нагрузок, к которым можно отнести снег, мебель и людскую проходимость.

Для дома на участке с сильным промерзанием грунта толщина плиты существенно возрастает. Если сравнивать плиту под дом из пенобетонных блоков и кирпичное строение, то для второго варианта следует увеличить высоту плиты на 5-6 см.

Второй этаж кирпичного дома требует увеличения толщины плиты на 40 см, для двухэтажного пенобетонного строения высоту плитного фундамента добавляют на 35 см.

к оглавлению ↑

Расчет материалов для заливки монолитного плитного основания

Зная основные параметры плиты фундамента, можно точно рассчитать количество бетонного раствора и элементов армирования, необходимых для возведения основания дома.

Для наглядности можно разобрать пример: расчет материалов для плитного фундамента размером 8*8 метров, армированного каркасом из прута диаметром 14 мм. Расстояние между верхней и нижней сеткой 20 см, толщина бетона над сеткой и под ней составляет 5 см.

Вначале определяется толщина плиты, для этого суммируют известные параметры: 20+1,4*2+5*2=32,8

Следовательно, плита будет иметь высоту 33 см. Согласно этому значению рассчитываются основные материалы для плитного фундамента.

к оглавлению ↑

Расчет бетона

Чтобы правильно определить количество бетонного раствора, нужно выполнить расчет объема будущей плиты. Для этого следует использовать простую математическую формулу: Д*Ш*В, при этом к длине и ширине плиты добавляют по 0,2 м. Результат следующий: 8,2*8,2*0,33=22,19.

Для заливки фундамента с приведенными параметрами требуется 22-23 м3 бетона.

Если плита основания имеет сложную форму, то выполняют расчет каждого элемента конструкции и суммируют полученные значения.

к оглавлению ↑

Расчет арматуры

Выполнять расчет арматуры немного сложнее, но если придерживаться рекомендаций мастеров, можно самостоятельно рассчитать количество материала для создания каркаса плитного основания.

Расчет арматуры под плиту

Вначале определяют длину одного горизонтального стержня. В процессе создания каркаса обеспечивается защита арматуры бетонным слоем сверху, снизу и по краям конструкции. В приведенном примере защитный слой составляет 5 см, следовательно, из общей длины плиты нужно убрать по 5 см с двух сторон. В результате получится длина одного прута: 820-5*2=810 см.

Далее рассчитывают количество горизонтальных стержней каркаса с ячейкой 20*20 см. Ширину плиты делят на размер ячейки и получают число прутьев одного направления: 820:20=41.

Прутья будут расположены в двух направлениях и уложены в два ряда, значит, общее количество будет следующим: 41*2*2=164.

Теперь можно рассчитать общую длину стержней: 8,1*164=1328,4 метра.

Теперь необходимо выполнить расчет вертикальных стержней. Их длина с учетом защитного слоя бетона будет равна: 33-5*2=23 см.

Шаг между вертикальными стержнями составляет примерно 40 см, значит, в одном ряду будет 820:40=21 стержень.

В двух направления получается 21*21=441 стержень.

Для создания каркаса потребуются вертикальные стержни общей длиной 441*0,23=101,43 метра.

Правильно выполненные расчеты параметров плитного основания являются залогом прочности, надежности и долговечности возводимого строения.

    

Как сделать расчет монолитного фундамента: пример

Монолитный фундамент, как и свайный идеально подходит для строительства буквально практически любого здания. Эти 2 типа оснований одинаково хорошо переносят воздействие высоких нагрузок и перемещения рыхлых грунтов.

При этом монолитные плиты чаще всего применяют при строительстве крупных торговых центров и многоэтажных домов, а сваи при возведении частного сектора из малоэтажных домов.

Монолитная плита в качестве крепкого основания строители выбирают по многим причинам, однако, для того чтобы придать ей прочность и надежность необходимо произвести грамотные расчеты.

Основные этапы расчета монолитной плиты

Как и любой строительный процесс, расчет фундамента обуславливается правилами проектирования и соответствующими статьями СНиПов. Процесс расчета разделяется на 3 основных этапа:

  1. Проведение замеров и изучение грунта на месте строительства,
  2. Расчет толщины монолитной плиты,
  3. Расчет количества арматуры, необходимой для создания прочного основания.

Есть специальные программы (Мономах, Лира), которые автоматизируют процесс расчета. В тоже время посчитать будущий фундамент можно и вручную.

Процесс изучения основных характеристик почвы

Отбор почвы для анализа

Перед проведением расчетов любого из типов фундамента, для начала необходимо определить базовые характеристики основания на местности под будущее здание или сооружение. Главные показатели, значения которых влияют на расчет фундамента следующие:

  • Показатель водонасыщенности;
  • Несущая способность грунта.

Для строительства крупного объекта, перед проведением этапа разработки всего комплекса проектной документации, нужно дополнительно провести процедуру геологических изысканий. Данное обследование включает в себя операции:

  1. Бурение в грунте скважин;
  2. Проведение лабораторных исследований с грунтом.

В результате заказчик получается разработанный отчет, в котором помечают все особенности и основные характеристики грунта. Однако проведение полного комплекса геологических изысканий грунта обходится застройщикам довольно дорого. Именно по этой причине для проектирования частных домов скважины не бурят, этап изучения грунта проводят с применением шурфов.

Что такое шурфы и для чего они нужны?

Отрывка шурфа

Отрывка шурфов необходима для изучения состава грунта. Шурфы представляют собой ямы, которые выкапываются строителями вручную. Для этого с помощью лопаты откапывается шурф, который должен на 50 см быть глубже, чем будут располагаться подошвы основания. Состав почвы в свою очередь изучается по полученному срезу.

Благодаря шурфам определяется примерный тип несущего слоя на участке строительства, а также соотношение грунта и воды в нем.

Если по итогам обследования грунт перенасыщен водой, то частные дома строят либо на плите, либо опорах из свай.

Во время проведения мероприятий на этапе исследования и оценки почвы нужно обязательно выкапывать шурфы или делать скважины в нескольких точках площадки.

Простой пример: для многоэтажных домов нормой считается бурение 5 скважин на каждые 100 м2 площади будущего здания.Располагаются скважины точно под пятном будущей застройки, которая описана на генплане.

Как только с монолитным основанием определились, останется выяснить только оптимальные удельные значения давления на грунт. Эта информация берется из таблицы в соответствующем разделе СНиПа.

Пример расчета толщины монолитной плиты

Монолитная плита основания

Правила расчета монолитной плиты полностью описаны в строительных правилах (нормах)по проектированию и устройству монолитных оснований и фундамента для зданий и сооружений. Этап расчета толщины плиты состоит из двух операций:

  1. Собрать нагрузки на фундамент;
  2. Рассчитать значения несущей способности для основания.

При сборе нагрузки необходимо провести работы, связанные с вычислением общей массы здания вместе с учетом предполагаемого веса снеговой нагрузки в указанном регионе. Кроме того, при подсчете нагрузки от веса учитывается вес мебели, кровли, установленного оборудования и переменный вес людей в доме. Данные показатели берутся из таблицы в зависимости от материала, который будет применяться при возведении несущих стен, перегородок и перекрытий. Также при расчете необходимо учитывать коэффициент надежности – в среднем 1,3. Показания по снеговой нагрузке берутся из строительных норм по строительной климатологии и определаются в зависимости от снегового района, где будет возводиться сооружение.

При выборе значений из таблицы необходимо также учитывать толщину конструкций.

В итоге, общая масса здания формируется как сумма всех нагрузок на грунт, умноженная на общую площадь будущего здания. При этом обязательно учтите, что каждая из указанных при расчете нагрузок должна быть умножена на нормированный коэффициент надежности. Таким образом, проектировщики обеспечивают запас прочности по несущим способностям конструкции из монолитного бетона.

Основные формулы и коэффициенты при расчете толщины подошвы

Различные нагрузки имеют определенные коэффициенты надежности, которые нормируются СНиПом. Как правило, значения указываются в пределе от 1,05 до 1,4 в зависимости от типа нагрузки. Для монолитного основания из бетона строителями принимается коэффициент равный 1,3.

При уклоне кровли здания больше 60 градусов, можно давление от снеговой нагрузки в расчет не учитывать. При указанной крутизне ската кровли снег не будет скапливаться на поверхности крыши.

Расположение подушки фундамента

Формула для расчета подошвы и нагрузок на нее записывается в следующем виде:

Значения удельной нагрузки на почву без учета веса фундамента вычисляются, как P/S,

где под Р подразумевается сумма всех нагрузок на здание, а S — это проектная площадь будущей монолитной плиты из бетона.

Таким образом, узнав удельную нагрузку по таблице из строительных норм, вы подберете подходящую ширину подошвы.

Общий пример расчета для одноэтажного частного дома

Проведем пример. При расчете будем использовать следующие исходные данные об объекте:

  1. Здание представляет собой конструкцию одноэтажного частного дом с небольшой мансардой и общей площадью 36 кв. м.;
  2. Материал для возведения несущих стен – бруса, толщина которого 200 мм;
  3. Общее значение площади стен (4 стены с наружной высотой равной 4,5 м) равно 108 кв.м.;
  4. Внутренние перегородки выполнены из гипсокартона и составляют 75 кв.м. площади;
  5. На крыше используется образец металлической четырехскатной кровли, с уклоном в 30ᵒ;
  6. При исследовании грунт оказался пластичным, а качественный состав показал глину;
  7. Значения снеговой нагрузки для выбранного региона равняется 180 кг/м²;
  8. Перекрытия в частном доме будут из дерева, общая площадь составит 72 кв.м.

Пример сбора нагрузки для здания

Любой сбор нагрузки на будущее бетонное осуществляется с учетом всех конструкций, а также снеговой и ветровой нагрузки. Все данные заносятся в табличную форму. Посмотрите видео, как рассчитать все нагрузки, а также возвести монолитный фундамент.

При расчете необходимо учитывать нормативную и расчетную нагрузку в совокупности с коэффициентом надежности. Для нашего примера получим такие результаты:

  1. Нагрузка от стен вычисляется: 108*160*1,1 = 19008 кг,
  2. Нагрузка от гипсокартонных перегородок: 75*30*1,2 = 2750 кг,
  3. Нагрузка от деревянных перекрытий: 72*150*1,1 = 11880 кг,
  4. Давление металлической кровли: 42*60*1,1 = 2772 кг,
  5. Полезная и снеговая нагрузки: 72*150*1,2 + 42*180*1,4 = 23544 кг.

В итоге, в данном примере, мы получаем общую нагрузку здания в районе 59904 кг (это с учетом коэффициента надежности). Ширина подошвы бетонного основания вычисляется с учетом условия, что его ширина на 20 см больше, чем у дома. Таким образом, общая площадь основания равна 372100 кв. см.

Высчитываем удельную нагрузку на почву под домом по формуле: 59904 кг: 372100 кв.см. = 0,16 кг/см². Сравниваем полученные и заданные при расчете значения – Δ = 0,25 — 0,16 = 0,09 кг/см². Высчитываем массу будущего здания – М = Δ*S = 0,09*372100 = 33489 кг. Получаем в итоге толщину подошвы: t = 33489/2500 = 13,4 см. Так как значение не целое, за толщину бетонного основания принимают либо 10 см, либо 15 см.

При проверке на наименьший расход бетонного раствора и массы арматуры требованиям расчета удовлетворило значение толщины в 15 см. Остается посчитать лишь расход арматуры на монолитный фундамент выбранного одноэтажного дома для нашего примера.

Расчет арматуры на плиту

Дальнейшие расчеты примера по количеству арматуры основаны на следующих данных:

  1. Выбрана плита с общей толщиной в 15 см,
  2. Будет использовано 2 рабочие сетки,
  3. Диаметр металлических стержней выбран в 12 мм, а шаг стержней на расстоянии 150 мм,
  4. По количеству стержней получаем следующее количество штук (для двух слоев): 84*2=168 штуки,
  5. В результате, общую массу арматуру считаем по формуле: 1018,08 м * 0,888 кг/м = 905 кг.

Упрощенный расчет вручную необходимой толщины фундаментного основания и общего количества (веса) арматуры является несложной задачей, требующей небольшого количества свободного времени. Самое главное не запутаться в формулах и учесть всех коэффициенты.

Расчет монолитной плиты фундамента | Фундамент для Дома

От правильного расчета монолитной плиты будет зависеть прочность, долговечность и эксплуатационные характеристики дома. Перед началом строительства следует провести тщательное исследование грунта, чтобы определить нагрузку, которую он выдержит.

Среди преимуществ монолитного фундамента стоит выделить большую площадь покрытия грунта, что делает его очень надежным. Это позволяет пренебречь расчетом сопротивляемости грунта. При возведении малоэтажного строения конструкция фундамента способна выдержать значительную нагрузку, вне зависимости от типа почвы и материалов, из которых построен дом.

Расчет монолитной плиты фундамента сводится к вычислению размеров основания и количества материалов для его изготовления.

Основные расчеты

Для начала следует рассчитать нагрузку конструкции на фундамент, а также — на грунт. Учитываются как временные, так и постоянные нагрузки. Постоянные нагрузки – это вес самого строения, а также — эксплуатационные характеристики, такие как вес мебели, оборудования и количество людей, которые будут постоянно или периодически находиться в строении.

Переменные нагрузки определяются, исходя из погодных условий в определенном регионе. К примеру, средняя толщина слоя снега и сила ветра.

Расчет монолитной плиты фундамента начинается с определения площади опоры, на которой он будет устанавливаться. Не стоит забывать и про вес самого фундамента. При проведении расчетов необходимо брать во внимание, какие строительные материалы будут использоваться при его возведении. При постройке дома самостоятельно требуется хотя бы приблизительный расчет фундамента.

Это позволит равномерно распределить нагрузку строения на требуемую площадь.

Определение веса дома

Если учесть все элементы постройки, возможен расчет фундаментной плиты вручную. Для этого необходимо определить вес строения, который включает:

  • Вес фундаментной плиты.
  • Стены, потолок, цоколь дома, а также их отделка.
  • Крыша дома.
  • Вес грунта, расположенный выше подошвы фундамента.
  • Пол, который упирается на фундамент.
  • Лестницы.

Примерный вес будущего строительства следует рассчитывать по данным удельного веса строительных материалов, которые будут использоваться. Округлите полученное значение в большую сторону.

Расчет основания

Чтобы рассчитать нагрузку на грунт, следует использовать показатели веса дома и вес фундамента.

Теперь определяем размеры фундамента, которые зависят от типа постройки, ее назначения, используемых материалов и глубины залегания.

Расчет глубины закладки фундамента производится, исходя из типа грунта. Чаще всего глубина составляет не менее 35 см. Для упрощения расчетов следует заранее подготовить эскиз будущего фундамента.

Расчет на продавливание фундаментной плиты

Для определения правильной толщины плиты фундамента следует брать во внимание ее продавливание в зонах сосредоточенных нагрузок. Это могут быть нагрузки от стен, колонн, столбов или прочих элементов строения. Если расчет на продавливание фундаментной плиты показал низкую прочность конструкции, увеличивается класс бетона либо повышается толщина плиты.

Расчет фундаментной плиты на продавливание возле стен очень важен, особенно для сложных конструкций, в которых колонны находятся недалеко от стен. В таком случае прочности фундамента должно хватать на то, чтобы выдержать сосредоточенные в этих зонах повышенные нагрузки.

При расчете следует учитывать сосредоточенный момент из плоскости стены в колонну. Если колонны расположены возле угла стен, то для вычисления продавливания используется значение продольной силы.

Если колонны расположены у края, рекомендуется использовать вязальную проволоку или пластиковые хомуты, иначе конструкция будет недостаточно прочной. Если колонны будут расположены у края конструкции, следует использовать дополнительный коэффициент на продавливание.

Таким образом, толщину фундаментной плиты придется увеличить или использовать бетон более высокого класса. Если в фундаменте имеются технологические отверстия, которые находятся достаточно далеко от колонн, то учитывать их в расчетах необязательно.

Закладка фундамента должна быть произведена согласно предварительным расчетам. При правильном расчете монолитной плиты фундамента обеспечивается дополнительный запас прочности, который позволяет повысить долговечность сооружения, а также его основные эксплуатационные характеристики.

Если в процессе проектировки и расчета фундамента будут допущены ошибки, гарантировать целостность и надежность конструкции будет невозможно.

Толщина монолитной плиты фундамента: порядок расчета, минимальная толщина

От правильно выбранного типа фундамента, от типа его конструкции и общей надежности, зависит успешность эксплуатации будущего дома. Поэтому, многие задаются вопросом о том, какой тип фундамента выбрать, как правильно его рассчитать и применить ту или иную технологию во время строительства. На сегодняшний день известны различные варианты, такие как свайный фундамент, ленточный, а также монолитный, где последний вариант считается наиболее надежным и долговечным. Монолитная плита представляет собой мощную армированную основу. Чем больше толщина монолитной плиты фундамента, тем выше способность выдерживать тяжелую конструкцию домов, которые могут быть перекрыты плитами не только между первым и вторым этажом, и последующими этажами.

Виды монолитного фундамента

Что касается видов, то здесь можно выделить два основных варианта, которые используются в строительстве:

  • Применение ЖБИ изделий. Здесь, в качестве основы используются плиты и железобетонные блоки. Они свариваются между собой, укладываются на подготовленную, ровную поверхность. Кроме того, все пустоты между этими блоками рекомендовано заполнять бетоном. Изначально большинство ЖБИ-изделий армировано и изготовлено с использованием технологии вибропрессования, что позволяет добиться максимальной прочности. Подобный метод несколько дороже своего прямого конкурента.
  • Монолитная плита. Этот вариант представляет собой наиболее востребованный способ. Он требует предварительной подготовки поверхности, углубления котлована на величину будущей плиты, армирование и последующее высыхание плиты.

Время, за которое бетон полностью высохнет и будет готов к эксплуатации, составляет 28 проектных дней. В этот интервал времени рекомендовано поливать бетон обильным количеством воды и накрывать от пересыхания, используя полиэтиленовую пленку. Армирование будущей плиты является важным этапом, что позволит защитить основание от излома во время весеннего пучения грунта.

Этапы подготовки

Все этапы, включая подготовительный процесс, должны проходить под контролем сертифицированного специалиста. Очень важно соблюсти все расчеты, включая расчет подушки. Подушку, как правило, изготавливают из песка, предварительно оборудуя углубление в земле. Глубина, на которой будет залегать песчаная подушка, индивидуальна, и в основном упирается в климатические условия, а также зависит от типа грунта.

Расчету подвергается и обоснование будущего фундамента. Здесь важно определить зависимость от нагрузки, марку используемого бетона, а также понять диаметр арматуры, шаг, количество используемых прутьев. Все это необходимо сделать еще на этапе проектирования будущего дома, поскольку на расчет будет влиять не только тип почвы и климатические условия эксплуатации, но и этажность, а также тип используемого строительного материала.

Определение нагрузок на основание

Итак, на раннем этапе проектирования, важно произвести расчет нагрузки будущего дома. Для этого необходимо обладать рядом познаний, включающих в себя следующие аспекты:

  • Тип грунта. Этот момент важно выяснить опытным путем. Для этого копается яма на глубину, примерно, до 2 м, изучается структура породы земли, состав, плотность и другие физические данные. Все это производится в соответствующей организации путем лабораторных исследований.
  • Материал, из которого планируется построить дом. Нужно понимать, что если перекрытие у вашего дома будет из плит, сам материал будет блок, пеноблок, газобетон, керамзитоблок, а также другие тяжелые варианты, то и фундамент должен выдерживать соответствующие нагрузки. В случае с использованием дерева и перекрытием из дерева, малоэтажных строений, нагрузка на фундамент будет снижена, что позволит неплохо сэкономить на обустройстве основания.

  • Учесть динамические и статические нагрузки. Что касается статических нагрузок, то сюда относятся давление стен, действующее давление крыши, цоколя, общей нагрузки мебели и прочей составляющей внутри дома. Что касается динамических нагрузок, то сюда определяют ту величину давления на фундамент, которая может либо понижаться с течением времени, либо возрастать. Например, к динамическим нагрузкам можно отнести давление снега на крышу.
  • Марка бетона. Очень важно определить марку бетона, что будет влиять и на прочность основания и на возможность эксплуатировать дом в разных условиях. Важно учесть, какая толщина монолитной плиты фундамента подойдет для вашего проекта.

Вычисляя общую нагрузку на будущий фундамент, суммируют все, начиная от межкомнатных перегородок, несущих стен, крыши, перекрытий, окон, дверей, сезонного снега на крыше, а также других элементов в доме, которые давят на основание. Но, какой бы критерий давления массы на один квадратный метр у нас не получился, важно учесть запас. Это запас зачастую называют коэффициентом надежности. Этот критерий рассчитывается для разных групп строительного материала индивидуально, где, например, для плиты перекрытия из бетона, рекомендуется использовать запас, равный 1,3.

Порядок расчета

Итак, расчет монолитной плиты фундамента начинается с детального расчета величины подушки из песка. Именно это является важным этапом, поскольку позволяет создать надежную основу для заливки бетона. Что касается песка, то обычно здесь используют мелкозернистый горный песок, поскольку он недорогой и приемлем для подсыпки. Что касается толщины подушки из песка для монолитной плиты фундамента дома, то она варьируется в значении от 20, до 60 см.

Важным моментом укладки подложки из песка является то, что ее необходимо утрамбовать. Для этого используют специализированный инструмент, такой как виброплита. Специалисты рекомендуют поливать песок, что по итогам позволит ему еще лучше уплотниться. Это увеличит несущую способность основания. Но, последнее может отнять вплоть до 1 см толщины, что является абсолютно нормальным явлением.

Важным этапом является то, что поверх подушки рекомендуют засыпать щебень. Величина подушки из щебня равна значению от 5 до 10 см. Фракция щебня может быть небольшой, где идеально подойдет фракция 5-20. Основание после засыпки должно получиться идеально ровным относительно горизонтальной плоскости. Подушку из щебня тоже рекомендовано уплотнить.

Что касается глубины, то этот критерий зависит от типа грунта. Если недалеко от поверхности земли располагается грунтовая вода, которая может навредить бетонному основанию, то в глубину, подушку стоит делать не менее 60 см. Если грунтовые воды далеко, грунт сам по себе плотный, то достаточно разместить подушку на величину до 20 см, включительно. Толщина каждого слоя монолитной плиты фундамента рассчитывается индивидуально.

Следующим этапом можно считать расчет арматуры. Здесь определяется не только общее количество металла, но и диаметр прута, шаг между прутьями, решается возможность использования сетки. Арматуру рекомендовано связывать минимум в два слоя, где первый проходит на расстоянии 5 см от подушки из песка, а второй не доходит до верхней точки основания будущей монолитной плиты, также на 5 сантиметров. По итогу заливки у нас получится то, что арматура будет находиться внутри монолитной плиты. Каркас арматуры вяжут из прута при помощи сварочного аппарата или вязальной проволоки, с шагом не более 50 мм.

Специалисты больше склоняются к использованию вязальной проволоки, потому что ее применение позволяет арматуре немного «играть» во время пучения грунта, что исключит ее разрыв, как это бывает в случае со сварочным соединением.

Далее приступают к расчету самой плиты. Здесь крайне важно выдержать высоту ее подъема, которая не должна быть меньше 150 мм. Такая плита подойдет для легких, ненагруженных домов из каркасного материала или бревна. Что касается двухэтажных домов с плитными перекрытиями, то здесь величина плиты должна быть не менее 25 см. Редко основание заглубляют на величину промерзания, поскольку это чревато излишним вложением денежных средств в проект. Предлагаем рассмотреть калькулятор расчета толщины монолитной плиты фундамента в рамках отдельного заголовка.

Расчет толщины плиты при обустройстве дома, площадью 10 на 10 метров

Предположим, что мы строим нетяжелый дом, общей площадью основания 10 на 10 метров. Сама плита должна чуть-чуть выходить за эти рамки, а потому, необходимо добавить запас каждой страны по 10 сантиметров. Чтобы наш дом в 2 этажа с учетом перекрытий из плит 16 см толщиной, стоял долго, не имел трещин и не разрушался от времени, следует обустроить подушку из песка равную 20 см. Затем следует залить монолитную плиту, равную тоже 20 сантиметров. При этом мы условимся, что грунтовые воды находятся на большом расстоянии от поверхности, да и сам грунт представляют собой глину, с небольшим слоем чернозема.

Необходимо рассчитать количество бетона, который пойдет для плиты. Соответственно, считаем площадь основания, которая в нашем случае равняется: 10,2*10,2 = 104 квадрантных метра. Далее необходимо посчитать объем бетона, который следует завести на участок. Он будет равен значению: 104*0,25=26 кубический метр. Если в процессе расчета мы получили не целое число, как это было сейчас, где реально значение равнялось 25,89 кубических метра, то округлять всегда нужно в большую сторону, поскольку погрешность в расчетах всегда присутствует и нам нужно учесть «запас».

Далее необходимо посчитать арматуру. На этом материале экономить не стоит. Поэтому, необходимо заручиться дополнительной надежностью фундамента и использовать арматуру 14 мм. Это значение касается сечения прута. Исходя из того, что наш дом имеет 10,2 м по габаритам, мы знаем, что длина одного прута составит 10200 мм. Беря в расчет, что шаг между двумя рядом лежащими рутам будем делать 20 см, можно посчитать, что на один слой арматуры пойдет: 10200/200=51 прут. Это касается только одного направления. Соответственно, таких направлений будет 2, поскольку должен быть перехлест ячейки. Итого, на один слой пойдет 102 прута арматуры. Таких слоев у нас будет 2, поэтому нам потребуется 204 отрезка арматуры длинной по 10,2 метра.

Теперь давайте посчитаем общий метраж арматуры, которая пойдет на подготовку основания. Соответственно, мы имеем 10,2 метра длины одного прута. Умножаем это значение на количество прутов, что в нашем случае составило 204 единицы. Итого, получаем, 2080 метров. Лучше взять с запасом, примерно, 2100 метров.

Известно, что масса одного килограмма арматуры, диаметр которой 14 мм, равен, 1,2 кг. Итого, умножаем 2100 на 1,2 кг, что позволит рассчитать общую массу металла (2500 кг).

Чтобы связать между собой верхнюю и нижнюю плоскость арматуры, потребуется вертикальный стержень. Чтобы его рассчитать, необходимо вычесть из максимальной толщины монолитного фундамента, значение, которое будет равняться расстоянию от песчаной подушки до первого слоя арматуры. В нашем случае это равняется разнице: 25-6 = 19 см. Стандартный шаг, который используется при армировании, равен 40 см. Исходя из этого значения, мы получаем, что на один пруток пойдет порядка 26 опорных точек. Это значение следует перемножить на 26 и получить 676 прутков, которые потребуются в качестве опоры для слоев арматуры.

Теперь посчитаем массу и метраж. Соответственно 676 штук умножаем на 0,19 метров одного прутка. Это составит 128 метров общей длины. Далее необходимо умножить метраж на вес одного метра, что составит: 128*1,2 = 153 кг. Суммируем значения массы, прибавляем небольшой запас и получаем, что для армирования нашего основания нам потребуется порядка 2700 кг арматуры. Подробный расчет выполнен не случайно, поскольку брать металл на вес, зачастую дешевле, чем брать поштучно. В нашем случае у нас получилось металла более 2,5 тонн, на что можно получить хорошую скидку.

Перед заливкой бетона важно положить гидроизоляцию. В качестве гидроизоляции может выступать геотекстиль, либо полиэтиленовая пленка, расчет которой считается по площади основания. В нашем случае нам необходимо 104 квадратных метра пленки, с учетом запаса.

Пленка будет защищать от влаги со стороны грунта, а также на время высыхания позволит сохранить влагу внутри бетона, равномерно выпаривая ее через поверхность. В таком случае бетон сможет достигнуть максимальной прочности, что, отразится на качестве эксплуатации здания в целом.

Далее необходимо подготовить подъезд к месту заливки, и желательно, чтобы подъезды были со всех четырех сторон будущего здания. Что касается кубатуры бетона, то ее мы уже посчитали, когда рассчитывали объем будущего основания. В нашем случае он составил порядка 26 кубического метра. Что касается самого бетона, то специалисты рекомендуют использовать марку не ниже м250-м300. Бетон более высокой марки тоже использовать не стоит, поскольку его назначение имеет специфический характер, ведь при использовании в частных сферах он может принести больше минусов, чем плюсов.

Что касается песчаной подушки, о которой мы говорили на ранних этапах, то она должна выходить на величину до 1 метра больше, чем площадь основания будущего дома. Поэтому, рассчитывая объем песка, учитывают длину, равную 11,2 метра. При толщине подушки, равной 30 см, нам потребуется: 11,2*11,2*0,3 = 37 кубических метров песка.

В заключение: полезные советы специалистов

Если вы усвоили, как рассчитать толщину фундамента, то все равно важно не забывать о почве. Если почва имеет пучинистую структуру, то она способна опуститься и подняться до 5 см за год. Это чревато последствиями, поскольку фундамент будет играть, что может привести к образованию трещин в основании.

Что касается арматуры, то лучше всего связывать ее между собой проволокой. Как мы и говорили раньше, даже в полностью застывшем бетоне, связанная арматура может немного «играть», что делает ее подвижной. Это сохранит общую структуру основания, и не позволит появиться трещинам. Не экономьте на материале, особенно на бетоне и на количестве арматуры. Помните, что снижая диаметр арматуры на 1 порядок, вы теряете до 5-8% несущей способности основания.

Заливать бетон на землю без песка тоже нельзя. Не забывайте утрамбовать подушку. Постарайтесь залить бетон за один день, поскольку это позволит добиться большей прочности конструкции. Учитывайте, что минимальная толщина фундамента в виде монолитной плиты не может быть менее 15 см.

Пример расчета плитного фундамента

Монолитный фундамент, как и свайный идеально подходит для строительства буквально практически любого здания. Эти 2 типа оснований одинаково хорошо переносят воздействие высоких нагрузок и перемещения рыхлых грунтов.

При этом монолитные плиты чаще всего применяют при строительстве крупных торговых центров и многоэтажных домов, а сваи при возведении частного сектора из малоэтажных домов.

Монолитная плита в качестве крепкого основания строители выбирают по многим причинам, однако, для того чтобы придать ей прочность и надежность необходимо произвести грамотные расчеты.

Блок: 1/5 | Кол-во символов: 573
Источник: http://FundamentAya.ru/dop/raschet/monolitnogo_fundamenta_primer.html

Общая информация

Плитный фундамент представляет собой монолитную железобетонную плиту, смонтированную на песчано-гравийном основании с применением гидроизолирующего слоя и утеплителя.

Конструкция такого основания под строением обеспечивает надежность, комфортность и большой срок эксплуатации на любых типах грунтов в любых климатических условиях практически без какого-либо вмешательства извне.

Как, выбрав плитный фундамент: расчет толщины и армирования производить правильно, и поговорим дальше в статье.

Основание, являясь опорой любого сооружения, должно без нареканий выполнять свою функцию весь эксплуатационный срок. К плитному фундаменту это требование предъявляется особо ввиду невозможности его модернизации без сноса основного строения.

Именно поэтому перед закупкой материалов и началом стройки необходимо произвести более-менее точный расчет монолитной плиты фундамента.

Расчет выполняется:

  1. Для определения толщины несущей плиты. Расчет плиты фундамента зависит от типа грунта: толщина песчано-гравийной подушки и толщина слоя железобетона могут существенно отличаться.
  2. Для определения площади плиты. В случае особо подвижных и зыбких грунтов площадь основания может быть больше, чем площадь дома для достижения необходимой устойчивости.
  3. Для определения количества материалов, необходимых для постройки основания.
  4. Для определения нагрузки на основание.

Если решение еще не принято, и вы находитесь на этапе выбора типа основания, вам могут пригодиться плюсы и минусы плиты. В некоторых случаях выбор делают в пользу комбинированных видов, например, свайно-плитный или универсальных, например, из дорожных плит.

Блок: 2/9 | Кол-во символов: 1627
Источник: https://ochag.online/konstrukciya/fundament/plitnyj/samostoyatelnyj-raschet.html

Основные этапы расчета монолитной плиты

Как и любой строительный процесс, расчет фундамента обуславливается правилами проектирования и соответствующими статьями СНиПов. Процесс расчета разделяется на 3 основных этапа:

  1. Проведение замеров и изучение грунта на месте строительства,
  2. Расчет толщины монолитной плиты,
  3. Расчет количества арматуры, необходимой для создания прочного основания.

Есть специальные программы (Мономах, Лира), которые автоматизируют процесс расчета. В тоже время посчитать будущий фундамент можно и вручную.

Блок: 2/5 | Кол-во символов: 521
Источник: http://FundamentAya.ru/dop/raschet/monolitnogo_fundamenta_primer.html

Исходные данные


Плитный фундамент: расчет нагрузки проводится при наличии следующих необходимых исходных данных:

  1. Тип и характеристика грунта. Определяется опытным путем при помощи подручных материалов. Для этого копается яма глубиной полтора метра. Почва тщательно изучается на наличие влаги, определяются основной состав и примерная плотность.
  2. Материал, из которого планируется возведение дома.
  3. Выбрав плитный фундамент: расчет толщины проводится и для снежного покрова в данной местности (максимальная толщина снега).
  4. Марка цемента для заливки опоры под каркасный дом.

После проведения всех расчетов будут получены необходимые данные для изготовления конструкции: удельная нагрузка дома и фундамента на грунт, допустимая толщина плиты опоры, глубина залегания.

Важно! Для получения надежных результатов следует выкопать несколько таких ям в разных частях участка для строительства.

Блок: 3/9 | Кол-во символов: 887
Источник: https://ochag.online/konstrukciya/fundament/plitnyj/samostoyatelnyj-raschet.html

Процесс изучения основных характеристик почвы

Отбор почвы для анализа

Перед проведением расчетов любого из типов фундамента, для начала необходимо определить базовые характеристики основания на местности под будущее здание или сооружение. Главные показатели, значения которых влияют на расчет фундамента следующие:

  • Показатель водонасыщенности;
  • Несущая способность грунта.

Для строительства крупного объекта, перед проведением этапа разработки всего комплекса проектной документации, нужно дополнительно провести процедуру геологических изысканий. Данное обследование включает в себя операции:

  1. Бурение в грунте скважин;
  2. Проведение лабораторных исследований с грунтом.

В результате заказчик получается разработанный отчет, в котором помечают все особенности и основные характеристики грунта. Однако проведение полного комплекса геологических изысканий грунта обходится застройщикам довольно дорого. Именно по этой причине для проектирования частных домов скважины не бурят, этап изучения грунта проводят с применением шурфов.

Что такое шурфы и для чего они нужны?

Отрывка шурфа

Отрывка шурфов необходима для изучения состава грунта. Шурфы представляют собой ямы, которые выкапываются строителями вручную. Для этого с помощью лопаты откапывается шурф, который должен на 50 см быть глубже, чем будут располагаться подошвы основания. Состав почвы в свою очередь изучается по полученному срезу.

Благодаря шурфам определяется примерный тип несущего слоя на участке строительства, а также соотношение грунта и воды в нем.

Если по итогам обследования грунт перенасыщен водой, то частные дома строят либо на плите, либо опорах из свай.

Во время проведения мероприятий на этапе исследования и оценки почвы нужно обязательно выкапывать шурфы или делать скважины в нескольких точках площадки.

Простой пример: для многоэтажных домов нормой считается бурение 5 скважин на каждые 100 м2 площади будущего здания.Располагаются скважины точно под пятном будущей застройки, которая описана на генплане.

Как только с монолитным основанием определились, останется выяснить только оптимальные удельные значения давления на грунт. Эта информация берется из таблицы в соответствующем разделе СНиПа.

Блок: 3/5 | Кол-во символов: 2157
Источник: http://FundamentAya.ru/dop/raschet/monolitnogo_fundamenta_primer.html

Общий пример расчета для одноэтажного частного дома

Проведем пример. При расчете будем использовать следующие исходные данные об объекте:

  1. Здание представляет собой конструкцию одноэтажного частного дом с небольшой мансардой и общей площадью 36 кв. м.;
  2. Материал для возведения несущих стен – бруса, толщина которого 200 мм;
  3. Общее значение площади стен (4 стены с наружной высотой равной 4,5 м) равно 108 кв.м.;
  4. Внутренние перегородки выполнены из гипсокартона и составляют 75 кв.м. площади;
  5. На крыше используется образец металлической четырехскатной кровли, с уклоном в 30ᵒ;
  6. При исследовании грунт оказался пластичным, а качественный состав показал глину;
  7. Значения снеговой нагрузки для выбранного региона равняется 180 кг/м²;
  8. Перекрытия в частном доме будут из дерева, общая площадь составит 72 кв.м.

Пример сбора нагрузки для здания

Любой сбор нагрузки на будущее бетонное осуществляется с учетом всех конструкций, а также снеговой и ветровой нагрузки. Все данные заносятся в табличную форму. Посмотрите видео, как рассчитать все нагрузки, а также возвести монолитный фундамент.

При расчете необходимо учитывать нормативную и расчетную нагрузку в совокупности с коэффициентом надежности. Для нашего примера получим такие результаты:

  1. Нагрузка от стен вычисляется: 108*160*1,1 = 19008 кг,
  2. Нагрузка от гипсокартонных перегородок: 75*30*1,2 = 2750 кг,
  3. Нагрузка от деревянных перекрытий: 72*150*1,1 = 11880 кг,
  4. Давление металлической кровли: 42*60*1,1 = 2772 кг,
  5. Полезная и снеговая нагрузки: 72*150*1,2 + 42*180*1,4 = 23544 кг.

В итоге, в данном примере, мы получаем общую нагрузку здания в районе 59904 кг (это с учетом коэффициента надежности). Ширина подошвы бетонного основания вычисляется с учетом условия, что его ширина на 20 см больше, чем у дома. Таким образом, общая площадь основания равна 372100 кв. см.

Высчитываем удельную нагрузку на почву под домом по формуле: 59904 кг: 372100 кв.см. = 0,16 кг/см². Сравниваем полученные и заданные при расчете значения — Δ = 0,25 — 0,16 = 0,09 кг/см². Высчитываем массу будущего здания — М = Δ*S = 0,09*372100 = 33489 кг. Получаем в итоге толщину подошвы: t = 33489/2500 = 13,4 см. Так как значение не целое, за толщину бетонного основания принимают либо 10 см, либо 15 см.

При проверке на наименьший расход бетонного раствора и массы арматуры требованиям расчета удовлетворило значение толщины в 15 см. Остается посчитать лишь расход арматуры на монолитный фундамент выбранного одноэтажного дома для нашего примера.

Расчет арматуры на плиту

Дальнейшие расчеты примера по количеству арматуры основаны на следующих данных:

  1. Выбрана плита с общей толщиной в 15 см,
  2. Будет использовано 2 рабочие сетки,
  3. Диаметр металлических стержней выбран в 12 мм, а шаг стержней на расстоянии 150 мм,
  4. По количеству стержней получаем следующее количество штук (для двух слоев): 84*2=168 штуки,
  5. В результате, общую массу арматуру считаем по формуле: 1018,08 м * 0,888 кг/м = 905 кг.

Упрощенный расчет вручную необходимой толщины фундаментного основания и общего количества (веса) арматуры является несложной задачей, требующей небольшого количества свободного времени. Самое главное не запутаться в формулах и учесть всех коэффициенты.

Блок: 5/5 | Кол-во символов: 3135
Источник: http://FundamentAya.ru/dop/raschet/monolitnogo_fundamenta_primer.html

Общие сведения по результатам расчетов

  • Периметр плиты
  • — Длина всех сторон фундамента

  • Площадь подошвы плиты
  • — Равняется площади необходимого утеплителя и гидроизоляции между плитой и почвой.

  • Площадь боковой поверхности
  • — Равняется площади утеплителя всех боковых сторон.

  • Объем бетона
  • — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.

  • Вес бетона
  • — Указан примерный вес бетона по средней плотности.

  • Нагрузка на почву от фундамента
  • — Распределенная нагрузка на всю площадь опоры.

  • Минимальный диаметр стержней арматурной сетки
  • — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения плиты.

  • Минимальный диаметр вертикальных стержней арматуры
  • — Минимальный диаметр вертикальных стержней арматуры по СНиП.

  • Размер ячейки сетки
  • — Средний размер ячеек сетки арматурного каркаса.

  • Величина нахлеста арматуры
  • — При креплении отрезков стержней внахлест.

  • Общая длина арматуры
  • — Длина всей арматуры для вязки каркаса с учетом нахлеста.

  • Общий вес арматуры
  • — Вес арматурного каркаса.

  • Толщина доски опалубки
  • — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.

  • Кол-во досок для опалубки
  • — Количество материала для опалубки заданного размера.

Для расчета УШП необходимо вычесть объем закладываемого утеплителя из объема рассчитанного бетона.

Блок: 3/3 | Кол-во символов: 1583
Источник: http://stroy-calc.ru/raschet-fundamenta-plita

Глубина заложения


Глубина залегания основания из монолитной железобетонной плиты не так сильно влияет на выполнение им своей основной функции, как данная характеристика у других типов опор.

Тем не менее определение глубины заложения плитных фундаментов мелкого и глубокого заложения может варьироваться в зависимости от нескольких факторов:

  • от глубины промерзания грунта;
  • от типа грунта;
  • от общей нагрузки на грунт;
  • от уровня грунтовых вод.

Высота котлована и толщина монолитной плиты фундамента для различных типов почв указана в соответствующих нормативных документах, например, СНиП -83 и СНиП IIБ.1-62.

Ниже приведены примерные рекомендации при монтаже:

  1. Высота песчаной-щебневой подушки. Толщина может колебаться от 15 до 60 см и зависит от глубины промерзания почвы в данной местности и типа почвы. Если глубина промерзания почвы более одного метра, рекомендуется насыпать 40–45 см песка и 15–20 см щебня. Общая толщина составит 60 см. Если же глубина промерзания от 50 до 100 см, достаточно подушки общей толщиной 30–40 см.
  2. Толщина слоя теплоизоляции должна быть не менее 10 см в теплых регионах и 15 см в северных. Здесь необходимо учитывать, что чем выше влажность почвы, тем толще должен быть теплоизоляционный слой.
  3. Высота железобетонного основания не должна быть меньше 15 см. Такой слой используется при строительстве одноэтажных каркасных домов или хозяйственных построек. При возведении кирпичного или монолитно-бетонного строения толщину слоя рекомендуется делать 25–30 см.

Таким образом, расчет глубины залегания и толщины производится индивидуально на конкретно выбранном участке. Для северных районов с нестабильными грунтами необходим котлован глубиной 80–100 см при общей толщине основания в 100–120 см, для строительства на стабильных грунтах в теплых или умеренных климатических условиях достаточно глубины 30–40 см при толщине «пирога» в 50–60 см.

Важно! На скальных стабильных грунтах глубина залегания минимальна и может составлять 20 см.

Блок: 6/9 | Кол-во символов: 1967
Источник: https://ochag.online/konstrukciya/fundament/plitnyj/samostoyatelnyj-raschet.html

Полезное видео

Наглядно расчет монолитного плитного основания показан на видео ниже:

Блок: 8/9 | Кол-во символов: 86
Источник: https://ochag.online/konstrukciya/fundament/plitnyj/samostoyatelnyj-raschet.html

Выводы

В процессе строительства жилого дома необходимо производить примерный расчет нагрузки на монолитную плиту фундамента. Это не такая сложная задача, как может показаться на первый взгляд. Затратив некоторое количество времени на вычисления в процессе планирования, можно не только обрести уверенность в надежности сооружения, но и существенно сэкономить на материалах.

Блок: 9/9 | Кол-во символов: 374
Источник: https://ochag.online/konstrukciya/fundament/plitnyj/samostoyatelnyj-raschet.html

Кол-во блоков: 11 | Общее кол-во символов: 18956
Количество использованных доноров: 4
Информация по каждому донору:
  1. https://ochag.online/konstrukciya/fundament/plitnyj/samostoyatelnyj-raschet.html: использовано 5 блоков из 9, кол-во символов 4941 (26%)
  2. http://FundamentAya.ru/dop/raschet/monolitnogo_fundamenta_primer.html: использовано 4 блоков из 5, кол-во символов 6386 (34%)
  3. http://stroy-calc.ru/raschet-fundamenta-plita: использовано 1 блоков из 3, кол-во символов 1583 (8%)
  4. https://stroyday.ru/stroitelstvo-doma/fundament-doma/plitnyj-fundament-raschet-tolshhiny-princip-i-onlajn-kalkulyator.html: использовано 1 блоков из 4, кол-во символов 6046 (32%)

Онлайн калькуляторы. Расчет: монолитная плита: расчет стоимости строительства

Монолитная плита – оптимальный тип фундамента для загородного дома. Цельная армированная конструкция имеет высокую жесткость, несокрушима перед перепадами температур, выдерживает колебания пучения грунта. Цельное основание гарантирует стабильное положение конструкции, равномерно распределяет давление и препятствует разрушению за пределами базы.

Рассчитать стоимость плиты фундамента под ключ в Санкт-Петербурге (СПб) и Ленинградской области и получить смету онлайн с учетом материалов и производством фундаментных работ по ценам 2020 года, как за квадратный метр, так и за кубический метр на нашем интернет ресурсе и воспользоваться онлайн калькулятором.

Компания «Зеленый остров» выполняет заказы по возведению фундаментов монолитная плита нескольких видов:

  • — перевернутая чаша
  • — усиленный ребрами жесткости
  • — утепленный
  • — установленный на ленте

Целесообразно использовать этот тип фундамента на песчаных подложках, почвогрунтах насыпного типа, территориях с повышенными грунтовыми водами.

Фундамент из монолитной плиты, несмотря на кажущуюся простоту, в разы надежнее других типов оснований. А с применением верхних или нижних ребер жесткости, конструкция сможет выдержать сильнейшие нагрузки и колебания грунта. Среди достоинств:

  • — возможность применения на участках любой сложности
  • — высокие несущие параметры
  • — большой запас прочности
  • — длительный срок эксплуатации
  • — сочетаемость со всеми строительными материалами

Цена фундамента из монолитной плиты несколько выше, чем оснований других типов. Это объясняется трудоемкостью работ, а также дорогостоящими земляными мероприятиями, высокими затратами на бетон и арматурные материалы. Зато в итоге вы получите сверхнадежное и долговечное основание, которое выдержит любую постройку и природные воздействия.

Очень важно поручить возведение монолитного фундамента профессионалам. В этой работе важен каждый нюанс и точное соблюдение технологического процесса, начиная от взятия проб почвы, разработки проекта и заканчивая демонтажем опалубки. Специалисты компании «Зеленый остров» безупречно справляются с выполнением таких заказов. Звоните или заказывайте индивидуальный просчет он-лайн, чтобы узнать точную стоимость и сроки для вашего здания.

Фундаментная плита: расчет толщины и нагрузки


Плитный фундамент широко используется при строительстве малоэтажных зданий. Монолитная конструкция надежно защищает сооружение от проникновения грунтовых вод. Большая площадь опирания предотвращает просадку и деформацию грунта. Жесткая система армирования предохраняет основание от разрушения.

Принцип строения монолитного фундамента

Основой конструкции плитного фундамента служит монолитный бетонно-армированный слой. Подобная конструкция позволяет равномерно распределять усилия от здания на дно котлована.

При просадке и перемещении грунта фундамент компенсирует изменения. Это свойство называют «плавучестью» основания.

Для его изготовления используют высококачественный бетон. Высоту конструкции определяют расчетным способом. Основными критериями для подсчета являются характеристика грунта и проектная нагрузка от сооружения.

Конструкция монолитного фундамента

Плитный фундамент имеет следующую конструкцию:

Устройство монолитной плиты фундамента

  • Котлован.
  • Дренажная система.
  • Опалубка.
  • Песчаная подушка.
  • Слой геотекстиля.
  • Щебеночный слой.
  • Бетонная подготовка.
  • Гидроизоляция.
  • Теплоизоляция.
  • Арматура.

Котлован

Для устройства фундаментной плиты выкапывают котлован. Размеры котлована в плане должны превышать размеры будущего дома на 1–2 метра. Увеличенные размеры служат для укладки дренажа и устройства отмостки.

Чертеж котлована

Дренажная система

Дренаж служит для отвода поверхностных вод от внешних стен здания. Состоит из системы перфорированных труб и приемного колодца. Трубы укладывают с небольшим уклоном. Для защиты от проникновения песка трубы оборачивают 1–2 слоями геотекстиля.

Дренаж для монолитного фундамента

Опалубка

Для изготовления опалубки используют деревянные доски или водостойкую фанеру. Все элементы соединяют с помощью саморезов и стальной проволоки.

Пример опалубки плитного фундамента

Песчаная подушка

Для устройства песчаной подушки используют крупнозернистый песок. Песок позволяет воспринимать и равномерно распределять усилия на плавающую плиту.

Песчаная подушка под фундамент

Геотекстиль

Между щебнем и песком укладывают слой геотекстиля. Он защищает состав от перемешивания и нарушения дренирующих свойств щебня.

Щебень

Служит для восприятия и передачи усилий на песчаную подушку. Щебень применяют в качестве дополнительной дренирующей системы. Вода при прохождении ослабляет напор и теряет способность к вымыванию песка.

Щебень для монолитного фундамента

Бетонная подготовка

На песчано-щебневое основание укладывают бетонную подготовку. Высота конструкции составляет 50–150 мм. Подготовку выполняют из бетона низких марок.

Бетонная подготовка:

  • защищает бетон от утечки цемента;
  • равномерно распределяет нагрузку;
  • делает удобным монтаж стального каркаса.

Состав бетонного раствора для фундамента

Гидроизоляция

На бетонную подготовку укладывают слой гидроизоляции. В качестве материалов используют полимерно-битумные вещества. Гидроизоляционный материал служит для защиты фундаментной плиты от проникновения грунтовой влаги.

Гидроизоляция фундаментов

Теплоизоляция

Теплоизоляция служит для защиты основания от промерзания. В качестве утеплителя используют экструдированный пенополистирол. Высоту слоя принимают 10–15 см.

На теплоизоляцию укладывают полиэтиленовую пленку. Она служит защитой от проникновения жидких компонентов бетонной смеси в утеплитель.

Схема теплоизоляции плиты фундамента пенополистиролом

Арматура

Опорные элементы зданий армируются стальными каркасами. Сетка изготавливается из ребристых стальных стержней диаметром 12–18 мм. Они связаны в единый пространственный каркас с помощью стальной тонкой проволоки.

Размер ячеек каркаса зависит от величины проектируемых усилий на основание. Размер ячеек определяется расчетным путем и составляет от 10 до 25 сантиметров.

Схема армирования монолитной плиты

Расчет высоты фундамента

Целью расчета толщины плитного фундамента являются:

  • Определение размеров опорной плиты.
  • Вычисление нагрузок на дно котлована.
  • Подсчет необходимых материалов.

Исходные данные:

  • Вид и характеристика грунта основания.
  • Материал элементов здания.
  • Проектируемые усилия.

Расчет толщины плитного фундамента

При расчете учитывают два типа усилий:

Устройство плитного фундамента — размеры

  • статические;
  • динамические.

Статические силы являются постоянной величиной. Они вызваны весом элементов здания.

Динамические усилия изменяются во времени и в значениях. Они оказываются людьми, мебелью, оборудованием и влиянием атмосферных осадков.

При подсчете нагрузок постоянного действия используют повышающие коэффициенты надежности конструкций. Эти коэффициенты зависят от размеров и материала элементов здания. Значения коэффициентов приведены в нормативных документах.

Подсчет динамических усилий ведут с учетом условий местности, типов используемой мебели, оборудования, планируемой заселенности дома.

В качестве результатов расчета получают следующие данные:

  • Удельная нагрузка на 1 м2 грунта основания.
  • Допустимая толщина конструкции.
  • Глубина залегания фундамента.

Определение объема материалов на плитное основание

Последовательность расчета

В процессе расчета плитного фундамента выполняют следующие действия:

Технология устройства плитного фундамента

  • Вычисляют суммарные усилия от фундамента и основной части сооружения. Значение определяют сложением сил постоянного и временного действия.
  • Определяют допустимую нагрузку. Величину определяют по нормативным документам в зависимости от типа грунта.
  • Определяют максимальную массу основания.
  • Вычисляют максимальную толщину опорной плиты. Полученное значение округляют в меньшую сторону до значения, кратного 5 мм.
  • Повторяют решение задачи с принятой толщиной опоры.

Для автоматизации процесса используются специальные компьютерные программы.

Анализ результатов расчета

В процессе подсчета получают следующую высоту фундамента, мм:

Глубина ленточного фундамента

  • менее 150;
  • от 150 до 350;
  • более 350.

В первом случае монолит не подходит в качестве опоры. Требуются дополнительные обследования и принятие решений для укрепления грунтов.

Во втором случае бетон подходит в качестве основания. Полученный результат округляют до ближайшего значения, кратного 50 мм.

В третьем случае бетон не подходит в качестве опорной части. Требуется принимать другой вариант опор (ленточный или столбчатый).

Глубина залегания фундамента

Глубину залегания плитного фундамента определяют по уровню поверхностных вод и толщине основания.

Глубина залегания зависит от следующих факторов:

  • типа грунта;
  • глубины промерзания;
  • суммарных нагрузок;
  • уровня грунтовых вод.

Правильный способ закладки фундамента

Рекомендуемая глубина котлована приведена в нормативных строительных документах. Она может составлять, см:

  • в северных регионах – от 80 до 100;
  • в центральных и южных районах – от 30 до 70;
  • в горных районах – до 20.

Требования к глубине заложения фундамента

Что можно рассчитать, зная толщину фундамента?

По вычисленной толщине плиты рассчитывают следующие параметры:

  • объем бетонной смеси;
  • расход арматуры.

Пример расчета расхода материалов для фундамента на монолитной плите

Расчет необходимого количества основной арматуры

Арматуру располагают равномерно по всей плавающей плите. В зависимости от толщины плиты каркас устанавливают в один или несколько рядов. Нормативное количество ярусов арматурной сетки при толщине плиты составляет:

Расчет расхода арматуры для плитного фундамента

  • до 15 см – 1 ряд;
  • от 15 до 30 см – 2 ряда;
  • более 30 см – 3 и более ряда.

Для продольных сеток рекомендовано использовать стержни диаметром 12–18 мм. Диаметр стержней поперечных сеток принимают 8–12 мм.

Шаг стержней зависит от толщины плиты. При ее высоте до 25 см шаг стержней принимают 15 см. При высоте плиты 25 см и более шаг стержней 10 см.

Пример расчета

Цель:

  • Рассчитать высоту фундамента.
  • Определить расход материалов.

Расчет бетона на фундамент

Исходные данные:

  • Удельное нормативное сопротивление грунта – 0,350 кг/см2.
  • Размеры здания в плане – 4*8 м (320000 см2).
  • Общий вес конструкций – 24000 кг.
  • Размеры опорной плиты в плане – 6*10 м.
  • Плотность бетонной смеси – 2500 кг/м3.
  • Вес 1 погонного метра стальной арматуры — 1,210 кг/м.
  • Шаг основной арматуры – 100 мм.
  • Диаметр прутьев – 14 мм.

Расчет:

Расчет высоты фундамента

  • Суммарная нагрузка на фундамент 24000/320000=0,075≈0,08 кг/см2.
  • Разница между допустимым и фактическим давлением на плиту Δ=0,350-0,075=0,275 кг/см2.
  • Масса основания М=0,275*320000=88000 кг.
  • Толщина фундаментной плиты Н= (88000/2500)/32=1,1 м.
  • Длина стержней продольной арматуры 10 м, поперечной – 6 м.
  • Количество стержней поперечной арматуры: 6/0,10 *2 (слоя)=120 шт.
  • Количество продольной арматуры: 10/0,10*2=200 шт.
  • Суммарная длина стержней: 120*6 + 200*10=720 + 2000=2720 м.
  • Общая масса материала: 2720*1,210=3292 кг.

Видео по теме: Фундамент под дом — монолитная плита, расчет и армирование


плит для более холодного климата, часть 2: Устройство неглубоких фундаментов с защитой от замерзания для отапливаемых зданий

Метод неглубокого фундамента с защитой от замерзания (FPSF) позволяет использовать опоры глубиной в среднем около 16 дюймов или меньше в большинстве районов континентальной части США (см. Рисунок 1 ниже). Этот метод экономит деньги и материальные ресурсы. Поскольку он использует изоляцию для предотвращения Из-за образования инея под основанием этот метод также экономит энергию, замедляя теплопотери в землю из кондиционированной конструкции.Этот метод используется в Северной Европе более 50 лет. Международный жилищный кодекс (IRC) признает метод FPSF с 2000 года с предписывающими требованиями для отапливаемых зданий и ссылкой на стандарт ASCE 32-01 для полу- и неотапливаемых конструкций.

Рис. 1. Сравнение традиционного фундамента ниже глубины промерзания (глубина 48 дюймов) справа и защищенного от мороза неглубокого фундамента (глубина 14 дюймов) слева. Рисунки любезно предоставлены Джеем Крэнделлом, П.Е. www.aresconsulting.biz

Для отапливаемого здания тщательное размещение теплоизоляции по внешнему периметру фундамента и фундаментной стены улавливает тепло здания и геотермальное тепло для смягчения почвы под фундаментом и эффективного «увеличения» глубины промерзания. Хотя FPSF в основном используются для строительства перекрытий на уровне грунта, этот метод также хорошо работает с фундаментами стеновых стволов и фундаментами с непроветриваемыми пространствами и при реконструкции, когда неглубокие рытье минимизируют беспорядки вокруг здания, а также в подвалах, где можно укрыться, при утеплении фундамента на наклонная сторона конструкции выгодна.Хотя Международные строительные нормы и правила (IBC) не предоставляют никаких предписывающих методов, метод FPSF также применяется к коммерческому и сельскохозяйственному строительству посредством ссылки на стандарт ASCE 32-01.

Тонкости FPSF требуют тщательного изучения, но когда строители понимают и применяют метод FPSF, они узнают требования для данной области; тогда строительство FPSF не сложнее, чем строительство традиционного фундамента. Строители должны знать ABC перед началом FPSF: минимальная глубина FPSF в этой климатической зоне, минимальные требования к изоляции, а также необходимость того, чтобы изоляция была только вертикальной на лицевой стороне фундамента и основания или вертикальной с горизонтальным простиранием от периметр (см. рисунок 2 ниже).

Рисунок 2. Схема теплового потока неглубокого фундамента с защитой от мороза отапливаемого здания.

Глубина опоры

Международный жилищный кодекс (IRC) предоставляет упрощенный предписывающий метод определения глубины вашего фундамента, а также типа необходимой изоляции и места ее установки. Для начала вам нужно будет сослаться на Индекс замерзания воздуха для вашей строительной площадки. Индекс замерзания воздуха — это индикатор совокупной продолжительности и величины температур выше и ниже нуля, возникающих в течение любой данной зимы.IRC предоставляет контурную карту индекса замораживания воздуха с цветовой кодировкой (см. Рис. 3 ниже), которая хорошо работает в большинстве областей, за исключением переходных областей (где индекс замерзания воздуха перемещается от одного набора спецификаций к другому). Строители обычно могут получить точную местную информацию в муниципальном строительном департаменте и найти более полные карты в Интернете в Национальном центре климатических данных (NCDC). Отчет Совета Международного кодекса 403.3 (ICC R403.3) также предоставляет руководство по штатам со ссылками на округа.

Рисунок 3. Карта индекса замерзания воздуха. Источник: ncdc.noaa.gov.

После того, как вы узнаете значение индекса замерзания воздуха для участка, который вы будете строить, обратитесь к таблице ICC R403.3 (1), Минимальная глубина опоры и требования к изоляции для защищенных от замерзания опор в отапливаемых зданиях (см. Таблицу 1), а затем перекрестно сверьтесь с данными индекса замерзания воздуха, чтобы получить минимальную глубину основания, а также значение R и размещение необходимой изоляции. Вы заметите, что для большинства областей со значением индекса замерзания воздуха 2,500–4,000 требуется только глубина основания 16 дюймов; области со значением индекса замерзания воздуха ниже 2,500 требуют еще меньшей глубины, что позволяет сэкономить значительные объемы земляных работ и бетон.

Торговая подсказка для зимнего строительства. Изучая метод FPSF при подготовке к своему первому проекту, вы прочитаете предупреждения о защите от замерзания во время строительства. Теоретически ваш фундамент должен быть завершен, а здание огорожено и отапливаться до первых заморозков. Это хорошее правило, но не паникуйте, если ваш фундамент застрянет в морозе — все будет в порядке. Система спроектирована очень консервативно, и я построил много фундаментов поздней осенью, которые не были покрыты, не говоря уже о том, чтобы обогревать их до наступления зимы, и ни один из них не пострадал.Я знаю других строителей, у которых был такой же опыт, и от своего инженера-строителя знаю, что это не исключение. Опять же, простая причина для создания FPSF под отапливаемой конструкцией — это извлечь выгоду из тепла, выделяемого зданием. Лучше всего завершить фундамент, ограждать здание и утеплить его до зимы, но конструкция FPSF прочна и (как и большинство методов строительства) имеет запас прочности.

Изоляция

Важно выбрать правильную жесткую изоляцию, потому что лишь некоторые продукты могут поддерживать эффективное значение R ниже номинального в течение всего ожидаемого срока службы здания.Я не нашел подходящих продуктов в местном центре по ремонту дома, и вместо этого мне пришлось специально заказывать материал у поставщика строительных материалов. Жесткая изоляция выпускается в виде листов размером 4 x 8 футов, поэтому ее необходимо обрезать по размеру. Изоляция, подходящая для опор, должна быть помечена как соответствующая ASTM C578, Стандартным техническим условиям на жесткую теплоизоляцию из ячеистого полистирола. Фактические расчетные значения для изоляционных материалов FPSF были рассчитаны консервативно; В пересмотренном Руководстве строителя по защищенным от замерзания неглубоким фундаментам исследовательского центра NAHB даны принятые расчетные значения на 10% меньше номинального значения R для экструдированного полистирола (XPS) и на 20% меньше номинальных значений для пенополистирола (EPS) при вертикальном нанесении.Я всегда использовал экструдированный полистирол (XPS) по рекомендации моего инженера-строителя. Изоляция из экструдированного полистирола (XPS) также подходит для вертикального и горизонтального применения под землей, в то время как изоляция из пенополистирола (EPS) может применяться только вертикально.

Таблица R403.3 (1) Минимальная глубина основания и требования к изоляции для защищенных от мороза опор в отапливаемых зданиях

ИНДЕКС ЗАМЕРЗАНИЯ ВОЗДУХА
(° F-дни)

МИНИМАЛЬНАЯ ГЛУБИНА СНАРЯЖЕНИЯ, D
(дюймы)

ВЕРТИКАЛЬНАЯ ИЗОЛЯЦИЯ
ЗНАЧЕНИЕ R

ГОРИЗОНТАЛЬНАЯ ИЗОЛЯЦИЯ
ЗНАЧЕНИЕ R

РАЗМЕРЫ ИЗОЛЯЦИИ ПО ГОРИЗОНТАЛИ
НА РИСУНОК R403.3 (1) (дюймы)

Вдоль стен

На углах

А

В

К

1 500 или менее

12

4.5

Не требуется

Не требуется

Не требуется

Не требуется

Не требуется

2 000

14

5,6

Не требуется

Не требуется

Не требуется

Не требуется

Не требуется

2 500

16

6.7

1,7

4,9

12

24

40

3 000

16

7,8

6,5

8.6

12

24

40

3,500

16

9,0

8,0

11,2

24

30

60

4 000

16

10.1

10,5

13,1

24

36

60

Источник: publicecodes.citation.com

Чтобы определить, какое значение R вам понадобится, обратитесь к таблице ICC R403.3 (1) (показанной выше), и вы найдете значения сопротивления изоляции, необходимые для вертикальной изоляции и, при необходимости, для горизонтальной изоляции, как хорошо.Затем сверьте свои выводы с картой индекса замерзания воздуха. Например, глядя на карту Air-Freezing Index, вы заметите, что большая часть Переднего хребта Колорадо, вся Небраска, Иллинойс и даже северный Мичиган лежат в пределах 1 000–2 000 или более высоких температур. Ссылаясь на таблицу ICC R403.3 (1), вы обнаружите, что вам потребуется минимальное R-значение 5,6 для вертикальной изоляции, чтобы построить в этом диапазоне значений индекса замерзания воздуха, без необходимости горизонтальной изоляции.

Торговый совет для работы в рамках IECC. Если вы работаете в соответствии с Международным кодексом энергосбережения (IECC) 2009 г., вы должны учитывать, что требования к изоляции фундамента могут соответствовать или превосходить требования метода FPSF; это означает, что у вас нет веских причин копать ниже линии промерзания, чтобы защитить фундамент от мороза, потому что изоляция, которую вы уже используете, может быть достаточной.

С другой стороны, если вы работаете в северной Миннесоте, где индекс замерзания воздуха колеблется от 2 000 до 3 000, вам необходимо получить конкретную информацию о местоположении вашего рабочего места в местном строительном департаменте (или в Национальных климатических данных. По центру) и используйте указанную вертикальную и горизонтальную изоляцию (диапазон значений R 6.7–7,8). Вы также найдете значения размеров необходимой горизонтальной изоляции по периметру фундамента, разделенные на три категории (A, B и C), поскольку для одного фундамента применяется разная ширина с более широким размером по углам. Столбец A описывает базовую ширину вдоль прямых участков, столбец B дает ширину по углам, а столбец C указывает, на сколько каждый угол должен выходить из угла. Все это увеличивает стоимость и усложняет использование метода FPSF, поэтому вы проведете сравнение затрат, чтобы увидеть, имеет ли он смысл для вашего проекта.(См. Рисунок 4 ниже.)

Рис. 4. Эффект холода в углах здания требует, чтобы изолирующие крылья поддерживали равномерную температуру под фундаментом при трехмерном воздействии. Столбец B в таблице ICC R403.3 (1) указывает ширину изоляции крыла, а столбец C указывает, как далеко от угла необходимо простираться вдоль основания. Рисунок любезно предоставлен Джеем Кранделлом, P.E. .aresconsulting.biz

Рисунок 4. План горизонтальной изоляции, Источник: publicecodes.citation.com

Совет по установке горизонтальной изоляции. Если требуется, горизонтальная изоляция должна быть прочно уложена на гладком грунте и заглублена как минимум на 12 дюймов ниже уровня земли. Проще всего провести чрезмерную выемку грунта, а затем засыпать поверхность под горизонтальной изоляцией зернистым основанием (песок или мелкий гравий). При горизонтальной изоляции выдвигается более чем на 24 дюйма, он должен быть защищен твердой поверхностью, такой как твердый пластик, листовой металл или даже фанера, с осторожно размещенной засыпкой для обеспечения надежного отвода воды от фундамента.Из этого также следует, что ландшафтным дизайнерам следует избегать копания над горизонтальной изоляцией.

Типовая установка вертикальной изоляции

Один из самых простых способов установки вертикальной теплоизоляции включает трехэтапный процесс. Выкопав неглубокие опоры, мы формируем внешний периметр опор прямо напротив траншеи из экструдированного полистирола (XPS), обрезанный до 16 дюймов шириной, уложенный горизонтально и закрепленный, чтобы удерживать их на месте. Важно избегать зазоров. между досками, особенно в углах и стыках.Чтобы закрепить жесткую изоляцию, мы продеваем анкерную проволоку через пенопласт и вокруг деревянных кольев, быстро затягивая ее. При заливке бетона мы обнаружили, что лучше всего подходит немного более сухая смесь, чтобы избежать попадания неаккуратной смеси под изоляцию, которая может вызвать ее подъем.

Вам нужно будет поместить изоляцию на любой выступающий выступ из бетона в верхней части основания, если ваша стволовая стена находится в углублении от внешнего периметра основания. Это шаг, который я игнорировал много раз (насколько мне известно, без последствий), но зачем создавать проблемы? Идея состоит в том, чтобы полностью обернуть внешнюю поверхность фундамента изоляцией, чтобы избежать мостиков холода или зазоров в оболочке.Фото: Фернандо Пагес Руис.

После того, как опоры установлены, мы устанавливаем стену ствола, как это обычно делается на любом основании. Мы используем алюминиевые формы для стен подвала высотой 2 фута или, в других областях, бетонные блоки или деревянные формы. После того, как формы сняты или блок залит, мы ламинируем жесткую изоляцию на внешнюю поверхность форм с помощью клея с пометкой «подходит для использования с пенопластом» или, более конкретно, «подходит для использования с пенополистирольным картоном». Избегайте использования адгезивов на основе растворителей, поскольку они растворяют изоляционные плиты из полистирола.

Это был фундамент испытательного полигона в Южной Дакоте, в котором стенка ствола деревянного фундамента сочеталась с изоляцией. Периметр с 2-кратной подкладкой служит краем плиты, которую необходимо залить после завершения засыпки у стены ствола. Фото любезно предоставлено Джеем Кранделлом, P.E., .aresconsulting.biz

Для подрядчика, имеющего опыт строительства монолитных плит, все это будет казаться большим объемом дополнительной работы, и это так. Самый простой и самый экономичный способ использования метода FPSF — это монолитная плита, залитая против сформированного края внешнего периметра, облицованного пеной.Чтобы убедиться, что пена прилипает к бетону, а не к формам, мы прикрепили пену к деревянным формам с помощью двуглавых гвоздей, забитых ровно настолько, чтобы удерживать изоляцию на месте.

Торговый совет по термитам. Любой, кто строит в зоне, сильно зараженной термитами, будет извиваться из-за последнего предложения, которое я сделал в предыдущем абзаце. Термиты любят прятаться за изоляцией из пенопласта и находят свободный доступ к вкусным частям здания, при этом никто не замечает характерные туннели для термитов вдоль фундаментной стены.К сожалению, это одна из слабых сторон FPSF и почему этот метод запрещен в районах страны со значительным риском заражения термитами, таких как Южная Каролина, Джорджия, Флорида, Алабама, Миссисипи, Луизиана, восточная половина Техаса и большая часть Калифорния.

Опасности УФ-лучей и уничтожителей сорняков

Поскольку изоляция на поверхности стены стебля над уровнем земли остается подверженной разрушающему воздействию ультрафиолетового света и механическим воздействиям оборудования для обслуживания газонов, вы должны найти способ защитить ее.Многие строители используют тот же процесс и материалы, которые используются для отделки внешних изоляционных и отделочных систем (EIFS), начиная с полимерцементного базового покрытия, затертого поверх пенопластовых изоляционных панелей, затем следует армирующая сетка из стекловолокна, уложенная поверх изоляционных панелей из полистирола и полностью заделанная. базовым слоем и финишным слоем из акрилового цвета, нанесенным на армирующую сетку. Единственная проблема с этой системой заключается в том, что она не рекомендуется для контакта с классом и, конечно, не для применения ниже уровня.Я не знаю каких-либо проблем, связанных с этим методом, но я разработал другой метод, с которым я чувствовал себя более комфортно и который, кажется, обеспечивает более высокий уровень защиты пены.

Чтобы защитить изоляцию стенки ствола, я использую алюминиевую катушку, такую ​​же, как используется для обертывания фасции. Чтобы создать водораздел над изоляцией, я сгибаю Z-образную схему встречных миганий, используя сайдинг вдоль верхней части змеевика, а затем пропускаю алюминий по лицевой стороне изоляции и на 6 дюймов ниже уровня земли, почти как Я бы перевернул фасцию, но вверх ногами.

Торговый совет по герметизации швов. Имейте в виду, что выступающий край пенопласта создает выступ, на котором вода может скапливаться и стекать обратно в здание под подоконником. Описанный выше метод высечки «Z» не позволит воде проникнуть в здание, но вы должны быть осторожны, чтобы заделать нахлёстки. В противном случае вода может скопиться между стыками, как это может происходить при любой горизонтальной окладе.

Неотапливаемые здания и проектные ресурсы

Критерии проектирования также существуют для проектирования FPSF для неотапливаемых зданий, включая гаражи и подъезды, прикрепленные к отапливаемым сооружениям.Этому будет посвящена третья статья, посвященная методу FPSF для неотапливаемых и частично нагретых конструкций. Чтобы получить дополнительную информацию, вы можете приобрести стандарт 32-01 Американского общества инженеров-строителей (ASCE) по проектированию и строительству защищенных от замерзания фундаментов мелкого заложения на сайте www.asce.org.

Чтобы получить подробную слайд-презентацию FPSFs, подготовленную Джеем Крэнделлом, П.Е., бывшим главным инженером Исследовательского центра Национальной ассоциации домостроителей (NAHB), который теперь работает с передовыми инженерно-техническими службами, щелкните здесь.

Рисунки и изображения, на которые ссылается эта статья:

Пример проектирования монолитно-плитного фундамента

Чтобы сэкономить деньги и выбросы углерода, и иметь более здоровый и прочный дом. Калькулятор фундамента из монолитной плиты, расчет толщины плиты перекрытия онлайн.

Края плиты перекрытия толще, чем внутренняя часть плиты. Спроектированный проект с включением отчета о грунтах Монолитный фундамент ДОЛЖЕН ОТВЕЧАТЬ ВСЕМ ТРЕБОВАНИЯМ (см. Диаграмму) … Монолитная плита из одинарной заливки с загнутыми краями Равномерно загруженный деревянный каркас КАРКАС КРЫШИ / ПЛАН ПОЛА (см. Пример) Предоставьте полный структурный план, который включает все необходимой информации, указанной ниже.3.03. Примените назначение плана фундамента и опишите его особенности. … 23 февраля 2019 г. — Проектирование бетонной плиты Проектирование фундамента из монолитной плиты Более свежая информация о конструкции плиты по классу рекомендует и даже призывает к проектированию фундамента из монолитной плиты Проектирование бетонной плиты перекрытия… Дренаж по периметру — Высокая вода.pdf: 46. Анализ и проектирование перекрытий Два Способ. Проектирование и строительство фундамента. Как правило, строительство дома на одну семью в Канаде и Северной Америке начинается с бетонного фундамента, за которым следует…

Стеновые плиты — фундаментные системы, состоящие из трех компонентов; нижний колонтитул для передачи нагрузки на подстилающий грунт, кладочный фундамент и залитую плиту.44.

3.01 Применяйте терминологию, относящуюся к общим планам фундамента. Пример: спроектируйте 4 отмеченных плиты перекрытия обычного дома. Подробное руководство по выбору плиты перекрытия или цоколя для фундамента дома см. Здесь, но мы сделаем выводы ниже.

Основными конструктивными элементами фундаментной плиты перекрытия являются сама плита перекрытия и либо профилированные балки, либо фундаментные стены с опорами по периметру плиты (см. Рисунки 4-2 и 4-3).
Фундамент в жилищном строительстве может состоять из фундамента, стены, плиты, опоры, сваи или комбинации этих элементов.Фундамент с системой дренажа по периметру.dwg.

Монолитная бетонная плита — самый экономичный метод устройства цементных полов или бетонных полов в гаражах. 3.02. Применяйте типы конструкций фундаментов и фундаментных стен.

4.1 Рекомендуемые детали конструкции и конструкции. При строительстве дома решающим шагом является возведение фундамента. Монолитная бетонная плита. Установка монолитной бетонной плиты начало и завершение «Dirt Boss» #alaskanslab #concrete #excavator — Продолжительность: 14:50.

Среди всех видов этих конструкций монолитные плиточные основания являются самыми надежными, прочными и долговечными.

Анкерные болты показаны на детали 7, потому что утолщенные края расположены по периметру конструкции, что упрощает доступ и установку анкерных болтов, когда цемент залит и выровнен. Дренаж по периметру — High Water.dwg. ПРИМЕЧАНИЕ. Компоновка фермы, изготовленная производителем, не будет принята вместо крыши… По сравнению с плитой «стебель-стена», ее строительство быстрее и дешевле из-за меньшего количества трудозатрат.Монолитная плита на Grade.dwg. Фундамент в жилищном строительстве может состоять из фундамента, стены, плиты, опоры, сваи или комбинации этих элементов. Защищено от мороза. Используйте обычные штрихи США. Согласно ACI-318-1963. Монолитная плита монолитная (залита все за один раз). В этой обучающей статье по осмотру мы обсудим следующее… Как спроектировать и построить энергоэффективный фундамент: монолитные плиты, плиты из морозостойких стен, подвалы и подвалы, построенные из литого бетона или блоков.

Интернет-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что уже знаком с

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

в моей работе ».

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал. «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам. »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основе какой-то непонятной раздел

законов, которые не применяются

по «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация «

Иван Харлан, П.Е.

Теннесси

«Материалы курса содержали хорошее, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойль, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн формат был очень

Доступно и просто

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Джозеф Фриссора, П.Е.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев «.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание действительно потребовало исследования в

документ но ответы были

в наличии «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роадс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курсов. Процесс прост, и

намного эффективнее, чем

приходится путешествовать ».

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов.

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

пора искать где

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. »

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

на метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE нужно

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40%. «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительно

сертификация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, материал был кратким, а

хорошо организовано. «

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса по этике в Нью-Джерси были очень хорошими.

хорошо подготовлены. »

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и демонстрировали понимание

материала. Тщательно

и комплексное. »

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Луан Мане, П.Е.

Conneticut

«Мне нравится подход, когда я подписываюсь и могу читать материалы в автономном режиме, а затем

Вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях. »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродский П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться.

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Глэдд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

сертификат. Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не являющихся электротехниками».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много различные технические области за пределами

по своей специализации без

надо ехать.»

Гектор Герреро, П.Е.

Грузия

Наш подход к дизайну | WILLIAMS ENGINEERING ASSOCIATES, P.C.

Фирма имеет обширный опыт и знания проектов PEMB . Наши низкие накладные расходы приводят к более низким гонорарам за дизайн, что может сделать общую заявку на проектирование и строительство более конкурентоспособной.

На этапе проектирования:

1) Мы используем специально разработанные электронные таблицы (PEMB с 1 и 2 пролетами), которые автоматически рассчитывают реакции металлических колонн здания.Это позволяет завершить проектирование системы фундамента, не дожидаясь получения плана анкерных болтов и пакета реакции колонны от производителя PEMB.

2) Используя эти специально разработанные электронные таблицы для систем монолитных плит / фундаментов, мы можем оптимизировать затраты на бетонную плиту, фундамент и края перекрытий с загнутыми углами. В электронных таблицах автоматически рассчитываются размеры фундаментов колонн, армирования кромок перекрытий, размеры стержней для шпилек и т. Д. Количество бетона рассчитывается автоматически, и определяется бюджетная стоимость конкретной системы для предполагаемой системы.Модуль оптимизации позволяет изменять глубину перекрытия, размеры фундамента и глубину загнутого края перекрытия, а также автоматически определяет экономию затрат. Например, для PEMB 10 000 SF уменьшение плиты с 6 дюймов до 5 дюймов может сэкономить почти 31 CY бетона, что составляет 7400 долларов США при 240 долларах США / CY. Это очень важный инструмент в ситуации конкурентных торгов.

3) Мы оперативно перезвоним, ответим на электронные письма и ответим на изменения, связанные с дизайном.

4) Мы будем работать сверхурочно, чтобы уложиться в сроки проектирования.Наши окончательные чертежи имеют электронную подпись и печать, отправляются по электронной почте. Намерение состоит в том, чтобы завершить наш дизайн и доставить пакет строительной документации в течение нескольких дней, а не недель.

5) PEMB часто включают неметаллические стены по периметру, такие как EIFS / металлические стойки, каменная кладка, наклонный бетон и т.д. Все стеновые системы, отличные от PEMB , подробно описаны на наших чертежах и согласованы с PEMB система (как эти стены связаны) через секции стены во всю высоту.Наша строительная документация обеспечивает уровень детализации производственных чертежей для всех систем стеновых панелей с металлическими каркасами по периметру. Субподрядчики по изготовлению металлических шпилек имеют четкий набор документов для определения цены и строительства. Субподрядчику по изготовлению металлических шпилек не передается никакой ответственности за проектирование.

6) Все чертежи выполнены Дейвом Уильямсом, лицензированным инженером-строителем, а не специалистами по компьютерному проектированию и черчению (CADD). Устранение «среднего человека» CADD ускоряет процесс проектирования.

.