Песчаная подушка под ленточный фундамент на глине: Страница не найдена — Строим домик

Содержание

Нужна ли песчаная подушка под ленточный фундамент если грунт глина

Фундамент на глине

Фундамент на глине при строительстве вызывает немало сложностей, особенно при близком расположении грунтовых вод. Глины, насыщенные водой – рекордсмены по силе морозного пучения. На фундаменты и все другие подземные строения на глине эти силы влияют, вызывая серьезные деформации, трещины, провалы и разрушения. Конечно, большей частью в тех случаях, когда фундамент на глине спроектирован с ошибками и без учета влияния грунтов основания.

Морозное пучение глин

Мерзлотоведение – это раздел инженерной геологии и очень серьезная наука, которая в числе прочего разрабатывает особые методы исследования особенностей промерзших грунтов и способы качественного строительства на этих крайне непростых грунтах.

Влажная глина промерзает довольно сложным образом. Глина замерзает не сразу всем массивом, так как она имеет поры, хотя визуально это и не заметишь. Сначала становится льдом вода в крупных порах и цементирует частицы грунта, в результате чего слабая глина превращается в скальный грунт, который можно разрабатывать только киркой, а то и взрывчаткой. Увеличение объема при замерзании около 9%. Понятно, что весной эта скала превратится в грязь.

Но на замерзании воды в порах грунта дело не заканчивается, поскольку в течении долгой зимы идет процесс постоянного возрастания влажности глины, по причине подсоса грунтовой воды из нижнего горизонта. А если УГВ высокий и эта вода рядом – замерзший грунт может вобрать ее столько, что образует целые прослойки из льда, при этом настолько увеличит свой объем, что легко и просто поднимет дом, вспучит дорожную одежду из асфальтобетона, деформирует железнодорожные полотна и взлетную полосу аэродрома и т. подобное. Десятки сантиметров пучения зимой – явление нередкое.

А весной налицо результат этого явления, получившего название морозного пучения – жидкий растаявший грунт становится грязью, асфальт разрушен, на дороге ямы и выбоины, здания дали просадку, а фундамент пошел трещинами. И ремонт зачастую уже не поможет.

Еще одно «интересное» явление – промерзший водонасыщенный грунт имеет свойство смерзаться с фундаментом, в том числе и со сваей, как и с любой подземной конструкцией. Давление от мерзлого грунта, возникающее при этом, настолько велико, что ломает сваи. На вертикальные поверхности фундаментных стен эти силы действуют по касательной, и разрушая, и выталкивая строения из земли. Одно из эффективных средств предотвратить все это – устроить вертикальную гидроизоляцию фундамента с применением рулонных материалов, это существенно снизит сцепление и заставит мерзлый грунт «скользить» по поверхности, при этом касательные силы пучения будут в значительной степени нивелированы.

Но профессиональные строители и дорожники не просто имеют кучу неприятностей от процесса морозного пучения, а вполне эффективно с ним борются. Способы разные, иногда с применением химии. Но на своем участке лучшим методом борьбы с пучинами является простое средство – осушение. Если удалось отвести воду, устроив эффективную систему дренажа, то пучение или не возникнет, или будет намного слабее.

Но прежде чем бороться, нужно узнать врага в лицо. Чтобы возвести капитальный дом на глинистом грунте, нужны геологические исследования и проектные расчеты. Обращение в проектную организацию в данном случае будет практичным решением, а строительство с соблюдением технологий, и по проекту, выполненному специалистами, избавит от неприятных сюрпризов в дальнейшем.

В случае, когда строится баня, гараж или небольшой дом, выполнить качественный фундамент на глинистой почве возможно самостоятельно, изучив вопрос технически и руководствуясь строительными нормативами.

Определение характеристик грунта

Сначала нужно определиться с некоторыми характеристиками грунтов вашего участка:

  1. Содержанием глинистых частиц в почве
  2. Влажностью грунта
  3. Глубиной промерзания грунтов (ГПГ) для данного района
  4. Уровнем грунтовой воды (УГВ)

О том, как визуально определить состав грунта, многих людей учить не надо, все, кто имеет дело с землей, прекрасно разбираются, что же за грунт у них под ногами.

Если взять в руку комок влажного грунта, размять и попробовать скатать его колбаской или сделать «шнур», то песок – просто рассыплется, суглинок или «жирная» супесь сначала скатается колбаской, но быстренько потрескается и развалится на кусочки. Но если в ладони скаталась целая и эластичная «колбаса» — ясно, что перед вами глина. То есть — вы имеете грунтовое основание для строительства особой сложности.

Влажность тоже можно оценить без лабораторных методов, хотя и не в точных процентах. Если оставить комок глинистого грунта на воздухе, и он будет сохнуть часами – значит, глина влажная. Именно такая глина способна дать сильные сезонные пучения и подвижки.

Уровень грунтовой воды участка определяется, если есть колодец. Если нет – можно определить при бурении скважины или шурфа. Информацию можно получить и от соседей, ведь при строительстве часто копают колодцы и бурят скважины.

Глубина промерзания грунта

Глубина промерзания грунта – являются справочными данными, они есть в строительных нормативах, с классификацией по районам строительства.

Нужна ли песчаная подушка под ленточный фундамент

Одной из самых популярных веток на FORUMHOUSE является раздел о фундаментах, ведь наши эксперты всегда готовы ответить на любой вопрос. Многие начинающие застройщики интересуются, зачем нужна песчаная подушка под фундамент и нужна ли она вообще. В этой статье мы будем искать ответ на данный вопрос.

Песчаная подсыпка делается сплошь и рядом при большинстве работ с основанием дома. Но одни строители полагают, что она обязательна во всех случаях, другие – что только при определённых условиях, а в остальных случаях просто вредна.

Чтобы узнать, зачем нужна песчаная подушка и нужна ли подсыпка песка по всей площади, обратимся к практическому опыту экспертов нашего сайта.

Нужна ли подушка под ленточный фундамент

Песчаная подушка под ленточное основание дома делается практически всеми, поскольку кажется гарантией его прочности и долговечности. Однако песок в вырытую траншею многие могут засыпать, руководствуясь принципом: «чем больше, тем лучше, ведь так делают все». Не учитывается ни геология участка, ни особенности грунта и его несущая способность, ни уровень грунтовых вод.

Я читал, что ленточный фундамент должен опираться на неразрушенный (нетронутый) слой грунта, и песчаная подушка ему не требуется. Но многие мои знакомые перед заливкой ее делали. На вопрос «зачем» отвечают – «видели у соседей».

Чтобы внести ясность, надо чётко для себя определить: о каком типе ленточного основания дома идёт речь. А именно:

  • малозаглублённом – МЗФЛ;
  • заложенном ниже глубины промерзания;
  • монолитном;
  • сборном из блоков ФБС.

Каждый из этих четырёх видов требует индивидуального подхода при подготовке основания.

Для чего нужна подушка из песка под монолитный фундамент

Подушка под ленточный фундамент может не делаться, если речь идёт о монолитном основании. Но только при соблюдении следующих условий:

  • Грунт непучинистый;
  • Грунт под основанием песчаный;
  • Лента заливается ниже глубины промерзания, с бетонной подготовкой под подошвой;

Для сборного основания, из блоков ФБС песчаная подушка просто необходима, т.к. только песком можно выровнять все неровности, которые остались после выборки (т.е. снятия разрыхлённого слоя) грунта. Только песок можно уплотнить практически до природной плотности.

Если этого не сделать, то фундаментный блок ляжет на грунт неровно (не всей поверхностью подошвы), и под ним могут оказаться пустоты. Это приведёт к неравномерному давлению основания дома на грунт. Соответственно, увеличивается вероятность его неравномерной просадки.

При устройстве сборного фундамента выполняется песчаная подготовка толщиной в 10-15 см.

Зачем нужна подушка под ленточное основание

Я как-то спросил у главного инженера строительной фирмы, зачем в фундамент песчаная подушка.Он сказал: чтобы выровнять основание под «0» и для экономии бетона.

Если устраивается монолитное ленточное основание, то добиваться «зеркального» основания уже не нужно, т.к. в силу пластичности заливаемый бетон заполняет все неровности. Соответственно, подошва основания будет опираться на почву всей своей поверхностью и перераспределит нагрузку на грунт.

Когда речь заходит о МЗФЛ, то песчаная подушка необходима, т.к. с её помощью пучинистый грунт заменяется на непучинистый. Причём, МЗФЛ требует устройства дренажной системы, утеплённой отмостки и утепления самого фундамента. Эти меры минимизируют силы морозного пучения, действующие на него.

При устройстве песчаной подушки важно понять, какой грунт находится под будущим основанием. Если почва с невысокой водопроницаемостью (это в первую очередь касается суглинков и глин), то песок, являясь менее плотным, станет местом, где постоянно будет скапливаться вода. Результат – со временем несущая способность постоянно переувлажнённого грунта уменьшится, что может привести к просадке фундамента.

Вопрос применения песчаной подушки надо рассматривать, исходя из конкретных характеристик грунта, уровня УГВ, веса и конструкции здания, глубины промерзания. Нельзя считать песчаную подушку универсальным средством, подходящим для строительства любого основания, без её привязки к конкретным условиям эксплуатации здания.

Подсыпка под фундамент: песок или щебень

  • 20-30 см – это минимальная толщина песчаной подушки;
  • Для выравнивания основания достаточно толщины в 5-10 см;
  • Для засыпки лучше всего подходит крупнозернистый песок.

Что из себя представляет подушка под ленточный фундамент + правильная технология укладки

Конструкция ленточного фундамента экономична и проста.

В большинстве случаев он образует опору для наружных и внутренних несущих стен, являясь их продолжением в нижней части и опираясь на грунт.

Для уменьшения нагрузок, создаваемых процессами пучения и прочими факторами, между лентой и дном траншеи создают слой песчано-гравийной подсыпки, играющий роль демпфирующей и дренажной прокладки.

Функции песчаной подушки важны, но полного понимания ее роли в строении ленточного фундамента у большинства неподготовленных людей нет.

При самостоятельном строительстве никаких неясных вопросов быть не должно, поэтому о строении и функциях слоя песчаной засыпки следует поговорить особо.

Что представляет собой подушка под ленточный фундамент?

Подушка — это уплотненный слой песчаной или песчано-гравийной подсыпки, образующий ровную и горизонтальную площадку для размещения бетонной ленты.

Она выполняет несколько важных функций:

  • Выравнивание опорной линии.
  • Компенсация нагрузок пучения, создаваемых грунтовыми слоями.
  • Замещение проблемных грунтов, непосредственно соприкасающихся с лентой, на более устойчивые и стабильные слои.
  • Отсечка бетонной ленты от воздействия влаги, предотвращение капиллярного впитывания воды.

Слой отсыпки, более рыхлой по сравнению с окружающим грунтом, позволяет дренировать траншею путем сбора влаги на дне и отвода по системе дренажных труб в специальный колодец.

Кроме того, даже относительно тонкий слой песка способен эффективно компенсировать нагрузки пучения, что особенно заметно на мелкозаглубленных типах ленты.

Нужна ли она

Несмотря на важную и ответственную роль песчаной подушки, нередко звучат доводы против ее использования.

Аргументы, которые приводят противники подсыпки, звучат следующим образом:

  • Как бы тщательно ни трамбовался слой песка, некоторая осадка будет присутствовать в любом случае. Чем толще подушка, тем сильнее осадка, которая создает существенную опасность для ленты из-за своей неравномерности. Из-за этого толщину подсыпки ограничивают — она не должна быть больше, чем трехкратная ширина ленты.
  • Слой песка, засыпанный в траншею, выкопанную в глинистом грунте, станет аккумулятором для влаги. Глина не выпустит ее из углубления, поэтому необходима качественная дренажная система.
  • Слой подушки приходится учитывать при расчете глубины траншеи или котлована, что увеличивает объемы земляных работ и количество вынутого грунта.

Специалисты, имеющие многолетнюю практику, единодушны во мнении, что основной функцией подушки является выравнивание дна траншеи (или котлована). Образовать ровную и горизонтальную площадку одним только рытьем никогда не удается.

Все попытки в этом направлении оборачиваются значительной тратой времени без удовлетворительных результатов, поэтому подсыпка позволяет сократить время подготовки. В отношении дренажа ситуация обычно известна заранее, поскольку гидрогеологическая обстановка на участке анализируется в первую очередь.

Поэтому приоритетная задача подушки — образование ровной и горизонтальной опорной линии на нужном уровне высоты.

Остальные функции песчаной засыпки можно считать дополнительными, хотя и они имеют немалое значение и выполняются вполне эффективно.

Существует несколько вариантов конструкции подушки под ленту:

  • Песчаная. Представляет собой слой песка определенной толщины, максимально уплотненный и горизонтальный. Распределяет нагрузку от веса ленты и постройки, обеспечивает отсечку от грунтовых вод, позволяет заменить неподходящий грунт на более стабильный и дешевый речной песок. Используется преимущественно для относительно легких построек, под тяжелые и массивные здания такая подушка не используется.
  • Гравийная подушка. Используется слой гравия или щебня, позволяющий значительно увеличить вес постройки. В частном строительстве такой тип подушки используется достаточно широко, поскольку позволяет более плотно утрамбовать слой засыпки и обладает высокой несущей способностью для любых домов. В составе гравийной засыпки песок также присутствует, заполняя полости между более крупными элементами, что делает слой более плотным. Обычно присутствует 60% щебня и 40% песка.
  • Бетонная стяжка (подбетонка). Представляет собой слой заливки из бетона меньшей плотности. Наиболее прочный и надежный вариант подушки, обеспечивающий горизонталь и высокую несущую способность. Применяется для самых тяжелых построек, обходится в значительные суммы.

Выбор наиболее подходящего варианта обусловлен весом будущей постройки, особенностями грунта и прочими факторами. Он производится во время создания проекта, при расчетах фундамента.

Условия, при которых требуется подсыпка

Наличие подушки обязательно при создании мелкозаглубленного ленточного фундамента. Слои грунта, расположенные под лентой, создают нагрузки, выталкивающие основание из траншеи. Подушка принимает на себя эти усилия и в значительной степени компенсирует их.

Дополнительным условием наличия подушки является возможность попадания в траншею грунтовых или дождевых вод. Слой засыпки способствует аккумулированию стоков на дне траншеи, где влага попадает в дренажные трубы и выводится в специальные колодцы или водоемы.

Необходимо учитывать, что песчаная подушка хотя бы минимальной толщины присутствует в любом случае.

Она выравнивает дно траншеи, позволяя получить горизонтальную и ровную плоскость без использования сложных и трудоемких технологических приемов.

Что выбрать, песок или щебень?

Выбор материала для засыпки обусловлен весом постройки. Чем она тяжелее, тем крупнее фракция засыпки должна быть использована. Песчаный слой имеет более заметную осадку, поэтому его чаще всего применяют для каркасных, деревянных домов, построек из ячеистых бетонов и т.д.

Используется чистый речной крупнозернистый песок, не имеющий посторонних (в особенности — органических) примесей или глинистых включений.

Слой щебня имеет большую упругость и несущую способность. Его проще и легче трамбовать, подушка получается более жесткая и надежная. Засыпку из гравия или щебня используют при строительстве домов большей этажности, из тяжелых и плотных материалов.

В чистом виде щебень не применяется, на практике используется ПГС (песчано-гравийная смесь) в соотношении 60% щебня к 40% песка, хотя в некоторых ситуациях объем песка может быть уменьшен или увеличен.

Какая толщина должна быть для различных материалов

Толщина слоя засыпки, рекомендуемая при строительстве ленточного фундамента, зависит от внешних факторов. В расчет принимаются параметры постройки (вес, размеры) и свойства грунта (состав, уровень грунтовых вод, величина морозного пучения). Определение параметров подушки производится при расчете фундамента, это сложная инженерная задача, доступная только подготовленным и грамотным специалистам.

При использовании песчаной засыпки, наиболее распространенная толщина слоя находится в диапазоне 25-60 см. Верхним пределом толщины слоя принята трехкратная ширина ленты, но до таких значений обычно никогда не доходит.

Материал укладывают послойно, по 20 см и тщательно уплотняют. Для увеличения плотности трамбовки подушку смачивают водой.

Подушка из щебня может состоять из разных видов материала:

  • Известняковый.
  • Гравийный.
  • Гранитный щебень.

Наиболее востребованная фракция — 20-40 мм. Минимальная толщина слоя — 25 см. Укладывается на песчаный подготовительный слой 15-20 см, что необходимо учитывать при расчете глубины траншеи.

Песок увлажняется и тщательно трамбуется, после чего производится укладка щебня с увлажнением и трамбовкой.

Все работы выполняются с максимальной тщательностью.

Плотность слоя подсыпки согласно СНиП должна составлять не менее 1,6 т/м3, что требует использования строительной техники (или, как минимум, усердной работы ручной трамбовкой или катком).

Технология укладки

Рассмотрим порядок действий при создании подушки под ленточный фундамент. Для большей информативности следует обратиться к ленточному фундаменту под массивный двухэтажный коттедж из штучных материалов (кирпича).

Его вес достаточно велик, чтобы использовать гравийную подушку.

Необходимо выполнить следующие этапы работ:

Песчаная засыпка

Это самый нижний слой, обеспечивающий горизонталь и ровную поверхность. Он имеет толщину 15-20 см, засыпается и выравнивается по горизонтали. Производится тщательная трамбовка с поливом водой до появления максимальной плотности.

Распространенным методом контроля качества уплотнения песка является ходьба по поверхности засыпки — если следов не остается, работа выполнена качественно. Некоторые источники предлагают под песчаную засыпку укладывать слой бутового камня.

Рекомендация сомнительная, так как песок заполняет промежутки между крупными обломками и сложнее трамбуется, что впоследствии проявится в виде увеличенной осадки фундамента.

Засыпка щебня

Укладка материала производится послойно, минимальная толщина засыпки составляет 25 см. При укладке материал тщательно выравнивается по горизонтали и трамбуется с увлажнением и использованием строительной виброплиты.

Наличие песка в массе щебня позволяет получить более плотный слой, допускающий качественную трамбовку. Основная задача — постоянный контроль горизонтали поверхности слоя засыпки. Если не проверять состояние и уровень, то можно получить волнистый слой с заметным уклоном, что недопустимо.

Выравнивающий слой

После окончания укладки и трамбовки слоя ПГС производится повторная засыпка относительно тонкого (около 5 см) слоя песка. Он выполняет функции выравнивания и «запечатывает» поверхность слоя щебня, образуя плотную и гладкую поверхность для укладки геотекстиля.

Этот материал необходим для исключения утечек воды при заливке подбетонки (если она планируется), либо при заливке основной ленты. Материал укладывается на уплотненный выравнивающий слой с заходом на стены траншеи, чтобы залитый бетон оказался в ложбине и вода из него не уходила в грунт.

При заливке основной ленты слой геотекстиля служит дополнительной защитой от утечек на случай, если арматурный каркас порвет гидроизоляционную пленку.

Полезное видео

В данном видео вы узнаете, как правильно сделать подушку под ленточный фундамент:

Заключение

Создание песчаной подушки под ленту является важным и необходимым этапом строительства ленточного фундамента. Основной задачей является понимание смысла всех действий и соблюдение технологии строительства, результатом чего станет прочная и надежная опорная поверхность.

Необходимо выбирать качественный материал, экономия на создании элементов фундамента недопустима. Это позволит снизить осадку и создать надежное и стабильное основание.

Нужна ли песчаная подушка под ленточный фундамент на глине

Песчаная подушка под ленточный фундамент своими руками

Из бетонных фундаментов домов наиболее распространены ленточные, которые очерчивающие периметр дома непрерывным поясом, лентой. Ее основа — подушка под ленточный фундамент выполняется подсыпкой самостоятельного слоя прочного грунта. Зачем нужна такая подсыпка, какие материалы используют для ее устройства? Можно ли без нее обойтись? Ответ на эти вопросы вы сможете узнать, прочитав статью.

Назначение конструктива

Подушка или подготовка выполняет следующие функции:

  • Равномерно распределяет давление подошвы фундамента на грунт. Пятка фундамента если ее уложить прямо на грунт будет опираться не всей плоскостью. Дно траншеи (котлована) имеет неровности, поэтому при укладке фундамент сначала обопрется на выступающие части. По мере увеличения нагрузки он станет сминать грунт. Этот процесс продолжится, пока выступы не сравняются. Осадка может быть мизерной, но она все же будет. Причем перекос основания на миллиметр, способен обернутся десятками сантиметров в верней части дома. Материал подушки, песок или щебень, имеет относительно мелкую фракцию. Он заполняет все неровности, обеспечивая фундаменту сплошную площадь опирания. Даже если за счет естественного уплотнения грунта осадка и произойдет, то будет равномерной. Кроме того, за счет явления именуемого «призмой давления», нагрузка через подушку передается не строго вертикально, а под расширяющимся углом. Что дает тем большую опорную поверхность, чем больше толщина слоя подсыпки под фундаменты.
  • Служит выравнивающим слоем. Даже копка лопатой, не говоря уже об экскаваторах, дает отклонения от горизонтали, дает те самые неровности, о которых мы говорили в предыдущем пункте. С помощью подушки основание под фундаменты можно вывести, как говорят строители: «в ноль».
  • Обеспечивает точную подгонку высотной отметки фундамента. Низ фундаментной плиты должен располагаться относительно других объектов на высоте строго (до миллиметра) определенной проектом. Копая котлован экскаватором (да и вручную) точно на эту отметку выйти крайне сложно. Поэтому строители выбирают грунт немного ниже, чем требует уровень посадки фундамента. Этот запас и компенсирует подушка.
  • Укрепляет верхний слой грунтового основания. Разрабатывая грунт, мы неизбежно нарушаем его целостную структуру. Кроме того, сам процесс происходит не мгновенно. Поэтому грунт дна котлована подвергается влиянию влаги, ветра и пр. на протяжении как минимум часов.
  • Поскольку бетон воду не пропускает, в слоях прилегающих к телу фундамента может скапливаться влага. В подобных случаях подушка работает дренажом, позволяя воде проходить свободно. Это свойство особенно важно у фундамента для заборов, которые часто препятствуют движению талых и дождевых почвенных вод.

Материал подушек

Слой отсыпки делают песком или щебнем. Устраивают так же смешанные песчано-щебеночные и песчано-гравийные подушки. На пучинистых грунтах, в других случаях, где требуется высокая прочность, устраивают бетонные подушки. Для их изготовления применяют «тощий» бетон, марки 100. Его готовят на щебне фракции до 10 мм, воды добавляют совсем немного. Укладывают не заливкой в опалубку, а засыпая на дно котлована. После чего уплотняют прокаткой.

Такой конструктив прочнее подушки устроенной только из песка и щебня, однако, не обладает свойством дренирования. Поэтому он предпочтительнее для устройства фундаментов на глине или плотном суглинке. Там где грунты не образуют водоносный слой.

Не допускается применение при устройстве подушек материалов засоренных естественным грунтом (суглинком, черноземом), органическими остаткам. С содержанием пылевидных частиц больше 10%.

Более подробно характеристики материалов подушки регламентирует ГОСТ 25100-95.

Изготавливаем подушку под фундамент

Процесс устройства подушки своими руками для удобства изложим в виде пошаговой инструкции:

  1. Сначала делаем расчет толщины подушки. Для этого сравниваем глубину котлована с проектом, используя нивелир. В идеале определим высотные отметки по всей ширине основания будущей подушки через каждые 2-3 метра и составим исполнительную схему.
  2. В зависимости от необходимой высоты отсыпки будем использовать только подсыпку песчаную или из щебня.
  3. Если проект предусматривается уплотнение дна котлована, поступаем следующим образом: отсыпаем слой щебня или гравия. Его толщина не должна превышать 1,5-2 размера самых крупных частей. Затем ручной или механической трамбовкой вбиваем частицы щебня в поверхность грунта.
  4. СНиП допускает толщину слоя подушки из песка без специального уплотнения не более 100 мм. Если необходима подсыпка большего массива, его уплотняют, проливая водой или послойной трамбовкой.
  5. Для подушек значительной толщины используем щебень. Укладываем его слоями, толщиной не более 25 см при ручном и не более 40 см при механическом уплотнении. Окончательное выравнивание производим тонким слоем песка. При укладке двигаемся от крупной фракции к мелкой. Для толстого слоя может потребоваться даже отсыпка крупным бутом. Промежутки между его камнями заполняем мелкой фракцией, или как еще говорят — расклиниваем.
  6. Завершаем работы проверкой отметки с помощью нивелира. Строительные нормы требуют при этом вычерчивания исполнительной схемы и составления акта на скрытые работы. В акте указываем, какими чертежами мы руководствовались, и какие материалы были использованы.

Какая и где подушка необходима

Точный ответ о необходимости и технологии устройства подушки может дать только проект. Но существуют некоторые общие моменты:

  • Подушки устраивают под фундаментами из сборного железобетона.
  • При изготовлении монолитных фундаментов обычно ограничиваются уплотнением грунта щебнем и устройством гидроизоляции.

Главное же качество, которое требуется от образующего подушку материала — несжимаемость. Частицы ее, будучи утрамбованы, не должны сдвигаться относительно друг друга даже на доли миллиметра. Только в этом случае подсыпка даст необходимый эффект.

Песчаная подушка под ленточный фундамент

Всё про фундаменты

Песчаная подушка для ленточного фундамента

Основой здания всегда считается его фундамент, на который и будут приходиться все виды нагрузок. Для жилых домов небольшой площади оптимальным вариантом станет ленточный вид фундамента. Но чтобы основание дома оставалось целым и долговечным, необходимо проложить под него специальную прослойку. В жилых строениях применяется песчаная подушка под ленточный фундамент для обеспечения сухости грунта вокруг основания здания и равномерного распределения нагрузок.

Виды подушек, используемых для ленточных фундаментов

При строительстве жилого объекта применение ленточного типа основания всегда целесообразно. Это позволяет сократить время работ, средства на материалы и облегчить сами строительные операции. Но под такой тип фундамента всегда ложится подушка, которая обеспечивает:

  • ровную поверхность под заливку раствора,
  • прочность будущей конструкции основания,
  • устранение влаги на грунтах, прилегающих к фундаменту,
  • отсутствие осыпания грунта или сильного его оседания,
  • защиту от промерзания основания здания.

Имеется несколько типов прослоек, которые используются под фундамент жилого здания. Каждая из них обладает своими свойствами и кладется на определенные виды грунта:

  1. Бетонная подушка – особо прочная, с высокой надежностью. Но сильно дорогостоящая, и нуждается в дополнительном разравнивании основы при помощи щебневых камней.
  2. Гравийная подушка – средней прочности, невысокой цены. Но нужна специальная прослойка из песков средних зерен под низ.
  3. Щебневая подушка – приемлемая прочность, устойчивость на слабом грунте. Но при небольшой стоимости нуждается в специальном слое песков среднего зерна. Камни должны быть не больше 40 мм и желательно одинаковой формы.
  4. Песчаная подушка – с хорошими свойствами, относительно недорогая, выполняющая все условия для основы под фундамент на всех видах почвы, в том числе и пучинистых.

Так как подушка считается первым слоем в возведении дома, к ее устройству стоит подходить тщательно.

Подготовительные работы перед созданием подушки

С чего начинать все работы? С того, что просчитать размеры будущих траншей. Глубина часто выполняется неверно, и тогда фундамент выступает сверху траншей, портя общую картину здания. Для правильных расчетов стоит сложить все основные величины и на основании этого рыть траншеи.

Величина, на которую стоит заглубить траншею, выполняется из такого расета: высота подушки плюс армирование и размер фундамента. А высоту подушки часто предлагают делать в тройном размере ширины фундамента. Это оптимальный размер прослойки, при котором на любых грунтах можно не опасаться за проседание здания или его перекосы.

Стоит знать, что чем выше подушка, тем больше защиты получает фундамент от пучинистых грунтов. Поэтому при такой проблеме с почвой не нужно экономить на подушке.

Ширину траншеи часто делают под подушку. Поэтому она должна быть на 26-30 см шире самого фундамента. При таких расчетах гидроизоляция будет самой лучшей, если добавить несколько слоев битума или материалов на его основе.

Выполнив расчеты и прокопав траншею по данным размерам, можно приступать к выполнению прослойки для ленточных типов фундамента. Исключением становится такой проект, который предполагает наличие подвала большого объема. Тогда подушку стоит делать на всю площадь будущего помещения. Ведь полы будут стягиваться из бетона, а значит, дополнительная гидроизоляция помещения и распределение равномерной нагрузки будут не лишними.

Создание подушки песчаного типа

Для подушки стоит использовать влажный песок, хорошо промытый от примесей глины и травы. Это обеспечит равномерное распределение песка по всей ширине траншеи и устранит воздушные зазоры. Иногда песок можно мочить и в траншеях. Но это не рекомендуется делать на пучинистых почвах.

Насыпать песок стоит в несколько приемов. После каждого небольшого слоя песка в 15 см, нужна обязательная утрамбовка. Часто для уплотнения подушки на рыхлых грунтах добавляют щебень мелких или средних фракций. Его насыпают тонкими слоями в середину каждого слоя песка перед утрамбовками.

Если ширина прослойки позволяет, можно утрамбовывать ее специальными катками или вибраторами. Но для постройки жилых помещений небольшого размера траншеи под фундамент не сильно широкие. Поэтому утрамбовка происходит вручную, при помощи тяжелого бруса с поперечной ручкой. Здесь главное не перестараться, чтобы не повредилась гидроизоляция, проложенная снизу данной прослойки.

Иногда щебень добавляют прямо в песок перед засыпкой. Такие смеси тоже хорошо проявляют себя, усаживаясь равномерно и плотно по всей длине траншеи.

Гидроизоляционная защита подушки

Для создания прослойки с хорошими параметрами, какой считается песчаная подушка, необходима дополнительная система защиты от грунтовых вод, то есть гидроизоляция. Для того чтобы гарантировано защитить основание здания от близко подступающих вод, нужна прослойка из горячего битума или материалов, его содержащих.

Такие слои располагают снизу прослойки, для защиты ее от поднимающихся вод и лишней влажности. Если используются рулонные материалы, то уместна гидроизоляция из 2-3 слоев. А горячим битумом можно покрыть всего один раз.

По верху фундамента тоже должна проходить гидроизоляция между основанием фундамента и будущими стенами. Это убережет стены от постоянной сырости во время эксплуатации здания.

Часто после заливки основы и ее затвердения возникает необходимость в подсыпании материалов на грунт. Лучшим элементом считается щебень среднего зерна. Подсыпание делают для выравнивания основания перед дальнейшим строительством здания.

Подушка под ленточный фундамент — для чего она нужна?

Любое капитальное строение возводится на фундаменте. Фундамент выполняет главную функцию обеспечения надежности и прочности всего строения. От того, насколько качественно сделан фундамент вашего дома, будет зависеть длительность эксплуатации самого дома, нормальное открывание и закрывание дверей и окон, соблюдение геометрических размеров крыши и всего строения.

Фундаменты различаются по форме и несущей способности, по применению относительно вида грунта и другим параметрам. Это могут быть сборные и монолитные фундаменты, свайные с ростверком и отдельно стоящие для колонн и прочие. Но для строительства частного дома обычно применяются ленточные фундаменты, которые в полной мере обеспечивают прочность и надежность всего дома.

Что такое подушка под ленточный фундамент?

Важно понимать необходимость устройства песчаной или гравийной подушки под ленточные фундаменты, её роль заключается:

  • в отводе грунтовых вод от основания фундамента, тем самым предохраняя его от вспучивания в зимний период,
  • в равномерной передаче нагрузок от фундамента на нижележащий грунт,
  • в выравнивании основания для последующей заливки фундамента.

Если на участке строительства наблюдаются высокие грунтовые воды, то необходимо перед тем, как устраивать песчаную подушку, проложить на дно траншеи геотекстиль, который предотвратит заиливание песка окружающим грунтом.

При устройстве ленточного фундамента главным параметрами являются:

  • его глубина , которая зависит от уровня промерзания в данном регионе грунта и веса самого здания, т. е. расчетных нагрузок на фундамент,
  • ширина , которая зависит от выбранного материала для стен и их толщины и определяется зимними температурами в данном регионе.

Но при устройстве любого фундамента его ширина должна быть больше толщины стены на 10-15 см или, в крайнем случае, быть равной ей.

Совокупность всех условий дает возможность выбора вида фундамента – заглубленного или мелкозаглубленного. Но в любом случае первым делом проводится подготовка ленточного фундамента, которая заключается в расчетах, рытье траншеи и устройстве подушки.

Иногда фундамент делают в виде трапеции (когда основание шире верха), что позволяет сократить расход бетона и арматуры при сохранении несущих способностей фундамента.

Материалы для устройства подушки

В качестве материала для подушки ленточного фундамента используются:

  • крупный речной песок,
  • щебень,
  • галька,
  • а также бетон или железобетон.

Устройство подушки для фундамента

Если для устройства подушки используется песок, то он не должен быть пылеватым и мелкой фракции, а также не должен содержать в своем составе глинистых примесей.

Если на участке строительства грунты слабые, то для устройства подушки лучше использовать песчано-щебеночную или песчано-гравийную смесь, где 40% крупного песка и 60% гравия или щебня.

Такие подушки для легких строений (каркасные или деревянные дома) не нуждаются в трамбовании и увлажнении. Для более мощных сооружений послойное увлажнение и трамбование обязательно и для этого вида подушек, несмотря на то, что они дают наименьшую усадку по сравнению с песчаными подушками после их укладки.

Не рекомендуется устраивать подушку для ленточного фундамента из глинистых грунтов под тем предлогом, что глина будет препятствовать проникновению грунтовых вод под основание фундамента. Вода, задерживаясь в слое глины, не доходит до основания фундамента, но тем самым увеличивает пучинистость грунта в зимний период.

Способ устройства подушки под фундамент

Укладка песка на дно траншеи происходит слоями толщиной 10-20см, каждый из которых увлажняется и трамбуется.

Электрическая виброплита для трамбовки

Для трамбования песка:

  • при строительстве фундаментов большой площади используются: катки или площадочные вибраторы,
  • в частном домостроении пользуются самодельными трамбовками в виде обрезка бревна с поперечной ручкой наверху.

Проливать водой песок можно, если грунт под основанием строящегося фундамента позволяет это делать. Если же грунт слабый, поддающийся размывке водой, лучше укладывать уже влажный песок в траншею для последующего трамбования.

Увлажнять песок до его укладки в траншею полезно еще и тем, что при этом вымываются все глинистые включения в него.

Общая высота песчаной подушки под ленточный фундамент может составлять до 60см, в зависимости от состояния грунтов. По рекомендациям зарубежных строителей, толщина подушки должна быть 20 см, но российские специалисты рекомендуют делать высоту подушки равной трем размерам ширины фундамента. Для сильнопучинистых грунтов толщина подушки может достигать и 80 см.

Ширина подушки ленточного фундамента должна быть больше, чем сам фундамент, как минимум, на 10-15 см в обе стороны.

Иногда делается бетонная подготовка для монтажа сборного ленточного фундамента.

Такое конструктивное решение обуславливается особенностью грунтов и удобством при сооружении арматурного каркаса:

  • Бетонная поверхность позволяет установить арматурные каркасы или сетки с максимальной жесткостью.
  • По бетонной подготовке легче работать с установкой опалубки и арматурой в зимнее время.

После геодезической разметки осей будущего фундамента устраивается песчаная подушка толщиной 10-15см и шириной на 30-40 см больше чем основание фундамента, после чего делается бетонная подготовка под ленточный фундамент из бетона низкой марки, называемым еще «тощим бетоном» или цементно — песчаного раствора.

Размеры бетонной подготовки выдерживаются для установки двух-трех фундаментных блоков, затем процесс повторяется до окончания монтажа всего сборного фундамента.

При устройстве песчаной подушки или бетонной подготовки необходимо учитывать их высоту, чтобы готовый фундамент не выступал за проектные отметки по горизонтали. Копать траншею или котлован следует, исходя из размеров подушки и высоты самого фундамента.

Устройство бетонного основания под ленточный фундамент позволяет уменьшить величину защитного слоя бетона над арматурным каркасом.

Если при песчаной подушке защитный слой должен составлять не менее 5-7см, то при бетонной подготовке его величина снижается до 3-4 см.

Если в проекте дома запланировано подвальное помещение, то песчаная подушка под ленточный фундамент распространяется на всю площадь подвала, так как особенности грунта будут действовать одинаково и на фундамент, и на пол подвала, который всегда выполняется из бетона.

Нужно помнить, что чем большую толщину имеет подушка под фундамент и пол подвала, тем меньше проблем создастся с пучинистыми грунтами . И фундамент, и пол будут надежно защищены величиной слоя песка или гравия.

Ленточный фундамент на песчаной подушке требует обязательно гидроизоляции, для защиты от грунтовых вод. Гидроизоляция проводится путем наклейки рулонных материалов на битумной основе или горячим битумом в один-два слоя. Кроме этого, верх ленточного фундамента также подвергается гидроизоляции, чтобы влага, присутствующая в бетоне не передавалась материалу стен.

Если ленточный фундамент делается для дальнейшего строительства каркасного дома, необходимо при заливке бетона в тело фундамента вставлять закладные детали, к которым крепятся детали каркаса дома.

Песчаная подушка под фундамент: в каких случаях она просто не нужна

При возведении фундамента принято насыпать и утрамбовывать слой песчаной подушки. Осуществление этого мероприятия многие застройщики считают абсолютно неоспоримой необходимостью.

Есть такие случаи, когда без песчаной прослойки фундамент действительно получается ненадёжным. Но укладку песчаного слоя уместно делать далеко не всегда, иногда его насыпкой можно даже ухудшить несущую способность опорного основания дома.

Когда песчаная засыпка действительно необходима

Привычка делать песчаную засыпку под фундамент зародилась ещё во времена индустриализации и массовой застройки. В эпоху доминирования крупноблочного строительства в каждом городе работало по нескольку заводов ЖБИ. Среди прочих изделий там изготавливались и бетонные фундаментные блоки. При наличии подъёмной техники возведение сборных ленточных фундаментов осуществляется в максимально короткие сроки.

Именно под такие фундаменты и необходимо выкладывать выравнивающую песчаную подушку. Дно траншей и котлованов никогда не получается идеально ровным, поэтому нагрузка от здания передаётся через блок не по всей его площади основания, а только по точкам примыкания к неровностям грунта. С помощью песчаной или гравийной засыпки намного легче выровнять поверхность. По окончании выравнивания песчаный слой подлежит уплотнению.

Для чего уплотняют песчаную подушку

Многие застройщики почему-то уверены, что уплотнённый песок препятствует проникновению влаги. Но даже идеально уплотнённый песчаный слой при поднятии грунтовых вод промокнет в течение нескольких минут. Защиту от влаги производят гидроизоляционными материалами, но никак не песком.

Песчаную подушку уплотняют для того, чтобы она в будущем не проседала под тяжестью построенного здания. Влага способствует уплотнению песка, поэтому засыпку сначала немного увлажняют, а потом утрамбовывают с помощью вибрационных площадок.

Нужна ли песчаная подушка под заливным ленточным фундаментом

Если заливной ленточный фундамент закладывается ниже уровня промерзания грунта, то песчаная подушка ему не нужна. Все неровности грунтового основания дна будут полностью залиты жидкой бетонной смесью. Поэтому нагрузка от здания будет распределяться равномерно. Более того, иногда наличие песка здесь может оказаться даже вредным. Глинистый грунт, находящийся ниже глубины промерзания, но выше уровня залегания грунтовых вод, имеет туго пластичную структуру, что является хорошим основанием для заливного фундамента. Песок же, даже качественно уплотнённый, легко впитывает и удерживает влагу, которая в любом случае проникает в грунт разными путями. Таким образом на поверхности тугой глины оказывается аналог влажной губки. Глина становится мягче, соответственно и основание получается менее устойчивым.

Песчаная подушка под фундаментом неглубокого заложения

Песчаную подушку следует устраивать под ленточные заливные фундаменты неглубокого заложения. Сыпучая структура песка здесь компенсирует деформирующие подвижки основания во время сезонного пучения грунта. Но с наличием пучинистого грунта под фундаментом неглубокого заложения необходимо произвести и другие мероприятия:

  • Вдоль фундаментной подошвы нужно обязательно проложить дренажную трубу.
  • Сам фундамент в любом случае должен иметь качественную гидроизоляцию.
  • В строении отмостки без всяких оговорок должны присутствовать слои гидроизоляции и утепления.
  • Насыпкой одной лишь песчаной подушки все эти мероприятия не заменить.

Песчаная подушка не является универсальным средством, пригодным для обустройства любого фундаментного основания. Здесь всегда нужно учитывать наличие разных факторов, к которым относятся характеристики грунта, уровни подземных вод и глубины промерзания, нагрузка от самого здания.

Понимание сути процессов часто облегчает условия реализации многих проектов, в том числе и в строительстве. Это избавляет людей от лишних трат времени, сил и денежных средств.

Разве разумно воспроизводить какие-либо действия, только потому что так делают все?

Задать вопрос эксперту

Подушка мелкозаглубленного ленточного фундамента дома

Песчаная подушка играет несколько важных ролей в конструкции мелкозаглубленного ленточного фундамента: она отводит воду из-под основания фундамента, и тем самым снижает действие сил морозного пучения.  Песчаная подушка равномерно передает нагрузку от фундамента на подлежащий грунт, увеличивает расчетное сопротивление основания и служит для его выравнивания.  Очень важно предусмотреть укладку геотекстиля перед засыпкой песка или песчано-гравийной смеси. Геотекстиль предохранит материал подушки от заиливания окружающим пучинистым грунтом при высоком уровне грунтовых вод.
При наличии подвальных помещений следует предусмотреть связь бетонной подушки и тела мелкозаглубленного ленточного фундамента вертикальным армированием или устройством профилированного соединения «шип-паз» (для бетонных блоков)  между телом ленты фундамента и бетонной подушкой.
Верхняя поверхность ленточного фундамента также должна быть гидроизолирована. При устройстве сборного мелкозаглубленного ленточного фундамента на сильнопучинстых и чрезмернопучинистых почвах  поверх фундаментных блоков должно быть выполнено усиление конструкции армированным или железобетонным поясом.

При постройке каркасной стены, в мелкозаглубленный ленточный фундамент при бетонировании должны быть замоноличены анкера (шпильки с резьбой) для связи фундамента и каркасных конструкций стен. Также наличие анкеров с резьбой для крепления вертикальной арматуры, связывающей фундамент с межэтажным армпоясом,  может требоваться по некоторым технологиям постройки стен из ячеистых бетонов. Предварительно согнутые выпуски арматуры из тела фундамент необходимы для связи фундамента с монолитным перекрытием и монолитными стенами (если они планируются). Стена здания по британским нормам должна быть центрирована по центру фундаментной ленты [BR 2010 A1/2.2E2-a], что особенно актуально при центрировании плит перекрытий и мауэрлата стропильной системы. Отечественные нормативы допускают эксцентрическое положение стен.

Мелкозаглубленный ленточный монолитный фундамент на песчаной подушке. (Вариант «А» на схеме выше). Самый простой  и распространенный вариант ленточного монолитного фундамента на песчаной подушке. Поверх песчаной подушки укладывается слой гидроизоляции (толстая полиэтиленовая пленка или битумно-полимерный рулонный материал) и в опалубке, после выполнения армирования, отливается сама лента фундамента.  Хотя мы подробно будем говорить об особенностях армирования мелкозаглубленного ленточного фундамента ниже, обратите внимание на толщину защитного слоя бетона ленты со стороны песчаной подушки. Требования отечественных норм [пункт 12.8.5 СП 50-101-2004] и американских норм Института цемента ACI 318 почти единодушны – толщина защитного слоя бетона со стороны песчаной подушки должна быть 70 мм (76 мм по ACI 318).   При использовании   бетонной подготовки  (или на скальном грунте) – толщина бетонного защитного слоя снижается в отечественных нормах [СП 52-101-2003] до 35-40 мм, а в американских [ACI 318] до 25мм.

Дальнейшие работы на мелкозаглубленном ленточном фундаменте начинаются после того, как бетон наберет 50% от марочной  прочности. При средней температуре воздуха +20 °С  такая марочная прочность бетона на портландцементе достигается на 3-4 сутки. (70% — в течение 6-10 суток и 100%  в течение 28 суток). Несмотря на бытующие в среде народных строителей предубеждения о необходимости выжидать 28 суток, при наборе 50% марочной прочности бетоном на нем можно начинать производить работы (в том числе и постепенно нагружать кладкой стен). Гарантированно безопасная отметка начала работ – набор бетоном 70% расчетной прочности.   Отметим, что при среднесуточной (а не дневной) температуре +10 °С срок набора 50% прочности бетоном растягивается до 5-6 суток. Подробнее мы рассмотрим особенности бетонирования мелкозаглубленных ленточных фундаментов ниже.

После того как бетон наберет марочную прочность как минимум 50%, ленту фундамента можно покрывать постоянной наружной вертикальной и горизонтальной битумно-полимерной гидроизоляцией. Вертикальную гидроизоляцию наружных стен следует во всех случаях поднимать выше на 0,5 м наибольшего прогнозируемого уровня подземных вод. Более подробно о нормативных безопасных сроках снятия опалубки написано разделе «Опалубка» . После проведения работ по гидроизоляции, фундамент утепляется со стороны улицы экструдированным пенополистиролом и вокруг фундамента устраивается кольцевой дренаж.  Продольные уклоны дренажей должны обеспечить скорость воды в трубах, при которой не происходит их заиливание. Для глинистых грунтов рекомендуется принимать уклон не менее 0,002, а для песков — не менее 0,003.  Для обеспечения фильтрационной способности трубчатых дренажей, а также дренажных галерей предусматривают обсыпку из дренирующих материалов (щебня, гравия, песка или их смесей) толщиной не менее 30 см, изолированной от грунтов геотекстилем.

А как устроить песчаную подушку на торфяном грунте? Надо выполнить постоянную пригрузку торфа песчаной подушкой.

песок или щебень? Устройство своими руками

Из бетонных фундаментов домов наиболее распространены ленточные, которые очерчивающие периметр дома непрерывным поясом, лентой. Ее основа — подушка под ленточный фундамент выполняется подсыпкой самостоятельного слоя прочного грунта. Зачем нужна такая подсыпка, какие материалы используют для ее устройства? Можно ли без нее обойтись? Ответ на эти вопросы вы сможете узнать, прочитав статью.

Назначение конструктива

Подушка или подготовка выполняет следующие функции:

  • Равномерно распределяет давление подошвы фундамента на грунт. Пятка фундамента если ее уложить прямо на грунт будет опираться не всей плоскостью. Дно траншеи (котлована) имеет неровности, поэтому при укладке фундамент сначала обопрется на выступающие части. По мере увеличения нагрузки он станет сминать грунт. Этот процесс продолжится, пока выступы не сравняются. Осадка может быть мизерной, но она все же будет. Причем перекос основания на миллиметр, способен обернутся десятками сантиметров в верней части дома. Материал подушки, песок или щебень, имеет относительно мелкую фракцию. Он заполняет все неровности, обеспечивая фундаменту сплошную площадь опирания. Даже если за счет естественного уплотнения грунта осадка и произойдет, то будет равномерной. Кроме того, за счет явления именуемого «призмой давления», нагрузка через подушку передается не строго вертикально, а под расширяющимся углом. Что дает тем большую опорную поверхность, чем больше толщина слоя подсыпки под фундаменты.
  • Служит выравнивающим слоем. Даже копка лопатой, не говоря уже об экскаваторах, дает отклонения от горизонтали, дает те самые неровности, о которых мы говорили в предыдущем пункте. С помощью подушки основание под фундаменты можно вывести, как говорят строители: «в ноль».
  • Обеспечивает точную подгонку высотной отметки фундамента. Низ фундаментной плиты должен располагаться относительно других объектов на высоте строго (до миллиметра) определенной проектом. Копая котлован экскаватором (да и вручную) точно на эту отметку выйти крайне сложно. Поэтому строители выбирают грунт немного ниже, чем требует уровень посадки фундамента. Этот запас и компенсирует подушка.
  • Укрепляет верхний слой грунтового основания. Разрабатывая грунт, мы неизбежно нарушаем его целостную структуру. Кроме того, сам процесс происходит не мгновенно. Поэтому грунт дна котлована подвергается влиянию влаги, ветра и пр. на протяжении как минимум часов.
  • Поскольку бетон воду не пропускает, в слоях прилегающих к телу фундамента может скапливаться влага. В подобных случаях подушка работает дренажом, позволяя воде проходить свободно. Это свойство особенно важно у фундамента для заборов, которые часто препятствуют движению талых и дождевых почвенных вод.

Материал подушек

Слой отсыпки делают песком или щебнем. Устраивают так же смешанные песчано-щебеночные и песчано-гравийные подушки. На пучинистых грунтах, в других случаях, где требуется высокая прочность, устраивают бетонные подушки. Для их изготовления применяют «тощий» бетон, марки 100. Его готовят на щебне фракции до 10 мм, воды добавляют совсем немного. Укладывают не заливкой в опалубку, а засыпая на дно котлована. После чего уплотняют прокаткой.

Такой конструктив прочнее подушки устроенной только из песка и щебня, однако, не обладает свойством дренирования. Поэтому он предпочтительнее для устройства фундаментов на глине или плотном суглинке. Там где грунты не образуют водоносный слой.

Не допускается применение при устройстве подушек материалов засоренных естественным грунтом (суглинком, черноземом), органическими остаткам. С содержанием пылевидных частиц больше 10%.

Более подробно характеристики материалов подушки регламентирует ГОСТ 25100-95.

Изготавливаем подушку под фундамент

Процесс устройства подушки своими руками для удобства изложим в виде пошаговой инструкции:

  1. Сначала делаем расчет толщины подушки. Для этого сравниваем глубину котлована с проектом, используя нивелир. В идеале определим высотные отметки по всей ширине основания будущей подушки через каждые 2-3 метра и составим исполнительную схему.
  2. В зависимости от необходимой высоты отсыпки будем использовать только подсыпку песчаную или из щебня.
  3. Если проект предусматривается уплотнение дна котлована, поступаем следующим образом: отсыпаем слой щебня или гравия. Его толщина не должна превышать 1,5-2 размера самых крупных частей. Затем ручной или механической трамбовкой вбиваем частицы щебня в поверхность грунта.
  4. СНиП допускает толщину слоя подушки из песка без специального уплотнения не более 100 мм. Если необходима подсыпка большего массива, его уплотняют, проливая водой или послойной трамбовкой.
  5. Для подушек значительной толщины используем щебень. Укладываем его слоями, толщиной не более 25 см при ручном и не более 40 см при механическом уплотнении. Окончательное выравнивание производим тонким слоем песка. При укладке двигаемся от крупной фракции к мелкой. Для толстого слоя может потребоваться даже отсыпка крупным бутом. Промежутки между его камнями заполняем мелкой фракцией, или как еще говорят — расклиниваем.
  6. Завершаем работы проверкой отметки с помощью нивелира. Строительные нормы требуют при этом вычерчивания исполнительной схемы и составления акта на скрытые работы. В акте указываем, какими чертежами мы руководствовались, и какие материалы были использованы.

Видео: Песчаная засыпка под фундамент

Какая и где подушка необходима

Точный ответ о необходимости и технологии устройства подушки может дать только проект. Но существуют некоторые общие моменты:

  • Подушки устраивают под фундаментами из сборного железобетона.
  • При изготовлении монолитных фундаментов обычно ограничиваются уплотнением грунта щебнем и устройством гидроизоляции.

Главное же качество, которое требуется от образующего подушку материала — несжимаемость. Частицы ее, будучи утрамбованы, не должны сдвигаться относительно друг друга даже на доли миллиметра. Только в этом случае подсыпка даст необходимый эффект.

Ленточный фундамент на глине

В настоящее время, самым сложным вариантом грунта для устройства фундамента и строительства на нем различных сооружений, является глинистая почва. Следует заметить, что возвести дом или производственное здание возможно на любом месте и участке, но в данном случае расходы увеличатся до 30% из-за использования большого объема засыпных материалов.

Ленточный фундамент на глинистой почве — особенности строительства

Ленточный фундамент, чаще всего, устраивается на глине. Это грунт, который способен удерживать воду естественным способом, что приводит к возникновению сильного давления на несущую основу сооружения. При выборе типа основания здания следует произвести правильные расчеты и учитывать следующие факторы:

  • Тип почвы
  • Степень состояния грунтовых вод и глубина промерзания грунта
  • Вес, размеры и этажность здания, наличие подвала

Для возведения объектов на глинистой почве оптимальным решением является ленточный фундамент, как для кирпичной кладки, так и для стен из пиломатериалов. Этот тип основания отличается возможностью его установки при глубоком залегании подземных вод и любом типе почвы. Данная технология имеет существенный недостаток — трудоемкость процесса.

На глине чаще всего устраивают мелкозаглубленный ленточный фундамент: по всему периметру сооружения роют траншею шириной 50-70 см и заливают ее бетоном. При этом получают монолитную полосу шириной 30-50 см и высотой от 50 см. Как правило, ее помещают на песчаную подушку, а сверху такой конструкции выполняют надстройку из кирпича. При необходимости, осуществляют строительство каркаса из металла, который необходим для армирования ленточного фундамента на глине. Сделать это особенно рекомендуется, потому как почва пучинистая и зимой на некоторых участках бетонной полосы возникают разные силы кручения, которые приводят к растрескиванию конструкции, так как основной материал не обладает гибкостью.

Для ленточного фундамента на глинистой почве могут быть использованы опорные сваи — шухты, которые забиваются ниже уровня промерзания грунта и предназначены для усиления прочности всей конструкции. Они распределяются по всему периметру основания через каждые два метра. Для снижения степени воздействия вспучивания грунта, грани основания выполняют расширенными к низу, а пазухи наполняют песком и утрамбовывают.

Если строят монолитную ленту на 90-160 см ниже уровня грунтовых вод, то такая конструкция вполне может устоять в случае движения слоев грунта в зимний период. Конструкция являет собой прочное основание, которое рекомендуют использовать для любого сооружения. Ленточный  вид оснований совместим со всеми видами почв.

Компания «Проект» оказывает услуги по строительству ленточного фундамента на глине и других типах грунтов, по невысоким ценам на высоком профессиональном уровне в Москве и Подмосковье.

Песчаная подушка под ленточный фундамент

Подушка под ленточный фундамент: назначение, материалы, правила обустройства

Основа каждого строящегося объекта считается немаловажным элементом, оказывающим влияние на его эксплуатационные характеристики. Подушка под ленточный фундамент придает основанию стабильность, исполняет функции опор и минимизирует вероятную усадку. Она представляет собой песчаный, гравийный либо щебневый слой определенной толщины, равномерно распределяющий нагрузочное воздействие от массы здания, возникающее на почву. Сегодня разберемся, насколько это элемент необходим, и как его устроить своими силами.

Зачем нужна подушка под фундамент

Подушка придает фундаментному основанию устойчивость. Устройство ее помогает решать следующие вопросы:

  • заменять пучинистые земли из-под опорной конструкции наиболее спокойными наполнителями. Почва с примесями глины или торфа во время сезонных изменений температур способна создавать колебания уровня, достигающие десяти сантиметров. Подобные проявления оказывают влияние на целостность фундаментной основы и стен здания. Следует выполнять заглубление ниже точки промерзания;
  • подушка перераспределяет нагрузочные воздействия благодаря поверхностному контактированию с нижней опорной плоскостью. Любая неровность, особенно на каменистом грунте, засыпается мелкофракционным материалом, который в дальнейшем уплотняется и создает ровную поверхность;
  • препятствует капиллярному подъему влаги к бетону фундаментной ленты.

В каждом из указанных пунктов толщина подушки под ленточный фундамент может быть разной.

Иногда состояние участка, отведенного под застройку, позволяет обходиться без песчаной подушки. В этом случае бетонная масса заполняет всю полость, компенсируя неровные участки. В растворную массу в качестве дополнения вносятся полимерные компоненты, повышающие сопротивляемость к воздействию влаги.

В случаях, когда основание устраивается из железобетонных блоков, подушка для ленточного фундамента устраивается в обязательном порядке, чтобы придать камням устойчивость и равномерно распределять нагрузочные воздействия.

Материалы для подушки

Для устройства фундаментной подушки разрешается применять следующие материалы:

  • песок крупных и средних фракций;
  • мелкую щебенку;
  • шлак;
  • непучинистые грунты, показатель дисперсности которых менее 1.0.

Если рассматривать этот вопрос с практической точки зрения, то чаще всего пользуются песчаным, песчано-гравийным и песчано-щебневым слоями, обладающими менее пучинистыми признаками, чем родная почва на площадке, отведенной под строительство.

Чтобы безошибочно определить структуру подушки для ленточного фундамента, следует принимать во внимание физические характеристики материалов.

Какая и где подушка необходима

Точный ответ о необходимости и технологии устройства подушки может дать только проект. Но существуют некоторые общие моменты:

  • Подушки устраивают под фундаментами из сборного железобетона.
  • При изготовлении монолитных фундаментов обычно ограничиваются уплотнением грунта щебнем и устройством гидроизоляции.

Главное же качество, которое требуется от образующего подушку материала — несжимаемость. Частицы ее, будучи утрамбованы, не должны сдвигаться относительно друг друга даже на доли миллиметра. Только в этом случае подсыпка даст необходимый эффект.

Ленточный фундамент на глине

В настоящее время, самым сложным вариантом грунта для устройства фундамента и строительства на нем различных сооружений, является глинистая почва. Следует заметить, что возвести дом или производственное здание возможно на любом месте и участке, но в данном случае расходы увеличатся до 30% из-за использования большого объема засыпных материалов.

Ленточный фундамент на глинистой почве — особенности строительства

Ленточный фундамент, чаще всего, устраивается на глине. Это грунт, который способен удерживать воду естественным способом, что приводит к возникновению сильного давления на несущую основу сооружения. При выборе типа основания здания следует произвести правильные расчеты и учитывать следующие факторы:

  • Тип почвы
  • Степень состояния грунтовых вод и глубина промерзания грунта
  • Вес, размеры и этажность здания, наличие подвала

Для возведения объектов на глинистой почве оптимальным решением является ленточный фундамент, как для кирпичной кладки, так и для стен из пиломатериалов. Этот тип основания отличается возможностью его установки при глубоком залегании подземных вод и любом типе почвы. Данная технология имеет существенный недостаток — трудоемкость процесса.

На глине чаще всего устраивают мелкозаглубленный ленточный фундамент: по всему периметру сооружения роют траншею шириной 50-70 см и заливают ее бетоном. При этом получают монолитную полосу шириной 30-50 см и высотой от 50 см. Как правило, ее помещают на песчаную подушку, а сверху такой конструкции выполняют надстройку из кирпича. При необходимости, осуществляют строительство каркаса из металла, который необходим для армирования ленточного фундамента на глине. Сделать это особенно рекомендуется, потому как почва пучинистая и зимой на некоторых участках бетонной полосы возникают разные силы кручения, которые приводят к растрескиванию конструкции, так как основной материал не обладает гибкостью.

Для ленточного фундамента на глинистой почве могут быть использованы опорные сваи — шухты, которые забиваются ниже уровня промерзания грунта и предназначены для усиления прочности всей конструкции. Они распределяются по всему периметру основания через каждые два метра. Для снижения степени воздействия вспучивания грунта, грани основания выполняют расширенными к низу, а пазухи наполняют песком и утрамбовывают.

Если строят монолитную ленту на 90-160 см ниже уровня грунтовых вод, то такая конструкция вполне может устоять в случае движения слоев грунта в зимний период. Конструкция являет собой прочное основание, которое рекомендуют использовать для любого сооружения. Ленточный  вид оснований совместим со всеми видами почв.

Компания «Проект» оказывает услуги по строительству ленточного фундамента на глине и других типах грунтов, по невысоким ценам на высоком профессиональном уровне в Москве и Подмосковье.

Песчаная подушка под ленточный фундамент

Подушка под ленточный фундамент: назначение, материалы, правила обустройства

Основа каждого строящегося объекта считается немаловажным элементом, оказывающим влияние на его эксплуатационные характеристики. Подушка под ленточный фундамент придает основанию стабильность, исполняет функции опор и минимизирует вероятную усадку. Она представляет собой песчаный, гравийный либо щебневый слой определенной толщины, равномерно распределяющий нагрузочное воздействие от массы здания, возникающее на почву. Сегодня разберемся, насколько это элемент необходим, и как его устроить своими силами.

Зачем нужна подушка под фундамент

Подушка придает фундаментному основанию устойчивость. Устройство ее помогает решать следующие вопросы:

  • заменять пучинистые земли из-под опорной конструкции наиболее спокойными наполнителями. Почва с примесями глины или торфа во время сезонных изменений температур способна создавать колебания уровня, достигающие десяти сантиметров. Подобные проявления оказывают влияние на целостность фундаментной основы и стен здания. Следует выполнять заглубление ниже точки промерзания;
  • подушка перераспределяет нагрузочные воздействия благодаря поверхностному контактированию с нижней опорной плоскостью. Любая неровность, особенно на каменистом грунте, засыпается мелкофракционным материалом, который в дальнейшем уплотняется и создает ровную поверхность;
  • препятствует капиллярному подъему влаги к бетону фундаментной ленты.

В каждом из указанных пунктов толщина подушки под ленточный фундамент может быть разной.

Иногда состояние участка, отведенного под застройку, позволяет обходиться без песчаной подушки. В этом случае бетонная масса заполняет всю полость, компенсируя неровные участки. В растворную массу в качестве дополнения вносятся полимерные компоненты, повышающие сопротивляемость к воздействию влаги.

В случаях, когда основание устраивается из железобетонных блоков, подушка для ленточного фундамента устраивается в обязательном порядке, чтобы придать камням устойчивость и равномерно распределять нагрузочные воздействия.

Материалы для подушки

Для устройства фундаментной подушки разрешается применять следующие материалы:

  • песок крупных и средних фракций;
  • мелкую щебенку;
  • шлак;
  • непучинистые грунты, показатель дисперсности которых менее 1.0.

Если рассматривать этот вопрос с практической точки зрения, то чаще всего пользуются песчаным, песчано-гравийным и песчано-щебневым слоями, обладающими менее пучинистыми признаками, чем родная почва на площадке, отведенной под строительство.

Чтобы безошибочно определить структуру подушки для ленточного фундамента, следует принимать во внимание физические характеристики материалов.

Применение в подобных целях глиняной подушки категорически запрещается. Глина не будет пропускать влагу от фундаментной подошвы и сыграет роль провокатора на вспучивание земли в зимний сезон.

Для песчаной подушки под ленточный фундамент лучше всего подходит гравелистый материал, допускается также применение речного чистого среднефракционного песка. Легкие и тонкие фракции для устройства фундаментной подушки для ленточного фундамента использовать не рекомендуется, потому что они имеют плохие показатели на сопротивляемость при сжатии. В этом случае возрастает вероятность существенной усадки здания.

Определяясь с толщиной подушки под ленточный фундамент, устраиваемой из песка, специалисты рекомендуют брать наибольшее соотношение толщины подушки к ширине ленточного фундамента принимать как 3 к 1. Это означает, что толщина песчаного слоя должна в три раза превышать ширину фундаментной основы. Как правило, толщина подсыпного слоя составляет минимум 0.2 – 0.3 м из расчета защищенности от подъема воды в песке.

В соответствии с требованиями строительных норм, подушку из песка следует защитить от заиливания. С этой целью устраивается слой из геотекстильного или полимерных материалов, которые не позволяют песку смешиваться с окружающим его грунтом.

Такое основание обладает явными преимуществами перед песчаным слоем. Оно считается более прочным и выносливым, потому что основным компонентом является гравийный материал.

На слабонесущих грунтах строители советуют применять песчано-гравийную или только гравийную подушку.

Слой щебенки необходимо тщательно трамбовать. Про такой материал специалисты говорят, что применять его лучше всего в роли уплотнителя в составе прослойки из песка и щебня. Островатые края камней с фракциями 2 – 4 см плотно вбиваются в основной грунт под подложкой и песка, дополнительно упрочняя основу и гарантируя основанию объекта стабильность.

Индивидуальный принцип грамотного выбора устройства подушки под ленточную фундаментную основу даст возможность для значительной экономии денежных средств без ущерба по прочности и надежности сооружения.

Выполнение работ

Мы уяснили, нужна ли подушка под ленточный фундамент, какие материалы для этого использовать лучше всего. Теперь остается разобраться, как правильно устроить такое основание своими руками.

С целью выравнивания дна фундаментной траншеи либо котлована, засыпается слой песка или гравия высотой десять сантиметров. В местах, где планируется расширение стен, применяется бетонирование. Этот же вариант с бетонной подушкой используют, когда планируется строительство ленточного фундамента с армированными сваями из блоков ФБС.

Щебневая подсыпка устраивается просто, следует только не забывать, что высота насыпи не должна превышать основание, а параметры ширины будут в два раза больше аналогичного фундаментного размера. Как правило, прослойка из щебня составляет тридцать сантиметров, одна доля из которой приходится на песок.

Выровняв основание, начинаем устраивать подушку. Сначала насыпается слой песка, который проливаю водой и утрамбовывают. По аналогии поступают с гравийным слоем.

Наиболее надежный вариант – бетонная подушка. Процесс ее обустройства занимает много времени, но вполне выполним своими силами. Только следует помнить, что придется потратиться на необходимые материалы. Толщина такой опоры должна превышать параметры фундаменты на тридцать сантиметров.

Засыпка из песка

Такая фундаментная основа является наиболее легким в исполнении и экономичным вариантом, и выбирают ее застройщики, пытающиеся не только сэкономить деньги, но и ускорить процесс строительных работ.

И хоть на первый взгляд такое основание не внушает доверия по надежности, оно довольно хорошо справляется с возложенными на него задачами. Песок под фундаментной основой спасает ее от подмыва и обеспечивает допустимые нагрузочные воздействия на нижнюю ее часть. Сыпучий материал разравнивается и трамбуется виброплитой, периодически поливаясь водой.

Если почва слабонесущая, в дополнение к песку применяется гравий. Подобного рода подготовительные мероприятия практически исключают усадку фундаментного основания, и здесь очень важно правильно выполнить трамбовку.

Устройство щебневой подушки

Перед тем, как засыпать этот материал, устраивают песчаный слой высотой до пятнадцати сантиметров, который выравнивается и уплотняется. После этого насыпают щебенку, размеры камней которой составляют 2 – 2.5 см, и тоже утрамбовывают. Щебеночный слой должен составлять двадцать – двадцать пять сантиметров.

Во время работы необходимо следить чтобы камни плотно ложились друг возле друга, заполняя все пустотные участки. Чтобы выполнить этот процесс, придется задействовать виброплиту, которая гарантированно поможет создать нужную плотность.

Устройство фундаментной основы будет начинаться со щебеночного слоя, поэтому высота подушки должна достигать нулевого уровня. Такая подложка под ленточную фундаментную основу позволяет сооружать объекты из любых материалов.

Бетонная подушка

Теперь разберемся, как смонтировать площадку из бетонного раствора. Такая конструкция имеет только один негативный момент – стоит достаточно дорого по сравнению с другими вариантами, а все остальное в данном проекте – сплошные преимущества.

Для начала необходимо отметить, что основание получится выносливым, если соблюдать технологический процесс, который выглядит следующим образом:

  • строительная площадка очищается от растительности и другого мусора;
  • почва выравнивается;
  • насыпается слой щебенки, высота которого составляет десять сантиметров;
  • выполняется трамбование;
  • по всему периметру подушки монтируется опалубочная конструкция;
  • вся площадка перед заливкой раствора армируется стальными прутьями;
  • заливается бетонная смесь, марка которой определяется с учетом массы будущего объекта;
  • раствор тщательно трамбуется глубинными вибраторами;
  • до полного набора прочности конструкции потребуется не менее четырех недель.

Основа под строительство объекта получается идеальной, но требует значительных денежных расходов.

Параметры высоты и толщины, гидроизоляционный слой

Итак, ленточный фундамент без подушки устраивает не рекомендуется. Но как правильно определиться с размерами, чтобы не допустить ошибку?

Закладывая подошву под фундаментную основу, принимаем ее высоту до 0.6 м. Если грунты пучинистые, такой показатель увеличивается до восьмидесяти сантиметров. Ширина подушки должна получиться такой, чтобы с каждой стороны имелся выступ по отношению к фундаментной ленте на десять – пятнадцать сантиметров.

Такой вариант отличается определенными достоинствами и обусловлен характеристиками грунтов:

  • забетонированная площадка позволяет выполнять армирование каркасной основы или сетки с отличным показателем по жесткости;
  • по такой поверхности легче устанавливать опалубочные щиты и выполнять армирование.

Ленточное основание с подушкой следует защитить от воздействия грунтовых вод. Лучше всего для этого подходят рулонные материалы, наклеенные в один или два слоя. Сверху фундаментная основа тоже обрабатывается, чтобы исключить попадание воды к материалам стен из бетона.

Рекомендации специалистов

Материал под устройство фундамента выбирается с учетом следующих факторов:

  • необходимо уточнить габариты будущего сооружения – количество этажей, общую площадь. Если объект большой, рекомендуется устроить подушку из бетонного раствора;
  • оказывает свое влияние на выбор подушки и строительный материал, предназначенный для возведения объекта. Пеноблочному дому будет достаточно песчаной подушки, для других материалов рассмотрите варианты из гравия и щебенки.

Экономить на устройстве основания не рекомендуется. Ведь фундамент представляет собой основу всего объекта, и защищать его должна надежная подложка.

Подушка под мелкозаглубленный ленточный фундамент

На дне траншеи под мелкозаглубленного ленточного фундамент на определенной глубине устраивается песчаная подушка. Требования британских норм оговаривают достаточную толщину песчаной подушки под мелкозаглубленным ленточным фундаментом как 20 см. В отечественной литературе [В.С. Сажин, 2003] толщина песчаной подушки под ленточный фундамент определяется в диапазоне от 30 см до 60 см (и даже 80 см) в зависимости от типа грунтов. В приложении №2 к старому СНиП II-В.8-71 «Полы. Нормы проектирования» для полов по грунту толщина подстилающего слоя в виде песчаной подушки была регламентирована высотой не менее 60 см. Чем толще песчаная подушка под основанием мелкозаглубленного ленточного фундамента, тем меньше будет деформация пучения основания. В ведомственных строительных нормах ВСН 29-85 «Проектирование мелкозаглубленных фундаментов малоэтажных сельских зданий на пучинистых грунтах» соотношение толщины песчаной подушки и ширины ленточного фундамента принимается до 3 к 1.

То есть, противопучинистая песчаная подушка может быть толще ширины основания мелкозаглубленного ленточного фундамента в три раза.
В любом случае песчаная подушка должна быть тщательно утрамбована послойно при укладке, чтобы не допустить дальнейшей осадки и деформации фундамента. При устройстве песчаной подушки материал отсыпается слоями толщиной не более 20 см и уплотняется катками или площадочными вибраторами до плотности не менее 1,6 т/м3 [пункт 6.2 ВСН 29-85].
По поводу популярной методики уплотнения песчаной подушки проливкой водой следует сказать особо: хотя СП 50-101-2004 описывает технологию уплотнения грунта основания замачиванием, при проливке водой песчаной подушки, уложенной в траншею, грунтовое основание может быть размыто водой. Такой метод может принести больше вреда, чем пользы. Недаром в пункте 4.9.2 ТСН 50-302-96 говорится следующее: «При наличии в основании подушки грунтов с неустойчивой структурой (пылеватые супеси, ленточные суглинки и т.п.) пески должны увлажняться до укладки их в котлован или траншею. При устройстве подушки из гравия дополнительного увлажнения не требуется». Увлажнение песка до укладки также будет способствовать вымыванию глинистых и илистых примесей, которым не место в основании фундамента.

Мелкий и пылеватый песок для подлежащей подушки не используют. На слабонесущих грунтах может устраиваться песчано-щебеночная (песчано-гравийная) подушка (смесь песка крупного или средней крупности — 40 %, щебня или гравия — 60 %) [пункт 8.7 СП 50-101-2004]. Подушка из гравия (щебня) практически не усаживается после того как ее уложили, и способна вынести без дальнейшей осадки без специальной трамбовки вес деревянного или каркасного дома. Для более тяжелых строений рекомендуется трамбовать и песчано-щебеночные подушки.

Стоп-халтура! Некоторые рабочие используют вместо подушки из песка под мелкозаглубленный ленточный фундамент замок из глины. Они набивают в траншею глину, потому что глина, по их мнению, предохранит мелкозаглубленный ленточный фундамент от поступления воды «снизу». Подобные рекомендации встречаются даже в некоторых популярных книгах про фундаменты. Однако, нужно понимать, что с помощью такой манипуляции вода действительно задерживается – в толще глиняной подушки. Тем самым увеличивается пучинистость подлежащего под мелкозаглубленным ленточным фундаментом грунта.

Варианты конструкции мелкозаглубленного ленточного фундамента и подушки для фундамента

Песчаная подушка играет несколько важных ролей в конструкции мелкозаглубленного ленточного фундамента: она отводит воду из-под основания фундамента, и тем самым снижает действие сил морозного пучения. Песчаная подушка равномерно передает нагрузку от фундамента на подлежащий грунт, увеличивает расчетное сопротивление основания и служит для его выравнивания. Очень важно предусмотреть укладку геотекстиля перед засыпкой песка или песчано-гравийной смеси. Геотекстиль предохранит материал подушки от заиливания окружающим пучинистым грунтом при высоком уровне грунтовых вод.
При наличии подвальных помещений следует предусмотреть связь бетонной подушки и тела мелкозаглубленного ленточного фундамента вертикальным армированием или устройством профилированного соединения «шип-паз» (для бетонных блоков) между телом ленты фундамента и бетонной подушкой.
Верхняя поверхность ленточного фундамента также должна быть гидроизолирована. При устройстве сборного мелкозаглубленного ленточного фундамента на сильнопучинстых и чрезмернопучинистых почвах поверх фундаментных блоков должно быть выполнено усиление конструкции армированным или железобетонным поясом.

При постройке каркасной стены, в мелкозаглубленный ленточный фундамент при бетонировании должны быть замоноличены анкера (шпильки с резьбой) для связи фундамента и каркасных конструкций стен. Также наличие анкеров с резьбой для крепления вертикальной арматуры, связывающей фундамент с межэтажным армпоясом, может требоваться по некоторым технологиям постройки стен из ячеистых бетонов. Предварительно согнутые выпуски арматуры из тела фундамент необходимы для связи фундамента с монолитным перекрытием и монолитными стенами (если они планируются). Стена здания по британским нормам должна быть центрирована по центру фундаментной ленты [BR 2010 A1/2.2E2-a], что особенно актуально при центрировании плит перекрытий и мауэрлата стропильной системы. Отечественные нормативы допускают эксцентрическое положение стен.

Мелкозаглубленный ленточный монолитный фундамент на песчаной подушке. (Вариант «А» на схеме выше). Самый простой и распространенный вариант ленточного монолитного фундамента на песчаной подушке. Поверх песчаной подушки укладывается слой гидроизоляции (толстая полиэтиленовая пленка или битумно-полимерный рулонный материал) и в опалубке, после выполнения армирования, отливается сама лента фундамента. Хотя мы подробно будем говорить об особенностях армирования мелкозаглубленного ленточного фундамента ниже, обратите внимание на толщину защитного слоя бетона ленты со стороны песчаной подушки. Требования отечественных норм [пункт 12.8.5 СП 50-101-2004] и американских норм Института цемента ACI 318 почти единодушны – толщина защитного слоя бетона со стороны песчаной подушки должна быть 70 мм (76 мм по ACI 318). При использовании бетонной подготовки (или на скальном грунте) – толщина бетонного защитного слоя снижается в отечественных нормах [СП 52-101-2003] до 35-40 мм, а в американских [ACI 318] до 25мм.

Дальнейшие работы на мелкозаглубленном ленточном фундаменте начинаются после того, как бетон наберет 50% от марочной прочности. При средней температуре воздуха +20 °С такая марочная прочность бетона на портландцементе достигается на 3-4 сутки. (70% — в течение 6-10 суток и 100% в течение 28 суток). Несмотря на бытующие в среде народных строителей предубеждения о необходимости выжидать 28 суток, при наборе 50% марочной прочности бетоном на нем можно начинать производить работы (в том числе и постепенно нагружать кладкой стен). Гарантированно безопасная отметка начала работ – набор бетоном 70% расчетной прочности. Отметим, что при среднесуточной (а не дневной) температуре +10 °С срок набора 50% прочности бетоном растягивается до 5-6 суток. Подробнее мы рассмотрим особенности бетонирования мелкозаглубленных ленточных фундаментов ниже.

После того как бетон наберет марочную прочность как минимум 50%, ленту фундамента можно покрывать постоянной наружной вертикальной и горизонтальной битумно-полимерной гидроизоляцией. Вертикальную гидроизоляцию наружных стен следует во всех случаях поднимать выше на 0,5 м наибольшего прогнозируемого уровня подземных вод. Более подробно о нормативных безопасных сроках снятия опалубки написано разделе «Опалубка» . После проведения работ по гидроизоляции, фундамент утепляется со стороны улицы экструдированным пенополистиролом и вокруг фундамента устраивается кольцевой дренаж. Продольные уклоны дренажей должны обеспечить скорость воды в трубах, при которой не происходит их заиливание. Для глинистых грунтов рекомендуется принимать уклон не менее 0,002, а для песков — не менее 0,003. Для обеспечения фильтрационной способности трубчатых дренажей, а также дренажных галерей предусматривают обсыпку из дренирующих материалов (щебня, гравия, песка или их смесей) толщиной не менее 30 см, изолированной от грунтов геотекстилем.

А как устроить песчаную подушку на торфяном грунте? Надо выполнить постоянную пригрузку торфа песчаной подушкой.

Песчаная подушка под ленточный фундамент своими руками

Из бетонных фундаментов домов наиболее распространены ленточные, которые очерчивающие периметр дома непрерывным поясом, лентой. Ее основа — подушка под ленточный фундамент выполняется подсыпкой самостоятельного слоя прочного грунта. Зачем нужна такая подсыпка, какие материалы используют для ее устройства? Можно ли без нее обойтись? Ответ на эти вопросы вы сможете узнать, прочитав статью.

Назначение конструктива

Подушка или подготовка выполняет следующие функции:

  • Равномерно распределяет давление подошвы фундамента на грунт. Пятка фундамента если ее уложить прямо на грунт будет опираться не всей плоскостью. Дно траншеи (котлована) имеет неровности, поэтому при укладке фундамент сначала обопрется на выступающие части. По мере увеличения нагрузки он станет сминать грунт. Этот процесс продолжится, пока выступы не сравняются. Осадка может быть мизерной, но она все же будет. Причем перекос основания на миллиметр, способен обернутся десятками сантиметров в верней части дома. Материал подушки, песок или щебень, имеет относительно мелкую фракцию. Он заполняет все неровности, обеспечивая фундаменту сплошную площадь опирания. Даже если за счет естественного уплотнения грунта осадка и произойдет, то будет равномерной. Кроме того, за счет явления именуемого «призмой давления», нагрузка через подушку передается не строго вертикально, а под расширяющимся углом. Что дает тем большую опорную поверхность, чем больше толщина слоя подсыпки под фундаменты.
  • Служит выравнивающим слоем. Даже копка лопатой, не говоря уже об экскаваторах, дает отклонения от горизонтали, дает те самые неровности, о которых мы говорили в предыдущем пункте. С помощью подушки основание под фундаменты можно вывести, как говорят строители: «в ноль».
  • Обеспечивает точную подгонку высотной отметки фундамента. Низ фундаментной плиты должен располагаться относительно других объектов на высоте строго (до миллиметра) определенной проектом. Копая котлован экскаватором (да и вручную) точно на эту отметку выйти крайне сложно. Поэтому строители выбирают грунт немного ниже, чем требует уровень посадки фундамента. Этот запас и компенсирует подушка.
  • Укрепляет верхний слой грунтового основания. Разрабатывая грунт, мы неизбежно нарушаем его целостную структуру. Кроме того, сам процесс происходит не мгновенно. Поэтому грунт дна котлована подвергается влиянию влаги, ветра и пр. на протяжении как минимум часов.
  • Поскольку бетон воду не пропускает, в слоях прилегающих к телу фундамента может скапливаться влага. В подобных случаях подушка работает дренажом, позволяя воде проходить свободно. Это свойство особенно важно у фундамента для заборов, которые часто препятствуют движению талых и дождевых почвенных вод.

Материал подушек

Слой отсыпки делают песком или щебнем. Устраивают так же смешанные песчано-щебеночные и песчано-гравийные подушки. На пучинистых грунтах, в других случаях, где требуется высокая прочность, устраивают бетонные подушки. Для их изготовления применяют «тощий» бетон, марки 100. Его готовят на щебне фракции до 10 мм, воды добавляют совсем немного. Укладывают не заливкой в опалубку, а засыпая на дно котлована. После чего уплотняют прокаткой.

Такой конструктив прочнее подушки устроенной только из песка и щебня, однако, не обладает свойством дренирования. Поэтому он предпочтительнее для устройства фундаментов на глине или плотном суглинке. Там где грунты не образуют водоносный слой.

Не допускается применение при устройстве подушек материалов засоренных естественным грунтом (суглинком, черноземом), органическими остаткам. С содержанием пылевидных частиц больше 10%.

Более подробно характеристики материалов подушки регламентирует ГОСТ 25100-95.

Изготавливаем подушку под фундамент

Процесс устройства подушки своими руками для удобства изложим в виде пошаговой инструкции:

  1. Сначала делаем расчет толщины подушки. Для этого сравниваем глубину котлована с проектом, используя нивелир. В идеале определим высотные отметки по всей ширине основания будущей подушки через каждые 2-3 метра и составим исполнительную схему.
  2. В зависимости от необходимой высоты отсыпки будем использовать только подсыпку песчаную или из щебня.
  3. Если проект предусматривается уплотнение дна котлована, поступаем следующим образом: отсыпаем слой щебня или гравия. Его толщина не должна превышать 1,5-2 размера самых крупных частей. Затем ручной или механической трамбовкой вбиваем частицы щебня в поверхность грунта.
  4. СНиП допускает толщину слоя подушки из песка без специального уплотнения не более 100 мм. Если необходима подсыпка большего массива, его уплотняют, проливая водой или послойной трамбовкой.
  5. Для подушек значительной толщины используем щебень. Укладываем его слоями, толщиной не более 25 см при ручном и не более 40 см при механическом уплотнении. Окончательное выравнивание производим тонким слоем песка. При укладке двигаемся от крупной фракции к мелкой. Для толстого слоя может потребоваться даже отсыпка крупным бутом. Промежутки между его камнями заполняем мелкой фракцией, или как еще говорят — расклиниваем.
  6. Завершаем работы проверкой отметки с помощью нивелира. Строительные нормы требуют при этом вычерчивания исполнительной схемы и составления акта на скрытые работы. В акте указываем, какими чертежами мы руководствовались, и какие материалы были использованы.

Видео: Песчаная засыпка под фундамент

Какая и где подушка необходима

Точный ответ о необходимости и технологии устройства подушки может дать только проект. Но существуют некоторые общие моменты:

  • Подушки устраивают под фундаментами из сборного железобетона.
  • При изготовлении монолитных фундаментов обычно ограничиваются уплотнением грунта щебнем и устройством гидроизоляции.

Главное же качество, которое требуется от образующего подушку материала — несжимаемость. Частицы ее, будучи утрамбованы, не должны сдвигаться относительно друг друга даже на доли миллиметра. Только в этом случае подсыпка даст необходимый эффект.

Что из себя представляет подушка под ленточный фундамент + правильная технология укладки

Конструкция ленточного фундамента экономична и проста.

В большинстве случаев он образует опору для наружных и внутренних несущих стен, являясь их продолжением в нижней части и опираясь на грунт.

Для уменьшения нагрузок, создаваемых процессами пучения и прочими факторами, между лентой и дном траншеи создают слой песчано-гравийной подсыпки, играющий роль демпфирующей и дренажной прокладки.

Функции песчаной подушки важны, но полного понимания ее роли в строении ленточного фундамента у большинства неподготовленных людей нет.

При самостоятельном строительстве никаких неясных вопросов быть не должно, поэтому о строении и функциях слоя песчаной засыпки следует поговорить особо.

Что представляет собой подушка под ленточный фундамент?

Подушка — это уплотненный слой песчаной или песчано-гравийной подсыпки, образующий ровную и горизонтальную площадку для размещения бетонной ленты.

Она выполняет несколько важных функций:

  • Выравнивание опорной линии.
  • Компенсация нагрузок пучения, создаваемых грунтовыми слоями.
  • Замещение проблемных грунтов, непосредственно соприкасающихся с лентой, на более устойчивые и стабильные слои.
  • Отсечка бетонной ленты от воздействия влаги, предотвращение капиллярного впитывания воды.

Слой отсыпки, более рыхлой по сравнению с окружающим грунтом, позволяет дренировать траншею путем сбора влаги на дне и отвода по системе дренажных труб в специальный колодец.

Кроме того, даже относительно тонкий слой песка способен эффективно компенсировать нагрузки пучения, что особенно заметно на мелкозаглубленных типах ленты.

Нужна ли она

Несмотря на важную и ответственную роль песчаной подушки, нередко звучат доводы против ее использования.

Аргументы, которые приводят противники подсыпки, звучат следующим образом:

  • Как бы тщательно ни трамбовался слой песка, некоторая осадка будет присутствовать в любом случае. Чем толще подушка, тем сильнее осадка, которая создает существенную опасность для ленты из-за своей неравномерности. Из-за этого толщину подсыпки ограничивают — она не должна быть больше, чем трехкратная ширина ленты.
  • Слой песка, засыпанный в траншею, выкопанную в глинистом грунте, станет аккумулятором для влаги. Глина не выпустит ее из углубления, поэтому необходима качественная дренажная система.
  • Слой подушки приходится учитывать при расчете глубины траншеи или котлована, что увеличивает объемы земляных работ и количество вынутого грунта.

Специалисты, имеющие многолетнюю практику, единодушны во мнении, что основной функцией подушки является выравнивание дна траншеи (или котлована). Образовать ровную и горизонтальную площадку одним только рытьем никогда не удается.

Все попытки в этом направлении оборачиваются значительной тратой времени без удовлетворительных результатов, поэтому подсыпка позволяет сократить время подготовки. В отношении дренажа ситуация обычно известна заранее, поскольку гидрогеологическая обстановка на участке анализируется в первую очередь.

Поэтому приоритетная задача подушки — образование ровной и горизонтальной опорной линии на нужном уровне высоты.

Остальные функции песчаной засыпки можно считать дополнительными, хотя и они имеют немалое значение и выполняются вполне эффективно.

Существует несколько вариантов конструкции подушки под ленту:

  • Песчаная. Представляет собой слой песка определенной толщины, максимально уплотненный и горизонтальный. Распределяет нагрузку от веса ленты и постройки, обеспечивает отсечку от грунтовых вод, позволяет заменить неподходящий грунт на более стабильный и дешевый речной песок. Используется преимущественно для относительно легких построек, под тяжелые и массивные здания такая подушка не используется.
  • Гравийная подушка. Используется слой гравия или щебня, позволяющий значительно увеличить вес постройки. В частном строительстве такой тип подушки используется достаточно широко, поскольку позволяет более плотно утрамбовать слой засыпки и обладает высокой несущей способностью для любых домов. В составе гравийной засыпки песок также присутствует, заполняя полости между более крупными элементами, что делает слой более плотным. Обычно присутствует 60% щебня и 40% песка.
  • Бетонная стяжка (подбетонка). Представляет собой слой заливки из бетона меньшей плотности. Наиболее прочный и надежный вариант подушки, обеспечивающий горизонталь и высокую несущую способность. Применяется для самых тяжелых построек, обходится в значительные суммы.

Выбор наиболее подходящего варианта обусловлен весом будущей постройки, особенностями грунта и прочими факторами. Он производится во время создания проекта, при расчетах фундамента.

Условия, при которых требуется подсыпка

Наличие подушки обязательно при создании мелкозаглубленного ленточного фундамента. Слои грунта, расположенные под лентой, создают нагрузки, выталкивающие основание из траншеи. Подушка принимает на себя эти усилия и в значительной степени компенсирует их.

Дополнительным условием наличия подушки является возможность попадания в траншею грунтовых или дождевых вод. Слой засыпки способствует аккумулированию стоков на дне траншеи, где влага попадает в дренажные трубы и выводится в специальные колодцы или водоемы.

Необходимо учитывать, что песчаная подушка хотя бы минимальной толщины присутствует в любом случае.

Она выравнивает дно траншеи, позволяя получить горизонтальную и ровную плоскость без использования сложных и трудоемких технологических приемов.

Что выбрать, песок или щебень?

Выбор материала для засыпки обусловлен весом постройки. Чем она тяжелее, тем крупнее фракция засыпки должна быть использована. Песчаный слой имеет более заметную осадку, поэтому его чаще всего применяют для каркасных, деревянных домов, построек из ячеистых бетонов и т.д.

Используется чистый речной крупнозернистый песок, не имеющий посторонних (в особенности — органических) примесей или глинистых включений.

Слой щебня имеет большую упругость и несущую способность. Его проще и легче трамбовать, подушка получается более жесткая и надежная. Засыпку из гравия или щебня используют при строительстве домов большей этажности, из тяжелых и плотных материалов.

В чистом виде щебень не применяется, на практике используется ПГС (песчано-гравийная смесь) в соотношении 60% щебня к 40% песка, хотя в некоторых ситуациях объем песка может быть уменьшен или увеличен.

Какая толщина должна быть для различных материалов

Толщина слоя засыпки, рекомендуемая при строительстве ленточного фундамента, зависит от внешних факторов. В расчет принимаются параметры постройки (вес, размеры) и свойства грунта (состав, уровень грунтовых вод, величина морозного пучения). Определение параметров подушки производится при расчете фундамента, это сложная инженерная задача, доступная только подготовленным и грамотным специалистам.

При использовании песчаной засыпки, наиболее распространенная толщина слоя находится в диапазоне 25-60 см. Верхним пределом толщины слоя принята трехкратная ширина ленты, но до таких значений обычно никогда не доходит.

Материал укладывают послойно, по 20 см и тщательно уплотняют. Для увеличения плотности трамбовки подушку смачивают водой.

Подушка из щебня может состоять из разных видов материала:

  • Известняковый.
  • Гравийный.
  • Гранитный щебень.

Наиболее востребованная фракция — 20-40 мм. Минимальная толщина слоя — 25 см. Укладывается на песчаный подготовительный слой 15-20 см, что необходимо учитывать при расчете глубины траншеи.

Песок увлажняется и тщательно трамбуется, после чего производится укладка щебня с увлажнением и трамбовкой.

Все работы выполняются с максимальной тщательностью.

Плотность слоя подсыпки согласно СНиП должна составлять не менее 1,6 т/м3, что требует использования строительной техники (или, как минимум, усердной работы ручной трамбовкой или катком).

Технология укладки

Рассмотрим порядок действий при создании подушки под ленточный фундамент. Для большей информативности следует обратиться к ленточному фундаменту под массивный двухэтажный коттедж из штучных материалов (кирпича).

Его вес достаточно велик, чтобы использовать гравийную подушку.

Необходимо выполнить следующие этапы работ:

Песчаная засыпка

Это самый нижний слой, обеспечивающий горизонталь и ровную поверхность. Он имеет толщину 15-20 см, засыпается и выравнивается по горизонтали. Производится тщательная трамбовка с поливом водой до появления максимальной плотности.

Распространенным методом контроля качества уплотнения песка является ходьба по поверхности засыпки — если следов не остается, работа выполнена качественно. Некоторые источники предлагают под песчаную засыпку укладывать слой бутового камня.

Рекомендация сомнительная, так как песок заполняет промежутки между крупными обломками и сложнее трамбуется, что впоследствии проявится в виде увеличенной осадки фундамента.

Засыпка щебня

Укладка материала производится послойно, минимальная толщина засыпки составляет 25 см. При укладке материал тщательно выравнивается по горизонтали и трамбуется с увлажнением и использованием строительной виброплиты.

Наличие песка в массе щебня позволяет получить более плотный слой, допускающий качественную трамбовку. Основная задача — постоянный контроль горизонтали поверхности слоя засыпки. Если не проверять состояние и уровень, то можно получить волнистый слой с заметным уклоном, что недопустимо.

Выравнивающий слой

После окончания укладки и трамбовки слоя ПГС производится повторная засыпка относительно тонкого (около 5 см) слоя песка. Он выполняет функции выравнивания и «запечатывает» поверхность слоя щебня, образуя плотную и гладкую поверхность для укладки геотекстиля.

Этот материал необходим для исключения утечек воды при заливке подбетонки (если она планируется), либо при заливке основной ленты. Материал укладывается на уплотненный выравнивающий слой с заходом на стены траншеи, чтобы залитый бетон оказался в ложбине и вода из него не уходила в грунт.

При заливке основной ленты слой геотекстиля служит дополнительной защитой от утечек на случай, если арматурный каркас порвет гидроизоляционную пленку.

Полезное видео

В данном видео вы узнаете, как правильно сделать подушку под ленточный фундамент:

Заключение

Создание песчаной подушки под ленту является важным и необходимым этапом строительства ленточного фундамента. Основной задачей является понимание смысла всех действий и соблюдение технологии строительства, результатом чего станет прочная и надежная опорная поверхность.

Необходимо выбирать качественный материал, экономия на создании элементов фундамента недопустима. Это позволит снизить осадку и создать надежное и стабильное основание.

Назначение подушки под ленточный фундамент

Возведение каждого здания начинается с устройства фундамента. Его главная функция – создание прочной опоры и обеспечение поддержки здания во время всего периода эксплуатации. Для облегчения этапа заливки и придания основанию большей надежности, нужна песчаная подушка под ленточный фундамент. Ее задача − обеспечить ровную и устойчивую поверхность для устройства основания.

Функции подушки

До укладки железобетонных ленточных оснований или использования для этой цели железобетонных блоков, обычно нужна подсыпка из песка, щебня или гравия. Песчаная или гравийная подошва выполняет следующие функции:

  • выравнивает траншею под заливку основания и сглаживает возможные неровности грунта;
  • равномерно распределяет нагрузки от веса фундамента на нижние слои грунта;
  • отсекает влагу и отводит грунтовые воды от основания, предотвращая вспучивание в холодное время года.

При наличии высокого уровня вод на строительном участке, перед тем как будет сделана подушка под ленточный фундамент, дно траншеи или котлована выкладывают геотекстилем. Слой этого материала предотвратит возможное заиливание песчаного слоя.

Основные параметры ленточного фундамента

Основания ленточного типа устраивают по периметру будущих стен конструкции (как внешних, так и внутренних) на глубину разработки почвы.

Устройство такого типа основания предусматривает два основных параметра:

Существует следующее требование к ширине – она должна быть не меньше, чем толщина стены. Но, чаще всего, этого бывает мало для того чтобы на выходе получить площадь, обеспечивающую несущую способность фундамента. Можно увеличить ширину на всю высоту фундамента, но это экономически невыгодно.

Исходя из этого, для увеличения площади основания здания, часто устраивается расширение в его более заглубленной части. Таким образом, фундамент имеет трапециевидную форму. Это оптимальная форма сечения ленты основания для принятия нагрузок.

В этом случае, углы наклона боковых стен равны 30º и 45º, где первый показатель приведен для кирпичных фундаментов, а второй – для бетонных. Такая конструкция позволяет избежать опасных растягивающих или скалывающих напряжений на боковых гранях основания.

Более того, нижняя (расширенная) часть препятствует выдвижению основания из грунта и нейтрализует влияние касательных сил пучения в мороз. Устройство основания в виде трапеции позволяет значительно снизить расходы, сокращает объем бетонной смеси и арматуры. При этом такой фундамент характеризуется хорошими несущими способностями.

Устройство подушки и материалы

Материалами, для подготовки подушки под фундамент ленточного типа могут быть:

  • чистый песок крупной фракции, не содержащий глинистых примесей;
  • галька;
  • смесь щебня и песка;
  • бетон и железобетон.

Если выполняется устройство подушки на слабых грунтах, то нужна подсыпка из песка и щебня или песчаной гравийной смеси в следующем соотношении: 40% песка крупной фракции и 60% щебня или песка. Такой вид оснований подходит для фундаментов одноэтажных небольших домов, то есть для относительно легких строений. Подушки такого типа не требуют увлажнения и послойной утрамбовки.

Отсыпка песчаной гравийной или щебеночной смеси дает меньшую усадку после укладки, в сравнении с подушками из песка. Однако при возведении конструкций большего веса, например кирпичных домов, этап утрамбовки является обязательным.

Устройство песчаной подушки

Подсыпка песка в подготовленную траншею выполняется послойно, толщина каждого слоя должна быть примерно 10− 20 см. Утрамбовка также выполняется послойно. Для равномерной утрамбовки используют площадочные вибраторы или катки. В индивидуальном строительстве обычно применяют подручные трамбовочные средства, например, обрезок бревна с импровизированной ручкой наверху.

Увлажнять или не увлажнять песок? Ответ на этот вопрос зависит от состояния грунта на строительном участке. Если грунт надежный, каждый слой перед утрамбовкой необходимо немного пролить водой. Это позволит хорошо уплотнить его перед тем, как будет выполнена отсыпка следующего слоя.

В случае наличия слабых грунтов, в траншею нужна подсыпка предварительно увлажненного песка. Кроме того, при увлажнении до укладки в траншею, из песка вымываются глинистые примеси.

Высота, толщина и гидроизоляция

При закладке подошвы под фундамент ленточного типа, общая высота в зависимости от грунта, может быть до 60 см. (ширина фундамента 3м). Для грунтов, подверженных сильному морозному пучению, этот показатель несколько выше, и составит 80см. Непосредственно ширина самой подушки, должна превосходить фундамент по обе стороны на 10 −15 см.

Также возможна бетонная подготовка для возведения ленточного фундамента. Выбор этого варианта имеет относительное преимущество и обуславливается характеристиками почв:

  • забетонированная плоскость предоставляет возможность выполнить армирование каркасов или сеток с хорошими показателями жесткости;
  • на такой поверхности легче выполнять опалубку и армирование в холодное время года.

После того, как определены размеры периметра будущего строения, проводится подсыпка песчаной подушки на 10 −15 см при ширине, превышающей основание фундамента на 30 и более сантиметров.

Далее выполняют бетонную подготовку из бетона низкой марки или цементного раствора.

Независимо от выбранного типа (песчаной подушки или бетонной подготовки), размеры готового фундамента должны в точности соответствовать проектным отметкам по горизонтали. То есть, на этапе рытья траншеи, принимаются в расчет размеры подушки и высота фундамента.

Еще одно преимущество укладки бетонного основания – возможность уменьшить защитный слой над армированным каркасом. Если подсыпка песка требует слоя в 5−7см, то при втором варианте его толщина уменьшается почти вдвое – до 3− 4см.

Кроме того, чем больше толщина засыпки под основание и пол подвального помещения, тем меньшее фундамент будет подвержен силам пучения. Отсыпка щебня, песка и гравия хорошо защитит фундамент и пол.

Ленточный тип основания с устроенной подушкой обязательно должен быть защищен от вредного влияния почвенных вод. Для этих целей могут применяться гидроизоляционные рулонные материалы. Они наклеиваются в один или два слоя. Верх фундамента также обрабатывается гидроизоляционными материалами, чтобы не допустить проникновения влаги из бетона.

Делать или не делать подсыпку?

Несмотря на все аргументы, приведенные выше, бывают случаи, когда она абсолютно не нужна. Поэтому, следует перечислить случаи, когда отсыпка песка и формирование подушки, скорее навредят, чем помогут:

  1. Если отсыпка песка выполняется в плотные почвы, например, глины или суглинки, то в сравнении с окружающими почвами, песок будет менее плотным заполнителем, который втянет всю воду в себя. Как следствие этого, подушка защитит от поднятия влаги к основе фундамента, но будет накапливать воду от атмосферных осадков. В результате, почва под основанием будет менее прочной, что снизит характеристики фундамента. Чтобы избежать такой ошибки, выполняется укладка дренажной системы для отвода дождевой и талой воды.
  2. Влага в почве присутствует как в виде воды, так и в виде пара. Пар легко преодолевает песчаную преграду и приводит к конденсату влаги непосредственно на фундаменте. Для того чтобы не допустить образование конденсата, применяют влагостойкий бетон или выполняют гидроизоляцию.
  3. Выравнивание грунта и равномерное распределение нагрузки по всей поверхности необходимы для сборных конструкций, например, из ФБС блоков. При их установке на неровную поверхность, под блоками образуются пустоты, которые могут располагаться в разных местах. В итоге после окончания работ и неравномерной усадки, возможны деформации. Поэтому отсыпка песчаной подушки под такое основание устранит перепады и равномерно распределит вес каждого элемента.

Подсыпка песка не нужна в случае заливки монолитной ленты. Пластичный бетон заполнит возможные перепады, и не допустит образования пустот. Монолитная конструкция будет передавать нагрузку, и распределять ее всей поверхностью.

Типы фундамента зависят от типа грунта и других факторов.

Фундамент — это нижняя часть строительной конструкции или основания, которая передает свои гравитационные нагрузки на землю. Конструкция фундамента зависит от общей нагрузки на здание, типа грунта и его несущей способности.

Фундаменты обычно делятся на две категории: фундаментов мелкого заложения и глубоких фундаментов .

Типы фундаментов

Неглубокий фундамент

Фундаменты глубиной менее 3 метров являются фундаментами неглубокого заложения.Такие фундаменты используются для конструкций, не несущих больших нагрузок. Они также используются в случае, если грунт имеет низкую несущую способность.

Типы фундаментов мелкого заложения: —

  • Изолированная опора или опора из колонн
  • Комбинированная опора
  • Консольные или ленточные опоры
  • Мат / плотные опоры
  • Стеновые опоры
  • Стеновые опоры
Плотный фундамент

Глубокий фундамент

Фундаменты глубиной более 3 метров являются глубокими фундаментами.Они находятся глубоко под обработанной поверхностью грунта, поэтому их несущая способность не зависит от состояния поверхности.

Типы глубоких фундаментов —

  • Свайный фундамент
  • Опоры
  • Кассионы
  • Свайный фундамент
Свайный фундамент

Используемый фундамент в зависимости от типа грунта —

Скалистый грунт

Камни, такие как известняк, гранит, песчаник и твердый твердый мел обладают высокой несущей способностью.Когда грунт каменистый с высокой несущей способностью, хорошо подойдет ленточный фундамент. Предпочтительная глубина фундамента менее 0,7 метра.

Гравий и песок

Когда грунт имеет гравий и грунт в основании, лучше всего подходят комбинированные фундаментные и ленточные фундаменты. Глубина фундамента менее 1м. Такие грунты отлично подходят для строительства фундаментов и обладают хорошей несущей способностью. Когда несущая способность больше опорного или ленточного фундамента и когда несущая способность сравнительно низкая, предпочтительнее комбинированное основание или широкое ленточное основание.

Твердая глина

Обычно глина имеет более высокое содержание влаги, и когда влажность становится стабильной до определенной глубины, она становится пригодной для основания. Если глинистая почва плотная и твердая, предпочтительнее использовать плотный фундамент. Также можно использовать ровный ленточный фундамент.

Мягкая глина

Мягкий глинистый песок склонен к расширению и усадке. Они имеют низкую несущую способность и не подходят для опорных и ленточных фундаментов. В этом случае используется свайный фундамент.Сваи копают глубже до тех пор, пока не будет получен устойчивый слой, который станет подходящим для строительства основания.

Торф

Торф — один из бедных грунтов для фундамента. Если слой торфа выкопан из земли и найден устойчивый грунт с несущей способностью, то хорошо подойдет ленточный фундамент. Если устойчивый грунт не обнаружен, используют плотный фундамент.


Проверьте наши услуги, предлагаемые в строительстве и контрактах. Свяжитесь с HGCIndia для получения дополнительной информации.
+91 11287 | [email protected]

Таблицы расчетов для укладки полос на необработанном и обработанном цементом песчаном мате поверх подстилающей натуральной мягкой глины

Авторов: Шарифулла Ахмед, Sarwar Jahan Md. Ясин

Аннотация:

Фундаменты неглубокого заложения на неулучшенных мягких природных грунтах могут подвергаться сильной консолидации и вторичной осадке. Для мало- и среднеэтажных строительных проектов на таких почвенных условиях свайный фундамент может быть неэффективным.В таких случаях альтернативой свайным фундаментам могут быть мелкие ленточные фундаменты, расположенные на двухслойном грунте улучшенной системы грунта. Верхний слой этой системы — это необработанный или обработанный цементом уплотненный песок, а нижележащий слой — натуральная мягкая глина. Эта система снизит расчет до допустимого лимита. Настоящее исследование было проведено с оседанием жесткого плоско-деформированного ленточного фундамента шириной 2,5 м, размещенного на поверхности почвы, состоящей из необработанного или обработанного цементом слоя песка, лежащего на слое однородной мягкой глины.Осадка упомянутого неглубокого фундамента была изучена с учетом обоих случаев с толщиной песчаного слоя от 0,3 до 0,9 ширины подошвы. Реакция слоя глины считается недренированной для стадий пластического нагружения и осушенной на стадиях консолидации. Ответ песчаного слоя осушается на всех этапах загрузки. FEM-анализ проводился с использованием PLAXIS 2D Version 8.0. Отложения естественной глины толщиной 15 м и шириной 18 м были смоделированы с использованием модели упрочняющегося грунта, модели мягкого грунта, модели ползучести мягкого грунта, а верхний улучшающий слой был смоделирован с использованием только модели упрочняющегося грунта.Уровень грунтовых вод находится на верхнем уровне залежи глины, что сделало систему полностью насыщенной. Параметрическое исследование было проведено для определения влияния толщины, плотности, цементации песчаного мата и плотности, сопротивления сдвигу мягкого слоя глины на осадку ленточного фундамента при равномерно распределенной вертикальной нагрузке переменной величины. Набор диаграмм был разработан для проектирования неглубоких полос на песчаном мате поверх толстого мягкого глинистого отложения путем получения конкретной толщины песчаного мата для конкретного параметра подпочвы, чтобы гарантировать отсутствие разрушения при сдвиге при продавливании и осадки за пределами допустимого уровня.Руководство по проектированию в виде безразмерных диаграмм было разработано для давления на опору, эквивалентного среднему этажу фундамента жилого или коммерческого здания с ленточным фундаментом на мягком неорганическом нормально уплотненном (NC) грунте Бангладеш с коэффициентом пустотности от 1,0 до 1,45.

Ключевые слова: Графики дизайна, улучшение грунта, PLAXIS 2D, первичный и вторичный поселок, песочный мат мягкая глина.

Процедуры APA BibTeX Чикаго EndNote Гарвард JSON ГНД РИС XML ISO 690 PDF Загрузок 210

Каталожные номера:


[1] Ханна, А. М. и Мейерхоф, Г. Г. (1980), «Расчетные диаграммы предельной несущей способности песков, покрывающих глины», Canadian Geotech. J., 17 (2).
[2] Томе, А., Донато, М., Консоли, Н. К. и Грэм, Дж. (2005), «Круглые опоры на цементном слое над грунтом слабого фундамента», Can. Геотех.J. 42: 1569–1584, NRC Canada.
[3] Сераджуддин, М. и Чоудхури, М.А. (1967), «Исследования инженерных свойств почвы Восточного Пакишсана», Proc, Первая региональная конференция Южной Азии по инженерии почвы, Бангкок, Таиланд, стр. 9–12.
[4] Сераджуддин, М. (1998), «Некоторые геотехнические исследования почв Бангладеш: резюме статей за период 1957-96 гг.», Журнал гражданского строительства, Институт инженеров, Бангладеш, Vol. CE 26, No-2, 1998 г.
[5] Сераджуддин, М. и Ахмед, А. (1998), «Корреляция между SPT и неограниченной прочностью на сжатие связных грунтовых отложений Бангладеш», Журнал CE, IEB, Vol.CE 24, № 1, 1996 г., стр. 69-81.
[6] Ясин, С. Дж. М. и Шафиулла, А. М. М. (2003), «Влияние характеристик частиц на прочность и изменение объема песка», Журнал гражданского строительства, Институт инженеров, Бангладеш, Vol. CE 31, № 2, 2003 г.
[7] Бринкгрев, Р. Б. Дж. И Броер, В. (2002), «PLAXIS 2D Version 8 — Manual», Делфтский технологический университет и PLAXIS b. v., Нидерланды, A. A. Balkema Publishers.
[8] К. К. Соренсен и Н. Оккельс (2013 г.), «Корреляция между прочностью на сдвиг и индекс пластичности ненарушенных переуплотненных глин», Труды 18-й Международной конференции по механике грунтов и геотехнической инженерии, Париж, 2013 г.
[9] Митчелл, Дж. К. (1976), «Свойства цементно-стабилизированных грунтов. Proceeding of Residential », Практикум по материалам и методам недорогостоящих дорожных, железнодорожных и мелиоративных работ, Австралия: 365–404.
[10] Waterman, D. и Broere, W. (2004), «Применение модели SSC — части I, II и III», Делфтский технологический университет / Plaxis BV.
[11] BNBC (2017), «Почвы и фундаменты», Национальный строительный кодекс Бангладеш (BNBC), Институт жилищных и строительных исследований — HBRI, Дакка, Бангладеш, часть 6, глава 3, стр.6-143-211.

Оптимизация несвязанного свайного основания на плотах для мягких глинистых грунтов: численное исследование

  • Абдельрахман Г.Е., Эль-Камаш WH (2014) Улучшение поведения основания на плотах на мягкой глине с использованием геопены. Geo-Shanghai 2014, 26–28 мая, Шанхай, Китай, 557–566, DOI: https://doi.org/10.1061/9780784413401.055

  • Альнуайм А., Эль-Наггар Х., Эль-Наггар М.Х. (2015a) Характеристики плота, сложенного микровалками в песке, подвергнутого вертикальной сосредоточенной нагрузке: моделирование на центрифуге. Canadian Geotechnical Journal 52 (1): 33–45, DOI: https://doi.org/10.1139/cgj-2014-0448

    Артикул Google ученый

  • Альнуайм А., Эль-Наггар М.Х., Эль-Наггар Х. (2015b) Характеристики плота, сложенного из микроволн в глине, подвергнутого вертикальной сосредоточенной нагрузке: моделирование на центрифуге. Canadian Geotechnical Journal 52 (12): 2017–2029, DOI: https://doi.org/10.1139/cgj-2014-0001

    Артикул Google ученый

  • Альнуайм А.М., Эль-Наггар М.Х., Эль-Наггар Х. (2016) Численное исследование работы плотов с микровалками в песке. Компьютеры и геотехника 77: 91–105, DOI: https://doi.org/10.1016/j.compgeo.2016.04.002

    Артикул Google ученый

  • Альнуайм А.М., Эль-Наггар М.Х., Эль-Наггар Х. (2018) Характеристики плотов, сложенных в глинах, с использованием микроволн: численное исследование. Компьютеры и геотехника 99: 42–54, DOI: https://doi.org/10.1016/j.compgeo.2018.02.020

    Артикул Google ученый

  • Ata A, Badrawi E, Nabil M (2015) Численный анализ несвязанного свайного плота с подушкой. Ain Shams Engineering Journal 6 (2): 421–428, DOI: https://doi.org/10.1016/j.asej.2014.11.002

    Артикул Google ученый

  • Budhu M (2007) Механика грунта и основания, 2-е издание. John Wiley & Sons, Inc., Хобокен, Нью-Джерси, США

    Google ученый

  • Cao XD, Wong IH, Chang MF (2004) Поведение модельных плотов, покоящихся на свайном песке. Журнал геотехнической и геоэкологической инженерии 130 (2): 129–138, DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(129)

    Артикул Google ученый

  • Эль Камаш В., Эль Наггар Х (2018) Численное исследование потери устойчивости концевых свай в мягком грунте, подверженном осевым нагрузкам. Journal of Geotechnical and Geological Engineering 36 (5): 3183–3201, DOI: https://doi.org/10.1007/s10706-018-0529-4

    Артикул Google ученый

  • Эль Камаш В., Хан Дж. (2014) Смещения насыпей на колоннах по мягкой глине после расширения с учетом консолидации грунта и расположения колонн: численный анализ. Почвы и фундаменты 54 (6): 1054–1069, DOI: https://doi.org/10.1016/j.sandf.2014.11.002

    Артикул Google ученый

  • Эль Камаш В., Хан Дж. (2017) Численный анализ существующих фундаментов на основе Micropiles. Международный журнал геомеханики ASCE 17 (6), DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000833

    Артикул Google ученый

  • El Sawwaf M (2010) Экспериментальное исследование плота с внецентренной нагрузкой с соединенными и несвязанными короткими сваями. Журнал геотехнической и геоэкологической инженерии 136 (10): 1394–1402, DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000341

    Артикул Google ученый

  • Fioravante V (2011) Передача нагрузки с плота на сваю с промежуточным слоем. Geotechnique 61 (2): 121–132, DOI: https://doi.org/10.1680/geot.7.00187

    Артикул Google ученый

  • Хорикоши К., Мацумото Т., Хашизумэ И, Ватанабэ Т., Фукуяма Х. (2003) Характеристики свайных фундаментов на плотах, подверженных статическим горизонтальным нагрузкам. Международный журнал физического моделирования в геотехнике 3 (2): 37–50, DOI: https://doi.org/10.1680/ijpmg.2003.030204

    Артикул Google ученый

  • Kulhawy FH, Mayne PW (1990) Руководство по оценке свойств грунта для проектирования фундамента. № EPRI-EL-6800, Исследовательский институт электроэнергии, Пало-Альто, Калифорния, США

    Google ученый

  • Lee SH, Chung CK (2005) Экспериментальное исследование взаимодействия вертикально нагруженных групп свай в песке. Canadian Geotechnical Journal 42 (5): 1485–1493, DOI: https://doi.org/10.1139/105-068

    Артикул Google ученый

  • Liang FY, Chen LZ, Shi XG (2003) Численный анализ композитного свайного плота с подушкой, подвергнутой вертикальной нагрузке. Компьютеры и геотехника 30 (6): 443–453

    Статья Google ученый

  • Matsumoto T, Nemoto H, Mikami H, Yaegahi K, Arai T, Kitiyodom (2010) Испытания под нагрузкой моделей свайных плотов с различными условиями соединения головок свай и их анализ. Грунты и фундаменты. Японское общество механики грунтов и фундаментостроения 50 (1): 63–81, DOI: https://doi.org/10.3208/sandf.50.63

    Google ученый

  • Rasouli H, Fatahi B (2019) Новый набивной плотный фундамент для защиты зданий, подверженных нормальному разрушению. Компьютеры и геотехника 106: 228–248, DOI: https://doi.org/10.1016/j.compgeo.2018.11.002

    Артикул Google ученый

  • Саиди А.А., Базиар М.Х., Расули Х., Модаррези М., Шахназари Х. (2015) Центрифужное моделирование несвязанной свайной системы плота. Международный журнал гражданского строительства 13 (2): 114–123, DOI: https://doi.org/10.22068/IJCE.13.2.114

    Google ученый

  • Сео Ю.К., Ли Х.Дж., Ким Т.Х. (2006) Численный анализ свайно-плотного фундамента с учетом эффектов песчаной подушки. Шестнадцатая международная конференция по морской и полярной инженерии, 28 мая — 2 июня, Сан-Франциско, Калифорния, США

  • Zheng JJ, Abusharar SW, Wang XZ (2008) Трехмерное нелинейное конечно-элементное моделирование композитного фундамента, сформированного CFG- известковые сваи. Компьютеры и геотехника 35 (4): 637–643, DOI: https://doi.org/10.1016/j.compgeo.2007.10.002

    Артикул Google ученый

  • Осадка ленточного фундамента на песчаной подушке, уложенной на мощную залежь мягкой глины

    Аннотация:

    Неглубокий фундамент на залежи слабых грунтов без улучшения может значительно уменьшиться в объеме после консолидации и вторичной осадки. Для проектов малоэтажного и среднеэтажного строительства на таких почвенных условиях глубокий фундамент может быть экономически нецелесообразным.В таком случае альтернативой глубоким фундаментам могут быть мелкие ленточные фундаменты, размещенные на двухслойной системе фундамента, в которой верхний слой необработан, или обработанный цементом уплотненный песок. В данной исследовательской работе рассматривается конкретный случай несущей способности жесткой плоско-деформированной опоры, расположенной на поверхности почвы, состоящей из однородного чистого или обработанного слоя песка, лежащего на толстом однородном слое мягкой глины. В исследовании рассматривались оба случая, когда толщина песчаного слоя была тонкой или толстой по сравнению с шириной основания.Во всех случаях поверхность земли и граница раздела двух слоев почвы считаются горизонтальными. Предполагается, что отклик слоя глины не осушается на стадиях пластического нагружения и осушается на стадиях уплотнения, а отклик слоя песка осушается на всех стадиях нагружения. Осадка мелкого ленточного фундамента, лежащего на слоистых грунтах, где верхний слой в виде необработанного или обработанного песчаного слоя и нижний слой глины были проанализированы в данной исследовательской работе. Параметрическое исследование было проведено для определения влияния толщины, плотности, цементации песчаного мата и плотности, прочности на сдвиг мягкого слоя глины на осадку ленточного фундамента.Было разработано лучшее понимание упругопластических, консолидационных и ползучести оседания ленточного фундамента на песчаном мате при различном давлении основания, эквивалентном низко- или умеренно нагруженным низко- и средневысотным нагрузкам жилых или коммерческих зданий. Были разработаны руководящие принципы для проектирования неглубокого ленточного фундамента с песчаным матом на толстых мягких глинистых отложениях с определением толщины песчаного мата для различных характеристик материала во избежание разрушения при продавливании и ограничении осадки до допустимого уровня.Относительная осадка (S / So) в центральной точке основания была рассчитана как для необработанного, так и для обработанного цементом верхнего песчаного мата, где So — осадка для случая с Hi = 0,25 м, а S — осадка для другой толщины верхнего слоя. коврик из песка. Большее значение относительной осадки S / So указывает на большую разницу осадки между случаями малой и большей толщины слоя песка. Из этого исследования сделан вывод, что относительную осадку S / S0 можно рассматривать как показатель эффективности песчаного слоя.Разработаны рекомендации для ленточного фундамента на мягком неорганическом грунте NC Бангладеш с коэффициентом пустотности от 1,0 до 1,45. Исследовательская работа была ограничена одним значением E ‘и ϕ’ мягкого слоя глины, а также одним значением ϕ ‘песчаного мата. Эти расчетные диаграммы могут использоваться для получения общей осадки для заданного значения давления на опору, толщины песчаного мата, ширины опоры и начального коэффициента пустотности. Для необработанного или обработанного цементом песка в качестве верхнего слоя осадка ленточного основания может быть рассчитана для конкретных значений Hi, q, B и γsat с использованием разработанной проектной карты или уравнений.Для конкретного значения осадки расчетную толщину песчаного мата можно получить с помощью предложенных диаграмм. Допустимая осадка по BNBC 2015 составляет 50 мм. Расчетную толщину песчаного мата для осадки 50 мм можно непосредственно получить из этих диаграмм. Для Hi / B = 0,6 или выше оседание необработанного песка в качестве верхнего слоя в нижний слой глины очень мало, что представляет собой распределение основной деформации в верхнем слое, а зона влияния основания ограничена в верхнем слое, что указывает на полную эффективность верхнего слоя. слой в несущем фундаменте эффективно.При Hi = 0,75 или выше осадка основания с обработанным цементом песком в качестве верхнего слоя и мягкой глиной в качестве нижнего слоя очень мала, что означает, что распределение основной деформации в верхнем слое и функция опоры ограничена в верхнем слое, что также указывает на полную эффективность. верхнего слоя в несущем фундаменте эффективно. Хрупкое поведение зацементированного песка и изломы или трещины в этом анализе не рассматриваются.

    Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак

    PLoS One.2020; 15 (12): e0243293.

    , курирование данных, формальный анализ, расследование, методология, ресурсы, программное обеспечение, визуализация, написание — первоначальный проект, 1 , концептуализация, формальный анализ, получение финансирования, расследование, методология, администрирование проекта, ресурсы, программное обеспечение, надзор, проверка, Написание — обзор и редактирование, 1, * , Концептуализация, Исследование, Методология, Визуализация, Написание — обзор и редактирование, 1 , Концептуализация, Формальный анализ, Исследование, Методология, Надзор, Написание — обзор и редактирование, 1 , Формальный анализ, получение финансирования, администрирование проекта, написание — обзор и редактирование, 1 и, концептуализация, методология, проверка, написание — просмотр и редактирование 2

    Noor Ibrahim Hasan

    1 Факультет инженерии и искусственной среды, Universiti Kebangsaan Malaysia, Bangi UKM, Selangor, Malaysia

    Aizat Mohd Taib

    1 Факультет инженерии и искусственной среды, Universiti Kebangsaan Malaysia, Bangi UKM, Селангор, Малайзия

    Нур Шазвани Мухаммад

    1 Факультет инженерии и искусственной среды, Universiti Kebangsaan Malaysia, Bangi UKM, Селангор, Малайзия

    Мухамад Разуханафи Мат Язид

    1 Факультет инженерии и искусственной среды, Universiti Kebangsaan Malaysia, Bangi UKM, Селангор, Малайзия

    Азрул А.Муталиб

    1 Факультет инженерии и искусственной среды, Universiti Kebangsaan Malaysia, Bangi UKM, Селангор, Малайзия

    Dayang Zulaika Abang Hasbollah

    2 Школа гражданского строительства, инженерный факультет, Universiti Teknologi Malaysia, Скудаи, Джохор, Малайзия

    Цзянго Ван, редактор

    1 Факультет инженерии и искусственной среды, Universiti Kebangsaan Malaysia, Bangi UKM, Селангор, Малайзия

    2 Школа гражданского строительства, Инженерный факультет, Universiti Teknologi Malaysia, Скудаи, Джохор, Малайзия

    Китайский горно-технологический университет, КИТАЙ

    Конкурирующие интересы: Авторы заявили, что конкурирующих интересов не существует.

    Поступило 17.06.2020; Принято в 2020 году 19 ноября.

    Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника. Эта статья процитирована. другими статьями в PMC.

    Реферат

    Основная причина проблемного разрушения грунта при определенной нагрузке — низкая несущая способность и чрезмерная осадка.В связи с растущим интересом к использованию неглубокого фундамента для поддержки тяжелых конструкций важно изучить методы улучшения почвы. Техника использования геосинтетического армирования широко применяется в последние несколько десятилетий. Целью данной статьи является определение влияния использования георешетки Tensar BX1500 на несущую способность и осадку ленточного основания для различных типов почв, а именно Аль-Хамедат, Башика и Аль-Рашидия в Мосуле, Ирак. Расчет армированных и неармированных грунтовых оснований проводился численно и аналитически.Был протестирован ряд условий путем изменения количества ( N ) и ширины ( b ) слоев георешетки. Результаты показали, что георешетка может улучшить несущую способность основания и уменьшить осадку. Почва на участке Аль-Рашидиа была песчаной и показала лучшее улучшение, чем почвы на двух других участках (глинистые почвы). Оптимальная ширина георешетки ( b ) в пять раз превышала ширину основания ( B ), в то время как оптимальное число георешетки ( N ) не было получено.Наконец, численные результаты предельной несущей способности были сопоставлены с аналитическими результатами, и сравнение показало хорошее соответствие между результатами анализа и оптимальным диапазоном, опубликованным в литературе. Значительные результаты показывают, что усиление георешетки может способствовать улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR, подтвержденные расчетами коэффициента улучшения.Таким образом, полученные результаты дополнили выгоду от эффективного применения укрепленных грунтовых оснований.

    Введение

    Методы улучшения грунта с помощью геосинтетических материалов были широко разработаны за последние несколько десятилетий, особенно в области строительства дорожных покрытий и фундаментов. Хотя было проведено множество экспериментальных исследований для определения эффекта геосинтетического армирования, анализ отличается в отношении свойств геотекстиля, таких как форма и размеры, расстояние и толщина [1–13].Кроме того, в исследованиях также анализируется влияние различных типов грунтов и конструкций основания. Что касается поведения грунта с классификацией песчаных грунтов, многочисленные аналитические исследования внесли свой вклад в изучение взаимодействия грунта и конструкции, проведенного несколькими исследователями в отношении несущей способности оснований из грунта, армированного георешеткой [13–17]. Кроме того, бесчисленные численные модели, позволяющие сэкономить время и средства, были выполнены для исследования несущей способности и осадки армированного грунта [9, 18–29].Концепция армированного грунта как строительного материала, основанная на существовании взаимодействий между грунтом и арматурой за счет прочности на растяжение, фрикционных и адгезионных свойств арматуры, была впервые введена французским архитектором и инженером Анри Видалем в 1960-х годах [29]. С тех пор этот метод широко используется в инженерно-геологической практике. Геосинтетические материалы, которые используются в армированных грунтах, бывают разных типов, включая геосетки, геотекстиль, геомембраны, геосинтетические глиняные облицовки, геосетки и геоячейки [30].Георешетка — один из строгальных геосинтетических материалов, обычно изготавливаемых из полимеров; В настоящее время различные разновидности геосеток изготавливаются из полипропилена или полипропилена высокой плотности (HDPP), что способствует эффективному использованию различных геотекстильных материалов.

    Фундамент с армированной грунтовой системой называется армированным грунтовым фундаментом (РПГ). иллюстрирует типичный геосинтетический армированный грунт фундамент и описание различных геометрических параметров. Параметры армирования георешеткой включают расстояние между верхними слоями ( и ), расстояние по вертикали ( с или х ), количество слоев армирования ( N ), общую глубину армирования ( d ) и ширину арматуры ( б ).Как указано в литературе, оптимальное значение для параметров ( u / B ) и ( h / B ) составляет 0,33 (где B — ширина основания). Во многих исследованиях были выбраны разные размеры основания и георешетки, но все результаты указывают на различное поведение в зависимости от классификации почвы. Можно понять, что разные географические районы имеют разные типы почвы и условия, поэтому правильная конструкция используемой георешетки важна для улучшения грунтовых оснований.Более того, фундаменты из армированного грунта могут быть экономичной альтернативой обычным фундаментам мелкого заложения с большими размерами фундамента, которые, в свою очередь, увеличивают осадку фундамента из-за увеличения глубины зоны влияния под фундаментом или замены слабых слоев грунта подходящими материалами [31] .

    Фундамент, армированный георешеткой [32].

    В течение последних тридцати лет было проведено множество экспериментальных, численных и аналитических исследований для изучения поведения RSF для различных типов почв.Все исследования показали, что использование арматуры может значительно увеличить несущую способность и уменьшить осадку грунтовых оснований [33]. Чен и Абу-Фарсах и др. . В работе [34] для оценки преимуществ фундамента с усиленным грунтом использовались две концепции, например коэффициент несущей способности (BCR) и коэффициент уменьшения осадки (SRR). BCR определяется как отношение несущей способности фундамента из армированного грунта к несущей способности фундамента из неармированного грунта, тогда как SRR определяется как отношение уменьшения осадки основания на основе армирования к осадке основания из неармированного грунта при постоянном поверхностном давлении [ 35].BCR представлен как:

    Где:

    ( q ult ) r — предельная несущая способность фундамента из армированного грунта.

    ( q ult ) u — предельная несущая способность неармированного грунтового основания.

    И SRR определяется как:

    Где:

    s R — осадка армированного грунтового основания.

    s 0 — осадка неармированного грунтового основания.

    Многие из этих исследований были направлены на изучение параметров и переменных, которые будут влиять на значения BCR и SRR. Другие исследования также были сосредоточены на улучшении осадки фундамента, других геотехнических конструкций и методов расчета, таких как Abbas и др. . [36], Rosyidi и др. . [37], Хаджезаде и др. . [38], Joh и др. .[39], Чик и др. . [40], Ли и др. . [41], Азриф и др. . [42] и Zhanfang и др. . [43] работают. Гвидо и др. . [1] провели экспериментальное исследование земляных плит, армированных геотекстилем. Их модельные испытания проводились с использованием квадратного фундамента на песке. Они показали, что BCR уменьшалась с увеличением на ед. / B ; улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 0B для u / B , h / B и b / B отношения 0,5, 0,25 и 3. Незначительное улучшение BCR наблюдалось при увеличении отношения длин ( b / B ) армирования сверх трех с двумя армирующими слоями и отношениями u / B и h / B , равными 0,25 и 0,25, соответственно. Кроме того, Ли и др. . [44] провели испытание лабораторной модели с использованием жесткой ленточной опоры, опирающейся на плотный песок, покрывающий мягкую глину, со слоем геотекстиля на границе раздела.Они обнаружили, что слой армирования на границе раздела песок-глина привел к дополнительному увеличению несущей способности и уменьшению осадки основания; Эффективная ширина арматуры, которая привела к оптимальным характеристикам основания, оказалась примерно в пять-шесть раз больше ширины основания.

    Кроме того, исследование методом конечных элементов, проведенное Курианом и др. . [45] на ленточном основании, поддерживаемом армированным песком, с использованием модели грунта Дункана-Чанга показали явное уменьшение осадки в армированном песке при более высоких нагрузках, чем в случае неармированного песка.Численные результаты также показали, что небольшое увеличение осадки произошло в армированном песке на начальной стадии процесса нагружения. Возможное объяснение этого явления дано Курианом и др. . [45] было то, что нормальная нагрузка была слишком мала, чтобы мобилизовать достаточное трение между почвой и арматурой. Относительное движение между грунтом и арматурой увеличивалось с увеличением нагрузки и уменьшалось с увеличением глубины армирования.Максимальное напряжение сдвига на границе раздела грунт-арматура произошло на относительном расстоянии ( x / B ) примерно 0,5 от центра основания, а напряжение, развиваемое в арматуре, было максимальным в центре и постепенно уменьшалось к концу. арматуры. С другой стороны, Махарадж [19] выполнил численный анализ на ленточном основании, поддерживаемом армированной глиной, с использованием модели грунта Друкера – Прагера. Он пришел к выводу, что в случае однослойной арматуры оптимальное соотношение расстояния между верхними слоями ( u / B ) оказалось около 0.125 из армированной глины. Он также обнаружил, что эффективное соотношение длины ( b / B ) арматуры было около 2,0, глубина влияния зависела от жесткости арматуры, а увеличение геосинтетической жесткости уменьшило оседание основания.

    Хотя многие исследования показали много интересных особенностей механизма взаимодействия грунт-геосинтетика, методы, используемые для проектирования геосинтетических грунтовых систем, все еще различаются и в большинстве случаев озадачивают инженеров.В основном использовался расчет системы армированного грунта с использованием методов предельного равновесия, который считался очень консервативным [46–48]. В последнее время внедрение метода конечных элементов для моделирования и анализа системы армированного грунта обеспечило соответствующие проектные характеристики, низкую стоимость и скорость, с использованием различных систем армирования грунта и граничных условий [49]. Однако необходимость численного и аналитического исследования, учитывающего основные факторы механизма взаимодействия армированного грунтового основания, остается актуальной.В этой статье анализ несущей способности и осадки армированного георешеткой и неармированного грунтового основания трех участков (т.е. Аль-Хамедат, Аль-Рашидия и Башика) в Мосуле, Ирак, проводится численно с помощью программы конечных элементов Plaxis. и сравнивается с аналитической несущей способностью, рассчитанной теоретически с использованием метода, разработанного Ченом и Абу-Фарсахом [17]. Производные и аналитические методы основаны на анализе предельного равновесия и рассчитывают только предельную несущую способность для данного осадки.Поскольку осадки не могут быть получены с помощью этих методов, поэтому осадки, полученные в результате численного анализа, были использованы в теоретическом методе.

    Механизм армирования георешеткой

    Во многих случаях при строительстве неглубокие фундаменты возводятся поверх существующего слабого грунта, что приводит к низкой несущей способности и чрезмерным проблемам осадки. Недостатки могут вызвать структурное повреждение, снижение срока службы и ухудшение уровня производительности [50].В этих условиях методы улучшения почвы использовались в течение долгого времени для решения проблемы, связанной с этими типами почв. Несколько исследователей разработали различные методы улучшения почвы для повышения прочности почвы с помощью различных методов стабилизации. Для решения вышеупомянутых проблем с почвой было разработано несколько типов методов улучшения почвы, включая цементацию, вертикальные дренажи, замену почвы, укладку свай и геосинтетическое армирование [51–54]. Полимерная природа геосинтетического материала делает геосинтетические изделия долговечными в различных условиях грунта и окружающей среды.Общие применения геосинтетических материалов в области инженерно-геологической инженерии включают повышение прочности и жесткости подземного грунта, подчеркнутого на неглубоких основаниях и тротуарах, обеспечение устойчивости грунтовых подпорных конструкций и откосов, обеспечивая безопасность плотин, как описано в Han et al . [55] и Ван и др. . [56] работают. Георешетка используется для улучшения механических характеристик подземного грунта при внешних нагрузках. Таким образом, он широко применяется в качестве армирующих слоев в стенах из механически стабилизированного грунта (MSE) и геосинтетического армированного грунта (GRS), в качестве меры стабилизации откосов и в качестве армирования подземного грунта под тротуарами и основаниями.Высокая растягивающая способность геосеток позволяет слоям армирования принимать на себя значительную часть растягивающих напряжений, возникающих в массиве грунта из-за действия внешней нагрузки. Таким образом, георешетки действуют как армирующие элементы и усиливают нагрузочно-деформационные характеристики армированного грунтового массива.

    В ходе некоторых экспериментальных исследований Бинке и Ли [14] оценили несущую способность грунта, армированного металлическими полосами; Результаты испытаний показали, что несущая способность может быть улучшена в 2–4 раза за счет усиления грунта.Результаты их испытаний также показали, что арматура, размещенная ниже глубины воздействия, которая составляла приблизительно 2B , оказала незначительное влияние на увеличение несущей способности и размещение первого слоя на ( u / B = 0,3) ниже основание фундамента привело к максимальному улучшению. Акинмусуру и Акинболаде [57] исследовали влияние использования канатных волокон в качестве армирующих элементов на песчаную почву; их результаты показали, что предельная несущая способность может быть увеличена до трех раз по сравнению с неармированным грунтом; Оптимальное расстояние между верхними слоями ( и ) было определено равным 0 . 5B , и они показали, что улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 75Б . Сакти и Дас [2] провели экспериментальное исследование фундамента из глинистого грунта, армированного геотекстилем. Результаты их испытаний показали, что большинство преимуществ геотекстильного армирования было получено при соотношении расстояния между верхними слоями ( u / B ), равном 0.От 35 до 0,4. Для u / B 0,33 и h / B 0,33, BCR увеличился с 1,1 до 1,5, когда количество слоев увеличилось с 1 до 3, и после этого оставался практически постоянным. Глубина воздействия при укладке геотекстиля была определена как 1,0 B . Наиболее эффективная длина геотекстиля равнялась четырехкратной ширине ленточного основания.

    Чжоу и Вэнь [58] провели экспериментальное исследование, чтобы изучить влияние использования одного слоя песчаной подушки, армированной геоячейками, на мягкий грунт.Результаты показали, что произошло существенное уменьшение осадки нижележащего мягкого грунта, а коэффициент реакции земляного полотна K30 был улучшен на 3000%; деформация уменьшилась на 44%. Более того, Рафтари и др. . [24] провели численный анализ на ленточном основании, поддерживаемом усиленным откосом, с использованием модели грунта Мора – Кулона. Результаты испытаний показали, что осадка фундамента на неармированном склоне более сильная, чем на усиленном.Так как осадка в армированной ситуации с тремя слоями арматуры уменьшилась примерно на 50%. Они сообщили, что для достижения наименьшей осадки оптимальное вертикальное расстояние между георешетками ( х ) должно быть эквивалентно ширине фундамента ( B ). Хинг и др. . [5] провели серию модельных испытаний на ленточных фундаментах, поддерживаемых песком, армированным георешеткой. Результаты испытаний показали, что размещение георешетки на глубине ( d / B ) больше 2.25 не привело к улучшению несущей способности ленточного фундамента. Для достижения максимальной выгоды минимальный коэффициент длины ( b / B ) георешетки должен быть равен 6. BCR, рассчитанный при ограниченном соотношении осадки ( s / B ) 0,25, 0,5 и 0,75, составил примерно 67 % –70% от окончательного BCR.

    Адамс и Коллин [11] выполнили несколько серий крупномасштабных полевых испытаний. Испытания проводились в бетонном боксе с четырьмя квадратными опорами различных размеров.Для испытаний был выбран мелкодисперсный песок для бетонного раствора с плохой сортировкой. Результаты испытаний показали, что три слоя армирования георешеткой могут значительно увеличить несущую способность и что коэффициент предельной несущей способности (BCR) может быть увеличен до более чем 2,6 для трех слоев армирования. Однако величина осадки, необходимая для этого улучшения, составляла примерно 20 мм ( s / B = 5%) и могла быть неприемлемой для некоторых применений фундамента. Результаты также показали, что положительные эффекты армирования при низком коэффициенте осадки ( s / B ) могут быть максимально достигнуты, когда расстояние между верхними слоями меньше 0.25 В . В качестве альтернативы, Араб и др. . [27] провели численный анализ на ленточном основании, поддерживаемом песчаным грунтом, с использованием модели затвердевающего грунта. Они сообщили, что для геометрических параметров u / B = h / B = 0,5 и b / B = 4, эффект увеличения количества слоев георешетки ( N ) на несущую способность армированных георешеткой грунтов увеличили несущую способность и немного увеличили общую жесткость армированного песка.Увеличение жесткости георешетки также привело к увеличению BCR. Несмотря на то, что исследования грунтового основания, армированного георешеткой, проводились широко, поведение грунта не отражено полностью, особенно с учетом оптимизированного применения георешетки. Численное моделирование в этом исследовании способствует более глубокому пониманию грунтового основания за счет определения арматуры в моделях грунта.

    Численное моделирование

    Численное моделирование поведения армированного и неармированного грунтового основания проводилось с использованием программного обеспечения Plaxis.Plaxis — это программа конечных элементов, специально разработанная для анализа деформации и устойчивости в инженерно-геологических задачах [59]. В этом исследовании процесс тестирования включает в себя полное моделирование грунта, усиления георешетки, установки фундамента и приложения нагрузки, как показано на рис. Реальные сценарии можно смоделировать с помощью модели плоской деформации, которая используется в текущей задаче. Модель плоской деформации подходит для реализации с относительно однородным поперечным сечением, схемой нагружения и большой протяженностью модели в направлении, перпендикулярном плоскости модели, где нормальные напряжения полностью учитываются, но смещения и деформации принимаются равными нулю. .

    Анализ моделей

    В Plaxis доступны различные модели почв. С помощью моделирования методом конечных элементов в данной работе была рассмотрена модель упруго-идеально пластичного грунта Мора – Кулона. Конститутивная модель Мора-Кулона широко используется в большинстве инженерно-геологических задач, поскольку исследователи показали, что комбинации напряжений, приводящие к разрушению в образцах грунта при трехосных испытаниях, соответствуют контуру разрушения по критерию Мора-Кулона (шестиугольная форма) Гольдшейдера [60].При использовании конститутивной модели Мора-Кулона в качестве входных данных требуются пять параметров [61]. Эти пять параметров могут быть получены путем анализа основных испытаний грунта, и они состоят из двух параметров жесткости: эффективного модуля Юнга ( E ′) и эффективного коэффициента Пуассона ( v ′) и трех параметров прочности: эффективного сцепления ( c ). ′), Эффективный угол трения ( φ ′) и угол расширения ( ψ ). В 2D-пространстве огибающая разрушения символизирует прямую или слегка изогнутую линию, касающуюся круга Мора или точек напряжения.В диапазонах напряжений в пределах области текучести почвенный материал эластичен. По мере развития критического сочетания напряжения сдвига и эффективного нормального напряжения точка напряжения будет совпадать с зоной разрушения, и предполагается идеально пластичное поведение материала с непрерывным сдвигом при постоянном напряжении. После достижения идеально пластичного состояния материал никогда не сможет вернуться к полностью эластичному поведению без каких-либо необратимых деформаций. Ленточный фундамент моделируется как жесткая плита и в анализах считается очень жестким и грубым.

    Детали армированных георешеткой грунтов, рассмотренных в модельных испытаниях, показаны в. В Plaxis армирование георешетки представлено применением специальных натяжных элементов (пятиузловых элементов георешетки). Георешетки имеют только нормальную жесткость и не имеют жесткости на изгиб, которая может выдерживать только растягивающие усилия. Единственное свойство материала георешетки — упругая осевая жесткость EA . Чтобы смоделировать взаимодействие элементов георешетки с окружающей почвой, часто бывает удобно комбинировать эти элементы георешетки с интерфейсами.Назначенные границы раздела почва – георешетка показаны на. Каждому интерфейсу присвоена виртуальная толщина, которая представляет собой воображаемый размер, используемый для определения свойств материала интерфейса. Модель упруго-идеально пластическая используется для описания поведения границ раздела при моделировании взаимодействия грунт-георешетка. Кулоновский критерий используется для различения упругого поведения, при котором небольшие смещения могут происходить в пределах границы раздела, и пластического поведения границы раздела, когда происходит постоянное скольжение.Параметры границы раздела рассчитываются из параметров окружающей почвы с использованием коэффициента взаимодействия R inter , определяемого как отношение прочности на сдвиг границы раздела к прочности почвы на сдвиг [59]. В этом исследовании используются 15-узловые элементы грунта, а прочность границы раздела установлена ​​вручную. Для реального взаимодействия грунт-конструкция граница раздела слабее и гибче, чем связанный грунт, а это означает, что значение R inter должно быть меньше 1.Следовательно, R между предполагается равным 0,9 в настоящем исследовании.

    Интерфейсы, георешетки, фундамент, точечная нагрузка и стандартные фиксаторы, доступные в Plaxis.

    Таблица 1

    Подробная информация о программе испытаний модели.

    Испытательная серия Постоянные параметры Переменные параметры
    A u / B = 0,33, N = 1 = 1 3, 4, 5, 6
    B u / B = h / B = 0.33, N = 2 b / B = 1, 2, 3, 4, 5, 6
    C u / B = h / B = 0,33, N = 3 b / B = 1, 2, 3, 4, 5, 6
    D u / B = h / B = 0,33, N = 4 b / B = 1, 2, 3, 4, 5, 6
    E u / B = h / B = 0,33, N = 5 b / B = 1, 2, 3, 4, 5, 6

    После того, как геометрическая модель полностью определена и свойства материала назначены слоям почвы и конструктивным объектам, сетка применяется для расчетов методом конечных элементов (КЭ).Plaxis включает в себя процедуру полностью автоматического создания сетки, в которой геометрия дискретизируется на элементы типа базового элемента и совместимые структурные элементы, как показано на. Основным типом элемента в сетке, используемой в настоящем исследовании, является треугольный элемент со средним размером от 0,5 до 2 м, который обеспечивает точный расчет напряжений и разрушающих нагрузок. Plaxis предлагает пять различных плотностей ячеек, от очень крупной до очень мелкой. Предварительные расчеты проводились с использованием пяти доступных уровней глобальной грубости сетки, чтобы получить наиболее подходящую плотность сетки и минимизировать влияние зависимости сетки на моделирование методом конечных элементов.В ходе анализа количество треугольных элементов и точек напряжения в модели для каждого участка было изменено в зависимости от плотности сетки и расположения арматуры. показывает изменение количества элементов и точек напряжений в зависимости от плотности сетки моделей трех участков для случая пяти слоев георешетки. Как видно на рисунке, размер сетки оказывает минимальное влияние на результаты после примерно 240 элементов для сайта Башика и 400 элементов для сайтов Аль-Хамедат и Аль-Рашидиа. Для Ba’shiqa это соответствует крупной сетке с уточнением вокруг элементов георешетки и фундамента модели, где ожидаются большие концентрации напряжений, и средней сетке с уточнением как для Аль-Хамедат, так и для Аль-Рашидиа.

    Конечноэлементная сетка армированного грунта.

    Изменение коэффициента несущей способности в зависимости от плотности сетки (грубости сетки).

    Таблица 2

    Изменение количества элементов и точек напряжений в зависимости от плотности сетки.

    9064 9064 9065 9064 9065 9065 906 53 17664
    Шероховатость сетки Аль-Хамедат Ба’шика Аль-Рашидия
    Элемент Точки напряжения Точки напряжения 9064 Точки элемента Точки напряжения Точки напряжения Точки напряжения
    Очень курс133 1596 153 1836 153 1836
    Курс 236 2832 236 2832 236 398 4776 406 4872 406 4872
    Мелкий 802 9624 850 10200 850 10200 17856 1472 17664 1472

    Смоделированные граничные условия предполагались такими, что вертикальные границы были свободными по вертикали и ограничены по горизонтали, в то время как нижняя горизонтальная граница была полностью фиксированной, как показано на.Рассматриваемые вертикальные границы сетки находились на расстоянии 10 м от центра фундамента с каждой стороны, в то время как нижняя горизонтальная граница находилась на 20 м ниже основания фундамента, так что эти границы не влияют на напряжения и деформации, возникающие в массиве грунта. В исследовании использовалась точечная нагрузка. Конструкция моделировалась с увеличивающейся величиной нагрузки до тех пор, пока почва не достигла невозможности исследовать оседание под действием приложенной нагрузки. После создания геометрической модели и создания сетки конечных элементов необходимо указать начальное напряженное состояние.Начальные условия состоят из двух различных режимов: один режим для создания начального давления воды, а другой режим для задания начальной геометрической конфигурации и создания начального эффективного поля напряжений. Поскольку слои почвы для Аль-Хамедат и Башика сухие, а уровень грунтовых вод на участке Аль-Рашидиа достаточно глубок, чтобы не влиять на поведение фундамента, состояние грунтовых вод было принято как незначительное. Начальные напряжения в грунте генерируются с использованием формулы Джаки, выраженной уравнением 3 (в программном обеспечении Plaxis процедура создания начальных напряжений в грунте часто известна как процедура K 0 ).

    где K 0 — коэффициент бокового давления грунта, а φ — угол внутреннего трения грунта.

    Полимерная экструдированная двухосная георешетка типа BX1500 [62].

    Plaxis позволяет выполнять различные типы расчетов методом конечных элементов, такие как расчет пластичности, анализ консолидации, анализ уменьшения Phi-c и динамический расчет. Для текущего исследования был выбран пластический расчет. Для проведения анализа упругопластической деформации следует выбрать пластический расчет.Этот тип расчета подходит для большинства практических геотехнических приложений. В инженерной практике проект делится на фазы проекта. Точно так же процесс расчета в Plaxis также разделен на этапы расчета. В данном исследовании рассматриваются два этапа расчета. Первый — это начальная фаза, которая представляет начальную ситуацию проблемы. Второй этап включает в себя усиление георешетки и приложение нагрузки на внешние линии.

    При расчете методом конечных элементов анализ становится нелинейным, если задействован пластический расчет, что означает, что каждый этап расчета должен решаться в этапах расчета (этапах нагрузки).Размер шага и алгоритм решения важны для нелинейного решения. Если шаг вычисления подходящего размера, то количество итераций, необходимых для достижения равновесия, будет небольшим, примерно 5–10, а если шаг большой, то количество требуемых итераций будет чрезмерным, и решение может отличаться. Итерационные параметры в программном обеспечении: желаемый минимум и максимум в первую очередь предназначены для определения того, когда расчет должен включать большие или меньшие шаги. Если расчет может решить шаг нагрузки (следовательно, сходиться) за меньшее количество итераций, чем желаемый минимум, который по умолчанию равен 4, он начинает использовать шаг нагрузки, который в два раза больше.Если, однако, для вычисления требуется больше итераций, чем желаемый максимум, который по умолчанию равен 10 для схождения, вычисление решит выбрать шаг вычисления только половинного размера. Для пластического анализа изменение желаемого минимума или желаемого максимума не влияет на результаты. Пока расчет сходится на каждом шаге, неважно, использует ли расчет много маленьких шагов с несколькими итерациями или ограниченное количество больших шагов с большим количеством итераций на шаг.

    Существует несколько процедур для решения задач нелинейной пластичности. Все процедуры основаны на автоматическом выборе размера шага в зависимости от применяемого алгоритма. Предельный уровень продвижения нагрузки — одна из таких процедур, которая используется в текущем анализе. Процедура автоматического определения размера шага используется в основном для этапов расчета, на которых необходимо достичь определенного предельного уровня нагрузки. Процедура завершает расчет при достижении заданного уровня нагрузки или при обнаружении разрушения грунта.Количество дополнительных шагов установлено на 1000, чтобы процесс расчета продолжался до конца до того, как будет достигнуто количество дополнительных шагов. В этой процедуре итерационные параметры установлены на стандартные и показали хорошую производительность при сходимости вычислений. В стандартных настройках допустимая ошибка, которая представляет собой отклонение от точного решения, была установлена ​​на 0,03, коэффициент чрезмерной релаксации, который отвечает за уменьшение количества итераций, необходимых для сходимости, был установлен на 1,2, максимальное количество итераций было установлено на 50, желаемая минимальная и максимальная итерация была установлена ​​на 4 и 10 соответственно, и, наконец, было активировано управление длиной дуги, что важно для сходимости вычислений и точного определения нагрузки при отказе, иначе расчет будет повторяться и нагрузка при отказе будет переоценен.Поэтапная конструкция была выбрана в качестве варианта ввода нагрузки, где можно определить значение и конфигурацию нагрузки, а также состояние отказа, которое необходимо достичь. Поскольку поэтапное строительство выполняется с использованием процедуры предельного уровня увеличения нагрузки, оно контролируется общим множителем (∑Mstage). Этот множитель обычно начинается с нуля и достигает конечного уровня 1,0 в конце фазы расчета. Временной интервал фазы расчета считается нулевым, поскольку анализ модели является пластическим и не включает консолидацию или использование модели ползучести мягкого грунта.

    Свойства материала

    Почвы были собраны с трех разных участков в Мосуле, Ирак: Аль-Хамедат, Башика и Аль-Рашидия. Мосул расположен в северной части Ирака. Район характеризуется обширными равнинами и антиклиналями. Возле реки Тигр расположены три уровня накопленных террас аллювиальных почв. Большая часть почвы в этом районе умеренно экспансивного типа. Плоские участки между антиклиналями покрыты слоистыми наносами стока, которые включают глину, песок, ил, а иногда и покрыты рассыпным гравием.показывает механические и физические свойства почвы, а в таблице S1 показаны пределы Аттерберга и размер зерна для каждого задействованного участка. В данном исследовании использовался бетонный ленточный фундамент шириной B = 600 мм. Свойства фундамента показаны в. Показанные на рисунке двухосные георешетки (Tensar BX1500) использовались для укрепления почвы на всех трех участках. Различные свойства армирования георешеткой, использованные при моделировании методом конечных элементов в данном исследовании, показаны на рис.

    Таблица 3

    Свойства почвы трех участков по результатам лабораторных испытаний.

    5 γ (кПА) насыщенный (кН / м 3 )

    ..35
    Расположение Параметры прочности на сдвиг Физические свойства грунта
    Угол трения, φ ° Когезия, C (кПа) Вес ненасыщенного агрегата, γ ненасыщенный (кН / м 3 ) Модуль упругости, E (кН / м ) Коэффициент Пуассона v Угол расширения ψ °
    Аль-Хамедат 20 40 20 25 0
    Ba’shiqah 25 15 17,5 15 32500 0,35 0
    9065 16 32500 0,35 0

    Таблица 4

    Свойства бетонного основания, использованные в численном анализе.

    Параметр Единица Значение
    Материал Модель Линейный эластичный
    Ненасыщенный вес агрегата, м3 903 2 24
    Модуль Юнга (E) кН / м 2 21.5×10 6
    Коэффициент Пуассона 0,3

    Таблица 5

    Физико-механические свойства георешетки, использованной в данном исследовании.

    мм ( дюйм) Размеры отверстия мм ( дюйм)5 (1,2)
    Описание Узел Георешетка BX1500
    Полимерный материал полипропилен
    Минимальная толщина ребра мм (дюйм) 1,78 (0,07)
    Предел прочности при 2% деформации кН / м (фунт / фут) 10,0 (690)
    Предел прочности при 5% деформации кН / м (фунт / фут) 20,0 (1370)
    Предел прочности на разрыв кН / м (фунт / фут) 30,0
    Эффективность перехода% 93
    Жесткость при изгибе мг-см 2000000
    Устойчивость апертуры мН / град 0.75

    Предельная несущая способность неармированного грунтового основания

    Мейерхоф [63] предложил метод оценки предельной несущей способности ленточного фундамента, включая коэффициент глубины ( D f ) как:

    qu = cNcFcd + qNqFqd + 0,5γBNγFγd

    (4)

    Коэффициенты несущей способности могут быть заданы следующими соотношениями [63]:

    Nq = tan2 (45 + φ2) eπtanφ

    (5)

    Где:

    F кд F qd F 3 глубина

    Meyerhof [63] коэффициенты глубины могут быть выражены как:

    Fcd = 1 + 0.2DfBtan (45 + φ2)

    (8)

    Fqd = Fγd = 1 + 0,1DfBtan (45 + φ2)

    (9)

    Используя приведенные выше соотношения, можно рассчитать теоретическую предельную несущую способность неармированных грунтов. .

    Предел несущей способности фундамента из армированного грунта

    В этом исследовании была принята новая формула несущей способности, разработанная Ченом и Абу-Фарсахом [17] для оценки предельной несущей способности фундамента из армированного грунта. Этот метод учитывает как ограничивающее, так и мембранное влияние арматуры на увеличение предельной несущей способности.Анализ устойчивости предельного равновесия RSFs был выполнен на основе предложенного механизма разрушения. В этом новом методе они рассмотрели механизм разрушения, основанный на предыдущих исследованиях Чена [34], и разрушение при сдвиге при штамповке, за которым следует общее разрушение при сдвиге. Соответствующие формулы можно выразить следующим образом:

    qu (R) = qu (UR) + Δqp + Δqt

    (10)

    qu (UR) = cNC + γ (Df + Dp) Nq + 12γBNγ

    (11)

    Δqp = 2caDpB + γDp2 (1 + 2DfDp) KstanφB − γDp

    (12)

    Δqt = ∑i = 1Np (2Tixtanδ + 2TisinαB) + ∑i = Np + 1N (4Tix (u + (i − 1) h − Dp) B2) + ∑ i = Np + 1NT (2TisinξB)

    (13)

    Tix = [Ticosαi≤NpTisin (π4 + φ2 + β − ξ) sin (π4 + φ2 + β) i> Np]

    (14)

    β = [0u + (i − 1) h≤Dp + B2tan (π4 + φ2) θu + (i − 1) h≤Dp + B2tan (π4 + φ2), r0eθtanφ = u + (i − 1) hcos (π4 − φ2 − θ). )]

    (15)

    Применяя вышеуказанные соотношения, можно рассчитать теоретическую предельную несущую способность укрепленного грунтового основания.

    Результаты и обсуждения

    Результаты, полученные от Plaxis для определения предельной несущей способности и осадки основания, представляли собой кривые осадки армированных и неармированных грунтов трех упомянутых участков, а результаты аналитического анализа Уравнение Мейерхофа [63] и метод, полученный Ченом и Абу-Фарсахом [17], были значениями BCR для этих грунтов с усилением георешеткой.

    Неармированный грунт

    Три моделирования методом конечных элементов были проведены с использованием программного обеспечения Plaxis для оценки предельной несущей способности неармированного грунта для каждого участка.показана деформированная сетка (в масштабе до 15 раз) грунта под действием разрушающей нагрузки. По краям основания можно увидеть небольшой пучок грунта и осадку 57,43 мм, что свидетельствует о разрушении грунта при сдвиге. На фигурах и показаны полученные вертикальное напряжение и вертикальное смещение неармированного грунта, соответственно, при приложении разрушающей нагрузки. На рис. И показаны значения вертикального напряжения и вертикального смещения, соответственно, внутри профиля грунта из-за приложения нагрузки полосы [64].Однако вертикальное напряжение и вертикальное смещение уменьшались с увеличением глубины, как показано на этих рисунках значениями штриховки контуров. Соответствующие напряжения и перемещения в горизонтальном направлении представлены на рис. И соответственно. Максимальные горизонтальные напряжения были сосредоточены непосредственно под основанием на глубине B и по горизонтали шириной B ; кроме того, по штриховке горизонтальных напряжений было ясно, что грунт разрушился под действием местного сдвига.

    Деформированная сетка неармированного грунта при приложении разрушающей нагрузки.

    Эффективное вертикальное напряжение, возникающее в неармированном грунте из-за приложения разрушающей нагрузки.

    Вертикальное смещение, возникающее в неупрочненном грунте из-за приложения разрушающей нагрузки.

    Горизонтальные эффективные напряжения, возникающие в неармированном грунте из-за приложения разрушающей нагрузки.

    Горизонтальное смещение, возникающее в неармированном грунте из-за приложения разрушающей нагрузки.

    Максимальная часть представленного горизонтального смещения приходилась на поверхность почвы, и это было причиной вспучивания почвы на краях подошвы. Однако эти горизонтальные напряжения и смещения значительно повлияли на поведение георешетки, как будет обсуждаться позже в разделе с усиленным грунтом. Напряжения сдвига и деформации, связанные с разрушением, показаны на рис. И соответственно. Обратите внимание, что максимальные касательные напряжения и деформации или зона сильного сдвига были расположены под краями фундамента и почти распространялись на глубине 2 B по горизонтали на расстоянии B от краев фундамента и значительно уменьшались на нижние глубины.Однако местное разрушение при сдвиге было почти очевидно из штриховки касательных напряжений, показанных на рис. представляет точки пластичности или точки пластичности разрушения, образовавшиеся в массиве грунта под действием разрушающей нагрузки. Пластическая точка — это точка, соответствующая необратимому напряжению и деформации, которая расположена на огибающей Мора-Кулона разрушения (огибающая является функцией угла внутреннего трения сцепления грунта).

    Напряжения сдвига, возникающие в неармированном грунте из-за приложения разрушающей нагрузки.

    Деформации сдвига, возникающие в неармированном грунте из-за приложения разрушающей нагрузки.

    Точки пластика и растяжения, образовавшиеся в неармированном грунте из-за приложения разрушающей нагрузки.

    также показывает точки растяжения (точки с черным цветом) на поверхности почвы, которые соответствуют трещинам растяжения (участки напряжений растяжения). Однако эти точки натяжения указывали на то, что грунт разрушился под действием растяжения, а не сдвига.Теоретическая предельная несущая способность неармированного грунта была получена с помощью уравнений (4) — (9). Параметры прочности на сдвиг (c и φ ) и удельный вес ( γ ), используемые в следующих уравнениях, показаны в.

    Участок Аль-Хамедат:

    Nq = tan2 (45 + 202) eπtan20 = 6,4

    Nc = cot20 (6,4−1) = 14,83

    Nγ = (6,4−1) tan1,4 * 20 = 5,39

    FcdFqdFγd = 1 глубина стопы (Df = 0)

    qu = 40 * 14,83 * 1 + 0 + 0,5 * 17 * .6 * 5,39 * 1 = 620 кН / м2

    Площадка в Башике:

    Nq = tan2 (45 + 252 ) eπtan25 = 10.66

    Nc = cot25 (10,66-1) = 20,72

    Nγ = (10,66-1) tan1,4 * 25 = 10,88

    FcdFqdFγd = 1 глубина стопы (Df = 0)

    qu = 15 * 20,72 * 1 + 0 + 0,5 * 15 * 0,6 * 10,88 * 1 = 359 кН / м2

    Участок Аль-Рашидия:

    Nq = tan2 (45 + 282) eπtan28 = 17,81

    Nc = cot25 (10,66−1) = 31,61

    Nγ = (10,66−1) tan1,4 * 25 = 13,7

    FcdFqdFγd = 1asthefootingdepth (Df = 0)

    qu = 0 * 31,61 * 1 + 0 + 0,5 * 16 * .6 * 13,7 * 1 = 65KN / m2

    Результаты неармированного грунтового основания, полученные численным анализом, и теоретическая предельная несущая способность, полученная Мейерхофом [63], показаны на рис.Здесь можно увидеть, что числовые значения несущей способности были больше, чем теоретические значения. Высокое значение несущей способности может быть связано с тем, что уравнения несущей способности обычно недооценивают (более консервативно) предельную несущую способность грунта [64]. Кривые зависимости давления от осадки из численного анализа неармированных грунтовых оснований трех площадок показаны на рис. Кроме того, эти цифры показывают метод, используемый для определения предельной несущей способности по кривым нагрузки – осадки; он представляет собой консервативное и наиболее реальное состояние отказа.Этот метод представляет собой метод касательных пересечений, разработанный Траутманном и Кулхави [65].

    График зависимости давления от оседания и определение предельной несущей способности площадки Аль-Хамедат.

    График зависимости давления от оседания и определение предельной несущей способности площадки Башика.

    Таблица 6

    Расчетная и теоретическая предельная несущая способность грунтов трех участков.

    Аль-Рашидия 9654 9654 Кривая давления – оседания и определение предельной несущей способности участка Аль-Рашидиа.

    От фига до можно заметить, что грунт Аль-Хамедат показывает более высокую несущую способность ( q u = 640 кПа ), чем два других участка, где почва Ba’shiqah показывает промежуточную несущую способность. значение ( q u = 365 кПа ), а почва Аль-Рашидия является самой низкой ( q u = 67 кПа ) среди почв. Это различие может быть связано с характеристиками и свойствами почвы, указанными в таблице S1.Считается, что почва на участке Аль-Хамедат представляет собой твердую глину с высокой степенью сцепления ( c = 40 кПа ), Аль-Рашидиа представляет собой песчаный грунт с высоким углом трения ( φ = 28 °) с нулевым сцеплением ( c = 0 кПа), в то время как почва на участке Башика классифицируется как глинистая от низкой до средней с относительно низким сцеплением ( c = 15 кПа ) по сравнению с почвой Аль-Хамедат.

    Армированный грунт

    Девяносто расчетов методом конечных элементов было проведено на армированном грунтовом основании для изучения влияния армирования георешеткой на предельную несущую способность и осадку ленточного фундамента, расположенного на трех упомянутых участках.Деформированная сетка (увеличенная до 10 раз) армированного георешеткой грунта показана на рис. Кроме того, осадка была уменьшена до 44,68 мм за счет включения арматуры георешетки, где уменьшение осадки было приписано подъемным силам, создаваемым арматурой георешетки во время деформации и мобилизации осевых сил растяжения слоев арматуры. Кроме того, просачивание грунта на краях основания уже исчезло, что означало, что грунт не разрушился при сдвиге, как упоминалось ранее в неупрочненном грунте.показывает горизонтальные напряжения, возникающие в массиве укрепленного грунта. Видно, что горизонтальные напряжения были немного увеличены до значения 228,96 кН / м 2 из-за передачи части вертикальной нагрузки на горизонтальную нагрузку, которую несет арматура и, в свою очередь, на окружающий грунт. Кроме того, горизонтальные напряжения были распределены по слоям арматуры шириной 5 B , что указывало на сцепление и взаимодействие слоев почвы и георешетки; в результате силы растяжения внутри арматуры были мобилизованы, как показано на.

    Деформированная сетка армированного георешеткой грунта.

    Горизонтальное эффективное напряжение, создаваемое в грунте, армированном георешеткой.

    Осевая сила в арматуре георешетки.

    показывает распределение горизонтальных смещений в армированном грунте. Понятно, что смещение уменьшено до 8,68 мм из-за ограничения слоев арматуры, стрелки почти одинаково распределены по слоям арматуры и небольшие значения смещения, вызванные на поверхности почвы, по сравнению с неармированным состоянием, когда большая часть горизонтального смещения произошла на верхняя часть почвы, вызывающая вспучивание почвы.Следовательно, разрушение грунта при сдвиге предотвращается путем передачи приложенной вертикальной нагрузки к силам растяжения в арматуре георешетки за счет поверхностного трения и опоры между грунтом и арматурой. На рис. И показаны напряжения сдвига и деформации армированного грунта и их распределение вдоль арматуры георешетки, соответственно. Замечено, что области концентрации касательных напряжений и деформаций под фундаментом уменьшаются за счет распределения напряжений и деформаций вдоль и через слои арматуры, что приводит к изменению плоскости разрушения и предотвращает разрушение в армированной зоне.Пластиковые точки в усиленной зоне изображены в. Показано, что точки пластичности сильно концентрируются вдоль армированной зоны, что указывает на экстремальные напряжения, возникающие на границе раздела между почвой и георешеткой. Следовательно, это оправдывает взаимодействие между грунтом и георешеткой и изменение механизма разрушения.

    Горизонтальное смещение, возникающее в грунте, армированном георешеткой.

    Напряжение сдвига, создаваемое в грунте, армированном георешеткой.

    Деформация сдвига, возникающая в грунте, армированном георешеткой.

    Пластиковые точки, образовавшиеся в грунте, армированном георешеткой, при приложении нагрузки.

    Влияние ширины георешетки

    (b) и количества слоев георешетки (N) на предельную несущую способность

    Рис. слоев георешетки ( N ) для трех участков Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.Из фиг.8–7 можно видеть, что увеличенная ширина георешетки (b) и номер георешетки (N) приводит к увеличению BCR для всех трех участков. Кроме того, грунт на Аль-Рашидиа способствует более высокому повышению предельной несущей способности, чем на двух других участках. Улучшение может быть связано с различием свойств почвы и размера зерна, как представлено в таблице S1. Почва Аль-Рашидиа песчаная и имеет угол трения ( φ = 28 °), больший, чем на двух других участках, в которых пассивные силы и силы трения между почвой и георешеткой будут выше, чем на двух глинистых участках [8].Что касается участков Аль-Хамедат и Башика с глинистыми почвами, то почва участка Башика с глинистостью от низкой до средней лучше улучшается, чем грунт участка Аль-Хамедат, который представляет собой твердую глину с точки зрения предельной несущей способности. Следовательно, используя армирование георешеткой со слабой глиной, почва может улучшиться до более жесткой глины. Однако максимальное улучшение предельной несущей способности может быть получено при b / B = 5 для любого номера георешетки на этих трех участках, поэтому оптимальная ширина георешетки (b) для трех участков составляет 5 B в то время как не было оптимального числа георешетки (N) , полученного как N = 5, все три почвы показывают хорошее улучшение несущей способности основания.

    BCR vs b / B с другим номером георешетки ( N ) для участка Аль-Хамедат.

    BCR vs b / B с другим номером георешетки ( N ) для участка Башика.

    BCR vs b / B с другим номером георешетки ( N ) для участка Аль-Рашидия.

    Влияние ширины георешетки

    (b) и количества слоев георешетки (N) на осадку основания

    Коэффициент уменьшения осадка (SRR%) по сравнению с различной шириной георешетки ( b ) с количеством слоев от 1 до 5. Слои георешетки ( N ) показаны на рис., б — для почв участков Аль-Хамедат, Аль-Рашидия и Башика соответственно.Из этих рисунков видно, что увеличение ширины слоя георешетки (b) и числа георешетки ( N ) приводит к уменьшению осадки основания для трех участков. Как видно из фиг.8, наблюдается уменьшение осадки фундамента (SRR%), полученное на этих трех площадках в результате увеличения ширины арматуры георешетки (b) и количества слоев георешетки ( N ). Показано, что большее уменьшение осадки фундамента при увеличении ширины георешетки (b) достигается за счет грунта участка Башика для первых трех слоев георешетки ( N = от 1 до 3), за которым следует грунт Сайты Аль-Рашидиа и Аль-Хамедат соответственно.В то время как при N = 4 и 5 почва Аль-Рашидиа начала демонстрировать более высокие улучшения, чем почва участка Башика, в отличие от почвы участка Аль-Хамедат, где улучшение было наименьшим.

    SRR vs b / B с другим номером георешетки ( N ) для участка Аль-Хамедат.

    SRR по сравнению с b / B с другим номером георешетки ( N ) для участка Башика.

    SRR по сравнению с b / B с другим номером георешетки ( N ) для участка Аль-Рашидия.

    Разница в SRR% может быть связана с двумя причинами: хорошим углом трения грунта Башика ( φ = 25 °) и возникновением эффекта глубокой опоры [50] в почве участка Башика, который вызывает общее разрушение грунта при сдвиге ниже армированной зоны. В этом случае натяжение всех слоев георешетки в усиленной зоне будет мобилизовано, поскольку основание выйдет из строя с точки зрения предельной несущей способности после пробивки слоев георешетки.Почва участка Аль-Рашидиа показывает второе более высокое улучшение и при N = 4 и 5, что указывает на более высокое улучшение грунтового поселения. Как указывалось ранее, грунт на участке Аль-Рашидиа песчаный и имеет самый высокий угол трения ( φ ) между двумя другими участками, в котором значение мобилизованного натяжения слоев георешетки в усиленной зоне будет выше, чем это два участка из-за попадания частиц песка в отверстия георешетки. Более того, может возникнуть более высокое сопротивление трению в зоне контакта между почвой и слоями георешетки.С другой стороны, грунт Аль-Хамедат имеет угол трения ( φ = 20 °) ниже, чем у двух других участков, что приводит к меньшему трению в зоне контакта грунта с георешеткой и меньшим пассивным силам на краях ребра георешетки. Таким образом, небольшое улучшение отражается на оседании фундамента, даже несмотря на то, что в этой почве может происходить эффект глубокого залегания.

    Из фиг.9 можно также увидеть, что почва Аль-Хамедат демонстрирует лучшее улучшение положения основания, поскольку число георешетки ( N ) увеличивалось, чем приращение ширины георешетки ( b ), в то время как почва Башика была противоположной.Увеличение может быть связано с более высокой прочностью почвы на участке Аль-Хамедат ( c = 40 кПа ), чем у почвы Ba’shiqa ( c = 15 кПа ), где на нее могут повлиять количество слоев георешетки ( N ) больше ширины георешетки ( b ). Оптимальная ширина георешетки ( b ) для трех участков при любом номере георешетки также составляет 5 B , в то время как не было получено оптимальное число георешетки ( N ), N = 5 все три почвы показали хорошее улучшение опоры основания.

    Коэффициент улучшения (IF)

    Коэффициент улучшения (IF) определяется как отношение несущей способности армированного грунта ( q усиленного ) к неармированному грунту ( q неармированного ) при определенные соотношения s / B . Где s / B — отношение осадки основания к ширине основания. IF при различных соотношениях s / B был рассчитан для сравнения предельной несущей способности грунтов с различным номером георешетки ( N ) на разных уровнях осадки.Вариация IF с отношениями s / B трех сайтов показаны на фиг. Из этих цифр очевидно, что при увеличении осадки основания коэффициент улучшения (предельная несущая способность армированного грунта) увеличивается для любого номера георешетки, и это ожидается, поскольку слоям георешетки требуется осадка основания для мобилизации их сил растяжения, следовательно, повышение устойчивости к приложенным вертикальным нагрузкам. Также можно отметить влияние числа георешетки ( N ), увеличение количества слоев георешетки приводит к увеличению IF, таким образом, уменьшая начальную осадку, необходимую для мобилизации натяжения слоя георешетки и обеспечения устойчивости армированного грунта. сопротивление приложенным нагрузкам даже при очень высокой осадке без обрушения.

    Вариация IF по сравнению с s / B с другим номером георешетки ( N ) для участка Аль-Хамедат.

    Вариация IF по сравнению с s / B с другим номером георешетки ( N ) для участка Башика.

    Вариация IF по сравнению с s / B с другим номером георешетки ( N ) для участка Аль-Рашидия.

    Более того, использование георешетки в почве на участке Аль-Хамедат демонстрирует меньший коэффициент улучшения и достигает очень большого поселения для улучшения несущей способности основания по сравнению с двумя другими участками.Это большое поселение связано с тем, что почва Аль-Хамедат представляет собой очень прочную глину ( c = 40 кПа) с низким углом трения ( φ = 20 °), чем на двух других участках, и, следовательно, требует высокой осадки для мобилизации напряжения в георешетке. слоев, почва Ba’shiqa также глинистая ( c = 15 кПа) с углом трения ( φ = 25 °) лучше, чем грунт Al-Hamedat, поэтому он показал лучшее улучшение предельной несущей способности и более низкое оседание для мобилизации напряжение в слоях георешетки, чем в почве Аль-Хамедат.В то время как почва Аль-Рашидиа показала самое высокое улучшение предельной несущей способности и самое низкое оседание при мобилизации напряжения в слоях георешетки, что связано с почвой Аль-Рашидии, это песок с более высоким углом трения ( φ = 28 °), кроме того, Георешетка лучше работает с песчаным грунтом из-за угла трения и сцепления частиц с отверстиями георешетки.

    Сравнение численного и аналитического анализа

    BCR из численного анализа с использованием Plaxis и из аналитического анализа с применением метода, разработанного Ченом и Абу-Фарсахом [17] для армированных грунтов трех участков, сравниваются на рис. .Эти рисунки показывают изменение BCR численного и аналитического анализа с номером георешетки ( N ) для почв Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.

    Сравнение численного и аналитического анализа почвы Аль-Хамедат.

    Сравнение численного и аналитического анализа почвы Башика.

    Сравнение численного и аналитического анализа почвы Аль-Рашидиа.

    На рисунках — видно, что аналитический анализ является почти линейным и показал небольшую разницу с численным анализом, что может быть связано с ограничениями в определении точной глубины продавливания в глинистых грунтах (Аль-Хамедат & Ba’shiqa), что впоследствии приводит к низкому или высокому сопротивлению грунта приложенным нагрузкам. Кроме того, значения угла наклона арматуры георешетки (ξ и α) для глинистых участков (Аль-Хамедат и Башика) и песчаных участков (Аль-Рашидиа) под нагрузкой на фундамент могут быть выбраны не совсем точно, как в действительности.Однако общий аналитический анализ показал почти хорошие результаты, близкие к численному анализу.

    Заключение

    Что касается комплексного анализа методом конечных элементов и аналитического анализа, включение арматуры может улучшить несущую способность основания и уменьшить осадку. Несущая способность и уменьшение осадки армированного грунтового основания для трех участков увеличились с увеличением ширины слоев георешетки ( b ).Степень улучшения несущей способности и осадки фундамента для каждого участка была разной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидия продемонстрировала более высокое улучшение. Оптимальная ширина георешетки для всех трех участков составила (5 B ). Увеличение количества слоев георешетки ( N ) привело к повышению несущей способности и уменьшению осадки армированного грунтового основания на всех трех площадках.По мере увеличения количества георешеток степень улучшения несущей способности и осадки фундамента для каждого участка была различной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидия продемонстрировала более высокое улучшение. Оптимального числа георешеток не было, так как три участка показали хорошее улучшение даже при N = 5. Использование армирования георешеткой с песчаными грунтами или слабыми слоями глин привело к лучшему улучшению несущей способности и уменьшению осадки, чем у более сильных слоев. , которым требуется более высокое поселение, чтобы показать свои улучшения; это было ненадежно, потому что фундамент мелкого заложения был почти рассчитан на определенный уровень поселения.BCR из аналитического анализа увеличивались по мере увеличения количества ( N ) и ширины ( b ) георешетки. Их приращение было почти линейным и показало приемлемые значения, которые близко соответствовали BCR из численного анализа. Это исследование убедительно доказывает, что усиление георешетки потенциально способствует улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR.Общие выводы дополняют преимущество эффективного применения укрепленных грунтовых оснований.

    Вспомогательная информация

    S1 Таблица
    Пределы Аттерберга и анализ размера зерна почв трех участков.

    (DOCX)

    Заявление о финансировании

    Инициалы автора: AMT Номер гранта: GGPM-2018-039 Спонсор: Universiti Kebangsaan Malaysia URL: https://www.ukm.my/portal/ Роль спонсора: Оплата сборов за публикацию и предоставить проектное оборудование.

    Доступность данных

    Все соответствующие данные находятся в документе.

    Ссылки

    1. Гвидо В. А., Чанг Д. К. и Суини М. А. Сравнение плит земли, армированных георешеткой и геотекстилем. Канадский геотехнический журнал, 1986, 23 (4): 435–440. [Google Scholar] 3. Хуанг К. и Тацуока Ф. Несущая способность усиленного горизонтального песчаного грунта. Геотекстиль и геомембраны, 1990, 9 (1): 51–82. [Google Scholar] 4. Мандал Дж. Н. и Сах Х. С. Испытания несущей способности глины, армированной георешеткой. Геотекстиль и геомембраны, 1992, 11 (3): 327–333. [Google Scholar] 5.Кхинг К. Х., Дас Б. М., Пури В. К., Кук Э. Э. и Йен С. С. Несущая способность ленточного фундамента на песке, армированном георешеткой. Геотекстиль и геомембраны, 1993, 12 (4): 351–361. [Google Scholar] 6. Омар М. Т., Дас Б. М., Пури В. К. и Йен С. К. Предельная несущая способность фундаментов мелкого заложения на песке с армированием георешеткой. Канадский геотехнический журнал, 1993, 30 (3): 545–549. [Google Scholar] 7. Шин Э., Пинкус Х., Дас Б., Пури В., Йен С. К. и Кук Э. Несущая способность ленточного фундамента по глине, армированной георешеткой.Журнал геотехнических испытаний, 1993, 16 (4): 534. [Google Scholar] 8. Дас Б. М. и Омар М. Т. Влияние ширины фундамента на модельные испытания на несущую способность песка с армированием георешеткой. Геотехническая и геологическая инженерия, 1994, 12 (2): 133–141. [Google Scholar] 9. Йетимоглу Т., Ву Дж. Т. Х. и Сагламер А. Несущая способность прямоугольных фундаментов на песке, армированном георешеткой. Журнал геотехнической инженерии, 1994, 120 (12): 2083–2099. [Google Scholar]

    10. Дас, Б. М., Шин, Э.К. и Сингх, Г. Ленточный фундамент на глине, армированной георешеткой: предварительная процедура проектирования. Международное общество морских и полярных инженеров. Шестая Международная конференция по морской и полярной инженерии, 1996 г., 26–31 мая, Лос-Анджелес, Калифорния, США.

    11. Адамс М. Т. и Коллин Дж. Г. Испытания под нагрузкой на большие модели фундаментов из армированного геосинтетического грунта. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (1). [Google Scholar] 12. Зайни М. И., Каса А. и Наян К.ЯВЛЯЮСЬ. Прочность на сдвиг границы раздела геосинтетической глиняной облицовки (GCL) и остаточного грунта. Международный журнал передовых наук, инженерии и информационных технологий, 2012 г. 2 (2): 156–158. [Google Scholar] 13. Се Л., Чжу Ю., Ли Ю. и Су Т. С. Экспериментальное исследование давления кровати вокруг геотекстильного матраса с наклонной пластиной. PLoS ONE, 2019, 14 (1): e0211312 10.1371 / journal.pone.0211312 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 14. Бинке Дж. И Ли К. Л. Испытания несущей способности армированных земляных плит.Журнал геотехнической и геоэкологической инженерии, 1975, 101 (Протокол ASCE # 11792). [Google Scholar] 16. Михаловски Р. Л. Предельные нагрузки на грунты с усиленным фундаментом. Журнал геотехнической и геоэкологической инженерии, 2004, 130 (4): 381–390. [Google Scholar] 17. Чен К. и Абу-Фарсах М. Анализ предельной несущей способности ленточных опор на фундаменте из армированного грунта. Почвы и фундаменты, 2015, 55 (1): 74–85. [Google Scholar] 18. Лав Дж. П., Берд Х. Дж., Миллиган Г. У. Э. и Хоулсби Г.Т. Аналитические и модельные исследования армирования слоя сыпучей насыпи на мягком глиняном земляном полотне. Канадский геотехнический журнал, 1987, 24 (4): 611–622. [Google Scholar] 19. Махарадж Д. К. Нелинейный конечно-элементный анализ опор полосы на армированной глине. Электронный журнал геотехнической инженерии, 2003, 8. [Google Scholar] 20. Эль Савваф М. А. Поведение ленточного фундамента на песке, армированном георешеткой, над мягким глиняным откосом. Геотекстиль и геомембраны, 2007, 25 (1): 50–60. [Google Scholar] 21.Ахмед А., Эль-Тохами А. М. К. и Марей Н. А. Двумерный конечно-элементный анализ лабораторной модели насыпи. В геотехнической инженерии для смягчения последствий стихийных бедствий и реабилитации, 2008, 10.1007 / 978-3-540-79846-0_133 [CrossRef] [Google Scholar] 22. Аламшахи С. и Хатаф Н. Несущая способность ленточных фундаментов на песчаных откосах, армированных георешеткой и сеткой-анкером. Геотекстиль и геомембраны, 2009, 27 (3). [Google Scholar] 23. Чен К. и Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на армированных грунтах. Рестон, Вирджиния: Материалы конференции ASCE Geo-Frontiers 2011, март. 13–16, 2011 г., Даллас, Техас | г 20110000.[Google Scholar] 24. Рафтари М., Кассим К. А., Рашид А. С. А. и Моайеди Х. Устройство фундаментов мелкого заложения у укрепленных откосов. Электронный журнал геотехнической инженерии, 2013, 18. [Google Scholar] 26. Хусейн М.Г. и Мегид М.А. Трехмерный метод конечных элементов для моделирования двухосной георешетки с применением к грунтам, армированным георешеткой. Геотекстиль и геомембраны, 2016, 44 (3): 295–307. [Google Scholar] 27. Араб М. Г., Омар М. и Тахмаз А. Численный анализ фундаментов мелкого заложения на грунте, армированном георешеткой.Сеть конференций MATEC, 2017, 120. [Google Scholar] 28. Каса А., Чик З. и Таха М. Р. Глобальная устойчивость и осадка сегментных подпорных стен, армированных георешеткой. ТОЖСАТ, 2012, 2 (4): 41–46. [Google Scholar]

    29. Видаль, М. Х. Развитие и будущее армированной земли. Труды симпозиума по укреплению грунта на ежегодном съезде ASCE, Питтсбург, Пенсильвания, 1978, стр. 1–61.

    30. Кернер Р. М., Карсон Д. А., Даниэль Д. Э. и Бонапарт Р. Текущее состояние тестовых участков Цинциннати GCL.Геотекстиль и геомембраны, 1997, 15 (4–6), 313–340. [Google Scholar] 31. Бушехриан А. Х., Хатаф Н. и Гахрамани А. Моделирование циклического поведения фундаментов мелкого заложения, опирающихся на геомеш и песок, армированный сеткой-анкером. Геотекстиль и геомембраны, 2011, 29 (3): 242–248. [Google Scholar] 34. Чен К., Абу-Фарсах М. Ю., Шарма Р. и Чжан Х. Лабораторные исследования поведения фундаментов на геосинтетически армированных глинистых грунтах. Отчет об исследованиях в области транспорта: Журнал Совета по исследованиям в области транспорта, 2004 г., 2007 г., (1): 28–38.[Google Scholar] 35. Алаваджи Х. А. Испытания модели пластиной нагрузки на складном грунте. Журнал Университета Короля Сауда — Технические науки, 1998, 10 (2). [Google Scholar] 36. Аббас Дж. М., Чик З. Х. и Таха М. Р. Моделирование и анализ одиночной сваи, подверженной боковой нагрузке. Электронный журнал геотехнической инженерии, 2008, 13 (E): 1–15. [Google Scholar] 37. Росьиди С. А., Таха М. Р. и Наян К. А. М. Эмпирическая модельная оценка несущей способности осадочного остаточного грунта методом поверхностных волн.Jurnal Kejuruteraan, 2010, 22 (2010): 75–88. [Google Scholar] 38. Хаджезаде М., Таха М. Р., Эль-Шафи А. и Эслами М. Модифицированная оптимизация роя частиц для оптимального проектирования опор и подпорной стены. Журнал Чжэцзянского университета: Science A, 2011, 12 (6): 415–427. [Google Scholar] 39. Джох С. Х., Хванг С. К., Хассанул Р. и Рахман Н. А. Построение поперечного сечения модуля упругости железнодорожного полотна под балластом для определения возможной осадки. Журнал Корейского общества железных дорог, 2011, 14 (3): 256–261.[Google Scholar] 40. Чик З., Альджанаби К. А., Каса А. и Таха М. Р. Десятикратная перекрестная проверка искусственной нейронной сетью, моделирующей расчетное поведение каменной колонны под насыпью шоссе. Арабский журнал наук о Земле, 2013, 7 (11): 4877–4887. [Google Scholar] 41. Ли Ю. П., Ян Ю., Йи Дж. Т., Хо Дж. Х., Ши Дж. Ю. и Го С. Х. Причины проникновения самоподъемных фундаментов в глины после монтажа. PLoS ONE, 2018, 13 (11): e0206626 10.1371 / journal.pone.0206626 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 42.Азриф М., Закиран М. Н. Ф., Сякира М. Р. Н., Азуан С. М., Нур Р. К., Ли Э. К. и др. Применение геофизических исследований к возникновению поселений — тематическое исследование на 2-м Азиатско-Тихоокеанском совещании EAGE-GSM по приповерхностной геонауке и инженерии (2-е Азиатско-Тихоокеанское совещание EAGE-GSM по приповерхностной геонауке и инженерии). Европейская ассоциация геологов и инженеров, EAGE, 2019. [Google Scholar] 43. Чжаньфан Х., Сяохун Б., Чао Ю. и Яньпин В. Вертикальная несущая способность фундамента из свайно-разжижаемого песчаного грунта при горизонтальной сейсмической силе.PLoS ONE, 2020, 15 (3): e0229532 10.1371 / journal.pone.0229532 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 44. Ли К., Манджунатх В. и Девайкар Д. Численные и модельные исследования ленточного фундамента, поддерживаемого системой армированного зернистого заполнителя — мягкий грунт. Канадский геотехнический журнал, 2011 г., 36: 793–806. [Google Scholar] 45. Куриан Н. П., Бина К. С. и Кумар Р. К. Осадка армированного песка в фундаментах. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (9): 818–827.[Google Scholar] 46. Зорнберг Дж. & Лещинский Д. Сравнение международных критериев проектирования геосинтетических армированных грунтовых конструкций. В: Ochiai et al. (ред.) Ориентиры в укреплении земли, 2003, 2: 1095–1106. [Google Scholar] 47. Лещинский Д. О глобальном равновесии в конструкции армированной геосинтетической стены. J. Geotech. Geoenviron. Англ. ASCE, 2009, 135 (3): 309–315. [Google Scholar] 48. Ян К.Х. Утомо П. и Лю Т.Л. Оценка подходов к расчету на основе равновесия сил и деформации для прогнозирования нагрузок на арматуру в геосинтетических конструкциях из армированного грунта.j.GeoEng, 2013, 8 (2): 41–54. [Google Scholar] 49. Sieira A.C.F. Вытягивание геотекстиля: численный прогноз. Int. J. Eng. Res., 2016, Appl. 6 (11–4): 15–18. [Google Scholar] 50. Шарма Р., Чен К., Абу-Фарсах М. и Юн С. Аналитическое моделирование фундамента, армированного георешеткой. Геотекстиль и геомембраны, 2009, 27 (1): 63–72. [Google Scholar] 51. Лю С. Ю., Хан Дж., Чжан Д. В. и Хун З. С. Комбинированный метод DJM-PVD для улучшения мягких грунтов. Geosynthetics International, 2008, 15 (1): 43–54.[Google Scholar] 52. Роу Р. К. и Таечакумторн К. Комбинированное действие PVD и арматуры на насыпи на чувствительных к скорости грунтов. Геотекстиль и, 2008, 26 (3): 239–249. [Google Scholar] 53. Ван Ч., Ли Х., Сюн З., Ван Ч., Су Ч. и Чжан Ю. Экспериментальное исследование влияния цементной арматуры на сопротивление сдвигу трещиноватого горного массива. PLoS ONE, 2019, 14 (8): e0220643 10.1371 / journal.pone.0220643 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 54. Ван Ю., Гэ Л., Ченди С., Ван Х., Хань Дж. И Го З. Анализ гидравлических характеристик улучшенного песчаного грунта с мягкими породами. PLoS ONE, 2020, 15 (1): e0227957 10.1371 / journal.pone.0227957 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 55. Хан Дж., Покхарел С. К., Ян Х., Манандхар К., Лещинский Д., Халахми И. и др. Характеристики оснований из RAP, армированных геоячейками, на слабом грунтовом полотне при полномасштабных движущихся колесных нагрузках. Журнал материалов в гражданском строительстве, 2011, 23 (11): 1525–1534. [Google Scholar] 56. Ван Дж.К., Чжан Л. Л., Сюэ Дж. Ф. и Йи Т. Нагрузочно-осадочная реакция неглубоких квадратных фундаментов на песке, армированном георешеткой, при циклической нагрузке. Геотекстиль и геомембраны, 2018, 46 (3): 586–596. [Google Scholar] 57. Акинмусуру Дж. О. и Акинболаде Дж. А. Устойчивость нагруженных опор на армированном грунте. Журнал геотехнической и геоэкологической инженерии, 1981, 107 (Протокол ASCE 16320). [Google Scholar] 58. Чжоу Х. и Вэнь Х. Модельные исследования песчаной подушки, армированной георешеткой или геоячейками, на мягком грунте.Геотекстиль и геомембраны, 2008, 26 (3): 231–238. [Google Scholar] 59. Бринкгрев Р. Б. Дж. И Вермеер П. А. Конечно-элементный код для анализа грунтов и горных пород. AA Balkema, Роттердам, Нидерланды, 1998. [Google Scholar]

    61. Brinkgreve, RBJ, Kumarswamy, S., Swolfs, WM, Waterman, D., Chesaru, A., Bonnier, PG, et al., 2014, Plaxis 2014. PLAXIS bv, Нидерланды.

    64. Буссинеск, Дж. Применение потенциалов с учетом равновесия и движения твердых эластичных материалов, Готье-Виллар, Париж, (1883).

    65. Траутманн К. Х. и Кулхоуи Ф. Х. Поведение при подъеме нагрузки-смещения оснований с насыпью. Журнал инженерной геологии, 1988, 114 (2): 168–184. [Google Scholar]

    Какое максимальное урегулирование для всех типов фондов

    Использование конструкции

    Даже небольшие трещины в доме могут считаться неприемлемыми, в то время как более крупные трещины в промышленном здании могут даже не замечаться.

    Наличие деликатной отделки

    Плитка или другая чувствительная отделка гораздо менее терпима к движениям.

    Жесткость конструкции

    Если основание под частью очень жесткой конструкции оседает больше, чем другие, конструкция переносит часть нагрузки от основания.

    Однако опоры под гибкими конструкциями должны осесть гораздо больше, прежде чем произойдет значительная передача нагрузки. Следовательно, у жесткой конструкции будет меньшая дифференциация осадки, чем у гибкой.

    Требования к эстетике и удобству эксплуатации

    Допустимая осадка для большинства конструкций, особенно зданий, будет определяться требованиями эстетики и удобства эксплуатации, а не конструктивными требованиями.

    Некрасивые трещины, заклинивание дверей и окон и другие подобные проблемы появятся задолго до того, как целостность конструкции окажется под угрозой.

    В таблице ниже представлены три категории допустимого смещения фундамента: полная осадка, наклон и дифференциальная осадка.

    Это указывает на то, что те конструкции, которые являются более гибкими (например, здания с простыми стальными каркасами) или имеют более жесткий фундамент (например, основания с матами), могут выдерживать более высокие значения общей осадки и дифференциального движения.

    Площадка Числовой ( q u кН / м 2 ) Теоретический ( q 6 м 906 903 2 )
    Аль-Хамедат 640 620
    Ba’shiqa 365 359
    359
    расчетный:
    Тип поселения Ограничивающий фактор Максимальное поселение
    Общий расчет Дренаж 15-30 см
    Доступ 30-60 см
    30-60 см
    1. Кирпичные стеновые конструкции 2,5 — 5 см
    2. Каркасные конструкции 5 — 10 см
    3.Дымоходы, силосы, маты 8-30 см
    Наклон Устойчивость к опрокидыванию Зависит от H и L
    Наклон дымовых труб, опор 0.004L
    9 и т. Д. 0,01L
    Штабелирование товаров 0,01L
    Крановые рельсы 0,003L
    Дренаж полов 0,01 — 0,02 L Дифференциальный кирпич 0,01 — 0,02 L 0.0005 — 0,001 L
    Одноэтажное здание кирпичного завода, трещины в стенах 0,001 — 0,002 L
    Растрескивание штукатурки 0,001 L
    Железобетонный каркас здания 0,0025 — 0,004 L Навесные стены здания из железобетона 0,003 L
    Стальной каркас, сплошной 0,002 L
    Простой стальной каркас 0,005 L

    Где L = расстояние между соседними столбцами, которые устанавливаются на разные значения, или между двумя точками, которые устанавливаются по-разному.Более высокие значения для обычных поселений и более терпимых построек. Меньшие значения относятся к неравномерной осадке и критическим конструкциям. H = высота и W = ширина конструкции.

    допустимая осадка свай

    отношение длины L и диаметра D больше 5. Коэффициент уменьшения F1 был установлен на 0,75, так как точечный подшипник и учет некоторое сопротивление кожи. Согласно формуле. (1) общая величина осадки S p была оценена равной 15,6 мм. Это значение может быть считается максимальным, полученным с консервативной стороны, исходя из поведения сваи по несущей способности.Анализ осадки сваи показал, что общая ожидаемая максимальная осадка составила 15,6 мм. Включает 2,1 мм урегулирование деформации сваи от вертикальных сжимающих нагрузок. Для такой конструкции не должно быть осадки фундамента. более 2% диаметра сваи. Для сваи диаметром 880 мм осадка фундамента не должна превышать 16 мм. Расчет показывает, что для сваи диаметром 880 мм необходимая длина составила 29 м. Такой длины достаточно, чтобы выдержать общая нагрузка.

    Испытание сваи статической нагрузкой

    На строительной площадке были подготовлены одна пробная и четыре реактивных сваи.Набивные буронабивные сваи были изготовлена ​​на оборудовании Bauer компанией Skanska EMV Ltd в октябре 2007 года. Испытательная свая изготовлена ​​6 октября. В диаметры тестовой и реактивной свай 880 мм. Длина тестовой сваи 28,6 м. Тип бетона — С30 / 37. Сталь арматурный каркас изготавливается из основных стержней 10 шт. Ø20 мм, по всей длине сваи и поперечные стержни Ø12 мм, шаг 0,15 м. Наружный диаметр арматурных каркасов — 680 мм, продольные стержни распределяются в конечном итоге по длине. периметр.Головка сваи (1,5 м) усилена трубчатой ​​опалубкой. Испытательное оборудование состоит из следующих частей: 1. Две стальные фермы длиной 12 м общей несущей способностью 2 × 3000 = 6000 кН. Фермы соединяются с растяжение свай сваркой и болтами 2. Одна стальная балка длиной 4,5 м и несущей способностью 6000 кН. 3. Гидравлический домкрат с электрическим масляным насосом. Максимальная нагрузка на домкрат 5650 кН. 4. Циферблатные индикаторы с точностью до 0,1 мм для измерения перемещений вершины сваи. Смещения сжатия сваи измерялись четырьмя датчиками, а перемещения каждой сваи растяжения — двумя датчиками.Датчики были соединены сваями стальной проволокой 5. Контрольные балки для индикаторов часового типа. Длина опорных балок составляла от 6 до 8 м, и они опирались на земля Процедура испытаний проводилась в соответствии с «Положением о методике испытания предварительной сваи» компании Iberdrola [10]. Испытание сваи статической нагрузкой проводилось постепенно, увеличивая нагрузку. Тест начался в 10:00 утра и каждый час (начиная с 12:00) нагрузка увеличивалась на 250 кН. Базовая расчетная нагрузка Q (2500 кН) составляла достичь через 12 часов.Расчетная величина составила 5,2 мм. На рис. 3 показан вид кривой «нагрузка-осадка» статической сваи. тестовое задание.

    допустимая осадка плотного фундамента

    Максимальный перепад осадки в фундаменте на глинистых и песчаных грунтах не должен превышать 40 мм и 25 мм соответственно. Максимальное оседание обычно должно быть ограничено следующими значениями: Плотный фундамент на глине — от 65 до 100 мм. Плотный фундамент на песке — от 40 до 65 мм.

    минимальная глубина фундамента по коду

    Нормативные давления для фундаментов в песках и глинах для минимальной глубины 0,6 м ниже уровня земли приведены в таблицах 6 и 7 соответственно в коде . Рекомендуемые проектные пределы осадки в глине для плотного фундамента должны составлять 65 — 100 мм, а для плотного фундамента на песке — 50 мм.

    Фундамент мелкого заложения

    Минимальная толщина

    Минимальная толщина мелководья фундамент здания должен быть 250 мм.Предписывающие давления для Фундаменты из песков и глин на минимальной глубине 0,6 м ниже уровня земли. приведено в таблицах 6 и 7 Кодекса соответственно.

    Поселок

    Рекомендуемые проектные пределы для осадка в глине для плотного фундамента должна быть 65 — 100 мм, а для плотного фундамента — 50 мм. плот на песке.

    Глубинные основания

    —Древесина свайные основания должны быть предусмотрены там, где верхний слой почвы беден прочность и плохие характеристики сжимаемости.

    —Минимальные рекомендуемые размеры древесины сваи должны быть:

    (я) минимальный диаметр стыка — 300 мм

    (ii) минимальный диаметр наконечника — 200 мм

    онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

    «Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

    курсов. »

    Рассел Бейли, П.E.

    Нью-Йорк

    «Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

    , чтобы познакомить меня с новыми источниками

    информации. «

    Стивен Дедак, П.Е.

    Нью-Джерси

    «Материал был очень информативным и организованным. Я многому научился, и они были

    .

    очень быстро отвечает на вопросы.

    Это было на высшем уровне. Будет использовать

    снова. Спасибо. «

    Blair Hayward, P.E.

    Альберта, Канада

    «Простой в использовании веб-сайт. Хорошо организованный. Я действительно буду снова пользоваться вашими услугами.

    проеду по вашей роте

    имя другим на работе «

    Roy Pfleiderer, P.E.

    Нью-Йорк

    «Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что я уже знаком.

    с деталями Канзас

    Городская авария Хаятт.»

    Майкл Морган, P.E.

    Техас

    «Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

    .

    информативно и полезно

    на моей работе »

    Вильям Сенкевич, П.Е.

    Флорида

    «У вас большой выбор курсов, а статьи очень информативны.Вы

    — лучшее, что я нашел ».

    Russell Smith, P.E.

    Пенсильвания

    «Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

    материал «

    Jesus Sierra, P.E.

    Калифорния

    «Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

    человек узнает больше

    от отказов »

    John Scondras, P.E.

    Пенсильвания

    «Курс составлен хорошо, и использование тематических исследований является эффективным.

    способ обучения »

    Джек Лундберг, P.E.

    Висконсин

    «Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

    студент, оставивший отзыв на курс

    материалов до оплаты и

    получает викторину «

    Арвин Свангер, П.Е.

    Вирджиния

    «Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

    получил огромное удовольствие «.

    Мехди Рахими, П.Е.

    Нью-Йорк

    «Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

    на связи

    курсов.»

    Уильям Валериоти, P.E.

    Техас

    «Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

    обсуждаемых тем ».

    Майкл Райан, P.E.

    Пенсильвания

    «Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

    Джеральд Нотт, П.Е.

    Нью-Джерси

    «Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

    информативно, выгодно и экономично.

    Я очень рекомендую

    всем инженерам »

    Джеймс Шурелл, П.Е.

    Огайо

    «Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

    не на основании какого-то неясного раздела

    законов, которые не применяются

    до «нормальная» практика.»

    Марк Каноник, П.Е.

    Нью-Йорк

    «Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор

    организация «

    Иван Харлан, P.E.

    Теннесси

    «Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

    Юджин Бойл, П.E.

    Калифорния

    «Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

    а онлайн формат был очень

    Доступно и просто

    использовать. Большое спасибо. «

    Патрисия Адамс, P.E.

    Канзас

    «Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

    Джозеф Фриссора, P.E.

    Нью-Джерси

    «Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

    обзор текстового материала. Я

    также оценил просмотр

    фактических случаев «

    Жаклин Брукс, П.Е.

    Флорида

    «Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

    тест действительно потребовал исследований в

    документ но ответов

    в наличии »

    Гарольд Катлер, П.Е.

    Массачусетс

    «Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

    в транспортной инженерии, что мне нужно

    для выполнения требований

    Сертификат ВОМ.»

    Джозеф Гилрой, P.E.

    Иллинойс

    «Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

    Ричард Роудс, P.E.

    Мэриленд

    «Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

    Надеюсь увидеть больше 40%

    курсов со скидкой.»

    Кристина Николас, П.Е.

    Нью-Йорк

    «Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

    курсов. Процесс прост, и

    намного эффективнее, чем

    приходится путешествовать. «

    Деннис Мейер, P.E.

    Айдахо

    «Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

    Инженеры получат блоки PDH

    в любое время.Очень удобно ».

    Пол Абелла, P.E.

    Аризона

    «Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

    время исследовать где на

    получить мои кредиты от. «

    Кристен Фаррелл, P.E.

    Висконсин

    «Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

    и графики; определенно делает это

    проще поглотить все

    теорий. »

    Виктор Окампо, P.Eng.

    Альберта, Канада

    «Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

    .

    мой собственный темп во время моего утро

    метро

    на работу.»

    Клиффорд Гринблатт, П.Е.

    Мэриленд

    «Просто найти интересные курсы, скачать документы и взять

    викторина. Я бы очень рекомендовал

    вам на любой PE, требующий

    CE единиц. «

    Марк Хардкасл, П.Е.

    Миссури

    «Очень хороший выбор тем из многих областей техники.»

    Randall Dreiling, P.E.

    Миссури

    «Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

    по ваш промо-адрес который

    сниженная цена

    на 40%. «

    Конрадо Казем, П.E.

    Теннесси

    «Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

    Charles Fleischer, P.E.

    Нью-Йорк

    «Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

    кодов и Нью-Мексико

    правил. «

    Брун Гильберт, П.E.

    Калифорния

    «Мне очень понравились занятия. Они стоили потраченного времени и усилий».

    Дэвид Рейнольдс, P.E.

    Канзас

    «Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

    при необходимости дополнительных

    Сертификация . «

    Томас Каппеллин, П.E.

    Иллинойс

    «У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

    мне то, за что я заплатил — много

    оценено! «

    Джефф Ханслик, P.E.

    Оклахома

    «CEDengineering предлагает удобные, экономичные и актуальные курсы.

    для инженера »

    Майк Зайдл, П.E.

    Небраска

    «Курс был по разумной цене, а материал был кратким и

    в хорошем состоянии »

    Glen Schwartz, P.E.

    Нью-Джерси

    «Вопросы подходили для уроков, а материал урока —

    хороший справочный материал

    для деревянного дизайна. «

    Брайан Адамс, П.E.

    Миннесота

    «Отлично, я смог получить полезные рекомендации по простому телефонному звонку».

    Роберт Велнер, P.E.

    Нью-Йорк

    «У меня был большой опыт работы в прибрежном строительстве — проектирование

    Building курс и

    очень рекомендую

    Денис Солано, P.E.

    Флорида

    «Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

    хорошо подготовлены. »

    Юджин Брэкбилл, P.E.

    Коннектикут

    «Очень хороший опыт. Мне нравится возможность загрузить учебные материалы по номеру

    .

    обзор где угодно и

    всякий раз, когда.»

    Тим Чиддикс, P.E.

    Колорадо

    «Отлично! Поддерживаю широкий выбор тем на выбор».

    Уильям Бараттино, P.E.

    Вирджиния

    «Процесс прямой, без всякой ерунды. Хороший опыт».

    Тайрон Бааш, П.E.

    Иллинойс

    «Вопросы на экзамене были зондирующими и продемонстрировали понимание

    материала. Полная

    и комплексное. »

    Майкл Тобин, P.E.

    Аризона

    «Это мой второй курс, и мне понравилось то, что мне предложили этот курс

    поможет по телефону

    работ.»

    Рики Хефлин, P.E.

    Оклахома

    «Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

    Анджела Уотсон, P.E.

    Монтана

    «Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

    Кеннет Пейдж, П.E.

    Мэриленд

    «Это был отличный источник информации о солнечном нагреве воды. Информативный

    и отличный освежитель ».

    Луан Мане, П.Е.

    Conneticut

    «Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

    вернуться, чтобы пройти викторину «

    Алекс Млсна, П.E.

    Индиана

    «Я оценил объем информации, предоставленной для класса. Я знаю

    это вся информация, которую я могу

    использование в реальных жизненных ситуациях »

    Натали Дерингер, P.E.

    Южная Дакота

    «Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

    успешно завершено

    курс.»

    Ира Бродский, П.Е.

    Нью-Джерси

    «Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться

    и пройдите викторину. Очень

    удобно а на моем

    собственный график «

    Майкл Глэдд, P.E.

    Грузия

    «Спасибо за хорошие курсы на протяжении многих лет.»

    Деннис Фундзак, П.Е.

    Огайо

    «Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

    Сертификат

    . Спасибо за изготовление

    процесс простой. »

    Фред Шейбе, P.E.

    Висконсин

    «Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

    один час PDH в

    один час. «

    Стив Торкильдсон, P.E.

    Южная Каролина

    «Мне понравилось загружать документы для проверки содержания

    и пригодность, до

    имея для оплаты

    материал

    Ричард Вимеленберг, P.E.

    Мэриленд

    «Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

    Дуглас Стаффорд, П.Е.

    Техас

    «Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

    процесс, требующий

    улучшение.»

    Thomas Stalcup, P.E.

    Арканзас

    «Мне очень нравится удобство участия в викторине онлайн и получение сразу

    сертификат. «

    Марлен Делани, П.Е.

    Иллинойс

    «Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

    .

    многие различные технические зоны за пределами

    своя специализация без

    надо ехать.»

    Гектор Герреро, П.Е.

    Грузия

    .