Экспертиза уплотнения и водонасыщения асфальтового покрытия в Туле
Бесплатная консультация
Экспертиза в «Центре Строительного Контроля» позволяет сделать выводы о качестве дорог на разных этапах строительства. Уплотнение и толщина всех слоев основания (песка, щебня или грунта) проверяются в стационарной лаборатории – для этого специалисты берут керны из асфальтобетонного покрытия. В ходе осмотра можно обнаружить все видимые дефекты. Для проверки ровности мы используем трехметровую дорожную рейку. Образцы на исследование берутся в трех разных местах и доставляются в лабораторию прямо с объекта.
Согласно требованиям, СНиП «Организация строительства», паспорт на асфальтобетонную смесь – основная сопроводительная документация, передаваемая продавцом. В ней указывают информацию о заводе-производителе, температуре асфальта, а также характеристики: вид, тип, марку. Изучив документы, специалисты приступают к исследованию.
Экспертиза качества уплотнения
Водонасыщение – основной показатель, по которому определяют качество уплотнения. Для этого используют керны готового покрытия и переформованные образцы. Если полученные показатели соответствуют требованиям, дорога может приниматься в эксплуатацию.
Определение водонасыщения
Для выводов о качестве асфальтобетона необходимо определить его способность к заполнению всей структуры – трещин и пор – влагой. Чем выше водонасыщение, тем хуже показатели уплотнения. Специалисты применяют стандартную методику, которая соответствует ГОСТу 9128-2013, п. 4.1.10. Показатели для фрагмента из покрытия не должны превышать значения, указанные в стандарте.
К причинам повышенного водонасыщения асфальтобетона относят:
- нарушение температурного режима при уплотнении;
- недостаточное количество проходов катком;
- укладку в дождливую погоду или при отрицательных температурах;
- применение дорожно-строительной техники, не отвечающей требованиям ГОСТа.
При высоких показателях асфальтобетонное покрытие быстро разрушается, так как снижается его морозостойкость. При минусовых температурах вода, попавшая в поры асфальта, замерзает и увеличивается в объеме. Повышается давление, которое чаще всего приводит к разрывам структуры асфальтобетона. Через несколько циклов замерзания полотно разрушается, а к весне приходит в негодность.
Рассчитать стоимость
Принимаю условия на соглашение и обработку персональных данных
Использование переформованных материалов
Такие образцы создают в условиях стационарной лаборатории. Керны разогревают до состояния смеси, потом помещают в форму и под прессом получают необходимый для исследований материал высокой плотности.
После приготовления переформованные образцы испытывают по тому же принципу, что и дорожные керны, затем показатели сравнивают. Если водонасыщение при изменении формы превышает норму, асфальтобетонная смесь считается не соответствующей ГОСТу.
Наименование | Ед. работ. | ГОСТ |
Отбор проб | 1 объект | ГОСТ 9128-2013 |
Изготовление образцов | 1 партия | ГОСТ 9128-2013 |
Средняя плотность | 1 проба | ГОСТ 9128-2013 |
Водонасыщение | 1 проба | ГОСТ 9128-2013 |
Набухание | 1 проба | ГОСТ 9128-2013 |
Предел прочности при сжатии | 1 проба | ГОСТ 9128-2013 |
Коэффициент уплотнения | 1 проба | ГОСТ 9128-2013 |
Определение коэффициента уплотнения материалов
«Центр Строительного Контроля» определяет среднюю плотность кернов готового покрытия и переформованных образцов. Коэффициент уплотнения – отношение средней плотности материала из асфальтобетона к средней плотности переформованной заготовки. Чем ниже этот показатель, тем выше водонасыщение. Если они соответствуют норме, можно сделать выводы о соблюдении технологии укладки асфальтового дорожного покрытия.
Определение коэффициента водостойкости асфальтобетона по ГОСТ 12801—84
Водонасыщение асфальтобетона — это способность его к насыщению, заполнению всей своей структуры: пор и трещин влагой. Из этого следует, что повышенное водонасыщение асфальтобетона характеризует его пористость и (или) недостаточное уплотнение.
Показатели вотонасыщения определяют по стандартной методике в соответствии с ГОСТ. В условиях стационарной лаборатории образцы (керны) асфальта в заданном режиме насыщаются водой. Сущность этих испытаний заключается в определении количества воды, которую поглотят испытываемые образцы асфальтобетона.
Почему повышенное водонасыщение недопустимо? И регламентировано требованиями ГОСТ 9128-2013 п. 4.1.10
Дело в том, что асфальт при не нормативном (повышенном) водонасыщении уложенный летом, ни как себя внешне в отрицательную сторону не проявляет. Только специалисты могут после визуального осмотра дать предварительную оценку технического состояния покрытия. К примеру на фотографии слева — нормативное состояние, а справа асфальтобетон с незакрытыми порами. В том числе видно, что щебень из покрытия в скором времени будет выкрашиваться.
Такой дефект снижает морозостойкость асфальтобетона и проблемы начнутся при наступлении морозов в осенний, зимний и весенний период. При отрицательной температуре вода, попавшая в поры асфальта, замерзает, расширяется, увеличивается в объеме. Это закон физики. Опыт со стеклянной бутылкой заполненной водой выставленной на мороз, которая в итоге лопается, тому подтверждение. Так же и структура асфальтобетона рвется от давления воды, замерзшей в его порах. В результате, проходя несколько циклов замерзания, асфальтобетонное покрытие разрушается с прогрессией. К весне дорожное покрытие приходит в негодность.
Причины повышенного водонасыщения асфальтобетона
1. Нарушение технологии устройства дорожного покрытия: несоблюдение температурного режима асфальтобетонной смеси при уплотнении, укладка ее в дождливую погоду или при минусовой температуре, малое количество проходов вальцами катка, дорожно-строительная техника не соответствует требованиям.
2. Некачественная сама асфальтобетонная смесь, зерновой состав которой (рецепт приготовления) не соответствует требованиям ГОСТ. (Примечание: если водонасыщение в переформованных образцах нормативное, то асфальтобетонная смесь соответствует ГОСТ)
Пример лабораторных испытаний асфальтобетона
Сейчас мы попробуем объяснить результаты лаборатории, выполнив анализ показателей указанных в протоколе. См. Протокол.
Из протокола испытаний видно, что в 1, 3 и 6 кернах из покрытия повышенное водонасыщение, а в переформованных образцах все в норме, значит асфальтобетонная смесь соответствует ГОСТ, а выполненные работы по уплотнению асфальта на участках дороги, где отбирались 1, 3 и 6 керны не соответствуют нормативным требованиям. Обратите внимание, что и коэффициент уплотнения в тех же образцах не соответствует норме. Для полного понимания вышеизложенного следует знать, что такое переформованные образцы, но это уже другая тема.
Определение коэффициента уплотнения асфальта
Коэффициент уплотнения асфальтобетонного покрытия один из важных показателей качества выполняемых работ по асфальтированию. Для мелкозернистой смеси его величина не должна быть меньше, установленной ГОСТом, 0,99. По сути, коэффициент определяется отношением плотности переформованного образца асфальта к плотности его самого. Для испытания на уплотнение, отбирается проба материала с готового участка, по истечению трех суток с момента укладки. Обустройство дорог, площадей, парковок и дворовых территорий asfaltirovanie.ru
Способ определения
Выпиливаются шесть образцов с одного места с помощью обыкновенной бензопилы с диском, по бетону. Образцы тщательно очищаются металлической щеткой от пыли и грязи. Определяются их геометрические параметры и вес, с целью определения плотности каждого образца. Погрешность между шестью показателями должна быть минимальна.
Следующим шагом приступают к формованию новых образцов из отобранных с асфальтобетонного покрытия, но только уже в лабораторных условиях и согласно нормативным требованиям. Образцы разогреваются в печи при температуре от 140 до 160 градусов по Цельсию. Одновременно, подготавливают формы, которые представляют собой полые металлические цилиндры. Их также, перед формованием необходимо разогреть и смазать внутреннюю часть специальным раствором, дабы избежать прилипания смеси к стенкам цилиндра и для большего удобства при изъятии образцов из них после формования.
Разогретую до рабочей температуры смесь, послойно засыпают в цилиндр, с послойным трамбованием и устанавливают под гидравлический пресс. На прессе устанавливают нормативную нагрузку, в соответствии от типа смеси, и нагружают форму в течение трех минут. По окончанию нагрузки, получившийся образец извлекают из цилиндра и определяют его плотность. Если коэффициент уплотнения получается меньше нормативного, участок готового асфальтобетонного покрытия бракуется и переделывается заново. Оптимальным вариантом, показывающим должное качество асфальта, считается, если коэффициент равен единице.
Итог
В настоящее время введены некоторые поправки при расчете уплотнения асфальтобетонной смеси и дополнительно учитывается водонасыщение и пористость образцов. Данные показатели определяются на других лабораторных приборах и учитываются при расчете коэффициента уплотнения. Как правило, результаты с внесением данных поправок не сильно сказываются на результате, но учитывать их необходимо обязательно.
thewalls.ru
Можно ли уменьшить водонасыщение асфальтобетона
Если результаты протокола имеют водонасыщение асфальта, превышающее норму, то совершенно очевиден вопрос: можно ли его уменьшить? Что нужно, что бы его уменьшить? Ответ один: для этого нужно слой асфальта дополнительно уплотнить.
Теоретически это возможно выполнить, но лишь с небольшими участками и только верхнего слоя покрытия путем нагрева его газовой горелкой и уплотнения разогретой структуры асфальта тяжелым пневмо-катком. В конце концов в сверх жаркий летний день покрытие асфальта чуть ли не плавится и тут можно этим воспользоваться, укатав его дополнительно.
К сожалению – это все теория, на практике же в масштабах строительства крупных дорожных объектов это практически невыполнимые и труднореализуемые способы.
12 февраля, 2021 / Экспертиза асфальта
Структурно-механические свойства асфальтобетона
Асфальтобетон, как материал с обратимыми микроструктурными связями, в зависимости от температуры и условий деформирования может находиться в следующих структурных состояниях:
— упруго-хрупком, при котором минеральный остов строго фиксирован застеклованными прослойками битума. В этом случае асфальтобетон по свойствам приближается к цементобетону и другим искусственным материалам с кристаллизационными связями;
— упруго-пластичном, когда зерна минерального остова соединены прослойками битума, которые проявляют при напряжениях, не превышающих предел текучести, упругие и эластичные свойства, а при больших напряжениях — упруго-вязкие свойства;
— вязко-пластичном, при котором зерна минерального остова соединены полужидкими прослойками битума и небольшое по величине напряжение приводит к деформированию материала.
Под механической нагрузкой асфальтобетон проявляет комплекс сложных свойств: упругость, пластичность, ползучесть, релаксацию напряжений, изменение прочности в зависимости от скорости деформирования, накопление деформации при многократных приложениях нагрузки и т.д. В зависимости от проявления тех или иных свойств к асфальтобетону применимы законы теории упругости или теории пластичности. Основными свойствами, характеризующими качество асфальтобетона, являются прочность, деформативность, ползучесть, релаксация, водостойкость, износостойкость, морозоустойчивость.
Прочность — свойство асфальтобетона сопротивляться разрушению под действием механических напряжений. Теоретические основы прочности и устойчивости асфальтобетонных покрытий отражены в виде нормативов на физико-химические свойства в ГОСТ 9128-97. Показателем этих свойств в сумме прямо или косвенно характеризуют прочность при сжатии и сдвиге, трещиностойкость асфальтобетона в покрытиях.
Прочность при сжатии нормируют при 50, 20, 0°С, что соответствует температуре покрытия в жаркий летний день и осенне-зимний период.
Деформативность асфальтобетона оценивают по относительной деформации асфальтобетонных образцов при испытании на изгиб или растяжение. Покрытие будет устойчивым против образования трещин, если асфальтобетон обладает относительным удлинением при 0°С не менее 0,004…0,008, а при -20°С не менее 0,001…0,002 (при скорости деформации, близкой к 5…10 мм/мин).
Ползучесть. Испытание асфальтобетона на ползучесть позволяет установить изменение деформации во времени. Ползучесть — процесс малой непрерывной пластичной деформации, протекающей в материалах в условиях длительной статической нагрузки. При испытании на ползучесть к образцу, имеющему форму цилиндра или балочки, прикладывают постоянную нагрузку, чтобы проследить работу материала в упругой (линейной) и неупругой (нелинейной) области.
Релаксация — уменьшение напряжений в материале, величина деформации в котором поддерживается постоянной. Процесс релаксации заключается в «перерождении» упругой деформации в пластичную.
Релаксация напряжений в асфальтобетоне связана с наличием битума, обладающего гораздо меньшей прочностью и вязкостью, чем минеральные материалы. Температура и вязкость битума оказывают влияние на характер релаксации напряжений в асфальтобетоне. С понижением температуры различия в релаксационных процессах уменьшаются, с повышением — релаксационная способность материала увеличивается. На характер релаксации в значительной степени влияет напряжение, сообщаемое материалу. При высоком начальном напряжении процесс релаксации протекает интенсивно, в материале остается мало неотрелаксированных напряжений, что объясняется облегчением пластичного течения по релаксационным плоскостям.
Релаксационные процессы в асфальтобетоне зависят от скорости деформации (нагружения). Процесс нагружения рассматривают как совокупность двух одновременно протекающих процессов — роста напряжений и их релаксации, поэтому, чем медленнее растет нагрузка, тем большая часть напряжений успевает отрелаксировать в процессе нагружения.
При высоких температурах интенсивность снижения напряжений служит показателем деформационной устойчивости асфальтобетона, а при низких отрицательных — показателем трещиноустойчивости.
Водостойкость.
Асфальтобетонные покрытия при длительном увлажнении вследствие ослабления структурных связей могут разрушаться за счет выкрашивания минеральных зерен, что приводит к повышенному износу покрытий и образованию выбоин. Водостойкость асфальтобетона зависит от его плотности и устойчивости адгезионных связей. Вода, как полярная жидкость, хорошо смачивает все минеральные материалы, а это значит, что при длительном контакте минеральных зерен, обработанных битумом, возможна диффузия воды под битумную пленку. При этом минеральные материалы с положительным потенциалом заряда поверхности (кальцит, доломит, известняк) в большей степени препятствуют вытеснению битумной пленки водой, чем материалы с отрицательным потенциалом поверхности(кварц, гранит, андезит).
Пористость оказывает большое влияние на водостойкость асфальтобетона, обычно она составляет 3…7 %. Поры в асфальтобетоне могут быть открытые и замкнутые. С уменьшением размера зерен увеличивается количество замкнутых, недоступных воде пор. Водостойкость определяется величиной водонасыщения, набухания и коэффициента водостойкости Кв (отношение прочности водонасыщенных к прочности сухих образцов). Коэффициент водостойкости должен быть не менее 0,9, а при длительном водонасыщении (15 суток) не менее 0,8.
Морозостойкость. Замерзая зимой в порах асфальтобетона, вода переходит в лед с увеличением в объеме на 8-9 %, что создает в них давление свыше 29 МПа. Наибольшее разрушительное действие оказывает происходящее весной и осенью попеременное замораживание и оттаивание асфальтобетона. Знакопеременные температуры приводят к появлению трещин.
Морозостойкость асфальтобетона обычно оценивают коэффициентом KF
, показывающим снижение прочности при растяжении (и сжатия на раскол) после определенного цикла замораживания насыщенных водой образцов на воздухе при температуре -20°С и оттаивания в воде при комнатной температуре.
Износостойкость и шероховатость асфальтобетона в покрытии. Износ асфальтобетона происходит под действием сил трения, вызываемых проскальзыванием колес автомобиля по поверхности покрытия и вакуумных сил, возникающих под движущимся автомобилем. Износ покрытия определяется: истиранием его структурных элементов; отрывом и износом с его поверхности зерен песка и раздробленных щебенок.
Износостойкость асфальтобетона тем выше, чем больше его плотность, чем выше твердость входящих в его состав минеральных материалов и выше сцепление зерен щебня и песка с битумом. Асфальтобетоны, приготовленные на гранитном щебне, более износоустойчивы, чем асфальтобетоны на известняковом щебне. Применение щебня, загрязненного глинистыми частицами, приводит к резкому снижению износостойкости за счет вырывания щебенок из поверхности покрытия.
Асфальтобетонные покрытия с ровной, сухой и чистой поверхностью (за исключением покрытий с избытком битума) обеспечивают достаточное сцепление шин автомобиля с поверхностью покрытия. При этом шероховатость поверхности покрытия не оказывает существенного влияния на сопротивление скольжению шин. На покрытиях с увлажненной поверхностью степень сопротивления скольжению шин значительно снижается из-за наличия воды в зоне контакта шин с покрытием. Степень сопротивления скольжения оценивается коэффициентом сопротивления скольжению j
(коэффициент сопротивления), представляющим собой отношение силы сопротивления скольжению к нормальной нагрузке на покрытие в зоне контакта шины с покрытием. Коэффициент сцепления на сухом и мокром асфальтобетонном покрытии имеет следующие значения:
Шероховатая поверхность: Гладкая поверхность:
сухая 0,7…0,9 сухая 0,4…0,6;
мокрая 0,5…0,7 мокрая 0,3…0,4.
При коэффициенте сцепления менее 0,4 покрытие становится недопустимо скользким и аварийность на нем резко увеличивается.