Преднапряженный железобетон: Преднапряженный железобетон: история, применение, перспективы развития

Содержание

Преднапряженные конструкции в каркасном строительстве

Преднапряжение железобетона

Современные методы карксного строительства используют технологию предварительного напряжения железобетонных конструкций. Преднапряженные конструкции — железобетонные конструкции, напряжение в которых искусственно создаётся во время изготовления, путём натяжения части или всей рабочей арматуры (обжатия части, или всего бетона).

Обжатие бетона в преднапряженных конструкциях на заданную величину осуществляется посредством натяжения арматурных элементов, стремящихся после их фиксации и отпуска натяжных устройств возвратиться в первоначальное состояние. При этом, проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, или без сцепления арматуры с бетоном – специальной искусственной анкеровкой торцов арматуры в бетоне.

Трещиностойкость преднапряженных конструкций в 2 – 3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона.

Преднапряженный бетон позволяет в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

 

Преимущества технологии преднапряжения железобетона

Преднапряженные конструкции оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно, или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.

Предварительное напряжение, увеличивающее жесткость и сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные преднапряженные конструкции и здания безопасны в эксплуатации и более надежны, особенно в сейсмических зонах. С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается. Это объясняется тем, что благодаря применению более прочных и легких материалов сечения преднапряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а, следовательно, более гибкими и легкими.

В большинстве развитых зарубежных стран из предварительно напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий.

Мировой опыт использования технологии преднапряжения

 

Телебашня в Торонто

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

 

Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

 

Платформа «Тролл»

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

 

Мост «Нормандия»

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Технология преднапряжения монолитного железобетона в России

В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2. В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США.

Позднее в России появились линии «Партек» (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий.

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях.

«Энерпром» начинает развивать это направление и предлагает ряд оборудования собственной разработки для реализации такой технологии.

История применения преднапряженного бетона (преднапряжения) в отечественном строительстве.

За многие годы эволюции строительных материалов ученые всегда стремились создать некий суррогат камня, как следствие появился бетон, увы обладающий весьма отрицательным качеством — невысокой прочностью при растяжении. Использование стальной арматуры, фибры позволяют бетону не разрушаться, но все же на его поверхности появляются трещины; данное условие можно исключить применив арматуру и фибру одновременно, но в этом случае конструкция будет материалоемка и экономически невыгодна. Поэтому, чтобы повысить эксплуатационные свойства конструкций в целом, требовалось найти новое решение данной проблемы. Оно было найдено. На стадии изготовления или строительства создается напряженное состояние в конструкции: знак напряжения в бетоне становится противоположен знаку напряжения от эксплуатационной нагрузки.

Преднапряжение было изобретено Эженом Фрейссине почти сто лет назад, хотя пальму первенства с ним может разделить и россиянин Виктор Васильевич Михайлов. Ещё в 1936 году прошлого века, при защите В. В. Михайловым диссертации, он не нашел всеобщего понимания в среде ученых. Трудность понимания заключалась в том, что не все могли понять, как можно предварительно натянуть арматуру почти до разрыва, а затем нагрузить конструкцию полной расчетной нагрузкой, и она при этом будет работать так, что трещины в растянутом бетоне конструкции не появятся вплоть до исчерпания её несущей способности. Тем не менее, данная теория с успехом была доказана и получила путевку в жизнь.

Хотя, в той же самой передовой Германии до последнего времени, нельзя было применять напрягаемую арматуру вне сечения бетонной конструкции, разрешение на применение данной технологии вышло совсем недавно, а сегментная сборка железобетонных мостов с помощью натяжения арматуры запрещена и по сей день.

В Советском Союзе использование предварительного напряжения было весьма популярным, оно применялось в промышленном, жилищном, транспортном и специальном строительстве. Предварительно напряженных конструкций выпускалось более 30 млн. м³ в год, что составляло порядка 20% общего объема производства сборного железобетона. Здесь мы действительно занимали передовые позиции.

Наибольшее распространение получила технология натяжения арматуры на упоры. Данный метод стал так хорошо использоваться, благодаря, прежде всего, внедрению электротермического способа натяжения стержневой арматуры.

Сущность данного способа натяжения арматуры заключается в том, что арматурную заготовку (стержневую, проволочную или прядевую), нагретую электрическим током до нужного удлинения, закрепляют в нагретом состоянии в жестких упорах или на торцах затвердевшего элемента. Специальные упоры и торцы препятствуют укорочению заготовки при остывании, благодаря чему в ней возникают заданные растягивающие напряжения. Требуемую арматурную заготовку, предназначенную для натяжения на упоры форм, поддонов или стендов, снабжают по концам анкерами, расположенными так, чтобы расстояние между внутренними (опорными) плоскостями анкеров было на заданную величину меньше расстояния между наружными гранями упоров. Удлиненная заготовка должна свободно укладываться в нагретом состоянии между упорами. Для стержневой арматуры максимальная температура нагрева не должна превышать 350°, а для проволочной — 300°С.

Благодаря авторам этого способа были сэкономлены миллионы тонн дефицитного тогда металла и резко улучшена технология и экономика конструкций.

Одновременно с этим способом был введен и электротермомеханический (комбинированный) способ натяжения. Он сочетает в себе электротермический и механический способ натяжения, осуществляемые одновременно. При электротермомеханическом способе натяжения около 50% напряжения обеспечивается механическим натяжением и 50% при остывании нагретой проволоки. Это вдвое увеличивает производительность машин, облегчает их конструкцию, позволяет повысить контролируемое предварительное напряжение. Особенно эффективен этот способ при натяжении арматуры на затвердевший бетон криволинейных элементов, так как он позволяет снизить неравномерность натяжения и уменьшить потери натяжения в результате трения.

Успех был закреплен в 60-х годах, на волне тотального увлечения сборным железобетоном, именно, предварительно напряженный рассматривался, как один из основных конструкционных материалов.

В этот период ученые и специалисты отрасли разработали значительный объем нормативно-технической литературы по расчету, проектированию и технологии изготовления предварительно напряженных железобетонных конструкций, что стало надежным фундаментом для дальнейшего эффективного развития этого направления. Одним из основных документов стал ВСН 117–65; хотя он и был разработан для мостов, в целом рассматривал почти все технологические аспекты предварительно напряженного бетона. Как следствие, используемый нами в настоящее время СНиП 2.03.01–84 прямо указывает: «При выборе элементов должны предусматриваться преимущественно предварительно напряженные конструкции…».

Дальнейшее развитие предварительного напряжения оказало серьезное влияние на технологии высокопрочных бетонов. В преднапряженных конструкциях появилась возможность максимально эффективно использовать повышенную прочность бетона при сжатии.

В Советском Союзе появились линии «Partek». Данные высокопроизводительные линии позволяли и позволяют производить плиты безопалубочным способом. Они установлены в Москве на ЖБК-17, в Санкт-Петербурге на объединении «Баррикада» и в Барнауле. Технология заключается в том, что арматура или тросы предварительно напрягаются и заливаются бетоном, впоследствии плиты разрезаются на требуемую длину. Главное — это избежать так называемого проскальзывания арматуры, т. е. когда её окончания углубляются в тело бетона относительно края плиты, таким образом, само преднапряжение, как таковое, ослабевает.

С началом перестройки процесс интенсивного развития преднапряженного железобетона был фактически остановлен. Мы потеряли темп развития строительной и железобетонной отрасли в частности. Повсеместно происходила остановка производств. Стенды, опалубка, металлоемкое оборудование уходило в металлолом. Только Москва сумела сохранить определенный задел в данной отрасли.

Сильнее всего пострадал и снизился объем применения сборных предварительно напряженных конструкций. Объем выпуска преднапряженных конструкций упал более, чем в 10 раз, в то время, как объем выпуска железобетонных конструкций без предварительного напряжения снизился в 6 раз. Этому есть несколько причин, в том числе и сильно подорожавшая электроэнергия, что сделало электротермический способ натяжения арматуры экономически невыгодным.

В настоящее время фактически все регионы в России обладают производственными мощностями, способными производить более 1 млн. м³ в год сборного, в том числе предварительно напряженного железобетона. Достаточно велика и номенклатура изделий, которые целесообразно изготавливать с предварительным напряжением: покрытия зданий, пролетные строения и опоры мостов, железобетонные сваи и трубы, шпалы, градирни, опоры ЛЭП и мачты освещения, телебашни, защитные оболочки, морские и шельфовые сооружения, плавучие доки, корпуса понтонов и многое другое.

Альтернативой традиционным шпалам и шпалам из фибробетона являются шпалы с использованием технологии предварительно напряженного бетона. Данные изделия показывают высокую эксплуатационную надежность предварительного напряжения. В мире, в настоящее время их установлено более миллиарда штук. Жесткие динамические нагрузки, ощутимые температурные перепады, увлажнение и высушивание, замораживание и оттаивание, воздействие нефтепродуктов и других агрессивных веществ предъявляют исключительно высокие требования к надежности и долговечности этих изделий. Есть участки железной дороги, где преднапряженные железобетонные шпалы прослужили более 40 лет и не имеют каких-либо существенных повреждений.

За рубежом из сборного предварительно напряженного железобетона все больше и больше наращивается объемов конструкций перекрытий и покрытий зданий различного назначения, значительная часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий. Если же обратиться к истории, то в 70-е годы в Советском Союзе получили широкое развитие пространственные конструкции покрытий, в качестве примера может служить здание торгового центра в Челябинске, построенное в 70-х годах прошлого века. Покрытие торгового зала с размером в плане 102×102 м, выполненное в виде сборно- монолитной железобетонной оболочки положительной гауссовой кривизны, опертой шарнирно только по контуру, является уникальной конструкцией. Проектирование сборно-монолитной преднапряженной железобетонной оболочки выполнил Ленинградский проектный институт № 1.

В США от общего объема производства сборных железобетонных изделий в 26 млн. м³ преднапряженные конструкции составляют 40%. Четверть из них — так называемые плиты Т и 2Т, в поперечном разрезе представляющие одинарную и двойную букву Т. Плиты «на пролет» широко производятся также в Великобритании, Германии, Венгрии, Польше и в других странах.

Большая часть стропильных и подстропильных балок, ферм, ригелей, стеновых панелей изготовляют также предварительно-напряженными, с применением высокопрочной проволочной и стержневой арматуры и бетонов с прочностью до 70 МПа.

К сожалению, общий экономический кризис в области применения сборного, в том числе и преднапряженного железобетона, частично связан ещё и с тем, что у нас не получили должного изучения и применения предварительно напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях. В связи с этим, практически отсутствует современное, эффективное, отечественное оборудование для реализации такой технологии на практике. Но западные технологи не стояли на месте. Сегодня в мире из преднапряженного монолитного железобетона возводятся промышленные, гражданские и жилые здания, плотины и энергетические комплексы, телебашни и многое другое.

Высотные сооружения, особенно такие, как телебашни из монолитного преднапряженного железобетона, выглядят особенно эффектно, став достопримечательностями многих стран и городов. В качестве примера может служить телебашня в Торонто (Канада), она является самым высоким в мире отдельно стоящим железобетонным сооружением. Её высота 555 м. Конструкция поперечного сечения башни в виде трилистника оказалась весьма удачным решением для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

За счет применения гидротехнических бетонов и преднапряжения в Германии и в Японии широко строятся тонкие оболочки яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн. м³. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс. м³. В западном полушарии, в таких странах как Канада и США, ежегодно возводится более 10 млн. м3 конструкций монолитных перекрытий увеличенного пролета с натяжением арматуры на бетон.

С развитием технологий напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т. е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Данная технология наиболее часто используется при строительстве мостов, большепролетных перекрытий, высотных сооружений и других подобных объектов.

Где, как не при строительстве АЭС, можно применять монолитный предварительно напряженный железобетон? Именно в области атомной энергетики он нашел широкое применение, из него изготавливаются корпуса реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, в том числе мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Широкое распространение преднапряженный бетон получил и в гидротехническом строительстве, ярким примером его строительных возможностей являются морские платформы для добычи углеводородов. В настоящее время таких сооружений возведено более двух десятков.

Ярким примером такой платформы может служить построенная в 1995 г. в Норвегии платформа «Тролл». Она имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На её изготовление было израсходовано 250 тыс. м³ высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600–700 м с центральными пролетами от 192 до 400 м. Из предварительно напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко да Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона.

Начало массового строительства преднапряженных монолитных пролетных строений связано с реконструкцией МКАД и транспортных лучей от Москвы: Видновкая эстакада на Ново-Каширском шоссе, путепровод на 106 МКАД, Дмитровский и Ярославский путепроводы в теле МКАД, направленный съезд на Ленинградской развязке МКАД, уникальная транспортная развязка на пересечении Московского шоссе и КАД в Санкт-Петербурге и другие объекты. Эстакадная часть мостового перехода через р. Оку на Каширской трассе включает в себя даже три типа пролетных строений: cборные, сборно-монолитные и монолитные. Применение трех технологий на одном сооружении позволило сделать сравнительный анализ эффективности каждой из них и в дальнейшем применять их исходя из совокупности определенных построечных условий.

В 2006 году в Азербайджане в городе Баку введены в действие две эстакады с монолитными преднапряженными пролетными строениями, причем одно из них коробчатого сечения с пониженной высотой. Оборудование, материалы и технология преднапряжения — из России. В этом году азербайджанские коллеги строят ещё четыре сооружения.

С применением российских технологий и оборудования начинается строительство монолитного путепровода в столице Украины городе Киеве. У нас в России сейчас проектируется несколько мостовых переходов с использованием данной технологии. Лидером в проектировании таких мостовых переходов является институт «Стройпроект» и «Омскмост». Из последних проектов «Стройпроекта » можно выделить вантовый мост через реку Неву, он имеет название Обуховский. Большой Обуховский мост является частью Кольцевой автодороги. Первая очередь моста была открыта 15 декабря 2004 года. Полная длина мостового перехода — 2824 м, длина самого вантового моста — 994 м, длина руслового пролета — 382 м. Подмостовой габарит (расстояние от уровня воды до пролета моста) — 30 м. Ширина моста — 8 полос движения, по 4 в каждом направлении.

Но мостовые сооружения не занимают господствующее место в объеме капитального строительства России. Приоритетные объемы за объектами ПГС: жилищные комплексы, торговые центры, автостоянки, производственные и складские помещения. Кроме того, гигантскими темпами развивается строительство домов частного сектора, где работы выполняют в основном рабочие низкой квалификации. При проектировании несущих конструкций у большинства проектных организаций преобладает традиционный, сложившийся десятилетиями, подход: шаг несущих колонн — 6 -9 м, толщина плиты — 300 мм, класс бетона — не выше В20.

По последним данным в промышленно-гражданском строительстве, в европейских странах более 70% преднапряженнных железобетонных конструкций зданий (класс бетона не ниже В35), в США более 80%. Строят просторно, надежно. Если это торговый центр или офисные помещения-то почему бы не увеличить шаг колонн до 20 м и более, многоярусная парковка — пролеты не менее 17,5 м. В России тоже необходимо подходить к новому строительству с этих позиций.

Общую мировую тенденцию повышения эффективности сборных железобетонных конструкций можно показать на примере плит перекрытий. В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное Общую мировую тенденцию повышения эффективности сборных железобетонных конструкций можно показать на примере плит перекрытий. В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м². В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см, с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300–600 т. Сегодня разработаны различные системы безопалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м плиту изготавливают со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плиты «Спэнкрит» применяют в США более 15 млн. м² ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в скандинавских странах и в США.

Есть три основных типа арматурно-намоточных агрегатов:

  • стационарный арматурно-намоточный автомат, предназначенный для работы в составе агрегатно-поточной линии;
  • арматурно-намоточный агрегат с вращающейся платформой для навивки арматуры на объемные, криволинейные или круглые элементы емкостей, тоннелей, водоводов и др. сооружений;
  • арматурно-намоточный комплекс в составе стенда длиной до 72 м, самоходной арматурно-намоточной машины, машин для обрезки арматуры, для укрывания изделий при ТВО и для чистки стенда после снятия с него изделия. Этот комплекс позволяет изготавливать практически любые необъемные изделия с двухосным напряженным или ненапряженным армированием, в том числе формы с напряженным армированием всех элементов решетки и обоих поясов.

Имея на производстве такие агрегаты, можно изготавливать обширную номенклатуру современных конструкций и изделий различного назначения, в том числе элементы городского благоустройства.

Как уже говорилось ранее, важное значение имеет расширение области применения предварительного напряжения. Например, его можно широко и эффективно использовать в гражданском и жилищном строительстве. Несущий каркас такого здания представляет собой стержневую систему, выполняемую в монолите или из отдельных элементов, с натяжением арматуры непосредственно в процессе строительства. Рассчитанный с использованием новейших методов, учитывающих геометрическую и физическую нелинейность, такой каркас на 20–40% легче, чем традиционные. Перекрытия и внутренние стены здания сооружаются путем заполнения соответствующих частей каркаса монолитным пенобетоном с необходимыми физико-механическими и эксплуатационными свойствами. В перекрытиях используется пенобетон с объемной массой 1000–1200 кг/м³. Для внутренних стен применяется пенобетон с объемной массой 450–550 кг/м³. Пенобетон с объемной массой до 200 кг/м³ используется в качестве монолитного утеплителя наружных стен. При этом внутренний и наружный слои таких стен могут быть из любых материалов, соответствующих архитектурным, эксплуатационным и другим требованиям.

При сооружении зданий по предлагаемой технологии используются новые приемы возведения преднапряженного каркаса, а все работы по приготовлению и укладке монолитного поробетона выполняются одним агрегатом, что позволяет снизить суммарные трудозатраты на строительство более, чем в два раза. Собственный вес здания снижается в 2–2,5 раза, и почти вдвое снижается его себестоимость. Таким образом, вместо одного обычного здания получаются два в безригельном исполнении, с увеличенными пролетами и с широкими возможностями для планировки. Кроме прочего, такие здания обладают высокой сейсмостойкостью, надежностью и долговечностью, а после исчерпания срока службы могут быть легко разобраны, чего не скажешь о зданиях со сварными соединениями в каркасе.

На базе этой технологии может быть сделан существенный шаг вперед в области высотного строительства, где основная проблема связана с тем, что верхние этажи чрезвычайно нагружают нижние. В предлагаемом варианте этажность здания может быть увеличена вдвое без повышения нагрузки на нижний этаж и основание.

Существующий опыт показывает высокую эффективность применения предварительного напряжения в монолитных плитных фундаментах большой протяженности, в монолитных безбалочных перекрытиях, в опорных устройствах и постаментах под тяжелое оборудование, в несущих монолитных конструкциях подземных сооружений, в том числе многоэтажных. Широко используется данная технология и в конструкциях полов. Имеются интересные примеры предварительного напряжения при реставрации памятников старины.

Исключительно плодотворной является идея двух- и трехосного напряжения конструкций. Обширные исследования в этой области были проведены профессором В. В. Михайловым и его учениками. В. В. Михайлов разработал даже проект башни высотой 2 км, смонтированной из трехосно предварительно напряженных элементов заводского изготовления. Расчетные сопротивления сжатию в стойках башни составляли 150 МПа. Между тем, эти конструкции, имеющие спиральную преднапряженную арматуру, запроектированы из бетона прочностью всего 60 МПа. При реальных их испытаниях напряжения в элементе достигали 300 МПа с сохранением линейной связи между напряжениями и деформациями до напряжений в 150 МПа.

На практике эта идея была реализована в объемно-напряженных архитравах гидравлических прессов. В них бетон работал упруго при напряжениях, втрое превышающих его кубиковую прочность. Проще говоря, предварительное напряжение в трех направлениях позволяет создавать качественно иной железобетон. Причем повышение несущей способности материала достигается конструктивными, а не технологическими приемами.

Предварительное напряжение бетона в конструкции демонстрирует новые возможности и определяет перспективу развития железобетона в качестве материала для возведения современных зданий и сооружений.

Идея применения предварительного напряжения в железобетоне в свое время оказалась настолько плодотворной, что в 1953 году была основана Международная федерация по предварительно напряженному железобетону — ФИП. Первым её президентом стал Эжен Фрейссине. Почти за полвека своего существования федерация получила значительное развитие. В последнем XIII конгрессе ФИП в Амстердаме приняли участие более полутора тысяч человек. На этом конгрессе ФИП объединилась с Европейским комитетом по бетону — ЕКБ и теперь называется ЕКБ-ФИП или ФИБ. Членами ФИБ являются национальные ассоциации по железобетону многих стран, в том числе и России.

Поступательному развитию производства преднапряженного железобетона способствует дальнейшее улучшение прочностных и технологических свойств применяемых материалов. Конец XX века ознаменовался разработкой особо прочных бетонов и неметаллической арматуры на основе углепластиков, открывающих новые возможности совершенствования конструктивно-технологических решений зданий и сооружений и методов предварительного напряжения. Этому также должно способствовать расширение исследований новых материалов высоких технологий, разработка конструктивных и проектных решений принципиально нового уровня.

В XXI столетии по всей стране должно развернуться массовое строительство автомобильных дорог, что потребует возведения большого количества мостов малых, средних и больших пролетов. Международный опыт говорит, что автодорожные мосты целесообразно строить из преднапряженного железобетона.

В производстве конструкций для зданий различного назначения целесообразно существенно увеличить долю механического натяжения арматуры, расширить выпуск непрерывно армированных и самонапряженных конструкций, увеличить применение зданий с натяжением арматуры в построечных условиях.

Имеет смысл большее внимание уделить разработке различных предсамонапряженных железобетонных конструкций, в которых комплексно используются механическое натяжение высокопрочной арматуры и преимущества напрягающего бетона.

Для крупных инженерных сооружений следует применять предварительно напряженные железобетонные конструкции с натяжением арматуры на бетон, а для напрягаемой арматуры использовать канаты и высокопрочную стержневую арматуру больших диаметров, производство которых должно быть освоено металлургической промышленностью.

Широкое использование преднапряженного железобетона открывает значительные возможности для снижения расхода стали в строительстве. Это может быть достигнуто, главным образом, за счет уменьшения металлоемкости ряда железобетонных несущих и ограждающих конструкций, а также путем замены металлических конструкций железобетонными.

Нет сомнения, что развитие производства предварительно напряженного железобетона необходимо для дальнейшего совершенствования отечественного капитального строительства. В прошлом году в экономике России произошел некоторый позитивный сдвиг. Надо полагать, что и предварительно напряженный железобетон в России также откроет новую страницу в своей истории.

Но у нас есть определенные проблемы с качеством канатов. На настоящий момент российские производители предлагают канаты не отвечающие современным требованиям по следующим позициям:

  • канаты при размотке имеют остаточную волнистость, что затрудняет формирование пучков, укладку в арматурный каркас и приводит к дополнительным потерям на трение при натяжении;
  • бухты канатов не сформированы по слоям, что приводит к невозможности заправки канатов в каналообразователи машинным способом;
  • отсутствует антикоррозионная упаковка на период транспортировки бухт. Как правило, на строительство бухты приходят, в лучшем случае, с налетом коррозии;
  • большой разброс характеристик упругости (модуль упругости и отрносительное удлинение) канатов как в пределах партии бухт, так и по длине отдельных бухт. Это приводит к большим разбросам в показаниях упругой вытяжки при натяжении и в постоянных комиссионных согласованиях результатов натяжения;
  • низкое временное сопротивление (1670 Н/мм²) позволяет натягивать каждый канат диаметром 15,2 мм только на 15 т. Зарубежные аналоги, с временным сопротивлением 1869 Н/мм² преднапрягаются на 20 т, что позволяет уменьшить общее количество канатов в конструкции;
  • большие потери от релаксации приводят к необходимости перезакладывать количество канатов;
  • отечественные заводы не покрывают канаты антикоррозионной смазкой «Дромос», которая снижает коррозию канатов на период использования и уменьшает потери на трение при натяжении;
  • отечественные заводы не выпускают канаты в двойной защите типа «Моностренд», потребность в которых, особенно в промышленно-гражданском строительстве, очень высока.

Перечисленные недостатки приводят к необходимости использования канатов зарубежного производства по высоким ценам, что очень часто приводит вообще к отказу от преднапряжения.

По нашим данным, в России за год в среднем в строительстве потребляется до 20 тыс. т канатов. В США — 350–400 тыс. т. Цифры говорят сами за себя.

Сегодня мы понимаем, что внедрение любых новых, или отличных от традиционно применяемых, строительных технологий всегда встречает определенное сопротивление со стороны проектировщиков и строителей.

Потребности России в новом капитальном строительстве огромны, и, по нашему мнению, строить надо в соответствии с современными требованиями, т. е. с применением современных технологий, оборудования и материалов.

Мы надеемся, что и строительный комплекс России в конечном итоге выйдет на необходимый современный уровень применения конструкций с преднапряженными несущими элементами. Нет сомнения, что развитие производства предварительно напряженного железобетона необходимо для дальнейшего совершенствования отечественного капитального строительства.

2009 год.

Предварительно напряженные железобетонные конструкции: использование

Железобетонные конструкции — основа современного строительства. Однако они имеют существенные изъяны, связанные, в первую очередь, с недостаточной нагрузочной способностью и образованием трещин в камне при эксплуатационных нагрузках. Усовершенствование технологии изготовления изделий из бетона и стальной арматуры привело к созданию преднапряженного железобетона, который обладает рядом преимуществ.

Определение

Предварительно напряженные железобетонные конструкции — строительные изделия, бетон которых на этапе создания принудительно получает начальную расчетную напряженность сжатия. Она создается за счет предварительного формирования напряжения растяжения в рабочей высокопрочной арматуре и обжатия ею бетона на тех участках, которым предстоит испытывать растяжение (прогиб) при эксплуатации. Сжимаясь, арматура не проскальзывает, так как сцеплена с материалом или удерживается анкерным закреплением арматуры на торцах изделий. Таким образом, напряжение растяжения, которое приобретает железобетонный состав с помощью армирования, уравновешивает напряженность заблаговременного обжатия камня.

Вернуться к оглавлению

Преимущества

Предварительно напряженный железобетон долгосрочно отодвигает время начала формирования расколов в изделиях, работающих на прогиб, сокращает глубину их раскрывания. Вместе с тем изделия приобретают повышенную жесткость, не снижая прочности.

Предварительно напряженным железобетонным балкам свойственно хорошо работать на сжатие и прогиб, имея одинаковую прочность по длине, что позволяет увеличивать ширину перекрываемых пролетов. В таких конструкциях уменьшаются размеры поперечного сечения, следовательно, сокращаются объем и вес комплектующих элементов (на 20 – 30%), а также расход цемента. Более рациональное использование свойств стали позволяет сокращать расход арматуры (стержневой и проволочной) до 50%, особенно из высокопрочных марок (A-IV и выше), имеющих значительный предел прочности. Химическая нейтральность бетона к стали способствует предохранению арматуры от коррозии. Вместе с тем повышенная трещиностойкость предохраняет напряженную арматуру от ржавления в сооружениях, которые находятся под постоянным давлением воды, иных жидкостей, газов.

Методы возведения зданий, используемые в строительстве каркаса, базируются на технологии предварительного напряжения конструкций из железобетона в процессе строительства.

Напряженная арматура, обжимающая бетон сборочных единиц, обеспечивает практичную их стыковку путем значительного сокращения расходования металла на стыках. Сборные и сборно-монолитные изделия из железобетонных напряженных конструкций могут состоять из стыкуемых частей с одинаковым поперечным сечением, которые по краям выполняются из ненапряженных облегченных (тяжелых) бетонов, а нагружаемый фрагмент — преднапряженный железобетон. Такая продукция имеет повышенную выносливость, компенсируя повторяющиеся динамические воздействия.

Данное свойство позволяет демпфировать изменения напряжений в бетоне и арматуре, вызываемые колебаниями внешних нагрузок. Повышенная сейсмическая стойкость зданий повышается за счет большой конструкционной устойчивости напряженного железобетона, обжимающего отдельные их фрагменты. Конструкция в предварительно напряженном виде обеспечивает большую безопасность, так как ее разрушению предшествует запредельный прогиб, сигнализирующий об исчерпании конструкцией прочности.

Вернуться к оглавлению

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Вернуться к оглавлению

Материалы для конструкций

Железобетон — многокомпонентный материал, основными составляющими которого являются бетон и стальная арматура. Параметры их качества определяются особыми требованиями при проектировании к элементам конструкций на месте применения.

Вернуться к оглавлению

Бетон

Формы для заливки бетона с прутьями для передачи предварительного напряжения.

Предварительное напряжение в железобетоне обеспечивается применением тяжелых составов средней плотности от 2200 до 2500 кг/м3, которые имеют классы по прочности на осевое растяжение выше Bt0,8, по прочности от В20 и больше, марки по водонепроницаемости от W2 и выше, по морозостойкости от F50. Требования к продукции гарантируют бетону нормативную прочность не ниже установленной с вероятностью 0,95 (в 95% случаев). Смесь должна набрать возраст не меньше 28 суток до получения материалом предварительных напряжений. На ранних стадиях эксплуатации бетонный камень способен частично утерять напряженное качество за счет общего снижения напряженности стали (до 16%). Коэффициент надежности материала на растяжение и сжатие в предельных состояниях установлен для эксплуатационной пригодности не ниже 1,0.

Вернуться к оглавлению

Арматура

Стальная начинка должна оставаться напряженной в железобетонном изделии на всем интервале эксплуатации, выдерживая без вытяжения длительно приложенные нагрузки. В преднапряженных изделиях из железобетона используется высокопрочная сталь с незначительной текучестью, соответствующей параметрам ползучести бетона.

С целью компенсирования эксплуатационной потери некоторой величины преднапряжения при изготовлении ее значение устанавливают чуть выше, чем предусмотрено строительными требованиями для конструкционного элемента. В продукции применяют горячекатаную упрочненную, холоднодеформированную арматуру, арматурную проволоку (пучки, пакеты, пряди), канаты, сварные каркасы и пр. Поперечное сечение арматуры может быть гладким, периодическим, а укладка проволоки и канатов серповидной и кольцевой.

Сталь должна гарантированно соответствовать установленному классу относительно прочности по преднапряженному растяжению (текучесть металла должна находиться в пределах 0,2% относительного удлинения) с вероятностью от 0,95 и выше. Арматуре необходимо быть пластичной, хладостойкой, свариваемой и пр. Надежное сцепление с бетонной смесью обеспечивается формированием арматурой сложных пространственных поверхностей.

Вернуться к оглавлению

Области использования конструкций

Предварительно напряженный бетон позволяет сократить до 50% расхода арматурной стали.

Преднапряженные изделия используются, когда применение обычного железобетона нецелесообразно (перерасход материалов, рост веса и стоимости, невозможность обеспечить несущую прочность и пр.). Сферами их использования являются гражданское, промышленное, специальное и гидротехническое строительство. Объекты — каркасы и мосты с широкими пролетами, напорные трубопроводы, плотины, водонепроницаемые емкости и пр.

А также из них создают подпорные стены, ограждающие панели, лестничные марши, подкрановые балки, фундаменты, колонны, столбы ЛЭП, каркасы тоннелей, междуэтажные перекрытия и пр. Такая продукция незаменима и при возведении построек в условиях взрыво- и сейсмоопасности. Особенно эффективна она при формировании сборно-монолитных конструкций, когда отдельные преднапряженные сборные элементы соединяются в проектном положении арматурой так, что работают как одно целое.

Вернуться к оглавлению

Вывод

Преднапряженные изделия из железобетона имеют много достоинств. Их недостатки могут быть нивелированы качеством проектирования, производства и монтирования, способствующим длительной эксплуатации.

Предварительно напряженный железобетон

 Состояние и перспективы применения !              

        Основной строительный материал XX века, железобетон, во всем мире заслуженно пользуется вниманием ученых отрасли. Создав искусственный камень — бетон, свойства которого можно регулировать по своему усмотрению, ученые нашли и способ борьбы с его основным недостатком — низкой прочностью при растяжении. При металлической арматуре бетон хоть и не разрушается при растяжении, но трескается. Это отрицательно сказывается на эксплуатационных свойствах железобетонных конструкций и сооружений. Создание на стадии изготовления или строительства напряженного состояния в конструкции, когда знак напряжения в бетоне противоположен знаку напряжения от эксплуатационной нагрузки, является одним из крупнейших достижений инженерной мысли в XX столетии.

У истоков этой концепции стояли Эжен Фрейссине (Франция) и Виктор Васильевич Михайлов (Россия). В 1936 году при защите В.В. Михайловым диссертации, посвященной этому методу, два оппонента из трех выступили против. Даже видным ученым в то время трудно было понять, как можно предварительно натянуть арматуру почти до разрыва, а затем нагрузить конструкцию полной расчетной нагрузкой, и она при этом будет работать так, что трещины в растянутом бетоне конструкции не появятся вплоть до исчерпания ее несущей способности. Тем не менее защита диссертации тогда состоялась, поскольку Виктор Васильевич сумел в открытой дискуссии убедить ведущих ученых страны в своей правоте. 

Некоторые виды предварительного напряжения по разным соображениям до сих пор находятся под сомнением. Например, в Германии запрещена сегментная сборка железобетонных мостов с помощью натяжения арматуры, и только совсем недавно было разрешено применять в мостовых конструкциях напрягаемую арматуру, расположенную вне сечения. 

В СССР предварительное напряжение применялось весьма широко в промышленном, жилищном, транспортном и специальном строительстве. Преднапряженных конструкций выпускалось более 30 млн. м3 в год, что существенно больше, чем в какой-либо другой стране. На их долю приходилось более 20% общего объема производства сборного железобетона. Как правило, применяли натяжение арматуры на упоры. Широкая география технологии стала возможной благодаря, прежде всего, внедрению электротермического способа натяжения стержневой арматуры. Авторы этого способа по заслугам удостоены высокого звания лауреатов Ленинской премии, для народного хозяйства были сэкономлены миллионы тонн дефицитного металла. 

Шестидесятые годы были отмечены бурным развитием промышленности сборного железобетона, в том числе предварительно- напряженного. В этот период ученые и специалисты отрасли разработали значительный объем нормативно-технической литературы по расчету, проектированию и технологии изготовления предварительно-напряженных железобетонных конструкций, что стало надежным фундаментом для дальнейшего эффективного развития этого направления. В результате используемый нами в настоящее время СНиП 2.03.01-84 прямо указывает: «При выборе элементов должны предусматриваться преимущественно предварительно напряженные конструкции…». 

Развитие предварительного напряжения оказало серьезное влияние на прогресс в области технологии высокопрочных бетонов. В преднапряженных конструкциях появилась возможность максимально эффективно использовать повышенную прочность бетона при сжатии. 

К сожалению, процесс интенсивного развития преднапряженного железобетона был остановлен в годы общего экономического спада в России. Период всеобщей «железобетонизации» сменился столь же повсеместным развалом промышленности сборного железобетона. Исключение, видимо, составляет только Москва. Особенно сильно снизился объем применения сборных предварительно-напряженных конструкций. Выпуск преднапряженных конструкций упал более чем в 10 раз, в то время как объем выпуска железобетонных конструкций без предварительного напряжения снизился в 6 раз. Этому есть несколько причин, в том числе и сильно подорожавшая электроэнергия, что сделало электротермический способ натяжения арматуры экономически невыгодным. 

Тем не менее такое резкое снижение в России объемов применения сборных предварительно-напряженных конструкций следует однозначно квалифицировать как регресс железобетона в целом. Неоправданный поворот на 180 градусов в политике строительства из сборного железобетона ведет к неэффективному ускоренному старению основных фондов этой отрасли строительной индустрии. И если их активная часть — технологическое оборудование и оснастка — морально устарела и все равно требует радикальной модернизации, то пассивная часть — здания и сооружения — ветшает неоправданно. Потребуется много времени и капитальных затрат, чтобы построить все заново. Если же модернизацию начать уже сегодня, то можно сэкономить большие средства. 

Среди регионов, располагающих производственными мощностями более 1 млн. м3 в год сборного, в том числе предварительно- напряженного железобетона, следует назвать Москву, Республики Татарстан и Башкортостан, Челябинскую, Свердловскую, Тюменскую, Пермскую, Новосибирскую, Омскую, Московскую, Самарскую, Ленинградскую, Иркутскую, Воронежскую, Вологодскую, Кемеровскую, Ростовскую области, Приморский и Красноярский края. Весьма обширна и номенклатура изделий, которые целесообразно изготавливать с предварительным напряжением: покрытия зданий, пролетные строения и опоры мостов, железобетонные сваи и трубы, шпалы, градирни, опоры ЛЭП и мачты освещения, телебашни, защитные оболочки, морские и шельфовые сооружения, плавучие доки, корпуса понтонов и многое другое. 

В высшей степени убедительной демонстрацией эксплуатационной надежности предварительного напряжения сборного железобетона является его успешное использование для производства железнодорожных шпал. В мире в настоящее время их установлено более миллиарда штук. Жесткие динамические нагрузки, ощутимые температурные перепады, увлажнение и высушивание, замораживание и оттаивание, воздействие нефтепродуктов и других агрессивных веществ предъявляют исключительно высокие требования к надежности и долговечности этих изделий. Есть участки железной дороги, где преднапряженные железобетонные шпалы прослужили более 40 лет и не имеют каких-либо существенных повреждений. 

В большинстве развитых зарубежных стран из сборного предварительно-напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий. 

В структуре сборных конструкций в США из общего объема производства сборных железобетонных изделий в 26 млн. м3 преднапряженные конструкции составляют 40%. Четверть из них — плиты Т и 2Т. Плиты «на пролет» широко производятся также в Великобритании, Германии, Венгрии, Польше и в других странах. Значительная часть стропильных и подстропильных балок, ферм, ригелей, стеновых панелей изготовляют также предварительно-напряженными с применением высокопрочной проволочной и стержневой арматуры и бетонов с прочностью до 70 МПа. 

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях. В связи с этим практически отсутствует современное эффективное отечественное оборудование для реализации такой технологии на практике. 

Между тем в мире из преднапряженного монолитного железобетона возводятся промышленные гражданские и жилые здания, плотины и энергетические комплексы, телебашни и многое другое. 

Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м. 

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т. 

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн. м3. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс. м3. 

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн. м3. Значительный объем таких перекрытий сооружается в Канаде. 

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Такая технология используется при строительстве мостов, большепролетных перекрытий, высотных сооружений и других подобных объектов. 

Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы. 

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков. 

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс. м3 высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет. 

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок. 

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали). 

Возможности повышения эффективности сборных железобетонных конструкций можно показать на примере плит перекрытий. В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2. В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно. 

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США. 

Позднее в России появились линии «Партек» (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий. 

Весьма эффективным для заводской технологии может быть применение арматурно-намоточных агрегатов с предварительным напряжением, разработанных в НИИЖБ. 

Есть три основных типа арматурно-намоточных агрегатов: 

стационарный арматурно-намоточный автомат, предназначенный для работы в составе агрегатно-поточной линии; 
арматурно-намоточный агрегат с вращающейся платформой для навивки арматуры на объемные, криволинейные или круглые элементы емкостей, тоннелей, водоводов и др. сооружений; 
арматурно-намоточный комплекс в составе стенда длиной до 72 м, самоходной арматурно-намоточной машины, машин для обрезки арматуры, для укрывания изделий при ТВО и для чистки стенда после снятия с него изделия. Этот комплекс позволяет изготавливать практически любые необъемные изделия с двухосным напряженным или ненапряженным армированием, в том числе формы с напряженным армированием всех элементов решетки и обоих поясов. 
Имея на производстве такие агрегаты, можно изготавливать обширную номенклатуру современных конструкций и изделий различного назначения, в том числе элементы городского благоустройства. 

Важное значение имеет расширение области применения предварительного напряжения. Например, его можно широко и эффективно использовать в гражданском и жилищном строительстве. 

Несущий каркас такого здания представляет собой стержневую систему, выполняемую в монолите или из отдельных элементов, с натяжением арматуры непосредственно в процессе строительства. Рассчитанный с использованием новейших методов, учитывающих геометрическую и физическую нелинейность, такой каркас на 20-40% легче, чем традиционные. Перекрытия и внутренние стены здания сооружаются путем заполнения соответствующих частей каркаса монолитным поробетоном с необходимыми физико-механическими и эксплуатационными свойствами. В перекрытиях используется поробетон с объемной массой 1000-1200 кг/м3. Для внутренних стен применяется поробетон с объемной массой 450-550 кг/м3. Поробетон с объемной массой до 200 кг/м3 используется в качестве монолитного утеплителя наружных стен. При этом внутренний и наружный слои таких стен могут быть из любых материалов, соответствующих архитектурным, эксплуатационным и другим требованиям. 

При сооружении зданий по предлагаемой технологии используются новые приемы возведения преднапряженного каркаса, а все работы по приготовлению и укладке монолитного поробетона выполняются одним агрегатом, что позволяет снизить суммарные трудозатраты на строительство более чем в два раза. Собственный вес здания снижается в 2-2,5 раза, и почти вдвое снижается его себестоимость. Таким образом, вместо одного обычного здания получаются два в безригельном исполнении, с увеличенными пролетами и с широкими возможностями для планировки. Кроме прочего, такие здания обладают высокой сейсмостойкостью, надежностью и долговечностью, а после исчерпания срока службы могут быть легко разобраны, чего не скажешь о зданиях со сварными соединениями в каркасе. 

На базе этой технологии может быть сделан существенный шаг вперед в области высотного строительства, где основная проблема связана с тем, что верхние этажи чрезвычайно нагружают нижние. В предлагаемом варианте этажность здания может быть увеличена вдвое без повышения нагрузки на нижний этаж и основание. 

Зарубежный опыт показывает высокую эффективность применения предварительного напряжения в монолитных плитных фундаментах большой протяженности, в монолитных безбалочных перекрытиях, в опорных устройствах и постаментах под тяжелое оборудование, в несущих монолитных конструкциях подземных сооружений, в том числе многоэтажных. Имеются интересные примеры предварительного напряжения при реставрации памятников старины. 

Исключительно плодотворной является идея двух- и трехосного напряжения конструкций. Обширные исследования в этой области были проведены профессором В.В. Михайловым и его учениками. В.В. Михайлов разработал даже проект башни высотой 2 км, смонтированной из трехосно предварительно-напряженных элементов заводского изготовления. Расчетные сопротивления сжатию в стойках башни составляли 150 МПа. Между тем, эти конструкции, имеющие спиральную преднапряженную арматуру, запроектированы из бетона с прочностью всего 60 МПа. При реальных их испытаниях напряжения в элементе достигали 300 МПа с сохранением линейной связи между напряжениями и деформациями до напряжений в 150 МПа. 

На практике эта идея была реализована в объемно-напряженных архитравах гидравлических прессов. В них бетон работал упруго при напряжениях, втрое превышающих его кубиковую прочность. 

Иными словами, предварительное напряжение в трех направлениях позволяет создавать качественно иной железобетон. Причем повышение несущей способности материала достигается конструктивными, а не технологическими приемами. 

Предварительное напряжение бетона в конструкции демонстрирует новые возможности и определяет перспективу развития железобетона в качестве материала для возведения современных зданий и сооружений. 

Идея применения предварительного напряжения в железобетоне в свое время оказалась настолько плодотворной, что в 1953 году была основана Международная федерация по предварительно напряженному железобетону — ФИП. Первым ее президентом стал Эжен Фрейссине. Почти за полвека своего существования федерация получила значительное развитие. В последнем, XIII, конгрессе ФИП в Амстердаме, приняли участие более полутора тысяч человек. На этом конгрессе ФИП объединилась с Европейским комитетом по бетону — ЕКБ, и теперь называется ЕКБ-ФИП или ФИБ. Членами ФИБ являются национальные ассоциации по железобетону многих стран, в том числе и России. 

Поступательному развитию производства преднапряженного железобетона способствует дальнейшее улучшение прочностных и технологических свойств применяемых материалов. Конец XX века ознаменовался разработкой особо прочных бетонов и неметаллической арматуры на основе углепластиков, открывающих новые возможности совершенствования конструктивно-технологических решений зданий и сооружений и методов предварительного напряжения. Этому также должно способствовать расширение исследований новых материалов высоких технологий, разработка конструктивных и проектных решений принципиально нового уровня. 

В XXI столетии по всей стране должно развернуться массовое строительство автомобильных дорог, что потребует возведения большого количества мостов малых, средних и больших пролетов. Международный опыт говорит, что автодорожные мосты целесообразно строить из преднапряженного железобетона. 

В производстве конструкций для зданий различного назначения целесообразно существенно увеличить долю механического натяжения арматуры, расширить выпуск непрерывно армированных и самонапряженных конструкций, увеличить применение зданий с натяжением арматуры в построечных условиях. 

Имеет смысл большее внимание уделить разработке различных предсамонапряженных железобетонных конструкций, в которых комплексно используются механическое натяжение высокопрочной арматуры и преимущества напрягающего бетона. 

Для крупных инженерных сооружений следует применять предварительно-напряженные железобетонные конструкции с натяжением арматуры на бетон, а для напрягаемой арматуры использовать канаты и высокопрочную стержневую арматуру больших диаметров, производство которых должно быть освоено металлургической промышленностью. 

Широкое использование преднапряженного железобетона открывает значительные возможности для снижения расхода стали в строительстве. Это может быть достигнуто главным образом за счет уменьшения металлоемкости ряда железобетонных несущих и ограждающих конструкций, а также путем замены металлических конструкций железобетонными. 

Нет сомнения, что развитие производства предварительно-напряженного железобетона необходимо для дальнейшего совершенствования отечественного капитального строительства. В прошлом году в экономике России произошел некоторый позитивный сдвиг. Надо полагать, что и предварительно-напряженный железобетон в России также откроет новую страницу в своей истории.

Предварительно напряженные железобетонные конструкции

Преднапряженный бетон относится к категории строительных материалов, для производства которого применяется стальная арматура высокой прочности и бетонная смесь. Благодаря особой технологии производства он сопротивляется значительному растягивающему напряжению. Преднапряженный железобетон характеризуется прочностью и повышенной трещиностойкостью.

Определение

Предварительно напряженными железобетонными конструкциями называют стройматериал, во время производства которого бетон поддается начальной расчетной напряженностью сжатия. Во время изготовления материала предварительно формируется напряжение растяжения в стальной арматуре, которая характеризуется высоким уровнем прочности. Она используется для обжатия бетона на участках, которые будут поддаваться напряжению во время эксплуатации.

При сжатии не наблюдается проскальзывания арматуры, так как она скрепляется с материалом и в торце имеет анкерное закрепление. Железобетонный состав армируется, что позволяет уравновесить напряженность. Если в процессе эксплуатации на стройматериал воздействуют полезные нагрузки, то это не приводит к образованию трещин, что продляет срок его службы.

Преимущества

Бетон предварительного напряжения по сравнению с аналогичными материалами обладает определенными преимуществами:

  • Железобетонные балки хорошо работают на сжатие и прогиб относительно центра тяжести. Они характеризуются высоким уровнем прочности по всей длине, что предоставляет возможность увеличения длины перекрываемых пролетов. Это обеспечивает уменьшение размеров поперечного сечения, а также сокращение веса и размеров комплектующих.
  • Бетон является химически нейтральным материалом, что исключает возможность коррозии и деформаций арматуры.
  • Арматура обжимает бетон сборочных единиц, что исключает сопротивление сцепления и позволяет сократить расход металла на стыке.
  • Железобетонные конструкции могут состоять из стыкуемых частей и иметь одинаковое поперечное сечение, что обеспечивает стойкость к внешней нагрузке. Конструкции характеризуются повышенной выносливостью, что обеспечивается компенсацией повторяющихся динамических воздействий.
  • Призменная прочность дает возможность демпфирирования изменений в арматуре и бетоне, которые появляются при колебаниях внешней нагрузке.
  • При использовании стройматериала исключается возможность деформаций бетона и арматуры, что гарантирует повышенную сейсмическую стойкость здания.

Предварительно напряженный вид конструкции является безопасным. Благодаря запредельному прогибу, который сигнализирует об исчерпании прочности, она не разрушается.

Недостатки

Для того чтобы обеспечить предварительное напряжение железобетонных конструкций, нужно использовать специальное оборудование. Продукция нуждается в бережном хранении, правильной транспортировке и профессиональном монтаже. Это не приведет к аварийному состоянию строительного материала еще до его эксплуатации.

Производство требует точного расчета предварительно напряженных железобетонных конструкций, который проводится высококвалифицированными специалистами. При просчетах в проектировании и неточностях в производстве создаваемая железобетонная конструкция может полностью разрушиться.

Продольное растягивающее усилие приведет к появлению трещин, которые снизят несущую способность.

Для обеспечения прочности на осевое растяжение нужно использовать  металлоемкую опалубку. Это увеличивает расход стали.

Для того чтобы обеспечить тепло- и звукопроводность,  нужно использовать компенсирующие материалы. Такие конструкции характеризуются более низким порогом огнестойкости.

В соответствии с сущностью предварительно напряженного железобетона можно сделать выводы, что он не переносит воздействие щелочей, солей, кислот и т.д. При этом наблюдается снижение несущей способности изделий, а также их разрушение. Недостатком конструкции является их внушительный вес.

Материалы для конструкций

Железобетон относится к категории многокомпонентных строительных материалов. Он состоит из бетона и стальной арматуры. Во время проектирования железобетона определяются параметры качества материалов в соответствии со стандартами ГОСТ.

Бетон

Для обеспечения предварительного напряжения и сопротивления бетона используются только тяжелые составы, плотность которых составляет 220-2500 килограмм на квадратный метр.

Смесь настаивается не менее 28 дней, что позволит получить предварительное напряжение материала. На начальном этапе эксплуатации может наблюдаться частичная утрата напряженного качества бетоном, что объясняется снижением напряженности стальных элементов. Определение нормального сечения железобетонного элемента осуществляется в соответствии с проектом и требованиями дальнейшей эксплуатации.

Арматура

Стальная арматура должна быть напряженной и стойкой к растяжению в процессе всего срока эксплуатации. Она способна выдерживать нагрузки длительное время, что исключит возможность раскрытия трещин на бетоне. Для производства стройматериала применяют высокопрочную сталь, которая имеет незначительную текучесть. Расчетные характеристики стали должны полностью соответствовать ползучести бетона.

Для того чтобы компенсировать эксплуатационную потерю определенной величины преднапряжения, во время производства устанавливается величина чуть выше, чем указана в проектной документации и требованиях к готовому материалу. 

Изготовление железобетонных конструкций проводится с использованием арматурной проволоки:

  • Пакетов;
  • Прядей;
  • Пучков.

Железобетонные конструкции изготавливаются с использованием холоднодеформированной, горячекатаной упрочненной арматуры, сварных каркасов, канатов. Площадь сечения арматуры напрямую зависит от размеров готового железобетонного изделия. Проволока и канаты имеют серповидное и кольцевое сечение, а арматура – гладкое и периодическое. Сталь должна иметь соответствующую поперечную силу. Текучесть металла по отношению к удлинению должна составлять 0,2 процента.

В соответствии с параметрами растянутого волокна класс прочности арматуры должен быть 0,95 и больше. Она должна характеризоваться холодостойкостью и пластичностью. Оптимальное усилие в напрягаемой арматуре обеспечивается благодаря формированию сложной пространственной поверхности. Именно поэтому материал должен поддаваться свариванию.

Напряжение арматуры во время производства обеспечивается механическими или электротермическими способами. В первом случае это достигается с применением грузов, домкратов и рычагов. Электротермический способ требует заготовить стержни нужной длины, на концах которых располагаются анкера. Их нагревают до 400 градусов, что приводит к их удлинению. В таком состоянии проводится закрепление арматуры на опорах. При охлаждении стержни укорачиваются, но анкера не дают это сделать, что приводит к появлению напряжения.

Области использования конструкций

Применение преднапряженных конструкций рекомендуется при нецелесообразности использования обычного железобетона. Они являются идеальным вариантом при необходимости обеспечения несущей прочности. Применение напряженных железобетонных конструкций осуществляется в различных сферах строительства – промышленной, гражданской, специальной, гидротехнической.

Железобетонные конструкции применяются для сооружения мостов, которые имеют широкие пролеты. Их рекомендовано использовать для строительства напорных трубопроводов и плотин. С помощью ЖБИ проводится монтаж водонепроницаемых емкостей.

Конструкции широко применяются для создания подпорных стен и ограждающих панелей. Если возникает необходимость в возведении фундамента или лестничного марша, то применяются железобетонные конструкции. Их используют для строительства помещений в сейсмо- и взрывоопасных районах. С помощью ЖБИ формируются сборно-монолитные конструкции. Они заключаются в соединении арматурой отдельных преднапряженных сборных элементов. С применением железобетонных конструкций возводятся колонны, а также столбы линий электропередач. С их применением создаются каркасы тоннелей.

Вывод

Преднапряженные ЖБИ характеризуются наличием большого количества преимуществ, поэтому их широко применяют в строительстве. Наличие недостатков объясняется недостаточным качеством проектирования, изготовления и монтажа. Благодаря положительным характеристикам конструкций они широко применяются в возведении разнообразных сооружений.

Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Железобетон против предварительно напряженного бетона

Разница между железобетоном и предварительно напряженным бетоном

Железобетон и предварительно напряженный бетон армируются продольными и поперечными стальными стержнями., также известный как арматура. Основная функция арматуры — укреплять бетон, когда он испытывает растягивающее напряжение..

Давайте посмотрим на различия между двумя композитными материалами и способы их использования..

Железобетон

1. Что такое железобетон?

Железобетон, или RC, композитный материал, используемый в строительстве. Низкая прочность на разрыв и пластичность бетона усиливаются за счет добавления арматурных стальных стержней, обладающих более высокой прочностью на разрыв и пластичностью.. Во время строительства, стальные стержни помещаются внутрь опалубки перед заливкой бетона. Арматуру также можно заранее соединить вместе в стальную клетку.. Затем бетон заливается в опалубку и подвергается вибрации для удаления воздушных пустот в свежем бетоне и обеспечения консолидации заполнителей в бетонной смеси.. Крайне важно, чтобы бетон полностью окружал каждую планку, чтобы обеспечить прочное соединение..


фигура 1: Прямоугольная бетонная балка, со стальной арматурой — пример железобетонного элемента

2. Использование железобетона

Железобетон широко применяется благодаря удобоукладываемости., прочность, и доступность сырья. Он в основном используется в качестве основных элементов определенной структуры, например колонн., причалы, геморрой, балки, плиты, и опоры для зданий, дома, плотины, мосты, и другие подобные конструкции. Железобетону легко придать нестандартные формы, потому что он заполняет контейнер, который он поддерживает.. Это приводит к экстравагантным архитектурным сооружениям, которые иначе было бы сложно построить из других материалов, таких как сталь и дерево.. Железобетон также обычно используется при строительстве дорожных покрытий и тротуаров.. Армирование бетона стальными стержнями обеспечивает прочность на растяжение композитного профиля, что позволяет получить прочный и полезный композитный строительный материал..

Предварительно напряженный бетон

1. Что такое предварительно напряженный бетон

Проще говоря, это бетон, сформированный под напряжением. Арматурные стержни укладываются в форму и подвергаются напряжению за счет растяжения стержней на каждом конце., создание напряжения в штанге. Бетон заливается в форму и вокруг стержней, пока они еще растягиваются.. Когда они будут выпущены, сталь пытается восстановить свой первоначальный, короче, длина, и добавляет сжимающую силу к бетону сбоку, дает ему прочность для преодоления больших расстояний, чем у обычного железобетона.

2. Использование предварительно напряженного бетона

Предварительное напряжение используется для изготовления композитных балок и опор в крупномасштабном строительстве, таком как путепроводы на автомагистралях и коммерческие здания.. Это позволяет бетонной балке выдерживать вес между опорами с обеих сторон.; без такого усиления, отсутствие прочности бетона на растяжение может привести к его разрушению без поддержки в середине.

Вот три основных варианта реализации предварительно напряженного бетона.:

  • Предварительно натянутый бетон: Бетон заливается вокруг стальных стержней или кабелей под натяжением.. Бетон естественным образом связывается с этими «сухожилиями», пока затвердевает.. Сжатие за счет статического трения передает напряжение на бетон после его снятия. впоследствии, любое напряжение в бетоне легко передается на сухожилия. Предварительно напряженные бетонные элементы обычно используются в плитах перекрытий., балки, и перемычки.
  • Связанный бетон после натяжения: Сжатие применяется на месте во время отверждения. Воздуховод из алюминия, пластик, или сталь используется при литье и следует за областью, где в бетоне может возникнуть растяжение. Сухожилия проталкиваются через проток, затем натягивается гидравлическим домкратом после закалки. Когда-то сухожилия’ растяжение соответствует проектным требованиям, они заклиниваются и канал залит.
  • Несвязанный бетон после натяжения: Вот, отдельные сухожилия сохраняют свободу движения относительно бетона. Сухожилия покрыты смазкой на литиевой основе., затем получил пластиковую «оболочку», сформированный путем экструзии. Стальные тросы натянуты на анкера, размещенные по периметру плиты.. Такая конструкция обеспечивает возможность снятия напряжения с заделанных сухожилий перед ремонтом..

фигура 2: Простая схема предварительно напряженного бетона.

Программное обеспечение SkyCiv для проектирования железобетона

SkyCiv предлагает простое в использовании программное обеспечение для проектирования железобетона, чтобы помочь анализировать и проектировать железобетонные элементы. Использование SkyCiv Beam Software, можно анализировать нагрузки на член, затем спроектируйте свой конкретный член, используя наши Программное обеспечение для проектирования железобетона.

Программное обеспечение для железобетона

Железобетон и предварительно напряженный бетон

Разница между железобетоном и предварительно напряженным бетоном

Железобетон и предварительно напряженный бетон армируются продольными и поперечными стальными стержнями, также известными как арматура. Основная функция арматуры — укреплять бетон, когда он испытывает растягивающее напряжение.

Давайте посмотрим на различия между двумя композитными материалами и способы их использования.

Железобетон

1.Что такое железобетон?

Железобетон, или ЖБИ, представляет собой композитный материал, используемый в строительстве. Низкая прочность на разрыв и пластичность бетона усиливаются за счет добавления арматурных стальных стержней, имеющих более высокие прочность на разрыв и пластичность. Во время строительства стальные стержни помещаются внутрь опалубки перед заливкой бетона. Арматуру также можно заранее соединить проволокой в ​​стальную клетку. Затем бетон заливается в опалубку и подвергается вибрации для удаления воздушных пустот в свежем бетоне и обеспечения консолидации заполнителей в бетонной смеси.Крайне важно, чтобы бетон полностью окружал каждую планку, чтобы обеспечить прочное соединение.


Рисунок 1. Прямоугольная бетонная балка со стальной арматурой является примером железобетонного элемента.

2. Применение железобетона

Железобетон широко используется из-за его удобоукладываемости, прочности и доступности сырья. Он в основном используется в качестве основных элементов конкретной конструкции, такой как колонны, опоры, сваи, балки, плиты и опоры для зданий, домов, плотин, мостов и других подобных конструкций.Железобетону легко придать нестандартные формы, потому что он заполняет контейнер, который он поддерживает. Это приводит к экстравагантным архитектурным сооружениям, которые в противном случае было бы сложно построить из других материалов, таких как сталь и дерево. Железобетон также обычно используется при строительстве дорожных покрытий и тротуаров. Армирование бетона стальными стержнями обеспечивает прочность на растяжение композитного профиля, что позволяет получить прочный и полезный композитный строительный материал.

Предварительно напряженный бетон

1. Что такое предварительно напряженный бетон

Проще говоря, это бетон, сформированный под напряжением. Арматурные стержни размещаются по форме и подвергаются напряжению за счет растяжения стержней на каждом конце, вызывая напряжение в стержне. Бетон заливается в форму и вокруг стержней, пока они еще растягиваются. Когда они высвобождаются, сталь пытается вернуться к своей первоначальной, более короткой длине и добавляет сжимающую силу к бетону в поперечном направлении, давая ему прочность для покрытия более длинных расстояний, чем у обычного железобетона.

2. Применение предварительно напряженного бетона

Предварительное напряжение используется для изготовления композитных балок и опор в крупномасштабном строительстве, таком как путепроводы на автомагистралях и коммерческие здания. Это позволяет бетонной балке выдерживать вес между опорами с обеих сторон; Без такого армирования бетон из-за отсутствия прочности на растяжение мог бы разрушиться без опоры в середине.

Вот три основных варианта реализации предварительно напряженного бетона:

  • Бетон с предварительным натяжением: Бетон заливается вокруг стальных стержней или кабелей под натяжением.Бетон естественным образом сцепляется с этими «сухожилиями» в процессе отверждения. Сжатие за счет статического трения передает напряжение на бетон после его снятия. Впоследствии любое напряжение в бетоне легко передается на сухожилия. Предварительно напряженные бетонные элементы обычно используются в плитах перекрытий, балках и перемычках.
  • Бетон со связующим после натяжения: Сжатие применяется на месте во время отверждения. При отливке используется канал из алюминия, пластика или стали, который следует за областью, где в бетоне может возникнуть растяжение.Сухожилия проталкиваются через канал, а затем после затвердения натягиваются гидравлическим домкратом. Как только растяжение сухожилий соответствует проектным спецификациям, они заклиниваются на месте, и канал заливается раствором.
  • Несвязанный бетон после натяжения: Здесь отдельные арматуры сохраняют свободу движения относительно бетона. Сухожилия приготавливаются с покрытием из консистентной смазки на литиевой основе, а затем получают «оболочку» на основе пластика, формируемую путем экструзии. Стальные тросы натянуты на анкеры, размещенные по периметру плиты.Такая конструкция обеспечивает возможность снятия напряжения с заделанных сухожилий перед ремонтом.

Рисунок 2: Простая схема предварительно напряженного бетона.

Программное обеспечение SkyCiv для проектирования железобетона

SkyCiv предлагает простое в использовании программное обеспечение для проектирования железобетонных конструкций, которое помогает анализировать и проектировать железобетонные элементы. Используя программное обеспечение SkyCiv Beam, вы можете проанализировать нагрузки на элемент, а затем спроектировать свой бетонный элемент с помощью нашего программного обеспечения для проектирования железобетонных конструкций.

Программное обеспечение для железобетона

Предварительно напряженный бетон

Хотя предварительно напряженный бетон был запатентован инженером из Сан-Франциско в 1886 году, он стал общепринятым строительным материалом лишь полвека спустя. Дефицит стали в Европе после Второй мировой войны в сочетании с технологическими достижениями в области высокопрочного бетона и стали сделали предварительно напряженный бетон предпочтительным строительным материалом во время послевоенного восстановления Европы. Однако первая в Северной Америке конструкция из предварительно напряженного бетона, Мемориальный мост Уолнат-Лейн в Филадельфии, штат Пенсильвания, была построена только в 1951 году.

В обычном железобетоне высокая прочность на растяжение стали в сочетании с высокой прочностью бетона на сжатие образует конструкционный материал, устойчивый как на сжатие, так и на растяжение. Принцип, лежащий в основе предварительно напряженного бетона, заключается в том, что сжимающие напряжения, создаваемые арматурой из высокопрочной стали в бетонном элементе до приложения нагрузок, уравновешивают растягивающие напряжения, возникающие в элементе во время эксплуатации.

Предварительное напряжение устраняет ряд конструктивных ограничений, накладываемых обычным бетоном на пролет и нагрузку, и позволяет строить крыши, перекрытия, мосты и стены с более длинными пролетами без опоры.Это позволяет архитекторам и инженерам проектировать и строить более легкие и мелкие бетонные конструкции без ущерба для прочности.

Принцип предварительного напряжения применяется, когда ряд книг перемещается с места на место. Вместо того, чтобы складывать книги вертикально и переносить их, книги можно перемещать в горизонтальном положении, оказывая давление на книги в конце ряда. Когда прикладывается достаточное давление, сжимающие напряжения возникают во всем ряду, и весь ряд может быть поднят и перенесен в горизонтальном направлении одновременно.

Прочность на сжатие добавлена ​​

Напряжения сжатия возникают в предварительно напряженном бетоне в результате предварительного или последующего напряжения стальной арматуры.

При предварительном натяжении сталь растягивается перед укладкой бетона. Стальные арматуры из высокопрочной стали помещают между двумя упорами и растягивают до 70–80% от их предельной прочности. Бетон заливают в формы вокруг сухожилий и дают застыть. Как только бетон достигает необходимой прочности, растягивающие силы снимаются.По мере того как сталь восстанавливает свою первоначальную длину, растягивающие напряжения преобразуются в сжимающее напряжение в бетоне. Типичными изделиями для предварительно натянутого бетона являются плиты крыши, сваи, столбы, мостовые балки, стеновые панели и железнодорожные шпалы.

При последующем напряжении сталь растягивается после затвердевания бетона. Бетон заливается вокруг, но не соприкасается с нерастянутой сталью. Во многих случаях воздуховоды в бетонном блоке формируются с использованием тонкостенных стальных форм. Как только бетон затвердеет до требуемой прочности, стальные стержни вставляются и растягиваются по концам блока и закрепляются снаружи, что приводит к сжатию бетона.Пост-напряженный бетон используется для монолитного бетона, а также для мостов, больших балок, плит перекрытий, крыш, крыш и тротуаров.

Предварительно напряженный бетон получил наибольший рост в области коммерческих зданий. Для таких зданий, как торговые центры, преднапряженный бетон является идеальным выбором, поскольку он обеспечивает длину пролета, необходимую для гибкости и изменения внутренней конструкции. Предварительно напряженный бетон также используется в школьных аудиториях, гимназиях и кафетериях из-за его акустических свойств и его способности создавать длинные открытые пространства.Одно из самых распространенных применений предварительно напряженного бетона — гаражи.

Для получения дополнительной информации о предварительно напряженном бетоне щелкните здесь.

Чем отличается железобетон по сравнению с предварительно напряженным бетоном?

Что такое железобетон?

Железобетон — один из наиболее широко используемых композитных материалов в строительстве. Он прост в применении, он прочен и доступен практически везде. При использовании железобетона в опалубку заблаговременно закладываются стальные стержни.Опалубку заливают бетоном, а вибрации удаляют воздушные карманы, равномерно распределяя материалы. Поскольку бетон заливается в индивидуальную форму, он позволяет строителю выбирать как традиционные, так и нетрадиционные формы, что действительно может открыть ваши архитектурные возможности. Некоторые из наиболее распространенных применений железобетона включают:

  • — Колонны
  • — Балки
  • — Фундаменты
  • — Плотины
  • — Мосты
  • — Мощение дорог
  • — Тротуары

Что такое предварительно напряженный бетон?

В то время как железобетон формируется в состоянии покоя, предварительно напряженный бетон формируется под напряжением.Стальные стержни укладываются в определенную форму и растягиваются с обоих концов по мере заливки бетона. Это придает конечному продукту большую прочность на растяжение, что делает его обычным выбором для крупномасштабных проектов, таких как путепроводы на автомагистралях и коммерческие здания. Предварительно напряженный бетон также попадает в многочисленные подкатегории, которые вы можете узнать, в том числе:
  • — Предварительно напряженный бетон: Сухожилия натягиваются перед заливкой бетона.
  • — Связанный бетон после натяжения: Сухожилия склеиваются после натяжения сухожилий.
  • — Несвязанный бетон после натяжения: Сухожилия сохраняют свободное движение относительно бетона, перемещаясь внутри пластикового покрытия со смазкой на основе лития.

Узнайте больше с BrickKicker

BrickKicker здесь, чтобы помочь со всеми вашими потребностями в строительстве и инспекции. Мы предлагаем наш опыт как на жилом, так и на коммерческом рынках. Не стесняйтесь обращаться к нам со своими вопросами, и мы будем рады помочь.

Почему предварительное напряжение? — Национальная ассоциация сборного железобетона

Типы, преимущества и история предварительно напряженного бетона.

Абдул Хан

Чем больше, тем лучше, как сказали бы многие представители строительной и мостовой промышленности, и это, безусловно, верно в отношении сборных железобетонных изделий. Стальные арматурные стержни добавляют большую прочность крупным бетонным изделиям, но сама по себе арматура не может обеспечить прочность на разрыв, необходимую для сборных железобетонных изделий, которые растягиваются на большую длину. Есть немного волшебства, которое придает достаточную прочность этим огромным изделиям, и это называется предварительным напряжением.

Развитие

Чтобы передать представление о том, как работает предварительное напряжение, представьте себе бочку, сделанную из деревянных клепок и металлических лент. По крайней мере, так Т.Ю. Лин, профессор гражданского строительства Калифорнийского университета, описал это во вступительной главе своей книги «Проектирование предварительно напряженных бетонных конструкций».

Линь говорит, что основной принцип предварительного напряжения применялся в строительстве, возможно, столетия назад, когда веревки или металлические ленты наматывались на деревянные посохи, образуя бочку.Когда ленты были затянуты, они находились под предварительным напряжением растяжения, которое, в свою очередь, создавало предварительное напряжение сжатия между стойками и позволяло им противостоять кольцевому натяжению, создаваемому внутренним давлением жидкости. Другими словами, ленты и стойки были предварительно напряжены до того, как они подверглись какой-либо эксплуатационной нагрузке.

Говоря более формально, предварительное напряжение означает преднамеренное создание постоянных напряжений в конструкции или сборке для улучшения ее поведения и прочности в различных условиях эксплуатации.

Предварительно напряженные арматуры (обычно из высокопрочных стальных тросов или стержней) используются для обеспечения зажимной нагрузки, которая создает сжимающее напряжение для компенсации растягивающего напряжения, которое в противном случае испытывал бы бетонный сжимающий элемент из-за изгибающей нагрузки.

Классификация и виды

Конструкции из предварительно напряженного железобетона можно классифицировать по ряду направлений, в зависимости от их особенностей конструкции и конструкции. Следующие типы предварительного напряжения могут быть выполнены тремя способами: предварительно напряженный бетон и связанный и несвязанный предварительно напряженный бетон.

Бетон с предварительным напряжением. Предварительно натянутый бетон заливается вокруг уже натянутых арматурных элементов. Этот метод обеспечивает хорошее сцепление между арматурой и бетоном, которое защищает арматуру от коррозии и обеспечивает прямую передачу напряжения. Затвердевший бетон прилипает к стержням и сцепляется с ними, а когда напряжение снимается, оно передается бетону в виде сжатия за счет статического трения. Однако для этого требуются прочные точки крепления, между которыми должно быть растянуто сухожилие, и поэтому сухожилие обычно образует прямую линию.

Большинство предварительно напряженных железобетонных изделий изготавливаются на заводе и должны быть доставлены на строительную площадку, что ограничивает их размер. Примерами изделий с предварительным натяжением являются элементы балконов, перемычки, колонны, массивные плиты, пустотелые плиты, тройники, стены, сэндвич-панели, балки ригелей, двутавровые балки, балки с балками и фундаментные сваи.

Связанный бетон после растяжения. Связанный после растяжения бетон — это описательный термин, обозначающий метод сжатия после заливки бетона и процесса отверждения (на месте).Бетон заливается вокруг изогнутых каналов из пластика, стали или алюминия, которые размещаются в области, где в бетонном элементе может возникнуть напряжение. Перед заливкой бетона через воздуховоды вылавливают связки. После затвердевания бетона арматура натягивается гидравлическими домкратами, которые воздействуют на бетонный элемент. Когда сухожилия достаточно растянуты, в соответствии с проектными спецификациями, они закрепляются в нужном положении и сохраняют натяжение после снятия домкратов, передавая давление на бетон.Затем отверстия воздуховодов заливаются раствором для защиты жилы от коррозии.

Этот метод обычно используется для создания монолитных плит для строительства домов в местах, где обширные почвы создают проблемы для типичного фундамента по периметру. Все напряжения от сезонного расширения и сжатия нижележащего грунта принимаются на всю напряженную плиту, которая поддерживает здание без значительного прогиба.

Пост-напряжение также используется при строительстве различных мостов, как после затвердевания бетона после опоры с помощью опалубки, так и при сборке сборных секций, как в сегментном мосту.Преимущества этой системы перед пост-натяжением без склеивания:

  • Значительное снижение требований к традиционной арматуре
  • Сухожилия можно легко «сплести», что обеспечивает более эффективный подход к проектированию.
  • Более высокий предел прочности за счет связи между прядью и бетоном
  • Нет долгосрочных проблем с сохранением целостности анкера / тупика

Бетон без сцепления с последующим напряжением. Бетон с последующим натяжением без сцепления отличается от бетона с последующим натяжением со связующим тем, что каждый отдельный кабель обеспечивает постоянную свободу движения относительно бетона.Для этого каждое отдельное сухожилие покрывается смазкой и пластиковой оболочкой, сформированной в процессе экструзии. Передача напряжения на бетон достигается за счет воздействия стального троса на стальные анкеры, встроенные по периметру плиты.

Недостатком по сравнению с последующим натяжением со связующим является тот факт, что кабель может разрушиться и вырваться из плиты в случае повреждения (например, во время ремонта плиты). Преимущества этой системы по сравнению со склеенным дополнительным натяжением:

  • Возможность индивидуальной регулировки тросов в зависимости от плохих полевых условий
  • Устранение пост-напряжения цементного раствора
  • Способность разрушать сухожилия перед попыткой ремонта

Материалы

Согласно AASHTO, предварительно напряженная арматура должна представлять собой высокопрочную семипроволочную прядь, высокопрочную стальную проволоку или прутки из высокопрочного сплава той марки и типа, которые указаны инженером-проектировщиком.Семипроводная жила без покрытия должна соответствовать требованиям AASHTO M 203 (ASTM A 416). Дополнение S1 (низкая релаксация) применяется, если указано.

Для предварительно напряженных работ обычно требуется более прочный бетон, чем для армированных работ. Современная практика требует минимальной 28-дневной прочности цилиндра 5 000 фунтов на квадратный дюйм. Предварительно напряженный бетон требует высокой прочности по нескольким причинам. Во-первых, для минимизации затрат коммерческие анкерные крепления для предварительно напряженной стали всегда проектируются для высокопрочного бетона.Следовательно, более слабый бетон либо потребует специальных анкеровок, либо может разрушиться под действием предварительного напряжения. Кроме того, бетон с высокой прочностью на сжатие обеспечивает высокое сопротивление растяжению и сдвигу, а также сцепление и опору, и желателен для предварительно напряженных бетонных элементов, различные части которых подвергаются более высоким напряжениям, чем обычный железобетон.

Еще одним фактором является то, что высокопрочный бетон менее склонен к образованию усадочных трещин. Он также имеет более высокий модуль упругости и меньшую деформацию ползучести, что приводит к меньшим потерям предварительного напряжения в стали.

Преимущества предварительно напряженного бетона

Предварительно напряженный бетон — один из самых надежных, долговечных и широко используемых строительных материалов в строительстве и строительстве мостов во всем мире. Компания внесла значительный вклад в строительную отрасль, промышленность по производству сборного железобетона и цементную промышленность в целом. Это привело к огромному количеству структурных применений, включая здания, мосты, фундаменты, гаражи, водонапорные башни, ядерные реакторы, телебашни и морские буровые платформы.

К преимуществам предварительно напряженного бетона можно отнести:

  • Меньшая стоимость строительства
  • Более тонкие плиты, которые особенно важны в многоэтажных зданиях, где снижение толщины пола может привести к созданию дополнительных этажей по той же или меньшей цене.
  • Меньшее количество стыков, так как расстояние, на которое могут быть натянуты плиты после натяжения, превышает расстояние для армированной конструкции той же толщины
  • Увеличение длины пролета увеличивает полезную свободную площадь пола в зданиях и парковочных сооружениях
  • Меньшее количество стыков приводит к снижению затрат на техническое обслуживание в течение расчетного срока службы конструкции, поскольку стыки являются основным источником слабых мест в бетонных зданиях.

История предварительного напряжения

Искусство предварительного напряжения бетона развивалось на протяжении многих десятилетий и из многих источников, но мы можем указать на несколько избранных примеров в истории, которые привели к появлению этой технологии.

В Соединенных Штатах инженер Джон Роблинг основал в 1841 году фабрику по производству канатов из железной проволоки, которую он сначала продал, чтобы заменить канат из конопли, используемый для подъема автомобилей по железной дороге в центральной Пенсильвании. Позже Роблинг использовал стальные тросы в качестве подвесных тросов для мостов и разработал технику скручивания тросов на месте.

В 19 веке дешевое производство чугуна и стали, в сочетании с изобретением портландцемента в 1824 году, привело к развитию железобетона. В 1867 году французский садовник Жозеф Монье запатентовал метод укрепления тонких бетонных цветочных горшков путем встраивания в бетон металлической проволочной сетки. Позже Монье применил свои идеи к патентам на здания и мосты.

Использование швейцарским инженером Робертом Майяром железобетона с 1901 года произвело революцию в строительном искусстве.Майяр, все главные мосты которого расположены в Швейцарии, был первым дизайнером, который полностью нарушил традицию каменной кладки, придав бетону формы, технически соответствующие его свойствам — но визуально удивительные. Его радикальное использование железобетона произвело революцию в конструкции арочного моста из каменной кладки.

Идея предварительного напряжения бетона была впервые применена Эженом Фрейссине, французским инженером-строителем, в 1928 году как метод преодоления естественной слабости бетона при растяжении.Предварительно напряженный бетон теперь можно использовать для изготовления балок, перекрытий или мостов с более длинным пролетом, чем это практично для обычного железобетона.

Абдул Кан — директор отдела технических услуг NPCA и бывший президент ASCE — Illinois Section 2006.

мостов из предварительно напряженного бетона

мостов из предварительно напряженного бетона

Как построить мостовую балку из предварительно напряженного бетона? Сделайте краткий обзор процесса сборки.

Что такое предварительно напряженный бетон?

Основные марки бетона

Существует множество технических разновидностей современного бетона, но в исторических зданиях и мостах обычно используются три основных типа: простой или неармированный бетон, железобетон и предварительно напряженный бетон.

Бетон, как и камень, очень прочен на сжатие и хорошо работает, например, при использовании в качестве вертикальной колонны или опорной стойки. При использовании в горизонтальном положении в качестве плиты или балки бетон, как правило, может преодолевать лишь небольшие расстояния, прежде чем он начнет трескаться и разрушаться, если его не сделать толще. Глубина и вес простой бетонной балки вскоре становятся слишком большими и непрактичными для более длинных горизонтальных пролетов, необходимых в зданиях и мостах.

Строители узнали, что добавление металлических арматурных стержней в бетонную балку или плиту позволит перекрывать большие расстояния до образования трещин.В результате после 1900 года железобетон стал важным конструкционным материалом для строительства мостов. Практически весь современный бетон армируется металлом.

Вот несколько объяснений преднапряженного бетона и того, как он работает:

Предварительно напряженный бетон

Даже железобетон имеет ограниченную способность преодолевать расстояния до появления трещин и разрушения под нагрузкой. В годы перед Второй мировой войной европейские инженеры экспериментировали с новой системой обработки бетона, чтобы еще больше увеличить длину пролета при меньшем весе.Эта система стала известна как «предварительно напряженный» бетон, потому что к бетонной балке было приложено напряжение или напряжение, прежде чем она была помещена на место.

Один из первых инженеров, Гюстав Магнель, сравнил эту систему с удержанием ряда книг, плотно прижимая их с каждого конца и поднимая в воздух. Подобным образом бетонную балку можно было плотно удерживать с каждого конца с помощью стального стержня или троса. Бетонная балка является «предварительно напряженной», потому что напряжение создается до или «до» фактического использования балки при приложении рабочего напряжения.

Правильно спроектированная балка из предварительно напряженного бетона может охватывать большие расстояния, чем железобетонная балка, она тоньше, легче по весу и требует меньше бетона без трещин и разрывов.

Рисунок 1. Вот рисунок бельгийского инженера Гюстава Магнеля, который объясняет предварительное напряжение, показывая, как ряд книг, плотно прижатых друг к другу, превращается в балку, способную выдержать большее количество книг.

Рис. 2 — В апреле 1960 года журнал «Minnesota Highways» опубликовал этот рисунок, чтобы проиллюстрировать преимущества предварительного натяжения бетонной балки для предотвращения растрескивания под нагрузкой.

Виды преднапряженного бетона

Предварительно напряженный бетон создается с помощью одного из двух процессов: предварительного напряжения и предварительного напряжения.

Последующее натяжение

Самый простой тип балок из предварительно напряженного железобетона — это стальные тросы, которые плотно связывают ряд бетонных блоков встык. Это похоже на поднятие ряда книг, прижимая их вместе с каждого конца. Это называется «пост-натяжением», потому что бетонные блоки растягиваются после того, как они были произведены с помощью обычного процесса заливки бетонных блоков.Переносной гидравлический домкрат натягивает тросы, создавая необходимое натяжение.

Вместо использования отдельных блоков, можно было бы отлить один бетонный блок с трубами или кабелепроводом внутри для добавления натяжных тросов после этого. Этот метод использовался на нескольких ранних мостах Миннесоты.
Система пост-натяжения требовала простого оборудования и могла быть выполнена практически в любом месте, в том числе на площадке моста. Фактически, первый мост из предварительно напряженного бетона в Миннесоте был подвергнут последующему напряжению.
Поскольку последующее натяжение ограничивалось меньшими балками и плитами, альтернативный метод предварительного натяжения стал отраслевым стандартом с первых лет.

Рис. 3 — Это деталь из первоначального инженерного плана 1957 года для конструкции перекрытия с последующим натяжением для моста 9065, первоначально расположенного на шоссе 61 к югу от Вайноны, но теперь замененного. Показаны пары поперечных сечений двух плит: нижняя пара относится к одной из двух плит на внешней стороне пролета и называется «фасцией» или внешними плитами.В правом нижнем углу показан конец плиты, а в левом нижнем углу — центр плиты, показывающий центры цилиндрических полостей каждой плиты, что позволяет сэкономить бетон и вес. Верхняя пара от одной из внутренних плит, снова показывая конец вверху справа и центр вверху слева. Горизонтальный ряд точек чуть выше нижней части балки представляет собой расположение стальных нитей, которые протягиваются через плиту после затвердевания бетона и затем растягиваются.

Предварительное натяжение

Предварительное напряжение — еще один способ предварительного напряжения бетона.При предварительном натяжении бетон заливается вокруг уже натянутых тросов и дает возможность затвердеть и удерживать тросы на месте. Когда бетон затвердеет и затвердеет, концы натянутых тросов обрезаются, и напряжение снимается с балки или плиты.

В настоящее время все предварительно напряженные мостовые балки изготавливаются с использованием процесса предварительного натяжения, который является более сложным, чем процесс последующего натяжения. Предварительное натяжение требует строительства больших «литейных площадок», чтобы удерживать стальные тросы, называемые «пряди», в сильно натянутом состоянии, пока бетон заливается вокруг них в формах.

С предварительным натяжением производители создали балки и плиты гораздо большего размера. Литейные станины были построены в длинных зданиях заводского типа, что позволяло производить круглогодичное производство в контролируемых условиях. Длина предварительно натянутых балок была ограничена транспортными ограничениями между заводом и площадкой моста, а также наличием кранов, способных поднимать балки на место. В отличие от стальных балок, которые можно было транспортировать более короткими секциями и скреплять болтами на площадке моста, предварительно напряженные бетонные балки приходилось перевозить на грузовиках с готовой длиной, и их нельзя было собрать из более коротких единиц.

Рис. 4 — Это деталь из первоначального инженерного плана 1958 года для конструкции предварительно натянутой балки для моста 6579 в Сент-Поле (теперь заменена). На нем показаны три поперечных сечения одной балки или балки. Слева (A-A) — вид с торца, а в центре и справа — два вида посередине. На чертежах показано, что балка имеет форму двутавра, за исключением концов, где она толще, чтобы предотвратить растрескивание. Точки на секциях обозначают расположение стальных прядей предварительного напряжения, которые проходят от одного конца до другого.Эти пряди залиты внутрь бетонной балки.

Первые мосты из предварительно напряженного бетона

Впервые в США: мост Уолнат-Лейн, Филадельфия, 1950 г.

Мост Walnut Lane в Филадельфии, построенный в конце 1950 года, считается первым крупным мостом из предварительно напряженного бетона в США. Гюстав Магнель, бельгийский инженер, и Чарльз Цольман, ученик Магнеля, спроектировали мост. Каждая из предварительно напряженных бетонных балок была отлита на месте моста как единое целое.После того, как бетон затвердел и затвердел, кабель продлили конец в конец через предусмотренное отверстие. Подъемное устройство прикладывало натяжение к кабелю, который затем фиксировался на месте. В 1989-90 гг. Были заменены оригинальные балки и надстройка.

Рисунок 5 — Мост Уолнат-Лейн, Филадельфия, фотография из Исторического американского инженерного рекорда (HAER). На этой документальной фотографии, сделанной в 1968 году, показан пролет моста Уолнат-Лейн, состоящий из параллельной серии предварительно напряженных, предварительно напряженных бетонных балок, тесно выровненных друг с другом.Изображение получено из Библиотеки Конгресса США.

Первый в Миннесоте: мост Лейк-Сити, Лейк-Сити, Миннесота, 1953 год

В 1952 году братья Норберт и Леонард Сукуп основали компанию Northern States Prestressed Concrete Co., чтобы построить первый мост из предварительно напряженного бетона любого типа в Миннесоте с использованием метода последующего натяжения. Они собрали ряды специально разработанных бетонных блоков, стянули их вместе в длинный ряд тросами и создали серию предварительно напряженных бетонных блоков-балок.Балки образовали пролет для моста, по которому движется местное движение от шоссе 61 США до лагеря бойскаутов за пределами Лейк-Сити. С тех пор мост был заменен.

Рисунок 6 — Строительство моста в Лейк-Сити в серии пронумерованных видов: (1) Блок-балки, подвергшиеся пост-напряжению, были собраны на заводе компании Northern States Prestressed Concrete Co. в Миннеаполисе и доставлены на строительную площадку моста недалеко от Лейк-Сити. , недалеко от шоссе. 61. (2) Крупным планом вид трех блочных балок, лежащих на земле рядом с работным домом.Натяжной трос виден сбоку от ближайшей балки. (3) Вид одной блочной балки на месте от центральной опоры до дальнего упора, идущей от камеры, со второй балкой, опускаемой краном. (4) Все блочные балки на месте. (5) Рабочие на пролете блочной балки, готовятся к установке поперечных тросов, связывающих балки, бок о бок.

Рисунок 7 — Это реклама компании Northern States Prestressed Concrete Co., с иллюстрацией их блочных балок, используемых для пролетов моста в Лейк-Сити. Сравните этот вид с фотографией балок на Рисунке 6 (см. Вид 2 вверху справа), на котором показана сторона блочной балки с прядью после натяжения на внешней стороне балки. Объявление из «Строительного вестника» от 6 августа 1953 г.

Первый в Миннесоте: мост 9053, Блумингтон, 1957 год

После моста в Лейк-Сити братья Соукуп построили завод для своей новой компании Prestressed Concrete, Inc.в растущем пригороде Розвилля, штат Миннесота, для изготовления предварительно напряженных бетонных балок. Чарльз Цоллман, который работал на мосту в Уолнат-Лейн, консультировал братьев при проектировании отливок для нового завода. На литейном заводе Roseville Soukups изготовили предварительно напряженные бетонные балки для зданий и мостов, включая первый в Миннесоте крупный мост из предварительно напряженного бетона, который соединит 94-ю улицу с новой автомагистралью Interstate 35W. Мост с оригинальными балками до сих пор ведет к 94-й улице и внесен в Национальный реестр исторических мест.

Рис. 8. Первый крупный мост из предварительно напряженного железобетона в Миннесоте, Bridge 9053, несущий 94-ю улицу над межштатной автомагистралью 35W в Блумингтоне, штат Миннесота.

Рисунок 9 — Реклама нового литейно-производственного завода братьев Соукуп, Prestressed Concrete, Inc., в послевоенном послевоенном поселке городов-побратимов Розвилля. Здесь изготовили предварительно напряженные бетонные балки для моста 9053.Разработанный для ограждения линейных литейных платформ, он состоял из длинного корпуса с вертикальным блоком для размещения бетоносмесительной установки, что позволяло работать круглый год в условиях контролируемого климата. Northwest Architect, май — июнь 1957 г.

Предварительно напряженные мосты и автомагистраль между штатами в 1950-е гг.

Созданная в соответствии с Законом о федеральных автомагистралях 1956 года, новая система межгосударственных автомагистралей потребовала строительства тысяч новых мостов по всей стране.Новые шоссе, спроектированные как автострады, не будут иметь никаких транспортных развязок. Все автомагистрали и железные дороги будут проходить над новыми автомагистралями между штатами или под ними. Поскольку дизайн новой автомагистрали между штатами был настолько единообразным и соответствовал оригинальной четырехполосной системе, большинство мостов были аналогичными по форме и длине. Эти требования идеально соответствовали новой системе из предварительно напряженного бетона, которая с готовностью производила большое количество однородных балок, отлитых на сторонних заводах, в контролируемых заводских условиях, независимо от погодных и строительных условий.Кроме того, новые балки из предварительно напряженного бетона оказались конкурентоспособными со стальными балками по размеру и стоимости, особенно когда в 1950-х годах сталь была дефицитной и дорогой.

Система Interstate System помогла создать крупную промышленность по производству предварительно напряженного бетона практически в одночасье. Те же самые заводы часто изготавливали балки, плиты и доски для крыш и полов, чтобы построить множество новых торговых центров, школ, стадионов, офисов и других структур в пригородах, к которым ведет межштатная автомагистраль.

Рис. 10. Эти эскизы межштатной автомагистрали демонстрируют согласованную конструкцию и размеры моста для пересечения четырех полос движения в различных ситуациях.Длина пролетов остается неизменной для моста за мостом.

Мосты из предварительно напряженного бетона в Миннесоте

Мосты исторические предварительно напряженные
Мост № Год постройки Расположение
9053 1957 Округ Хеннепин, Блумингтон (также обсуждалось выше )
9082 1958 Округ Хеннепин, Блумингтон
9108 1958 Dakota County, Inver Grove Heights
9109 1958 Dakota County, Inver Grove Heights
9232 1958

ул.Округ Луи, Хиббинг

9407 1958 Округ Олмстед, Рочестер
27547 1970

Округ Хеннепин, Миннеаполис

(пример с последующим натяжением )

Что такое предварительно напряженный бетон? | Five Dredge & Marine

Что такое предварительно напряженный бетон, как он применяется к железобетону?

Все мы знаем, что бетон прочен на сжатие и слаб на растяжение. Это причина для обеспечения арматуры (в виде стальных стержней), чтобы противостоять силе растяжения / растяжения, действующей на балки / колонны / плиты и т. Д.

Ж / б конструкции под эксплуатационной нагрузкой подвергаются прогибу, в результате чего нижняя часть балки (зона растяжения) удлиняется, вызывая трещины. Предусмотрены стальные стержни для ограничения ширины трещин и сопротивления растягивающей силе, которой не хватает в бетоне.

Здесь арматурный стержень действует как «пассивная арматура» . Арматура (стальная арматура), расположенная в нижней части стержня, не несет никаких сил, пока бетон уже не прогибается достаточно, чтобы трескаться.

Как используется?

Здесь вступает в действие предварительное напряжение. Принцип, лежащий в основе предварительно напряженного бетона, заключается в том, что сжимающие напряжения, создаваемые арматурой из высокопрочной стали в бетонном элементе до приложения нагрузок, уравновешивают растягивающие напряжения, возникающие в элементе во время эксплуатации.

Проще говоря, постоянное предварительное сжатие производится в областях, подверженных растяжению, с использованием стальной проволоки или сплавов с высокой прочностью на разрыв. Теперь часть растягивающего напряжения нейтрализуется, тем самым уменьшая площадь поперечного сечения стальной арматуры.

В результате бетон не трескается, потому что предварительное напряжение уменьшило растягивающее напряжение в секции ниже напряжения растрескивания. Следовательно, конструкция из предварительно напряженного бетона отличается от обычной железобетонной конструкции из-за приложения начальной нагрузки к конструкции перед ее использованием.

Начальная нагрузка или предварительное напряжение применяется, чтобы позволить конструкции противодействовать напряжениям, возникающим в период ее эксплуатации. Предварительное напряжение конструкций было введено в конце девятнадцатого века.Концепция предварительного напряжения существовала до того, как бетон стал рассматриваться как эластичный материал.

Железобетон и предварительно напряженный бетон

В чем разница между обычным железобетоном и предварительно напряженным бетоном?

В предварительно напряженном бетоне внутренние напряжения вводятся путем сжатия бетона, так что растягивающим напряжениям, возникающим в результате рабочих нагрузок, можно противодействовать в желаемой степени. Предварительное напряжение создается за счет натяжения сухожилий.Наличие предварительного напряжения позволяет бетону выдерживать более высокие нагрузки без образования трещин. С предварительно напряженным бетоном инженер может также спроектировать более длинные пролеты, используя балку той же глубины.

Что такое предварительно напряженный бетон? — Практическая инженерия

Поговорите с любым специалистом по бетону, и он скажет вам, что первое правило бетона таково: он практически гарантированно треснет. Но не все трещины считаются одинаковыми, и есть способ укрепить бетон, чтобы минимизировать его негативное воздействие.Привет, я Грейди, и это практическая инженерия. Сегодня мы говорим о предварительно напряженном бетоне.

Несмотря на свои превосходные качества конструкционного материала, бетон также имеет некоторые недостатки. В предыдущих видео мы обсуждали то, что у него почти нет силы против напряжения. Бетон может выдерживать огромное количество сжимающих напряжений, но когда вы пытаетесь его разорвать, он легко сдается. Другая слабость бетона в том, что он хрупкий. У него нет «податливости», растяжения или пластичности.Объедините эти две слабости, и вы получите трещины. Бетон любит трескаться. А если вы проектируете или строите что-то из бетона, понимание того, сколько и где оно потрескается, может стать решающим фактором между успехом и неудачей вашей конструкции.

Чтобы понять, как инженер проектирует железобетонные конструкции, мы сначала должны понять критерии проектирования — или цели конструкции. Очевидная цель, которую мы все понимаем, — не упасть. Когда автомобиль проезжает по мосту и мост не разрушается, конструкция соответствует расчетному критерию предельной прочности.Но во многих случаях при проектировании конструкций предотвращение обрушения на самом деле не является ограничивающим критерием проектирования. Другая важная цель — избежать прогиба или движения под нагрузкой. Большинство структурных элементов довольно сильно отклоняются, прежде чем фактически выйдут из строя, и это может быть плохой новостью. Первая причина — восприятие. Люди не чувствуют себя в безопасности на конструкции, которая изгибается и изгибается. Мы хотим, чтобы наши мосты и здания казались прочными и неподвижными. Другая причина заключается в том, что предметы, прикрепленные к конструкции, такие как гипс или стекло, могут разбиться, если они будут слишком сильно отклоняться.

В случае железобетона прогиб оказывает еще одно воздействие: трещины. Армирование в бетоне обычно делается из стали, причем сталь намного более эластична, чем бетон. Итак, чтобы мобилизовать прочность стали, сначала она должна немного растянуться. Но, в отличие от стали, бетон хрупкий — не растягивается, он трескается. Так что часто это означает, что бетон должен треснуть, прежде чем арматурный стержень сможет принять на себя какое-либо растягивающее напряжение элемента. Эта демонстрация из теста в предыдущем видео, показывающем традиционную железобетонную балку.Вернитесь и посмотрите это видео, если вы его еще не видели. Обратите внимание, как эта балка выдерживает нагрузку на нее, даже если она треснула внизу. Он соответствует конструктивному критерию № 1 — без сбоев удерживает нагрузку (в данном случае 6 тонн). Но он не соответствует критерию проектирования № 2 (пригодность к эксплуатации) — он слишком сильно прогибается, и бетон треснет. Эти трещины не только плохо выглядят, но и в реальной конструкции могут позволить воде и загрязнениям контактировать с арматурой, что в конечном итоге приведет к ее коррозии, ослаблению и даже разрушению.

Одним из решений этой проблемы прогиба в бетонных элементах является предварительное напряжение или приложение сжимающего напряжения к элементу конструкции перед его вводом в эксплуатацию. Обычно это достигается путем натяжения арматуры в бетоне. Это дает элементу сжимающее напряжение, которое уравновешивает растягивающие напряжения, возникающие в элементе после его ввода в эксплуатацию. Традиционно армированный бетонный элемент не испытывает никакого сжатия с самого начала, поэтому он будет слишком сильно отклоняться, прежде чем окажется в опасности оказаться недостаточно прочным, чтобы удерживать нагрузку.Таким образом, с обычным армированием вы даже не сможете полностью использовать структурную прочность элемента. Когда вы предварительно напрягаете арматуру в бетоне, вы не обязательно увеличиваете ее прочность, но уменьшаете ее прогиб. Это уравновешивает максимальную нагрузку, разрешенную в соответствии с каждым из критериев проектирования конструкции, позволяя вам более полно использовать преимущества прочности каждого материала.

Есть два основных способа предварительного напряжения арматуры в бетоне, и, конечно же, я построил пару балок для демонстрации.Первый метод — это предварительное натяжение. И да, эта терминология немного сбивает с толку. Он предварительно напряжен, потому что сталь подвергается напряжению перед вводом элемента в эксплуатацию, но предварительно напряжен, потому что сталь подвергается напряжению до того, как бетон затвердеет. Чтобы это сработало, мне пришлось построить небольшую раму вокруг моей бетонной балки. Эта рама будет удерживать сталь в напряжении, пока бетон застывает. Я установил резьбовые стержни через форму и раму, а затем натянул эти стержни, затянув гайки.Я попытался использовать высоту звона, чтобы получить примерно одинаковое натяжение, и вы можете увидеть, насколько моя рама изгибается от силы, действующей в этих стальных стержнях. Другой метод предварительного напряжения стали — это последующее напряжение. При последующем напряжении сталь подвергается напряжению после затвердевания бетона, но еще до ввода элемента в эксплуатацию. В этой балке я отлил в форму гладкие пластиковые рукава. Стальные стержни могут легко скользить внутри гильз.

Когда обе формы были подготовлены, я залил их бетоном.И наконец, я получил вибратор для бетона строительного класса. Эта машина помогает удалить все пузырьки воздуха из свежего бетона до того, как он затвердеет. Этот процесс называется консолидацией. После того, как бетон успеет застыть, пора проверить балки. На предварительно натянутой балке я могу открутить гайки и снять эту раму. Поскольку бетон вокруг болтов затвердел, стальные стержни все еще находятся под напряжением внутри этой балки. Я положил его под гидравлический пресс для тестирования, и результаты легко увидеть.В балке, армированной обычным способом, где сталь просто заливают в бетон без какого-либо напряжения, трещины начинают образовываться при весе около 4 тонн. В предварительно натянутой балке трещины не появлялись, пока сила не увеличилась вдвое — около 8 тонн. Натяжение, уже находящееся в стали, способно выдержать усилие пресса, не требуя изгиба балки.

Для балки с последующим натяжением я вставил стальную арматуру после того, как бетон затвердел. Затем я затянул болты на стержнях, чтобы предварительно натянуть сталь.Под гидравлическим прессом результаты практически идентичны. Напряжение в стальной балке удерживало сжатие намного дольше, чем это могло бы сделать элемент, армированный обычным способом. Конечно, трещины со временем появляются, но прежде чем они появятся, нужно приложить гораздо больше усилий. Это потому, что добавление силы к балке не создает напряжения, а просто снижает сжатие, которое уже было вызвано растяжением в стальных стержнях.