Паропроницаемость строительных материалов: Страница не найдена — JSNiP.ru

Содержание

Паропроницаемость – типичные заблуждения. Паропроницаемость строительных материалов Повышенной паропроницаемостью

Одним из важнейших показателей является паропроницаемость. Она характеризует способность ячеистых камней задерживать или пропускать пары воды. В ГОСТ 12852.0-7 выписаны общие требования к способу определения коэффициента паропроницаемости газоблоков.

Что такое паропроницаемость

Внутри и снаружи зданий температура всегда разнится. Соответственно, и давление неодинаково. В результате, существующие как по ту, так и по другую стороны стен влажные воздушные массы стремятся переместиться в зону более низкого давления.

Но поскольку в помещении, как правило, более сухо, чем за его пределами, то влага с улицы проникает в микрощели стройматериалов. Таким образом стеновые конструкции наполняются водой, что может не только ухудшить микроклимат в помещениях, но и пагубно влиять на ограждающие стены — они со временем станут разрушаться.

Возникновение и накопление влаги в любых стенах — крайне опасный и для здоровья фактор. Так, в результате такого процесса происходит не только снижение теплозащиты строения, но и возникают грибки, плесень и другие биологические микроорганизмы.

Российские нормативы регламентируют, что показатель паропроницаемости определяется способностью материала противостоять проникновению в него водяных паров. Коэффициент паропроницаемости исчисляется мг/(м.ч.Па) и показывает, какое количество воды пройдет в течении 1 часа через 1м2 поверхности толщиной в 1 м, при разности давлений с одной и другой части стены — 1 Па.

Паропроницаемость газобетонов

Ячеистые бетоны состоят из закрытых воздушных раковин (до 85% от общего объема). Это существенно снижает способность материала поглощать водяные молекулы. Даже проникая вовнутрь, пары воды достаточно быстро испаряются, что положительно сказывается на паропроницаемости.

Таким образом, можно констатировать: данный показатель напрямую зависит от плотности газобетона — чем ниже плотность, тем выше паропроницаемость, и наоборот.

Соответственно, чем выше марка пористого бетона, тем меньше его плотность, а значит, и этот показатель выше.

Поэтому для снижения паропроницаемости при производстве ячеистых искусственных камней:

Такие превентивные меры приводят к тому, что показатели газобетонов различных марок имеют отличные значения паропроницаемости, что показано в таблице ниже:

Паропроницаемость и внутренняя отделка

С другой стороны, находящаяся в помещении влага тоже должна удаляться. Для этого для используют специальные материалы, поглощающие пары воды внутри зданий: штукатурку, бумажные обои, дерево и т.д.

Это не означает, что облагораживать стены обожженным в печах кафелем, пластиком или виниловыми обоями не следует. Да и надежная герметизация оконных и дверных проемов — обязательно условие для качественного строительства.

При выполнении внутренних отделочных работ следует помнить, что паропроницаемость каждого слоя отделки (шпатлевки, штукатурки, краски, обоев и др.

) должна быть выше, чем этот же показатель ячеистого стенового материала.

Мощнейшим барьером на пути проникновения влаги во внутрь строения является нанесение грунтовочного слоя на внутренней части капитальных стен.

Но не стоит забывать, что в любом случае, в жилых и производственных зданиях должна существовать эффективная система вентиляции. Только в этом случае можно говорить о нормальной влажности в помещении.

Газобетон — отличный строительный материал. Кроме того, что здания, сооруженные из него, прекрасно аккумулируют и сохраняют тепло, так в них еще не бывает излишне влажно или сухо. И все благодаря хорошей паропроницаемости, о которой должен знать каждый застройщик.

Паропроницаемость стен – избавляемся от вымыслов.

В данной статье мы постараемся дать ответ на следующие частые вопросы: что такое паропроницаемость и нужна ли пароизоляция при строительстве стен дома из пеноблоков или кирпича. Вот только несколько типичных вопросов, которые задают наши клиенты:

« Среди множества различных ответов на форумах прочитал я о возможности заполнения зазора между кладкой из поризованной керамики и облицовочным керамическим кирпичом обычным кладочным раствором. Не противоречит ли это правилу уменьшения паропроницаемости слоёв от внутренних к наружным, ведь паропроницаемость цементно-песчаного раствора более чем в 1,5 раза ниже, чем у керамики ? »

Или вот еще: « Здравствуйте. Имеется дом из газобетонных блоков, хотелось бы если не облицевать весь, то хотя бы украсить дом клинкерной плиткой, но в некоторых источниках пишут что нельзя прямо на стену — она должна дышать, как быть??? А то вот некоторые дают схему что можно…Вопрос: Как керамическая фасадная клинкерная плитка крепится к пеноблокам

Для правильных ответов на такие вопросы нам необходимо разобраться в понятиях «Паропроницаемость» и «Сопротивление паропереносу».

Итак, паропроницаемость слоя материала — это способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя материала, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара. Единица измерения µ — расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции мг / (м час Па). Коэффициенты для различных материалов можно посмотреть в таблице в СНИП II-3-79.

Коэффициент сопротивления диффузии водяного пара – это безразмерная величина, показывающая, во сколько раз чистый воздух более проницаем для пара, чем какой-либо материал. Сопротивление же диффузии определяют как произведение коэффициента диффузии материала на его толщину в метрах и имеет размерность в метрах. Сопротивление паропроницанию многослойной ограждающей конструкции, определяют по сумме сопротивлений паропроницанию составляющих ее слоев. Но в пункте 6.4. СНИП II-3-79 указано: «Не требуется определять сопротивление паропроницанию следующих ограждающих конструкций: а) однородных (однослойных) наружных стен помещений с сухим или нормальным режимом; б) двухслойных наружных стен помещений с сухим или нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2 ч Па/мг.

». Кроме того, в а в том же СНИПе говорится:

«Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю независимо от расположения и толщины этих прослоек».

Так что же получается в случае многослойных конструкций? Для исключения накопления влаги в многослойной стене при движении пара изнутри помещения наружу каждый последующий слой должен обладать большей абсолютной паропроницаемостью, чем предыдущий. Именно абсолютной, т.е. суммарной, подсчитанной с учетом толщины определенного слоя. Поэтому говорить однозначно, что газобетон нельзя, к примеру, облицевать клинкерной плиткой, нельзя. В данном случае значение имеет толщина каждого слоя стеновой конструкции. Чем больше толщина, тем меньше абсолютная паропроницаемость. Чем выше значение произведения µ*d, тем менее паропроницаем соответствующий слой материала. Другими словами, для обеспечения паропроницаемости стеновой конструкции произведение µ*d должно увеличиваться от внешних (наружных) слоёв стены к внутренним.

К примеру, облицевать газосиликатные блоки толщиной 200 мм клинкерной плиткой толщиной 14 мм нельзя. При таком соотношении материалов и их толщин способность пропускать пары у отделочного материала будет на 70% меньше, чем у блоков. Если же толщина несущей стены будет 400 мм, а плитки по прежнему 14 мм, то ситуация будет противоположной и способность пропускать пары у плитки будет на 15% больше, чем у блоков.

Для грамотной оценки правильности устройства стеновой конструкции Вам понадобятся значения коэффициентов сопротивления диффузии µ, которые представлены в нижеследующей таблице:

Наименование материала

Плотность, кг/м3

Теплопроводность, Вт/м*К

Коэффициент сопротивления диффузии

Клинкерный кирпич полнотелый

2000

1,05

Клинкерный кирпич пустотелый (с вертикальными пустотами)

1800

0,79

Керамический кирпич полнотелый, пустотелый и пористый и блоки

газосилиткатные.

0,18

0,38

0,41

1000

0,47

1200

0,52


Если для фасадной отделки используется керамическая плитка, то проблемы с паропроницаемостью не будет при любом разумном сочетании толщин каждого слоя стены. Коэффициент сопротивления диффузии µ у керамической плитки будет в диапазоне 9-12, что на порядок меньше, чем у клинкерной плитки. Для возникновения проблемы с паропроницаемостью стены облицованной керамической плиткой толщиной 20 мм, толщина несущей стены из газосиликатных блоков плотностью D500 должна быть менее 60 мм, что противоречит СНиП 3.03.01-87 «Несущие и ограждающие конструкции» п.7.11 таблица №28, который устанавливает минимальную толщину несущей стены 250 мм.

Аналогичным образом решается вопрос о заполнении зазоров между различными слоями кладочных материалов. Для этого достаточно рассмотреть данную конструкцию стены, чтобы определит сопротивление паропереносу каждого слоя, включая и заполненный промежуток. Действительно, в многослойной конструкции стены каждый последующий слой по направлению из помещения на улицу должен быть более паропроницаем, чем предыдущий. Рассчитаем значение сопротивления диффузии водяного пара для каждого слоя стены. Это значение определяется по формуле: произведение толщины слоя d на коэффициент сопротивления диффузии µ. Например, 1-й слой — керамический блок. Для него выбираем значение коэффициента сопротивления диффузии 5, используя таблицу, приведенную выше. Произведение d х µ = 0,38 х 5= 1,9. 2-й слой — обычный кладочный раствор — имеет коэффициент сопротивления диффузии µ = 100. Произведение d х µ =0,01 х 100 = 1. Таким образом, второй слой — обычный кладочный раствор — имеет значение сопротивления диффузии меньше, чем первый, и не является паробарьером.

Учитывая вышесказанное давайте разберем предполагаемые варианты конструкции стен:

1. Несущая стена из KERAKAM Superthermo c облицовкой пустотелым клинкерным кирпичом FELDHAUS KLINKER.

Для упрощения расчетов примем, что произведение коэффициента сопротивления диффузии µ на толщину слоя материала d равно значению М. Тогда, М супертермо=0,38*6=2,28 метра, а М клинкера(пустотелый, формата NF)=0,115*70=8,05 метра. Поэтому при применении клинкерного кирпича необходим вентиляционный зазор:

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов — эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Вконтакте

Одноклассники

proroofer.ru

Общие сведения

Перемещение водяных паров

  • пенобетона;
  • газобетона;
  • перлитобетона;
  • керамзитобетона.

Газобетон

Правильно подобранная отделка

Керамзитобетон

Структура керамзитобетона

Полистиролбетон

rusbetonplus. ru

Паропроницаемость бетона: особенности свойств газобетона, керамзитобетона, полистиролбетона

Часто в строительных статьях встречается выражение — паропроницаемость бетонных стен. Означает она способность материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет большое значение, так как в жилом помещении постоянно образуются продукты жизнедеятельности, которые необходимо постоянно выводить наружу.


На фото – конденсация влаги на строительных материалах

Общие сведения

Если не создать нормальную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения могут принести вред нашему здоровью.

Перемещение водяных паров

С другой стороны — паропроницаемость влияет на способность материала накапливать в себе влагу.Это также плохой показатель, так как чем больше он сможет ее в себе удерживать, тем выше вероятность возникновения грибка, гнилостных проявлений, а также разрушений при замерзании.

Неправильный отвод влаги из помещения

Паропроницаемость обозначают латинской буквой μ и измеряют в мг/(м*ч*Па). Величина показывает количество водяного пара, которое может пройти через стеновой материал на площади 1 м2 и при его толщине 1 м за 1 час, а также разнице наружного и внутреннего давления 1 Па.

Высокая способность проведения водяных паров у:

  • пенобетона;
  • газобетона;
  • перлитобетона;
  • керамзитобетона.

Замыкает таблицу — тяжелый бетон.

Совет: если вам необходимо в фундаменте сделать технологический канал, вам поможет алмазное бурение отверстий в бетоне.

Газобетон
  1. Использование материала в качестве ограждающей конструкции дает возможность избежать скопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  2. Любой газобетонный и пенобетонный блок имеет в своем составе ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стены в данном случае могут «дышать».
  3. Водяные парысвободно просачиваются через материал, но не конденсируются в нем.

Паропроницаемость газобетона, так же, как и пенобетона, значительно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.


Правильно подобранная отделка

Особо хочется подчеркнуть, что структура материала обеспечивает ему эффективное удаление влаги в окружающую среду, так что даже при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Поэтому, подготавливая отделку газобетонных стен, следует учитывать данную особенность и подбирать соответствующие штукатурки, шпаклевки и краски.

Инструкция строго регламентирует, чтобы их параметры паропроницаемости были не ниже газобетонных блоков, применяющихся для строительства.


Фактурная фасадная паропроницаемая краска для газобетона

Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться наполовину.

К примеру, если вы используете бетонные блоки с плотностью D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже — 0,20 мг/м ч Па. В первом случае цифры говорят о том, что стены будут иметь более высокую «дышащую» способность. Так что при подборе отделочных материалов для стен из газобетона D400, следите, чтобы у них коэффициент паропроницаемости был такой же или выше.

В противном случае это приведет к ухудшению отвода влаги из стен, что скажется на снижении уровня комфорта проживания в доме. Также следует учесть, что если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар будет просто скапливаться внутри помещения, делая его влажным.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, а именно керамзита – вспененной обожженной глины. В Европе такие изделия называют эко- или биоблоками.

Совет: если у вас не получается разрезать керамзитоблок обычным кругом и болгаркой, используйте алмазный. Например, резка железобетона алмазными кругами дает возможность быстро решить поставленную задачу.


Структура керамзитобетона

Полистиролбетон

Материал является еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона обычно приравнивается к дереву. Изготовить его можно своими руками.


Как выглядит структура полистиролбетона

Сегодня больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления теплопередачи можно с помощью изменения его толщины.Поэтому обычно применяют заливной монолитный полистиролбетон, который дешевле готовых плит.

Вывод

Из статьи вы узнали, что есть такой параметр у стройматериалов, как паропроницаемость. Он дает возможность выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, что необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

Page 2

В процессе эксплуатации могут возникать самые разные дефекты железобетонных конструкций. При этом очень важно вовремя выявлять проблемные участки, локализовывать и устранять повреждения, поскольку значительная их часть склонна к расширению и усугублению ситуации.

Ниже мы рассмотрим классификацию основных дефектов бетонного покрытия, а также приведем ряд советов по его ремонту.

В ходе эксплуатации железобетонных изделий на них появляются различные повреждения

Факторы, которые оказывают влияние на прочность

Прежде чем анализировать распространенные дефекты бетонных конструкций, необходимо понять, что может являться их причиной.

Здесь ключевым фактором будет прочность застывшего бетонного раствора, которая определяется такими параметрами:


Чем ближе состав раствора к оптимальному, тем меньше проблем будет в эксплуатации конструкции

  • Состав бетона. Чем выше марка входящего в раствор цемента, и чем прочнее гравий, который использовался в качестве наполнителя, тем более стойким будет покрытие или монолитная конструкция. Естественно, при использовании высокомарочных бетонов возрастает цена материала, потому в любом случае нам необходимо искать компромисс между экономией и надежностью.

Обратите внимание! Излишне прочные составы очень сложно обрабатывать: например, для выполнения простейших операций может потребоваться дорогостоящая резка железобетона алмазными кругами.

Вот почему переусердствовать с подбором материалов не стоит!

  • Качество армирования. Наряду с высокой механической прочностью для бетона характерна низкая эластичность, потому при воздействии определенных нагрузок (изгиб, сжатие) он может растрескиваться. Чтобы избежать этого, внутрь конструкции помещают стальную арматуру. От ее конфигурации и диаметра зависит, насколько стойкой будет вся система.

Для достаточно прочных составов обязательно применяется алмазное бурение отверстий в бетоне: обычная дрель «не возьмет»!

  • Проницаемость поверхности. Если для материала характерно большое количество пор, то рано или поздно в них проникнет влага, которая является одним из наиболее разрушительных факторов. Особенно пагубно сказываются на состоянии бетонного покрытия перепады температуры, при которых жидкость замерзает, разрушая поры за счет увеличения объема.

В принципе, именно перечисленные факторы являются решающими для обеспечения прочности цемента. Впрочем, даже в идеальной ситуации рано или поздно покрытие повреждается, и нам приходится его восстанавливать. Что при этом может произойти, и как нам нужно действовать – расскажем ниже.

Механические повреждения

Сколы и трещины

Выявление глубинных повреждений дефектоскопом

Наиболее распространенными дефектами являются механические повреждения. Они могут возникать вследствие различных факторов, и условно подразделяются на наружные и внутренние. И если для определения внутренних используется специальное устройство — дефектоскоп по бетону, то проблемы на поверхности можно увидеть самостоятельно.

Здесь главное – определить причину, по которой неисправность возникла, и оперативно ее устранить. Примеры наиболее часто встречающихся повреждений для удобства анализа мы структурировали в виде таблицы:

Дефект
Выбоины на поверхностиЧаще всего возникают вследствие ударных нагрузок. Также возможно образование выбоин в местах длительного воздействия значительной массы.
СколыОбразуются при механическом влиянии на участки, под которыми располагаются зоны пониженной плотности. По конфигурации практически идентичны выбоинам, но обычно имеют меньшую глубину.
ОтслоениеПредставляет собой отделение поверхностного слоя материала от основной массы. Чаще всего возникает вследствие некачественного просушивания материала и выполнения отделки до полной гидратации раствора.
Механические трещиныВозникают при длительном и интенсивном воздействии на большую площадь. Со временем расширяются и соединяются друг с другом, что может привести к образованию крупных выбоин.
ВздутияОбразуются в том случае, если поверхностный слой уплотняется до полного удаления воздуха из массы раствора. Также поверхность вздувается при обработке краской или пропитками (силингами) непросушенного цемента.

Фото глубокой трещины

Как видно из анализа причин, появления части перечисленных дефектов можно было бы избежать. А вот механические трещины, сколы и выбоины образуются вследствие эксплуатации покрытия, так что их просто нужно периодически ремонтировать. Инструкция по профилактике и ремонту приводится в следующем разделе.

Профилактика и ремонт дефектов

Чтобы минимизировать риск появления механических повреждений, в первую очередь нужно соблюдать технологию обустройства конструкций из бетона.

Конечно, этот вопрос имеет множество нюансов, потому мы приведем лишь наиболее важные правила:

  • Во-первых, класс бетона должен соответствовать расчетным нагрузкам. В противном случае экономия на материалах приведет к тому, что срок службы сократится в разы, а на ремонт придется тратить силы и средства куда чаще.
  • Во-вторых, нужно соблюдать технологию заливки и сушки. Раствор требует качественного уплотнения бетона, а при гидратации цемент не должен испытывать недостаток влаги.
  • Также стоит обратить внимание на сроки: без использования специальных модификаторов отделывать поверхности раньше, чем через 28-30 дней после заливки, нельзя.
  • В-третьих, следует оберегать покрытие от излишне интенсивных воздействий. Конечно, нагрузки будут влиять на состояние бетона, но в наших силах снизить вред от них.

Виброуплотнение в разы повышает прочность

Обратите внимание! Даже простое ограничение скорости движения транспорта на проблемных участках приводит к тому, что дефекты асфальтобетонного покрытия возникают куда реже.

Также важным фактором является своевременность выполнения ремонта и соблюдение его методики.

Здесь нужно действовать по единому алгоритму:

  • Поврежденный участок очищаем от фрагментов раствора, отколовшихся от основной массы. Для небольших дефектов можно использовать щетки, а вот масштабные сколы и трещины обычно чистят сжатым воздухом либо пескоструйным аппаратом.
  • Используя пилу по бетону или перфоратор, расшиваем повреждение, углубляя его до прочного слоя. Если речь идет о трещине, то ее нужно не только углубить, но и расширить, чтобы облегчить заполнение ремонтным составом.
  • Готовим смесь для восстановления, используя либо полимерный комплекс на основе полиуретана, либо безусадочный цемент. При ликвидации крупных дефектов используются так называемые тиксотропные составы, а мелкие трещины лучше заделывать литьевым средством.

Заполнение расшитых трещин тиксотропными герметиками

  • Наносим ремонтную смесь на повреждение, после чего выравниваем поверхность и защищаем ее от нагрузок до тех пор, пока средство полностью не полимеризуется.

В принципе, данные работы легко выполняются своими руками, потому на привлечении мастеров мы можем сэкономить.

Эксплуатационные повреждения

Просадки, пыление и другие неисправности

Трещины на проседающей стяжке

В отдельную группу специалисты выделяют так называемые эксплуатационные дефекты. К ним относят следующие:

ДефектХарактеристики и возможная причина возникновения
Деформация стяжкиВыражается в изменении уровня залитого бетонного пола (чаще всего покрытие просаживается в центре и приподнимается по краям). Может быть вызвана несколькими факторами:· Неравномерная плотность основания вследствие недостаточной трамбовки.· Дефекты в уплотнении раствора.

· Различие во влажности верхнего и нижнего слоя цемента.

· Недостаточная толщина армирования.

РастрескиваниеВ большинстве случаев трещины возникают не при механическом воздействии, а при деформации конструкции в целом. Она может быть спровоцирована как излишними нагрузками, превышающими расчетные, так и температурным расширением.
ШелушениеОтслаивание небольших чешуек на поверхности обычно начинается с появления сеточки микроскопических трещин. При этом причиной шелушения чаще всего является ускоренное испарение влаги из наружного слоя раствора, что приводит к недостаточной гидратации цемента.
Пыление поверхностиВыражается в постоянном образовании на бетоне мелкой цементной пыли. Может быть вызвано:· Недостатком цемента в растворе.· Избытком влаги при заливке.

· Попаданием воды на поверхность при затирке.

· Недостаточно качественной очисткой гравия от пылевидной фракции.

· Излишним абразивным воздействием на бетон.

Шелушение поверхности

Все вышеперечисленные недостатки возникают либо вследствие нарушения технологии, либо при неправильной эксплуатации бетонной конструкции. Впрочем, устранять их несколько сложнее, чем механические дефекты.

  • Во-первых, раствор нужно заливать и обрабатывать по всем правилам, не допуская его расслоения и шелушения при высушивании.
  • Во-вторых, не менее качественно нужно готовить и основание. Чем плотнее мы утрамбуем грунт под бетонной конструкцией, тем меньше будет вероятность ее просадки, деформации и растрескивания.
  • Чтобы залитый бетон не растрескивался, по периметру помещения обычно монтируется демпферная лента, компенсирующая деформации. С этой же целью на стяжках большой площади обустраиваются швы с полимерным заполнением.
  • Также избежать появления поверхностных повреждений можно путем нанесения на поверхность материала укрепляющих пропиток на полимерной основе или «железнения» бетона текучим раствором.

Поверхность, обработанная защитным составом

Химическое и климатическое воздействие

Отдельную группу повреждений составляют дефекты, возникшие как результат климатического воздействия либо реакции на химические вещества.

Сюда можно отнести:

  • Появление на поверхности разводов и светлых пятен – так называемых высолов. Обычно причиной образования солевого налета является нарушение влажностного режима, а также попадание щелочей и хлоридов кальция в состав раствора.

Высолы, образовавшиеся вследствие избытка влаги и кальция

Обратите внимание! Именно по этой причине в районах с сильнокарбонатными почвами специалисты рекомендуют использовать для приготовления раствора привозную воду.

В противном случае белесый налет будет появляться уже через несколько месяцев после заливки.

  • Разрушение поверхности под воздействием низких температур. При попадании влаги в пористый бетон микроскопические каналы в непосредственной близости от поверхности постепенно расширяются, поскольку при замерзании вода увеличивается в объеме примерно на 10-15%. Чем чаще происходит замораживание/оттаивание, тем интенсивнее будет разрушаться раствор.
  • Для борьбы с этим используют специальные антиморозные пропитки, а также покрывают поверхность составами, снижающими пористость.

Перед ремонтом арматуру нужно зачистить и обработать

  • Наконец, к этой группе дефектов также можно отнести и коррозию арматуры. Металлические закладные начинают ржаветь в местах их обнажения, что приводит к снижению прочности материала. Чтобы остановить этот процесс, перед заполнением повреждения ремонтным составом арматурные прутки обязательно зачищаем от окислов, после чего обрабатываем противокоррозионным составом.

Вывод

Описанные выше дефекты бетонных и железобетонных конструкций могут проявляться в самой разной форме. Несмотря на то, что многие из них выглядят вполне безобидно, при обнаружении первых признаков повреждения стоит принимать соответствующие меры, иначе со временем ситуация может резко ухудшиться.

Ну, а наилучшим способом избежать подобных ситуаций является строгое соблюдение технологии обустройства бетонных конструкций. Информация, изложенная на видео в этой статье, является еще одним подтверждением данного тезиса.

masterabetona.ru

Паропроницаемость материалов таблица

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.


На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.


Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом


Таблица становится понятна, если разобраться с коэффициентом.

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.


Сопротивления паропроницанию

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов .

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом


Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости : µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Аргументы «за» и «против»

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д. т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.

Коэффициент паропроницаемости строительных материалов. Паропроницаемость строительных материалов

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения


Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость


Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов — это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости


Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара


Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие — не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств


Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен


Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев


Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов


При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов


Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов — эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

В таблице даны значения сопротивления паропроницанию материалов и тонких слоев пароизоляции для распространенных . Сопротивление паропроницанию материалов Rп может быть определено, как частное от деления толщины материала на его коэффициент паропроницаемости μ.

Следует отметить, что сопротивление паропроницанию может быть указано только для материала заданной толщины , в отличие от , который к толщине материала не привязан и определяется только структурой материала. Для многослойных листовых материалов общее сопротивление паропроницанию будет равно сумме сопротивлений материала слоев.

Чему равно сопротивление паропроницанию? Например, рассмотрим значение сопротивления паропроницанию обыкновенного толщиной 1,3 мм. По данным таблицы это значение равно 0,016 м 2 ·ч·Па/мг. Что же значит эта величина? Означает она следующее: через квадратный метр площади такого картона за 1 час пройдет 1 мг при разности его парциальных давлений у противоположных сторон картона, равной 0,016 Па (при одинаковых температуре и давлении воздуха с обеих сторон материала).

Таким образом, сопротивление паропроницанию показывает необходимую разность парциальных давлений водяного пара , достаточную для прохода 1 мг водяного пара через 1 м 2 площади листового материала, указанной толщины, за 1 час. Согласно ГОСТ 25898-83, сопротивление паропроницанию определяют для листовых материалов и тонких слоев пароизоляции имеющих толщину не более 10 мм. Следует отметить, что пароизоляция с наибольшим сопротивлением паропроницанию в таблице — это .

Таблица сопротивления паропроницанию
МатериалТолщина слоя,
мм
Сопротивление Rп,
м 2 ·ч·Па/мг
Картон обыкновенный1,30,016
Листы асбоцементные60,3
Листы гипсовые обшивочные (сухая штукатурка)100,12
Листы древесно-волокнистые жесткие100,11
Листы древесно-волокнистые мягкие12,50,05
Окраска горячим битумом за один раз20,3
Окраска горячим битумом за два раза40,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой0,64
Окраска эмалевой краской0,48
Покрытие изольной мастикой за один раз20,6
Покрытие битумно-кукерсольной мастикой за один раз10,64
Покрытие битумно-кукерсольной мастикой за два раза21,1
Пергамин кровельный0,40,33
Полиэтиленовая пленка0,167,3
Рубероид1,51,1
Толь кровельный1,90,4
Фанера клееная трехслойная30,15

Источники:
1. Строительные нормы и правила. Строительная теплотехника. СНиП II-3-79. Минстрой России — Москва 1995.
2. ГОСТ 25898-83 Материалы и изделия строительные. Методы определения сопротивления паропроницанию.

Согласно СП 50.13330.2012 «Тепловая защита зданий», приложение Т, таблица Т1 «Расчетные теплотехнические показатели строительных материалов и изделий» коэффициент паропроницаемость оцинкованного нащельника (мю, (мг/(м*ч*Па)) будет равна:

Вывод: внутренний оцинкованный нащельник (смотрим рисунок 1) в светопрозрачных конструкциях может устанавливаться без пароизоляции.

Для устройства пароизоляционного контура рекомендуется:

Пароизоляция мест крепления оцинкованного листа, это можно обеспечить мастикой

Пароизоляция мест стыковки оцинкованного листа

Пароизоляция мест стыковки элементов (оцинкованный лист и витражный ригель или стойка)

Обеспечить отсутствие паропропускания через крепежные элементы (полые заклепки)

Термины и определения

Паропроницаемость — способность материалов пропускать водяной пар через свою толщину.

Водяной пар — газообразное состояние воды.

Паропроницаемость — измеряется количеством водяного пара, проходящим через 1м2 площади, толщиной 1метр, в течении 1 часа, при разности давлений 1 Па. (согласно СНиПа 23-02-2003). Чем ниже паропроницаемость, тем лучше теплоизоляционный материал.

Коэффициент паропроницаемость (DIN 52615) (мю, (мг/(м*ч*Па)) это отношение паропроницаемости слоя воздуха толщиной 1 метр к паропроницаемости материала той же толщины

Паропроницаемость воздуха можно рассмотреть как константу, равную

0,625 (мг/(м*ч*Па)

Сопротивляемость слоя материала зависит от его толщины. Сопротивляемость слоя материала определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м2*ч*Па) /мг

Согласно СП 50.13330.2012 «Тепловая защита зданий», приложение Т, таблица Т1 «Расчетные теплотехнические показатели строительных материалов и изделий» коэффициент паропроницаемость (мю, (мг/(м*ч*Па)) будет равна:

Сталь стержневая, арматурная (7850кг/м3), коэфф. паропроницаемости мю = 0;

Алюминий (2600) = 0; Медь (8500) = 0; Стекло оконное (2500) = 0; Чугун (7200) = 0;

Железобетон (2500) = 0,03; Раствор цементно-песчаный (1800) = 0,09;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1400кг/м3 на цементном песчаном растворе) (1600) = 0,14;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1300кг/м3 на цементном песчаном растворе) (1400) = 0,16;

Кирпичная кладка из сплошного кирпича (шлакового на цементном песчаном растворе) (1500) = 0,11;

Кирпичная кладка из сплошного кирпича (глиняного обыкновенного на цементном песчаном растворе) (1800) = 0,11;

Плиты из пенополистирола плотностью до 10 — 38 кг/м3 = 0,05;

Рубероид, пергамент, толь (600) = 0,001;

Сосна и ель поперек волокон (500) = 0,06

Сосна и ель вдоль волокон (500) = 0,32

Дуб поперек волокон (700) = 0,05

Дуб вдоль волокон (700) = 0,3

Фанера клееная (600) = 0,02

Песок для строительных работ (ГОСТ 8736) (1600) = 0,17

Минвата, каменная (25-50 кг/м3) = 0,37; Минвата, каменная (40-60 кг/м3) = 0,35

Минвата, каменная (140-175 кг/м3) = 0,32; Минвата, каменная (180 кг/м3) = 0,3

Гипсокартон 0,075; Бетон 0,03

Статья дана в ознакомительных целях

Для начала опровергнем заблуждение — «дышит» не ткань, а наше тело. Точнее, поверхность кожи. Человек относится к числу тех животных, чей организм стремится поддерживать температуру тела постоянной вне зависимости от условий внешней среды. Одним из важнейших механизмов нашей терморегуляции являются сокрытые в коже потовые железы. Они же являются частью выделительной системы организма. Выделяемый ими пот, испаряясь с поверхности кожи, уносит с собой часть избыточного тепла. Поэтому, когда нам жарко — мы потеем во избежание перегрева.

Однако, у этого механизма есть один серьёзный недостаток. Влага, быстро испаряясь с поверхности кожи, может спровоцировать переохлаждение, которое приводит к простудным заболеваниям. Конечно, в Центральной Африке, где человек эволюционировал как вид, такая ситуация — скорее редкость. Но в регионах с переменчивой и преимущественно прохладной погодой человеку постоянно приходилось и приходится дополнять свои естественные механизмы терморегуляции различной одеждой.

Способность одежды «дышать» подразумевает её минимальное сопротивление отводу испарений от поверхности кожи и «умение» транспортировать их на лицевую сторону материала, где выделенная человеком влага может улетучиться, «не украв» избыточное количество тепла. Таким образом, «дышащий» материал, из которого изготовлена одежда, помогает организму человека поддерживать оптимальную температуру тела, не допуская перегрева или переохлаждения.

«Дышащие» свойства современных тканей принято описывать в рамках двух параметров — «паропроницаемость» и «воздухопроницаемость». В чём между ними разница и как это влияет на их применение в одежде для спорта и активного отдыха?

Что такое паропроницаемость?

Паропроницаемость — это способность материала пропускать или задерживать водяной пар. В индустрии производства одежды и снаряжения для активного отдыха важное значение имеет высокая способность материала к транспорту водяного пара . Чем она выше, тем лучше, т.к. это позволяет избежать пользователю перегрева и при этом оставаться сухим.

Определённой паропроницаемостью обладают все использующиеся сегодня ткани и утеплители. Однако в численном выражении она представлена только для описания свойств мембран, применяющихся в производстве одежды, и для очень малого количества не водонепроницаемых текстильных материалов. Чаще всего паропроницаемость измеряют в г/м²/24 часа, т.е. количество водяного пара, которое пройдёт через квадратный метр материала за сутки .

Обозначается этот параметр аббревиатурой MVTR («moisture vapor transmission rate» или «скорость прохождения водяного пара» ).

Чем выше значение, тем большей паропроницаемостью обладает материал.

Как измеряют паропроницаемость?

Цифры MVTR получают в результате лабораторных тестов, основанных на различных методиках. В связи с большим количеством переменных, влияющих на работу мембраны — индивидуальный метаболизм, давление и влажность воздуха, площадь материала, пригодная для транспорта влаги, скорость ветра и пр., единого стандартизированного метода исследований для определения паропроницаемости не существует. Поэтому для того, чтобы иметь возможность сравнивать образцы тканей и мембран между собой, производители материалов и готовой одежды используют целый ряд методик. Каждая из них в отдельности описывает паропроницаемость ткани или мембраны в определённом диапазоне условий. Сегодня наиболее часто применяются следующие тестовые методики:

«Японский» тест с «вертикально стоящей чашкой» (JIS L 1099 A-1)

Тестовый образец растягивается и герметично фиксируется поверх чашки, внутрь которой помещён сильный влагопоглотитель — хлорид кальция (CaCl2). Чашка помещается на определённое время в термогидростат, в котором поддерживается температура воздуха 40°C и влажность 90%.

В зависимости от того, как изменится вес влагопоглотителя за контрольное время, определяется MVTR. Методика хорошо подходит для определения паропроницаемости не водонепроницаемых тканей, т.к. тестируемый образец не находится в прямом контакте с водой.

«Японский» тест с «перевёрнутой чашкой» (JIS L 1099 B-1)


Тестовый образец растягивается и герметично фиксируется над сосудом с водой. После он переворачивается и помещается над чашкой с сухим влагопоглотителем — хлоридом кальция. Через контрольное время влагопоглотитель взвешивается, в результате чего вычисляется MVTR.

Тест B-1 наиболее популярен, так как демонстрирует наибольшие цифры среди всех методик, определяющих скорость прохождения водяных паров. Чаще всего именно его результаты публикуют на ярлыках. У наиболее «дышащих» мембран показатель MVTR по тесту B1 больше или равен 20 000 г/м²/24ч по тесту B1. Ткани со значениями 10-15 000 можно отнести к ощутимо паропроницаемым, по крайней мере в рамках не очень интенсивных нагрузок. Наконец, для одежды, предполагающей малую подвижность часто оказывается достаточно паропроницаемости в пределах 5-10 000 г/м²/24ч.

Метод теста JIS L 1099 B-1 довольно точно иллюстрирует работу мембраны в идеальных условиях (когда на её поверхности есть конденсат и влага транспортируется в более сухую среду, обладающую меньшей температурой).

Тест с «потеющей пластиной» или RET (ISO — 11092)


В отличие от тестов, определяющих скорость транспорта водяного пара сквозь мембрану, методика RET исследует то, насколько тестируемый образец сопротивляется прохождению водяного пара.

Образец ткани или мембраны помещается поверх плоской пористой металлической пластины, под которую подведён нагревательный элемент. Температура пластины поддерживается на уровне температуры поверхности человеческой кожи (около 35°C). Вода, испаряющаяся от нагревательного элемента, проходит через пластину и тестируемый образец. Это приводит к потерям тепла на поверхности пластины, температура которой должна поддерживаться постоянной. Соответственно, чем выше уровень энергозатрат для поддержания температуры пластины постоянной, тем ниже сопротивляемость тестируемого материала к прохождению сквозь него водяного пара. Обозначается этот параметр как RET (Resistance of Evaporation of a Textile — «сопротивление материала испарению» ). Чем ниже значение RET, тем выше «дышащие» свойства тестируемого образца мембраны или иного материала.

    RET 0-6 — экстремально дышащие; RET 6-13 — хорошо дышащие; RET 13-20 — дышащие; RET более 20 — не дышащие.


Оборудование для проведения теста ISO-11092. Справа — камера с «потеющей пластиной». Компьютер необходим для получения и обработки результатов и контроля процедуры теста © thermetrics.com

В лаборатории института Hohenstein, с которым сотрудничают Gore-Tex, эта методика дополнена тестированием реальных образцов одежды людьми на беговой дорожке. В этом случае результаты тестов с «потеющей пластиной» корректируются в соответствии с замечаниями испытателей.


Тестирование одежды с Gore-Tex на беговой дорожке © goretex.com

Тест RET наглядно иллюстрирует работу мембраны в реальных условиях, однако является также самым дорогим и продолжительным по времени в приведённом списке. По этой причине его могут позволить себе далеко не все компании-производители одежды для активного отдыха. В то же время RET является сегодня основной методикой для оценки паропроницаемости мембран от компании Gore-Tex.

Методика RET обычно хорошо коррелирует с результатами теста B-1. Другими словами, мембрана которая показала хорошие «дышащие» свойства в тесте RET, продемонстрирует хорошие «дышащие» свойства в тесте с «перевёрнутой чашкой».

К сожалению, ни одна из тестовых методик не способна заменить собой остальные. Более того, не всегда их результаты коррелируют друг с другом. Мы увидели, что процесс определения паропроницаемости материалов в различных методиках имеет множество отличий, имитируя разные условия работы.

Вдобавок, различные мембранные материалы работают по разному принципу. Так, например, поровые ламинаты обеспечивают сравнительно свободное прохождение паров воды через имеющиеся в их толще микроскопические поры, а беспоровые мембраны транспортируют влагу на лицевую поверхность как промокашка — с помощью гидрофильных полимерных цепочек в своей структуре. Вполне естественно, что один тест может имитировать выигрышные условия для работы беспоровой мембранной плёнки, например, когда влага вплотную прилегает к её поверхности, а другой — для микропористой.

Вкупе всё это означает, что сравнивать между собой материалы на основе данных, полученных от разных тестовых методик практически не имеет смысла . Также не имеет смысла сравнивать показатели паропроницаемости разных мембран, если тестовая методика хотя бы для одной из них неизвестна.

Что такое воздухопроницаемость?

Воздухопроницаемость — способность материала пропускать через себя воздух под влиянием перепада его давления. При описании свойств одежды часто употребляется синоним этого термина — «продуваемость», т.е. то, насколько материал «ветростоек».

В отличие от методик оценки паропроницаемости в этой области царит относительное однообразие. Для оценки воздухопроницаемости используется так называемый тест Фразера, который определяет, какой объём воздуха пройдёт через материал за контрольное время. Скорость воздушного потока по условиям теста обычно составляет 30 миль в час, но может меняться.

Единицей измерения служит кубический фут воздуха, проходящий через материал за одну минуту. Обозначается аббревиатурой CFM (cubic feet per minute ).

Чем больше значение — тем выше воздухопроницаемость («продуваемость») материала. Так беспоровые мембраны демонстрируют абсолютную «непродуваемость» — 0 CFM. Тестовые методики чаще всего определяются стандартами ASTM D737 или ISO 9237, которые, впрочем, дают идентичные результаты.

Точные цифры CFM публикуются производителями тканей и готовой одежды сравнительно редко. Чаще всего этот параметр используется для характеристики ветрозащитных свойств в описаниях различных материалов, разработанных и применяемых в рамках производства одежды SoftShell.

С недавних пор о воздухопроницаемости производители стали «вспоминать» гораздо чаще. Дело в том, что вместе с воздушным потоком с поверхности нашей кожи испаряется гораздо больше влаги, что снижает риск перегрева и скопления конденсата под одеждой. Так, мембрана Polartec Neoshell имеет чуть большую, чем традиционные поровые мембраны, воздухопроницаемость (0.5 CFM против 0.1). Благодаря этому Polartec удалось добиться существенно лучшей работы своего материала в условиях ветреной погоды и быстрого движения пользователя. Чем выше давление воздуха снаружи, тем лучше Neoshell отводит пары воды от тела за счёт большего воздухообмена. При этом мембрана продолжает защищать пользователя от ветрового охлаждения, блокируя порядка 99% воздушного потока. Этого оказывается достаточно, чтобы противостоять даже штормовым ветрам, и потому Neoshell нашёл себя даже в производстве однослойных штурмовых палаток (яркий пример — палатки BASK Neoshell и Big Agnes Shield 2).

Но прогресс не стоит на месте. Сегодня есть масса предложений хорошо утеплённых средних слоёв одежды с частичной воздухопроницаемостью, которые также могут использоваться как самостоятельное изделие. В них используются либо принципиально новые утеплители — как Polartec Alpha, либо применяются синтетические объёмные утеплители с очень низкой степенью миграции волокон, которые позволяют использовать менее плотные «дышащие» ткани. Так, в куртках Sivera Гамаюн используется ClimaShield Apex, в Patagonia NanoAir — утеплитель под торговой маркой FullRange™, который производится японской компанией Toray под оригинальным названием 3DeFX+. Идентичный утеплитель применяется в горнолыжных куртках и брюках компании Mountain Force в рамках технологии «12 way stretch» и горнолыжной одежде Kjus. Сравнительно высокая воздухопроницаемость тканей, в которые заключены эти утеплители позволяет создать утепляющий слой одежды, который не будет препятствовать отводу испаренной влаги с поверхности кожи, помогая пользователю избежать как намокания, так и перегрева.

SoftShell-одежде . В дальнейшем другие производители создали внушительное количество их аналогов, что привело к повсеместному распространению тонкого, сравнительно прочного, «дышащего» нейлона в одежде и снаряжении для спорта и активного отдыха.

Часто в строительных статьях встречается выражение — паропроницаемость бетонных стен. Означает она способность материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет большое значение, так как в жилом помещении постоянно образуются продукты жизнедеятельности, которые необходимо постоянно выводить наружу.

Общие сведения

Если не создать нормальную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения могут принести вред нашему здоровью.

С другой стороны — паропроницаемость влияет на способность материала накапливать в себе влагу.Это также плохой показатель, так как чем больше он сможет ее в себе удерживать, тем выше вероятность возникновения грибка, гнилостных проявлений, а также разрушений при замерзании.

Паропроницаемость обозначают латинской буквой μ и измеряют в мг/(м*ч*Па). Величина показывает количество водяного пара, которое может пройти через стеновой материал на площади 1 м 2 и при его толщине 1 м за 1 час, а также разнице наружного и внутреннего давления 1 Па.

Высокая способность проведения водяных паров у:

  • пенобетона ;
  • газобетона ;
  • перлитобетона ;
  • керамзитобетона .

Замыкает таблицу — тяжелый бетон.

Совет: если вам необходимо в фундаменте сделать технологический канал, вам поможет алмазное бурение отверстий в бетоне.

Газобетон

  1. Использование материала в качестве ограждающей конструкции дает возможность избежать скопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  2. Любой газобетонный и пенобетонный блок имеет в своем составе ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стены в данном случае могут «дышать».
  3. Водяные парысвободно просачиваются через материал, но не конденсируются в нем.

Паропроницаемость газобетона, так же, как и пенобетона, значительно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.

Особо хочется подчеркнуть, что структура материала обеспечивает ему эффективное удаление влаги в окружающую среду, так что даже при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Поэтому, подготавливая , следует учитывать данную особенность и подбирать соответствующие штукатурки, шпаклевки и краски.

Инструкция строго регламентирует, чтобы их параметры паропроницаемости были не ниже газобетонных блоков, применяющихся для строительства.

Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться наполовину.

К примеру, если вы используете D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже — 0,20 мг/м ч Па. В первом случае цифры говорят о том, что стены будут иметь более высокую «дышащую» способность. Так что при подборе отделочных материалов для стен из газобетона D400, следите, чтобы у них коэффициент паропроницаемости был такой же или выше.

В противном случае это приведет к ухудшению отвода влаги из стен, что скажется на снижении уровня комфорта проживания в доме. Также следует учесть, что если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар будет просто скапливаться внутри помещения, делая его влажным.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, а именно керамзита – вспененной обожженной глины. В Европе такие изделия называют эко- или биоблоками.

Совет: если у вас не получается разрезать керамзитоблок обычным кругом и болгаркой, используйте алмазный.
Например, резка железобетона алмазными кругами дает возможность быстро решить поставленную задачу.

Полистиролбетон

Материал является еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона обычно приравнивается к дереву. Изготовить его можно своими руками.

Сегодня больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления теплопередачи можно с помощью изменения его толщины.Поэтому обычно применяют заливной монолитный полистиролбетон, который дешевле готовых плит.

Вывод

Из статьи вы узнали, что есть такой параметр у стройматериалов, как паропроницаемость. Он дает возможность выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, что необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

Паропроницаемость материалов — таблица


Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.


Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени. Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Расположение термоизолирующих слоев

Для обеспечения лучших эксплуатационных характеристик многослойной конструкции сооружения пользуются следующим правилом: сторона с более высокой температурой обеспечивается материалами с повышенной сопротивляемостью к просачиванию пара с высоким коэффициентом теплопроводности.

Наружный слой должен обладать высокой паропроводимостью. Для нормальной эксплуатации ограждающего сооружения нужно, чтобы индекс внешнего слоя пятикратно превосходил значения внутреннего слоя. При соблюдении этого правила водяные пары, попавшие в теплый пласт стены, без особых усилий покинут его через более ячеистые стройматериалы. Пренебрегая этими условиями, внутренний слой стройматериалов сыреет, и его коэффициент теплопроводности становится выше. Подбор отделки также играет важную роль на финальных этапах строительных работ. Правильно подобранный состав материала гарантирует ему результативное выведение жидкости во внешнюю среду, поэтому даже при минусовой температуре материал не разрушится.

Индекс проницаемости пара является ключевым показателем при расчете величины поперечного сечения утеплительного слоя. От достоверности произведенных вычислений будет зависеть, насколько качественным получиться утепление всего здания.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Производители пароизоляции

На современном рынке сегодня имеется широкий выбор пароизоляционных материалов различных брендов. Так что сделать разумный выбор в пользу цены и качества не составит труда.

  • Изоспан. Отечественный производитель, предлагающий широкую линейку продуктов для паро- и гидроизоляции. Среди них одно- и двухслойные мембраны, полиэтиленовые пленки, нетканые материалы с фольгированным покрытием. Они обладают различной степенью защиты от негативных внешних воздействий: атмосферных осадков, пара, конденсата и даже аварийных протечек в коммуникациях.
  • URSA SECO – еще одна торговая марка отечественного производства, под которой выпускаются продукты для паро-, влаго- и ветрозащиты различных конструкций. Кроме высокого качества и долговечности, этим пароизоляционным материалам присуще удобство в монтаже. Каждый рулон пленки URSA SECO снабжен клейкой полосой, что избавляет от необходимости проклеивать материалы клейкими лентами или строительным скотчем.
  • DuPont Tyvek (США). Высокоэффективные «дышащие» мембраны из линейки этого производителя устойчивы к влаге, ультрафиолету и высоким температурам. Кроме того, они изготовлены по передовым технологиям и позволяют значительно повысить энергоэффективность любого здания.
  • Delta. Под этой маркой производятся гидро- и пароизоляционные материалы немецкой компании Dorken. В ее ассортименте одно- и многослойная паронепроницаемая пленка, как обычной плотности, так и армированная. А еще так называемая адаптивная мембрана, с переменной паропроницаемостью.
  • Termofol — продукция, выпускаемая под брендом Fakro. Этот тип пароизоляции часто применяется для кровель и фасадов, в области коттеджного строительства. Представляет собой прочную полиэтиленовую пленку с алюминиевым напылением. Таким образом, покрытие играет роль отражающей изоляции и при этом создает надежный барьер для пара.

Любой уважающий себя производитель считает своим долгом провести проверку своих пароизоляционных материалов на высокие нагрузки, стойкость к атмосферным факторам и другие внешние воздействия. Но порой выбор пользователя не обусловлен только лишь этими критериями.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал Коэффициент паропроницаемости мг/(м·ч·Па)
экструдированный пенополистирол 0,013
пенополиуретан 0,05
минеральная вата 0,3 – 0,55
фанера 0,02
железобетон, бетон 0,03
сосна или ель 0,06
керамзит 0,21
пенобетон, газобетон 0,26
кирпич 0,11
гранит, мрамор 0,008
гипсокартон 0,075
дсп, осп, двп 0,12
песок 0,17
пеностекло 0,02
рубероид 0,001
полиэтилен 0,00002
линолеум 0,002

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Паропроницаемость строительных материалов (таблица и понятие)

Паропроницаемость — это величина, численно равная количеству водяного пара в миллиграммах, проходящего за 1 ч через слой материала площадью 1 м2 и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинаковая, а разность парциальных давлений водяного пара равна 1 Па (п.2.3 ГОСТ 25898-2012).

Сопротивление паропроницанию -это показатель, характеризующий разность парциальных давлений водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через изделие площадью 1 м2 за 1 ч проходит 1 мг водяного пара при равенстве температуры воздуха у противоположных сторон изделия; величина, численно равная отношению толщины слоя испытуемого материала к значению паропроницаемости (п. 2.4 ГОСТ 25898-2012).

Коэффициент паропроницаемости материала — это расчетный теплотехнический показатель, определяемый как отношение толщины образца материала d к сопротивлению паропроницанию Rп , измеренному при установившемся стационарном потоке водяного пара через этот образец (п.2.5 ГОСТ 25898-2012)..

Расчетные значения паропроницаемости и сопротивления паропроницанию строительных материалов и изделий приведены в таблице Т.1 приложения Т (справочного) и таблице М.1 приложения М (справочного) действующего и обязательного к применению СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (согласно постановлению 985).

Открыть таблицу Т.1 и M.1 в отдельном окне на всю ширину экрана с функцией поиска

Таблица Т.1 Приложения Т СП 50.13330.2012

Расчетное значение паропроницаемости строительных материалов и изделий

МатериалПлотность в сухом состоянии, г/м3Расчетная паропроницаемость µ, мг/(м. ч.Па)
Теплоизоляционные материалы
1 Плиты из пенополистиролаДо 100,05
2 То же10 — 120,05
3 «12 — 140,05
4 «14-150,05
5 «15-170,05
6 «17-200,05
7 «20-250,05
8 «25-300,05
9 «30-350,05
10 «35-380,05
11 Плиты из пенополистирола с графитовыми добавками15-200,05
12 То же20-250,05
13 Экструдированный пенополистирол25-330,005
14 То же35-450,005
15 Пенополиуретан800,05
16 То же600,05
17 «400,05
18 Плиты из резольно-фенолформальдегидного пенопласта800,23
19 То же500,23
20 Перлитопластбетон2000,008
21 То же1000,008
22 Перлитофосфогелевые изделия3000,2
23 То же2000,23
24 Теплоизоляционные изделия из вспененного синтетического каучука60-950,003
25 Плиты минераловатные из каменного волокна1800,3
26 То же40-1750,31
27 «80-1250,32
28 «40-600,35
29 «25-500,37
30 Плиты из стеклянного штапельного волокна850,5
31 То же750,5
32 «600,51
33 «450,51
34 «350,52
35 «300,52
36 «200,53
37 «170,54
38 «150,55
39 Плиты древесно-волокнистые и древесно-стружечные10000,12
40 То же8000,12
41 «6000,13
42 «4000,19
43 Плиты древесно-волокнистые и древесно-стружечные2000,24
44 Плиты фибролитовые и арболит на портландцементе5000,11
45 То же4500,11
46 «4000,26
47 Плиты камышитовые3000,45
48 То же2000,49
49 Плиты торфяные теплоизоляционные3000,19
50 То же2000,49
51 Пакля1500,49
52 Плиты из гипса13500,098
53 То же11000,11
54 Листы гипсовые обшивочные (сухая штукатурка)10500,075
55 То же8000,075
56 Изделия из вспученного перлита на битумном связующем3000,04
57 То же2500,04
58 «2250,04
59 «2000,04
Засыпки
60 Гравий керамзитовый6000,23
61 То же5000,23
62 «4500,235
63 Гравий керамзитовый4000,24
64 То же3500,245
65 «3000,25
66 «2500,26
67 «2000,27
68 Гравий шунгизитовый (ГОСТ 32496)7000,21
69 То же6000,22
70 «5000,22
71 «4500,22
72 «4000,23
73 Щебень шлакопемзовый и аглопоритовый (ГОСТ 32496)8000,22
74 То же7000,23
75 «6000,24
76 «5000,25
77 «4500,255
78 «4000,26
79 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820)7000,22
80 То же6000,235
81 «5000,24
82 «4000,245
83 Щебень и песок из перлита вспученного (ГОСТ 10832)5000,26
84 То же4000,3
85 «3500,3
86 «3000,34
87 Вермикулит вспученный (ГОСТ 12865)2000,23
88 То же1500,26
89 «1000,3
90 Песок для строительных работ (ГОСТ 8736)16000,17
Конструкционные и конструкционно-теплоизоляционные материалы
Бетоны на заполнителях из пористых горных пород
91 Туфобетон18000,09
92 То же16000,11
93 «14000,11
94 «12000,12
95 Бетон на литоидной пемзе16000,075
96 То же14000,083
97 «12000,098
98 «10000,11
99 «8000,12
100 Бетон на вулканическом шлаке16000,075
101 То же14000,083
102 «12000,09
103 «10000,098
104 «8000,11
Бетоны на искусственных пористых заполнителях
105 Керамзитобетон на керамзитовом песке18000,09
106 То же16000,09
107 «14000,098
108 «12000,11
109 «10000,14
110 «8000,19
111 «6000,26
112 «5000,3
113 Керамзитобетон на кварцевом песке с умеренной (до Vв=12%) поризацией)12000,075
114 То же10000,075
115 «8000,075
116 Керамзитобетон на перлитовом песке10000,15
117 То же8000,17
118 Керамзитобетон беспесчаный7000,145
119 То же6000,155
120 «5000,165
121 «4000,175
122 «3000,195
123 Шунгизитобетон14000,098
124 То же12000,11
125 «10000,14
126 Перлитобетон12000,15
127 То же10000,19
128 «8000,26
129 Перлитобетон6000,3
130 Бетон на шлакопемзовом щебне18000,075
131 То же16000,09
132 «14000,098
133 «12000,11
134 «10000,11
135 Бетон на остеклованном шлаковом гравии18000,08
136 То же16000,085
137 «14000,09
138 «12000,10
139 «10000,11
140 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках18000,083
141 То же16000,09
142 «14000,098
143 «12000,11
144 Аглопоритобетон и бетоны на заполнителях из топливных шлаков18000,075
145 То же16000,083
146 «14000,09
147 «12000,11
148 «10000,14
149 Бетон на зольном обжиговом и безобжиговом гравии14000,09
150 То же12000,11
151 «10000,12
152 Вермикулитобетон800
153 То же6000,15
154 «4000,19
155 «3000,23
Бетоны особо легкие на пористых заполнителях и ячеистые
156 Полистиролбетон на портландцементе (ГОСТ 32929)6000,068
157 То же5000,075
158 «4000,085
159 «3500,09
160 «3000,10
161 «2500,11
162 «2000,12
163 «1500,135
164 Полистиролбетон модифицированный на шлакопортландцементе5000,075
165 То же4000,08
166 «3000,10
167 «2500,11
168 «2000,12
169 Газо- и пенобетон на цементном вяжущем10000,11
170 То же8000,14
171 «6000,17
172 «4000,23
173 Газо- и пенобетон на известняковом вяжущем10000,13
174 То же8000,16
175 «6000,18
176 «5000,235
177 Газо- и пенозолобетон на цементном вяжущем12000,085
178 То же10000,098
179 «8000,12
Кирпичная кладка из сплошного кирпича
180 Глиняного обыкновенного на цементно-песчаном растворе18000,11
181 Глиняного обыкновенного на цементно-шлаковом растворе17000,12
182 Глиняного обыкновенного на цементно-перлитовом растворе16000,15
183 Силикатного на цементно-песчаном растворе18000,11
184 Трепельного на цементно-песчаном растворе12000,19
185 То же10000,23
186 Шлакового на цементно-песчаном растворе15000,11
Кирпичная кладка из пустотного кирпича
187 Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе16000,14
188 Керамического пустотного плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе14000,16
189 Керамического пустотного плотностью 1000 кг/м3 (брутто) на цементно-песчаном растворе12000,17
190 Силикатного одиннадцатипустотного на цементно-песчаном растворе15000,13
191 Силикатного четырнадцатипустотного на цементно-песчаном растворе14000,14
Дерево и изделия из него
192 Сосна и ель поперек волокон5000,06
193 Сосна и ель вдоль волокон5000,32
194 Дуб поперек волокон7000,05
195 Дуб вдоль волокон7000,3
196 Фанера клееная6000,02
197 Картон облицовочный10000,06
198 Картон строительный многослойный6500,083
Конструкционные материалы
Бетоны
199 Железобетон25000,03
200 Бетон на гравии или щебне из природного камня24000,03
201 Раствор цементно-песчаный18000,09
202 Раствор сложный (песок, известь, цемент)17000,098
203 Раствор известково-песчаный16000,12
Облицовка природным камнем
204 Гранит, гнейс и базальт28000,008
205 Мрамор28000,008
206 Известняк20000,06
207 То же18000,075
208 «16000,09
209 «14000,11
210 Туф20000,075
211 То же18000,083
212 «16000,09
213 «14000,098
214 «12000,11
215 «10000,11
Материалы кровельные, гидроизоляционные, облицовочные и рулонные покрытия для полов
216 Листы асбестоцементные плоские18000,03
217 То же16000,03
218 Битумы нефтяные строительные и кровельные14000,008
219 То же12000,008
220 «10000,008
221 Асфальтобетон21000,008
222 Рубероид, пергамин, толь600
223 Пенополиэтилен260,001
224 То же300,001
225 Линолеум поливинилхлоридный на теплоизолирующей подоснове18000,002
226 То же16000,002
227 Линолеум поливинилхлоридный на тканевой основе18000,002
228 То же16000,002
229 «14000,002
Металлы и стекло
230 Сталь стержневая арматурная78500
231 Чугун72000
232 Алюминий26000
233 Медь85000
234 Стекло оконное25000
235 Плиты из пеностекла80-1000,006
236 То же101-1200,006
237 То же121- 1400,005
238 То же141- 1600,004
239 То же161- 2000,004

Примечание: характеристики материалов в сухом состоянии приведены при влажности материала w, %, равной нулю.

Таблица М.1 Приложения М СП 50.13330.2012

Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции

Материал Толщина слоя, мм Сопротивление паропроницанию Rvp, м2·ч·Па/мг
1 Картон обыкновенный 1,3 0,016
2 Листы асбестоцементные 6 0,3
3 Листы гипсовые обшивочные (сухая штукатурка) 10 0,12
4 Листы древесно-волокнистые жесткие 10 0,11
5 То же, мягкие 12,5 0,05
6 Окраска горячим битумом за один раз 2 0,3
7 То же, за два раза 4 0,48
8 Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой 0,64
9 Окраска эмалевой краской 0,48
10 Покрытие изольной мастикой за один раз 2 0,60
11 Покрытие битумно-кукерсольной мастикой за один раз 1 0,64
12 То же, за два раза 2 1,1
13 Пергамин кровельный 0,4 0,33
14 Полиэтиленовая пленка 0,16 7,3
15 Рубероид 1,5 1,1
16 Толь кровельный 1,9 0,4
17 Фанера клееная трехслойная 3 0,15

Теплопроводность строительных материалов (таблица и понятие)

Теплоусвоение строительных материалов (таблица и понятие)

ПАРОПРОНИЦАЕМОСТЬ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | Все о гостиной от компании Ифи-Тнес

Коэффициент µ обозначает относительное  сопротивление материалов паропереносу в сравнении с возможностью паропереноса воздуха. Рассмотрим пример, где µ составляет 1 (минеральная вата), это значит, что данный строительный материал так же, как и воздух, хорошо проводит пар. А вот значение газобетона, где µ равно 10, показывает, что он в 10 раз пропускает пар хуже.

Данный показатель присущ многим строительным материалам и определяется международным стандартом ISO 12572, который имеет название «Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости». Перед определением показателей паропроницаемости каждый строительный материал проходит проверку в строжайших лабораторных условиях как в сухом, так и во влажном состоянии. Это касается лишь тех материалов, которые прошли проверку временем, а не были выпущены совсем недавно.

Выбирая строительный материал, следует опираться именно на международный стандарт, который  ориентируется на определение паропроницаемости сухих материалов в условиях с влажностью меньше 70% и влажных материалов в условиях с влажностью больше 70%. Этот фактор вы должны учитывать, составляя пироги паропроницаемой стены, ведь показатель паропроницаемости не должен уменьшаться из внутренних слоев к наружным, в противном случае может произойти намокание внутреннего слоя строительного материала.

Также вам должно быть известно, что из внутренних слоев к наружным показания паропроницаемости должны снижаться. Чтобы обеспечить лучшие эксплуатационные характеристики для многослойных конструкций, следует с теплых сторон здания размещать слои с более высокой теплопроводностью и большим уровнем сопротивления паропроводности, нежели внешние слои. При проектировании многослойных конструкций следует размещать их в такой последовательности, чтобы паропроводность каждого отдельно взятого слоя повышалась от внутренней поверхности к внешней. С таким расположением пар, который попал в ограждающую конструкцию изнутри, будет уходить с легкостью сквозь все слои и удаляться с внешней поверхности. Также, следует заметить, что показатель паропроницаемости внешнего слоя должен как минимум в пять раз быть выше паропроницаемости внутреннего слоя.

Теперь давайте попробуем разобраться, какая же система лучше подходит для утепления дома. Многие задают вопрос: чем лучше утеплить дом – минеральной ватой или пенопластом? Ведь оба материала имеют практически одинаковый коэффициент теплопроводности. И все же, в них есть отличия. Одно из весомых – паропроницаемость. Пенополистирол характеризуется низким коэффициентом паропроницаемости, или, чтобы было нагляднее, его паропроводность – на уровне бетона. Многие застройщики ошибочно полагают, что это является причиной «недышащей» стены, что приводит к некомфортным условиям в доме. Но специалисты считают, что микроклимат дома должен поддерживаться внутренней вентиляцией. В утепляющей конструкции пенопласт скорее играет роль паробарьера, что и помогает исключать внутреннюю конденсацию влаги.

Минеральная же вата имеет высокий коэффициент паропроницаемости, таким образом этот материал способен принимать и переносить влагу. Поэтому при монтаже в утепляющую конструкцию следует применять специальную клеевую смесь, штукатурку, краску с точно таким же показателем паропроводности. Монтаж должны выполнять высококвалифицированные специалисты, которые способны обеспечить монолитную систему с учетом переходов между слоями и проемами. Любой зазор может ухудшить термоизоляцию.

Паропроницаемость материалов | Изолирующий модуль | Принципы конструирования бань

Паропроницаемостью по СП 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара Gп (мг/м² час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна Gп = μ∆рп/δ, где μ (мг/м час Па) — коэффициент паропроницаемости, ∆рп (Па) — разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная μ, называется сопротивлением паропроницанию Rп =δ/μ и относится не к материалу, а слою материала толщиной δ. В отличие от воздухопроницаемости, термин «паропроницаемость» — это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара Gп через слой материала.

Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно. Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости μ более точный термин коэффициента диффузии (который численно равен 1,39μ) или коэффициента сопротивления диффузии 0,72/μ.

Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф). После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными рп = ϕр0, где р0 — давление насыщенного пара при заданной температуре, ϕ — относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.

Рис. 20. Принцип измерения паропроницаемости строительных материалов. 1 — стеклянная чашка с дистиллированной водой, 2 — стеклянная чашка с осушающим составом (концентрированным раствором азотнокислого магния), 3 — изучаемый материал, 4 — герметик (пластилин или смель парафина с канифолью), 5 — герметичный термостатированный шкаф, 6 — термометр, 7 — гигрометр

Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле s=0,27(λp0C0)0,5, где λ, р0 и С0 — табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.

Таблица 5: Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП II-3-79*)

МатериалТолщина слоя, ммСопротивление паропроницанию, м² час Па/мг
Картон обыкновенный1,30,016
Листы асбестоцементные60,3
Листы гипсовые обшивочные (сухая штукатурка)100,12
Листы древесно-волокнистые жесткие100,11
Листы древесно-волокнистые мягкие12,50,05
Пергамин кровельный0,40,33
Рубероид1,51,1
Толь кровельный1,90,4
Полиэтиленовая пленка0,167,3
Фанера клееная трехслойная30,15
Окраска горячим битумом за один раз20,3
Окраска горячим битумом за два раза40,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой0,64
Окраска эмалевой краской0,48
Покрытие изольной мастикой за один раз20,60
Покрытие бутумно-кукерсольной мастикой за один раз10,64
Покрытие бутумно-кукерсольной мастикой за два раза21,1

Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм = 100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м³ воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:

Температура °С02030405060708090100
Плотность насыщенного пара d0, кг/м³0,0050,0170,030,050,080,130,200,290,410,58
Давление насыщенного пара р0, атм0,0060,0230,0420,0730,120,200,31 0,470,69 1,00
Давление насыщенного пара р0, кПа0,62,34,27,31220314769100

Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м³ соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м²час, а в расчёте на 20 м² стен — (60-80) г/час. Это не столь уж и много, если учесть, что в бане объёмом 10 м³ содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-5-10) кг/м² час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м² час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.

Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м² час, а за счёт воздухопроницаемости при легком ветре 1 м/сек — (0,2-2) г/м² час и при порывах ветра 10 м/сек — (20- 200) г/м² час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания. Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м², то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны. Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.

В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот. Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется. Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур. С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:

— перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха — ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;
— перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).

В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров. Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.

Источник: Дачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008

Дышащие стены

г.Челябинск
GSM: +7(922)706-82-19

 

 

 

«Дышащие стены» — о применении утеплителей в многослойных стеновых конструкциях

«В последние пять лет, как-то исподволь, но нарастающим темпом в отношении технологии применения строительных материалов и конкретно при обсуждении теплоизоляционных конструкций, начал активно акцентироваться вопрос паропроницаемости стен с приданием нарочитой значимости данного фактора для микроклимата помещений. Доходит до того, что паропроницаемость теплоизолированных стен считается, чуть ли не главным параметром, характеризующим теплоизолирующую конструкцию, отодвигая порой на второе место даже основной смысл существования теплоизоляционного слоя — сопротивление теплопередаче ограждающих конструкций.


Учитывая очевидный спекулятивный характер, который приобретает использование понятия паропроницаемости стен, с надуманным выпячиванием данного фактора в меркантильных целях, давайте вместе разберемся, как с физикой самого явления паропроницаемости стен, так и с реальным значением влияния процесса паропроницаемости наружных стен на климат внутреннего помещения.


Прежде всего меня насторожило то. что в отношении явления паропроницаемости стен и того влияния на микроклимат внутренних помещений, которое данное явление оказывает, как в устных выступлениях, так в полемических статьях и рекламных буклетах вместо технической и научной терминологии. фактических значений параметров применяются лишь некие ярко эмоционально окрашенные образы и эпитеты наподобие пресловутого «здорового дыхания стен». В своей аргументации сторонники значительного влияния паропроницаемости теплоизоляционньгх материалов на микроклимат взывают более к чувствам, нежели обращаются к разуму потенциальных потребителей. Но, даже если и встречаются в этих источниках скудные крупицы научной и технической информации, посвященные значимости паропроницания стен для микроклимата внутренних помещений, то зачастую эта информация носит псевдонаучный и ложный характер.
Проанализировав имеющиеся публикации, касающиеся вопроса «здорового дыхания стен», можно сделать вывод о том, что позиционирование теплоизоляционных товаров, основанное на принципе «здорового дыхания стен» есть лишь неудачно выдуманная рекламная «фишка», не имеющая ничего общего с реальной жизнью. Развенчание данного мифа рано или поздно должно наступить!


Я решил проверить, как обстоят дела на рынке тепло-изоляционных материалов у соседей в сопредельных государствах, насколько акцентируется их высокая паропроницаемость и сгущаются ли краски в отношении «здорового дыхания стен». Как и следовало ожидать, ни на Западе, ни на Востоке от нашей страны ничего подобного нет, и даже головное отделение той фирмы-импортера, которая особенно «засветилась» у нас с этим одиозным «здоровым дыханием стен» ни о каком суперпреимуществе высокой пapoпpo-ницаемости своего волокнистого материала в невентилируемой системе утепления не ведет. И причины тому очевидны. Это нежелание стать посмешищем в глазах специалистов. Более того, конкурирующие с вышеупомянутой компанией операторы, работающие у нас в стране с иным импортным высококачественным волокнистым теплоизоляционным материалом, и вовсе не заостряют внимание на высокой паропроницаемости своего материала, справедливо полагая, что в закрытой системе теплоизоляции это более недостаток, чем достоинство.
Нe буду приводить все доказательства понимания западными и российскими специалистами надуманности значимости «здорового дыхания стен», дабы не делать статью уж слишком объемной, однако от одной цитаты удержаться не могу. Взята она из рекламного буклета корпорации «Partek Insulation», изданного на русском языке в Финляндии в ноябре 1998 г. и посвященного свойствам собственной каменной ваты «Рагос».


Прежде всего, вы не встретите в этом буклете и вовсе никаких рассуждений о достоинствах высокой паропроницаемости каменной ваты. т. к. финские и российские специалисты считают это очевидным недостатком, отражать который в рекламном буклете нет никакой необходимости. Тем не менее, в буклете есть несколько строк, посвященных прохождению паров влаги сквозь каменную вату Рагос. Вот они (в оригинале, с пунктуацией и орфографией буклета): «…продукция рассчитана на эксплуатацию в сухих условиях. Каменное волокно негигроскопично, содержание влаги в изделиях при нормальных условиях эксплуатации составляет менее 0,5% по объему. Конструкция должна быть спроектирована таким образом, чтобы предотвратить прохождение паров влаги и. как следствие, возникновение конденсата».


Ну, а теперь давайте все же разберемся, как на самом деле осуществляется диффузия воды сквозь стены и какое влияние это оказывает на микроклимат помещения?
Физические основы процесса выглядят следующим образом. В отношении атмосферы внутри помещения и снаружи существует разница парциального давления. Если эта разница будет положительной, то из-за присутствующей диффузии воды сквозь стену влага будет перемещаться из помещения наружу, если же разница будет отрицательной, то наоборот, какое-то количество воды будет перемещаться за счет диффузии сквозь стену извне в помещение. Чем больше разница парциальных давлений и чем меньше диффузное сопротивление материалов, тем эффективней будет идти этот процесс.
Наибольшая разница парциального давления между атмосферой внутри помещения и снаружи существует зимой и летом. Зимой она положительна и вода за счет диффузии сквозь стену покидает внутренние помещения. Летом (особенно в жару и после дождя) разница парциальных давлений отрицательна и вода диффундирует извне внутрь помещений. Однако не стоит думать, что установление равновесия парциальных давлений между воздухом внутренних помещений и внешней атмосферой происходит только благодаря диффузии сквозь стены. Основным, характеризующим это явление фактором, является конвекция воз-душных масс, на долю которой в установлении равновесного состояния парциальных давлений и поддержание микроклимата во внутренних помещениях приходится более 98% этого «водопереноса».


Чтобы не быть голословным, оценим численную составляющую диффузии воды сквозь кирпичную (кирпич керамический, полнотелый) стену толщиной в два кирпича при разнице температуры внутри и вне помещения в 20 °С и разности влажности в 20% (в помещении -60%. на улице-80%). Диффузия воды наружу сквозь 1 м2 подобной стены за сутки не превысит 10 г! И это просто «голая» стена без всякого утеплителя, штукатурного слоя, краски, обоев, стеновых панелей, зеркал, картин и т. п., создающего в любом случае, дополнительное сопротивление диффузии воды сквозь стену!


Таким образом, даже если жить в обычных неоштукатуренных кирпичных стенах без внутренней отделки особо насладиться «здоровых дыханием стен» не удастся, т. к. сквозь них за сутки диффундирует не более 1 кг воды. В тоже время за счет конвекционных процессов внутреннему жилому помещению зимой приходится избавляться от, более чем, 10 кг воды ежесуточно! Надейся бы мы только на «здоровое дыхание стен», и герметично закупорив подобную комнату зимой (избавившись от конвекционного переноса масс воды струями воздуха), — выпадение первой росы на стенах пришлось бы наблюдать уже через несколько часов.


Вообще, в вопросе «здорового дыхания стен» существует даже логический парадокс, который заключается в том, что мы изо всех сил стараемся сделать более герметичными для пара и газа оконные и дверные проемы, а также сами окна и двери. И в то же время кто-то говорит о повышении паропроницания стен для весьма неэффективной и вычурной дополнительной вентиляции здания. Вопросы вентиляции помещений, как естественной, так и принудительной, имеют гораздо более простые и эффективные инженерные решения, используемые веками. Стена же. должна исполнять возложенные на нее функции — препятствовать прохождению сквозь нее воздуха, воды, тепла и звука!
Немудрено сделать очевидный вывод: чем. менее паропроницаем. материал (в том. числе и теплоизоляционный), применяемый при сооружении стеновой конструкции, тем. более эффективно она (стена) исполняет свою функцию.


Продолжая тему теплоизоляционных материалов, следует сделать вывод, что при устройстве закрытых теплоизоляционных систем наиболее эффективны ячеистые материалы (пеностекло и пенополистиролы). нежели волокнистые материалы, ведущие себя в закрытых теплоизоляционных системах более капризно, малоэффективно и с потенциальным риском действительно служит причиной заметного увлажнения внутренних помещений здания, теплоизолированного волокнистым материалом.
Посмотрим более пристально на процессы «водопере-носа» в герметично (для воздуха) закрытых теплоизоляционных системах с использованием волокнистых неорганических материалов. Будь то штукатурные системы или системы с теплоизоляционным слоем внутри кладки, в волокнистом материале интенсивно происходят газообменные процессы, в отличие от ячеистых теплоизоляционных материалов, где газы герметично закупорены в замкнутых ячейках.


Самым актуальным в случае эксплуатации волокнистых материалов является процесс переноса и перераспределения воды, растворенной в воздухе. И здесь явление диффузии влаги сквозь стены (сколь бы незначительным оно не было) весьма важно, т. к. зачастую приводит к негативным последствиям. Если вы еще раз внимательно перечитаете абзац данной статьи, посвященный описанию процесса диффузии с точки зрения физики, то увидите, что вектор переноса воды летом за счет разницы парциальных давлений направлен извне помещения внутрь. К этому стоит добавить и капиллярные явления переноса жидкости, которые тоже приводят к движению масс воды внутрь стены за счет увлажнения поверхности стены дождями в весенне-осенний период.


Таким образом, газовая среда между волокон каменнойваты или стекловаты насыщается водой до высокого значения влажности. При сезонном похолодании атмосферы избыточная влага конденсируется на поверхности волокон из охлаждаемого воздуха между волокон. Отсутствие конвекции между волокнами приводит к отсутствию высыхания жидкости, которая начинает скапливаться внутри волокнистого материала. Жидкость конденсируется именно на волокнах т. к. площадь поверхности волокон в сотни тысяч раз больше поверхности стен! Это легко вычислить, зная толщину волокон, плотность материала, из которого состоят волокна, и плотность теплоизоляционной плиты.


Итак, в герметично закрытой системе теплоизоляции с использованием промежуточного слоя из каменной ваты или стекловаты устанавливается газовая среда, перенасыщенная парами воды с протеканием процесса конденсации с усилением последнего при падении температуры атмосферы ниже точки замерзания воды. Причиной усиления процесса насыщения теплоизоляционного волокнистого слоя, именно в зимний период, когда устанавливается стабильная температура ниже нуля, является как усиление диффузии воды из внутреннего помещения через стену (разница парциальных давлений внутреннего воздуха и внешней атмосферы возрастает) в воздушную среду волокнистого материала, так и замерзание воды на внешней поверхности стены в микропорах и микротрещинах, препятствующее выводу воды из теплоизоляционного слоя, хотя бы за счет незначительного в этом отношении эффекта диффузии.


Волокнистый материал в этот момент начинает банально мокнуть и отсыревать. Вода именно в виде жидкости появляется на поверхности стороны стены, контактирующей с волокнистым материалом. Диффузия воды сквозь стену в направлении «внутреннее помещение — теплоизоляционный слой» прекращается, т. к. воздух внутри волокнистого материала перенасыщен водой и имеет влажность в 100%. В то же время вода, сконденсировавшая в состояние жидкости внутри теплоизоляционного волокнистого слоя, начинает просачиваться внутрь помещения за счет капиллярных явлений. И если не будет очень хорошей вентиляции помещения и «выноса» влаги за счет конвекции воздушных струй, стены начнут сыреть со всеми вытекающими отсюда последствиями!
То есть, именно применение волокнистых материалов в закрытых системах утепления приводит в помещениях с затрудненной и плохой вентиляцией к повышению влажности и сырости!


Все вышеописанное давно известно и досконально изучено. Высокая паропроницаемость волокнистых материалов признана очевидным недостатком данного типа тепло-изоляторов. Для того, чтобы уменьшить неприятные последствия применения таких материалов предпринимаются следующие шаги:
волокна покрываются гидрофобным составом, чтобыуменьшить коэффициент смачиваемости материала иснизить накопление воды на волокнах в состоянии жид-кости;
создаются дорогостоящие системы вентиляции теплоизоляционного волокнистого слоя для перманентного «подсу-шивания» каменной ваты и стекловаты;
— внутренний слой стены, защищающий теплоизоляционный материал, изготавливается из максимальновлаго- и паронепроницаемого материала.
Это общеизвестно и настолько в порядке вещей, что даже в буклете «Теплоизоляция фасадов» (сентябрь 2004 г.) представительства компании «Рагос» в Беларуси на странице 19, прямо под пространными рассуждениями про «здоровое дыхание стены» размещена фотография, где облицовка теплоизоляционного слоя из каменной ваты производится клинкерным кирпичом — абсолютно паро- и водонепроницаемым материалом! Как через клинкерный кирпич будет дышать эта каменная вата — непонятно!
Вообще, буклеты белорусского представительства «Рагос» имеют множество неких семантических бессмысленностей, технических несуразностей и ошибок, однако не будем здесь давать рецензий. Если данное представительство считает уместным печатать то. что печатает, то пусть так и делает. Более ценным в отношении свойств и применения каменной ваты является упоминавшийся выше финский буклет. Данный буклет не только не приветствует саму идею паро-пропускания, но и рекомендует при эксплуатации теплоизолированных помещений этого самого паропропускания не допускать, либо за счет герметизации конструкции теплоизолирующего слоя, либо (цитата) из того же финского буклета в отношении влагостойкости каменной ваты «…на практике принято применять пароизоляционный барьер с «теплой» стороны конструкции».


То есть, финские «товарищи» представительства «Рагос» в Беларуси, наоборот, настаивают на дополнительной пароизоляции собственной каменной ваты. Белорусские же «товарищи» из «Рагос» зачем-то подняли вселенский шум вокруг преимуществ «здорового дыхания стен» из-за высокой паропроницаемости материала. Постыдились бы, что ли ей Богу…
Однако и это еще не все. Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополистиролы) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).


Суть этих действий сводится к следующему. Если не будет пресловутого «здорового дыхания стен», то внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку, давайте посмотрим более внимательно на тс физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например. такого материала как пеностекло, паропроницаемость которого равна нулю.


Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем будут носить характер гармонической функции. Эта функция будет обуславливаться для наружного слоя суточными перепадами температур и влажности, а также сезонными изменениями.


Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному.
Как благоприятный результат подобной системы утепления с использованием пеностекла гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуация ми) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена строительными и архитектурными школами мира, и для достижения подобного эффекта при использовании волокнистых неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется устройство надежного паронепроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!


И напоследок, в качестве практического доказательства ложной и корыстной надуманности теории «здорового дыхания стен», стоит привести следующий факт. Пеностекло, как материал абсолютно паронепроницаемый, активно используется для теплоизоляции зданий и сооружений в течение последних пятидесяти лет. В стране существуют десятки тысяч зданий. теплоизолированных данным материалом. И нет ни одного сколь-нибудь серьезного нарекания на повышенную влажность помещений из-за применения пеностекла. Более того, максимальное количество зданий, теплоизолированных пеностеклом, расположено в поселке Костюковка. где и производится на гомельском стекольном заводе пеностекло.
Люди, которые изготавливают пеностекло, сами его активно и используют как в общественных сооружениях, так и в частных строениях. Это ли не доказательство качества? Если уж говорить со ссылками на «Запад», то там существует полный аналог такого материала, как и отечественное пеностекло, также используемое в течение пятидесяти лет для жилого и промышленного строительства в качестве теплоизоляционного материала. И там. на «Западе» никому и в голову не приходит упрекать пеностекло в недостаточной паропроницаемости.


Абсолютно признанным фактом считается полное превосходство пеностекла надо всеми другими видами теплоизоляционных материалов, за исключением одного параметра — непомерной дороговизны цены на западное пеностекло, устанавливаемой ЭКСКЛЮЗИВНЫМ производителем. Для сравнения, отечественное пеностекло, производимое в Гомеле, стоит в четыре раза (!) дешевле западного аналога, что вполне сопоставимо с ценой на импортные волокнистые плиты. Зная это. некоторые импортеры волокнистых неорганических материалов и вынуждены прибегать к уловкам про «здоровое дыхание стен».»

 

Евгений Сосунов, начальник бюро разработки и внедрения комплекса маркетинга ОАО «Гомельстекло»

Паропроницаемость материалов | Строительный справочник | материалы — конструкции

Паропроницаемостью по СП 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара Gп (мг/м² час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна Gп = μ∆рп/δ, где μ (мг/м час Па) — коэффициент паропроницаемости, ∆рп (Па) — разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная μ, называется сопротивлением паропроницанию Rп =δ/μ и относится не к материалу, а слою материала толщиной δ. В отличие от воздухопроницаемости, термин «паропроницаемость» — это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара Gп через слой материала.

Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно. Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости μ более точный термин коэффициента диффузии (который численно равен 1,39μ) или коэффициента сопротивления диффузии 0,72/μ.

Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф). После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными рп = ϕр0, где р0 — давление насыщенного пара при заданной температуре, ϕ — относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.

Рис. 20. Принцип измерения паропроницаемости строительных материалов. 1 — стеклянная чашка с дистиллированной водой, 2 — стеклянная чашка с осушающим составом (концентрированным раствором азотнокислого магния), 3 — изучаемый материал, 4 — герметик (пластилин или смель парафина с канифолью), 5 — герметичный термостатированный шкаф, 6 — термометр, 7 — гигрометр

Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле s=0,27(λp0C0)0,5, где λ, р0 и С0 — табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.

Таблица 5: Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП II-3-79*)

МатериалТолщина слоя, ммСопротивление паропроницанию, м² час Па/мг
Картон обыкновенный1,30,016
Листы асбестоцементные60,3
Листы гипсовые обшивочные (сухая штукатурка)100,12
Листы древесно-волокнистые жесткие100,11
Листы древесно-волокнистые мягкие12,50,05
Пергамин кровельный0,40,33
Рубероид1,51,1
Толь кровельный1,90,4
Полиэтиленовая пленка0,167,3
Фанера клееная трехслойная30,15
Окраска горячим битумом за один раз20,3
Окраска горячим битумом за два раза40,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой0,64
Окраска эмалевой краской0,48
Покрытие изольной мастикой за один раз20,60
Покрытие бутумно-кукерсольной мастикой за один раз10,64
Покрытие бутумно-кукерсольной мастикой за два раза21,1

Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм = 100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м³ воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:

Температура °С02030405060708090100
Плотность насыщенного пара d0, кг/м³0,0050,0170,030,050,080,130,200,290,410,58
Давление насыщенного пара р0, атм0,0060,0230,0420,0730,120,200,31 0,470,69 1,00
Давление насыщенного пара р0, кПа0,62,34,27,31220314769100

Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м³ соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м²час, а в расчёте на 20 м² стен — (60-80) г/час. Это не столь уж и много, если учесть, что в бане объёмом 10 м³ содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-5-10) кг/м² час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м² час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.

Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м² час, а за счёт воздухопроницаемости при легком ветре 1 м/сек — (0,2-2) г/м² час и при порывах ветра 10 м/сек — (20- 200) г/м² час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания. Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м², то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны. Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.

В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот. Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется. Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур. С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:

— перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха — ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;
— перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).

В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров. Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.

Источник: health.totalarch.comДачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008

Понимание паропроницаемости: ответы на ваши вопросы

Слышали ли вы термин «паропроницаемость» и задавались вопросом, что он означает? Нужно знать, что такое химическая завивка? При чем здесь строительные материалы или мой дом?

Что такое паропроницаемость?

Часто называемая воздухопроницаемостью, паропроницаемость описывает способность материала пропускать водяной пар через него.

Если вы вспомните урок естествознания, вы вспомните, что вода может принимать разные формы: твердую, жидкую или газообразную.Паропроницаемость касается воды в ее газообразной форме. Материалы, которые пропускают водяной пар, считаются проницаемыми.

Почему это важно?

Строители возводят жилые стены из нескольких слоев материала. Один из этих слоев часто является погодным барьером. Эффективный погодный барьер выполняет четыре важные функции:

  • Сопротивление воздуху (препятствует прохождению воздуха сквозь стены)
  • Водонепроницаемость (предотвращает попадание дождя в здание)
  • Прочность при строительстве
  • Правильный уровень паропроницаемости

Ни одна стена или материал не являются идеальными, поэтому строители знают, что они должны быть готовы к попаданию жидкой воды в стены, несмотря на все их усилия.

Кроме того, вода всегда пытается найти более сухие места, даже в виде пара. Поскольку водяной пар может диффундировать через твердые материалы, он может находить более сухой воздух. Это означает, что вода попадает внутрь стен, когда она перемещается из более влажных мест в более сухие.

Вот где начинается проблема. Когда вода попадает в стены, ей нужен выход. Если выхода нет, он повреждает стену и вызывает рост плесени. Что еще более усложняет ситуацию, лучшие стратегии по предотвращению проникновения водяного пара могут также улавливать водяной пар, если не используются должным образом.

Проницаемый атмосферный барьер не позволяет жидкой воде (дождю) попадать в ваши стены, позволяя водяному пару проходить сквозь них.

Как измеряется паропроницаемость?

Проницаемость материала измеряется в единицах, называемых химической проницаемостью. Стандартные промышленные тесты определяют, сколько влаги может пройти через барьер за 24 часа. Эти испытания дают материалам относительную оценку, которая показывает, насколько каждый из них устойчив к пропусканию паров влаги.

Материалы можно разделить на четыре основных класса в зависимости от их проницаемости:

  • Паронепроницаемость: 0.1 завивка или менее
  • Полупроницаемый для паров: 1,0 или менее, но более 0,1 доп.
  • Паропроницаемость: 10 или менее, но более 1,0 проницаемости
  • Паропроницаемость: более 10 перм.

Материалы с более низким рейтингом проницаемости лучше задерживают движение водяного пара. Если рейтинг проницаемости достаточно низкий, материал является замедлителем парообразования. Если он действительно низкий, то это пароизоляция.

Если рейтинг проницаемости больше 10, он не считается замедлителем образования пара.Это проницаемый материал.

Как климат влияет на проницаемость?

Обычно водяной пар перемещается с теплой стороны стены на холодную сторону стены. Это означает, что он имеет тенденцию идти изнутри наружу в северном климате и снаружи на юге. В середине страны часть года идет изнутри наружу, а часть года — извне внутрь.

Это означает, что строителям нужны разные стратегии для разных климатических условий. Также необходимо учитывать разницу между летом и зимой.

Какова паропроницаемость домашних оберток Barricade®?

Мы предлагаем полную линейку домашних пленок для удовлетворения самых разных потребностей. Каждая из наших оберток для дома имеет разный рейтинг проницаемости.

Обертка для дома Пермский рейтинг (ASTM E-96A)
Баррикадная пленка 11 Пермь США
Баррикадная пленка Plus 16 Пермь США
R-Wrap® 50 Пермь США
Остались вопросы?

У вас остались вопросы по паропроницаемости? Хотите знать, какой продукт для домашнего обертывания подходит для вашей работы? Свяжитесь с нами — мы будем рады ответить на ваши вопросы.

улучшенный анализ эксперимента с сухой чашкой

1-я Международная конференция по влажности в зданиях (ICMB21), UCL Лондон 28-29 июня 2021 г.

Проницаемость строительных материалов для водяного пара: улучшенный анализ сухой чашки

эксперимент

Thibaut Colinarta, Патрик Глуаннека

a Univ Bretagne Sud, UMR CNRS 6027, IRDL, 56100 Lorient, France

Abstract

Проницаемость строительных материалов для водяного пара обычно измеряется с помощью эксперимента с сухим стаканом в соответствии со стандартом ISO 12572.Для этого испытания следует использовать подходящий адсорбирующий осушитель

, чтобы обеспечить стабильные условия низкого давления пара внутри стакана. Однако предыдущие измерения

проницаемых материалов показали, что граничные условия внутри стакана не равны 0% относительной влажности и не являются постоянными во времени. Целью данной статьи

является распространение этого открытия на другие менее проницаемые строительные материалы.

Рецензирование проводится организационным комитетом ICMB21.

Ключевые слова: паропроницаемость; Сухая чашка; OSB; Пустотелый бетонный блок; Мембрана от дождя; AAC; Гипс;

1. Введение

Паропроницаемость — одно из требуемых свойств при выполнении гидротермического моделирования ограждающих конструкций здания.

Это свойство определяется большинством ученых-строителей с помощью чашечного теста. Как подробно описано в последней версии стандарта

ISO 12572 [1], этот тест заключается в измерении в установившемся режиме и изотермических условиях потока влаги из-за относительного градиента влажности

через образец, запечатанный на чашке, содержащей осушитель или насыщенную соль. решения.Несмотря на простоту методов

, многочисленные циклические тесты [2-4] показали большие межлабораторные расхождения. Среди возможных факторов, объясняющих

эти несоответствия, было обнаружено, что неадекватный контроль условий окружающей среды имеет большое значение для проницаемых материалов. В самом деле,

предыдущая серия экспериментальных экспериментов с сухим стаканом, выполненных на изоляции из древесного волокна, показала, что относительная влажность, измеренная внутри стакана

, не является постоянной во времени, независимо от используемого осушителя [5].Следовательно, достижение устойчивого состояния не обязательно, что позволяет избежать надлежащей оценки проницаемости для водяного пара, как указано в стандарте ISO 12572. Кроме того, измеренная относительная влажность

не равна 0% относительной влажности, что приводит к ошибкам до 300%. в рассчитанном коэффициенте сопротивления диффузии водяного пара.

Целью данной статьи является распространение этих результатов на менее проницаемые строительные материалы.

2. Материалы и методы

Исследуются многочисленные строительные материалы (от менее до более проницаемых с точки зрения значения Sd): пустотелые бетонные блоки

(HCB), плиты OSB (OSB1 и 2), мембрана Rainscreen (Мемб. ), Пористый автоклавный бетон (AAC) и гипсокартон

(Gyp.). Все образцы имеют поверхность 100 х 100 мм2, а толщина колеблется от 0,6 до 20 мм. Перед испытанием образцы

сушат в соответствии со стандартом EN 13171, а затем кондиционируют при 23 ° C и относительной влажности 50%. Затем их герметично закрывают стаканами

, содержащими осушитель. В данном случае чашки размером 100 x 100 x 60 мм3 изготовлены из полиэтилена, а паронепроницаемая алюминиевая лента

использовалась для герметизации сторон образца со стороной чашки.В этой работе тестируются три осушителя: новый силикагель (регенерированный

один раз при 120 ° C), порошок хлорида кальция CaCl2 (не регенерированный до эксперимента), насыщенный раствор гидроксида калия

KOH. Независимо от влагопоглотителя, толщина воздушного слоя между образцом и влагопоглотителем всегда находится в диапазоне

17 ± 3 мм. Температура и относительная влажность в этом воздушном слое контролируются с точностью до 2% относительной влажности и 0,5 ° C с помощью

HygroPuce (Waranet, Auch, France). Сборки помещаются в климатическую камеру (Memmert HPP 108, Schwabach, Германия)

при 23 ° C и относительной влажности 50%. Скорость воздуха, измеренная над чашкой термоанемометром, составляет около 0,15 ± 0,05 м / с. Чашки на

точечно извлекаются из камеры для взвешивания с использованием весов с точностью до 0,01 г (Adventurer Pro AV4102C, Ohaus

Corporation, Пайн-Брук, Нью-Джерси, США). Минимальный интервал взвешивания устанавливается согласно приложению I стандарта [1] для получения результатов

с точностью до 5%.Измерения проводятся до тех пор, пока расход водяного пара g не достигнет установившегося состояния (как указано в

, раздел 8.1 стандарта [1]) или пока сборка не наберет более 1,5 г на 25 мл осушителя в чашке. Для этой установки

это соответствует увеличению массы около 2,5 кг.м-2. Здесь эксперименты продолжаются не менее 15 дней.

 Автор, ответственный за переписку. +33297874517. [email protected]

Анализ воздухопроницаемости — пароизоляция для ограждающих конструкций здания

Проницаемость строительных материалов имеет большое значение для долговечности и эффективности конструкции. Так чем же отличаются воздухопроницаемость и водопроницаемость и как они влияют на характеристики конкретных продуктов?

В этой статье мы обсудим различия между воздухопроницаемостью и водопроницаемостью, их важность для оболочки здания и тесты ASTM, используемые для определения уровня проницаемости строительного материала.

Входы и выходы проницаемости

Типичное здание подвергается непрекращающимся ударам воды и воздуха со всех сторон, во всех формах и с большими колебаниями температур.Термин «проницаемость» обычно применяется к способности материала пропускать через него воздух или влагу. Строительные материалы требуют различной степени проницаемости, чтобы конструкция оставалась функциональной и безопасной для людей.

Это может стать кошмаром для владельца здания, если будут выбраны неправильные продукты, когда проникновение паров влаги приведет к плесени, утечкам, жалобам жителей и излишне высоким счетам за электроэнергию.

Выбор продукта не так прост, как кажется, поскольку часто возникает путаница, когда продукты маркируются как «проницаемые» без указания того, относится ли это к воде или воздуху.

Воздухопроницаемость

Воздухопроницаемость имеет решающее значение для успеха ограждения здания, потому что воздух несет с собой определенное количество влаги в зависимости от степени влажности окружающей среды. Если влажный воздух входит в здание и не имеет возможности покинуть его, могут возникнуть структурные проблемы и / или проблемы с плесенью.

Поскольку материал, из которого изготовлен воздушный барьер, является одним из ключевых экранов стеновой системы, его чаще всего выбирают по сравнению с другими строительными материалами из-за его непроницаемости для воздуха.Подтверждение этого физического свойства проводится с помощью ASTM E2178 — Стандартный метод испытаний на воздухопроницаемость строительных материалов . В этом испытании (показано справа) однородная пленка исследуемого материала надежно помещается на коробку, которая пытается протолкнуть воздух через мембрану. 1

Данный метод не применяется к установленным характеристикам герметичности строительного материала, поэтому при правильном применении необходимо обеспечить непрерывную работу системы воздушного барьера без зазоров и разрывов. Непрерывность можно оценить с помощью стандартного метода испытаний ASTM E283 для определения скорости утечки воздуха через внешние окна, световые люки, ненесущие стены и двери при заданных перепадах давления на образце .

Паропроницаемость для влаги

Хотя все воздухонепроницаемые материалы должны быть непроницаемыми для потока воздуха, они могут быть как проницаемыми, так и непроницаемыми для водяных паров в зависимости от множества факторов предполагаемой конструкции, таких как тип изоляции, расположение и т. Д.Из-за сложности проекта настоятельно рекомендуется поработать со специалистом-проектировщиком или специалистом по строительным наукам, чтобы определить наилучший курс действий для условий вашего участка.

Испытание, широко используемое для определения паропроницаемости строительного материала, — это ASTM E96 — Стандартные методы испытаний материалов на передачу водяного пара . Этот тест рассматривает диффузию паров влаги через мембрану. Готовят два образца (показаны ниже), помещая мембранный материал в две плотно закрытые чашки: один с водой (смачиваемый стакан), а другой с осушителем или осушающим агентом (сухой стакан).Затем определяется прирост или потеря массы образца с течением времени. Это измерение связано с диффузией, относительной влажностью или влажностью, перемещающейся в чашку или из нее.


Что это значит?

Проницаемость — ключевая характеристика строительных материалов, которую нельзя упускать из виду. Воздушный барьер является неотъемлемой частью большой стеновой системы и обеспечивает непрерывную защиту, поэтому ее проницаемость часто критически оценивается. Поскольку все проекты и стеновые системы уникальны, каждая система должна быть изучена в индивидуальном порядке, чтобы определить лучшие типы и комбинацию продуктов.


1. ASTM E2178-13, Стандартный метод испытаний на воздухопроницаемость строительных материалов, ASTM International, West Conshohocken, PA, 2013, www. astm.org

Почему кривая паров имеет значение

Как складываются пароизменяющиеся материалы, когда речь идет о пробеге и защите

Интеллектуальные мембраны, или интеллектуальные замедлители образования пара, могут помочь предотвратить конденсацию в конструкциях корпуса (стены и крыши) зимой, в то же время обеспечивая диффузию вовнутрь летом. Это преобразование важно для обеспечения безопасности изолированного узла за счет увеличения его запасов сушки, чтобы он мог справляться с (непредвиденной) влагой — как внутрь, так и из узла.Но то, как и когда материал из замедлителя парообразования класса II (0,17 перм, значительно ниже 1 перм и почти как замедлитель парообразования класса I) превращается в паропроницаемый материал, заслуживает более подробного рассмотрения.

Строительные нормы ICC требуют наличия замедлителя парообразования класса I или II внутри изотермических сборок (IRC 1405.3 и IBC R702.7 ) в климатических зонах 5, 6, 7, 8 и морских условиях 4. Это необходимо для предотвращения теплый и более влажный внутренний воздух от прохождения через изоляцию и конденсации на холодной «конденсирующей поверхности» во время вытеснения пара наружу зимой.Обычно поверхность уплотнения представляет собой внешнюю фанеру или обшивку OSB. Поскольку внутренний пароизоляционный агент будет теплым, на нем не будет образовываться конденсат, а он не позволит влаге достичь холодных конденсационных поверхностей. Но есть и обратная сторона того, что на теплой внутренней стороне теплоизоляции используется материал с толщиной менее 1 проницаемости, когда летом паровой поток меняет направление. При поступлении пара внутрь (более влажная снаружи, чем внутри) материал с низкой проницаемостью не пропускает влагу, эффективно перекрывая ее.Вы можете видеть это на изображении ниже, где полиэтиленовый пароизоляционный слой показывает влажность, которая пытается протолкнуться внутрь, но в конечном итоге конденсируется внутри, потому что материал закрыт паром.

Конечно, было бы лучше, если бы материал зимой относился к классу I или II, когда поток пара направлен наружу, но затем он становится максимально открытым, когда этот привод реверсируется летом. Таким образом, была признана необходимость в умных замедлителях или замедлителях с изменяемым парообразованием, и, как следствие, Pro Clima разработала INTELLO.INTELLO — это интеллектуальный замедлитель образования пара с самым высоким уровнем изменчивости пара, доступным на рынке. Что не менее важно, она становится проницаемой в нужное время — не слишком рано и не слишком поздно. Подробнее об этом ниже.

Каким образом изменяется пар материала?

Чтобы понять, как (воздухонепроницаемые) материалы имеют разную паропроницаемость при разной относительной влажности, возьмем пример деревянной обшивки. Кусок OSB толщиной 5/8 дюйма является замедлителем парообразования класса II при относительной влажности 30%.Он становится более открытым для пара, если окружающая относительная влажность увеличивается. Это можно понимать так, что древесина поглощает эту влажность, а влажная древесина становится более паропроницаемой — поглощает влагу с одной стороны, переносит ее на другую сторону и выпускает ее там. Вы можете видеть, что OSB становится немного более проницаемой (от 2 до 4 проницаемости в зависимости от испытательной лаборатории) после того, как ее относительная влажность превышает 60% и 80%, но в этот момент она также начнет гнить или плесневеть. Поскольку OSB с самого начала является довольно замедляющим средством, он может использоваться в качестве замедлителя парообразования внутри сборки.Но чтобы сборка могла высохнуть снаружи от OSB, в ней должны быть только материалы, которые более открыты для пара, чем OSB снаружи. Это восходит к эмпирическому правилу 1: 5, которое мы обсуждали ранее. Правило 1: 5 показывает, что зимой внешняя поверхность должна быть по крайней мере в пять раз более проницаемой, чем внутренний пароизоляционный агент — для самых безопасных сборок. На это соотношение также ссылаются DOE, немецкий стандарт DIN 4108-3 и Роберт Риверсонг по GBA (см. Цитату в 3-м абзаце 3-го раздела).


OSB с различным содержанием влаги (Источник: Ecological Building Systems — environmentalbuildingsystems. com)

Есть некоторые соображения относительно деревянной обшивки, паропроницаемости и их воздухонепроницаемости, которые повлияют на их пригодность в качестве пароизоляционных материалов и воздушных барьеров:

  1. WUFI Pro отмечает в характеристиках материала: «Поскольку древесина и изделия на ее основе склонны к набуханию и усадке, их свойства материалов могут зависеть как от текущего, так и от предшествующего содержания влаги.Вопрос о применимости WUFI должен решаться в индивидуальном порядке «.
  2. В Европе и США было продемонстрировано, что OSB не является надежно герметичным. Мы получили как минимум 2 сообщения об этом в США. Опять же, это, вероятно, отличается от бренда к бренду, от растения к растению и используемых клеев / видов. Если материал не изготовлен для обеспечения воздухонепроницаемости ниже 0,004 куб. Фут / фут, то его использование в качестве воздушного барьера сомнительно. См. Фото выше справа, на котором показана утечка OSB во время испытания наддува. На сегодняшний день мы не наблюдаем, как это происходит с фанерой.
  3. Профиль парообразования деревянной обшивки зависит от толщины, завода-изготовителя (количества и типа используемого клея), породы дерева в плитах и ​​этого списка можно продолжать. Учтите также, что компания Dupont провела испытания системных панелей ZIP на проницаемость для мокрой и сухой чашки, которая показала, что в обоих случаях она оставалась ниже 1 допуска (см. Эту публикацию DuPont, стр. 3).

На приведенном ниже графике показаны значения химической проницаемости для различных материалов в США при различной влажности.Твердая древесина слишком открыта, чтобы быть замедлителем паров класса II, и потребуется много ленты, чтобы сделать воздушный барьер из пиломатериалов. Это также показывает, что OSB не очень изменчив — переход от материала низкого класса I к материалу низкого класса II. Есть даже некоторые OSB, которые имеют фиксированную скорость проницаемости в WUFI, и в этом случае только распределение влаги (сорбция / абсорбция) будет учитывать перенос влаги через материал. Фанера становится немного более проницаемой выше 50%, но не превышает 9 проницаемостей при толщине 5/8 дюйма.Точные числа также зависят от толщины обшивки, клеев, завода-изготовителя, возраста и истории изменения влажности обшивки.

Кривая имеет значение. Когда должны открыться умные замедлители образования пара?

Здания испытывают высокую и низкую влажность внутри во время строительства и заселения. Pro Clima рекомендует по возможности избегать повышенного уровня влажности во время строительства, но мы понимаем, что это не всегда возможно.Кроме того, в доме есть помещения с повышенной влажностью, например, кухни и ванные комнаты. Чтобы влага не проникала в сборку в это время, Pro Clima установила правило допуска 70% / 2,2 для этапа строительства и правило допуска 60% / 1,64 для завершенных и занятых пространств.

Занимаемая территория с повышенной влажностью, правило 60 / 1,64

При регулярном использовании помещений в таких комнатах, как ванные комнаты и кухни, наблюдается более высокая внутренняя влажность, а при интенсивном использовании может возникнуть относительная влажность на уровне пароизолятора 60%. Если материалы с допуском менее 1,64 в этих условиях, эта более высокая влажность в достаточной степени замедляется в эти ежедневные периоды более высокой влажности. Если воздушный барьер имеет паропроницаемость, превышающую этот уровень 1,64, в изоляцию может попасть слишком много влаги. Это показано на графике ниже, где вы можете видеть, что, например, полиамид / нейлон MemBrain от CertainTeed с> 3 химической завивкой намного превышает норму 1,64.

Строительная влажность: правило 70 / 2.2

Во время строительства создается большое количество влаги, особенно при заливке бетона, облицовке плиткой, штукатурке, укладке гипсокартона и т. Д.Это может вызвать очень высокий уровень влажности в помещении как летом, так и зимой. Даже при регулировании уровней с помощью осушения и вентиляции у вас могут быть периоды значительного повышения относительной влажности. Как следствие, относительная влажность внутреннего пароизолятора / воздушного барьера может достигать 70%. Чтобы убедиться, что эта влажность не попадает внутрь изолированного узла и не вызывает плесени и гниения, максимальная допустимая проницаемость при относительной влажности 70% должна составлять 2,2. Тогда он все еще достаточно плотный, чтобы удерживать большую часть влаги от этого разового события вне сборки.INTELLO от Pro Clima легко соответствует этому требованию с паропроницаемостью 1,6 перм при относительной влажности 70%.

Лучшая кривая открывается после 70%

Проблемы с влажностью стен — например, гниль, плесень и ржавчина — возникают при относительной влажности 80% и выше. Поэтому, когда относительная влажность превышает 70% в летние месяцы, важно, чтобы замедлители схватывания с переменной парообразованием открывались как можно быстрее и в большей степени, чтобы облегчить внутреннюю сушку. Если пароизоляция имеет фиксированную проницаемость — например, полиэтилен (ниже 0.1 химическая завивка) или Siga Majpell при 0,68 мкм — тогда непредвиденная влажность не может быстро высохнуть летом. Кроме того, если вы кондиционируете здание, вы не можете быть уверены, что у вас не возникнет проблем с конденсацией внутреннего парового двигателя на таких фиксированных пароизоляторах / барьерах во влажную летнюю погоду.

INTELLO обладает лучшим в своем классе интеллектуальным пароизоляционным профилем с проницаемостью, которая варьируется более чем в 100 раз, что вдвое превышает разброс по проницаемости по сравнению с материалом следующего класса. Интеллектуальный замедлитель схватывания Pro Clima обладает высокой пароотталкивающей способностью в сухих зимних условиях (0.13 химической завивки по сравнению с 0,75 химической завивки MemBrain), в то время как летом она становится паровой при более 13 химической завивке. Эти функции позволяют создавать оба следующих элемента:

  • Узлы с высокой степенью теплоизоляции практически в любом климате, с внешними замедлителями парообразования, такими как обшивка OSB, система Zip, плоские крыши, невентилируемые асфальтовые крыши и т. Д. В некоторых случаях мы проводим дополнительные исследования WUFI, чтобы убедиться, что запасы сушки достаточны и / или когда необходимо убедить инспекторов строительства (поскольку кодекс не учитывает изменчивость паров)
  • Лучшая практика вентилируемых крыш и стен в смешанном и влажном климате, которые не содержат пены и защищены от конденсации летом и зимой.

паропроницаемость | Pro Remodeler

Такие термины, как «пароизоляция» или «замедлитель парообразования» знакомы большинству из нас, даже если мы не совсем понимаем их различия. Они описывают паропроницаемость материала — его способность предотвращать или позволять водяному пару проходить через него. Материалы с высокой паропроницаемостью пропускают много водяного пара; материалы с низкой паропроницаемостью блокируют прохождение некоторых или всего водяного пара через них и называются «пароизоляторами» или «паронепроницаемыми барьерами».

Сколько водяного пара проходит через материал, зависит не только от паропроницаемости этого материала, но также от количества водяного пара (также называемого давлением пара) на каждой стороне материала. Проще говоря, паропроницаемость может быть определена в лаборатории с помощью тестов, в которых известная площадь и толщина материала подвергаются воздействию известного градиента температуры и давления пара или RH (относительной влажности) с обеих сторон. Влага переходит из влажного состояния в сухое, а градиент давления пара описывает, насколько «тянущее» одна сторона стены по сравнению с другой стороной.Чем больше разница в градиенте давления между сторонами, тем сильнее притяжение пара.

Тестирование проницаемости

ASTM E96 («Стандартные методы испытаний материалов на проницаемость водяного пара») описывает два испытания, обычно называемых испытаниями «смачиваемая чашка» и «сухая чашка». В испытании смачиваемой чашкой воздух на одной стороне материала в значительной степени является обычным воздухом (относительная влажность 50% при 25 ° C / 77 ° F), в то время как воздух на другой стороне является насыщенным (относительная влажность 100%). При испытании в сухом тигле с одной стороны также используется обычный воздух (относительная влажность 50% при 25 ° C / 77 ° F), а на другой стороне находится либо осушитель, либо воздух с относительной влажностью 0%.

Результаты этих испытаний в конечном итоге используются в нормах и стандартах. Выбор теста зависит от того, будет ли тестируемый материал использоваться внутри или снаружи здания. Например, во многих климатических условиях материал снаружи здания будет подвергаться более высокой относительной влажности, как и следовало ожидать во время дождя и более тропических климатических условий. В этих случаях испытание смачиваемой чашкой, вероятно, является более подходящим испытанием для строительных материалов, предназначенных для использования на внешней стороне корпуса.Внутри, где воздух более сухой, тест в сухой чашке лучше покажет ожидаемую производительность.

Распространение путаницы

Размышляя о проницаемости, важно помнить, что существует разница между паром, который переносится воздушными потоками посредством инфильтрации или эксфильтрации, и диффузией пара, которая не зависит от движения воздуха. Диффузия пара, описываемая законом идеального газа, — это в основном активность молекул воды в воздухе, сталкивающихся друг с другом и с поверхностями.Степень, в которой диффузия приводит к тому, что молекулы воды проникают внутрь и через поверхности, на которые они воздействуют, зависит от того, насколько проницаемы эти поверхности.

Но распространение обычно является медленным процессом. Для молекулы воды гораздо более быстрый способ проникнуть в стену — это направить воздушный поток в отверстие в стене, например, в пространство вокруг электрической розетки или оконного косяка. Проникновение или эксфильтрация может перемещать на порядки больше водяного пара, чем только диффузия пара. Следовательно, в последнее время акцент на пароизоляции в зданиях с высокими эксплуатационными характеристиками снизился в пользу воздушных барьеров и .Пароизоляция предназначена для остановки диффузии пара, тогда как воздушные барьеры предназначены для предотвращения инфильтрации или эксфильтрации воздуха, как сухого, так и влажного.

Использование паропроницаемости

(Примечание к таблице: в приведенной ниже таблице значений проницаемости для обычных строительных материалов более низкие значения указывают на более низкую проницаемость, чем более высокие значения. При оценке конкретных сборок обратите внимание, что относительная влажность и толщина материала могут влиять на рейтинг проницаемости.)

Важно знать паропроницаемость материалов, используемых в сборке стен, чтобы водяной пар случайно не попал внутрь стены.

Не обращая внимания на то, является ли пароизоляция хорошей идеей, общее практическое правило — размещать пароизоляцию на теплой стороне корпуса. Таким образом, не говоря уже о том, что он вам нужен, если указана пароизоляция, она должна быть на внутренней стороне стены в условиях отопления и на внешней стороне стены в условиях прохладного климата.

В жарком климате влажный внутренний воздух, попадающий в стены или стропильные ниши, может конденсироваться, когда встречается с более холодной поверхностью обшивки.Если эта влага не высыхает относительно легко, это может привести к появлению плесени и гниению деревянных деталей.

Аналогичным образом, в прохладном климате водяной пар во влажном наружном воздухе, который проникает в стену и встречает пароизоляцию, например, виниловые обои, наклеенные на холодную кондиционируемую поверхность гипсокартона, почти наверняка вызовет конденсацию и задержит влагу. между обоями и гипсокартоном, что может привести к образованию черной плесени за обоями. Это общая проблема в жарком и влажном климате, например на юго-востоке США.S., но мы провели исследование, которое показывает конденсацию на внутренней полиэтиленовой пароизоляции даже в климатической зоне 5 с облицовкой, аккумулирующей влагу, такой как непосредственно приклеенный камень.

Корпуса

должны быть спроектированы таким образом, чтобы сохнуть по крайней мере в одном направлении — внутрь или снаружи, в зависимости от того, в какой климатической зоне вы находитесь, и от свойств материалов корпуса. Это подчеркивает важность рассмотрения всей конструкции при проектировании высокоэффективной стены или крыши.Распространение пара через камеру контролируется наименее паропроницаемым материалом. Таким образом, если вы спроектируете паронепроницаемую оболочку, но включите в нее один слой, непроницаемый для пара — пароизоляцию, — это предотвратит попадание всего пара в оболочку или из нее на этом слое. Некоторые ученые называют такой анализ «паровым профилем» конструкции, потому что он описывает, каким образом стена может высохнуть из любого данного слоя. Если он не может высохнуть или высохнуть, это проблема.

Проницаемость варьируется от материалов с высокой проницаемостью (таких как некоторые обертывания, латексная краска, изоляция из минерального или стекловолокна и гипсокартон) до пароизоляционных материалов (таких как крафт-облицовочная бумага на изоляции войлока) до пароизоляционных материалов (таких как полиэтилен толщиной 6 мил и многое другое). отшелушивающие мембраны), которые эффективно блокируют прохождение водяного пара.

Пена для распыления раньше считалась непроницаемой, но сейчас есть много разных формул. Пена с открытыми порами весом в полфунта достаточно паропроницаема и не контролирует движение пара. Даже пена с закрытыми ячейками в некоторой степени проницаема до толщины около 2 дюймов, в этом случае она считается пароизоляцией.

Умная пароизоляция

Существуют также материалы, называемые «интеллектуальными пароизоляциями», у которых проницаемость варьируется в зависимости от относительной влажности окружающей среды.В более сухой среде с низкой относительной влажностью они будут действовать как пароизоляция. Но если относительная влажность увеличивается из-за, например, утечки воды в корпус, тогда паропроницаемость интеллектуальной пароизоляции увеличится и позволит более интенсивно сушить.

Самым распространенным интеллектуальным замедлителем образования пара является крафт-бумага на изоляционном войлоке. Бумага закрывается паром, если полость стены не становится влажной, после чего бумага становится паропроницаемой, что позволяет высохнуть. Существуют также пластиковые пленки, которые ведут себя точно так же, часто с более широким диапазоном паропроницаемости.MemBrain от CertainTeed является одним из примеров в Северной Америке, но есть и другие, многие из которых до сих пор используются только в Европе.

Узнайте больше о строительной науке здесь

Паропроницаемость | DuPont ™ Tyvek®

Высококачественный атмосферный барьер с высокими эксплуатационными характеристиками выполняет четыре важные и важные функции: сопротивление воздуху, водонепроницаемость, долговечность во время строительства и необходимый уровень паропроницаемости.

Паропроницаемость, вероятно, наиболее игнорируется и наименее изучена из четырех.Тем не менее, это может иметь наибольшее влияние на работу стенной системы.

Почему важна паропроницаемость

Во время укладки или после укладки облицовки внутренняя часть стен намокает. А если стенная система не высыхает, она становится уязвимой для влаги и плесени.

Вот почему паропроницаемость или воздухопроницаемость является ключевым преимуществом погодных барьеров DuPont ™ Tyvek®. Тайвек® сочетает в себе правильный баланс воздухо- и водонепроницаемости и паропроницаемости.Таким образом, когда вода все же попадает в стенную систему, Tyvek® WRB спроектирован так, чтобы она могла улетучиваться в виде паров влаги.

Понимание паропроницаемости

Часто называемая воздухопроницаемостью, паропроницаемость описывает способность материала пропускать водяной пар через него. В отличие от объемного удержания воды, которое относится к воде в ее жидкой форме, паропроницаемость касается воды в ее газообразной форме.

Действующие строительные нормы и правила требуют, чтобы минимальная проницаемость составляла около 5 перм.Ученые-строители DuPont считают, что этот порог слишком низок для обеспечения стабильной работы, и рекомендуют атмосферостойкие барьеры с паропроницаемостью от умеренной до высокой, такие как Tyvek® WRB.

Измерение проницаемости

Измерение скорости пропускания паров влаги (MVTR) рассчитывается в соответствии с протоколом испытаний ASTM E96. Этот тест показывает, сколько влаги может пройти через барьер за 24 часа.

Поскольку на это измерение влияет давление пара, необходимо отрегулировать давление пара в образце для определения паропроницаемости (MVP).ASTM E96 используется для присвоения материалам относительной оценки, которая показывает, насколько каждый из них устойчив к пропусканию паров влаги.

Реальная производительность

Летом 2002 года компания DuPont провела полевой эксперимент в Северной Каролине во время самой сильной засухи за последние десятилетия. К одной и той же стеновой конструкции случайным образом были применены две разные обертки здания. Один с паропроницаемостью 58 проницаемостей, другой 6,7 проницаемости.

Стену оклеивали 3-4 недели, и за это время оставили в каркасной стадии строительства.По прошествии 3-4 недель, где бы ни была установлена ​​пленка с низкой паропроницаемостью, можно было четко увидеть накопление влаги и повышенный уровень влажности. Многие области достигли или превысили уровни насыщения для обшивки, и невооруженным глазом было видно нарушение влажности.

Напротив, везде, где была установлена ​​пленка с высокой проницаемостью, было обнаружено, что оболочка оставалась неизменно чистой и сухой, независимо от местоположения или ориентации.

Моделирование влажности

Чтобы лучше понять наблюдения в лаборатории и в полевых условиях, DuPont выполнила моделирование влажности, используя всемирно признанную модель WUFI Pro.DuPont смогла смоделировать полевые условия, чтобы оценить реакцию системы стен на образование конденсата, похожего на росу.

Результаты показали, что во всех климатических условиях значительно более низкое содержание влаги наблюдалось при использовании обертки с паропроницаемостью от умеренной до высокой. Эти результаты являются дополнительным признаком того, что проницаемость от умеренной до высокой позволяет сушить, в то время как низкая проницаемость препятствует сушке и увеличивает вероятность проблем, связанных с влажностью.

Тайвек® уникален

Погодные барьеры DuPont ™ Tyvek® имеют уникальную структуру с миллионами чрезвычайно мелких пор, которые препятствуют проникновению воды и воздуха, но позволяют водяному пару проходить сквозь здание и выходить из него.

На протяжении более 30 лет опыт DuPont в области материаловедения и строительства привносил на строительный рынок такие инновации, как погодные барьеры Tyvek®.

Узнайте больше о тестировании паропроницаемости и производительности Tyvek®.

Бюллетень строительной науки — Правда о паропроницаемости

Паропроницаемость

: 7 минут BS — Строительная наука с битом

Пароизоляция во многих частях Северной Америки приносит гораздо больше вреда, чем пользы. Понимание пароизоляции начинается с понимания того, что значит быть единым целым

В этой серии представлены Джонатан Смегал, М.A. SC, старший менеджер проекта RDH Building Science Laboratories, рассказывает о том, как влага перемещается через материалы и что это значит для стен и крыш.

Что это:

va · por per · me ·nce | ˈVāpər pərmēəns — сущ (существительное)

«Паропроницаемость — это свойство материала — и в наших обсуждениях это будут строительные материалы, — которые позволяют водяному пару проходить через него».

—Джонатан Смегал, RDH Building Science Laboratories

Как работает паропроницаемость

«Некоторые материалы имеют высокую паропроницаемость, что означает, что они пропускают большое количество водяного пара, а другие материалы имеют значительно меньшую паропроницаемость, поэтому они блокируют движение водяного пара, и это называется пароизоляцией или пароизоляторами.«

Термины, с которыми большинство из нас знакомо, даже если не совсем ясно их различия.

«Количество водяного пара, проходящего через материал, зависит от паропроницаемости этого материала и количества водяного пара, также называемого давлением пара, на каждой стороне материала».

Проницаемость зависит не только от самого материала, такого как гипсокартон, но и от того, насколько влажен воздух с каждой стороны стены.

«Проще говоря, паропроницаемость можно определить в лаборатории, подвергнув известную область материала известному градиенту давления пара или известной относительной влажности с обеих сторон.«

Градиент давления пара — это степень «тяги» одной стороны стены по сравнению с другой. Влага переходит от влажного к сухому, и то, насколько велика разница, определяет силу вытягивания.

«Давление пара на каждой стороне исследуемого материала может варьироваться, но чаще всего, или то, что мы называем испытанием в смачиваемой чашке со 100% относительной влажности с одной стороны…»

Насыщенный воздух

«… и 50% относительной влажности с другой стороны».

Достаточно обычный воздух.

«Другой типичный тест называется тестом в сухом тигле. При относительной влажности 0% или влагопоглотителя на одной стороне исследуемого материала и 50% на другой».

Оба этих теста являются частью стандарта ASTM E96, и то, выбираете ли вы тест с мокрым стаканом или тест с сухим стаканом, зависит от того, где материал должен прожить свою жизнь: внутри или снаружи здания.

«Например, снаружи здания во многих климатических условиях оно будет подвергаться более высокой относительной влажности, как и следовало ожидать во время дождя и различных климатических условий.

Таким образом, испытание в смачиваемой чашке, вероятно, является более подходящим испытанием для строительных материалов на внешней стороне корпуса.

Внутри, где воздух более сухой, тест в сухой чашке лучше покажет ожидаемую производительность. Вы не должны проводить эти тесты на месте, у них есть лаборатории, как у Джонатана, для этого. Все эти лабораторные результаты должны быть включены в стандарты и кодексы, но иногда некоторые из кодексов и стандартов немного неясны.

Джонатан сообщил мне, что в строительном кодексе есть некоторые аномалии, которые требуют проведения теста на сухой стакан для внешних материалов, таких как обшивка.Он также отмечает, что воздух очень важен при рассмотрении переноса пара.

Важно помнить, что паропроницаемость и движение пара за счет диффузии через слои ограждения не зависят от движения воздуха ».

Диффузия пара описывается законом идеального газа. По сути, это молекулы воды в воздухе, сталкивающиеся друг с другом и с поверхностями. Успех диффузии пара зависит от того, насколько проницаемо вещество, с которым они сталкиваются.Гораздо более быстрый путь в стену — это направить воздушный поток в дыру.

«Проникновение или эксфильтрация воздуха в камеру может перемещать на несколько порядков больше водяного пара. Так, как если бы водяного пара в сто раз больше, чем только за счет диффузии пара».

Отсюда недавний акцент в строительстве с высокими эксплуатационными характеристиками на воздушные барьеры над пароизоляцией.

«Часто путают воздушные и пароизоляционные заслонки, но это отдельная тема.«

Для другого шоу. Между тем, некоторые примеры материалов с высокой проницаемостью — это домашние покрытия, такие как Tyvek,

.

«Латексная краска довольно хорошо паропроницаема».

Гипсокартон парооткрытый …

«Минеральная изоляция или даже изоляция из стекловолокна пропускают через себя много водяного пара».

Изоляция из аэрозольной пены с открытыми порами …

«Ааааааааа путаница в том, что сейчас много разных пен.Пенопласт с открытыми порами весом в полфунта достаточно паропроницаем и не контролирует движение пара ».

Значит, аэрозольная пена с закрытыми порами является пароизоляцией?

«Двухфунтовая пена для распыления с закрытыми ячейками толщиной около двух дюймов считается пароизоляцией».

Другие пароизоляционные материалы или замедлители образования пара включают полиэтилен толщиной шесть мил, крафт-бумагу, облицованную стекловолоконным войлоком, имеется множество отслаивающих и липких мембран, которые представляют собой полные пароизоляционные материалы.

«Важно знать паропроницаемость материалов в стеновой сборке, чтобы водяной пар случайно не попал в ловушку внутри стенового ограждения.«

Как использовать паропроницаемость в ваших интересах

Игнорирование в течение минуты, хорошая ли идея пароизоляции,

«Общее практическое правило — размещать пароизоляцию в сборке на теплой стороне корпуса».

Итак, я не говорю, что он вам нужен, но если он указан, то он должен быть внутри стены в холодных местах и ​​снаружи стены в жарких местах.

«Если вы поместите пароизоляцию внутри корпуса на гипсокартон в жарком или влажном климате, например, на виниловых обоях, вероятно, что внутри будет скопление влаги, застрявшее между виниловой пленкой. обои и гипсокартон.«

Я видел много черной плесени за обоями в Теннесси, где я переделывал дома.

«Это общая проблема в жарком влажном климате, но мы провели исследование, которое показывает конденсацию на внутренней пароизоляции из полиэтилена, даже в пятой климатической зоне, с облицовкой, аккумулирующей влагу, такой как непосредственно приклеенный камень».

А у нас есть подкаст о облицовках резервуаров, если вам интересно.

«Кожухи должны быть спроектированы таким образом, чтобы сохнуть по крайней мере в одном направлении, будь то изнутри или снаружи, в зависимости от того, в какой климатической зоне вы находитесь, и от свойств материала выбранных материалов кожуха.

Это подчеркивает важность рассмотрения всей сборки при проектировании стены или крыши с высокими эксплуатационными характеристиками.

Важно помнить, что диффузия пара через кожух контролируется наименее паропроницаемым материалом. Таким образом, если вы спроектируете пароизолированный кожух и разместите там один слой, непроницаемый для пара, или пароизоляцию, это предотвратит попадание всего пара внутрь или из кожуха на этом слое ».

Некоторые ученые называют такой анализ паровым профилем конструкции, имея в виду, каким образом стена может высохнуть от любого данного слоя.Если он не может высохнуть или проникнуть откуда-то, это проблема.

«Итак, мы говорили о парооткрытых материалах и пароизоляционных материалах, но есть также категория материалов, которые часто называют интеллектуальными пароизоляционными материалами.

Эти типы материалов имеют разную паропроницаемость при разной относительной влажности окружающей среды, поэтому в более сухой среде с низкой относительной влажностью они будут действовать как пароизоляция.

Но если относительная влажность увеличится, скажем, в результате небольшой утечки воды в ограждение, в окне, тогда паропроницаемость этой интеллектуальной пароизоляции увеличится, позволяя более эффективно осушать воду, которая просачивается в сборка — снижает риск возникновения проблем с влажностью.

Самый распространенный «умный» замедлитель парообразования — это крафт-бумага на основе многих стекловолоконных войлок. Бумага закрывается от пара, если полость стены не становится влажной, после чего бумага становится открытой для пара, что позволяет высохнуть.

На рынке есть и другие продукты, представляющие собой пластиковые пленки, которые будут вести себя так же, а также иметь более широкий диапазон паропроницаемости.

MemBrain, вероятно, самый распространенный в Северной Америке, но существует много других, многие из них все еще находятся только в Европе, но они становятся все более распространенными в Северной Америке.«

Еще одна вещь, которая распространена в Северной Америке?

Разбивка научных принципов на семь минут BS.

Помните, вам платят за то, что вы делаете и что знаете. В сутках всего 24 часа, а информации бесконечно.

Мы хотели бы поблагодарить RDH Building Science за предоставление инженеров для этого дела и за технические исправления в моих текстовых усечениях.

Подписаться: iTunes | Google Play | SoundCloud

—7 минут BS — продукт SGC Horizon Media Network.

.