Пример расчета плитного фундамента: Расчет монолитной фундаментной плиты: пример, количество арматуры

Содержание

Расчет плитного фундамента: определение нагрузок, примеры, цена

Плитный фундамент – дорогое удовольствие. Но можно сделать правильный расчет, чтобы не потратить лишнего. Расходы на строительство монолитной плиты будут напрямую зависеть от ее размеров, те в свою очередь – от внешних нагрузок.

Оглавление:

  1. Нагрузка и габариты
  2. Объем плиты
  3. Особенности армирования
  4. Стоимость плитного основания

Определение нагрузок и толщины

Этим занимаются специалисты после обследования участка и составления проекта дома. Но можно ограничиться самостоятельным определением веса объекта – технология несложная. Расчет нагрузки должен учитывать давление возведенного здания и силы пучения грунта. Для этого по плану будущей постройки определяют:

  • общий вес строительных и отделочных материалов без фундамента;
  • ориентировочную массу всей мебели и техники, проживающих людей;
  • снеговые нагрузки для конкретного региона.

К примеру, после такого расчета вы получили вес постройки около 320 т, а сам дом должен опираться на плитный фундамент размером 6х8 м. Тогда давление, передаваемое на почву, в пересчете на единицу площади будет равно 0,67 кг/см2. Но вес основания здесь пока не участвует, так как мы еще не нашли его толщину.

Вопрос – сможет ли грунт выдержать такой дом с учетом массы самой плиты и не опрокинет ли его при пучении? Все зависит от мощности фундамента и состава почвы. Для разных видов слабых грунтов существуют ориентировочные цифры, увязывающие их несущую способность с внешними нагрузками, которые передает плита:

  • 0,25 кг/см2 – оптимальная величина для мелкопесчаной почвы средней плотности и пластичной глины;
  • 0,35 кг/см2 – такое давление должно передавать основание на пылеватые пески и суглинки.

С учетом веса бетона с армированием (2,7 кг/м3), толщина любого фундамента для указанных грунтов выбирается из нескольких возможных вариантов:

Мощность плиты, смОбъем заливки, м3Вес бетона, тВес постройки с основанием, тДавление на почву, кг/см2
157,219,5339,50,34
209,625,9345,90,35
251232,4352,40,35
3014,438,9358,90,36

В нашем примере оптимальный вариант для строительства на суглинке – плитное основание толщиной 20 см. Если же вы получили цифру меньше 15 либо больше 35 см, значит, монолитная плита «не вяжется» с проектом. Слишком мощная говорит о том, что можно обойтись ленточным типом. Излишне тонкая намекнет на избыточный вес дома. При таких условиях постройка просто начнет медленно уходить под землю. В обоих случаях расчет толщины фундамента лучше перепоручить профессионалам.

Многие частные застройщики вполне довольствуются ориентировочными цифрами, имеющими небольшую погрешность:

1. Для бани или гаража толщина фундамента принимается 15 см и увеличивается на 5, если строительство ведется на сильнопучинистом грунте.

2. Для одноэтажного дома из кирпича или монолитного бетона заливают основание в 20 см.

3. Коттеджи повыше потребуют устройства мощной плиты толщиной около 25-30 см.

4. Фундамент для дома из газобетона или других легких стройматериалов (OSB, дерево) допускается делать на 5 см тоньше.

По приведенной выше увязке нагрузок и толщины видно, что этими цифрами можно спокойно пользоваться.

Расчет свайно-плитного основания – отдельная задача, для которой нужно дополнительно определять несущую способность свай, завязанную на их диаметр. Результат будет сильно отличаться в зависимости от глубины погружения опор. Браться за такую работу самостоятельно не стоит, если вы не профессиональный проектировщик с полным набором нужных программ.

Объем заливки

Когда габариты определены, остается только вывести значения, которые потребуются для дальнейшего расчета плитного фундамента:

  • Площадь основания: 6 х 8 = 48 м2.
  • Объем плиты: 48 х 0,20 = 9,6 м3.
  • Площадь боковых стенок: (6 + х 2 х 0,20 = 5,6 м2.

Определение высоты плиты позволяет узнать сразу несколько параметров монолитной основы, такие как требуемое количество бетона для заливки или расстояние между поясами армирования.

Арматура

Расчет количества арматуры для армирования плитного фундамента выполняется для одного пояса, а полученная цифра потом просто удваивается. Размер ячеек, образующихся при пересечении продольных и поперечных стержней, по технологии принимается равным 20-30 см. Выберем более экономный вариант с решеткой в 300 мм.

Диаметр прутьев определяется толщиной заливки и должен составлять 5 %, то есть в нашем случае – 10 мм. При этом их длина будет на 10 см меньше соответствующей стороны основания, чтобы обеспечить стальной арматуре достаточную защиту под 5-сантиметровым слоем бетона. Для рассмотренного примера понадобятся пруты длиной 5,9 и 7,9 м.

Этих данных достаточно для подсчета количества стержней в каждом ряду армирования:

  • 5900 / (300+10) + 1 = 20 шт.
  • 7900 / (300+10) + 1 = 26 шт.

Для двух поясов потребуется 40 прутьев длиной 6 м и 52 – по 8 м, то есть всего 656 м. Если продавец не предоставляет услугу нарезки в размер, прутки стандартной длины придется укорачивать самостоятельно. Так как толщина фундамента по расчету принимается равной 20 см, вертикальные перемычки будут иметь длину 10 см (можно использовать часть обрезков). Количество связей определят точки пересечения стержней. Технология армирования допускает для них увеличение шага вдвое по сравнению с горизонтальными поясами – 600 мм. Тогда число перемычек будет равно 260 шт.

Стоимость строительства

Когда размеры и количество материалов определены, можно выполнить расчет стоимости плитного основания. Для большинства пунктов строительной сметы достаточно знать габариты будущей конструкции. Продолжим на том же примере для дома 6х8 м:

Статья расходовРасчетное количествоПринимаем для фундаментаЦена за единицу, рублиВсего, рубли
Песок48 х 0,3 = 14,4 м315 м373010 950
Щебень 20-4048 х 0,2 = 9,6 м310 м3175017 500
Теплоизоляция

Пеноплекс Фундамент 50 мм

54 м254 м223512 690
Гидроизоляция

Пленка п/э

48 х 2 = 96 м296 м2272 590
Бетон М200

с учетом усадки 2 %

9,8 м310 м3320032 000
Арматура для плиты

d-10 мм

656 + 17 = 673 м673 м1912 790
Проволока

d-1,2 мм отрезки по 0,3 м

1040 шт312 м0,55170
Всего: 88 690

Не забудьте полученные цены скорректировать с учетом стоимости доставки материалов на участок.

Как рассчитывать фундамент, пример

Поставив перед собой задачу строительства загородного дома своими руками, индивидуальный застройщик должен быть готов к самостоятельному решению огромного количества проблем. Определившись с проектом дома, следует уделить повышенное внимание «нулевому циклу» — возведению фундамента. Но перед тем как заказывать все необходимые строительные материалы, необходимо провести тщательный расчет фундамента. В этой статье мы приводим пример расчета фундамента именно в той последовательности, которой рекомендуется придерживаться.

Работа с грунтом

Предположим, что вы стали счастливым обладателем десяти соток за городом. Участок, что называется, пустой, лишь кое-где растут деревья и кустарники. Прежде чем определиться с местом будущей стройплощадки необходимо провести оценку грунта. Для этого в разных местах участка выкапываем ямы на глубину около 2 метров. Если срезы грунта одинаковы, то вам повезло – пласты грунта залегают равномерно. Если нет, то придется выбирать меньшую из зол – делать ставку на наиболее благоприятный вариант. Идеальный случай: у вас много соседей, которые уже давно построили свои дома – тогда и расчет фундамента существенно упрощается. У них можно проконсультироваться по поводу грунта, типу основания и его «поведении», и даже спросить документацию по геологическому исследованию грунтов, если перед строительством проводилась экспертная оценка.

УГВ

Уровень грунтовых вод (УГВ) – важный показатель грунта участка, на котором планируется строительство дома. Является ничем иным, как расстоянием от поверхности земли до первого водоносного слоя. Именно он определяет, какой будет глубина заложения фундамента. УГВ меняется сезонно: зимой он минимальный, весной, когда почва впитывает огромный объем влаги, он достигает своей максимальной отметки. В нашем примере расчета фундамента мы рекомендуем проводить измерение УГВ именно весной, ведь так или иначе, основание дома будет подвержено воздействию грунтовых вод, и лучше проводить расчеты, ориентируясь на критические показатели. Считается, что если поверхностные воды залегают на глубине от 2 метров и больше, то это нормальный для строительства дома УГВ (низкий). Если вода покажется уже в вырытой для исследования грунта яме, то это будет значить, что уровень грунтовых вод высокий, исходя из чего, при возведении фундамента придется делать ставку на определенные типы оснований. Например, оказалось, что УГВ составляет всего 1 м. В этом случае в зависимости от нагрузки на грунтовое основание, отдают предпочтение либо плитному фундаменту, либо мелкозаглубленному ленточному, ведь чем выше залегают грунтовые воды, тем меньше у грунта показатель несущей способности.

Пучинистость грунта

Поверхностные слои грунта представляют собой плодородный слой. Он особой роли не играет – при возведении фундамента просто срезается по всей площади стройплощадки. А вот все, что залегает глубже, нуждается в оценке. Там может быть слой глины, суглинка, супеси, а если повезет, то крупного песка или и вовсе скальные породы. Очевидно, что каждый тип грунта характеризуется своей несущей способностью и сопротивлением внешней нагрузки (расчетным сопротивлением грунта, R). О том, как оценить характер грунта, мы писали в этой статье. Вы сможете определиться с грунтовым основанием стройплощадки и сделать вывод о пучинистости грунта. Пучинистость – не что иное, как способность влажного грунта расширяться вследствие замерзания воды зимой. Данный показатель зависит от УГВ и типа почвы, и во многом определяет выбор фундамента для дома.

ГПГ

ГПГ или глубина промерзания грунта – показатель, который характеризует воздействие пучинистых явлений на толщу грунта. Бояться его стоит, если грунт пучинистый, а УГВ высокий. Меры «борьбы» с пучинистыми явлениями:

  • утепление грунтового основания по периметру здания – тем самым мы уменьшаем ГПГ и нивелируем пучинистые явления;
  • устройство дренажной системы, благодаря которой грунтовое основание под фундаментом остается сухим и не подверженным расширению вследствие замерзания воды

Резюмируя вышесказанное

Пучинистость грунта, ГПГ, УГВ – все эти показатели нужно рассматривать в одном комплексе, т.к. они взаимосвязаны. Так, высокий УГВ может быть причиной чрезмерной пучинистости грунтового основания ввиду большой ГПГ. Если приводить пример расчета фундамента для стройплощадки с идеальными показателями: малой глубиной промерзания грунта, низким уровнем грунтовых вод, непучинистым основанием – можно выбирать любой тип фундамента. Но в большинстве случаев ситуация обратная, тогда застройщик:
— либо делает ставку на «плавающие» фундаменты, к которым относятся плитные или мелкозаглубленные ленточные;
— либо устраняет недостатки участка за счет замены части пучинистого основания, утепления грунта под подошвой фундамента, дренирования подфундаментной площадки

Рельеф участка

Далеко не всем может повезти с приобретением идеально ровного участка. Как известно, рельеф оказывает одно из решающих значений при выборе конкретного типа фундамента. Так, наличие на стройплощадке значительного уклона может стать причиной столь же внушительных вложений на ее выравнивание и последующего устройства ленточного или плитного фундамента. Другой вариант – оставить все как есть, но сделать ставку на столбчатый или свайный фундамент. Ниже мы приведем примеры расчетов и таких фундаментов тоже.

Расчет требуемой площади подошвы фундамента

Здесь мы приводили последовательность расчета требуемой площади подошвы фундамента – величины, от которой зависит расход материала на строительство основания дома, а также длительность мероприятия. Площадь подошвы фундамента определяется исходя из такого показателя, как расчетное сопротивление грунта (R), о котором мы упоминали выше, а также нагрузки на фундамент от дома. О том, как рассчитать нагрузку на фундамент, мы говорили в тематической статье. Ниже мы приведем пример расчета площади подошвы фундамента для двухэтажного кирпичного дома 6×9 м (одна внутренняя несущая стена, толщина стен – 300 мм) с 2 ж/б и 1 чердачным перекрытием по деревянным балкам с утеплителем (плотность до 500 кг/м3), кровлей из гончарной черепицы, который будет возводиться на участке с сухим пористым глинистым грунтом (R=2,5). Здание возводится в средней полосе России (нагрузка от снега – 100 кг/м2).

Пример расчета

Сначала рассчитываем длину всех стен: (6+9)×2+6=36 м
При высоте этажа в 2,5 м суммарная площадь стен составит: 36×2,5×2=180 м2
Площадь перекрытий: 6×9=54 м2
Площадь кровли (выпуски по 0,5 м по всем сторонам): (6+0,5×2)×(9+0,5×2)=70 м2
По таблице, представленной ниже (умножаем табличное значение для стен на 2, т.к. толщина нашей стены – 300 мм!), определяем массу всех конструктивных элементов постройки:
— масса стен: 180×270×2=97200 кг
— масса ж/б перекрытий: 2×54×500=54 000 кг
— масса чердачного перекрытия: 54×200=10 800 кг
— масса кровли и снега: (80+100)×70=12 600 кг
Общая нагрузка на фундамент составит 174 600 кг. Добавляем сюда примерную полезную нагрузку и округляем до 180 000 кг.

Рассчитываем минимальную площадь подошвы фундамента, заглубленного на 1,5…2 м:
S=1,2×180000/(1,2×2,5)=72000 см2 или 7,2 м2

Если планируется заглублять фундамент на меньшую глубину, то придется дополнительно рассчитать сопротивление грунта по формуле, представленной здесь.

Выбор типа фундамента

В зависимости от того, каким оказались значения расчетной площади подошвы фундамента (с привязкой к рельефу местности), выбирают конкретный тип основания для дома. Для приведенного выше примера расчета лучше всего подойдет заглубленный ленточный фундамент. Если же приходится строить дом чуть ли не на болоте, то надежнее заливать плиту. В целом же, выбор есть между такими основаниями, как:

  • ленточный;
  • плитный;
  • МЗЛФ;
  • столбчатый;
  • столбчато-ленточный;
  • свайный;
  • свайно-ростверковый

Расчет параметров основания

Исходя из полученного значения площади подошвы фундамента и распределения нагрузок, рассчитывают площадь отдельных его конструкций. Так, на примере вышеописанного расчета (минимальная площадь подошвы 7,2 м2 под дом 6×9 м) можно заложить ленту шириной 0,4 м. Тогда полученная площадь фундамента составит: 9×0,4×2+(6-0,8)×0,4×3=7,2+6,72=13,44 м2

Этого с избытком хватит для строительства дома, ведь площадь фундамента превышает расчетное значение почти в 2 раза!
Можно пойти в другом направлении – установить буронабивные сваи с расширением внизу диаметром 0,5 м. В этом случае площадь подошвы каждой опоры составит: 3,14×0,5×0,5/4=0,2 м2
Таких свай потребуется 7,2/0,2=36 штук.

Расчет стройматериалов

На следующем этапе необходимо оценить объем строительных материалов, который потребуется для возведения основы дома: количество бетонной смеси, арматуры, опалубки – в отдельных случаях даже необходимо провести расчет кирпича на фундамент. Грамотный подход позволит избежать лишних транспортных расходов и существенно сэкономит время на возведение фундамента.

Арматура

Специфику расчета арматуры на фундамент мы описывали в соответствующей статье. Там же вы найдете подробное описание расчетов для разных типов железобетонных оснований. Для ленточного фундамента обычно используют каркас из двух поясов продольной арматуры по 2 прутка в каждом с шагом поперечной (горизонтальной и вертикальной) арматуры 0,3-0,5 м. В качестве примера расчета фундамента рассмотрим все то же основание дома 6×9 м с одной внутренней стеной, примем высоту ленты равной 1,5 м, ширину – 0,4 м.

Поперечное сечение ленты имеет площадь: 0,4×1,5=0,6 м2=6000 см2. Из них 0,001% должна занимать арматура, а это 6 см2. По таблице ниже определяем нужный диаметр прутков – 14 мм.
Количество метров такой арматуры примерно равно: (6×3+9×2)×4=144 м
Гладкой арматуры, которая, по сути, играет лишь роль связующего звена для продольных прутков, при шаге в 0,5 м потребуется: (36/0,5)×(0,4×2+1,5×2)=273,6 м, где (36/0,5)- количество соединений гладкой арматуры, (0,4×2+1,5×2) – периметр элемента прямоугольной формы, образованного гладкой арматурой.

Бетон

Неважно, планируете ли вы заказывать бетонную смесь на заводе-изготовителе, либо думаете над его самостоятельным приготовлением – прикинуть объем бетона просто необходимо! Сделать это очень легко, воспользовавшись простейшими математическими формулами и учитывая геометрию фундамента.

О том, как рассчитать объем бетонной смеси, мы говорили в одной из статей, но на всякий случай приведем пример расчета для нашего случая: дом 6×9 с одной внутренней стеной, ширина ленты – 0,4 м, высота – 1,5 м.
Объем нашего фундамента, он же – объем бетона, составит: (9×0,4×2+(6-0,8)×0,4×3)×1,5=20,16 м3 или 21 куб раствора.

То же самое касается ситуаций, в которых вы решили своими силами готовить бетон. В этом случае вам поможет информация по характеристикам бетонной смеси для фундамента, а также статья о том, как рассчитать количество цемента на бетон. В них просто и доступно описан порядок работ и представлены все необходимые вычисления.

Расчет опалубки для фундамента

Конечно, если вы собираетесь заливать бетон в трубы – использовать буронабивной свайный фундамент, то вопрос с опалубкой решится сам собой. А вот при возведении ленточного или плитного железобетонного фундамента без опалубки обойтись проблематично. Можно арендовать строительные комплекты опалубки, но это дорого, особенно при непонятных сроках строительства. Поэтому в ряде случаев приходится делать опалубку самостоятельно – из пиломатериалов. Причем делать нужно таким образом, чтобы доски после распалубки можно было использовать, например, для чернового пола или строительных лесов. Дешевле всего обойдется покупка обычных дюймовых досок, которые можно сбить в достаточно надежные щиты. В статье, посвященной расчетам опалубки на фундамент, мы описали несколько примеров того, как можно подобрать опалубку: исходя из толщины досок и расстояния между раскосами – так, чтобы она была устойчива к нагрузкам со стороны бетонной смеси.

Надеемся, что представленная информация поможет вам решить непростые задачи строительства!

Загрузка…

Фундамент плита расчет толщины

Плитный фундамент – сплошное основание из армированного бетона, которое укладывается под всей площадью здания. Фундаменты данного типа очень прочные и оказывают наименьшее давление на грунт. Но указанными преимуществами может обладать только тот плитный фундамент, толщина которого рассчитана с учетом характера грунта, глубины закладки и нагрузок, которые будет нести само основание во время его эксплуатации.

Плитный фундамент – сплошное основание из армированного бетона, которое укладывается под всей площадью здания. Фундаменты данного типа очень прочные и оказывают наименьшее давление на грунт. Но указанными преимуществами может обладать только тот плитный фундамент, толщина которого рассчитана с учетом характера грунта, глубины закладки и нагрузок, которые будет нести само основание во время его эксплуатации.

Особенности расчета толщины плитного фундамента

При проведении расчета толщины монолитной фундаментной плиты необходимо учитывать следующие величины:

  • промежуток между арматурными сетками;
  • толщина бетонного слоя над верхней и под нижней арматурной сеткой;
  • толщина арматуры.

Самый простой расчет толщины плитного фундамента осуществляется путем суммирования всех этих показателей, при этом оптимальным значением принято считать толщину плиты в 20-30 см. Конечный результат расчета во многом определяется составом грунта и равномерностью залегания пород.

Помимо габаритов плиты основания при обустройстве фундамента необходимо учитывать ширину дренажного слоя и песчаной подушки. Для установки плитного фундамента снимается верхний слой грунта и роется котлован глубиной около 0,5 м. Данная величина определяется с учетом того, что щебень укладывается слоем примерно в 20 см, песок – около 30 см.

В итоге простого суммирования получается, что минимальная толщина всего плитного фундамента не может быть меньше 60 см. Но этот показатель может значительно варьироваться в зависимости от изменений характеристик грунта и веса всей будущей постройки, под которую данное основание сооружается.

Так, плитный фундамент для кирпичного здания должен быть на 5 см толще такого же основания для постройки из пенобетона. При этом при наличии второго этажа в кирпичном доме толщина монолитной фундаментной плиты возрастает до 40 см (или больше — в зависимости от веса и конфигурации строения), а при строительстве двухэтажной постройки из пенобетона – как минимум до 35 см. Данные цифры приведены в качестве примера для понимания того, насколько толщина плитного основания зависит от типа постройки, под которую оно закладывается. Точные показатели для конкретного здания определяются путем расчетов, которые рекомендуется поручать специалистам.

Зачем измерять толщину плитного фундамента

Все указанные расчеты должны выполнятся в соответствии с нормами соответствующих СНиП и ГОСТ. Зная, какая толщина плитного фундамента наиболее подходит для сооружаемой постройки, можно не только обеспечить прочное основание под строящееся здание, но и определить количество необходимых материалов для его закладки.

Помимо толщины для расчета плитного фундамента нужно определить:

  • периметр (длину всех сторон) основания;
  • площадь плиты, включая термо- и гидроизоляцию;
  • площадь боковой поверхности;
  • количество бетона;
  • вес бетона;
  • нагрузку на почву;
  • диаметр арматуры в сетке;
  • диаметр вертикальных прутьев арматуры;
  • размер ячейки сетки;
  • нахлест арматуры;
  • общую длину арматурных прутьев;
  • общий вес арматуры.

Для расчета количества бетона, необходимого для заливки плитного фундамента, из общего объема вычитается объем закладываемой термоизоляции.

Подушка под плитный фундамент: определяем толщину

Подушка под плитное основание укладывается по всей площади. Она состоит из слоя щебня и слоя песка, которые наносятся на предварительно выровненное дно котлована. Сначала насыпается щебень, как правило, слоем в 20 см, а затем песок – слоем в 30 см. Таким образом, наиболее распространенная толщина подушки под плитный фундамент составляет примерно 0,5 м.

Следует учитывать, что толщина каждого из двух слоев песчано-щебеночной подушки может варьироваться в довольно значительных пределах. Данный показатель зависит от нескольких факторов, среди которых основными являются характеристики грунта и вес постройки. Например, для легких деревянных строений будет достаточно подушки толщиной 15 см, для гаража – 25 см, а полуметровый слой лучше всего подойдет для больших кирпичных зданий.

Щебень в данном случае компенсирует пучинистость и невысокую плотность грунта, а также является отличным дренажом, особенно на глинистых почвах с высоким уровнем грунтовых вод. Песок при этом обеспечивает равномерность нагрузки на грунт.

Пример расчета толщины и объема плитного фундамента

Расчет плитного фундамента выполняют для определения количества бетона, необходимого для его заливки. Для этого площадь подошвы следует умножить на ее толщину (высоту).

Проще всего разобраться с расчетом на конкретном примере, который можно использовать для других случаев, поменяв соответствующие цифры. Допустим, будет возводиться дом размером 10х10 метров и монолитный плитный фундамент, толщина которого составляет 0,25 м. Объем плиты в данном случае составит 25 кубических метров (10х10х0,25). Столько же бетона потребуется для заливки фундамента. Необходимо учесть и установку ребер жесткости, служащих для повышения устойчивости к деформациям. Они располагаются с шагом в три метра вдоль и поперек плиты, создавая в ней квадраты.

Для расчета плитного фундамента следует определиться с длиной и высотой ребер жесткости. Первый показатель устанавливается в соответствии с длиной каждой стороны основания и в рассматриваемом примере составляет 10 метров. Всего потребуется 8 ребер, поэтому общая длина составит 80 метров.

Поперечное сечение выполняется в форме трапеции или прямоугольника. По стандарту, ширина ребра должна составлять 0,8 от высоты. Для прямоугольных ребер общий объем составит 0,25х0,8х80 = 16 кубометров. У трапециевидных ребер нижнее основание равно 1,5 толщины фундамента, верхнее – 0,8. В рассматриваемом примере площадь трапециевидного поперечного сечения будет равна (0,8+1,5)/2х0,25=0,15 квадратных метров, а объем всех ребер составит 0,15х80=12 кубических метров.

Из рассмотренного примера видно, что для заливки монолитного плитного фундамента толщиной 25 см и размером 10х10 метров потребуется 25 кубических метров бетона. Эту величину совсем несложно рассчитать самостоятельно, чтобы определиться с затратами, которые потребуются для обустройства фундамента.

Толщина плитного фундамента – очень важный показатель, обеспечивающий его прочность и надежность. Она зависит от многих факторов и может изменяться на разных грунтах или для разных построек. Поэтому, чтобы возвести действительно крепкий дом, необходимо с повышенным вниманием отнестись к расчету толщины его плитного основания.

Монолитная плита — один из самых надежных видов фундамента, если соблюдена технология монтажа. Ее используют как при возведении многоэтажных зданий на грунтах с плохими характеристиками, так и при строительстве индивидуальных домов. Отличие в этом случае будет в толщине бетонного слоя и степени армирования.

Материалы для плитного фундамента

Бетон используется для фундаментных конструкций благодаря своей самой главной характеристике — высокой прочности на сжатие. Для фундаментов не применяют материал высоких марок, достаточно приобрести бетон B15-B25 в качестве основного и B7,5-B12,5 для выравнивающей подготовки. Более прочный материал укладывать можно, но экономически не выгодно.

Минус бетона в качестве строительного материала — невысокая прочность на изгиб, которая компенсируется использованием арматуры. Стержни не дают монолитной плите растрескиваться при неравномерных нагрузках. Для фундаментов приобретают пруты класса А400(Alll — устаревшая маркировка) или ВрI.

Целесообразность проведения расчетов

Монолитная фундаментная плита рассчитывается как сложная конструкция, в которой бетон и арматура работают совместно. Основные цели расчета любого элемента в здании — проверка несущей способности и экономия материала. Благодаря предварительным вычислениям находится оптимальный вариант, обеспечивающий необходимую прочность с минимальными затратами.

Наиболее грамотное решение способен принять только специалист. Плитные фундаменты достаточно новая технология, поэтому далеко не каждый инженер-строитель способен грамотно их запроектировать. Вычисления выполняются в специальных программах, предварительно выяснив расчетные характеристики грунта. Под частный дом допустимо принимать толщину и процент армирования без расчетов, ориентируясь на нагрузку от вышележащих конструкций.

Сбор нагрузок

Исходными данными для проектирования монолитного фундамента, помимо характеристик грунта, служит сбор нагрузок. В расчете учитываются следующие значения:

  1. постоянные нагрузки от стен, кровли, перекрытий;
  2. временные нагрузки: (кратковременные — снеговая и длительная — нагрузка от мебели и людей).

Определение постоянной нагрузки

Важно учесть все элементы здания. Согласно пункту 1.23 «Руководства по проектированию каркасных зданий и сооружений башенного типа» на песчаных грунтах собственный вес плиты не учитывают, на глинистых его делят пополам, а на плывучих неустойчивых основаниях заводят в расчет полностью. Массу стен берут за вычетом проемов.

Получение из нормативных нагрузок расчетных производится путем умножения на коэффициенты надежности. Коэффициенты принимаются по таблице 7.1 СП «Нагрузки и воздействия». Коэффициенты, которые могут понадобиться для расчетов индивидуального дома, приведены в таблице.

Тип конструкции Коэффициент надежности по нагрузке
Металлические 1,05
Бетонные и железобетонные средней плотностью выше 1,6 т/м3, каменные, кирпичные, деревянные 1,1
Бетонные и железобетонные средней плотностью 1,6 т/м3 и ниже (например, плиты перекрытий), изоляционные слои, засыпки, стяжки изготавливаемые в заводских условиях 1,2
Бетонные и железобетонные средней плотностью 1,6 т/м3 и ниже (например, плиты перекрытий), изоляционные слои, засыпки, стяжки изготавливаемые на строительной площадке 1,3

Определение временных нагрузок

Масса снегового покрова зависит от типа местности строительства. Нормативные значения для каждого приведены в таблице 10.1 СП «Нагрузки и воздействия». Чтобы получить расчетную величину нагрузку умножают на коэффициент надежности, для снега он составляет 1,4.

Равномерно распределенные нагрузки приведены в таблице 8.3 СП «Нагрузки и воздействия». Для жилых зданий значение принимается 150 кг/м². В эту величину включена масса мебели и оборудования. Если планируется размещение тяжелых предметов, значение принимают в индивидуальном порядке. Коэффициент надежности 1,2.

Видео по расчету плитного фундамента:

Определение толщины фундаментной плиты

Если плита проектируется с выполнением расчетов в полном объеме, то их ведут по l группе предельных состояний (расчеты по прочности) и по ll ГПС (расчеты по деформативности). Для индивидуальной застройки услуги квалифицированных специалистов зачастую недоступны из-за высокой стоимости, поэтому значения принимаются «на глаз» с учетом минимальных требований.

Приблизительные значения, какая толщина принимается для зданий из разных материалов удобнее свести в одну таблицу.

Тип здания Толщина фундаментной плиты, мм Армирование
Небольшие постройки (веранды, гаражи, помещения для хранения инвентаря) 100-150 сетками в один ряд
Жилые двухэтажные дома из легких материалов (каркасные, газобетонные) 200-250 объемное в два ряда
Жилые двухэтажные дома из бревен, бруса, бетона или кирпича с массивными перекрытиями 250-300 объемное в два ряда

Значения, приведенные в таблице, подходят для грунтов с достаточной несущей способностью. При плывучих болотистых основаниях толщину следует увеличить.

Минимальный диаметр арматурных стержней принимается 10 мм для легких строений на хороших фундаментах. Для армирования фундаментной плиты под кирпичный двухэтажный дом оптимально принимать пруты диаметром 12-16 мм. Ячейку сетки принимают от 10 см. Для вертикального армирования минимальное значение диаметра — 8 мм.

При использовании стержней разных диаметров, большие располагают в нижнем ряду, поскольку там плита испытывает большие нагрузки на изгиб.

Определение глубины заложения и глубины котлована

Фундаментная плита чаще относится к мелкозаглубленным фундаментам. Если планируется подвал, глубина заложения зависит от высоты помещения, в остальных случаях плиту заливают вровень с землей.

Глубину отрывки котлована можно определить, посчитав толщину подстилающих слоев.

  1. Слой геотекстиля. Только для илистых грунтов, для предотвращения перемешивания песка и грунта.
  2. Песчаная подушка принимается в среднем толщиной 30-50 см, при насыпных грунтах значение увеличивается. Необходимо приобрести песок средней крупности, мелкий может дать большую усадку. Обязательно послойное виброуплотнение песка слоями не более 40 см.
  3. Бетонная подготовка выполняется для выравнивания и удобства укладки гидроизоляции. Для небольших строений можно ее не использовать. Для двухэтажного кирпичного дома оптимальным вариантом станет подбетонка толщиной 5-10 см из бетона B7,5.
  4. Гидроизоляция фундамента. Удобнее выполнять с помощью рубероида, гидроизола и линокрома в два слоя, сначала вдоль затем поперек.

Суммарная толщина всех слоев с учетом плиты для массивного дома в среднем составляет 650-750мм.

Расчет количества материалов для двухэтажного кирпичного дома

Для примера рассмотрим здание с размерами в плане 6 на 6 метров. Толщина плиты принимается 30 см, армирование в два слоя. Рабочая арматура диаметром 14 мм с шагом 20 см. Вертикальные стержни диаметром 8 мм с шагом 20 см. Бетон плиты — B20, подготовки — B7,5. Песчаная подушка толщиной 50 см.

Получившиеся значения для двухэтажного кирпичного дома перед закупкой материала удобно свести в таблицу.

Материал Расчетное требуемое количество
Бетон B20 11,16 м3
Бетон B7,5 3,72 м3
Арматура А400 диаметром 16 мм 906,24 кг
Арматура А400 диаметром 10 мм 364,41 кг
Песок средней крупности 19,22 м3
Геотекстиль 38,44 м2
Гидроизол в два слоя 76,88 м2

При покупке нужно предусматривать небольшой запас.

Предварительные расчеты позволят значительно сэкономить на возведении монолитной фундаментной плиты, заранее просчитать все затраты и обеспечить высокую надежность конструкции. Важно учесть условия проведения работ. Если фундамент остается пережидать зиму, потребуется принять меры по его консервации и утеплению во избежание появления трещин.

Эскиз с указанием толщины плитного фундамента

Монолитные плитные фундаменты можно встретить не только в частном, но и хозяйственном строительстве. Монолитные плиты способны выдерживать большие нагрузки, масса построенного здания равномерно распределяется между плитой и грунтом, поэтому фактор проседания в таких основаниях отсутствует.

Они могут быть различной конструкции, глубины установки и типа, но в целом, состоят из бетона и арматурного пояса. Дополнительно используется песчано-гравийная подушка и гидроизоляция, но это уже сопутствующие материалы и на толщину, собственно, плиты они не влияют. Часто используются как основание для газобетонных и кирпичных зданий.

Какие параметры влияют на расчет плиты

Схема с указанием толщины всех слоев плитного фундамента

Любой расчет плиты для монолитного фундамента нужно начинать непосредственно с подготовки эскизного проекта будущего дома. Также изначально учитывается еще ряд ключевых параметров, без которых правильно посчитать толщину основания не получится:

  • материал будущего здания, это может быть дерево, кирпич или газобетон;
  • расстояние между арматурными слоями. Это расчетный параметр, зависит от глубины залегания грунтовых вод, структуры почвы и способа выполнения плиты;
  • расчетная толщина бетона. Нужно помнить, что бетон должен полностью закрыть арматуру на всех плоскостях без исключения, желательно давать резервную толщину по опалубке не менее 5−7 см;
  • толщина, тип и размеры арматурной сетки.

Как правило, для мягких и легких строительных материалов, типа газобетона, достаточно только просуммировать все эти показатели и тогда получится толщина плиты. Оптимальной считается толщина плиты в 20− 30 см, но конечный результат также определяется составом почвы и равномерностью залегания всех грунтовых пород. Иногда к таким показателям также добавляется параметр послойного суммирования, если грунты неоднородные.

Кроме габаритов самого плитного основания, существует также толщина дренажного слоя, песчаной подушки и гидроизоляционного слоя. Также нужно помнить, что для обустройства такого фундамента нужно снять верхний плодородный слой почвы и вырыть котлован на глубину не менее 0,5 м. Такая глубина залегания дна котлована определяется необходимостью укладывать щебень толщиной 0,2 м и песок на толщину 0,3 м.

В результате получается, что расчетная толщина плитного фундамента составляет суммарно приблизительно 0,6 м. Но и такая величина не считается стандартной, ведь также существует фактор проседания почвы за счет массы здания, есть свои характеристики грунта и высота расположения грунтового горизонта. Также стоит учитывать массу бетона, которая также будет влиять на толщину конструкции в целом.

Например, фундамент для кирпичного дома должен на 5 см быть толще, чем для газобетона. Также учитывается наличие дополнительных этажей, так как каждый добавляет свою нагрузку на основание, и оно будет равномерно возрастать в толщине.

Итак, чем выше и больше здание, тем толще фундаментная плита, а если дом сделан из газобетона, тогда плита будет еще толще. Стандартный двухэтажный дом из газобетона будет устроен на плите толщиной от 35 см, иногда даже и больше, если дом имеет сложную структуру и разветвленную систему несущих стен и перегородок.

Для чего нужно рассчитывать толщину плитного фундамента

Толщина готового плитного основания под здание

Все расчеты плитных оснований всегда делаются в строгом соответствии с нормами ГОСТ и СНиП. Если будет точно рассчитано, какая конструкция для данного здания будет оптимальной, то можно точно рассчитать необходимое количество бетона для его возведения и фундамент получится очень прочный, как и будущий дом.

Перед началом расчетов нужно дополнительно получить следующие данные:

  1. Общий периметр фундамента (соответствует размерам дома, может быть немного больше за счет дополнительной отмостки или внешнего гидроизоляционного слоя).
  2. Суммарную площадь плиты с учетом всех защитных слоев и гидроизоляций.
  3. Площадь поверхностей, которые прямо контактируют с грунтом.
  4. Количество строительных материалов
  5. Расчетные нагрузки на почву за счет подошвы.

А также необходимы данные о конструкции арматурного пояса, периодичности ячеек и общего веса арматуры.

Расчет песчано-щебеневой подушки

Схематическое отображение плитного фундамента с указанием толщины песчано-щебневой подушки

Толщина подушки часто меняется в зависимости от состояния грунта и типа здания, а также из чего дом сделан. Толщина зависит от множества показателей, ведь для деревянных зданий достаточно подушки толщиной в 15 см, а вот для массивных домов из газобетона – уже не менее полуметра. Но, как правило, толщина подушки рассчитывается для каждого дома индивидуально, тут учитываются следующие факторы:

  • состояние и структура грунта;
  • степень промерзания почвы;
  • пучение почв и сезонные подвижки;
  • влажность почвы и высота залегания грунтовых горизонтов;
  • материал дома и суммарная масса здания;
  • размеры плиты.

Щебень в подушке нужен для компенсации пучинистости грунта, поэтому невысокую плотность почвы щебень компенсирует каменистостью. Также это отличный дренажный материал, особенно на глинистых грунтах с высоким содержанием влаги. Песок обеспечивает равномерное распределение массы здания по всей площади подошвы.

Пример расчета основных параметров плиты фундамента

Эскиз оптимальной толщины плиты фундамента

Чтобы правильно разобраться в расчете параметров плитного фундамента, а также четко рассчитать необходимое количество бетона, стоит использовать следующий пример:

  1. Принимается типичное здание из газобетона площадью 100 м² (10х10) и под него подбирается плитный фундамент на скальных породах толщиной 0,25 м мелкозаглубленного типа.
  2. Объем плиты в таких случаях составляет 25 м³. Это суммарное количество бетона, необходимое для заливки такой конструкции. Тут объем арматурной сетки принимается за ноль, чтобы не усложнять расчеты. На практике такие расчеты также проводятся, но уже для больших сооружений.
  3. Установка ребер жесткости, которые используются для повышения надежности конструкции. Шаг ребер жесткости составляет 3 м, при этом создаются квадраты.
  4. Длина ребер жесткости будет соответствовать длине фундамента, а высота – это толщина плиты.

Итак, для заливки плитного фундамента площадью 100 м² нужно использовать 25 м³ бетона. Также сюда пойдет некоторое количество арматуры, гидроизоляции и песка со щебнем для подушки. В целом хочется отметить, что любому застройщику посчитать толщину плиты можно самостоятельно, достаточно иметь минимальные математические знания.

Зато, если сразу сделать расчет фундаментной плиты, то можно в общем контролировать расходы строительных материалов, и следить за недобросовестными строителями, а также четко определиться с размерами дома из газобетона или кирпича. Необходимое количество материалов Вы так же можете посчитать на нашем онлайн калькуляторе.

Расчет фундаментной плиты

Фундамент, выполненный в виде монолитной плиты (фундаментной плиты), является самым дорогостоящим из всех видов оснований. Но несмотря на высокую цену, обусловленную значительными расходами на бетонную смесь и изоляционные материалы, это тип конструкции является одним из наиболее популярных среди частных застройщиков. Монолитный фундамент обладает самыми высокими эксплуатационными показателями, подходит для сложных грунтов, ему не страшен высокий уровень подземных вод, силы морозного пучения и он способен выдержать нагрузки от домов из тяжелых строительных блоков.

Сервис KALK.PRO предлагает вам воспользоваться простым и эффективным онлайн-калькулятором расчета плиты фундамента совершенно бесплатно. Вы получите подробную смету на материалы (арматуры, бетона, щебня, цемента, опалубки) и узнаете стоимость всей конструкции. В ближайшее время планируется добавить чертежи фундамента и адаптивную 3D-модель – добавляйте наш сайт в закладки!

Правильный расчет фундамента напрямую влияет на долговечность вашего сооружения, поэтому важно использовать только проверенные программы расчета. Наш сервис использует только актуальные нормативные и справочные данны, алгоритм работы ведется на основании положении СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 «Несущие и ограждающие конструкции» и ГОСТ Р 52086-2003 «Опалубка. Термины и определения»

Наш калькулятор расчета плиты фундамента поможет рассчитать необходимое количество материалов и расходы при будущем строительстве – быстро, просто и точно!

Расчет плитного фундамента

С помощью нашего вы можете произвести расчеты в автоматическом режиме, от вас требуется лишь ввести начальные данные. Точность расчетов напрямую зависит от введенных вами значений, поэтому мы рекомендуем вам внимательно перепроверять все вводимые величины. Также вы должны понимать, что итоговые данные представляют собой лишь математически верный расчет, но программа не учитывает поправки реальных ситуаций, поэтому полученные значения стоит использовать только в качестве ориентировки.

Калькулятор позволяет облегчить расчет, но не предоставляет рекомендации по выбору параметров и не показывает допустимые ошибки.

Инструкция

  • Размеры фундамента. Укажите габариты закладываемого основания – высоту, длину и ширину. Более подробно, как выполнить расчет толщины плиты фундамента вручную, смотрите ниже.
  • Армирование. Введите размеры ячейки армированного каркаса, а также выберите используемый диаметр арматуры.
  • Опалубка. Для получения объема пиломатериалов, введите параметры имеющейся доски.
  • Бетонная смесь. Вы можете самостоятельно указать пропорции бетона. Например, бетон марки М300 имеет пропорции 1 : 1,9 : 3,7 при использовании цемента марки ПЦ 400 и 1 : 2,4 : 4,3 – при цементе ПЦ 500. Более подробно, в справке чуть ниже.
  • Стоимость материалов. Введите стоимость отдельных материалов, для получения итоговой стоимости фундамента под ключ.

Затем нажмите кнопку «Рассчитать».

Результат расчета

  • Площадь плиты. Это значение может потребоваться для определения объема земляных работ.
  • Объем бетона. Параметр показывает необходимое количество бетонной смеси для отливки фундамента.
  • Арматура. Количество стержней для горизонтальных и вертикальных рядов, а также общая длина и масса.
  • Опалубка. Здесь отображается площадь опалубки и эквивалентный объем пиломатериалов, который потребуется для создания контура.
  • Материалы. Блок для вывода количества и стоимости всех видов сырья.

Если вас интересует более подробная справочная информация, ознакомиться с ней вы можете чуть ниже. Всем остальным – удачных расчетов и легкого строительства!

Монолитный фундамент своими руками

Главная проблема плитного фундамента – это высокая стоимость материалов, но его возведение обходится значительно меньшими силами. В стандартных условиях с данной работой могут легко справиться две пары умелых рук без привлечения специальной техники.

Перед закладкой основания вы должны получить необходимые экспертные заключения на счет геологических и гидрологических особенностей участка. От этих данных напрямую зависит, как характеристики самого фундамента, так и объем песчано-гравийной подушки, виды геотекстиля, расчет гидроизоляции и дренажной системы. Как уже упоминалось, всю эту информацию можно получить в специализированных организациях или же самостоятельно ознакомиться в справочниках, СНИПах и рассчитать коэффициенты вручную.

Плитный фундамент – Плюсы и минусы

Плитный фундамент — представляет собой монолитное бетонное армированное основание или нескольких независимых, но соединенных между собой железобетонных плит, располагающихся под коробкой здания.

Его главным преимуществом является самый низкий показатель удельного давления на грунт, то есть происходит равномерное распределение нагрузки на подстилающую поверхность, внезависимости от типа вышележащей конструкции. Таким образом, получается, что сооружения на монолитном фундаменте можно строить практически на всех видах почв, в том числе на сложных грунтах, сильнопучинистых и с высоким уровнем залегания подземных вод.

В силу своих качественных характеристик, плита применяется повсеместно при строительстве, как для легких построек из газо- пенобетона и дерева, так и при сооружении массивных многоэтажных конструкций из кирпича. Тем не менее использование этого типа основания не всегда оправдано, особенно если есть возможность создания более простых типов фундамента, например ленточного или свайного.

Суть проблемы заключается, в том что при увеличении массы дома, соответственно увеличивается толщина платформы, и следовательно непропорционально сильно возрастают затраты на материалы. В некоторых случаях, стоимость основания может превысить стоимость дома.

Поэтому перед тем, как выбрать определиться с типом фундамента для частного дома нужно провести подробную геолого-гидрологическую экспертизу подстилающего грунта, а для этого, желательно, воспользоваться помощью профильных организаций. Если же вам интересно самостоятельно провести анализ почвы, рекомендуем вам ознакомиться с нашей статьей – классификация грунтов.

Подводя итог, необходимо отметить, что если вы все же настоятельно решились обзавестись плитным фундаментом, готовьтесь потратить значительную сумму денег. Однако взамен вы получите уверенность в будущем, при соблюдении остальных правил строительства и ухода, дом гарантировано простоит эксплуатационный срок.

Калькулятор фундамента – монолитная плита, позволяет изготовить качественное основание, так как алгоритм обладает высокой точностью расчетов.

Устройство монолитного фундамента

Этапы работ

Закладка основания начинается с земляных работ. В большинстве случаев достаточно выкопать 40-60 см в глубину и разровнять получившуюся поверхность. На дне котлована создается песчаная или песчано-гравийная подушка, которая должна состоять из отдельных слоев песка и гравия, причем первым, в любом случае должен быть песок. Между слоями рекомендуется укладывать геотекстильную ткань, чтобы избежать перемешивания слоев. Затем все тщательно трамбуется вручную или с помощью вибрационной плиты.

Для придания формы будущего фундамента и во избежания вытекания бетона за его пределы, по периметру котлована создается каркас (опалубка) из подручных материалов, деревянных досок, пенополистерола или ОСБ-плит. Чтобы недопустить деформацию конструкции и возникновения больших зазоров между элементами их стягивают болтами, шпильками и/или подпираются балками. Также нужно отметить, что верхний край опалубки должен быть чуть выше предполагаемой высоты фундамента, обычно берут запас в 2-3 см.

При закладке дома в низменности, пойме или рядом с водоемами, обязательно наличие хорошей гидроизоляции. Она должна закрывать фундамент со всех сторон и быть чуть выше опалубки. В качестве горизонтальной гидроизоляции (которая будет укладываться на дно котлована), использую геотекстиль или полиэтиленовую пленку, вертикальные поверхности обрабатывают битумной мастикой или жидкой резиной. В зависимости от климатической зоны, дополнительно может применяться утеплитель, чаще всего экструдированный пенополистирол.

Предпоследний этап создания фундамента предполагает установку армирующей сетки. Для большинства одно- и двухэтажных домов подойдет 14-16 мм пруты в два слоя, с размером ячейки около 20-30 см на сторону. Армирование фундамента толщиной в 10-15 см производится в один слой сетками, толщиной 20-30 см производится в два слоя и соответственно увеличивается при больших величинах. Многие специалисты советуют использовать витую арматуру или проволоку для фиксации, взамен сварки. Стянутые элементы являются более подвижными и уберегут основание от неравномерной нагрузки. Более подробно об армировании монолитного фундамента можно ознакомиться в СНиП 52-01-2003 (СП 63.13330.2010).

Финальной стадией строительства фундамента является заливка бетона. Рекомендуется использовать бетонный раствор марки не ниже M-200 (В15) для жилых домов, так как применение смеси меньшей прочности чревато преждевременными деформациями и разрушением всей конструкции. Наиболее оптимальным при частном строительстве считается раствор М300 (B22,5). Если вы собираетесь изготавливать бетонную смесь своими руками, то вам будет полезна следующая таблица:

Расчет толщины фундаментной плиты

Следующей важной задачей при строительстве является – расчет толщины плитного фундамента. Нет четких формул, как можно рассчитать данную величину, однако существуют справочные данные, в которых указаны ориентировочные значения, которые проверены многолетней практикой.

  • 100-150 мм. Легкие постройки, хозяйственные и садовые сооружения, бани, гаражи.
  • 150-250 мм. Каркасные дома, а также одноэтажные постройки из дерева и пористых материалов (газобетон, пенобетон, газосиликат).
  • 250-350 мм. Двухэтажные дома из дерева и пористых материалов, а также одноэтажные сооружения из кирпича или бетона.
  • 350-500 мм. Двух- или трехэтажные постройки из тяжелых материалов.

Данное правило применимо при использовании качественного бетона марки М300. Дальнейшее увеличение толщины фундамента экономически нецелесообразно, для сложных грунтов, рекомендуется использовать другие варианты, например свайные или столбчатые основания.

Смесь равномерно распределяют от углов к центру. Для утрамбовки используются специальные вибрационные машины, они позволяют удалить воздух и увеличить показатель текучести бетона. При отсутствии данного оборудования, постарайтесь залить фундамент равномерными горизонтальными слоями без разрывов.

Для того чтобы основание приобрело свою максимальную прочность, согласно строительным нормам, его необходимо выдерживать не менее месяца при влажности в 90-100% и температуре более +5 °C. Для этого плиту (в том числе опалубку) покрывают брезентом, а стыки проклеивают скотчем. Это позволяет защитить бетон от попадания прямых солнечных лучей и неблагоприятных метеоусловий – ветра, дождя, града.

Если ожидаются продолжительные высокие температуры, то примерно раз в сутки основание необходимо поливать водой, причем делать это нужно с помощью крупного садового пульверизатора и ни в коем случае не струей, так как может повредиться поверхность. Наоборот, при продолжительной холодной погоде, необходимо перекрыть весь фундамент с опалубкой слоем утеплителя.

Во избежание появления вертикальных швов и в дальнейшем трещин, плиту необходимо залить в течение одного дня. Для этого необходимо заранее договориться с поставщиком, так потребуются большие объемы за короткий срок.

Расчет фундаментной плиты – Пример расчета

Для большей наглядности, мы приведем пример расчета фундаментной плиты размером 10 на 10 метров для частного одноэтажного дома из пенобетона. Предположительная толщина плиты – 30 см. Примем за условие, что будет использоваться арматура диаметром 14 мм, с размером сетки в 20 см и укладываться она будет в два слоя. Выбираем бетонную смесь марки М-250 (соответствует классу прочности B20). Доска для опалубки имеют длину 6 м, ширину 150 мм, толщину 25 мм.

Решение:

  1. Площадь фундамента: 10 м × 10 м = 100 м2
  2. Объем фундамента: 100 м2 × 0,3 м = 30 м3
  3. Расчет бетона:
  • Объем бетона равен объему фундамента за исключением арматуры, но из-за того что ее процент в общей кубатуре настолько ничтожен, эти значения приравниваются.
  • Объем бетона равен 30 м3.
  • Расчет арматуры на плиту:
    • Количество на 1 направление при шаге 20 см: 10 м / 0,2 м = 50 штук. Так как у нас 2 направления в 2 слоя, то 50 × 4 = 200 штук.
    • Общая длина: 200 × 10 м = 2000 м. На всякий случай, введем поправочный коэффициент запаса 2%, тогда общая длина будет равна 2040 м.
    • Масса 1 метра арматуры 14 диаметра равняется 1,21 килограмма. Таким образом, масса всего армокаркаса будет равна: 2040 м × 1,21 кг = 2468,4 кг.
  • Расчет опалубки:
    • Длина одной доски 6 м, ширина 0,15 м, толщина 0,025 м. Для того чтобы рассчитать количество досок, узнаем площадь стороны фундамента: 10 м × 0,3 м = 3 м2, тогда общая площадь опалубки 3 м2 × 4 = 12 м2.
    • Площадь одной доски 6 м × 0,15 м = 0,9 м2, необходимое количество узнаем исходя из общей площади опалубки 12 м2 / 0,9 м2 = 13,3 = 14 досок.
    • Объем пиломатериалов для опалубки: 14 × (0,025 м × 0,9 м2) = 0,315 м3.
  • Расчет пиломатериалов для подпорки опалубки (используем те же доски 6000х150х25):
    • Шаг между стойками будет 0,5 м.
    • Подпорочную конструкцию выполним в виде египетского треугольника со сторонами 3 : 4 : 5, тогда при высоте 0,3 м, нижняя сторона будет 0,4 м, а верхняя – 0,5 м.
    • Объем стойки равен 0,3 м × 0,15 м × 0,025 м = 0,0011 м3, объем нижней подпорки 0,4 м × 0,15 м × 0,025 м = 0,0015 м3, объем верхней подпорки 0,5 м × 0,15 м × 0,025 м = 0,0019 м3.
    • Объем пиломатериалов для одной подпорочной конструкции 0,0045 м3.
    • Длина стороны фундамента 10 м, при шаге в 0,5 м, получим 10 м / 0,5 м = 20 подпорок на одну сторону, а для всего фундамента 20 × 4 = 80 штук.
    • Объем пиломатериалов для всех подпорочных конструкций 0,0045 м3 × 80 = 0,36 м3 или 0,36 м3 / 0,0225 м3 = 16 досок.

    Используйте наш онлайн-калькулятор расчета фундаментной плиты и вы получите надежные точные значения, которые можно применять при строительстве дома.

    Чертеж фундамента монолитный плиты для дома, бесплатный проект, пример расчета

    Мы создали более 1500 проектов домов, здесь мы выложили для Вас пример проект фундамента монолитной плиты для дома, где можно посмотреть этапы, и технологию строительства. Как правильно связать арматуру, сделать углы, усиление и многое другое.

    Вам будет интересно узнать о:

    Пошаговая инструкция по заливке монолитной плиты


    Бесплатный чертеж монолитной плиты для дома

     
    Каждый чертеж монолитной плиты был сделан по всем расчетам для определенного дома и определенного грунта, в связи с этим перед любым строительством мы рекомендуем делать расчеты индивидуально для каждого дома.
    На данных чертежах представлены все технологические процессы по строительству монолитной плиты:
    1 Ведомость рабочих чертежей основного комплекта:
     


     

    Указание по производству строительно-монтажных работ
     


     

    План котлована
     
    На данном чертеже Вы найдете все размеры котлована.

     


     

    План опалубки фундаментной плиты
     
    На данной фото указана схема расположения опалубки.
     


     

     

    План армирование фундаментной платы Пм1
     
    Указана используемая арматура и схема армирования монолитной плиты.
     


     
     

    Схема расположение фундаментных ребер на отметки -0.100
     

     


     
     

    План фундаментной плиты на отметки -0.200
     

     


     
     

    Схема армирование фундаментной плиты Пм2, Пм3, Пм4, Пм5, Пм6, Пм7, Пм8
     

     


     

     
    Подведем итог:
     
    На данных чертежах указаны основные этапы и расчеты по монолитной плите.
     

    Часто задаваемые вопросы

     
    Вопрос: Скачите обязательно ли заказывать изыскание по земле?

    Ответ: Да желательно, при этом вы узнаете несущие способность грунта, где находятся грунтовые воды и т.д. Все это нужно для расчета фундамента.

     
     
    Вопрос: Можно ли не укладывать геотекстиль?

    Ответ: Его необходимо укладывать.

     
     
    Вопрос: Если я не буду делать утепленную отмостку, можно ли не утеплять торец?

    Ответ: В этом случае его утеплять нужно обязательно.

    Расчет толстых фундаментных плит. План фундаментной плиты, сбор нагрузок на плиту

    Когда речь заходит о строительстве дома, гаража, бани или иного сооружения, в первую очередь встает вопрос выбора типа фундамента. В большинстве случаев этот вопрос разрешается в пользу так называемого плитного фундамента, или фундаментной плиты.

    Это неудивительно, поскольку данный тип является универсальным и имеет ряд неоспоримых преимуществ, а именно:

    • легкость изготовления в силу простоты конструкции;
    • сравнительно невысокая себестоимость;
    • возможность использования на различных типах почв с разной глубиной промерзания и уровнем грунтовых вод;
    • морозоустойчивость и высокие теплоизоляционные свойства.

    Но для того чтобы такой тип основания в полной мере проявил все свои ценные качества, крайне важно произвести грамотный расчет фундаментной плиты. Разумеется, лучше доверить эту работу специалисту, который выполнит все расчеты в соответствии с определенными нормами и правилами. При наличии желания можно осуществить необходимые вычисления самостоятельно.

    Плитный фундамент представляет собой монолитную (либо составленную из отдельных заводских плит) железобетонную плиту, располагающуюся подо всей площадью здания и размещенную на подложке из сыпучих материалов.

    Наиболее часто используется монолитный плитный фундамент мелкого заложения. Расчет такого основания аналогичен расчету других типов фундамента и включает в себя:

    • предварительный расчет основных размеров;
    • расчет по несущей способности грунта;
    • расчет армирующих конструкций.

    Все перечисленные процедуры тесно взаимосвязаны, и изменение лишь одного из параметров неизбежно приведет к пересмотру всех расчетов в целом. Поэтому, приступая к рассмотрению каждого из пунктов, упустим расчет размеров, поскольку впоследствии они могут быть изменены, и примем длину и ширину фундамента равными размерам самого здания, а толщину – равной среднему рекомендуемому значению (около 25 см). Для того чтобы наиболее полно осветить все нюансы, рассмотрим простейший пример расчета .

    Расчет фундаментной плиты по несущей способности грунта

    После того как намечены основные , возникает необходимость проведения расчета конструкции по несущей способности грунта. Целью данного мероприятия является оценка способности подлежащего грунта выдерживать давление на него здания вместе с фундаментом и прочими несущими нагрузками.

    Схема плитного фундамента: 1 – стены здания; 2 – монолитная армированная плита фундамента; 3 – ребра жесткости.

    Давление здания на фундамент сопровождается его осадкой и смещением грунта, что может привести к катастрофическим последствиям. Надежная и безопасная эксплуатация основания возможна лишь при соблюдении следующего условия:

    S>Kн×F/Kр×R, где:

    1. S – площадь (см²).
    2. Kн – коэффициент надежности, по умолчанию равный 1,2.
    3. F – расчетная нагрузка на основание, включающая общий вес дома с фундаментом и эксплуатационными нагрузками (кг).
    4. Kр – коэффициент условий работы.
    5. R – условное расчетное сопротивление грунта (кг/см²).

    Коэффициент условий работы может иметь различные значения для разных типов грунтов и сооружений. Так, если тяжелое здание возводится на грунте, сложенном преимущественно пластичными глинами, этот коэффициент будет равен 1,0. Для слабоглинистых и мелкопесчаных почв он составит 1,2. В случае если легкое здание базируется на крупнопесчаном грунте, данное значение возрастает до 1,4. Более подробно со всеми возможными вариантами можно ознакомиться в специальных таблицах.

    Расчетное сопротивление грунта также определяется при помощи таблиц, причем значения этого показателя могут варьироваться в зависимости не только от типа грунта, но и от его влажности и пористости.

    Итак, если в результате произведенных вычислений уравнение оказывается верным, значит, важнейшее условие безопасной эксплуатации фундамента соблюдено и можно приступать к дальнейшим расчетам. В противном случае необходимо будет либо увеличить площадь подошвы фундамента, либо уменьшить его толщину или изменить какой-то другой параметр и заново провести расчет по несущей способности. Вот почему изначально закладываются лишь приблизительные, ориентировочные .

    Плитный фундамент представляет собой сплошную железобетонную конструкцию, размещаемую под всей площадью здания и равномерно воспринимающей все возможные весовые нагрузки. Стандартная схема включает дренаж из утрамбованного песка и щебня, плиту из качественного раствора с объемным армированием и гидроизоляцию, в особо сложных условиях основание утепляют. Главным требованием технологии заложения является выбор правильной толщины этих слоев, точное значение определяет расчет. Исходными данными служат параметры грунта, тип и вес постройки, в ходе вычислений важно соблюдать все нормы проектных стандартов.

    Факторы, влияющие на толщину плитного фундамента

    Этот тип основания относится к «плавающим», т.е. способным воспринимать и равномерно перераспределять нагрузки. В частных постройках толщина варьируется от 15 до 35 см, изменение в меньшую сторону не допускается по причине риска раскола плиты под воздействием собственного веса здания, в большую – из-за экономической нецелесообразности, увеличения общей массы и потери подвижности. Главным критерием влияния служит тяжесть конструкций, при использовании кирпича или плотных стройматериалов высота плитного фундамента возрастает на 5-10 см в сравнении с домами с газобетонными или каркасными стенами.

    Вторым учитываемым фактором идут размеры будущей постройки. Следует помнить, что все фундаменты выдерживают не только нагрузку на сжатие, но и на изгиб, экстремум приходит на середину. Чем больше длина наружных стен, тем выше риск раскалывания монолитной плиты. Частично эта проблема решается увеличением числа внутренних перегородок с несущими способностями, но для полного исключения риска приходится наращивать толщину самого фундамента. Как следствие, при строительстве на узких участках составление проекта и выбор основания лучше доверить специалистам.

    Помимо веса и типа здания при расчете фундаментной плиты (в том числе для проверки ее целесообразности) учитываются особенности грунта: глубина промерзания, несущие способности, однородность и уровень подземных вод. При высокой плотности слоев подбирается мелкозаглубленный вариант, в этом случае для его заложения достаточно вынуть около 50-70 см земли, единственным недостатком такого исполнения является отсутствие подвала. На неустойчивых грунтах фундаментная плита размещается ниже глубины промерзания на 60 см, тогда увеличивается вес постройки и на конструкцию действуют повышенные нагрузки.

    Интенсивность влияния подземных вод учитывается при подборе марки бетона, материалов гидроизоляции и толщины дренажной подушки, при значительных рисках подтапливания целесообразно выбрать другой тип основания или провести его утепление влагостойкими материалами.

    Последовательность и пример расчета

    В ходе вычислений придерживаются следующей схемы:

    1. Проводится анализ геологического состояния участка, в зависимости от его типа из таблиц выбирается величина оптимального удельного давления на грунт для плитных фундаментов. Также на этом этапе определяется требуемая глубина заложения основания. При строительстве на супесях и твердых глинах стоит провести сравнение с другими типами, воздействие морозного пучения на них будет максимальным, что приводит к необходимости значительного увеличения толщины плиты.


    2. Рассчитываются все весовые нагрузки. Удельный вес любого стройматериала несложно найти в таблицах, исходя из размеров стен, кровли и перекрытий находится масса самого здания. К полученному значению прибавляется средняя нагрузка снежного покрова, выбираемая согласно региону проживания и углу наклона кровли (на скатных крышах свыше 60° она принимается равной нулю). Также обязательно учитывается эксплуатационная (полезная) нагрузка, в среднем для цокольных и межэтажных перекрытий она составляет 210 кг/см2, жилых чердаков – 105. Этот показатель рассчитывают для каждого этажа, по окончании они все суммируются.

    3. Определяется площадь монолитной плиты (длина дома умножается на ширину) и величина удельной нагрузки на 1 м2 грунта (общие весовые делятся на полученное значение).

    4. Находится оптимальный объем фундамента (путем деления на средний удельный вес армированного бетона – 2500 кг/м3) и его предварительная толщина. Показатель округляют до 5 см в ближайшую сторону.

    5. Далее расчет плитного фундамента повторяют с учетом полученного веса основания, его прибавляют к общим весовым нагрузкам. Величину удельного давления на грунт (п.3 выше) сравнивают с оптимальным для данного участка, его допустимое отклонение – ±25 %.

    6. Исходя из ожидаемых нагрузок находится марка бетона для заливки, с учетом толщины составляется схема армирования: подбираются диаметр прутьев и частота их расположения.


    При отклонении расчетной толщины такой плиты от рекомендуемого диапазона (15-35 см) рассматриваются другие типы фундаментов или варианты ее усиления (ребрами жесткости или сваями). Составление проекта в последнем случае безоговорочно доверяется специалистам. В качестве примера представлен простой расчет двухэтажного дома из газобетона D600 8×8 м высотой в 6,5 м, с монолитным ж/б межэтажном и деревянным чердачном перекрытиях, кровлей из металлочерепицы при строительстве на пластичных глинах (оптимальная нагрузка для такого типа – 0,25кг/см2). Тип плиты – мелкое заложение, цокольное перекрытие отсутствует.

    При толщине стен в 40 см объем коробки – 166,4 м3, с учетом удельного веса блоков в 180 кг/м3 ее масса равняется 29952 кг. При площади межэтажного перекрытия в 60 м2 оно весит 30000 кг, чердачного в 64 м2 – 9600. Удельный вес кровли – 30 кг/м3, общий согласно данным проекта: 30×84=2520 кг. Величина полезной нагрузки первого, второго этажей и чердака: 64×210+60×210+64×105=32760 кг. Масса снежного покрова для среднего региона РФ принимается равной 100 кг/м2, в данном случае общее значение: 84×100=8400 кг. В сумме весовые нагрузки достигают: 113232 кг.

    Удельная нагрузка на 1 м2 грунта – 113232/64=1770кг/м2= 0,177 кг/см2. Разница между оптимальным равняется 0,25-0,177=0,073, требуемая масса монолитной плиты – 46720 кг. Объем – 46720/2500=18,688 м3, толщина – 0,292 м или 30 см, что соответствует норме. Поверка показывает, что при ее весе в 48000 кг и общем здания (113232+48000) =161232 кг, нагрузка на грунт – 0,252 кг/см2. Это отклонение минимальное, все требования соблюдены, расчет необходимой толщины считается завершенным. Далее с помощью онлайн-калькуляторов несложно составить схему армирования, подобрать диаметр продольных и вертикальных прутьев и определить количество стройматериалов.


    Что следует учесть при возведении основания данного типа?

    Помимо вышеперечисленных условий плитный фундамент требует соблюдения строительных стандартов, в частности, при выборе марки бетона и арматуры и расчете дренажной системы. Наличие подушки обязательно, этот слой защищает основу от подвижек грунта и влаги. Ее толщина зависит от веса и назначения здания, в идеале проводится ее расчет. Минимум для легких щитовых построек – 15 см, 25 – для гаражей, под дома из кирпича засыпается и уплотняется от 20 см щебня и 25-30 песка. Чем выше риск подтапливания, тем надежнее нужна дренажная система, при необходимости по периметру закладываются водоотводные трубы.


    Фундамент-монолитная плита для жилых домов усиливается как минимум двумя продольными сетками арматуры диаметром в пределах 12-16 мм, поддерживаемыми вертикальными прутьями (от 6 мм и выше). Рекомендуемых шаг ячеек – от 20 до 30 мм. Соединения и стыки не свариваются, а обвязываются проволокой диаметром в 0,8-1,2 мм или пластиковыми хомутами. Минимальное отступление от края бетона составляет 5 мм, его нарушение приводит к коррозии и разрушению каркаса. С целью соблюдения этого требования под нижние ряды подкладывают специальные пластиковые стаканчики, сетки размещаются равноудаленно от центра и краев. Обязательным условиям является заливка бетона единым монолитом, с виброуплотнением и обеспечением правильных условий затвердевания.

    • Характеристики грунтов, важные для плитного фундамента
      • Требования к бетону для плитного фундамента
      • Преимущества монолитного фундамента
      • Расчет основания по деформациям
      • Расчет осадки под плитным фундаментом

    Армированный бетон надежно выдерживает сжимающие усилия, поэтому испытывать на прочность не имеет смысла. Армирование бетонной конструкции необходимо только для того, чтобы улучшить ее сопротивляемость растягивающим нагрузкам.

    При этом по деформации основания (грунта) проверку необходимо выполнять обязательно. По несущей способности расчет выполняют, если:

    1. На основание воздействует не только вес, но и большие горизонтальные нагрузки.
    2. Стройку планируют на откосе или близко к его краю.
    3. Основание сложено медленно уплотняющимися грунтами. Это пылевато-глинистые водонасыщенные или биогенные грунты.
    4. В основании скальные грунты.

    Расчет необходимо проводить на основании результатов геодезических, геологических и гидрометеорологических исследований. При необходимости следует проводить измерение деформаций грунта на местности.

    Характеристики грунтов, важные для плитного фундамента

    Расчет бетонной конструкции, какой является фундамент, учитывает .

    Поэтому необходимо понимать общее количество обозначений всех величин, которые могут потребоваться.

    Из всего многообразия характеристик грунтов укажем их виды и некоторые особенности, которые важны, чтобы рассчитать плитный вариант:

    1. Глинистый грунт. Это связный грунт.
    2. Песок. Несвязный грунт, в котором более 50% частиц имеют размеры, не превышающие 2 мм.
    3. Крупнообломочный грунт. Несвязный грунт, в котором более 50% частиц имеют размеры, превышающие 2 мм.
    4. Ил и сапропель. Насыщенный водой осадок с содержанием частиц менее 0,01 мм.
    5. Грунт торфованный. Песчаный и глинистый, содержащий до 50% и более (по массе) торфа.
    6. Набухающим называют грунт, который в условиях свободного набухания при замачивании водой, увеличивает объем и имеет относительную деформацию более 0,04.
    7. У некоторых видов грунта при замачивании водой даже собственный вес может дать относительную вертикальную просадку более 0,01.
    8. Пучинистый дисперсный грунт. Вследствие образования кристаллов льда имеет относительную деформацию более 0,01.

    Вернуться к оглавлению

    Требования к бетону для плитного фундамента

    Бетон для строительной бетонной конструкции – это идеальный материал, так как он хорошо выдерживает сжимающие нагрузки. Но он очень плохо работает на растяжение. Этот недостаток стараются компенсировать за счет металлическим каркасом, помещая его внутрь. По прочности на сжатие бетон делят на классы (В3-В80) и марки М50-М1000.

    Для фундаментов подходят марки не ниже М200. Это значит, что предел прочности на сжатие будет не менее 200 кгс/см². Нормируемой прочности бетон достигает примерно через 28 дней. С течением времени прочность имеет тенденцию к увеличению.

    Плита требует как можно больше бетона для одноразовой заливки, поэтому ручной способ приготовления не подойдет. Необходим раствор, приготовленный на бетонном заводе, который хорошо перемешан, что очень важно для его прочности.

    По морозостойкости бетон делят на марки F50-F1000, где число обозначает количество циклов замораживание-оттаивание, которое должна выдержать изготовленная из него конструкция.

    Очень важной характеристикой является водонепроницаемость бетона. По этому показателю его разделяют на марки W2-W20, где число определяет давление воды (в МПа), которые выдерживает образец установленного размера. Для фундаментов рекомендуют бетон марки W6. Необходимо отметить, что для любой марки бетона гидроизоляция не помешает. Особенно это актуально для такой плитной конструкции.

    Прочность основания зависит от соблюдения . Заливать плиту следует на хорошо очищенную поверхность слоями. Для ленточного основания толщина очередного слоя не должна превышать 40 см. Плиту достаточно залить одним слоем. В нем после затвердевания не должно быть пустот, поэтому заливать бетон необходимо с высоты, не превышающей 1,5 м, и его следует хорошо утрамбовывать.

    Вернуться к оглавлению

    Преимущества монолитного фундамента

    1. Плитный фундамент применяют на пучинистых, глинистых и грунтах с высоким залеганием грунтовых вод. Учитывая, что к глинистым относятся все грунты, содержащие глину, то получается, что каких-либо инженерно-геологических исследований в пределах стройплощадки проводить нет необходимости.
    2. Экономия на земляных работах. Для убедительности сравним с ленточным фундаментом, который необходимо заглублять ниже уровня промерзания грунта.

    Например, в Подмосковье этот уровень составляет примерно 1,35 м. Фундамент необходимо заглублять на 20 см ниже этого уровня, то есть глубина траншеи составит примерно 1,6 м.

    Для дома размером 10×10 м с двумя внутренними несущими перегородками общая длина ленточного основания составит 55,5 м. Если траншею рыть шириной 0,5 м, то общий объем извлекаемого грунта составит примерно 44 м³, не считая плодородного слоя (почвы), который обычно убирают.

    В соответствие с указанной схемой общая деформация определяется суммированием осадки отдельных слоев по формуле:

    s=0,8·SUM(σ zp.i ·h i)/E i , (2)

    где σ zp. σ zp.с – среднее значение дополнительного напряжения (по вертикали) в i‑том слое; определяется как полусумма напряжений на границах этого слоя;
    h i – толщины i-го слоя;
    E i – модуль деформации i-го слоя кПа (кгс/см²).

    Значение дополнительного напряжения по центру фундамента определяется по формуле:

    а в угловых точках фундамента по формуле:

    • σ zp с. = а·р 0 /4. (4)

    Коэффициент а определяется в зависимости от формы фундамента (по подошве) и от соотношения сторон (если форма прямоугольная), или от диаметра (если форма круг) и от относительной глубины х=2z/b (z – глубина залегания слоя, b – ширина фундамента).

    Одной из причин такого наплевательского отношения к компьютерам, существующим теориям и методикам расчета, программному обеспечению и прочим достижениям современной науки и техники являются небольшие размеры дома, ведь мы все-таки не завод собрались строить. А потому некоторый запас по прочности, получаемый при упрощенном расчете, и соответственно перерасход материалов могут обойтись дешевле, чем заказ расчета у специалистов.

    Пример расчета монолитной фундаментной плиты

    Далее будет рассматриваться расчет сплошного фундамента для некоего условного дома размерами 8.8х13.2 м, у которого также есть внутренние стены. Таким образом требуется рассчитать не просто некоторую плиту, опертую по контуру, а некую статически неопределимую конструкцию с дополнительными опорами посредине. При этом план первого этажа выглядит так:

    Рисунок 345.1 . Примерный план 1 этажа для расчета фундаментной плиты.

    Несколько необходимых пояснений:

    План 2 этажа не приводится, предполагается, что он приблизительно такой же как и план 1 этажа. Отметка верха фундаментной плиты -0.400 м. Отметка пола 1 этажа +0.100 м. Таким образом подземная часть стен (или часть фундамента под стены) составляет 0.5 м (конструктивные аспекты устройства фундамента под стены в данной статье не рассматриваются). Пол 1 этажа — доски по лагам, перекрытие 1 и 2 этажа — металлические балки (см. рис. 345.1.б). Поэтому при расчете монолитной плиты используется приведенный план 1 этажа (рис. 345.1.в) на котором показаны нагрузки от стен на фундамент с учетом перераспределения нагрузок, при условии, что под дверными проемами фундамент под стены также делается. В итоге под оконными проемами с учетом того, что расстояние от низа проема до верха фундаментной плиты составляет 0.8 (от пола до подоконника) + 0.5 = 1.3 м, нагрузку от стен можно принимать равномерно распределенной по всей длине стены.

    Все стены дома планируются из газобетона D600, толщина всех стен составляет 40 см. Над перекрытием 2 этажа планируется двухскатная кровля из профнастила по деревянным стропилам. Предполагаемое место строительства — живописное село под Киевом. Бурение скважин и прочие мероприятия, связанные с геологоразведкой, не планируются. Ожидаемый уровень грунтовых вод в весеннее время -0.500 м, определен опять таки не бурением скважин, а по рассказам жителей села, у которых весной затапливает подвалы.

    Так как геологов в селе никогда не видели, тем не менее даже глинобитные хаты, простоявшие лет 100, в селе имеются, то даже если основанием дома будет самая пористая глина, расчетное сопротивление грунта составит R o = 1 кг/см 2 (согласно таблицы 3, приложения 3 к СНиП 2.02.01-83* «Основания и сооружения»).

    Конечно, можно воспользоваться формулами, приведенными в том же СНиП, и вычислить расчетное сопротивление грунта более точно, но с учетом того, что основание определено нами на глаз (как минимальное из возможных), не будем слишком углубляться в теорию оснований и сооружений, а перейдем к расчету плиты. Даже если действительное сопротивление грунта будет в 2 или даже в 3 раза больше, ничего страшного в этом нет, только дом будет стоять еще дольше.

    Сбор нагрузок на фундамент

    1.1 При ориентировочной толщине плиты 30 см плоская равномерно распределенная нагрузка на грунт от веса плиты составит:

    q фунд.плиты = 2500х1.2х0.3 = 900 кг/м 2 (0.09 кг/см 2)

    где 2500 — объемный вес железобетона, принимаемый для расчета при проценте армирования до 1% (вряд ли у нашей плиты процент армирования будет больше)

    1.2 — коэффициент надежности по нагрузке

    1.2. Нагрузку от пола 1 этажа (доски по лагам, выставленным на каменные столбики) можно считать условно равномерно распределенной, так как столбиков будет много, к тому же в теле фундамента плиты нагрузка от столбиков будет дополнительно перераспределяться. Таким образом расчетная нагрузка от пола 1 этажа составит:

    q пол1эт. = 500х1.2 = 600 кг/м 2 (0.06 кг/см 2)

    Общая равномерно распределенная нагрузка составит:

    q ф = 900 + 600 = 1500 кг/м 2

    Все остальные нагрузки будут рассматриваться как линейные равномерно распределенные, так как будут передаваться через стены на фундаментную плиту. А при рассмотрении метра ширины или длины плиты нагрузки, передаваемые стенами, могут рассматриваться, как сосредоточенные.

    2.1. Нагрузка от подземной части стен (бетон) на расчетный метр ширины или длины плиты составит:

    Q фунд.части стен = 2500х1.2х0.5х0.5 = 750 кг

    2.2. Нагрузка от стен из газобетонных блоков марки D600 при общей высоте стен 6 м составит:

    Q стен = 600х1.3х6х0.4 = 1872 кг

    В данном случае коэффициент надежности по нагрузке (γ =1.3) дополнительно учитывает отделку стен внутри и снаружи здания.

    2.3.1. Нагрузка от перекрытий на наружные стены составит:

    Q нар.стен = 600х1.2х3 + 300х1.2х3 = 3240 кг

    где 600 = 400 + 200 — нагрузка на перекрытие 1 этажа (200 — возможный вес конструкции перекрытия)

    300 = 150 + 150 — нагрузка на перекрытие 2 этажа (чердачное перекрытие)

    2.3.2. Нагрузка от перекрытий на внутреннюю стену составит:

    Q вн.стены = (600 + 300)1.2х6 = 6480 кг

    Снеговая нагрузка для Киева — 160 кг/м 2 . Вес кровли и стропильной системы — около 20 кг/м 2 . При этом распределение снеговой нагрузки и веса стропильной системы будет зависеть от конструктивного решения стропильной системы. В данной статье эти вопросы не рассматриваются, более подробно с принципами расчета стропильных систем можно ознакомиться . При устройстве стропильной системы с подкосами большая часть этой нагузки будет передаваться внутренней стене (если таковая имеется), на которую опирается лежень и подкосы. Однако в нашем случае (см. рис. 345.1.в) в большом помещении такой внутренней стены нет, а стена в правой части здания имеет достаточно широкий дверной проем. В итоге нагрузка на стены, как наружные так и внутренние, в правой и левой частях дома будет разной. Распределение нагрузок на стены мы сделаем на основании следующего примера . Конечно с точки зрения расчетов было бы проще планировать дом с симметричными правой и левой частью, однако с точки зрения бытовых удобств план дома может быть еще более сложным, чем показано на рис. 345.1.

    3.1.1. Для всего здания нагрузка от кровли на наружные стены (на рис.345.1.в) показаны более светлым цветом) составит:

    Q кровли на нар.стены = (160 + 20)х1.2х4.5х0.25 = 243 кг

    где 4.5 — длина горизонтальной проекции стропил, м.

    0.25 — коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами.

    3.1.2. Для левой части здания нагрузка от кровли на наружную и внутреннюю стены (на рис.345.1.в) показаны более темным цветом) составит:

    Q л кровли на стены = (160 + 20)х1.2х4.5х0.75/2 = 364.5 кг

    где 0.75 — коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами

    2 — коэффициент, учитывающий распределение нагрузки на 2 стены

    3.1.3. Для правой части здания нагрузка от кровли на внутреннюю стену (с большим дверным проемом) составит:

    Q п кровли на вн.стену = (160 + 20)х1.2х4.5х0.75 = 729 кг

    Теперь можно приступать к расчету фундаментной плиты, но сначала не мешает ознакомиться с основными положениями , принимаемыми при подобном расчете.

    Монолитный фундамент, как и свайный идеально подходит для строительства буквально практически любого здания. Эти 2 типа оснований одинаково хорошо переносят воздействие высоких нагрузок и перемещения рыхлых грунтов.

    При этом монолитные плиты чаще всего применяют при строительстве крупных торговых центров и многоэтажных домов, а сваи при возведении частного сектора из малоэтажных домов.

    Монолитная плита в качестве крепкого основания строители выбирают по многим причинам, однако, для того чтобы придать ей прочность и надежность необходимо произвести грамотные расчеты.

    Как и любой строительный процесс, расчет фундамента обуславливается правилами проектирования и соответствующими статьями СНиПов. Процесс расчета разделяется на 3 основных этапа:

    1. Проведение замеров и изучение грунта на месте строительства,
    2. Расчет толщины монолитной плиты,
    3. Расчет количества арматуры, необходимой для создания прочного основания.

    Есть специальные программы (Мономах, Лира), которые автоматизируют процесс расчета. В тоже время посчитать будущий фундамент можно и вручную.

    Процесс изучения основных характеристик почвы


    Отбор почвы для анализа

    Перед проведением расчетов любого из типов фундамента, для начала необходимо определить базовые характеристики основания на местности под будущее здание или сооружение. Главные показатели, значения которых влияют на расчет фундамента следующие:

    • Показатель водонасыщенности;
    • Несущая способность грунта.

    Для строительства крупного объекта, перед проведением этапа разработки всего комплекса проектной документации, нужно дополнительно провести процедуру геологических изысканий. Данное обследование включает в себя операции:

    1. Бурение в грунте скважин;
    2. Проведение лабораторных исследований с грунтом.

    В результате заказчик получается разработанный отчет, в котором помечают все особенности и основные характеристики грунта. Однако проведение полного комплекса геологических изысканий грунта обходится застройщикам довольно дорого. Именно по этой причине для проектирования частных домов скважины не бурят, этап изучения грунта проводят с применением шурфов.

    Что такое шурфы и для чего они нужны?

    Отрывка шурфов необходима для изучения состава грунта. Шурфы представляют собой ямы, которые выкапываются строителями вручную. Для этого с помощью лопаты откапывается шурф, который должен на 50 см быть глубже, чем будут располагаться подошвы основания. Состав почвы в свою очередь изучается по полученному срезу.

    Благодаря шурфам определяется примерный тип несущего слоя на участке строительства, а также соотношение грунта и воды в нем.

    Если по итогам обследования грунт перенасыщен водой, то частные дома строят либо на плите, либо опорах из свай.

    Во время проведения мероприятий на этапе исследования и оценки почвы нужно обязательно выкапывать шурфы или делать скважины в нескольких точках площадки.

    Простой пример: для многоэтажных домов нормой считается бурение 5 скважин на каждые 100 м2 площади будущего здания.Располагаются скважины точно под пятном будущей застройки, которая описана на генплане.

    Как только с монолитным основанием определились, останется выяснить только оптимальные удельные значения давления на грунт. Эта информация берется из таблицы в соответствующем разделе СНиПа.

    Пример расчета толщины монолитной плиты

    Правила расчета монолитной плиты полностью описаны в строительных правилах (нормах)по проектированию и устройству монолитных оснований и фундамента для зданий и сооружений. Этап расчета толщины плиты состоит из двух операций:

    1. Собрать ;
    2. Рассчитать значения несущей способности для основания.

    При сборе нагрузки необходимо провести работы, связанные с вычислением общей массы здания вместе с учетом предполагаемого веса снеговой нагрузки в указанном регионе. Кроме того, при подсчете нагрузки от веса учитывается вес мебели, кровли, установленного оборудования и переменный вес людей в доме. Данные показатели берутся из таблицы в зависимости от материала, который будет применяться при возведении несущих стен, перегородок и перекрытий. Также при расчете необходимо учитывать коэффициент надежности – в среднем 1,3. Показания по снеговой нагрузке берутся из строительных норм по строительной климатологии и определаются в зависимости от снегового района, где будет возводиться сооружение.

    При выборе значений из таблицы необходимо также учитывать толщину конструкций.

    В итоге, общая масса здания формируется как сумма всех нагрузок на грунт, умноженная на общую площадь будущего здания. При этом обязательно учтите, что каждая из указанных при расчете нагрузок должна быть умножена на нормированный коэффициент надежности. Таким образом, проектировщики обеспечивают запас прочности по несущим способностям конструкции из монолитного бетона.

    Основные формулы и коэффициенты при расчете толщины подошвы

    Различные нагрузки имеют определенные коэффициенты надежности, которые нормируются СНиПом. Как правило, значения указываются в пределе от 1,05 до 1,4 в зависимости от типа нагрузки. Для монолитного основания из бетона строителями принимается коэффициент равный 1,3.

    При уклоне кровли здания больше 60 градусов, можно давление от снеговой нагрузки в расчет не учитывать. При указанной крутизне ската кровли снег не будет скапливаться на поверхности крыши.

    Формула для расчета подошвы и нагрузок на нее записывается в следующем виде:

    Значения удельной нагрузки на почву без учета веса фундамента вычисляются, как P/S,

    где под Р подразумевается сумма всех нагрузок на здание, а S — это проектная площадь будущей монолитной плиты из бетона.

    Таким образом, узнав удельную нагрузку по таблице из строительных норм, вы подберете подходящую ширину подошвы.

    Общий пример расчета для одноэтажного частного дома

    Проведем пример. При расчете будем использовать следующие исходные данные об объекте:

    1. Здание представляет собой конструкцию одноэтажного частного дом с небольшой мансардой и общей площадью 36 кв. м.;
    2. Материал для возведения несущих стен – бруса, толщина которого 200 мм;
    3. Общее значение площади стен (4 стены с наружной высотой равной 4,5 м) равно 108 кв.м.;
    4. Внутренние перегородки выполнены из гипсокартона и составляют 75 кв.м. площади;
    5. На крыше используется образец металлической четырехскатной кровли, с уклоном в 30ᵒ;
    6. При исследовании грунт оказался пластичным, а качественный состав показал глину;
    7. Значения снеговой нагрузки для выбранного региона равняется 180 кг/м²;
    8. Перекрытия в частном доме будут из дерева, общая площадь составит 72 кв.м.

    Пример сбора нагрузки для здания

    Любой сбор нагрузки на будущее бетонное осуществляется с учетом всех конструкций, а также снеговой и ветровой нагрузки. Все данные заносятся в табличную форму. Посмотрите видео, как рассчитать все нагрузки, а также возвести монолитный фундамент.

    При расчете необходимо учитывать нормативную и расчетную нагрузку в совокупности с коэффициентом надежности. Для нашего примера получим такие результаты:

    1. Нагрузка от стен вычисляется: 108*160*1,1 = 19008 кг,
    2. Нагрузка от гипсокартонных перегородок: 75*30*1,2 = 2750 кг,
    3. Нагрузка от деревянных перекрытий: 72*150*1,1 = 11880 кг,
    4. Давление металлической кровли: 42*60*1,1 = 2772 кг,
    5. Полезная и снеговая нагрузки: 72*150*1,2 + 42*180*1,4 = 23544 кг.


    В итоге, в данном примере, мы получаем общую нагрузку здания в районе 59904 кг (это с учетом коэффициента надежности). Ширина подошвы бетонного основания вычисляется с учетом условия, что его ширина на 20 см больше, чем у дома. Таким образом, общая площадь основания равна 372100 кв. см.

    Высчитываем удельную нагрузку на почву под домом по формуле: 59904 кг: 372100 кв.см. = 0,16 кг/см². Сравниваем полученные и заданные при расчете значения — Δ = 0,25 — 0,16 = 0,09 кг/см². Высчитываем массу будущего здания — М = Δ*S = 0,09*372100 = 33489 кг. Получаем в итоге толщину подошвы: t = 33489/2500 = 13,4 см. Так как значение не целое, за толщину бетонного основания принимают либо 10 см, либо 15 см.

    При проверке на наименьший расход бетонного раствора и массы арматуры требованиям расчета удовлетворило значение толщины в 15 см. Остается посчитать лишь расход арматуры на монолитный фундамент выбранного одноэтажного дома для нашего примера.

    Расчет арматуры на плиту

    Дальнейшие расчеты примера по количеству арматуры основаны на следующих данных:

    1. Выбрана плита с общей толщиной в 15 см,
    2. Будет использовано 2 рабочие сетки,
    3. Диаметр металлических стержней выбран в 12 мм, а шаг стержней на расстоянии 150 мм,
    4. По количеству стержней получаем следующее количество штук (для двух слоев): 84*2=168 штуки,
    5. В результате, общую массу арматуру считаем по формуле: 1018,08 м * 0,888 кг/м = 905 кг.

    Упрощенный расчет вручную необходимой толщины фундаментного основания и общего количества (веса) арматуры является несложной задачей, требующей небольшого количества свободного времени. Самое главное не запутаться в формулах и учесть всех коэффициенты.

    автореферат диссертации по строительству, 05.23.02, диссертация на тему:Расчет комбинированных свайно-плитных фундаментов

    Библиография Чунюк, Дмитрий Юрьевич, диссертация по теме Основания и фундаменты, подземные сооружения

    1. Bakholdin B.V., Razvodovsky D.E., Khamov A.P. Analysis of piles behaviour using ultimate stress zones. XIII ICSMFE New Delhi. 1994.

    2. H. Sommer, P. Wittman, P .Ripper. Piled raft foundation of a tall building on Frankfurt clay. Proc. 11th. Int. Conf. On soil Mech. and found. Eng. 1985.

    3. Kezdi A. «Bearinq Capacity of Piles Groups», Proc. 4-th Int. Conf. On Soil Mech and Found. Engineering. London. V. 2. 1957.

    4. P. Green, D. Hight. The instrumentation of Dashwood House London Ciria Technical. Note №78. Ciria. London. 1976.

    5. Paulos H.G. Estimation of pile group settlements. Ground Eng., 1977. S.10. №2.

    6. Paulos H.G. Modified calculation of pile group settlement interaction. Proc ASCE, JGEP, Vol 114 №6, 1988.

    7. Whitaker Т., Cooke R. A New Approach to pile testing. Preceeding 5-th Yht. Conf. Soil Mech and Found. Eng., V. 2. 1961.

    8. Абелев Ю.М., Абелев М.Ю. Основы проектирования и строительства на просадочных макропористых грунтах. Стройиздат. Москва. 1968.

    9. Абовский Н.П., Погадаев И.К. Расчет балок со ступенчатым изменением жесткости на упругом основании методом фокусных коэффициентов. Труды Зап. Сиб. филиала АСиА СССР. Выпуск 1. Новосибирск. 1959.

    10. Абовский Н.П., Погадаев И.К. Расчет многопролетных балок, лежащих на упругом основании и упругих опорах методом фокусных коэффициентов (изгиб и колебания). Известия высших учебных заведений MB и ССО СССР. «Строительство и архитектура» №1. Москва. 1962.

    11. Александрович В.Ф., Барвашов В.А., Аршба Э.Т. Расчет свайного поля с увеличенным шагом свай. Труды II Всесоюзной конференции «Современные проблемы свайного фундаментостроения в СССР», Одесса. 1990.

    12. Бадеев А.Н. Учет сжимаемости ствола сваи и слоистости основания при проектировании свайных фундаментов большой длины. Диссертация на соискание ученой степени к.т.н. Москва. 1982.

    13. Барвашов В.А., Федоровский В.Г. Трехпараметрическая модель грунтового основания и свайного поля, учитывающая необратимые структурные деформации грунтов. Сб. «Основания, фундаменты и механика грунтов» №4. Москва. 1978.

    14. Бартоломей А.А. Основы расчета ленточных свайных фундаментов по предельным допустимым осадкам. Москва, 1982.

    15. Бартоломей А.А. Экспериментальные и теоретические основы прогноза осадок свайных фундаментов и их практические приложения. Диссертация на соискание ученой степени к.т.н. Пермь. 1975.

    16. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов. Москва. Стройиздат 1994.

    17. Бахолдин Б.В. Экспериментальные и теоретические исследования процесса взаимодействия грунта с забивными сваями и создание на основе практических методов расчета свай. Диссертация на соискание ученой степени д.т.н. Москва. 1987.

    18. Бахолдин Б.В., Джантимиров Х.А., Разводовский Д.Е. Несущая способность свай в кусте. В сб. «Свайные фундаменты». Москва. Стройиздат. 1991.

    19. Бахолдин Б.В., Игонькин Н.Т. Исследование сопротивления грунта по боковой поверхности свай. НИИОСП. Москва. 1966.

    20. Бахолдин Б.В., Разводовский Д.Е., О методике расчета свайных кустов. Труды III международной конференции «Проблемы свайного фундаментостроения». Часть 1. Пермь. 1992.

    21. Бирюков А.А. Расчет свай и свайных оснований. В кн. » Механика грунтов, основания и фундаменты». Трансжелиздат. 1938.

    22. Бирюков А.А. Расчет одиночно стоящих свай. «Дорога и автомобиль» №8 1937.

    23. Бойко И.П. Прогрессивные методы проектирования оснований и фундаментов на ЭВМ. Киев. 1986.

    24. Бойко И.П. Свайные фундаменты на нелинейно деформируемом основании. Диссертация на соискание ученой степени д.т.н. Москва. 1988.

    25. Бойко И.П., Дельник А.Е. Численное моделирование влияние технологии устройства свай на их несущую способность. Сборник «Механизированная безотходная технология возведения свайных фундаментов из свай заводской готовности», Владивосток, 1986.

    26. Варвак А. Балка на упругом основании и сваях. «Строительство и архитектура» №2. Москва. 1963.

    27. Варвак А. Расчет плит на упругом основании и сваях. «Строительства и архитектура» №8. Москва. 1963.

    28. Вострецов O.K., Пермякова Т.Б. К вопросу определения сил трения грунта по боковой поверхности свайного фундамента. Сборник «Основания и фундаменты». Пермь. 1980.

    29. Голубков В.Н. Вопросы исследования свайных фундаментов и проектирования по деформациям. Диссертация на соискание ученой степени д.т.н. Одесса. 1968.

    30. Голубков В.Н. Инструкция по расчету и проектированию свайных фундаментов по деформациям для гражданского и промышленного строительства. Одесса. 1968.

    31. Голубков В.Н. О несущей способности свайных оснований. Москва 1950.

    32. Голубков В.Н. Расчет свайных фундаментов в основаниях крупнопанельных зданий. Научные труды «Основания, фундаменты и подземные сооружения» Под общей редакцией Яценко Д.В. Издательство «Высшая школа». Москва. 1967.

    33. Голубков В.Н. Экспериментальные исследования работы свай на вертикальную нагрузку. Сб. №10. «Свайные и естественные основания» Стройиздат. Наркомстрой. 1939.

    34. Голубков В.Н., Хинич В.Ф. Опыт проектирования свайных фундаментов по деформациям. Известия высших учебных заведений, №3. Москва, 1968.

    35. Горбунов-Посадов М.И. Балки и плиты на упругом основании. Машстройиздат. Москва. 1949.

    36. Горбунов-Посадов М.И., Маликова Т.А., Соломин В.И. Расчет конструкций на упругом основании. М., 1984.

    37. Готман Н.З. К расчету фундаментов в виде сплошных свайных полей с монолитными плитами. Труды 6 международной конференции по проблемам свайного фундаментостроения. Москва. 1998.

    38. Григорян А.А. Несущая способность в просадочных грунтах. Диссертация на соискание ученой степени д.т.н. НИИОСП. Москва. 1973.

    39. Грязнова Е.М. Разработка метода расчета свайных фундаментов с учетом прочностных свойств грунта и взаимодействие свай. Диссертация на соискание ученой степени к.т.н. Москва. 1989.

    40. Гурвич Е.В. Об уплотняемости грунта возникающей при забивки свай. Сб. «Основания, фундаменты и подземные сооружения. Москва. 1970.

    41. Далматов Б.И. К вопросу выбора расчетной схемы для определения модуля деформации пробной статической нагрузкой. Краткое содержание докладов к XXVI научной конференции ЛИСИ, Механика грунтов, основания и фундаменты. Ленинград. 1968.

    42. Далматов Б.И. Механика грунтов, основания и фундаменты. Стройиздат. Ленинград. 1988.

    43. Далматов Б.И. Практический расчет осадки фундамента методом ограниченной сжимаемой толщи. Изд. ХДНТП. Ленинград. 1965.

    44. Далматов Б.И. Расчет осадки фундамента по методу ограниченной сжимаемой толщи. Основания и фундаменты, инженерные конструкции, строительное производство. Изд. ЛИСИ. Ленинград. 1964.

    45. Девальтовский Е.Э. Влияние пригрузки на взаимодействие свай с грунтом. Труды VI Международной конференции по проблемам свайного фундаментостроения. Москва. 1998, Том 1.

    46. Добровольский К.И. Испытания свай и грунтов пробной нагрузкой. Тифлис. 1935.

    47. Добровольский К.И. Расчет оснований, огражденных свайными рядами. ЗакВНИИХ. Тифлис. 1932.

    48. Добровольский К.И. Расчет свайных оснований. Тифлис. 1929.

    49. Дорошкевич Н.М. Исследование напряжений в грунте при свайных фундаментах. Диссертация на соискание ученой степени к.т.н. Москва. 1959.

    50. Дорошкевич Н.М., Знаменский В.В., Чернов В.К., Юрко Ю.П. Экспериментальные исследования осадок кустов свай под действием вертикальной нагрузки. Красноярск. 1971.

    51. Жадрасинов Н.Т. Вычислительная программа для расчета несущей способности свайных фундаментов различной конструкции в сложных грунтовых условиях. Труды II Всесоюзной конференции «Современные проблемы свайного фундаментостроения в СССР», Одесса, 1990.

    52. Зенкевич О. Метод конечных элементов в технике. Москва. «МИР», 1975.

    53. Знаменский В.В. Работа свайного фундамента в глинистых грунтах и расчет их по деформациям. Диссертация на соискание ученой степени к.т.н. Москва. 1971.

    54. Казачек П.Д. Исследование распределения вертикальных напряжений в основании грунтов висячих свай с низким ростверком. Диссертация на соискание ученой степени к.т.н. Киев. 1978.

    55. Кереселидзе Д.И. К вопросу проектирования и расчета свайных фундаментов с низким ростверком и сваями трения. Сообщения АН Грузинской ССР. т. XXII, №4. 1959.

    56. Клинов В.Т. Опыт устройства свайных фундаментов на объектах западносибирского металлургического завода. Сб. «Основания, фундаменты и подземные сооружения». Выпуск 1. Изд. «Высшая школа». Москва. 1967.

    57. Кондрашев В.А. Экспериментальные исследования несущей способности и осадки свайных фундаментов с ростверком на грунте. Диссертация на соискание ученой степени к.т.н. Москва. 1969.

    58. Крытов К.Е. Несущая способность свай увеличена вдвое. «Строительство и архитектура» №1. Москва. 1964.

    59. Лапшин Ф.К. Расчет свай по предельным состояниям. Саратов. 1979.

    60. Луга А.А. Разделение свайной нагрузки на сопротивление острия и поверхности трения. «Техника железных дорог». №12. 1943.

    61. Луга А.А. Расчет осадки свайных и массивных фундаментов в песчаных грунтах. Транспортное строительство. Москва. 1965 №8.

    62. Луга А.А. Расчет осадок свайных и массивны фундаментов в глинистых грунтах. Транспортное строительство. 1974 №2.

    63. Московские городские строительные нормы. МГСН 2.07 97 Основания, фундаменты и подземные сооружения. НИИОСП им. Герсеванова Н.М. Москва. 1998.

    64. Основания, фундаменты и подземные сооружения. Справочник проектировщика. Под общей ред. Сорочана Е.А. Москва. Стройиздат. 1985.

    65. Пастернак П.Л. Основы нового метода расчета фундамента на упругом основании при помощи двух коэффициентов постели. Москва. 1954.

    66. Пек Р.Б., Хенсон У.Э., Торбурн Т.Х. Основания и фундаменты. Москва 1958.

    67. Пилягин А.В., Глушков В.Е. Проектирование свайных фундаментов по деформациям с учетом упругопластических свойств грунта. Труды II

    68. Всесоюзной конференции «Современные проблемы свайного фундаментостроения в СССР», Одесса. 1990.

    69. Рукавцов A.M., Глинкина П.В. Новая установка статического зондирования для определения кустового эффекта висячих свайных фундаментов. Основания, фундаменты и механика грунтов. Москва 1970.

    70. Сальников Б.А. Исследование несущей способности свайных фундаментов в слабых глинистых грунтах. Диссертация на соискание ученой степени к.т.н. Москва. 1968.

    71. Сальников Б.А., Шаевич Я.Е., Чарушников И.Г., Исследование несущей способности уплотненных грунтов. Известия ВУЗов «Строительство и архитектура». Новосибирск. 1966.

    72. Семенов В.В. Реализация расчетов методом конечных элементов на ЭВМ. Сборник «Опыт оценки устойчивости склонов сложного геологического строения». МГУ, М., 1973.

    73. Семенов В.В., Чунюк Д.Ю. Расчет комбинированных свайно-плитных фундаментов с использованием контактной модели теории упругости. Стройклуб. №9. 2002.

    74. Симвулиди И.А. Расчет балок на сплошном упругом основании. Издательство «Советская наука» Москва. 1958.

    75. Симвулиди И.А. Расчет инженерных конструкций на упругом основании. Москва. Высшая школа. 1973.

    76. Симвулиди И.А. Расчет инженерных конструкций на упругом основании. Росвузиздат». Москва. 1963.

    77. Симвулиди И.А. Составные балки на упругом основании. Издательство » Высшая школа». Москва 1961.

    78. Сирожиддинов 3. Несущая способность кустов свай в слабых водонасыщенных грунтах при внецентренной нагрузке. Диссертация на соискание ученой степени к.т.н. Москва. 1969.

    79. СНиП 2.02.03-85. Свайные фундаменты.

    80. СНиП И-Б. 5-62 Свайные фундаменты. Госстройиздат. Москва.

    81. Тер Ованесов Г.С. Совместная работа ростверка, свай и грунта в висячих свайных фундаментах. Диссертация на соискание ученой степени к.т.н. Москва. 1953.

    82. Терцаги К. Теория механики грунтов. Пер. с англ./Пер. с англ./ Под ред. проф. Н.А. Цытовича. Москва. 1961.

    83. Ухов С.Б. Расчет сооружений и оснований методом конечных элементов. Москва.,МИСИ, 1973.

    84. Ухов С.Б., Семенов В.В. Расчет перемещений и напряжений в анизотропных скальных породах. Гидротехническое строительство. №2. М., 1973.

    85. Ухов С.Б., Семенов В.В., Конвиз А.В. Расчетно-экспериментальный метод определения механических свойств неоднородных грунтов. Основания, фундаменты и механика грунтов. №1., М., 1993.

    86. Ухов С.Б., Семенов В.В., Знаменский В.В., Тер-Мартиросян З.Г., Чернышев С.Н. Механика грунтов, основания и фундаменты. Издательство АСВ. Москва. 1994.

    87. Фадеев А.Б., Девальтовский Е.Э. Исследование работы группы свай. Исследование свайных фундаментов. Межвузовский сборник научных трудов. Воронеж. Издательство ВГУ. 1988.

    88. Фадеев А.Б., Девальтовский Е.Э. Кустовой эффект при работе свайных фундаментов на вертикальную нагрузку. Сборник Ускорение научно-технического прогресса в фундаментостроении. Москва, Стройиздат. 1987.

    89. Фадеев А.Б., Девальтовский Е.Э., Васильченко А.В. Работа свай при наличии низкого ростверка. Труды VI Международной конференции по проблемам свайного фундаментостроения. Москва. 1998, Том 2.

    90. Хамов А.П. О взаимном влиянии свай в однородном свайном фундаменте и группе свай. Основания, фундаменты и механика грунтов. 1972.

    91. Христофоров B.C. экспериментальные исследования некоторых вопросов работы свайных сооружений с высоким ростверком.

    92. Цытович Н.А. Инженерный метод прогноза осадок фундаментов. Стройиздат. Москва. 1988.

    93. Цытович Н.А. Механика грунтов. Издание 2-е. Москва. 1940.

    94. Цытович Н.А. Об индустриальных методах устройства свайных фундаментов в жилищном строительстве. Сб. статей. Госстройиздат. Москва. 1962.

    95. Цытович Н.А. Расчет осадок фундаментов. Москва. 1941.

    96. Цытович Н.А., Веселов В.А., Кузыкин И.Г., Луга А.А. и др. Основания и фундаменты. Госстройиздат. Москва. 1959.

    97. Чернов В.К., Юрко Ю.П., Дорошкевич Н.М., Знаменский В.В., Казаков Ю.Н. Об исследованиях для разработки новых методов расчета свайных фундаментов по предельным деформациям. Собрание трудов Красноярского

    98. Промстрой НИИпроекта «Строительство в районах Восточной Сибири и Крайнего Севера». №16, Красноярск. 1970.

    99. Чунюк Д.Ю. Определение сопротивления грунта под подошвой низкого ростверка. Сб. «Денисовские чтения» Том 1. МГСУ. Москва. 2000.

    100. Югай O.K. Особенности работы фундаментов из свай большой длины при действии центральной нагрузки. Диссертация на соискание степени к.т.н. Москва. 1981.

    101. Яблочков В. Д. Исследование роли низкого ростверка в несущей способности однорядных свайных фундаментов. Диссертация на соискание ученой степени к.т.н. Москва. 1965.

    102. Яблочков В.Д. К вопросу об учете работы низкого ростверка в расчетах свайных фундаментов из коротких забивных висячих свай. Сб. трудов «Вопросы строительства» Пермь. 1964.

    103. Яблочков В.Д. Расчет несущей способности свай, усиленных круглыми плитами ростверками. Техническая информация оргтехстроя. Пермь. 1964.

    104. Яблочков В.Д., Бартоломей А.А., Пеньковский Е.И., Гордон Е.В. Учет работы низкого ростверка резерв повышения экономичности свайных фундаментов. Оргтехстрой. Пермь. 1964.

    105. Яблочков В.Д., Дорошкевич Н.М. Рациональные решения свайных фундаментов промышленных сооружений в типичных условиях г. Перми: Отчет по х/з деятельности. 1962.

    106. Яблочков В.Д., Пеньковский Е.М., Гордон Е.В., Селиверстов А.Н. Строительство промышленных зданий и сооружений на свайных фундаментах. УФА., 1964.

    толщина плиты, расчет и марка бетона

    Вместо крупного заполнителя в теле ячеистого бетона присутствует система равномерно распределённых воздушных пор, что и является причиной его отменно низкой теплопроводности. Для жилого дома это очень хорошо, так как стены получаются более тёплыми. Однако прочность у низкоплотного камня всегда ниже, кладка из него хуже противостоит пространственному смещению, сжимающим и изгибающим нагрузкам, поэтому основание под такую кладку должно быть максимально статичным и жёстким.

    Лучше всего с этой задачей справляется монолитная плита фундамента. Рассмотрим, как определяется её толщина для дома из газобетона, и из каких этапов состоит заливка.

    Технические характеристики монолитной плиты

    Плитный фундамент представляет собой сплошной монолит под всем зданием, площадь которого или соответствует его размерам по осям, или увеличена на толщину облицовки цоколя или стен, если они возводятся непосредственно на плите.

    • Большая площадь опоры делает такой фундамент наиболее устойчивым – во всяком случае, при строительстве на ровной местности, не имеющей проблем с сейсмической стабильностью. Тем не менее, плита под дом из газобетона, как и любой другой фундамент, должна быть грамотно спроектирована.
    • Этот процесс заключается в составлении схемы воздействия и расчёте нагрузок, способных повлечь крен или излом основания. Суммарные нагрузки и берутся за основу при определении толщины плиты фундамента.
    • Так как плита ещё и армируется, нужно не только просчитать внешние габариты монолита, но и составить схему его каркаса. Армирование может быть как равномерно распределённым, так и усиленным локально в местах наибольших нагрузок — тут уже всё зависит от габаритов и конфигурации здания и конкретных условий строительства.
    • В основном локализация армирования фундаментной плиты под дом из газобетона осуществляется при проектировании плиты с направленными вниз ребрами. Это даёт возможность уменьшить толщину горизонтальной части – а значит, и снизить расход бетона. Но получить такую экономию даст возможность только профессиональный подход к проектированию.
    • При беспроектном строительстве приходится всё делать с запасом прочности, поэтому чаще всего застройщики формируют обычную плоскую плиту с равномерно распределённым армированием. Толщина плиты под дом из газобетона будет зависеть от его габаритов и этажности, именно эти нагрузки и составляют общий вес здания. Так как локальных усилений в такой плите нет, её общий каркас должен максимально обеспечивать плите сопротивление продавливанию.
    • Лучше распределять нагрузки и сохранять устойчивость при естественных подвижках грунта, помогает жёсткий подстилающий слой — бетонная подготовка. Это плита толщиной 7-10 мм из низкомарочного бетона, которая является основанием для устройства наплавной гидроизоляции и защищает её от повреждений.
    • В масштабном строительстве подбетонка — обязательный элемент подготовки основания к заливке фундамента. При строительстве малоэтажных зданий допускается заменять её профилированной гидроизоляционной мембраной, достаточно прочной, чтобы обойтись без защиты. Её можно укладывать непосредственно на утрамбованный песчаный слой. Защитный ковёр набирается из укладываемых внахлёст полотен, проклеиваемых в швах специальной лентой, и получается вполне герметичным.

    Фундамент плита под дом из газобетона, если в нём не предусмотрен цокольный этаж, строится в незаглублённом варианте. То есть, в грунт закладываются только подстилающие слои, а сама плита находится на поверхности. Надёжность плитного основания от этого нисколько не страдает – даже наоборот, ему не приходится противостоять воздействию боковых сил пучения. Снизу от них плита защищена насыпным непучинистым грунтом, а иногда ещё и слоем теплоизоляционного материала – экструдированного пенополистирола.

    Вот основные технические характеристики плиты под одноэтажный дом из газобетона:

    1. Грунт – любой, в том числе просадочный.
    2. Рельеф – ровный. Если уклон, то незначительный. При больших перепадах плиту пришлось бы заливать в ступенчатом варианте, а это технически сложно и дорого.
    3. Толщина стен – любая.
    4. Класс применяемого бетона по прочности – В22,5.
    5. Марка бетона для плитного фундамента по водопроницаемости — W6.
    6. Марка пластичности П4.
    7. Минимальная толщина плоской плиты для дома 300 мм.
    8. Арматурный каркас – объёмный, из стержней AIII d-12 с шагом 200х200 мм.
    9. Гидроизоляция – в зависимости от наличия подбетонки (наплавная или мембранная).

    Какие параметры влияют на расчет плиты

    Толщина плитного фундамента для дома из газобетона определяется путём сопоставления суммарных нагрузок на грунт с его расчётным сопротивлением. Для этого нужно точно знать две вещи: каким будет конструктив дома вплоть до крыши, и какой тип грунта залегает на участке, что даст возможность воспользоваться предлагаемым СНиП нормативным сопротивлением.

    Чтобы произвести наглядный расчет плитного фундамента, возьмём для примера такие данные:

    • Дом 1 этаж, размер 9*8 м.
    • Стены – газоблок D500 толщиной 400 мм, общая площадь 159 м2 (63,6 м3).
    • Перегородки – газоблок D600 толщиной 100 мм, общая площадь 96 м2 (9,6 м3).
    • Цокольное и чердачное перекрытие балочное, общая площадь 2*72 = 144 м2.
    • Кровля двухскатная, угол наклона 35 градусов, площадь 88 м2. Покрытие из мягкой черепицы.
    • Снеговая нагрузка по III категории, 180 кгс/м2.
    • Грунт на участке – мелкий песок (расчётное сопротивление 0,24 кг/см2).

    Примеры расчета суммарных нагрузок

    Суть расчёта заключается в том, что нужно все, воздействующие на фундамент нагрузки, суммировать. При этом объёмный вес материала каждой конструкции (или суммы материалов, если она многослойная) можно найти в нормативах. К постоянным нагрузкам добавляется полезная (от мебели и веса людей), и временная (снеговая). Каждое значение умножается на свой коэффициент надёжности, все КН приведены в стандарте 27751-2014.

    Вот что получается в итоге, в соответствии с нашими условиями задачи:

    • Стены несущие: 63,6 м3*500 кг/м3 = 31800 кг * 1,1 = 41976 кг.
    • Перегородки: 9.6 м3*600 кг/м3 = 5760 кг * 1,2 = 6912 кг.
    • Перекрытия: 144 м2*150 кг/м2 = 21600 кг*1,1 = 23760 кг.
    • Кровля: 88 м2*57 кг/м2 = 5016 кг = 5518 кг.
    • Полезная нагрузка (по площади перекрытий): 144 м2*150 кг/м2 = 21600 кг*1,2 = 25920 кг.
    • Снеговая нагрузка (по площади кровли): 88 м2*180 кгс/м2 = 15840 кг*1,4 = 22176 кг.

    ВСЕГО сумма нагрузок составляет 126262 кг.

    Максимальная и минимальная толщина

    Допустим, наша плита будет по площади соответствовать дому и формироваться без выступа. Площадь — 72 м2 или 720000 см2. Удельная нагрузка на почву составит: 126262 кг/ 720000 см2 = 0,175 кг/см2. Теперь определяем разницу между полученной суммарной нагрузкой и сопротивлением почвы: 0,24 кг/см2 — 0,175 кг/см2 = 0,065 кг/см2. Это и есть та нагрузка, которую должен компенсировать фундамент.

    Чтобы облечь эту цифру в конкретные формы, нужно:

    1. Определить массу плиты: М= 0,065 кг/см2*720000 см2 = 46800 кг.
    2. Исходя из удельного веса железобетона (он же и плотность), получить толщину плиты: Т = 46800 кг/2500 кг/72 м2 = 0,26 м.
    3. Толщину округляют — в большую или меньшую сторону до ближайшего значения, кратного 5 см. Если округлить в большую сторону, толщина плиты под одноэтажный дом из газобетона получается 0,3 м или 30 см.

    Чтобы убедиться, что нагрузка от дома вместе с весом плиты не превысит возможности грунта, требуется выполнить проверку, идя от обратного:

    • Вычисляем объём плиты: 0,3 м*72 м2 = 21,6 м3.
    • Рассчитываем вес плиты: 21,6 м3*2500 кг/м3 = 54000 кг.
    • Находим суммарную нагрузку от фундамента и дома: 54000 кг + 126262 кг = 180262 кг.
    • Учитывая площадь фундамента, давление на грунт составит: 180262 кг/720000 см2 = 0,25 кг/см2.

    Даже без дальнейших расчётов понятно, что полученная нагрузка немного превысила расчётное сопротивление грунта, так как 0,25 больше чем 0,24. В таком случае, нужно уменьшить толщину плиты фундамента до 25 см, и произвести повторный расчёт уже для этого варианта. В итоге нужно добиться того, чтобы расчётное сопротивление грунта оказалось выше суммарного веса дома хотя бы на 3%. Больше – лучше, нормативный диапазон составляет 3-25%.

    Виталий Кудряшов

    Строитель
    Автор портала full-houses.ru

    Задать вопрос

    При невозможности добиться такого расклада, проектируют плиту с направленными вниз, и усиленными арматурой рёбрами, за счёт которых можно будет уменьшить толщину её горизонтальной части. Если же грунт слишком слабый, имеет смысл отдать предпочтение свайному фундаменту, опирающемуся на более глубокий прочный пласт.

    Расчет песчано-щебневой подушки

    Песчано-гравийные подушки под фундаментами устраивают для того, чтобы:

    • выровнять дно котлована;
    • получить основание заданной плотности и влажности;
    • заменить слабый или пучинистый поверхностный грунт на слой лучшего качества.

    Для устройства подфундаментных подушек может использоваться один крупнозернистый песок, он также может быть в смеси с гравием или щебнем, или представлять собой отдельный слой, укладываемый поверх щебёночной подушки. Смесовые грунты обычно используют с целью достижения наилучшего качества уплотнения. Технологические карты рекомендуют использовать песчано-гравийные смеси, или прямо на стройке смешивать песок со щебнем в пропорциях 60:40, и укладывать на толщину 30 см.

    Делать отсыпки с большей толщиной просто невыгодно. Если слой малопрочного грунта уходит на большую глубину, плиту под газобетонный дом лучше опереть на сваи или отдать предпочтение ростверку.

    Отдельным слоем щебень используется только в том случае, когда близко к поверхности подходят грунтовые воды. В этом случае он служит дренажной прослойкой, отсыпаемой на толщину 20 см. При этом толщина песчаного слоя может быть уменьшена до 20 см (но не менее).

    Этапы строительства монолитного фундамента

    Полный комплекс работ по строительству плитного фундамента состоит из таких этапов:

    • устройства временной подъездной дороги;
    • завоза механизмов и стройматериалов, размещение их на стройплощадке;
    • организации подачи электроэнергии;
    • очистки участка и вертикальной планировки;
    • разбивки осей фундамента;
    • разработки котлована с формированием насыпных подушек (и если надо, подбетонки) с устройством гидроизоляции.
    • установки опалубки.
    • сборки арматурного каркаса.
    • заливки плиты и ухода за бетоном.

    Форматирование плиты и закладка арматуры

    При самостоятельном исполнении работ опалубку под плитный фундамент собирают из обрезной доски 40 на 100 или 125 мм (в зависимости от толщины плиты). Расчёт должен быть таким, чтобы края опалубочных бортов оказались на 50 мм выше верха плиты. Тогда с внутренней стороны можно отбить по нивелиру уровень заливки, и отметить его саморезами с натянутой леской.

    При небольших объёмах работ поверхность монолита и верхней отметки щитов можно совместить. Чтобы края бортов могли служить ориентиром для заливки, они должны быть идеально точно выставлены, но из-за относительной кривизны досок и неравномерной забивки колышков, вывести таким образом единую горизонтальную плоскость получается не всегда.

    • Если вы заключите договор на устройство фундамента с подрядной организацией, опалубка, скорее всего, будет инвентарная. Она представляет собой рамную конструкцию: щиты из бакелитовой фанеры, навешиваемые на рамы из коробчатого стального профиля. Соединения щитов между собой осуществляются с помощью клиновых замков, к профилю их крепят саморезами.
    • Монтируют щиты по всему периметру плиты, начиная с угловых точек. Снаружи их подпирают подкосами, состоящими из консольных подпорок и распоров, устанавливаемых друг от друга примерно в трёх метрах. Крепление к земле производится грунтовыми шпильками – либо, если это обыкновенный деревянный щит, за счёт удлинённых и заострённых как колышки соединительных брусков.
    • Чаще опалубка собирается до армирования, хотя бывает и после — это монтажники решают сами, что зависит от применяемой технологии сборки каркаса. При использовании готовых сеток более удобно, когда щиты выставлены заранее, в таком случае на них можно произвести не только разметку верха заливки, но и уровней каркаса. Соответственно, контроль правильности установки бортов опалубки должен быть полноценным.
    • Для удобства работы сборка каркаса производится по отдельным блокам, по тому же принципу осуществляется и заливка. Последовательность монтажа арматуры выбирается такой, чтобы обеспечить правильность её положения и качественное закрепление.

    Виталий Кудряшов

    Строитель
    Автор портала full-houses.ru

    Задать вопрос

    Как вариант, объёмный каркас может собираться из плоских каркасов, обеспечивающих нужный отступ между двумя уровнями рабочей арматуры, собираемых в сетки из отдельных стержней. Но в таком случае опалубка будет мешать соединять торцы, поэтому её ставят после.

    • Нижний ряд устанавливается на пластиковые фиксаторы, которые обеспечат нужный отступ для образования защитной бетонной оболочки. Если под плитой есть подбетонка, 35 мм достаточно; если только ПВХ-мембрана, то слой бетона внизу должен быть не менее 75 мм.
    • При поштучном монтаже стержней, в местах их пересечения и присоединения к вертикально установленным плоским каркасам, производятся крепления вдвое сложенной вязальной проволокой. Расстояние между поддерживающими элементами – 400 мм. Обычно их изготавливают из арматуры AI d-8 мм непосредственно на объекте, но могут использоваться и заводские изделия.

    Заливка монолитной плиты

    При строительстве небольшого по площади фундамента можно, конечно, выполнить бетонирование плиты вручную, замешивая смесь в бетономешалке, и подавая её в опалубку лопатой. Но профессиональные строители делают это с помощью автобетононасоса или крана с подвесными поворотными бункерами вместимостью 1м3.

    • Производительность бетононасоса в среднем составляет 20 м3/час, что позволяет за одну смену забетонировать плиту под дом без устройства рабочих швов. Для машины определяют такое место стоянки, чтобы к ней был беспрепятственный подъезд для автобетоносмесителя, подвозящего готовый бетон. Пластичную смесь подают к бетонируемому блоку и распределяют в пределах него с помощью гибкого рукава, начиная с более удалённой точки.

    • Высота свободного сбрасывания бетона не должна превышать 1 м. Его укладывают горизонтальными пластами, без разрывов, сразу по всей ширине и высоте блока. Пока один рабочий распределяет смесь, другой следует за ним с глубинным вибратором и уплотняет её. Когда бетонирование достигнет проектной отметки, верхние слои бетона уплотняют виброрейкой.
    • Толщина слоя бетона, которую за один раз можно уложить горизонтально, определяется в зависимости от параметров применяемого глубинного вибратора. Слой бетона может быть выше длины его рабочей части не более чем на 25%. Если длина вибрирующего элемента составляет 300 мм — значит, он может уплотнить бетон на глубину 375 мм. Плита под частный дом редко имеет большую толщину, поэтому заливается сразу по всей высоте.
    • Внедряя вибратор в толщу бетона, избегайте прикосновения к арматуре. Шаг перестановки инструмента не должен превышать полтора радиуса его действия. При этом он должен на 10 см перекрывать границы уже уплотнённого участка.

    Перерыв в бетонировании в пределах одного блока недопустим. Зазор во времени между бетонированием двух смежных блоков, при котором можно не обустраивать рабочие швы, составляет 1,5 часа.

    Заключение

    Во время дождя участок плиты, который в данный момент бетонируется, должен быть защищён от попадания воды. Если такое всё же случилось, размытый бетон придётся удалить и залить нормальный. После схватывания размывание бетону уже не грозит, а увлажнение в тёплую погоду наоборот, создаёт лучшие условия для гидратации цемента.

    В жару монолит на протяжении 3-5 дней (в зависимости от температуры) поливают несколько раз в день и 1 раз ночью, ведь наилучшим режимом для твердения бетона является 90% влажность и +18 градусов тепла. Кроме того, открытые поверхности плиты следует защищать от прямых солнечных лучей и высушивания ветром, поэтому монолит после увлажнения накрывается полиэтиленовой плёнкой или засыпается опилками.

    Калькулятор дома из газобетона

    Итого по проекту

    • Приблизительная стоимость строительства
    • Общая площадь дома

    В указанную стоимость входят следующие виды работ:

    с учётом материалов, их доставки и аренды спец техники

    * — Цена ориентировочная и не является публичной офертой. Актуальные цены могут быть указаны только в смете по строительству дома.

    Вы можете задать свой вопрос нашему автору:

    Монолитно-плитный фундамент: расчет, толщина и особенности

    Плитный фундамент — это прочное основание из железобетона, которое укладывается под всю площадь здания. Фундаменты этого типа очень прочные и оказывают наименьшее давление на грунт. Но только один плитный фундамент, толщина которого рассчитана с учетом характера грунта, глубины закладки и нагрузок, на которые будет опираться при его эксплуатации, может иметь указанные преимущества.

    Особенности расчета толщины плитного фундамента

    При расчете толщины монолитной фундаментной плиты необходимо учитывать следующие значения:

    • зазор между арматурными сетками;
    • толщина бетонного слоя над верхней и нижней арматурной сеткой;
    • толщина арматуры.

    Самый простой расчет толщины плиты цоколя проводится суммированием всех этих показателей, при этом оптимальным значением считается толщина плиты в 20-30 см.Конечный результат расчета во многом определяется составом грунта и однородностью горных пород.

    Помимо размеров опорной плиты, при устройстве фундамента необходимо учитывать ширину дренажного слоя и песчаной подушки. Для устройства наклонного фундамента снимается верхний слой грунта, глубина котлована составляет около 0,5 м. Эта величина определяется с учетом того, что щебень укладывается слоем около 20 см, песок — около 30 см.

    В итоге простым суммированием получается, что минимальная толщина всего плитного фундамента не может быть меньше 60 см. Но этот показатель может существенно варьироваться в зависимости от изменения характеристик грунта и веса всей будущей постройки, из которой сооружается фундамент.

    Итак, плитный фундамент для кирпичного дома должен быть на 5 см толще того же основания для строительного пенобетона. При этом при наличии второго этажа в кирпичном доме толщина монолитной фундаментной плиты увеличивается до 40 см (и более — в зависимости от веса и конфигурации конструкции), а при строительстве двухэтажного дома. многоэтажное здание из пенобетона — не менее 35 см.Номера данных приведены в качестве примера. Чтобы понять, насколько толщина плиты основания зависит от типа конструкции, на которую она кладется. Точные показатели для конкретного здания определяются расчетами, которые рекомендуется доверить специалистам в данной области техники.

    Зачем измерять толщину плитного фундамента

    Все указанные расчеты необходимо производить согласно нормам соответствующих СНиП и ГОСТ. Зная, какая толщина плитного фундамента наиболее подходит для возводимого сооружения, можно не только обеспечить прочное основание под строящееся здание, но и определить количество необходимых материалов для его закладки.

    Кроме толщины для расчета плитного фундамента необходимо определить:

    • периметр (длина со всех сторон) основания;
    • плоских площадей, в том числе термо- и гидроизоляция;
    • площадь боковой поверхности;
    • количество бетона;
    • вес бетона;
    • нагрузка на почву;
    • диаметр арматуры в сетке;
    • диаметр вертикальной арматуры;
    • Размер ячейки
    • меш;
    • падение арматуры;
    • общая длина стержней арматуры;
    • общий вес арматуры.

    Для расчета количества бетона, необходимого для заполнения плитного фундамента, объем теплоизоляции вычитается из общего объема.

    Подушка под плитный фундамент: определить толщину

    Подушка под основание плиты укладывается по всей площади. Он состоит из слоя щебня и слоя песка, который наносится на предварительно выровненное дно котлована. Сначала щебень, как правило, слоем 20 см, а затем песок — слоем 30 см.Таким образом, наиболее распространенная толщина подушки под плиточный фундамент составляет примерно 0,5 м.

    Следует иметь в виду, что толщина каждого из двух слоев песчано-куриной подушки может варьироваться в довольно значительных пределах. Этот показатель зависит от нескольких факторов, в том числе от основных характеристик грунта и веса конструкции. Например, для легких деревянных построек хватит подушек толщиной 15 см, для гаража — 25 см, а для больших кирпичных построек лучше всего подойдет полуметровый слой.

    Щебень в этом случае компенсирует густоту и низкую плотность почвы, а также является отличным дренажем, особенно на глинистых почвах с высоким уровнем грунтовых вод. Песок при этом обеспечивает равномерность нагрузки на грунт.

    Пример расчета толщины и объема плитного фундамента

    Расчет плитного фундамента выполняется для определения количества бетона, необходимого для его заполнения. Для этого площадь подошвы следует умножить на ее толщину (высоту).

    Самый простой способ разобраться с расчетом на конкретном примере, который можно использовать для других случаев, изменив соответствующие числа. Предположим, будет возводиться дом 10х10 метров и монолитно-плитный фундамент, толщина которого составляет 0,25 м. Объем плиты в этом случае составит 25 кубометров (10х10х0,25). Такой же бетон потребуется для заливки фундамента. Необходимо учесть и установить жесткие ребра, которые служат для повышения устойчивости деформаций.Они располагаются с шагом в три метра вдоль и поперек плиты, образуя в ней квадраты.

    Для расчета плитного фундамента определите длину и высоту ребер жесткости. Первый показатель устанавливается в соответствии с длиной каждой стороны основания и в рассматриваемом примере составляет 10 метров. Всего потребуется 8 ребер, поэтому общая длина составит 80 метров.

    Поперечное сечение выполняется в виде трапеции или прямоугольника.По стандарту ширина кромки должна составлять 0,8 от высоты. Для прямоугольных кромок общий объем будет 0,25х0,8х80 = 16 кубометров. У трапециевидных ребер нижнее основание составляет 1,5 толщины фундамента, верхнее — 0,8. В рассматриваемом примере площадь поперечного сечения трапеции будет равна (0,8 + 1,5) / 2×0,25 = 0,15 квадратных метров, а объем всех граней будет 0,15×80 = 12 кубометров.

    Из рассмотренного примера видно, что для заливки монолитно-плитного фундамента толщиной 25 см и размером 10х10 метров потребуется 25 кубометров бетона.Эту сумму совершенно несложно рассчитать самостоятельно, чтобы определить затраты, которые потребуются на обустройство фундамента.

    Толщина плитного фундамента — очень важный показатель, обеспечивающий его прочность и надежность. Это зависит от многих факторов и может отличаться на разных почвах или для разных построек. Поэтому, чтобы построить действительно прочный дом, необходимо с повышенным вниманием отнестись к расчету толщины его плитного основания.

    Revit OpEd: расчет фундаментов и изоляции

    Я участвовал в обсуждении на RevitForum.org, который задал вопрос о расчете общей битумной изоляции, необходимой для покрытия бетонных поверхностей фундамента. В исходном посте описывалось использование инструмента Paint и сколько времени на это потребовалось. Мне всегда интересно, несут ли люди ответственность за расчеты или мне просто интересно, когда я читаю такие запросы. Иногда спрашиваю. Интеллектуальные упражнения могут быть интересными, но они могут потратить много времени, если результаты на самом деле никому не пригодятся.

    Поскольку я уже приложил к этому усилия, я решил использовать этот пост, чтобы поделиться примером проекта, который я создал в ответ.Я поделился более ранней версией в ветке, но в этой высказано больше идей.


    Я склонен пытаться использовать графики и формулы для расчета / прогнозирования необходимого изоляционного материала вместо использования краски и отбора материала. Изолированные фундаменты (опоры) имеют одну форму (большинство из них), поэтому нет составных слоев, таких как фундаментные плиты, полы или стены.

    Это не так просто, как просто указать всю площадь поверхности каждого типа фундамента. Это даже не просто сделать.Поверхность, касающаяся земли, не получает изоляции (как я понимаю в этой ситуации). Когда колонна стоит на основании, изоляция не требуется, поэтому нам нужно вычесть площадь основания колонны из верхней части площади поверхности основания. Никакая изоляция не требуется и там, где стена стоит на опоре.

    У нас также есть неравенство параметров. Изолированные опоры не имеют параметра «толщина». Фундамент и перекрытия делаю. Непоследовательное применение размерных значений — это проблема, с которой мы сталкиваемся, когда используем предоставленные семейные категории (как следует из их наименования / поведения) и пытаемся скомпилировать их информацию с использованием «того же» понятия размерных критериев.Просто они не все равны, у них разные «убеждения».

    Мой подход начался с графика фундамента, который включает в себя опоры и плиты, график для стен и третий график для колонн. Мне нужно было различать опоры и плиты, чтобы я мог создавать формулы для определения площади верха и сторон каждого вида опор. Полы и перекрытия имеют толщину и периметр по умолчанию. Когда они прямоугольные, у них также есть ширина и длина. Если они нерегулярны, то этого не происходит.Основания фундамента не имеют толщины, но имеют ширину и длину.

    Я использовал формулу для деления объема, чтобы получить приблизительную высоту, которую можно использовать для расчета площади поверхности для верха и сторон. Я использовал параметр под названием Is Slab (целое число), чтобы моя формула Bitumen могла решить, какой метод формулы применяется. Я просто ввожу 1 для плит и 0 для опор. Это график фундамента для настенных, изолированных фундаментов и плит / полов.


    Как видите, я добавил несколько строк в заголовок, чтобы объяснить пустые ячейки в расписании.Я также добавил формулы (после захвата изображений) в комментарии, чтобы можно было проверить результаты, не имея модели.

    Вот расписание стен. Я не разрешил перекрытие стен на опоры или стены и их собственные опоры в приведенном выше расписании. Я бы, вероятно, создал другой график для вычитания площади нижней поверхности стен или, если возможно, включил бы его в этот.


    А вот расписание для столбцов, я поставил (-) в заголовок, чтобы было более очевидно, что площадь следует вычесть из других итогов.
    Возможно, вы уже знаете, что столбцы не имеют параметров базовой ширины или длины, которые мы можем видеть в расписаниях. У них есть имя типа, но параметры, которые управляют их базовыми размерами, называются «b» и «h», как и соответствующий рисунок в некоторых руководствах по проектированию конструкций, которые я видел. Я добавил два общих параметра, Базовую ширину и Базовую длину, в семейство столбцов и просто сделал их равными «b» и «h». Это, вероятно, самый простой способ разрешить контент, в котором не используются системные параметры, совместимые с другими семействами, а также с контентом, который вы загружаете, и обнаруживающим такой же конфликт между другим контентом той же категории.

    Предполагая, что описанный выше подход совершенно неинтересен, мы можем рассмотреть несколько возможных альтернатив.

    • Мы можем «рисовать» на материалах, и есть инструмент Split Face, который работает с полами, фундаментными плитами и стенами, но не с фундаментными конструкциями или колоннами. Мы можем смоделировать все элементы фундамента в виде перекрытий и / или фундаментных плит, что упростило бы использование инструмента «Разрезать грань» и рисование на изоляции.
    • Используйте комбинацию вышеперечисленных расписаний и некоторое использование инструмента Paint и взятия материалов.
    • Мы можем создать отдельные семейства для условий изоляции, которые можно запланировать отдельно, или, по крайней мере, для фундаментов, которые нельзя «покрасить» с помощью инструмента рисования Revit.
    • Мы можем создавать более сложные семейства фундаментов, которые имеют дополнительную форму (формы) для изолированных поверхностей, которые, в свою очередь, могут использоваться для их определения при отгрузке материала вместо обычного расписания.
    • Талантливый программист с Revit API может учесть все виды перестановок и создать довольно исчерпывающую сводку).
    Я разместил файл проекта, если вы хотите СКАЧАТЬ. Счастливой изоляции!

    Bentley — Документация по продукту

    MicroStation

    Справка MicroStation

    Ознакомительные сведения о MicroStation

    Справка MicroStation PowerDraft

    Ознакомительные сведения о MicroStation PowerDraft

    Краткое руководство по началу работы с MicroStation

    Справка по синхронизатору iTwin

    ProjectWise

    Справка службы автоматизации Bentley

    Ознакомительные сведения об услуге Bentley Automation

    Сервер композиции Bentley i-model для PDF

    Подключаемый модуль службы разметки

    PDF для ProjectWise Explorer

    Справка администратора ProjectWise

    Справка службы загрузки данных ProjectWise Analytics

    Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

    Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

    Коннектор ProjectWise для ArcGIS Справка

    Коннектор ProjectWise для Oracle — Справка по расширению администратора

    Коннектор ProjectWise для Oracle — Справка по расширению Explorer

    Коннектор ProjectWise для справки Oracle

    Коннектор управления результатами ProjectWise для ProjectWise

    Справка портала управления результатами ProjectWise

    Ознакомительные сведения по управлению поставками ProjectWise

    Справка ProjectWise Explorer

    Справка по управлению полевыми данными ProjectWise

    Справка администратора ProjectWise Geospatial Management

    Справка ProjectWise Geospatial Management Explorer

    Сведения о геопространственном управлении ProjectWise

    Модуль интеграции ProjectWise для Revit Readme

    Руководство по настройке управляемой конфигурации ProjectWise

    Справка по ProjectWise Project Insights

    ProjectWise Plug-in для Bentley Web Services Gateway Readme

    ProjectWise ReadMe

    Матрица поддержки версий ProjectWise

    Веб-справка ProjectWise

    Справка по ProjectWise Web View

    Справка портала цепочки поставок

    Услуги цифрового двойника активов

    PlantSight AVEVA Diagrams Bridge Help

    PlantSight AVEVA PID Bridge Help

    Справка по экстрактору мостов PlantSight E3D

    Справка по PlantSight Enterprise

    Справка по PlantSight Essentials

    PlantSight Открыть 3D-модель Справка по мосту

    Справка по PlantSight Smart 3D Bridge Extractor

    Справка по PlantSight SPPID Bridge

    Управление эффективностью активов

    Справка по AssetWise 4D Analytics

    AssetWise ALIM Web Help

    Руководство по внедрению AssetWise ALIM в Интернете

    AssetWise ALIM Web Краткое руководство, сравнительное руководство

    Справка по AssetWise CONNECT Edition

    AssetWise CONNECT Edition Руководство по внедрению

    Справка по AssetWise Director

    Руководство по внедрению AssetWise

    Справка консоли управления системой AssetWise

    Анализ моста

    Справка по OpenBridge Designer

    Справка по OpenBridge Modeler

    Строительное проектирование

    Справка проектировщика зданий AECOsim

    Ознакомительные сведения AECOsim Building Designer

    AECOsim Building Designer SDK Readme

    Генеративные компоненты для справки проектировщика зданий

    Ознакомительные сведения о компонентах генерации

    Справка по OpenBuildings Designer

    Ознакомительные сведения о конструкторе OpenBuildings

    Руководство по настройке OpenBuildings Designer

    OpenBuildings Designer SDK Readme

    Справка по генеративным компонентам OpenBuildings

    Ознакомительные сведения по генеративным компонентам OpenBuildings

    Справка OpenBuildings Speedikon

    Ознакомительные сведения OpenBuildings Speedikon

    OpenBuildings StationDesigner Help

    OpenBuildings StationDesigner Readme

    Гражданское проектирование

    Помощь в канализации и коммунальных услугах

    Справка OpenRail ConceptStation

    Ознакомительные сведения по OpenRail ConceptStation

    Справка по OpenRail Designer

    Ознакомительные сведения по OpenRail Designer

    Справка по конструктору надземных линий OpenRail

    Справка OpenRoads ConceptStation

    Ознакомительные сведения по OpenRoads ConceptStation

    Справка по OpenRoads Designer

    Ознакомительные сведения по OpenRoads Designer

    Справка по OpenSite Designer

    Файл ReadMe OpenSite Designer

    Инфраструктура связи

    Справка по Bentley Coax

    Bentley Communications PowerView Help

    Ознакомительные сведения о Bentley Communications PowerView

    Справка по Bentley Copper

    Справка по Bentley Fiber

    Bentley Inside Plant Help

    Справка по OpenComms Designer

    Ознакомительные сведения о конструкторе OpenComms

    Справка OpenComms PowerView

    Ознакомительные сведения OpenComms PowerView

    Справка инженера OpenComms Workprint

    OpenComms Workprint Engineer Readme

    Строительство

    ConstructSim Справка для руководителей

    ConstructSim Исполнительный ReadMe

    ConstructSim Справка издателя i-model

    Справка по планировщику ConstructSim

    ConstructSim Planner ReadMe

    Справка стандартного шаблона ConstructSim

    ConstructSim Work Package Server Client Руководство по установке

    Справка по серверу рабочих пакетов ConstructSim

    ConstructSim Work Package Server Руководство по установке

    Справка управления SYNCHRO

    SYNCHRO Pro Readme

    Энергетическая инфраструктура

    Справка конструктора Bentley OpenUtilities

    Ознакомительные сведения о Bentley OpenUtilities Designer

    Справка по подстанции Bentley

    Ознакомительные сведения о подстанции Bentley

    Справка подстанции OpenUtilities

    Ознакомительные сведения о подстанции OpenUtilities

    Promis.e Справка

    Promis.e Readme

    Руководство по установке Promis.e — управляемая конфигурация ProjectWise

    Руководство по настройке подстанции

    — управляемая конфигурация ProjectWise

    Руководство пользователя sisNET

    Геотехнический анализ

    PLAXIS LE Readme

    Ознакомительные сведения о PLAXIS 2D

    Ознакомительные сведения о программе просмотра вывода PLAXIS 2D

    Ознакомительные сведения о PLAXIS 3D

    Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

    PLAXIS Monopile Designer Readme

    Управление геотехнической информацией

    Справка администратора gINT

    Справка gINT Civil Tools Pro

    Справка gINT Civil Tools Pro Plus

    Справка коллекционера gINT

    Справка по OpenGround Cloud

    Гидравлика и гидрология

    Справка Bentley CivilStorm

    Справка Bentley HAMMER

    Справка Bentley SewerCAD

    Справка Bentley SewerGEMS

    Справка Bentley StormCAD

    Справка Bentley WaterCAD

    Справка Bentley WaterGEMS

    Управление активами линейной инфраструктуры

    Справка по услугам AssetWise ALIM Linear Referencing Services

    Руководство администратора мобильной связи TMA

    Справка TMA Mobile

    Картография и геодезия

    Справка карты OpenCities

    Ознакомительные сведения о карте OpenCities

    OpenCities Map Ultimate для Финляндии Справка

    Карта OpenCities Map Ultimate для Финляндии Readme

    Справка по карте Bentley

    Справка по мобильной публикации Bentley Map

    Ознакомительные сведения о карте Bentley

    Проектирование шахты

    Справка по транспортировке материалов MineCycle

    Ознакомительные сведения по транспортировке материалов MineCycle

    Моделирование мобильности и аналитика

    Справка по подготовке САПР LEGION

    Справка по построителю моделей LEGION

    Справка по API симулятора LEGION

    Ознакомительные сведения об API симулятора LEGION

    Справка по симулятору LEGION

    Моделирование и визуализация

    Bentley Посмотреть справку

    Ознакомительные сведения о Bentley View

    Морской структурный анализ

    SACS Close the Collaboration Gap (электронная книга)

    Ознакомительные сведения о SACS

    Анализ напряжений в трубах и сосудов

    AutoPIPE Accelerated Pipe Design (электронная книга)

    Советы новым пользователям AutoPIPE

    Краткое руководство по AutoPIPE

    AutoPIPE & STAAD.Pro

    Завод Дизайн

    Ознакомительные сведения об экспортере завода Bentley

    Bentley Raceway and Cable Management Help

    Bentley Raceway and Cable Management Readme

    Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

    Справка по OpenPlant Isometrics Manager

    Ознакомительные сведения о диспетчере изометрических данных OpenPlant

    Справка OpenPlant Modeler

    Ознакомительные сведения для OpenPlant Modeler

    Справка по OpenPlant Orthographics Manager

    Ознакомительные сведения для менеджера орфографии OpenPlant

    Справка OpenPlant PID

    Ознакомительные сведения о PID OpenPlant

    Справка администратора проекта OpenPlant

    Ознакомительные сведения для администратора проекта OpenPlant

    Техническая поддержка OpenPlant Support

    Ознакомительные сведения о технической поддержке OpenPlant

    Справка PlantWise

    Ознакомительные сведения о PlantWise

    Выполнение проекта

    Справка рабочего стола Bentley Navigator

    Моделирование реальности

    Справка консоли облачной обработки ContextCapture

    Справка редактора ContextCapture

    Файл ознакомительных сведений для редактора ContextCapture

    Мобильная справка ContextCapture

    Руководство пользователя ContextCapture

    Справка Декарта

    Ознакомительные сведения о Декарте

    Структурный анализ

    Справка OpenTower iQ

    Справка по концепции RAM

    Справка по структурной системе RAM

    STAAD Close the Collaboration Gap (электронная книга)

    STAAD.Pro Help

    Ознакомительные сведения о STAAD.Pro

    STAAD.Pro Physical Modeler

    Расширенная справка по STAAD Foundation

    Дополнительные сведения о STAAD Foundation

    Детализация конструкций

    Справка ProStructures

    Ознакомительные сведения о ProStructures

    ProStructures CONNECT Edition Руководство по внедрению конфигурации

    ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

    Как рассчитать уклон бетонной плиты

    В этом видеоуроке по строительству Мукеш Шах, изучающий технологию, предоставляет полезную техническую информацию о том, как производить оценку уклона на структурных и архитектурных чертежах на строительной площадке.

    Предположим, что градиент уклона плиты принят равным 1: 200. Теперь вам нужно оценить наклон. Просто поместите 1000 вместо 1. Теперь разделите его на 200, т.е. 1000/200 = 5 мм.

    Это означает, что на каждый 1 м длины можно устроить уклон 5 мм.

    Как правило, существуют различные методы задания наклона поверхности, соответствующей горизонтальной плоскости. Эти методы известны как градусы, градиенты и проценты.

    Расчет градиента уклона: Градиенты уклона представлены как Y: X, где Y обозначает единицу подъема, а X обозначает пробег.Оба номера должны использовать одинаковые единицы измерения. Например, если вы переместитесь на 3 дюйма по вертикали и 3 фута (36 дюймов) по горизонтали, наклон должен быть 3:36 или 1:12. Его можно принять как «один из двенадцати уклонов».

    Расчет процента уклона

    Процент уклона оценивается по методу, аналогичному методу уклона. Преобразуйте подъем и бег к аналогичным единицам, а затем разделите подъем на бег. Умножьте это число на 100, и вы получите наклон в процентах.Например, подъем 3 дюйма, разделенный на 36 дюймов = 0,083 x 100 = уклон 8,3%.

    Расчет уклона в градусах

    Это трудоемкий метод оценки наклона в градусах, требующий некоторых математических знаний. Тангенс указанного угла (в градусах) эквивалентен подъему, разделенному на пробег. Таким образом, величина, обратная тангенсу подъема, деленная на длину пробега, дает угол.

    Посмотрите следующий видеоурок, чтобы полностью изучить процесс оценки уклона.

    Источник видео: L&T — Learning Technology

    Источник

    Проверка гидростатического подъема в подвалах и основаниях