Нормальная реакция опоры: Сила нормальной реакции опоры. Формулы по физике. Задача с доской, двумя опорами и грузом

Содержание

Сила нормальной реакции опоры. Формулы по физике. Задача с доской, двумя опорами и грузом

Инструкция

Случай 1. Формула для скольжения: Fтр = мN, где м – коэффициент трения скольжения, N – сила реакции опоры, Н. Для тела, скользящего по горизонтальной плоскости, N = G = mg, где G — вес тела, Н; m – масса тела, кг; g – ускорение свободного падения, м/с2. Значения безразмерного коэффициента м для данной пары материалов даны в справочной . Зная массу тела и пару материалов. скользящих друг относительно друга, найдите силу трения.

Случай 2. Рассмотрите тело, скользящее по горизонтальной поверхности и двигающееся равноускоренно. На него действуют четыре силы: сила, приводящее тело в движение, сила тяжести, сила реакции опоры, сила трения скольжения. Так как поверхность горизонтальная, сила реакции опоры и сила тяжести направлены вдоль одной прямой и уравновешивают друг друга. Перемещение описывает уравнение: Fдв — Fтр = ma; где Fдв – модуль силы, приводящей тело в движение, Н; Fтр – модуль силы трения, Н; m – масса тела, кг; a – ускорение, м/с2.

2 = 0,8 м/с2. Теперь найдите силу трения: Fтр = ma = 0,8*1 = 0,8 Н.

Случай 4. На тело, самопроизвольно скользящее по наклонной плоскости, действуют три силы: сила тяжести (G), сила реакции опоры (N) и сила трения (Fтр). Сила тяжести может быть записана в таком виде: G = mg, Н, где m – масса тела, кг; g – ускорение свободного падения, м/с2. Поскольку эти силы направлены не вдоль одной прямой, запишите уравнение движения в векторном виде.

Сложив по правилу параллелограмма силы N и mg, вы получите результирующую силу F’. Из рисунка можно сделать выводы: N = mg*cosα; F’ = mg*sinα. Где α – угол наклона плоскости. Силу трения можно записать формулой: Fтр = м*N = м*mg*cosα. Уравнение для движения принимает вид: F’-Fтр = ma. Или: Fтр = mg*sinα-ma.

Случай 5. Если же к телу приложена дополнительная сила F, направленная вдоль наклонной плоскости, то сила трения будет выражаться: Fтр = mg*sinα+F-ma, если направление движения и силы F совпадают. Или: Fтр = mg*sinα-F-ma, если сила F противодействует движению.

2 = 0,8 м/с2. Вычислите силу трения в первом случае: Fтр = 1*9,8*sin(45о)-1*0,8 = 7,53 Н. Определите силу трения во втором случае: Fтр = 1*9,8*sin(45о)+2-1*0,8= 9,53 Н.

Случай 6. Тело двигается по наклонной поверхности равномерно. Значит, по второму закону Ньютона система находится в равновесии. Если скольжение самопроизвольное, движение тела подчиняется уравнению: mg*sinα = Fтр.

Если же к телу приложена дополнительная сила (F), препятствующая равноускоренному перемещению, выражение для движения имеет вид: mg*sinα–Fтр-F = 0. Отсюда найдите силу трения: Fтр = mg*sinα-F.

Источники:

  • скольжение формула

Коэффициент трения – это совокупность характеристик двух тел, которые соприкасаются друг с другом. Существует несколько видов трения: трение покоя, трение скольжения и трение качения. Трение покоя представляет собой трение тело, которое находилось в покое, и было приведено в движение. Трение скольжения происходит при движении тела, данное трение меньше трения покоя.

А трение качения происходит, когда тело катиться по поверхности. Обозначается трение в зависимости от вида, следующим образом: μск — трение скольжения, μо- трение покоя, μкач – трение качения.

Инструкция

При определении коэффициента трения в ходе эксперимента, тело размещается на плоскости под наклоном и вычисляется угол наклона. При этом учитывать, что при определении коэффициента трения покоя заданное тело двигаться, а при определении коэффициента трения скольжения движется со скоростью, которая постоянна.

Коэффициент трения можно также вычислить в ходе эксперимента. Необходимо поместить объект на наклонную плоскость и вычислить угол наклона. Таким образом, коэффициент трения определяется по формуле: μ=tg(α), где μ — сила трения, α – угол наклона плоскости.

Видео по теме

При относительном движении двух тел между ними возникает трение. Оно также может возникнуть при движении в газообразной или жидкой среде. Трение может как мешать, так и способствовать нормальному движению. В результате этого явления на взаимодействующие тела действует сила трения .

Инструкция

Наиболее общий случай рассматривает силу , когда одно из тел закреплено и покоится, а другое скользит по его поверхности. Со стороны тела, по которому скользит движущееся тело, на последнее действует сила реакции опоры, направленная перпендикулярно плоскости скольжения. Эта сила буквой N.Тело может также и покоится относительно закрепленного тела. Тогда сила трения, действующая на него Fтр

В случае движения тела относительно поверхности закрепленного тела сила трения скольжения становится равна произведения коэффициента трения на силу реакции опоры: Fтр = ?N.

Пусть теперь на тело действует постоянная сила F>Fтр = ?N, параллельная поверхности соприкасающихся тел. При скольжении тела, результирующая составляющая силы в горизонтальном направлении будет равна F-Fтр. Тогда по второму закону Ньютона, ускорение тела будет связано с результирующей силой по формуле: a = (F-Fтр)/m. Отсюда, Fтр = F-ma. Ускорение тела можно найти из кинематических соображений.

Часто рассматриваемый частный случай силы трения проявляется при соскальзывании тела с закрепленной наклонной плоскости. Пусть? — угол наклона плоскости и пусть тело соскальзывает равномерно, то есть без ускорения. Тогда уравнения движения тела будут выглядеть так: N = mg*cos?, mg*sin? = Fтр = ?N. Тогда из первого уравнения движения силу трения можно выразить как Fтр = ?mg*cos?.Если тело движется по наклонной плоскости с ускорением a, то второе уравнение движение будет иметь вид: mg*sin?-Fтр = ma. Тогда Fтр = mg*sin?-ma.

Видео по теме

Если сила, направленная параллельно поверхности, на которой стоит тело, превышает силу трения покоя, то начнется движение. Оно будет продолжаться до тех пор, пока движущая сила будет превышать силу трения скольжения, зависящую от коэффициента трения. Рассчитать этот коэффициент можно самостоятельно.

Вам понадобится

  • Динамометр, весы, транспортир или угломер

Инструкция

Найдите массу тела в килограммах и установите его на ровную поверхность. Присоедините к нему динамометр, и начинайте двигать тело. Делайте это таким образом, чтобы показатели динамометра стабилизировались, поддерживая постоянную скорость . В этом случае сила тяги, измеренная динамометром, будет равна с одной стороны силе тяги, которую показывает динамометр, а с другой стороны силе , умноженной на скольжения.

Сделанные измерения позволят найти данный коэффициент из уравнения. Для этого поделите силу тяги на массу тела и число 9,81 (ускорение свободного падения) μ=F/(m g). Полученный коэффициент будет один и тот же для всех поверхностей такого же типа, как и те на которых производилось измерение. Например, если тело из двигалось по деревянной доске, то этот результат будет справедлив для всех деревянных тел, двигающихся скольжением по дереву, с учетом качества его обработки (если поверхности шершавые, значение коэффициента трения скольжения измениться).

Можно измерить коэффициент трения скольжения и другим способом. Для этого установите тело на плоскости, которая может менять свой угол относительно горизонта.

Это может быть обыкновенная дощечка. Затем начинайте аккуратно поднимать ее за один край. В тот момент, когда тело придет в движение, скатываясь в плоскости как сани с горки, найдите угол ее уклона относительно горизонта. Важно, чтобы тело при этом не двигалось с ускорением. В этом случае, измеренный угол будет предельно малым, при котором тело начнет двигаться под действием силы тяжести. Коэффициент трения скольжения будет равен тангенсу этого угла μ=tg(α).

Сила нормальной реакции — сила, действующая на тело со стороны опоры (или подвеса). При соприкосновении тел вектор силы реакции направлен перпендикулярно поверхности соприкосновения. Для расчёта используется следующая формула:

|\vec N|= mg \cos \theta,

где |\vec N| — модуль вектора силы нормальной реакции, m — масса тела, g — ускорение свободного падения , \theta — угол между плоскостью опоры и горизонтальной плоскостью.

Согласно третьему закону Ньютона , модуль силы нормальной реакции |\vec N| равен модулю веса тела |\vec P|, но их вектора — коллинеарные противоположно направленные:

\vec N= -\vec P.

Из закона Амонтона — Кулона следует, что для модуля вектора силы нормальной реакции справедливо соотношение:

|\vec N|= \frac{|\vec F|}{k},

где \vec F — сила трения скольжения , а k — коэффициент трения.

Поскольку сила трения покоя вычисляется по формуле

|\vec f|= mg \sin \theta,

то мы можем экспериментальным путём найти такое значение угла \theta, при котором сила трения покоя будет равна силе трения скольжения:

mg \sin \theta = k mg \cos \theta.

Отсюда выразим коэффициент трения:

k = \mathrm{tg}\ \theta.

Напишите отзыв о статье «Сила нормальной реакции»

Отрывок, характеризующий Сила нормальной реакции

Все историки согласны в том, что внешняя деятельность государств и народов, в их столкновениях между собой, выражается войнами; что непосредственно, вследствие больших или меньших успехов военных, увеличивается или уменьшается политическая сила государств и народов.
Как ни странны исторические описания того, как какой нибудь король или император, поссорившись с другим императором или королем, собрал войско, сразился с войском врага, одержал победу, убил три, пять, десять тысяч человек и вследствие того покорил государство и целый народ в несколько миллионов; как ни непонятно, почему поражение одной армии, одной сотой всех сил народа, заставило покориться народ, – все факты истории (насколько она нам известна) подтверждают справедливость того, что большие или меньшие успехи войска одного народа против войска другого народа суть причины или, по крайней мере, существенные признаки увеличения или уменьшения силы народов. Войско одержало победу, и тотчас же увеличились права победившего народа в ущерб побежденному. Войско понесло поражение, и тотчас же по степени поражения народ лишается прав, а при совершенном поражении своего войска совершенно покоряется.
Так было (по истории) с древнейших времен и до настоящего времени. Все войны Наполеона служат подтверждением этого правила. По степени поражения австрийских войск – Австрия лишается своих прав, и увеличиваются права и силы Франции. Победа французов под Иеной и Ауерштетом уничтожает самостоятельное существование Пруссии.

Силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести:

Wikimedia Foundation . 2010 .

Смотреть что такое «Сила нормальной реакции опоры» в других словарях:

    Сила трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ … Википедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ ньютон … Википедия

    Закон Амонтона Кулона эмпирический закон, устанавливающий связь между поверхностной силой трения, возникающей при относительном скольжении тела, с силой нормальной реакции, действующей на тело со стороны поверхности. Сила трения,… … Википедия

    Силы трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия

    Трение покоя, трение сцепления сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг… … Википедия

    Сюда перенаправляется запрос «Прямохождение». На эту тему нужна отдельная статья. Ходьба человека наиболее естественная локомоция человека. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности… … Википедия

    Цикл ходьбы: опора на одну ногу двуопорный период опора на другую ногу… Ходьба человека наиболее естественная локомоция человека. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности скелетных … Википедия

    Сила трения при скольжении тела о поверхность не зависит от площади соприкосновения тела с поверхностью, но зависит от силы нормальной реакции этого тела и от состояния окружающей среды. Сила трения скольжения возникает при скольжении данного… … Википедия

    Закон Амонтона Кулона сила трения при скольжении тела о поверхность не зависит от площади соприкосновения тела с поверхностью, но зависит от силы нормальной реакции этого тела и от состояния окружающей среды. Сила трения скольжения возникает при… … Википедия

Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину — уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации — сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела — это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести — сила, которая возникает в результате взаимодействия с Землей. Вес — результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же — сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес — силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес — это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость — состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес — сила, измеряется в Ньютонах. Как верно ответить на вопрос: «Сколько ты весишь»? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка — отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше — тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку — в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее — между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


Положим камень на горизонтальную крышку стола, стоящего на Земле (рис. 104). Поскольку ускорение камня относительно Земли равно пулю, то по второму закону Ньютона сумма действующих на него сил равна нулю. Следовательно, действие на камень силы тяжести m · g должно компенсироваться какими-то другими силами. Ясно, что под действием камня крышка стола деформируется. Поэтому со стороны стола на камень действует сила упругости. Если считать, что камень взаимодействует лишь с Землей и крышкой стола, то сила упругости должна уравновешивать силу тяжести: F упр = -m · g. Эту силу упругости называют силой реакции опоры и обозначают латинской буквой N. Так как ускорение свободного падения направлено вертикально вниз, сила N направлена вертикально вверх – перпендикулярно поверхности крышки стола.

Поскольку крышка стола действует на камень, то по третьему закону Ньютона и камень действует на крышку стола силой P = -N (рис. 105). Эту силу называют весом .

Весом тела называют силу, с которой это тело действует на подвес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Ясно, что в рассмотренном случае вес камня равен силе тяжести: P = m · g. Это будет верно для любого тела, покоящегося на подвесе (опоре) относительно Земли (рис. 106). Очевидно, что в этом случае точка крепления подвеса (или опора) неподвижна относительно Земли.

Для тела, покоящегося на неподвижном относительно Земли подвесе (опоре), вес тела равен силе тяжести.

Вес тела также будет равен действующей на тело силе тяжести в случае, если тело и подвес (опора) движутся относительно Земли равномерно прямолинейно.

Если же тело и подвес (опора) движутся относительно Земли с ускорением так, что тело остается неподвижным относительно подвеса (опоры), то вес тела не будет равен силе тяжести.

Рассмотрим пример. Пусть тело массой m лежит на полу лифта, ускорение a которого направлено вертикально вверх (рис. 107). Будем считать, что на тело действуют только сила тяжести m · g и сила реакции пола N. (Вес тела действует не на тело, а на опору – пол лифта.) В системе отсчета, неподвижной относительно Земли, тело на полу лифта движется вместе с лифтом с ускорением a. В соответствии со вторым законом Ньютона произведение массы тела на ускорение равно сумме всех действующих на тело сил. Поэтому: m · a = N — m · g.

Следовательно, N = m · a + m · g = m · (g + a). Значит, если лифт имеет ускорение, направленное вертикально вверх, то модуль силы N реакции пола будет больше модуля силы тяжести. В самом деле, сила реакции пола должна не только скомпенсировать действие силы тяжести, но и придать телу ускорение в положительном направлении оси X.

Сила N – это сила, с которой пол лифта действует на тело. По третьему закону Ньютона тело действует на пол с силой P, модуль которой равен модулю N, но направлена сила P в противоположную сторону. Эта сила является весом тела в движущемся лифте. Модуль этой силы P = N = m · (g + a). Таким образом, в лифте, движущемся с направленным вверх относительно Земли ускорением, модуль веса тела больше модуля силы тяжести .

Такое явление называют перегрузкой .

Например, пусть ускорение а лифта направлено вертикально вверх и его значение равно g, т. е. a = g. В этом случае модуль веса тела – силы, действующей на пол лифта, – будет равен P = m · (g + a) = m · (g + g) = 2m · g. То есть вес тела при этом будет в два раза больше, чем в лифте, который относительно Земли покоится или движется равномерно прямолинейно.

Для тела на подвесе (или опоре), движущемся с ускорением относительно Земли, направленным вертикально вверх, вес тела больше силы тяжести.

Отношение веса тела в движущемся ускоренно относительно Земли лифте к весу этого же тела в покоящемся или движущемся равномерно прямолинейно лифте называют коэффициентом перегрузки или, более кратко, перегрузкой .

Коэффициент перегрузки (перегрузка) – отношение веса тела при перегрузке к силе тяжести, действующей на тело.

В рассмотренном выше случае перегрузка равна 2. Понятно, что если бы ускорение лифта было направлено вверх и его значение было равно a = 2g, то коэффициент перегрузки был бы равен 3.

Теперь представим себе, что тело массой m лежит на полу лифта, ускорение которого a относительно Земли направлено вертикально вниз (противоположно оси X). Если модуль a ускорения лифта будет меньше модуля ускорения свободного падения, то сила реакции пола лифта по-прежнему будет направлена вверх, в положительном направлении оси X, а ее модуль будет равен N = m · (g — a). Следовательно, модуль веса тела будет равен P = N = m · (g — a), т. е. будет меньше модуля силы тяжести. Таким образом, тело будет давить на пол лифта с силой, модуль которой меньше модуля силы тяжести.

Это ощущение знакомо каждому, кто ездил на скоростном лифте или качался на больших качелях. При движении вниз из верхней точки вы чувствуете, что ваше давление на опору уменьшается. Если же ускорение опоры положительно (лифт и качели начинают подниматься), вас сильнее прижимает к опоре.

Если ускорение лифта относительно Земли будет направлено вниз и равно по модулю ускорению свободного падения (лифт свободно падает), то сила реакции пола станет равной нулю: N = m · (g — a) = m · (g — g) = 0. В этом случае пол лифта перестанет давить на лежащее на нем тело. Следовательно, согласно третьему закону Ньютона и тело не будет давить на пол лифта, совершая вместе с лифтом свободное падение. Вес тела станет равным нулю. Такое состояние называют состоянием невесомости .

Состояние, при котором вес тела равен нулю, называют невесомостью.

Наконец, если ускорение лифта, направленное к Земле, станет больше ускорения свободного падения, тело окажется прижатым к потолку лифта. В этом случае вес тела изменит свое направление. Состояние невесомости исчезнет. В этом можно легко убедиться, если резко дернуть вниз банку с находящимся в ней предметом, закрыв верх банки ладонью, как показано на рис. 108.

Итоги

Весом тела называют силу, с которой это тело действует на поднес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Вес тела в лифте, движущемся с направленным вверх относительно Земли ускорением, по модулю больше модуля силы тяжести. Такое явление называют перегрузкой .

Коэффициент перегрузки (перегрузка) – отношение веса тела, при перегрузке к силе тяжести, действующей на это тело.

Если вес тела равен нулю, то такое состояние называют невесомостью .

Вопросы

  1. Какую силу называют силой реакции опоры? Что называют весом тела?
  2. К чему приложен вес тела?
  3. Приведите примеры, когда вес тела: а) равен силе тяжести; б) равен нулю; в) больше силы тяжести; г) меньше силы тяжести.
  4. Что называют перегрузкой?
  5. Какое состояние называют невесомостью?

Упражнения

  1. Семиклассник Сергей стоит на напольных весах в комнате. Стрелка прибора установилась напротив деления 50 кг. Определите модуль веса Сергея. Ответьте на остальные три вопроса об этой силе.
  2. Найдите перегрузку, испытываемую космонавтом, который находится в ракете, поднимающейся вертикально вверх с ускорением a = Зg.
  3. С какой силой действует космонавт массой m = 100 кг на ракету, указанную в упражнении 2? Как называется эта сила?
  4. Найдите вес космонавта массой m = 100 кг в ракете, которая: а) стоит неподвижно на пусковой установке; б) поднимается с ускорением a = 4g, направленным вертикально вверх.
  5. Определите модули сил, действующих на гирю массой m = 2 кг, которая висит неподвижно На легкой нити, прикрепленной к потолку комнаты. Чему равны модули силы упругости, действующей со стороны нити: а) на гирю; б) на потолок? Чему равен вес гири? Указание: для ответа на поставленные вопросы воспользуйтесь законами Ньютона.
  6. Найдите вес груза массой m = 5 кг, подвешенного на нити к потолку скоростного лифта, если: а) лифт равномерно поднимается; б) лифт равномерно опускается; в) поднимающийся вверх со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с 2 ; г) опускающийся вниз со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с 2 ; д) лифт начал движение вверх с ускорением a = 2 м/с 2 ; е) лифт начал движение вниз с ускорением a = 2 м/с 2 .

Сила реакции опоры формула в лифте. Определение опорных реакций. Отрывок, характеризующий Сила нормальной реакции

Сила реакции опоры относится к силам упругости, и всегда направлена перпендикулярно поверхности. Она противостоит любой силе, которая заставляет тело двигаться перпендикулярно опоре. Для того чтобы рассчитать ее нужно выявить и узнать числовое значение всех сил, которые действуют на тело, стоящее на опоре.

Вам понадобится

  • — весы;
  • — спидометр или радар;
  • — угломер.

Инструкция

  • Определите массу тела с помощью весов или любым другим способом. Если тело находится на горизонтальной поверхности (причем неважно, движется оно или пребывает в состоянии покоя), то сила реакции опоры равна силе тяжести действующей на тело. Для того чтобы рассчитать ее умножьте массу тела на ускорение свободного падения, которое равно 9,81 м/с² N=m g.
  • Когда тело движется по наклонной плоскости, направленной под углом к горизонту, сила реакции опоры находится под углом в силе тяжести. При этом она компенсирует только ту составляющую силы тяжести, которая действует перпендикулярно наклонной плоскости. Для расчета силы реакции опоры, с помощью угломера измерьте угол, под которым плоскость располагается к горизонту. Рассчитайте силу реакции опоры, перемножив массу тела на ускорение свободного падения и косинус угла, под которым плоскость находится к горизонту N=m g Cos(α).
  • В том случае, если тело движется по поверхности, которая представляет собой часть окружности с радиусом R, например, мост, пригорок то сила реакции опоры учитывает силу, действующую по направлению из центра окружности, с ускорением, равным центростремительному, действующую на тело. Чтобы рассчитать силу реакции опоры в верхней точке, от ускорения свободного падения отнимите отношение квадрата скорости к радиусу кривизны траектории.
  • Получившееся число умножьте на массу движущегося тела N=m (g-v²/R). Скорость должна быть измерена в метрах в секунду, а радиус в метрах. При определенной скорости значение ускорения, направленного от центра окружности, может сравняться, и даже превысить ускорение свободного падения, в этот момент сцепление тела с поверхностью пропадет, поэтому, например, автомобилистам, нужно четко контролировать скорость на таких участках дороги.
  • Если же кривизна направлена вниз, и траектория тела вогнутая, то рассчитайте силу реакции опоры, прибавив к ускорению свободного падения отношение квадрата скорости и радиуса кривизны траектории, а получившийся результат умножьте на массу тела N=m (g+v²/R).
  • Если известна сила трения и коэффициент трения, силу реакции опоры рассчитайте, поделив силу трения на этот коэффициент N=Fтр/μ.

Равномерное движение

S = v * t

S – путь, расстояние [м] (метр)

v – скорость [м/с] (метр в секунду)

t – время [ c ] (секунда)

Формула перевода скорости:

х км/ч= font-family:Arial»> м/с

Средняя скорость

v сред = EN-US»>s в – весь путь

t в – всё время

Плотность вещества

ρ= EN-US»>ρ – плотность

m – масса [кг] (килограмм)

V – объем [м3] (метр кубический)

Сила тяжести, вес и сила реакции опоры

Сила тяжести – сила притяжения к Земле. Приложена к телу. Направлена к центру Земли.

Вес – сила, с которой тело давит на опору или растягивает подвес. Приложена к телу. Направлена перпендикулярно опоре и параллельно подвесу вниз.

Сила реакции опоры – сила, с которой опора или подвес сопротивляется давлению или растяжению. Приложена к опоре или подвесу. Направлена перпендикулярно опоре или параллельно подвесу вверх.

F т =m*g; P=m*g*cosα; N=m*g*cosα

F т – сила тяжести [Н] (Ньютон)

P – вес [ Н ]

N – сила реакции опоры [Н]

m – масса [кг] (килограмм)

α – угол между плоскостью горизонта и плоскостью опоры [º,рад] (градус, радиан)

g≈9,8 м / с2

Сила упругости (Закон Гука)

F упр = k * x

F упр — сила упругости [Н] (Ньютон)

k – коэффициент жёсткости [Н/м] (Ньютон на метр)

x – удлинение/сжатие пружины [м] (метр)

Механическая работа

A=F*l*cosα

A – работа [Дж] (Джоуль)

F – сила [Н] (Ньютон)

l – расстояние, на котором действует сила [м] (метр)

α – угол между направлением силы и направлением движения [º,рад] (градус, радиан)

Частные случаи:

1)α=0, т. е. направление действия силы совпадает с направлением движения

A=F*l;

2) α = π /2=90 º, т. е. направление силы перпендикулярно направлению движения

A=0;

3) α = π =180 º, т. е. направление силы противоположно направлению движения

A =- F * l ;

Мощность

N = EN-US»>N – мощность [Вт] (Ватт)

A – работа [Дж] (Джоуль)

t – время [с] (секунда)

Давление в жидкостях и твёрдых телах

P = font-family:Arial»>; P = ρ * g * h

P – давление [Па] (Паскаль)

F – сила давления [Н] (Ньютон)

s – площадь основания [м2] (квадратный метр)

ρ – плотность материала/жидкости [кг/м3] (килограмм на метр кубический)

g – ускорение свободного падения [м/с2] (метр на секунду в квадрате)

h – высота предмета/столба жидкости [м] (метр)

Сила Архимеда

Сила Архимеда – сила, с которой жидкость или газ стремятся вытолкнуть погруженное в них тело.

F Арх = ρ ж * V погр * g

F Арх – сила Архимеда [Н] (Ньютон)

ρ ж – плотность жидкости/газа [кг/м3] (килограмм на метр кубический)

V погр – объем погруженной части тела [м3] (метр кубический)

g – ускорение свободного падения [м/с2] (метр на секунду в квадрате)

Условие плавания тел:

ρ ж ≥ρ т

ρ т – плотность материала тела [кг/м3] (килограмм на метр кубический)

Правило рычага

F 1 * l 1 = F 2 * l 2 (равновесие рычага)

F 1,2 – сила, действующая на рычаг [Н] (Ньютон)

l 1,2 – длина плеча рычага соответствующей силы [м] (метр)

Правило моментов

M = F * l

M – момент силы [Н*м] (Ньютон-метр)

F – сила [Н] (Ньютон)

l – длина (рычага) [м] (метр)

M1=M2 (равновесие)

Сила трения

F тр =µ* N

F тр – сила трения [Н] (Ньютон)

µ — коэффициент трения [ , %]

N – сила реакции опоры [Н] (Ньютон)

Энергия тела

E кин = font-family:Arial»>; E п = m * g * h

E кин – кинетическая энергия [Дж] (Джоуль)

m – масса тела [кг] (килограмм)

v – скорость тела [м/с] (метр в секунду)

Еп – потенциальная энергия [Дж] (Джоуль)

g – ускорение свободного падения [м/с2] (метр на секунду в квадрате)

h – высота над землей [м] (метр)

Закон сохранения энергии: Энергия не исчезает в никуда и не появляется из ниоткуда, она лишь переходит из одних форм в другие.

Статика — один из разделов современной физики, который изучает условия нахождения тел и систем в механическом равновесии. Для решения задач на равновесие важно знать, что такое сила реакции опоры. Данная статья посвящена подробному рассмотрению этого вопроса.

Второй и третий законы Ньютона

Прежде чем рассматривать определение силы реакции опоры, следует вспомнить о том, что вызывает движение тел.

Причиной нарушения механического равновесия является действие на тела внешних или внутренних сил. В результате этого действия тело приобретает определенное ускорение, которое вычисляется с помощью следующего равенства:

Эта запись известна как второй закон Ньютона. Здесь сила F является результирующей всех действующих на тело сил.

Если одно тело воздействует с некоторой силой F 1 ¯ на второе тело, то второе оказывает действие на первое с точно такой же по абсолютной величине силой F 2 ¯, но она направлена в противоположном направлении, чем F 1 ¯. То есть справедливо равенство:

Эта запись является математическим выражением для третьего ньютоновского закона.

При решении задач с использованием этого закона школьники часто допускают ошибку, сравнивая эти силы. Например, лошадь везет телегу, при этом лошадь на телегу и телега на лошадь оказывают одинаковые по модулю силы. Почему же тогда вся система движется? Ответ на этот вопрос можно правильно дать, если вспомнить, что обе названные силы приложены к разным телам, поэтому они друг друга не уравновешивают.

Сила реакции опоры

Сначала дадим физическое определение этой силы, а затем поясним на примере, как она действует. Итак, силой нормальной называется сила, которая действует на тело со стороны поверхности. Например, мы поставили стакан с водой на стол. Чтобы стакан не двигался с ускорением свободного падения вниз, стол воздействует на него с силой, которая уравновешивает силу тяжести. Это и есть реакция опоры. Ее обычно обозначают буквой N.

Сила N — это контактная величина. Если имеется контакт между телами, то она появляется всегда. В примере выше значение величины N равно по модулю весу тела. Тем не менее это равенство является лишь частным случаем. Реакция опоры и вес тела — это совершенно разные силы, имеющие различную природу. Равенство между ними нарушается всегда, когда изменяется угол наклона плоскости, появляются дополнительные действующие силы, или когда система движется ускоренно.

Сила N называется нормальной потому, что она всегда направлена перпендикулярно плоскости поверхности.

Если говорить о третьем законе Ньютона, то в примере выше со стаканом воды на столе вес тела и нормальная сила N не являются действием и противодействием, поскольку обе они приложены к одному телу (стакану с водой).

Физическая причина появления силы N

Как было выяснено выше, сила реакции опоры препятствует проникновению одних твердых тел в другие. Почему появляется эта сила? Причина заключается в деформации. Любые твердые тела под воздействием нагрузки деформируются сначала упруго. Сила упругости стремится восстановить прежнюю форму тела, поэтому она оказывает выталкивающее воздействие, что проявляется в виде реакции опоры.

Если рассматривать вопрос на атомном уровне, то появление величины N — это результат действия принципа Паули. При небольшом сближении атомов их электронные оболочки начинают перекрываться, что приводит к появлению силы отталкивания.

Многим может показаться странным, что стакан с водой способен деформировать стол, но это так. Деформация настолько мала, что невооруженным глазом ее невозможно наблюдать.

Как вычислять силу N?

Сразу следует сказать, что какой-то определенной формулы силы реакции опоры не существует. Тем не менее имеется методика, применяя которую, можно определить N для совершенно любой системы взаимодействующих тел.

Методика определения величины N заключается в следующем:

  • сначала записывают второй закон Ньютона для данной системы, учитывая все действующие в ней силы;
  • находят результирующую проекцию всех сил на направление действия реакции опоры;
  • решение полученного уравнения Ньютона на отмеченное направление приведет к искомому значению N.

При составлении динамического уравнения следует внимательно и правильно расставлять знаки действующих сил.

Найти реакцию опоры можно также, если пользоваться не понятием сил, а понятием их моментов. Привлечение моментов сил справедливо и является удобным для систем, которые имеют точки или оси вращения.

Задача со стаканом на столе

Выше уже был приведен этот пример. Предположим, что пластиковый стакан объемом 250 мл наполнен водой. Его поставили на стол, а сверху на стакан положили книгу массой 300 грамм. Чему равна сила реакции опоры стола?

Запишем динамическое уравнение. Имеем:

Здесь P 1 и P 2 — вес стакана с водой и книги соответственно. Поскольку система находится в равновесии, то a=0. Учитывая, что вес тела равен силе тяжести, а также пренебрегая массой пластикового стакана, получаем:

m 1 *g + m 2 *g — N = 0 =>

N = (m 1 + m 2)*g

Учитывая, что плотность воды равна 1 г/см 3 , и 1 мл равен 1 см 3 , получаем согласно выведенной формуле, что сила N равна 5,4 ньютона.

Задача с доской, двумя опорами и грузом

Доска, массой которой можно пренебречь, лежит на двух твердых опорах. Длина доски равна 2 метра. Чему будет равна сила реакции каждой опоры, если на эту доску посередине положить груз массой 3 кг?

Прежде чем переходить к решению задачи, следует ввести понятие момента силы. В физике этой величине соответствует произведение силы на длину рычага (расстояние от точки приложения силы до оси вращения). Система, имеющая ось вращения, будет находиться в равновесии, если суммарный момент сил равен нулю.

Возвращаясь к нашей задаче, вычислим суммарный относительно одной из опор (правой). Обозначим длину доски буквой L. Тогда момент силы тяжести груза будет равен:

Здесь L/2 — рычаг действия силы тяжести. Знак минус появился потому, что момент M 1 осуществляет вращение против часовой стрелки.

Момент силы реакции опоры будет равен:

Поскольку система находится в равновесии, то сумма моментов должна быть равной нулю. Получаем:

M 1 + M 2 = 0 =>

N*L + (-m*g*L/2) = 0 =>

N = m*g/2 = 3*9,81/2 = 14,7 Н

Заметим, что от длины доски сила N не зависит.

Учитывая симметричность расположения груза на доске относительно опор, сила реакции левой опоры также будет равна 14,7 Н.

Силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести:

Wikimedia Foundation . 2010 .

Смотреть что такое «Сила нормальной реакции опоры» в других словарях:

    Сила трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ … Википедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ ньютон … Википедия

    Закон Амонтона Кулона эмпирический закон, устанавливающий связь между поверхностной силой трения, возникающей при относительном скольжении тела, с силой нормальной реакции, действующей на тело со стороны поверхности. Сила трения,… … Википедия

    Силы трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия

    Трение покоя, трение сцепления сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг… … Википедия

    Сюда перенаправляется запрос «Прямохождение». На эту тему нужна отдельная статья. Ходьба человека наиболее естественная локомоция человека. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности… … Википедия

    Цикл ходьбы: опора на одну ногу двуопорный период опора на другую ногу… Ходьба человека наиболее естественная локомоция человека. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности скелетных … Википедия

    Сила трения при скольжении тела о поверхность не зависит от площади соприкосновения тела с поверхностью, но зависит от силы нормальной реакции этого тела и от состояния окружающей среды. Сила трения скольжения возникает при скольжении данного… … Википедия

    Закон Амонтона Кулона сила трения при скольжении тела о поверхность не зависит от площади соприкосновения тела с поверхностью, но зависит от силы нормальной реакции этого тела и от состояния окружающей среды. Сила трения скольжения возникает при… … Википедия

Тестирование онлайн

Что надо знать о силе

Сила — векторная величина. Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .

Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину — уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации — сила упругости.


Сила упругости направлена противоположно деформации.

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Вес тела — это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести — сила, которая возникает в результате взаимодействия с Землей. Вес — результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же — сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес — силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес — это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость — состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес — сила, измеряется в Ньютонах. Как верно ответить на вопрос: «Сколько ты весишь»? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка — отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше — тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона, сила Ампера, сила Лоренца, подробно рассмотрены в разделе Электричество.

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой. Поэтому на схемах различные точки приложения переносят в одну точку — в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Силы трения*

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее — между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Взаимосвязь силы тяжести, закона гравитации и ускорения свободного падения*

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.

Сила реакции опоры. Вес

Положим камень на горизонтальную крышку стола, стоящего на Земле (рис. 104). Поскольку ускорение камня относительно Земли равно пулю, то по второму закону Ньютона сумма действующих на него сил равна нулю. Следовательно, действие на камень силы тяжести m · g должно компенсироваться какими-то другими силами. Ясно, что под действием камня крышка стола деформируется. Поэтому со стороны стола на камень действует сила упругости. Если считать, что камень взаимодействует лишь с Землей и крышкой стола, то сила упругости должна уравновешивать силу тяжести: F упр = -m · g. Эту силу упругости называют силой реакции опоры и обозначают латинской буквой N. Так как ускорение свободного падения направлено вертикально вниз, сила N направлена вертикально вверх – перпендикулярно поверхности крышки стола.

Поскольку крышка стола действует на камень, то по третьему закону Ньютона и камень действует на крышку стола силой P = -N (рис. 105). Эту силу называют весом .

Весом тела называют силу, с которой это тело действует на подвес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Ясно, что в рассмотренном случае вес камня равен силе тяжести: P = m · g. Это будет верно для любого тела, покоящегося на подвесе (опоре) относительно Земли (рис. 106). Очевидно, что в этом случае точка крепления подвеса (или опора) неподвижна относительно Земли.

Для тела, покоящегося на неподвижном относительно Земли подвесе (опоре), вес тела равен силе тяжести.

Вес тела также будет равен действующей на тело силе тяжести в случае, если тело и подвес (опора) движутся относительно Земли равномерно прямолинейно.

Если же тело и подвес (опора) движутся относительно Земли с ускорением так, что тело остается неподвижным относительно подвеса (опоры), то вес тела не будет равен силе тяжести.

Рассмотрим пример. Пусть тело массой m лежит на полу лифта, ускорение a которого направлено вертикально вверх (рис. 107). Будем считать, что на тело действуют только сила тяжести m · g и сила реакции пола N. (Вес тела действует не на тело, а на опору – пол лифта.) В системе отсчета, неподвижной относительно Земли, тело на полу лифта движется вместе с лифтом с ускорением a. В соответствии со вторым законом Ньютона произведение массы тела на ускорение равно сумме всех действующих на тело сил. Поэтому: m · a = N — m · g.

Следовательно, N = m · a + m · g = m · (g + a). Значит, если лифт имеет ускорение, направленное вертикально вверх, то модуль силы N реакции пола будет больше модуля силы тяжести. В самом деле, сила реакции пола должна не только скомпенсировать действие силы тяжести, но и придать телу ускорение в положительном направлении оси X.

Сила N – это сила, с которой пол лифта действует на тело. По третьему закону Ньютона тело действует на пол с силой P, модуль которой равен модулю N, но направлена сила P в противоположную сторону. Эта сила является весом тела в движущемся лифте. Модуль этой силы P = N = m · (g + a). Таким образом, в лифте, движущемся с направленным вверх относительно Земли ускорением, модуль веса тела больше модуля силы тяжести .

Такое явление называют перегрузкой .

Например, пусть ускорение а лифта направлено вертикально вверх и его значение равно g, т. е. a = g. В этом случае модуль веса тела – силы, действующей на пол лифта, – будет равен P = m · (g + a) = m · (g + g) = 2m · g. То есть вес тела при этом будет в два раза больше, чем в лифте, который относительно Земли покоится или движется равномерно прямолинейно.

Для тела на подвесе (или опоре), движущемся с ускорением относительно Земли, направленным вертикально вверх, вес тела больше силы тяжести.

Отношение веса тела в движущемся ускоренно относительно Земли лифте к весу этого же тела в покоящемся или движущемся равномерно прямолинейно лифте называют коэффициентом перегрузки или, более кратко, перегрузкой .

Коэффициент перегрузки (перегрузка) – отношение веса тела при перегрузке к силе тяжести, действующей на тело.

В рассмотренном выше случае перегрузка равна 2. Понятно, что если бы ускорение лифта было направлено вверх и его значение было равно a = 2g, то коэффициент перегрузки был бы равен 3.

Теперь представим себе, что тело массой m лежит на полу лифта, ускорение которого a относительно Земли направлено вертикально вниз (противоположно оси X). Если модуль a ускорения лифта будет меньше модуля ускорения свободного падения, то сила реакции пола лифта по-прежнему будет направлена вверх, в положительном направлении оси X, а ее модуль будет равен N = m · (g — a). Следовательно, модуль веса тела будет равен P = N = m · (g — a), т. е. будет меньше модуля силы тяжести. Таким образом, тело будет давить на пол лифта с силой, модуль которой меньше модуля силы тяжести.

Это ощущение знакомо каждому, кто ездил на скоростном лифте или качался на больших качелях. При движении вниз из верхней точки вы чувствуете, что ваше давление на опору уменьшается. Если же ускорение опоры положительно (лифт и качели начинают подниматься), вас сильнее прижимает к опоре.

Если ускорение лифта относительно Земли будет направлено вниз и равно по модулю ускорению свободного падения (лифт свободно падает), то сила реакции пола станет равной нулю: N = m · (g — a) = m · (g — g) = 0. В этом случае пол лифта перестанет давить на лежащее на нем тело. Следовательно, согласно третьему закону Ньютона и тело не будет давить на пол лифта, совершая вместе с лифтом свободное падение. Вес тела станет равным нулю. Такое состояние называют состоянием невесомости .

Состояние, при котором вес тела равен нулю, называют невесомостью.

Наконец, если ускорение лифта, направленное к Земле, станет больше ускорения свободного падения, тело окажется прижатым к потолку лифта. В этом случае вес тела изменит свое направление. Состояние невесомости исчезнет. В этом можно легко убедиться, если резко дернуть вниз банку с находящимся в ней предметом, закрыв верх банки ладонью, как показано на рис. 108.

Итоги

Весом тела называют силу, с которой это тело действует на поднес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Вес тела в лифте, движущемся с направленным вверх относительно Земли ускорением, по модулю больше модуля силы тяжести. Такое явление называют перегрузкой .

Коэффициент перегрузки (перегрузка) – отношение веса тела, при перегрузке к силе тяжести, действующей на это тело.

Если вес тела равен нулю, то такое состояние называют невесомостью .

Вопросы

  1. Какую силу называют силой реакции опоры? Что называют весом тела?
  2. К чему приложен вес тела?
  3. Приведите примеры, когда вес тела: а) равен силе тяжести; б) равен нулю; в) больше силы тяжести; г) меньше силы тяжести.
  4. Что называют перегрузкой?
  5. Какое состояние называют невесомостью?
  6. Упражнения

  7. Семиклассник Сергей стоит на напольных весах в комнате. Стрелка прибора установилась напротив деления 50 кг. Определите модуль веса Сергея. Ответьте на остальные три вопроса об этой силе.
  8. Найдите перегрузку, испытываемую космонавтом, который находится в ракете, поднимающейся вертикально вверх с ускорением a = Зg.
  9. С какой силой действует космонавт массой m = 100 кг на ракету, указанную в упражнении 2? Как называется эта сила?
  10. Найдите вес космонавта массой m = 100 кг в ракете, которая: а) стоит неподвижно на пусковой установке; б) поднимается с ускорением a = 4g, направленным вертикально вверх.
  11. Определите модули сил, действующих на гирю массой m = 2 кг, которая висит неподвижно На легкой нити, прикрепленной к потолку комнаты. Чему равны модули силы упругости, действующей со стороны нити: а) на гирю; б) на потолок? Чему равен вес гири? Указание: для ответа на поставленные вопросы воспользуйтесь законами Ньютона.
  12. Найдите вес груза массой m = 5 кг, подвешенного на нити к потолку скоростного лифта, если: а) лифт равномерно поднимается; б) лифт равномерно опускается; в) поднимающийся вверх со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с 2 ; г) опускающийся вниз со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с 2 ; д) лифт начал движение вверх с ускорением a = 2 м/с 2 ; е) лифт начал движение вниз с ускорением a = 2 м/с 2 .

ЗАКОНЫ НЬЮТОНА ВИДЫ СИЛ. Виды сил Сила упругости Сила трения Сила тяжести Сила Архимеда Сила натяжения нити Сила реакции опоры Вес тела Сила всемирного. — презентация

Презентация на тему: » ЗАКОНЫ НЬЮТОНА ВИДЫ СИЛ. Виды сил Сила упругости Сила трения Сила тяжести Сила Архимеда Сила натяжения нити Сила реакции опоры Вес тела Сила всемирного.» — Транскрипт:

1 ЗАКОНЫ НЬЮТОНА ВИДЫ СИЛ

2 Виды сил Сила упругости Сила трения Сила тяжести Сила Архимеда Сила натяжения нити Сила реакции опоры Вес тела Сила всемирного тяготения

3 Законы Ньютона. 1 ЗаконЗакон2 ЗаконЗакон3 Закон

4 1 закон Ньютона. Существуют системы отсчёта, называемые инерциальными, относительно которых свободные тела движутся равномерно и прямолинейно. Законы

5 2 закон Ньютона. Произведение массы тела на его ускорение равно сумме действующих на тело сил. Законы

6 3 закон Ньютона. Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны Законы

7 СССС ииии лллл аааа в в в в сссс ееее мммм ииии рррр нннн оооо гггг оооо тттт яяяя гггг оооо тттт ееее нннн ииии яяяя. G – гравитационная постоянная. m – масса тела r – расстояние между центрами тел.

8 СССС ииии лллл аааа в в в в сссс ееее мммм ииии рррр нннн оооо гггг оооо т т т т яяяя гггг оооо тттт ееее нннн ииии яяяя – – – – пппп рррр ииии тттт яяяя жжжж ееее нннн ииии ееее т т т т ееее лллл д д д д рррр уууу гггг к к к к д д д д рррр уууу гггг уууу. НННН аааа пппп рррр аааа вввв лллл ееее нннн аааа п п п п оооо п п п п рррр яяяя мммм оооо йййй. сссс оооо ееее дддд ииии нннн яяяя юююю щщщщ ееее йййй ц ц ц ц ееее нннн тттт рррр ыыыы т т т т ееее лллл.

9 СССС ииии лллл аааа н н н н аааа тттт яяяя жжжж ееее нннн ииии яяяя н н н н ииии тттт ииии T-действие подвеса на тело направлено вдоль нити

10 N NN Сила реакции опоры – (N) – действие опоры на тело, направлено перпендикулярно опоры. Сила реакции опоры

11 Сила трения Сила трения Это действие поверхности на движущиеся или пытающиеся сдвинуться тело, направлено против движения или возможного движения. Если тело не двигается то сила трения равна приложенной силе. Если тело двигается или только начинает движение, то сила трения находится по формуле: — коэффициэнт трения N — сила реакции опоры Сила трения

12 Сила упругости Сила упругости Сила упругости- это действие упруго- деформированного тела. Направлена против деформации.

13 Действие тела на опору или подвес ВЕС |P|=|N| |P|=|T|

14 Сила Архимеда Сила Архимеда-это сила с которой жидкость действует на погруженное в неё тело. СИЛА АРХИМЕДА

15 СИЛА ТЯЖЕСТИ Сила тяжести- это сила с которой земля действует на тело, направлена к центру земли.

Сила реакции опоры закон

Рис. 7. Силы натяжения

Если реакция опоры становится равной нулю, говорят, что тело находится в состоянии невесомости . В состоянии невесомости тело движется только под действием силы тяжести.

1.2.3. Инертность и инерция. Инерциальные системы отсчета.

Первый закон Ньютона

Опыт показывает, что любое тело противится попыткам изменить его состояние вне зависимости от того, движется оно или покоится. Это свойство тел называется инертностью . Понятие инертности нельзя путать с инерцией тел. Инерция тел проявляется в том, что в отсутствие внешних воздействий тела находятся в состоянии покоя или прямолинейного и равномерного движения до тех пор, пока какое – либо внешнее воздействие не изменит этого состояния. Инерция, в отличие от инертности, не имеет количественной характеристики.

Задачи динамики решаются с помощью трех основных законов, получивших название законов Ньютона. Законы Ньютона выполняются в инерциальных системах отсчета. Инерциальные системы отсчета (ИСО) — это системы отсчета, в которых тела, не подверженные воздействию других тел, движутся без ускорения, то есть прямолинейно и равномерно, или покоятся.

Первый закон Ньютона (закон инерции): существуют такие системы отсчета (так называемые, инерциальные системы), для которых любая материальная точка в отсутствие внешних воздействий движется равномерно и прямолинейно или находится в состоянии покоя. Согласно принципу относительности Галилея все механические явления в различных инерциальных системах отсчета протекают одинаково и никакими механическими опытами невозможно установить, покоится данная система отсчета или движется прямолинейно и равномерно.

1.2.4. Второй закон Ньютона. Импульс тела и импульс силы.

Закон сохранения импульса. Третий закон Ньютона

Второй закон Ньютона: ускорение, приобретаемое материальной точкой под действием одной или нескольких сил, прямо пропорционально действующей силе (или равнодействующей всех сил), обратно пропорционально массе материальной точки и по направлению совпадает с направлением действующей силы (или равнодействующей):

. (8)

Второй закон Ньютона имеет еще одну форму записи. Введем понятие импульса тела.

Импульс тела (или просто, импульс) – мера механического движения, определяемая произведением массы тела
на его скорость , т.е.,
. Запишем второй закон Ньютона — основное уравнение динамики поступательного движения:

Заменим сумму сил на ее равнодействующую
и запись второго закона Ньютона принимает следующий вид:

, (9)

а сам второй закон Ньютона закон может быть сформулирован еще и так: скорость изменения импульса определяет действующую на тело силу .

Преобразуем последнюю формулу:
. Величина
получила названиеимпульса силы. Импульс силы
определяется изменением импульса тела
.

Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной).

Закон сохранения импульса : импульс замкнутой системы тел есть величина постоянная.

Третий закон Ньютона: силы, возникающие при взаимодействии тел, равны по величине, противоположны по направлению и приложены к разным телам (рис. 8):

. (10)

Рис. 8. Третий закон Ньютона

Из 3-го закона Ньютона следует, что при взаимодействии тел силы возникают парами. В полную систему законов динамики кроме законов Ньютона необходимо включить принцип независимости действия сил: действие какой-либо силы не зависит от присутствия или отсутствия других сил; совместное действие нескольких сил равно сумме независимых действий отдельных сил.

Сила нормальной реакции опоры

Силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести:

Wikimedia Foundation . 2010 .

Смотреть что такое «Сила нормальной реакции опоры» в других словарях:

Сила трения скольжения — Сила трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия

Сила (физическая величина) — Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ … Википедия

Сила — Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ ньютон … Википедия

Закон Амонтона — Закон Амонтона Кулона эмпирический закон, устанавливающий связь между поверхностной силой трения, возникающей при относительном скольжении тела, с силой нормальной реакции, действующей на тело со стороны поверхности. Сила трения,… … Википедия

Закон трения — Силы трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия

Трение покоя — Трение покоя, трение сцепления сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг… … Википедия

Ходьба человека — Сюда перенаправляется запрос «Прямохождение». На эту тему нужна отдельная статья. Ходьба человека наиболее естественная локомоция человека. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности… … Википедия

Прямохождение — Цикл ходьбы: опора на одну ногу двуопорный период опора на другую ногу. Ходьба человека наиболее естественная локомоция человека. Автоматизированный двигательный акт, осуществляющийся в результате сложной координированной деятельности скелетных … Википедия

Закон Амонтона — Кулона — сила трения при скольжении тела о поверхность не зависит от площади соприкосновения тела с поверхностью, но зависит от силы нормальной реакции этого тела и от состояния окружающей среды. Сила трения скольжения возникает при скольжении данного… … Википедия

Закон Кулона (механика) — Закон Амонтона Кулона сила трения при скольжении тела о поверхность не зависит от площади соприкосновения тела с поверхностью, но зависит от силы нормальной реакции этого тела и от состояния окружающей среды. Сила трения скольжения возникает при… … Википедия

Сила реакции опоры. Вес | Физика

Положим камень на горизонтальную крышку стола, стоящего на Земле (рис. 104). Поскольку ускорение камня относительно Земли равно пулю, то по второму закону Ньютона сумма действующих на него сил равна нулю. Следовательно, действие на камень силы тяжести m · g должно компенсироваться какими-то другими силами. Ясно, что под действием камня крышка стола деформируется. Поэтому со стороны стола на камень действует сила упругости. Если считать, что камень взаимодействует лишь с Землей и крышкой стола, то сила упругости должна уравновешивать силу тяжести: Fупр = -m · g. Эту силу упругости называют силой реакции опоры и обозначают латинской буквой N. Так как ускорение свободного падения направлено вертикально вниз, сила N направлена вертикально вверх – перпендикулярно поверхности крышки стола.

Поскольку крышка стола действует на камень, то по третьему закону Ньютона и камень действует на крышку стола силой P = -N (рис. 105). Эту силу называют весом.

Весом тела называют силу, с которой это тело действует на подвес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Ясно, что в рассмотренном случае вес камня равен силе тяжести: P = m · g. Это будет верно для любого тела, покоящегося на подвесе (опоре) относительно Земли (рис. 106). Очевидно, что в этом случае точка крепления подвеса (или опора) неподвижна относительно Земли.

Для тела, покоящегося на неподвижном относительно Земли подвесе (опоре), вес тела равен силе тяжести.

Вес тела также будет равен действующей на тело силе тяжести в случае, если тело и подвес (опора) движутся относительно Земли равномерно прямолинейно.

Если же тело и подвес (опора) движутся относительно Земли с ускорением так, что тело остается неподвижным относительно подвеса (опоры), то вес тела не будет равен силе тяжести.

Рассмотрим пример. Пусть тело массой m лежит на полу лифта, ускорение a которого направлено вертикально вверх (рис. 107). Будем считать, что на тело действуют только сила тяжести m · g и сила реакции пола N. (Вес тела действует не на тело, а на опору – пол лифта.) В системе отсчета, неподвижной относительно Земли, тело на полу лифта движется вместе с лифтом с ускорением a. В соответствии со вторым законом Ньютона произведение массы тела на ускорение равно сумме всех действующих на тело сил. Поэтому: m · a = N — m · g.

Следовательно, N = m · a + m · g = m · (g + a). Значит, если лифт имеет ускорение, направленное вертикально вверх, то модуль силы N реакции пола будет больше модуля силы тяжести. В самом деле, сила реакции пола должна не только скомпенсировать действие силы тяжести, но и придать телу ускорение в положительном направлении оси X.

Сила N – это сила, с которой пол лифта действует на тело. По третьему закону Ньютона тело действует на пол с силой P, модуль которой равен модулю N, но направлена сила P в противоположную сторону. Эта сила является весом тела в движущемся лифте. Модуль этой силы P = N = m · (g + a). Таким образом, в лифте, движущемся с направленным вверх относительно Земли ускорением, модуль веса тела больше модуля силы тяжести.

Такое явление называют перегрузкой.

Например, пусть ускорение а лифта направлено вертикально вверх и его значение равно g, т. е. a = g. В этом случае модуль веса тела – силы, действующей на пол лифта, – будет равен P = m · (g + a) = m · (g + g) = 2m · g. То есть вес тела при этом будет в два раза больше, чем в лифте, который относительно Земли покоится или движется равномерно прямолинейно.

Для тела на подвесе (или опоре), движущемся с ускорением относительно Земли, направленным вертикально вверх, вес тела больше силы тяжести.

Отношение веса тела в движущемся ускоренно относительно Земли лифте к весу этого же тела в покоящемся или движущемся равномерно прямолинейно лифте называют коэффициентом перегрузки или, более кратко, перегрузкой.

Коэффициент перегрузки (перегрузка) – отношение веса тела при перегрузке к силе тяжести, действующей на тело.

В рассмотренном выше случае перегрузка равна 2. Понятно, что если бы ускорение лифта было направлено вверх и его значение было равно a = 2g, то коэффициент перегрузки был бы равен 3.

Теперь представим себе, что тело массой m лежит на полу лифта, ускорение которого a относительно Земли направлено вертикально вниз (противоположно оси X). Если модуль a ускорения лифта будет меньше модуля ускорения свободного падения, то сила реакции пола лифта по-прежнему будет направлена вверх, в положительном направлении оси X, а ее модуль будет равен N = m · (g — a). Следовательно, модуль веса тела будет равен P = N = m · (g — a), т. е. будет меньше модуля силы тяжести. Таким образом, тело будет давить на пол лифта с силой, модуль которой меньше модуля силы тяжести.

Это ощущение знакомо каждому, кто ездил на скоростном лифте или качался на больших качелях. При движении вниз из верхней точки вы чувствуете, что ваше давление на опору уменьшается. Если же ускорение опоры положительно (лифт и качели начинают подниматься), вас сильнее прижимает к опоре.

Если ускорение лифта относительно Земли будет направлено вниз и равно по модулю ускорению свободного падения (лифт свободно падает), то сила реакции пола станет равной нулю: N = m · (g — a) = m · (g — g) = 0. В этом случае пол лифта перестанет давить на лежащее на нем тело. Следовательно, согласно третьему закону Ньютона и тело не будет давить на пол лифта, совершая вместе с лифтом свободное падение. Вес тела станет равным нулю. Такое состояние называют состоянием невесомости.

Состояние, при котором вес тела равен нулю, называют невесомостью.

Наконец, если ускорение лифта, направленное к Земле, станет больше ускорения свободного падения, тело окажется прижатым к потолку лифта. В этом случае вес тела изменит свое направление. Состояние невесомости исчезнет. В этом можно легко убедиться, если резко дернуть вниз банку с находящимся в ней предметом, закрыв верх банки ладонью, как показано на рис. 108.

Итоги

Весом тела называют силу, с которой это тело действует на поднес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Вес тела в лифте, движущемся с направленным вверх относительно Земли ускорением, по модулю больше модуля силы тяжести. Такое явление называют перегрузкой.

Коэффициент перегрузки (перегрузка) – отношение веса тела, при перегрузке к силе тяжести, действующей на это тело.

Если вес тела равен нулю, то такое состояние называют невесомостью.

Вопросы

  1. Какую силу называют силой реакции опоры? Что называют весом тела?
  2. К чему приложен вес тела?
  3. Приведите примеры, когда вес тела: а) равен силе тяжести; б) равен нулю; в) больше силы тяжести; г) меньше силы тяжести.
  4. Что называют перегрузкой?
  5. Какое состояние называют невесомостью?

Упражнения

  1. Семиклассник Сергей стоит на напольных весах в комнате. Стрелка прибора установилась напротив деления 50 кг. Определите модуль веса Сергея. Ответьте на остальные три вопроса об этой силе.
  2. Найдите перегрузку, испытываемую космонавтом, который находится в ракете, поднимающейся вертикально вверх с ускорением a = Зg.
  3. С какой силой действует космонавт массой m = 100 кг на ракету, указанную в упражнении 2? Как называется эта сила?
  4. Найдите вес космонавта массой m = 100 кг в ракете, которая: а) стоит неподвижно на пусковой установке; б) поднимается с ускорением a = 4g, направленным вертикально вверх.
  5. Определите модули сил, действующих на гирю массой m = 2 кг, которая висит неподвижно На легкой нити, прикрепленной к потолку комнаты. Чему равны модули силы упругости, действующей со стороны нити: а) на гирю; б) на потолок? Чему равен вес гири? Указание: для ответа на поставленные вопросы воспользуйтесь законами Ньютона.
  6. Найдите вес груза массой m = 5 кг, подвешенного на нити к потолку скоростного лифта, если: а) лифт равномерно поднимается; б) лифт равномерно опускается; в) поднимающийся вверх со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с2; г) опускающийся вниз со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с2; д) лифт начал движение вверх с ускорением a = 2 м/с2; е) лифт начал движение вниз с ускорением a = 2 м/с2.

Сила реакция опоры — куда она направлена и как ее вычилить

Сила реакции опоры — это сила, с которой опора действует на тело. Она направлена перпендикулярно поверхности, поэтому такую силу называют силой нормальной реакции. Обозначают ее символом N и измеряют в Ньютонах.

Тело находится на выпуклой или вогнутой поверхности

Рассмотрим рисунок 1. Тело находится на опоре и давит на нее своим весом. Опора реагирует на воздействие тела и отвечает ему силой \(\vec{N}\). Эта сила направлена перпендикулярно поверхности, вдоль вектора нормали, поэтому ее называют нормальной силой.

Примечания:

  • Нормаль – значит, перпендикуляр.
  • Искривленную, т.е., выпуклую, или вогнутую поверхность, можно считать частью сферы. Центр сферы – точка, она находится внутри сферы, от этой точки к поверхности сферы можно провести радиус.

\(\vec{N} \left( H \right) \) – сила, с которой опора действует на тело.

Рис. 1. Тело (шар) опирается на выпуклую – а) и вогнутую – б) поверхность. А поверхность реагирует на вес тела силой нормальной реакции

Когда тело находится на выпуклой поверхности (рис. 1а), реакция направлена вдоль радиуса от центра сферы наружу, за ее пределы.

Если же тело находится на вогнутой части (рис. 1б) поверхности, реакция \(\vec{N}\) направлена по радиусу внутрь сферической поверхности к ее центру.

Тело опирается на поверхность в двух точках

На рисунках 2а и 2б изображено продолговатое тело (к примеру, стержень), опирающееся на поверхности двумя своими точками.

Рис. 2. Однородный стержень опирается на поверхность двумя точками, в каждой из точек сила реакции располагается перпендикулярно поверхности

В точках соприкосновения поверхность отвечает телу силой \(\vec{N}\) своей реакции. Видно, что в каждая сила реакции направлена перпендикулярно поверхности.

Cилы реакции \(\vec{N_{1}}\) и \(\vec{N_{2}}\)  имеют различные направления и в общем случае не равны по модулю.

\[\large \vec{N_{1}} \ne \vec{N_{2}}\]

Примечание: Сила — это вектор. Между векторами можно ставить знак равенства, только, когда совпадают характеристики векторов.

Как рассчитать силу нормальной реакции

Пусть тело давит на опору своим весом. В местах соприкосновения тела с опорой наблюдается упругая деформация. При этом опора стремится избавиться от возникшей деформации и вернуться в первоначальное состояние. Силы, с которыми опора упруго сопротивляется воздействию тела, имеют электромагнитную природу. Когда сближаются электронные оболочки атомов тела и опоры, между ними возникает сила отталкивания. Она и является силой реакции опоры на воздействие тела.

Примечание: Сила реакции \(\vec{N}\) распределяется по всей площади соприкосновения тела и опоры. Но для удобства ее обычно считают сосредоточенной силой. Ее изображают на границах соприкасающихся поверхностей исходящей из точки, расположенной под центром масс тела.

Для того, чтобы рассчитать силу реакции, нужно понимать законы Ньютона, уметь составлять силовые уравнения и знать, что такое равнодействующая.

На рисунке 3 изображены тела, находящиеся на горизонтальной – а) и наклонной – б) поверхностях.

Рис. 3. Тело опирается на поверхность горизонтальную – а) и наклонную – б), составляя силовые уравнения для сил, расположенных перпендикулярно соприкасающимся поверхностям, рассчитывают силу реакции опоры

Рассмотрим подробнее рисунок 3а. Тело на горизонтальной поверхности находится в покое. Значит, выполняются условия равновесия тела.

По третьему закону Ньютона, сила, с которой тело действует на опору, равна по модулю весу тела и направлена противоположно весу.

\[\large \boxed{ N = m \cdot g }\]

\(m \vec{g} \left( H \right) \) – сила, с которой тело действует на опору;

\(\vec{N} \left( H \right) \) – сила, с которой опора отвечает телу;

Рисунок 3б иллюстрирует тело на наклонной поверхности. Перпендикулярно соприкасающимся поверхностям проведена ось Oy. Проекция силы \(m \vec{g}\) на ось — это \(mg_{y}\), она будет направлена противоположно реакции опоры \(\vec{N}\) и численно равна ей.

Примечание: Выражение «численно равна» нужно понимать, как «длины векторов равны».

\[\large \boxed{ N = m \cdot g \cdot cos(\alpha) }\]

\(\alpha  \left(\text{рад} \right) \) – угол между силой \(mg\) и осью Oy.

Итоги

  1. Сила, с которой опора сопротивляется воздействию тела, называется силой реакции опоры, она имеет электромагнитную природу.
  2. Ее, как и любую силу, измеряют в Ньютонах, обозначают так: \(\vec{N}\).
  3. Реакция опоры направлена перпендикулярно поверхности, поэтому ее называют силой нормальной реакции.
  4. Сила \(\vec{N}\) распределена по площади соприкосновения, но для удобства ее обычно считают сосредоточенной силой. Ее изображают исходящей из точки, расположенной под центром масс тела на границах между поверхностями тела и опоры.
  5. Чтобы рассчитать силу реакции, нужно знать законы Ньютона, уметь составлять силовые уравнения и понимать, что такое равнодействующая.

3.4. Реакции опоры

Реакции опоры — это мера противодействия опоры при давлении на нее со стороны покоящегося или движущегося при контакте с ней тела. Реакция опоры равна по величине силе, с которой те­ло действует на опору, направлена в противоположную этой силе сторону и приложена к телу в той точке, через которую проходит линия силы, действующей на опору.

Нормальная (или идеальная) реакция опоры при действии веса тела на горизонтальную поверхность направлена вертикально вверх. Во всех случаях она перпендикулярна плоскости, касательной той поверхности, которая служит опорой в точке приложения силы.

Человек может оказывать действие на опору не только по нормали к ней, но и под острым углом. Тогда направление полной реак­ции опоры не совпадает с нормалью. Горизонтальная составляющая полной реакции опоры называется силой трения, если поверхности, соприкасающиеся при опоре, ровные (без выступов).

Рис. 32. Силы опорной реакции:

1, 6 — статические; 2, 4 — уменьшенные; 3, 5 — увеличенные (ориг.)

Человек, находящийся на опоре (нижней или верхней), действует на нее статическим весом. В этом случае реакция опоры ста­тическая и равна весу тела (рис. 32). При движении с ускорением частей тела человека, опирающегося на опору, возникает сила инер­ции тела человека, которая геометрически суммируется с его весом. Увеличенную или уменьшенную опорную реакцию обычно называют динамической. Но правильнее говорить здесь о добавлении к статической еще и динамической составляющей опорной реакции, вызванной теми усилиями, которые определяют ускорение тела.

Линия действия силы опорной реакции при неподвижном положе­нии тела на опоре или же под опорой проходит через ОЦТ тела чело­века. Однако при движениях человека линия действия как нормаль­ной, так и полной опорной реакции (равнодействующая нормаль­ной реакции и силы трения по всем направлениям) почти никогда не проходит через ОЦТ.

Для анализа действия сил на наклонной плоскости опорная реак­ция может быть разложена на нормальную составляющую (перпендику­лярную плоскости) и касательную составляющую (параллельную пло­скости). Первая противодействует нормальной составляющей силы тяжести, вторая (сила трения) — силе, вызывающей скольжение тела.

3.5. Силы трения

Сила трения — это мера противодействия движению, направлен­ному по касательной к поверхности прикасающегося тела. Вели­чина силы трения (как составляющей реакции поверхности связи) зависит от воздействия движущегося или смещаемого тела; она направлена против скорости или смещающей силы и приложе­на в месте соприкосновения.

Силы трения (касательные реакции) возникают между соприкасаю­щимися телами во время их движения друг относительно друга (рис. 33)

Рис. 33. Силы трения (Т):

a-скольжения динамическая; б — скольжения статическая; в — момент трения качения (ориг.)

Различают три вида трения: трение скольжения, качения и верчения. При скольжении движущееся тело соприкасается с неподвижным одной и той же частью своей поверхности (лыжа скользит по снегу). При качении точки движущегося тела соприкасаются с дру­гим телом поочередно (колесо велосипеда катится по треку). Верчение характеризуется движением на месте вокруг оси (волчок).

Сила трения скольжения динамическая (движения) проявляется при движении тела, приложена к скользящему телу и направлена в сторону, противоположную относительной скорости его движе­ния. Динамическая сила трения скольжения не зависит от вели­чины движущей силы и приближенно пропорциональна динами­ческому коэффициенту трения скольжения (kдин) и силе нормаль­ного давления на опору (N): Tдин=kдинN

Когда поверхности полностью разделены слоем смазки, то прояв­ляется жидкостное трение1 Оно существует между слоями жидкости, а также между жидкостью и твердым телом. В противопо­ложность сухому трению (между твердыми телами без смазки), жид­костное трение проявляется только тогда, когда есть скорость. С остановкой движущих­ся тел жидкостное трение исчезает, поэтому даже самая малая сила может сообщить скорость слоям жидкой среды, на­пример при движении твердого тела в воде.

Иная картина при сухом трении. Если приложить движущую силу к покоящемуся телу, то она сможет сдвинуть тело с места лишь тогда, когда станет больше силы трения покоя, препятствующей движению. Таким образом, сухое трение и жидкостное прин­ципиально различны.

Сила трения скольжения статическая (покоя) проявляется в по­кое, приложена к сдвигаемому телу, направлена в сторону, про­тивоположную сдвигающей силе. Статическая сила трения сколь­жения равна сдвигающей силе, но не может быть больше предель­ной2; последняя пропорциональна статическому коэффициенту трения скольжения (kст) и силе нормального давления (N): Тст=kстN

Стало быть, статическая сила трения покоя мо­жет иметь величину от нулевой до предель­ной (неполная и полная). Минимальная сдвигающая сила, приводя­щая тело в движение, больше предельной силы трения покоя.

Отношение между величиной нормальной опорной реакции (равной силе нормального давления) и предельной силой трения покоя равно тангенсу угла (а), который называется углом трения (или углом сцеп­ления) (см. рис. 33, б).

Тангенс угла сцепления равен коэффициен­ту трения покоя. Фактический угол силы давления на опору в покое не может быть больше, чем угол трения. Это значит, что, пока линия действия силы, приложенной к телу, проходит внутри угла тре­ния, тело не может быть сдвинуто с места. Лишь когда линия действия силы окажется за пределами угла трения, тело будет сдвинуто.

На горизонтальной поверхности сила нормального давления обыч­но представлена статическим или динамическим весом (человек непод­вижен или отталкивается от опоры). Но могут быть и другие источники нормального давления, например при давлении, оказываемом ногами и спиной альпиниста на стенки камина (вертикальной расщелины в скалах),

Сила — нормальная реакция — Большая Энциклопедия Нефти и Газа, статья, страница 1

Сила — нормальная реакция

Cтраница 1

Сила нормальной реакции N численно равна силе тяжести mg тела и направлена по радиусу в сторону от центра С планеты.  [1]

Определить силу нормальной реакции шарнира, если известно, что масса стержня 2 кг.  [2]

Определить силу нормальной реакции шарнира, если известно, что масса стержня 2 кг.  [3]

Сила тяжести, сила нормальной реакции и сила трения приложены в разных точках и могут вызвать вращение велосипедиста относительно центра тяжести.  [4]

В момент отрыва сила нормальной реакции опоры равна нулю.  [5]

Единственная точка, где сила нормальной реакции может стать равной нулю, — это наивысшая точка траектории. Если в этой точке сила N станет равна нулю, в следующий момент она станет отлична от нуля, так как всякое тело стремится сохранить состояние прямолинейного движения, и, следовательно, летчика прижмет к креслу.  [6]

При уменьшении угла увеличивается сила нормальной реакции, возрастает сила трения, следовательно, при а о цилиндр будет в состоянии покоя.  [7]

Это уравнение основное для определения силы нормальной реакции.  [8]

Из уравнения (2.79) следует, что сила нормальной реакции зависит от а0, что ясно и иэ физических соображений. При увеличении а0 сила нормальной реакции убывает.  [9]

На стержень действуют те же силы, но сила нормальной реакции станет равной Ni — Сила трения FTpl препятствует движению тележки.  [10]

В свою очередь, согласно второму закону Ньютона сила нормальной реакции горизонтальной подставки равна по модулю и противоположна по направлению силе тяжести, так как под действием этих сил тело покоится или движется прямолинейно и равномерно.  [11]

Силы трения в кинематических парах механизмов значительно меньше сил нормальных реакций.  [12]

Искомое давление автомобиля на дно оврага направлено противоположно силе нормальной реакции и равно ей по модулю.  [13]

Искомое давление ковочной машины на фундамент направлено противоположно силе нормальной реакции К. Груз В лежит на горизонтальной плоскости.  [14]

Эта сила, направленная перпендикулярно вектору v, изменяет силу нормальной реакции стержня, но вследствие отсутствия трения никак не влияет на характер относительного движения муфты. Легко видеть, что сила Кориолиса изменяет только режим работы двигателя: чем дальше уйдут муфты от оси вращения, тем больше тормозящий момент сил Кориолиса и тем большую мощность должен развивать двигатель, чтобы поддерживать постоянной угловую скорость вращения. Таким образом, движение муфты вдоль стержня происходит под действием только центробежной силы инерции, следовательно, скорость v этого движения может быть найдена либо с помощью второго закона Ньютона, либо из соотношения между изменением кинетической энергии и работой, которую совершает при радиальном движении каждой муфты центробежная сила инерции.  [15]

Страницы:      1    2    3    4

Как определить силу реакции опоры

Статика – один из разделов современной физики, который изучает условия нахождения тел и систем в механическом равновесии. Для решения задач на равновесие важно знать, что такое сила реакции опоры. Данная статья посвящена подробному рассмотрению этого вопроса.

Второй и третий законы Ньютона

Прежде чем рассматривать определение силы реакции опоры, следует вспомнить о том, что вызывает движение тел.

Причиной нарушения механического равновесия является действие на тела внешних или внутренних сил. В результате этого действия тело приобретает определенное ускорение, которое вычисляется с помощью следующего равенства:

Эта запись известна как второй закон Ньютона. Здесь сила F является результирующей всех действующих на тело сил.

Если одно тело воздействует с некоторой силой F1¯ на второе тело, то второе оказывает действие на первое с точно такой же по абсолютной величине силой F2¯, но она направлена в противоположном направлении, чем F1¯. То есть справедливо равенство:

Эта запись является математическим выражением для третьего ньютоновского закона.

При решении задач с использованием этого закона школьники часто допускают ошибку, сравнивая эти силы. Например, лошадь везет телегу, при этом лошадь на телегу и телега на лошадь оказывают одинаковые по модулю силы. Почему же тогда вся система движется? Ответ на этот вопрос можно правильно дать, если вспомнить, что обе названные силы приложены к разным телам, поэтому они друг друга не уравновешивают.

Сила реакции опоры

Сначала дадим физическое определение этой силы, а затем поясним на примере, как она действует. Итак, силой нормальной реакции опоры называется сила, которая действует на тело со стороны поверхности. Например, мы поставили стакан с водой на стол. Чтобы стакан не двигался с ускорением свободного падения вниз, стол воздействует на него с силой, которая уравновешивает силу тяжести. Это и есть реакция опоры. Ее обычно обозначают буквой N.

Сила N – это контактная величина. Если имеется контакт между телами, то она появляется всегда. В примере выше значение величины N равно по модулю весу тела. Тем не менее это равенство является лишь частным случаем. Реакция опоры и вес тела – это совершенно разные силы, имеющие различную природу. Равенство между ними нарушается всегда, когда изменяется угол наклона плоскости, появляются дополнительные действующие силы, или когда система движется ускоренно.

Сила N называется нормальной потому, что она всегда направлена перпендикулярно плоскости поверхности.

Если говорить о третьем законе Ньютона, то в примере выше со стаканом воды на столе вес тела и нормальная сила N не являются действием и противодействием, поскольку обе они приложены к одному телу (стакану с водой).

Физическая причина появления силы N

Как было выяснено выше, сила реакции опоры препятствует проникновению одних твердых тел в другие. Почему появляется эта сила? Причина заключается в деформации. Любые твердые тела под воздействием нагрузки деформируются сначала упруго. Сила упругости стремится восстановить прежнюю форму тела, поэтому она оказывает выталкивающее воздействие, что проявляется в виде реакции опоры.

Если рассматривать вопрос на атомном уровне, то появление величины N – это результат действия принципа Паули. При небольшом сближении атомов их электронные оболочки начинают перекрываться, что приводит к появлению силы отталкивания.

Многим может показаться странным, что стакан с водой способен деформировать стол, но это так. Деформация настолько мала, что невооруженным глазом ее невозможно наблюдать.

Как вычислять силу N?

Сразу следует сказать, что какой-то определенной формулы силы реакции опоры не существует. Тем не менее имеется методика, применяя которую, можно определить N для совершенно любой системы взаимодействующих тел.

Методика определения величины N заключается в следующем:

  • сначала записывают второй закон Ньютона для данной системы, учитывая все действующие в ней силы;
  • находят результирующую проекцию всех сил на направление действия реакции опоры;
  • решение полученного уравнения Ньютона на отмеченное направление приведет к искомому значению N.

При составлении динамического уравнения следует внимательно и правильно расставлять знаки действующих сил.

Найти реакцию опоры можно также, если пользоваться не понятием сил, а понятием их моментов. Привлечение моментов сил справедливо и является удобным для систем, которые имеют точки или оси вращения.

Далее приведем два примера решения задач, в которых покажем, как пользоваться вторым ньютоновским законом и понятием момента силы для нахождения величины N.

Задача со стаканом на столе

Выше уже был приведен этот пример. Предположим, что пластиковый стакан объемом 250 мл наполнен водой. Его поставили на стол, а сверху на стакан положили книгу массой 300 грамм. Чему равна сила реакции опоры стола?

Запишем динамическое уравнение. Имеем:

Здесь P1 и P2 – вес стакана с водой и книги соответственно. Поскольку система находится в равновесии, то a=0. Учитывая, что вес тела равен силе тяжести, а также пренебрегая массой пластикового стакана, получаем:

Учитывая, что плотность воды равна 1 г/см 3 , и 1 мл равен 1 см 3 , получаем согласно выведенной формуле, что сила N равна 5,4 ньютона.

Задача с доской, двумя опорами и грузом

Доска, массой которой можно пренебречь, лежит на двух твердых опорах. Длина доски равна 2 метра. Чему будет равна сила реакции каждой опоры, если на эту доску посередине положить груз массой 3 кг?

Прежде чем переходить к решению задачи, следует ввести понятие момента силы. В физике этой величине соответствует произведение силы на длину рычага (расстояние от точки приложения силы до оси вращения). Система, имеющая ось вращения, будет находиться в равновесии, если суммарный момент сил равен нулю.

Возвращаясь к нашей задаче, вычислим суммарный момент сил относительно одной из опор (правой). Обозначим длину доски буквой L. Тогда момент силы тяжести груза будет равен:

Здесь L/2 – рычаг действия силы тяжести. Знак минус появился потому, что момент M1 осуществляет вращение против часовой стрелки.

Момент силы реакции опоры будет равен:

Поскольку система находится в равновесии, то сумма моментов должна быть равной нулю. Получаем:

Заметим, что от длины доски сила N не зависит.

Учитывая симметричность расположения груза на доске относительно опор, сила реакции левой опоры также будет равна 14,7 Н.

Тестирование онлайн

Что надо знать о силе

Сила – векторная величина. Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину – уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации – сила упругости.

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Вес тела

Вес тела – это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести – сила, которая возникает в результате взаимодействия с Землей. Вес – результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же – сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес – силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес – это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью. Невесомость – состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес – сила, измеряется в Ньютонах. Как верно ответить на вопрос: «Сколько ты весишь»? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка – отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше – тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона, сила Ампера, сила Лоренца, подробно рассмотрены в разделе Электричество.

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой. Поэтому на схемах различные точки приложения переносят в одну точку – в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Силы трения*

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее – между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Взаимосвязь силы тяжести, закона гравитации и ускорения свободного падения*

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.

Расчет реакций относится к разделу физики с названием «Статика», которая рассматривает структуру и системы, находящиеся в покое.

Силой реакции опоры называется усилие противодействия опоры действующему на нее объекту, при этом она равна по модулю и противоположна по направлению усилию, с которым объект действует на опору, согласно третьему закону Ньютона.

Система между некоторой структурой и опорой, которая препятствует линейному или угловому перемещению этой структуры, называется системой опоры. Существует несколько типов опор:

  • Шарнир (валик) — опора первого порядка, ограничивающая смещение в пространстве в одном измерении и обладающее реакцией опоры перпендикулярной основанию.
  • Плоская опора — опора второго порядка, которая ограничивает перемещение в пространстве в двух измерениях (горизонтальном и вертикальном) и разрешает только движение вращения структуры.

Расчет равновесных систем связан с вычислением результирующего динамического момента. В ньютоновской (классической) механике момент силы определяется как векторное произведение усилия, действующего на опору, на вектор, образованный между точкой опоры и точкой приложения этого усилия. Момент силы также называют динамическим моментом или просто моментом.

Далее в статье приводится пример расчета реакции для наиболее распространенной задачи: балки с двумя опорами.

Решение задачи о реакции опоры балки

Как было сказано выше, балка с двумя опорами является типичной и наиболее простой задачей статики. Задача состоит в расчете реакций в точках А и В ввиду действующих на балку усилий.

Знание этих величин необходимо для правильного понимания диаграмм моментов и диаграмм сил данной системы, и является важной частью статики в школьных и университетских курсах. Существует компьютерная программа SkyCiv, которая предоставляет мощный инструмент по расчету таких реакций для различных равновесных систем.

Возвращаясь к поставленной выше задаче, напомним, что основным ее условием является статическое состояние, то есть отсутствие каких-либо линейных перемещений и вращений объектов. В простой физике последний факт означает, что сумма векторов всех усилий равна нулю (то есть сумма усилий, направленных вверх, равна таковым, направленным вниз). Вторым условием равновесия системы является равенство нулю динамических моментов, приложенных относительно определенной точки опоры.

Чтобы определить реакции подпорок балки, следуйте нижеизложенным двум способам решения задачи:

  • используя равенство нулю суммы динамических моментов;
  • используя равенство нулю суммы действующих усилий.

Первый способ: через моменты

Для начала нужно положить, что сумма всех моментов относительно точки реакции равна нулю, то есть ΣMi = 0, где Мi – момент усилия. Расчет таких моментов для нашей задачи очень прост, и состоит в перемножении действующих усилий на расстояния от точки их приложения до точки реакции.

Будем считать, что наша балка имеет длину 4 метра и расположена на двух подпорках А и В. Посредине балки вертикально вниз действует усилие в 20 кН, и нужно рассчитать реакции каждой подпорки, то есть Ay и By . Описанная задача представлена на рисунке.

Например, рассчитаем сумму всех динамических моментов относительно точки реакции В, учитывая ее равенство нулю в равновесии. Выбор точки В, относительно которой будет проводиться расчет, является произвольным, точно так же можно выбрать точку А. Таким образом, просуммируем все динамические моменты относительно точки В, полагая эту сумму равной нулю:

ΣMв = 0 = 20*2 – A y * 4 ==> A y = 10 кН.

Отметим, что в формуле выше мы выбрали положительное направление для моментов, действующих против часовой стрелки, и отрицательное направление для моментов, действующих по часовой стрелке. Такой выбор знаков моментом является наиболее общим, однако, вы можете выбрать и наоборот. Необходимо помнить, что всегда нужно использовать одно и то же соглашение на знак моментов, начиная сначала и следуя ему на протяжении всего решения конкретной задачи.

Таким образом, мы получили нашу первую формулу, из которой определили силу реакции опоры в точке А. Аналогичная формула запишется для определения реакции в точке В. В нашем случае, ввиду симметричности действующего вертикально вниз усилия в 20 кН относительно точек подпорок, реакция в точке В будет равна таковой в точке А, то есть 10 кН.

Второй способ: через силы

Для существования равновесия сумма всех вертикальных сил должна быть равна нулю, то есть ΣF y = 0, где индекс Y определяет конкретную вертикальную силу в системе. Помните, что в данном случае мы должны включать в расчет все действующие в системе силы. Принимая во внимание последний факт, проводим суммирование всех вертикальных сил, в итоге получаем следующую формулу:

ΣF y = 0 = A y + В y – 20 кН, откуда 0 = 10 кН + В y – 20 кН, и В y = 10 кН.

Так же, как и в случае моментов сил, силы являются векторными величинами и имеют знак, здесь мы приняли за положительные силы те, которые действуют вверх, и за отрицательные те, которые действуют вниз. Выбор знака остается за вами, однако, напоминаем, что этот выбор не должен изменяться в процессе решения задачи. Отметим, что в формуле выше мы использовали результат, полученный в предыдущем пункте, когда вычислили силу реакции Ay.

Таким образом, мы решили, поставленную в начале этого параграфа задачу о расчете сил реакций опоры балки, используя при этом две системы уравнений, уравнения момента силы и уравнения силы, и получили ответы: силы реакции в точках А и В равны между собой и составляют 10 кН. Напоминаем, что физический смысл полученного равенства заключается в том, что действующая на балку внешняя сила приложена точно посередине балки. В случае ее приложения в другой точке, приведенные формулы также будут действительны и процесс расчета остается тем же самым.

Видео

Эта видеоподборка поможет вам лучше разобраться в теме и закрепить полученные знания.

Поддерживая тело — Физика тела: движение к метаболизму

Когда вы стоите на земле, сила тяжести тянет вас вниз, но вы не падаете. Фактически вы находитесь в статическом равновесии, поэтому земля должна обеспечивать опорную силу, уравновешивающую ваш вес. Земля обеспечивает эту силу в ответ на сжатие, вызванное вашим весом. Когда твердые объекты отталкиваются от сил, которые их деформируют, мы называем это ответным отталкиванием Нормальной силой.

Усиление деятельности

Вдавите палец в ладонь и почувствуйте сопротивление ладони.

Это сопротивление — нормальная сила.

Когда вы убираете палец с ладони, нормальная сила ладони уходит.

Пример на каждый день

На схеме ниже мы видим человека, кладущего пакет с кормом для собак на стол. Когда пакет с собачьим кормом кладется на стол, и человек отпускает его, как стол проявляет силу, необходимую для уравновешивания веса пакета? Хотя невооруженным глазом это не заметно, стол немного прогибается под нагрузкой (весом сумки).Это было бы заметно, если бы груз был помещен на тонкий фанерный стол, но даже прочный дубовый стол деформируется при приложении к нему силы. Это сопротивление деформации вызывает возвращающую силу, очень похожую на деформированную пружину (батут или трамплин). Когда груз помещается на стол, он прогибается до тех пор, пока восстанавливающая сила не станет равной весу груза, уравновешивая его. Стол быстро прогибается, прогиб небольшой, поэтому мы этого не замечаем, но это похоже на провисание батута или гамака, когда вы забираетесь на него.

Человек, держащий мешок с собачьим кормом, должен прикладывать восходящую силу, равную по размеру и противоположную по направлению силе тяжести на корм. Карточный стол провисает, когда на него кладут собачий корм, как на жестком батуте. Упругие восстанавливающие силы в столе растут по мере того, как он прогибается, пока они не создают нормальную силу, равную по размеру весу груза. Изображение предоставлено: Университетская физика

Если вы кладете объект на стол, нормальная сила стола поддерживает его вес.По этой причине нормальную силу иногда называют опорной силой. Однако нормальный — это другое слово для обозначения перпендикуляра, поэтому мы будем придерживаться нормальной силы, потому что это напоминает нам о важном факте, что нормальная сила всегда действует под углом 90 ° к поверхности. Это не означает, что нормальная сила всегда направлена ​​вертикально и не всегда равна весу объекта. Если вы надавите на стену горизонтально, она оттолкнется (удерживая руку от движения сквозь стену). Сила от стены — это нормальная сила, но она действует горизонтально и не равна вашему весу.

Ситуации, когда нормальная сила не равна весу объекта. Адаптировано из книг Гарскона Планчера »Обиванчо и« Поход на ледник Вьедма »Лиама Куинна« США. Главный Мастер ВВС сержант. Сьюзан Сангстер », выпущенный вооруженными силами США с идентификационным номером 0-F-3140L-048.

В каждой ситуации, изображенной выше, нормальная сила не равна массе тела. На левом изображении нормальная сила меньше веса тела и действует горизонтально. На среднем изображении нормальная сила меньше веса тела и действует под углом.На правом изображении нормальная сила, действующая на сверло, превышает его собственный вес, потому что Master Sgt. Сангстер тоже нажимает на дрель. Обычная сила на Master Sgt. Стопы Сангстер меньше ее веса, потому что она также получает направленную вверх нормальную силу от рукоятки дрели.

Часто ( N ) используется как символ нормальной силы, но мы используем N для сокращения единицы силы СИ в Ньютонах, поэтому вместо этого мы будем использовать. Нормальная сила возникает так часто, что ученики часто случайно начинают вместо этого называть нормальную силу «естественной силой», поэтому остерегайтесь этого возможного источника путаницы.

Упражнения с подкреплением: нормальная сила

Механика

Ньютона — В чем разница между нормальной силой и силой реакции?

ньютоновская механика — В чем разница между нормальной силой и силой реакции? — Обмен физическими стеками
Сеть обмена стеков

Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Physics Stack Exchange — это сайт вопросов и ответов для активных исследователей, ученых и студентов-физиков.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 497 раз

$ \ begingroup $

Узнав о силах и трении на данный момент, я не могу понять одну вещь: в чем разница между нормальной силой и силой реакции? Они оба действуют перпендикулярно поверхности и вдали от нее, но в чем разница между этими двумя силами? К сожалению, я попытался найти это в Интернете, но безрезультатно.

Qmechanic ♦

149k2828 золотых знаков355355 серебряных знаков17611761 бронзовый знак

Создан 14 окт.

$ \ endgroup $ $ \ begingroup $

Сила реакции относится к ее физическому содержанию — реакции на действие объекта. Нормальная сила относится к ее направлению — она ​​перпендикулярна поверхности. Многие силы могут быть нормальными силами и / или силами реакции, но не обязательно и тем, и другим. В элементарной физике, однако, часто используется термин нормальная сила в отношении силы, создаваемой опорой на объект. В этом случае это и нормальная (в общем смысле, описанном выше), и сила реакции.