Кирпич газобетон: кто кого » Вcероссийский отраслевой интернет-журнал «Строительство.RU»

Содержание

кто кого » Вcероссийский отраслевой интернет-журнал «Строительство.RU»


Идеальный материал создать сложно. Если вообще возможно. У каждого из ныне существующих есть свои достоинства и недостатки. Но при умелом использовании, можно недостатки смикшировать, а достоинства в полном объеме обратить себе на пользу.

Сегодня в нашем обзоре такие популярные материалы, как кирпич и газобетон. Посмотрим — кто кого!


Кирпич и газобетон: проблема выбора

Кирпич – старейший строительный материал, который до сих пор популярен во всем мире. В начале XIX века кирпич производили из обожженной глины – сначала в дровяных, потом угольных, а сегодня производят в газовых печах. Однако до сих пор угольная кольцевая печь Гофмана — одного из старейших производителей кирпича, компании Wienerberger — обжигает облицовочный кирпич ручной формовки. Между прочим, подход такой же, как 108 лет назад.

 

Не откроем Америк, перечисляя безусловные достоинства керамических строительных материалов: они прочные, морозостойкие, устойчивы к влаге и ветрам и, как следствие, особенно долговечны. Их срок службы составляет от 100 лет и более.

— У кирпича огромное количество плюсов. Во-первых кирпичный фасад – это респектабельно, основательно и надолго. Во-вторых, кирпич устойчив к атмосферным осадкам и прочим неблагоприятным факторам. И, наконец, рассчитан на длительную бездефектную эксплуатацию, — подчеркнули нам в компании Braer, выпускающей керамику европейского качества.

Газобетон – по сравнению с кирпичом, достаточно молодой материал. Это искусственно созданный известняк.  Технология его производства известна всего восемь десятков лет. Зародилась она сначала в Швеции. Потом ее перехватили немецкие производители. В России газобетон начинают выпускать уже после Второй мировой войны. Правда, в советские годы ему не удалось всерьез освоить строительный рынок. Настоящее признание пришло к нему лишь в последние десятилетия.

На сегодняшний момент технология производства газобетона ушла далеко вперед. Его характеристики значительно улучшены. Теперь он производится на специализированных линиях с очень высокой геометрической точностью блоков. На наиболее продвинутых заводах – таких, например, как производитель с многолетним стажем, компания XELLA (бренд YTONG) — точность изготовления изделий: +- 1-2 мм. Это позволяет монтировать газобетонные блоки не на цементно-песчаный раствор, а на специализированный клей.

 

  

Укладка: компромисс между теплом и прочностью

Газобетон – это, по сути, конструктор ЛЕГО. Ровные геометрические поверхности позволяют монтировать газобетонные блоки вручную,  даже без применения строительной техники. Есть специальная технология укладки – так называемая тонкошовная, которая обеспечивает минимизацию «мостиков холода» за счет минимальных швов.

Из-за высокой геометрической точности газобетонных блоков стены получаются очень ровными.

— И здесь начинается второй экономический эффект — минимизация расходов на отделку, — рассказывает руководитель направления по поддержке дистрибьюторов ЗАО «Кселла-Аэроблок-Ценр» 

Виталий Быков. – На заведомо ровные поверхности вы можете наносить штукатурные составы более тонким слоем.

Нельзя не отметить высокие теплоизоляционные свойства этого материала. За счет того, что газобетон вспенен (в нем содержится большое количество пор), он получается более теплым.

Правда, плюс в данном случае рискует стать минусом. И здесь газобетон передает эстафету кирпичу.

Рассмотрим проблему подробнее. Газобетон – очень легкий и теплый материал. Две трети газобетона заполнены порами. Если мы возьмем камень и две трети его объема заместим воздухом, это улучшит теплотехнику камня. Но параллельно, увы, упадет и прочность. Именно поэтому при возведении несущих стен из газобетона используются так называемые армо-пояса – специальные узлы-компенсаторы. Как говорят специалисты, потеря в прочности – это плата за теплотехнику (высокие теплоизоляционные свойства газобетона).

 

Кирпич в плане прочности – как раз материал, проверенный веками. В последние десятилетия многие крупные производители начали выпускать не просто кирпич, а керамические блоки. Керамический блок обладает высокой прочностью (М75-100), что позволяет опирать плиты перекрытия прямо на армированную растворную постель на кладке. Например, один метр стены из Porotherm 38 Thermo – продукции, которую выпускает компания Wienerberger — может выдержать нагрузку в 70 тонн. Срок службы стен из керамики – более 100 лет, но главное – керамический черепок не меняет своих свойств со временем, значит все заявленные характеристики будут такими же и через 10, и через 100 лет.

 

Стоимость строительства: дорого – богато или дешево-бюджетно?

При всех плюсах керамики, нужно признать, что строительство из кирпича обычно обходится дороже. Объясним, почему

Кирпич различается по многим параметрам, среди которых, такие как: способ изготовления, состав и форма. Каждый может иметь свое функциональное предназначение. На сегодняшний день наиболее востребованным остается лицевой, рядовой кирпич различного формата и керамический камень. 

— Ранее невысокие расходы на отопление дома позволяли возводить стену толщиной в полтора или два кирпич, — размышляет руководитель направления развития компании-производителя газобетона Bonolit Group, кандидат технических наук Антон Шеболдасов. — С течением времени тарифы на газ и электроэнергию выросли, и требования по теплотехнике стали жестче. Теперь для комфортного проживания стена из кирпича должна составлять более 1,5 м. А стена из автоклавного ячеистого бетона (АЯБ) толщиной 30 см, в свою очередь, не нуждается в утеплении. Понятно, что такие массивные кирпичные стены возводить невыгодно. В тоже время высокая теплопроводность кирпича всегда делает стены холодными на ощупь и снижает комфорт проживания. Поэтому приходится  прибегать к дополнительному утеплению. Все это выливается в солидные суммы.

 

Газобетону дополнительное утепление, по сути, не требуется. Он большего формата, чем кирпич, быстрее монтируется. Вес стен меньше, а значит нагрузка на фундамент меньше – при грамотном проектировании можно сэкономить не только на отделке, но еще и на фундаменте.

Правда, справедливости ради, заметим: появившиеся в последние годы керамические блоки решили ряд проблем, связанных с доступностью керамики, в принципе.  

— Раньше считалось, что керамика только премиальный материал и такой дом будет стоить значительно дороже газобетонного, — говорит PR-менеджер отдела маркетинга компании Wienerberger Дарья Епишева. — Но сегодня ситуация меняется, дома из керамических материалов стали намного ближе к потребителю. В категории каменных домов конструктив из керамических блоков стоит почти так же, как конструктив из газобетона (разница 1-5% или ее вообще нет).

 

Сроки строительства:  у газобетона в разы меньше, зато кирпич дольше прослужит

Кирпич, как уже упоминалось выше – тяжелый строительный материал. Вес квадратного метра стены толщиной 380 мм в 3-5 раз превышает вес аналогичной стены из автоклавного газобетона. Тяжелые стены значительно увеличивают фактическую стоимость здания — чаще всего это связано с дополнительными затратами на транспортировку, земельными и фундаментными работами.

В настоящее время построить кирпичный дом под силу лишь квалифицированным специалистам, а дом из ячеисто бетонных блоков может возвести каждый. В связи с малым размером и применением раствора необходимо выравнивать практически каждый кирпич, что очень затягивает процесс строительства.

И тут «мяч» снова переходит к газобетону.

С крупными и ровными блоками из газобетона, при использовании простого инструмента и доступной клеевой смеси, на возведение одного этажа уходит не более пяти дней.

 

— Процесс кладки газобетонных блоков на клей довольно прост, его расход составляет около 25 кг на м3 кладки, — вводит в курс дела Антон Шеболдасов (Bonolit). — Не вызывает проблем и замес смеси дрелью с миксером, а также подъем и перемещение клея. Кладка керамики (ТК) в современных реалиях может осуществляться только на раствор, тут важно понимать, что применение любого вида раствора влечет за собой большую трудоемкость в приготовлении и последующем перемещении его по периметру строящегося дома. И тепловые характеристики возведенных стен очень сильно зависят от вида применяемого кладочного раствора и толщины шва. Только из-за некачественного выполнения кладочных швов теплопотери через швы могут быть более 30%. 

Обработка керамики также затруднительна. Штробление практически невозможно. Для резки приходится покупать дорогостоящие инструменты и расходные материалы, которые быстро изнашиваются. Блоки часто раскалываются при распиле, формирование проемов и доборных элементов очень затруднено.

Перечисленные моменты удлиняют сроки строительства из керамики.

В случае с газобетоном все делается намного проще и практичнее, резка осуществляется долговечной ножовкой без брака и отходов.

 

Экологичность: керамика не «пылит» и не содержит примесей и вредных шлаков, газобетон очень старается быть безопасным

Правда, керамике нет равных в экологичности – недаром ее применяли веками. И тут «пас» снова принимает керамика.

В керамических (как и в деревянных) домах дышится особенно хорошо – это факт. Во-первых, это материал абсолютно натуральный (глина+вода+ древесные опилки), а во-вторых, у поризованных керамических блоков, например,  оптимальная паропроницаемость – стены «дышат», поглощая излишки влаги и отдавая ее при низкой влажности в помещении. Таким образом в доме всегда поддерживается комфортная влажность для человека. Стены из керамики не накапливают влагу, поэтому отсутствует риск образования грибка и плесени на стенах.

Дополнительным преимуществом является полная гипоаллергенность керамических блоков — они не «пылят», не содержат примесей шлаков и не выделяют в воздух вредных летучих органических соединений.

 

Керамика обладает высоким индексом звукоизоляции. Этот показатель зависит от массивности стен и поверхностной плотности слоев кладки. У керамических блоков высокая плотность – 700-1000кг/м3 и высокая поверхностная плотность керамического черепка – 1600 кг/м3. А растворные швы и штукатурка увеличивают поверхностную плотность кладки. Эти факторы позволяют соответствовать самым высоким требованиям по звукоизоляции стен в помещениях.

Производители выпускающие газобетон, в последние годы также стараются соответствовать экологическим нормативам.

— Мы свою продукцию, помимо обязательной сертификации, подвергаем еще и добровольной сертификации,- рассказали нам в компании «Кселла-Аэроблок-Центр». – Мы ведь входим в немецкий концерн XELLA. А немецкая сторона очень требовательна к экологической составляющей.  Нами получены экологические сертификаты высокого уровня: «Российский экоматерил», экологические сертификации BREЕAM и LEED. Уделяем этому колоссальное значение. Подвергается проверке не только сам материал, но и само производство.

В компании работают над уменьшением углеродного следа – оборудование снабжено специальными улавливающими фильтрами. Также перед переработкой тестируется само сырье.

 

Любой материал хорош, если знать его особенности

У каждого материала есть свои плюсы и свои минусы.

Не все, например, знают, что популярный сегодня газобетон не работает «на излом».

-…Грубо говоря, если по весне у нас фундамент «сыграет» (его изогнет), то стена из газобетона может затрещать,- объясняет Виталий Быков. — Это минус этого материала. Газобетон не работает на изгиб. Это связано с его пористой структурой. Но это не значит, что мы имеем дело с плохим материалом. Просто нужно понимать его особенности и правильно их использовать. Решение здесь простое: газобетон всегда должен устанавливаться на расчетные фундаменты. Если фундамент расчетный (а сейчас технологий достаточно много), то никаких проблем не возникает. Проектировщик должен понимать, на каком типе грунта, с учетом данной конструкции, этот фундамент будет закладываться.

— Что тут греха таить, у нас 90% малоэтажных зданий строится вообще без проекта, практически на коленке! – сетует Виталий. – В этом большая проблема нашей отечественной малоэтажки. А потом, когда что-то происходит со стенами, мы начинаем жаловаться на негодность материалов – и это вместо того, чтобы правильно применять эти самые материалы, строго соблюдать технологию.

Кирпич выигрывает у газобетона в прочности, но проигрывает в легкости обработки и сложности работы с ним на строительной площадке. Но и тут, зная «слабые места» можно к ним подготовиться.

Несмотря на ее прочность, с керамикой нужно обращаться аккуратно, а не все это умеют. Есть определенные требования к разгрузке поддонов. Для резки и штробления нужен профессиональный инструмент, который можно купить в специализированном магазине или заказать в интернете.

Нужно хорошо понимать и то, где и какой материал лучше применять.

— Газобетон лучше применять на внешнем контуре здания, как более теплый, а кирпич, за счет того, что он более плотный – лучше использовать для создания внутренних перегородок,- считает Виталий Быков. — Если говорить по высотности, то и кирпич, и газобетон могут абсолютно спокойно применяться для двух-трехэтажного строительства.

Керамические блоки – рядовой материал для возведения стен дома. Их можно применять в качестве: внешних несущих стен в домах до 10 этажей; внутренних несущих и ненесущих стен; внутренних межкомнатных перегородок;  заполнения монолитных бетонных каркасов в многоэтажных домах, — резюмирует Дарья Епишева.

Правда, так сложилось,- уточняет Виталий, — что кирпичные дома у нас дороже ценятся. Поэтому если девелопер строит дом для более элитной публики, то там, конечно, кирпич идет на «ура». Если это обычные люди, то там на «ура» идет газобетон.

Резюмируем, зная достоинства и сильные стороны каждого материала, можно выбрать то, что будет идеальным именно для вас.

Подготовила Елена МАЦЕЙКО

 

Газобетон или кирпич, что лучше выбрать?

В этой статье под газобетоном мы будем понимать вид ячеистого бетона, который получают из смеси цемента, песка, воды и газообразующими добавками, которые образуют в бетоне пузыри, делающие плотность и теплопроводность бетона ниже.

Под кирпичом подразумевается знакомый всем, керамический строительный материал, производимый посредством обжига разных глиняных смесей. 

И обычный кирпич, и газобетон обладают рядом конкретных характеристик, по которым их можно сравнивать. Среди них:

  1. масса;
  2. прочность на сжатие;
  3. теплопроводность;
  4. морозостойкость;
  5. огнестойкость;
  6. паропрницаемость;
  7. влагопоглощение.

Обладая сведениями о выше упомянутых показателях, можно уже судить о том, подойдет ли вам данный материал с учётом расположения и предназначения будущей постройки. Поэтому далее мы подробно расскажем о каждом параметре.

Масса материала

Масса отдельных фрагментов формирует массу стен, а вот её следует учитывать при выборе типа закладываемого фундамента.

По этим причинам кирпичные стены требуют наличия под собой более сложного, а оттого и более дорогого фундамента (преимущественно монолитного или ленточного), а вот газобетонные стены в этом плане менее требовательны.

Но, у газобетона, в отличие от кирпича, очень слабая прочность на изгиб, а это значит, что усадка фундамент должен быть очень хорошо сделан. 

Хороший фундамент для газобетона не должен давать усадку, а морозное пучение не должно сдвигать его. Потому, большое внимание нужно уделить дренажу фундамента и подсыпке из непучинистых наполнителей (песка и щебня). 

В принципе, на хороших грунтах подойдет малозаглубленный фундамент с утепленной отмосткой, для более сложных грунтов лучше проводить геологию грунта.

В любом случае, выбор того или иного фундамента зависит от тяжести всего здания типа грунта, от глубины промерзания и от уровня грунтовых вод. А рассчет всего этого, дело сложное, которое лучше предоставить специалистам.

Сравнение газобетона и керамических блоков (видео)

Прочность газобетона на сжатие

Геометрия газоблоков и кирпичей

Газоблоки намного крупнее и ровнее чем кирпичи, какой из этого сделать вывод? А вот какой: коробка из газоблока строится гораздо быстрее. Швы между газоблоками получаются около 2 мм, что сводит до минимума теплопотери через шов. Отметим, что каждый ряд газоблока нужно выравнивать теркой, чтобы плоскость была идеальной, а шов равномерным, это очень важно. Ряды газоблока вравниваются теркой очень быстро и просто, так что не стоит этого боятся.

Также некоторые ряды газобетона нужно армировать. Более подробно про армирование газобетонной кладки смотрите в нашей статье.

Газобетон бывает автоклавным и неавтоклавным, сразу скажем, что автоклавный газобетон лучше по всем показателям, в том числе и по геометрии блоков, но автоклавный дороже. Более подробно про различия автоклавного и неавтоклавного газобетона читайте в нашей статье по ссылке.

К швам в кирпичной кладке нет таких требований. Также стоит отметить, что в доме из газобетона необходимо наличие монолитного железобетонного армопояса. А как вы понимаете, армопояс это непростая конструкция, требующая немало времени и средств. Время сэкономленное на кладке газобетона несколько отберется при устройстве армопояса.

Как можно догадаться, этот параметр указывает на то, какой уровень нагрузки способен выдерживать материал; рассчитывается в килограммах на 1 см². От прочности на сжатие значительно зависит общая прочность конструкции.

Чем стены здания выше, тем они тяжелее, и нагрузка на блоки (на сжатие) увеличивается, и требования к прочности на сжатие растет. Прочность на сжатие принято обозначать классами (от B0.5 до B60) и для газобетона этот показатель может быть в пределах от B0.5 до B20.

К примеру у качественного газобетона марки D500 класс прочности на сжатие равняется B3.5 что соответсвует нагрузке 46 кг/см².

Таблица, прочность на сжатие (газобетон)
Марка газобетона Класс прочности на сжатие Средняя прочность (кг/см²)
 D300 (300 кг/м³) B0,75 — B1 10 — 15
D400
 B1,5 — B2,5 25 -32
D500  B1,5 — B3,5 25 — 46
D600 B2 — B4 30 — 55
D700 B2 — B5 30 — 65
D800 B3,5 — B7,5 46 — 98
D900 B3,5 — B10 46 — 13
D1000 B7,5 — B12,5 98 — 164
D1100 B10 — B15 131 — 196
D1200 B15 — B20 196 — 262

У кирпича тоже есть своя маркировка по прочности (от М50 до М300 ). К примеру, марка кирпича М100 соответствует классу прочности на сжатие — B7.5 что соответствует нагрузке в 100 кг/см².

Таблица, прочность на сжатие (кирпич)
Марка кирпича Класс прочности на сжатие (класс) Средняя прочность (кг/см²)
M50 B3,5 50
M75 B5 75
M100 B7,5 100
M125 B10 125
M150 B12,5 150
M200 B15 200
M250 B20 250
M300 B25 300

Теплопроводность

Коэффициент теплопроводности свидетельствует о способностях материала проводить сквозь себя тепло. Этот показатель означает количество тепла, которое проходит за час времени сквозь 1 м³ материала при единичной разнице температуры на противоположных поверхностях. То есть чем коэффициент выше, тем хуже теплоизоляция.

На фотографии с тепловизора видно, какая температура поверхности в каких участках, чем ярче цвет, тем хуже в той области теплоизоляция.

Таблица теплопроводности кирпичей
Вид кирпича Коэффициент теплопро- водности  Кладка на цементно-песчаном растворе
 Красный глиняный (1800 кг/м³)  0,56  0,70
 Силикатный, белый (1500 кг/м³)
 0,70  0,85
 Керамический пустотелый (1400 кг/м³)  0,41  0,49
 Керамический пустотелый (1000 кг/м³)  0,31  0,35

 

Таблица теплопроводности газобетона

Марка и плотность газобетона Коэффициент теплопро- водности(сухой) Коэффициент теплопроводности(при влажности блоков 4%)
D300 (300 кг/м³) 0,080 0,082
D400 (400 кг/м³)
0,095 0,100
D500 (500 кг/м³) 0,118 0,127
D600 (600 кг/м³) 0,137 0,150
D700 (700 кг/м³) 0,165 0,192
D800 (800 кг/м³) 0,182 0,215

Сравнительный график теплопроводности кирпичей и газобетона

Так, по графику наглядно видно разницу в теплопроводности между различными кирпичами и газабетонами, к примеру, теплопроводность газобетона D500 в 4-5 раз ниже чем у красного полнотелого кирпича. Но это всё лабораторные цифры, на самом деле, в кладке разница между теплопроводностью несколько меняется, и теплопроводность будет отличаться уже не в 4-5 раз, а всего в три. 

Причиной этому являются так называемые «мостики холода», под которыми подразумеваются слои раствора между частями кладки.

В случае с газобетонными блоками используется специальный клей для тонких швов, что уменьшает теплопотери конструкции, но всё равно, реальные показатели кладки газобетона по теплопроводимости ниже чем представленные в таблице выше.

Также стоит отметить, что толщина швов в газобетонной кладке должна быть как можно меньше, в идеале (1-3 мм). Толстые швы в газобетоне сводят все его теплотехнические достоинства к минимуму.

Еще оним фактором, который ухудшает теплоизоляцию, является влажность блоков, чем влажность выше, тем хуже. А газобетон пористый и от того хорошо впитывает воду.

По теплотехническим нормам, теплые кирпичные стены должны иметь солидную толщину (1 м), тогда как для газобетонных стен хватит толщины в 0,3-0,5 м. Для самых холодных регионов может потребоваться кладка из газобетона толщиной аж 600 мм.

В общем, чем толще стены, чем тоньше швы и чем меньше влажность стены, тем лучше будет сохраняться тепло внутри помещения и тем больше вы сэкономите на отоплении дома.

Повторимся, что газобетон бывает разных марок, начиная от D200 и заканчивая D1200. Число в данном случае показывает плотность материала. Чем плотность выше, тем блок прочнее, но при этом его теплоизоляционные свойства хуже.

Газобетон марок D200-D300, используется как теплоизолятор, а блоки маркой D400 и выше используются как конструкционные блоки для стен.

В настоящее время строительство кирпичных стен с толщиной под 1 м – большая редкость, ибо это слишком накладно и по деньгам, и по количеству затрачиваемого времени, и по трудовым ресурсам.

Чаще всего возводят кирпичные стены в полтора-два кирпича с толщиной 38-50 см, а для теплоизоляции применяют гораздо толще слой теплоизоляционных материалов, чем при кладке газобетонных стен.

Морозостойкость

Данный показатель демонстрирует стойкость намоченого материала при воздействии минусовых температур. Он показывает, насколько хорошо материал может сохранять свою прочность при повторяющихся замораживаниях и оттаиваниях.

Морозостойкость обозначают буквой «F», цифра показывает количество циклов, которые материал должен выдержать.

Для строительства рекомендуют использовать кирпич, с морозостойкостью F15 — F25 циклов, У облицовочного кирпича морозостойкость от F50 до F100. У клинкерного F200.

Как правило, кирпич имеет гораздо более высокий коэффициент морозостойкости, чем газобетон, то есть кирпич является более стойким к морозу материалом, а от того и более долговечным.

Таблица морозостойкости кирпичей и газоблоков
Марка блока/кирпича Класс морозостойкости(F) Водопоглощение
Кирпич строительный полнотелый F50; F75 8%
Кирпич, пустотность 40%
F35; F50 6%
Кирпич силикатный F50; F75 8%
D600 (600 кг/м³) F15;F25 47%
D700 (700 кг/м³) F25;F35 40%
D800 (800 кг/м³) F25;F50 35%

Влагопоглощение

Показатель влагопоглощения свидетельствует о способностях материала по впитыванию и удерживанию влаги. Поглощение воды негативно отражается на прочности материалов, возрастает также и теплопроводность.

Так как газобетонные блоки способны впитывать в 4-5 раз больше влаги по сравнению с кирпичом, стены из газоблока должны дополнительно защищаться от попадания воды, что, конечно, идёт в минус газобетону. 

Тестирование влагопоглащения проводилось путем помещения блоков в емкость с водой. Спустя сутки, блоки и кирпичи доставали и взвешивали. Разницу между первоначальной и конечной массой переводили в проценты. 

К примеру, взяли кубик газобетона размером 10X10 см, вес его составлял 592 грамма, что соответствует марке D600. после 18 часов намокания, вес кубика составил 869 грамм. То есть, газобетон впитал в себя 277 грамм воды, что составляет 47% от его первоначальной массы. Многие производители газобетона пишут, что влагопоглощение их блоков составляет всего 20%, но что-то слабо в это верится после такого тестирования.

Огнестойкость газобетона и кирпича

Этот параметр показывает способность сопротивления строительных материалов при прямом воздействии высокой температуры от открытого огня. От степени огнестойкости зависит, насколько долго строительная конструкция сможет простоять до появления трещин и возникновения обрушений во время пожара.

В этом плане кирпич и газобетон не имеют особых различий, так как оба материала входят в первый класс огнестойкости (предел 2,5). Материалы обоих видов достаточно хороши, если речь заходит о противостоянии огню.

Вывод

Газобетон лучше сохраняет тепло, и у него лучше паропроницаемость, чем у кирпича. Но кирпич при этом в несколько раз прочнее на сжатие и излом. По влагостойкости и морозостойкости также выигрывает кирпич. Становится понятно, что кирпич более долговечен, и дом из кирпича может простоять намного дольше.

Но многие недостатки газобетона уберет качественная облицовка фасада, которая предотвратит намокание газоблоков. Более того, мокрый газобетон хуже сохранаяет тепло.

Газобетонные блоки обладают большими размерами, вследствие чего возводить коробку из них быстрее, также у газобетона лучше геометрия. Но швы между блоками газобетона должны быть очень тонкими(1-3 мм), иначе будут большие теплопотери.

Также в доме из газобетона необходим железобетонный армопояс, а в кирпичной кладке он не обязателен.

Газобетонные стены очень боятся неравномерной усадки фундамента и могут дать трещины. Так что желательно, под газобетон, делать тяжелый и очень качественный фундамент и дополнительно дать ему время настоятся, чтобы прошла основная усадка.

Мы составили сравнительный график различных показателей, в котором, чем столбец выше, тем лучше.

Иными словами, однозначного решения проблемы выбора между кирпичом и газобетоном не существует, так как оба материала имеют свои достоинства и недостатки. При выборе следует отталкиваться, прежде всего, от проекта будущей постройки, так как в одних случаях гораздо эффективней будет использование газобетона, а в других возможно лучше применить старый добрый кирпич.

Но в реалиях двадцать первого века, когда цена электроэнергию и другие источники отопления очень высоки, мы бы выбрали газобетон толщиной 400 мм с последующей облицовкой. Такой толщины хватит, чтобы обеспечить хорошую теплоизоляцию, не используя дополнительных утеплителей.

В случае с кирпичом, при кладке в 0.4 метра, нужно использовать около 10-15 см дополнительной теплоизоляции пенопластом, минватой или другими материалами. Но, кирпич проверен временем, и здания из него стоят по сто лет и более, связано это с хорошей морозостойкостью кирпича и высокой прочностью на сжатие.

Кирпич и газобетон — сравнение (характеристики, плюсы и минусы)

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г 012

Добавить перпендик. оси между Б-Г 012

Добавить перпендик. оси между В-Г 012

Добавить перпендик. оси между Б-В 012

Добавить перпендик. оси между А-Б 012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей 1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши ДвускатнаяПлоская

Материал кровли ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ 1 район — 80 кгс/м22 район — 120 кгс/м23 район — 180 кгс/м24 район — 240 кгс/м25 район — 320 кгс/м26 район — 400 кгс/м27 район — 480 кгс/м28 район — 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов) Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2 90 кг/м2 — для холодного чердака195 кг/м2 — для жилой мансарды

3 этаж

Высота 3-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

1 этаж

Высота 1-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммПолы по грунтуЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Цоколь

Высота цоколя, м м

Материал цоколя Не учитыватьКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич полнотелый, 640ммКирпич полнотелый, 770ммЖелезобетонное монолитное, 200ммЖелезобетонное монолитное, 300ммЖелезобетонное монолитное, 400ммЖелезобетонное монолитное, 500ммЖелезобетонное монолитное, 600ммЖелезобетонное монолитное, 700ммЖелезобетонное монолитное, 800мм

Внутренняя отделка

Общая толщина стяжки, мм Не учитывать50мм100мм150мм200мм250мм300мм

Выравнивание стен Не учитыватьШтукатурка, 10ммШтукатурка, 20ммШтукатурка, 30ммШтукатурка, 40ммШтукатурка, 50ммГипсокартон, 12мм

Распределение нагрузок на стены

Коэффициент запаса 11.11.21.31.41.5

Кирпич или газобетон — советы по выбору материала

Стены являются главной частью любого сооружения. Именно от стен зависит прочность, теплопроводимость, долговечность и внешний вид всего здания. Для их возведения используют стеновой камень: кирпич или газобетонные блоки.

Кирпич

Стеновой камень, такой как кирпич, используется для строительства различных жилых и производственных сооружений. Он имеет несколько видов, каждый из которых применяется в строительстве. 
— Силикатный кирпич применяется для возведения небольших частных домиков, дач и гаражей. Он имеет невысокую стоимость и легкость монтажа.
— Керамический кирпич считается универсальным строительным материалом. Подходит для возведения любых жилых и производственных помещений. 
— Облицовочный камень используется для украшения внешних стен, забора и гаражей. 
— Шамотный кирпич предназначен для укладки печей и каминов, так как главное его преимущество в сохранение тепла. 

Газобетонные блоки

Газобетон изготавливается из смеси цемента, кварца, извести, алюминиевой пудры и воды. Газобетон выпускают отечественные производители, например завод //bikton.ru/. Все компоненты смешиваются и после затвердения, они готовы использоваться в строительства. Чаще всего данную смесь применяют для изготовления стеновых блоков, перекрытий и ступень для лестниц.

Газобетонные блоки имеют ряд преимуществ:
— Природный состав смеси, из которой изготавливаются блоки;
— Устойчивость в любых климатических условиях;
— Высокий уровень пожаробезопасности;
— Невысокая стоимость.

Газобетон или кирпич?

Что же все таки выбрать кирпич или газобетон? Если планируется строительство многоэтажного дома, с использованием плит перекрытия, то стены лучше всего возвести из кирпича. А для небольшого двухэтажного дома с деревянными перекрытиями, дачного домика или гаража отлично подойдет газобетон. Использовать утеплитель придется в любом строительстве, какой материал бы не применялся. Если выбирать по стоимости, то газобетон намного дешевле. Газобетонные плиты имеют больший размер, поэтому на строительство тратится намного меньше времени. Но при этом кирпич выдерживает сильные холода не теряя своих свойств. Огнестойкость материалов на высоком уровне, что защитить любое сооружение от возгорания. Уровень теплопроводимости у газобетона намного выше, но если следовать технологии строительства и воздвигать стены из кирпича не менее метра, то и он станет отличным теплоизоляционным материалом. 

В итоге нельзя выделить один материал, так как и кирпич, и газобетон успешно применяется в строительстве. Выбор будет зависеть не только от характеристик материала, но и от планируемого строительства. 

Газоблок (газобетон) или кирпич что лучше и дешевле для дома

 

Технические параметры

 

Газобетон и кирпич аналогичны только в одном — построенные из них дома называют каменными. Во всем остальном же они существенно отличаются. К тому же, сегодняшний рынок предлагает множество разновидностей этих материалов. Газоблок, например, делится на несколько видов, отличительная особенность которых – плотность. Учитывая, что их назначение различно, стоит уточнять, что с чем сравнивается.

Однако, говоря о конструкционном материале, применяемом в частном строительстве, обычно подразумевают конкретные образцы.

Газоблок марки D400 — D500 (д400 — д500) и полнотелый керамический кирпич популярнее других вариантов. Поэтому стоит рассматривать именно их параметры, вызывающие разногласия:

  • прочность на сжатие
  • теплопроводность
  • гигроскопичность
  • долговечность

Чем ниже плотность газоблока, тем он теплее, но менее прочный

Очевидно, что кирпич гораздо прочнее, ведь давление, необходимое для его разрушения,составляет около 100 кг/см2. Тогда как прочность газоблока в 3 раза меньше. Однако такой запас надежности необходим только в определенных случаях. Например, при возведении несущих колонн, пилонов, зданий выше 3 этажей или монтаже межэтажных перекрытий из железобетона. Если же бетонные перекрытия укладывают в коттедже, под них почти всегда устанавливают армирующий пояс из У-блока. При таком условии газобетон великолепно справляется с нагрузкой.

Несоблюдение норм и технологий снижает характеристики стен, возведенных из любых стройматериалов. Примером служат относительно «свежие» кирпичные дома, частично разрушенные из-за пренебрежения гидроизоляцией. Обратный пример – двух-, трехэтажные дома из газоблока, прекрасно сохранившиеся, несмотря на свой возраст (превышающий 50 лет).

 

 Характеристики газоблока и кирпича

 

Прочность кирпича связана, прежде всего, с высокой плотностью керамической структуры и низким водопоглощением. Стеновой газоблок, напротив, легок и гидроскопичен. Но это не значит, что он впитает влагу, как губка, и будет держать ее в себе. Газоблоки (газобетон) отдают воду не хуже, чем впитывает. Поэтому, если укладка с отделкой произведены по правилам, влажная стена из газобетона просохнет без проблем. Преимущества газоблока (газобетона) можно вывести в такой перечень:

  1. Малый вес газоблока при крупных габаритах
  2. Идеальная геометрия газоблоков
  3. Легкость, простота обработки, укладки
  4. Максимальная теплоизоляция
  5. Паропроницаемость газоблока
  6. Соотношение цены и качества

Свойство, которое, как правило, является решающим – это теплопроводность. Даже в регионах с относительно мягким климатом в Украине толщина кирпичной стены должна быть не менее 80 см. Только тогда она будет соответствовать нормам энергосбережения (представьте, какое давление на грунт). Уменьшить толщину можно, дополнительно утеплив стену, например – минеральной ватой.

Газоблок же гораздо хуже проводит тепловую энергию (0.1 Вт/м*K против 0.6 у кирпича). Поэтому, если купить стеновой газоблок с размерами 375х200х600 или 400х200х600 где толщина газоблока 375 мм и 400 мм соответственно и возвести из них стены, то внешнее утепление такого газоблока пенопластом или ватой не потребуется. Такую стену из газоблока достаточно будет только поштукатурить и покрасить.

 

Газоблок или кирпич из чего дешевле строить дом

 

Если грунт достаточно устойчив, то для стен из газоблока и кирпича закладывают примерно одинаковый ленточный фундамент. Но такие «тепличные» условия – редкость. На слабом же грунте ключевое значение приобретает вес стенового материала. Фундамент под кирпичный дом здесь может обойтись в два раза дороже, чем под здание из газоблока. Учитывая, что хорошее основание стоит, как четверть (или даже треть) всего дома, сумма получается внушительной. То есть, экономия очевидна уже на первом этапе строительства.

Покупка стенового стройматериала – примерно треть от всего бюджета стройки, причем кирпич и газобетон близки по цене. К тому же, цена газоблока в Харькове, например, практически такая же, как в других местах. Разница связана лишь с удаленностью от объекта, и здесь, опять-таки, особую роль играет вес. Ведь одна машина, в среднем, может привезти только 4 – 5 кубов кирпича, но газобетона она привезет 12 — 15 м3 (кубов). Сюда же можно добавить экономию на услуги крана-манипулятора.

Кладочный раствор – еще один предмет бесконечных споров. Казалось бы, простая смесь песка с цементом вдвое — втрое дешевле специального клея для газоблоков. Но ведь нужно учитывать толщину шва. В кирпичной кладке объем швов достигает 20% от общего объема, а в газобетонной кладке, при применении специального клея 3-5 мм. Поэтому сравнивать нужно десятки метров кубических раствора против десятков мешков клея по 25 кг. Такое сравнение точно не в пользу кирпича.

 

Чем тоньше шов раствора, тем теплее стена

 

Заключение

 

Многие мечтают о полноценном кирпичном доме с нормативной толщиной стены. Однако ключевой фактор, как правило – это бюджет стройки. Строительство из кирпича и газобетона имеет разницу в цене 15 — 20% в пользу газобетона. К тому же, газобетон легковесен, прост в обработке, а это означает дополнительную (не малую) экономию на рабочей силе. Если же речь идет о двух- или трехэтажном коттедже большой площади, то сумма будет очень серьезной.

Газоблок + кирпич – третий не лишний?

Повышение доступности жилья — один из двигателей прогресса в стройиндустрии. В условиях конкуренции застройщики стремятся удешевить стоимость строительства за счет использования современных материалов и технических решений. Например, в последние десятилетия в нашей стране приобрели большую популярность двуслойные стены из газобетона и кирпича. Облицовочный кирпич придает таким домам внешнюю респектабельность, а легкий и достаточно теплый газобетон отвечает, в том числе за комфорт. Двуслойные стены дешевле полностью кирпичных, а архитектурный образ здания мало отличается. Но обеспечат ли такие стены необходимый комфорт и долговечность дома? Разбираемся вместе с экспертом – техническим специалистом по коттеджному и малоэтажному строительству Корпорации ТЕХНОНИКОЛЬ Александром Плешкиным.

Прослужит ли дом нескольким поколениям?

Долговечность – один из важных критериев при выборе технологий для строительства дома. В «Инженерно-строительном журнале» №8 (2009 г) приведены результаты испытаний газобетонных стен с кирпичной облицовкой. Выводы ученых удивляют: срок службы такой стены составляет от 60 до 110 и более лет. Испытывались материалы одного качества в условиях одного и того же региона. Как выяснилось, столь заметная разница обусловлена технологией применения материалов: увеличить срок эксплуатации позволяет наличие вентиляционного зазора между слоями стены.

«Вообще отделка газобетона кирпичом без вентиляционного зазора допустима только для неотапливаемых помещений. В противном случае из-за разницы температур теплый и влажный воздух из помещения устремится наружу, пар начнет скапливаться между слоями стены, разрушая и кирпич, и газобетон, — комментирует Александр Плешкин. – Наличие вентилируемого зазора, обеспечивающего циркуляцию воздуха (его вход у основания и выход наверху здания) позволит беспрепятственно выводить водяной пар. Срок службы таких домов заметно выше при наличии слоя теплоизоляции, который выведет точку росы из газобетона и увеличит термическое сопротивление всей конструкции».

Погода в доме

В том, что погода в доме главней всего, мало кто сомневается. Считается, что для теплых регионов стена из газобетонных блоков толщиной 300–400 мм и облицовкой в половину лицевого кирпича укладывается в нормативные требования. Соответственно, в доме должно быть достаточно тепло и уютно. Но по факту зимой жители таких домов очень часто вынуждены использовать всевозможные системы отопления. Особенно в первые годы после постройки, когда дом «сохнет». Учитывая стоимость электроэнергии, для семейного бюджета такой способ согреться может быть накладным. Кроме того, из-за нарушения температурно-влажностного режима дома микроклимат в помещении становится хуже, образовывается сырость и плесень, особенно в углах и на стыках «пол-стена-потолок».

Результаты проводимых Службой Качества ТЕХНОНИКОЛЬ тепловизионных обследований объектов говорят о некоторых проблемах, связанных с эксплуатацией домов, построенных по технологии, которая не предусматривает вентиляционный зазор и слой утепления между газобетоном и кирпичом. 

Например, в марте 2016 года проводилась тепловизионная съемка фасада жилого комплекса в Московской области.

Данные по объекту:

Тип объекта – таунхаус на стадии эксплуатации;

Дата сдачи объекта – 30 ноября 2015 г.;

Дата проведение осмотра – 1 марта 2016 г.;

Конструкция фасада – газобетонный блок (400 мм) + облицовочный кирпич (120 мм), утепление отсутствует. 

   

   Рисунок 1. Общий вид здания и показания температуры и влажности

«Влажные пятна на фасаде могут быть следствием двух причин, — комментирует Александр Плешкин. — Возможно, мокрые процессы внутренних отделочных работ производились в холодное время года. В данный период кладка еще не успела высохнуть. Также отсутствуют входные и выходные отверстия для создания движения воздуха в вентилируемой кладке. Паровоздушная смесь, которая проникла в кладку из внутренних помещений, встретилась с отрицательной температурой на улице, в результате чего выпала в виде конденсата — воды. Вторая возможная причина образования локальных пятен — наличие мощных теплопроводных включений, которые и выступили в качестве источника конденсата в большом количестве».

Почему расчеты расходятся с фактами? 

При использовании тепловизионной съемки были выявлены тепловые потери в местах примыкания стены к кровле, цокольной части, и по контуру плит перекрытий по всему периметру фасада.

«Это связано с тем, что на стадии проектирования теплотехнический расчет фасада соответствует нормам по тепловой защите зданий. Нюанс в том, что расчеты проводятся по глади фасада, без учета мест сопряжений и примыканий плит перекрытий со стеной, окнами, устройства армапоясов и мауэрлатов и так далее. Также не стоит забывать про учет теплопотерь при укладке блоков – в швах в большинстве случаев используется классический цементно-песчаный раствор, реже — специальный тонклослойный клеевой, но вне зависимости от выбранного типа данный способ соединения блоков создает мосты холода, которые и могут спровоцировать конденсацию паров остаточной строительной влаги. Если еще учитывать теплопотери через неоднородности, то получаем уже критические значения», — объясняет эксперт.

Результаты расчетов с учетом всех теплопроводных включений будут приведены ниже, но то, что они будут отличаться от изначальных расчетов, подтверждается результатами тепловизионной съемки.

 
 Рисунок 2. Тепловизионная съемка 1 этажа
 
    Рисунок 3. Тепловизионная съемка 2 этажа

На фотографиях ниже наглядно демонстрируются теплопроводные включения (так называемые тепловые мосты) через плиты перекрытия, цоколь и сопряжения фасада с крышей, а также нарушения технологии строительства.

   
   Рисунок 4. Тепловые потери

Ситуацию хорошо объясняют результаты испытаний тепловой однородности двуслойных стен, проведенных экспертами из Санкт-Петербурга А. С. Горшковым, П. П. Рымкевичем и Н. И. Ватиным. Они провели расчет приведенного сопротивления теплопередаче наружных стен типового многоквартирного жилого здания с конструктивной монолитно-каркасной схемой и двухслойными стенами из газобетона с наружным облицовочным слоем из кирпича в Санкт-Петербурге. Полученное значение 1,81 м2•°С/Вт не соответствуют не только требуемым 3,08 м2•°C/Вт, но и даже минимально допустимым нормативным требованиям 1,94 м2•°C/Вт. Различия в коэффициентах теплотехнической однородности исследователи объясняют различиями использованных в проекте конструктивных решений, количественного и качественного состава теплопроводных включений с учетом их геометрической формы. То есть учитываются все так называемые мостики холода, которые присутствуют в проекте: вид и материал крепежа, плиты перекрытия, стыки, обрамления и примыкания к стенам и окнам и так далее. Довольно распространен случай, когда теплотехническая неоднородность стеновой конструкции на реальном объекте еще ниже расчетной, потому что зависит от качества монтажа: наличие трещин, разломов, выбоин и иных дефектов изделий из газобетона может приводить к перерасходу строительного раствора, который выступает в качестве дополнительного теплопроводного включения, не учитываемого при расчете.  

 
 Рисунок 5. Конструктивное решение наружной двухслойной стены

В итоге мы получаем, что фактический коэффициент теплотехнической однородности существенно меньше, чем расчетное значение. Разница может составлять до 47%. Приведенное сопротивление теплопередаче подобных конструкций может быть меньше нормативного значения до 70%, что требует либо увеличивать толщину газобетонных блоков в составе двухслойной стеновой конструкции, либо использовать промежуточный слой из теплоизоляционных материалов.

 
 Рисунок 6. Схемы расчетных фрагментов наружной двухслойной стены

«Результаты испытаний говорят о том, что закладываемый при проектировании коэффициент теплотехнической однородности 0,9 для стен из газобетона и кирпича для многих случаев является завышенным. Кроме того, проектировщики пользуются необоснованными значениями теплопроводности газобетона, — комментирует Александр Плешкин. — По факту такая конструкция не обеспечивает необходимое термическое сопротивление стен. Создать комфортный микроклимат, сократить размеры коммунальных платежей и повысить долговечность стен из газобетона и кирпича можно, благодаря включению теплоизоляции между газобетонным и лицевым (облицовочным) слоями. При выборе теплоизоляционного материала для конструкций такого рода особое внимание необходимо уделять значению сопротивления паропроницанию. Оно должно быть, как минимум на порядок меньше сопротивления паропроницанию несущего слоя наружной стены. Утепление стены из газобетона экономически обосновано и выгодно по сравнению с увеличением толщины газобетонной стены, при увеличении которого дополнительно нагружается фундамент и уменьшается полезная площадь помещений».

Влажность – важно ли это?

Хотелось бы отдельно отметить темы теплопроводности и влажности изделий из газобетона, которые являются сильными абсорбентами влаги, то есть могут впитывать значительное количество воды.

«Их фактическая влажность в начальный период эксплуатации может значительно превышать расчетную, это связано не только с процессом производства, транспортировки и складирования материала, но и с мокрыми процессами, которые происходят в доме во время его стройки – заливка стяжки, выравнивание стен и так далее. В этой связи теплопроводность изделий из газобетона может оказываться выше по сравнению с принятыми в проекте расчетными значениями, т. к. теплопроводность материала зависит от содержания влаги. Сложно поддается прогнозу количество лет через которое дом «выйдет» на проектные показатели. Это будет зависеть от климата, условий эксплуатации помещения и конструктивного решения стены – наличие вентиляционного зазора и правильно подобранных изоляционных слоев с точки зрения паропроницаемости. При грамотно спроектированной и выполненной конструкции выход на рабочий режим такой конструкции не должен превышать одного – двух лет», — комментирует Александр Плешкин.

Следует обращать пристальное внимание на вопрос испытания коэффициентов теплопроводности газобетона, а именно на условия влажности, при которых проводятся испытания.

Показатель теплопроводности определяют по ГОСТ 7076-99 «МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме». В данном документе расчеты проводятся для материала в сухом состоянии, не регламентируется при какой весовой влажности материала необходимо проводить испытания. Некоторые производители газобетона проводят испытания на теплопроводность материала ссылаясь на ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения», в котором указаны значения весовой влажности, при которой производятся измерения: для условий «А» весовая влажность составляет 4%, для условий «Б» — 5%.

Согласно СП 23-101-2004 «Проектирование тепловой защиты зданий» Приложение Д (или СП 50.13330.2012 «Тепловая защита зданий», Приложение Т) весовая влажность газобетона значительно превышает значения ГОСТ 31359-2007: для газо- и пенобетона плотности 1200;1000;800 весовая влажность составляет: 15% для условий «А» и 22% для условий «Б».

Расчетный коэффициент теплопроводности газобетона значительно занижен по сравнению с фактическим. Данный факт связан не только с особенностями использования материала в условиях влажности, но и с самой методикой испытаний теплопроводности газобетона — влажность при испытаниях снижена в 3,75 — 4,4 раза.

Такая разница в значениях влажности говорит о том, что после возведения конструкции газобетон на протяжении определенного периода времени достигает нормируемых значений равновесной весовой влажности, которая значительно выше той, при которой проводятся испытания теплопроводности материала.

В результате фактическое значение сопротивления теплопередаче здания не совпадает с расчетным. Данный факт говорит о снижении энергоэффективности здания и увеличении эксплуатационных затрат на отопление и кондиционирование.

«Таким образом, с помощью газобетона и кирпича вполне можно создать респектабельный, теплый и долговечный дом, — резюмирует Александр Плешкин. — Но только при строгом соблюдении технологии проектирования тепловой оболочки здания с учетом всех теплопроводных включений, корректных показателей влажности газобетона, которую он приобретет в процессе эксплуатации, а также при обязательном наличии теплоизоляционного слоя и вентиляционного зазора».

Кирпич или газобетон | gazobeton.org

 

   Одним из важных критериев выбора для покупателя будущей квартиры являются строительные материалы и технологии, которые используются при строительстве дома. От них зависят, насколько комфортным и экологически безопасным будет проживание человека в доме, сколько денег будет тратиться на обогрев квартиры зимой и как долго построенный дом не будет нуждаться в капитальном ремонте, который тоже ляжет на плечи его жителям.

 

Если для межэтажных перекрытий многоэтажных жилых зданий альтернативы бетону, пожалуй, и нет, то для стен имеется широкий выбор как традиционных, так и современных энергоэффективных стеновых материалов. Среди всех стеновых материалов в последние годы наибольшее распространение на строительном рынке Украины получили блоки из автоклавного газобетона. А сама история применения автоклавного газобетона насчитывает более 80 лет, когда первые жилые дома были возведены в странах Скандинавии. В СССР автоклавный газобетон начал получать распространение в середине 50-х годов прошлого столетия. В это время было освоено производство крупных стеновых блоков и крупноразмерных плит перекрытий для строительства промышленных зданий.

В конце 50-х годов главным стратегическим направлением развития жилищного строительства в стране было принято крупнопанельное и крупноблочное строительство с производством комплектов изделий на мощных домостроительных комбинатах. Во второй половине 80-х годов в СССР для реализации жилищной программы было принято решение довести производство автоклавных газобетонов до уровня 40 млн. м3/год.

В Украине в 2016 г было произведено и реализовано 3,6 млн.м3 автоклавного газобетона. Его доля среди остальных стеновых материалов (керамический и силикатный кирпич, цементные блоки и т.д.) составила 51%.

 

Сам по себе автоклавный газобетон – это искусственный камень с равномерно распределенными порами, в которых содержится воздух. Важным фактором стабильности во времени его физико-механических характеристик является температурно-влажностная пропарка в автоклаве при температуре 190°С и давлении 12 Бар.

Благодаря пористой структуре и автоклавной обработке газобетон является одновременно теплым и прочным материалом и классифицируется в строительстве как конструкционно-теплоизоляционный ячеистый бетон.

При плотности материала 400-500 кг/куб. м блоки имеют прочность от 2,5 до 3,5 МПа. Этого вполне достаточно, чтобы строить несущие стены до пяти этажей включительно. Газоблок плотностью 400 кг/куб.м, имеющий расчетную теплопроводность 0,125 Вт/м•°С с учетом (!!!) 6% эксплуатационной влажности, теплее современного керамоблока в 1,5 раза, древесины – в 1,5 раза, ракушняка – в 2,5 раза, керамического кирпича более чем в 5 раз, шлакоблока – в 6 раз. Газобетон — самый теплый однородный каменный материал на сегодняшний день, который позволяет строить энергосберегающие стены без дополнительного утепления.

 

После автоклавной обработки газобетон содержит всего до 20 кг химически связанного алюминия, который поступает в материал как в чистом виде (примерно 400 грамм алюминиевой пудры на 1 куб), так и в виде оксида алюминия, содержащемся в цементе. Для сравнения, 1 куб.м керамического кирпича содержит 200-400 кг оксидов алюминия, которые являются основой глинозема и различных глин. Такая разница в количестве с автоклавным газобетоном обусловлена большой плотностью кирпича. Чем больше плотность материала, тем больше сырьевых компонентов (а вместе с ними и оксидов алюминия) попадает в кубический метр готовых изделий. Однако в обоих случаях переживать не стоит: окисленный алюминий – одно из наиболее стойких химических соединений, безвредных для человека. Он применяется в т.ч. и при изготовление посуды, содержится в глине, применяемой в косметических целях и т.д. А в чистом виде алюминий в природе не содержится, т.к. очень быстро окисляется на воздухе. Для предотвращения окисления на воздухе алюминиевую пудру, которую применяют при изготовлении газобетона, специально содержат в парафиновой смазке.

 

А вот что действительно влияет на экологию материала, так это его радиоактивный фон, который зависит от количества природных радионуклидов калия, радия, тория, цезия и др. элементов, которые попадают в любой стеновой материал в виде исходных сырьевых компонентов – песка, глины, известняка, мела и т.д.

Эффективная удельная активность природных радионуклидов ячеистого бетона по факту составляет 20-50 Бк/кг. У полнотелого керамического кирпича этот показатель составляет 130-170 Бк/кг. Основная причина в разнице радионуклидов – разная плотность газобетона и кирпича (400-500 кг/куб.м против 1600 кг/куб.м). Чем больше сухих веществ идет на производство материала, тем больше радиоактивный фон изделия при прочих равных условиях. Верхняя граница норматива — 370 Бк/кг.

 

Автоклавный газобетон — пористый материал с малой деформативностью и сравнительно невысокой прочностью на растяжение (как и все минеральные строительные материалы). Поэтому для закрепления в газобетоне используются дюбели, анкерящиеся по форме. Гильза дюбеля, предназначенного для работы в ячеистом бетоне, имеет развитую поверхность с размерами выступов, превышающими средний диаметр ячеек газобетона. Благодаря этому площадь контакта дюбеля в теле газобетона возрастает, а следовательно и увеличивается вырывающаяся нагрузка анкера. На сегодняшний день рынок крепежа широко представлен дюбелями для ячеистого бетона, стоимость которых сопоставима с обычными дюбелями. На стены из газобетона можно вешать как легкие шкафчики, так и тяжелые бойлеры и навесные фасады.

 

Автоклавному газобетона часто закидывают в вину влажность материала и высокую гигроскопичность. Хоть сами по себе блоки после автоклавной обработки имеют высокую влажность, благодаря высокой паропроницаемости готовые газобетонные стены достаточно быстро избавляются от ее присутствия. За 1-2 отопительных периода влажность в стене с 35-40% по массе достигает 4-6% по массе.

 

А давайте теперь посмотрим, что происходит со стенами из керамики. Изначально сухой кирпич во время строительства начинают набирать влагу благодаря капиллярной структуре материала. Во время эксплуатации дома к этой влаге добавляется эксплуатационная влажность. Не имея пористой структуры, как газобетон, имея более низкую паропроницаемость, плотная керамика довольно трудно расстается с излишками накопленной в многочисленных капиллярах влаги. В условиях эксплуатации стены из кирпича содержат 1-2% влаги по массе.

 

А теперь простая арифметика: 1 кв.м стены из газобетона плотностью 400 кг/м³ шириной 375 мм будет иметь 400х0,375х6%=9 кг реальной влаги. Аналогичная стена из керамоблоков шириной 380 мм при усредненной плотности блока 800 кг/ м³ будет иметь 800х0,38х2%=6 кг реальной влаги. Стена из полнотелого керамического кирпича плотностью 1600 кг/м³ шириной 380 мм будет иметь в условиях эксплуатации 1600х0,38х2%=12 кг влаги.

 

Гигроскопичность (способность абсорбировать пары воды из воздуха) – определяется сорбционной влажностью материала. Сорбционная влажность различных ячеистых бетонов обычно мало различается от образца к образцу и составляет около 5% по массе при относительной влажности воздуха 60% и 6-8% по массе при относительной влажности воздуха 90-95%.

 

Она примерно совпадает с той эксплуатационной влажностью в стенах, о которой мы написали выше. Какого-то проигрыша кирпичным стенам в этом плане нет.

 

По поводу трещин… Трещины могут быть в любой каменной кладке, что в газобетонной, что в кирпичной. Прежде, чем кивать на сам материал стен, надо понимать природу этих трещин. При грамотном проектировании и качественном строительстве фундамента, стен и т.д. с учетом рекомендаций производителей проблем с трещинами в конструкциях из газобетона не возникает. Усадка при высыхании в автоклавном газобетоне не превышает 0,5 мм/п м стены.

 

Для сравнения: расчетная усадка кладки из силикатного кирпича и бетонных камней составляет 0,3 мм/м, а типичная усадка цементных растворов составляет 0,8–1,5 мм/м. Если говорить о газобетоне как материале, то возможно появление мелких волосяных трещин. В большинстве случаев они идут вглубь блока всего на 5-20 мм и реальных проблем такая сетка поверхностных трещин не создает (нет дальнейшего раскрытия трещин). Если сравнивать с глиняным кирпичом, то на нем тоже есть волосяные трещины и этот факт ни у кого паники не вызывает. Что касается долговечности автоклавного газобетона, то благодаря минеральной основе ячеистого бетона и высокой морозостойкости материала (F50-100 циклов) срок службы зданий из него составляет не менее 100 лет.

 

В заключении – на каждый товар есть свой покупатель, каждый стеновой материал решает свои задачи. Если речь идет о строительстве 6-12 этажных домов с несущими стенами (без каркаса), то материал стен – однозначно кирпич в силу высоких прочностных характеристик. Если речь идет о малоэтажном или многоэтажном монолитно-каркасном строительстве, то зачем переплачивать за многократный запас по несущей способности кирпича, а затем дополнительно тратить деньги на его доутепление. Очевидны выгоды однослойных энергоэффективных стен из газобетона.

обожженных глиняных кирпичей и блоки из автоклавного газобетона — IJERT

Radhika Shukla Architecture dept. МИЭТ Университет Нагпура, Мумбаи, Индия

Реферат Инженеры и архитекторы могут выбирать материалы и продукты, которые они используют для разработки проектов. Выбор материала зависит от нескольких факторов, включая первоначальную стоимость, стоимость жизненного цикла и производительность для конкретного приложения. Из-за растущего интереса к устойчивому развитию инженеры и архитекторы более чем когда-либо мотивированы выбирать материалы, которые являются более экологичными.Однако на какой основе измерения могут инженеры и архитекторы сравнивать материалы и выбирать тот, который является более экологичным, или определять материал таким образом, чтобы минимизировать воздействие на окружающую среду? Зеленое здание нуждается в специальных материалах и системах для адаптации к устойчивости по сравнению с обычным зданием. Этот документ представляет собой попытку сравнить два основных строительных материала и предоставить всесторонний анализ, который поможет инженерам и архитекторам определиться с выбором материалов.

Ключевые словаСтроительные материалы; зеленое здание; устойчивость; Сравнительный анализ; зеленые продукты

  • ВВЕДЕНИЕ

    Кладка из кирпича была основной техникой, используемой в строительных конструкциях на протяжении как минимум семи тысячелетий [1], что делает ее одной из старейших широко используемых строительных технологий.Его наследие в существующей архитектуре по-прежнему делает его желанным архитектурным выбором во многих местах. Хотя кирпичи производятся в различных типах, материалах и размерах, которые различаются в зависимости от региона и периода времени, и производятся в больших количествах, существуют две основные категории кирпича: обожженные и необожженные кирпичи, но образ, с которым индийцы обычно ассоциируются слово

    Кирпич

    — это обожженный глиняный кирпич, который является одним из самых долговечных и прочных строительных материалов (иногда его называют искусственным камнем) и используется примерно с 5000 г. до н.э. [2].Такая долговечность обусловлена ​​полезными эксплуатационными характеристиками, широкой доступностью глины и фундаментальной простотой производства кирпича. Сушеные на воздухе кирпичи имеют более древнюю историю, чем обожженные кирпичи, известны под синонимами сырцового кирпича и самана, и имеют дополнительный компонент механического связующего, такого как солома.

    В последнее время глиняный кирпич стал жертвой пожара другого типа из-за воздействия на окружающую среду. Хотя обожженный глиняный кирпич обладает определенными неотъемлемыми устойчивыми свойствами (например,г. долговечность, высокая тепловая масса и, часто, местная добыча и производство [3]), процесс обжига, лежащий в основе его производства, вызывает некоторые проблемы устойчивости из-за потребления энергии и выбросов парниковых газов (ПГ).

    Зеленое здание нуждается в специальных материалах и системах для адаптации к устойчивости по сравнению с обычным зданием. Из-за растущего интереса к устойчивому развитию инженеры и архитекторы более чем когда-либо мотивированы выбирать материалы, которые являются более экологичными.В современном мире необходимо делать упор на устойчивое развитие, которое означает удовлетворение потребностей нынешнего поколения без игнорирования потребностей и чаяний будущих поколений. В соответствии с растущей тенденцией развития зеленого строительства в Индии также развивается индустрия экологически чистых материалов и услуг.

    Таким образом, сейчас предпочтение отдается более экологичным и эффективным строительным материалам, и автоклавный газобетон является одним из таких экологически чистых материалов. Он не только использует отходы, такие как летучая зола, но также обеспечивает достаточную прочность конструкций.AAC был разработан в 1924 году шведским архитектором, который искал альтернативный строительный материал со свойствами, подобными древесине, хорошей теплоизоляцией, прочной структурой и простым в использовании, но без недостатков горючести, гниения и повреждения термитами [4] .

    Здесь я приложил усилия, чтобы сравнить два наиболее важных и часто используемых строительных материала в строительстве, в основном для возведения стен, то есть блоки AAC и кирпичи из обожженной глины, чтобы сделать вывод, какой из двух материалов является наиболее предпочтительным.Ниже (Таблица № 1) представлен сравнительный анализ, основанный на различных качественных и количественных параметрах кирпичей из обожженной глины и блоков из автоклавного газобетона. Он также сравнивает оба материала по параметрам, необходимым для того, чтобы продукт был назван экологически чистым. (Рис.1)

  • СРАВНИТЕЛЬНЫЙ АНАЛИЗ

    1. Возобновляемые ресурсы

      Одним из основных атрибутов экологичных строительных материалов является то, что они должны использовать возобновляемые ресурсы.Возобновляемые ресурсы — это те, которые могут быть восстановлены и восполнены после использования в течение короткого периода времени, такие как ветер, гидроэнергия и т. Д., А невозобновляемые ресурсы — это те, которые после использования не могут быть восстановлены. Возобновляемый ресурс должен иметь возможность устойчивого воспроизводства со скоростью, равной или большей, чем он потребляется или уничтожается. Тот факт, что определенный ресурс может естественным образом накапливаться с течением времени, не означает, что он является возобновляемым. Если он истощается быстрее, чем может

      пополнить, значит невозобновляемый.В конечном итоге он исчезнет без вмешательства. Следовательно, верхний слой почвы, израсходованный для изготовления кирпича, является невозобновляемым ресурсом. Эту драгоценную почву, используемую для производства кирпича, можно было бы лучше использовать в сельском хозяйстве и тем самым обеспечить продовольственную безопасность для растущего населения. (Таблица 1: пункты 1 и 13)

    2. Использование отходов

    Зола-унос обычно является побочным продуктом тепловых электростанций и важным сырьем при производстве блоков AAC.Экологически чистые продукты также должны снижать загрязнение воздуха, земли и воды. Печи для обжига кирпича вызывают загрязнение воздуха, которое влияет не только на людей, но также на растительность и сельское хозяйство. Большое количество углекислого газа и других вредных газов создает угрозу глобального потепления и изменения климата. Блоки AAC имеют экологически чистый производственный процесс, единственным побочным продуктом является пар. (Таблица 1: пункты .1 и 8)

    C. Воплощенная энергия

    Это важный аспект, который необходимо учитывать при разработке любой экологичной

    Рисунок 1: Свойства устойчивого материала [5]

    материал.Воплощенная энергия — это общая энергия, необходимая для добычи, обработки, производства и доставки строительных материалов на строительную площадку. При потреблении энергии образуется CO2, который способствует выбросам парниковых газов, поэтому воплощенная энергия рассматривается как индикатор общего воздействия строительных материалов и систем на окружающую среду [6]. В отличие от оценки жизненного цикла, которая оценивает все воздействия на протяжении всего срока службы материала или элемента, воплощенная энергия учитывает только внешний аспект воздействия строительного материала.Это не включает эксплуатацию или утилизацию материалов. Блоки AAC потребляют прибл. На 70% меньше энергии, чем у глиняных кирпичей [7]. (Таблица 1: пункт 12)

    1. Энергоэффективность и водосбережение

      Это также важные характеристики устойчивых продуктов. Блок AAC с очень низкой теплопроводностью сохраняет прохладу в помещении летом и тепло зимой и лучше всего подходит как для внутреннего, так и для внешнего строительства, следовательно, он снижает нагрузку на систему HVAC, в конечном итоге экономя электроэнергию.Кирпичи потребляют больше воды, чем блоки AAC, их необходимо замочить в воде перед укладкой и требуется отверждение водой после помещения в строительный раствор. Блоки AAC не нуждаются в лечении. (Таблица 1: Пункты 7, 11, 16, 17 и 18, 23, 26, 27, 28, 29, 30, 31)

    2. Прочность и срок службы

      Блоки

      AAC превосходят кирпичи по параметрам прочности и срока службы; Блоки AAC снижают эксплуатационные расходы на 30-40% [8]. Снижает общие затраты на строительство на 2,5% по сравнению с кирпичом из обожженной глины, так как требует меньшего количества стыков.

      и снижает потребность в цементе и стали.Бетонный кирпич относительно хорошо воспринимает краску, практически не выцветает. Глиняные кирпичи в раннем возрасте часто выделяют металлические соли, которые вызывают отслаивание краски. (Таблица 1: точки 2, 3, 4, 5, 6, 9, 10, 15, 16, 17,

      18, 22, 25 и 28)

      Влага из внешних и внутренних источников может вызвать повреждение зданий; поэтому защита от влаги является первоочередной задачей. К внешним источникам влаги относятся дождь и вода из почвы. Внутренняя влага, обычно в виде влажности, может вызвать конденсацию на поверхности стен, а также конденсацию внутри самой стены.AAC имеет очень пористую структуру с «микропорами». Микропоры представляют собой маленькие пузырьки воздуха, равномерно распределенные по всему материалу, эти пузырьки воздуха препятствуют проникновению молекул воды. Следовательно, абсорбция воды материалом AAC минимальна. Все это приводит к снижению затрат на обслуживание блоков AAC и повышению их долговечности.

    3. Переработка / повторное использование

      Это и другие характеристики экологически чистых продуктов. В процессе производства блоков AAC отходы процесса резки перерабатываются вместе с сырьем и снова используются.Во время строительства практически не образуется отходов. Блоки AAC могут быть переработаны / повторно использованы для подготовки основания дорог, стяжек полов и других материалов на основе песка и цемента [9]. Обожженные кирпичи также могут быть повторно использованы в качестве заполнителей земли, для создания заполнителей для дорожного основания, ландшафтного дизайна и т. Д. (Таблица 1: пункт 8)

    4. Местная доступность

    Экологически чистые материалы должны быть доступны на месте; Азиатско-Тихоокеанский регион является самым быстрорастущим региональным рынком строительных материалов за анализируемый период 2007-2015 гг. [10].Это связано с массовым оттоком производственных и производственных баз в недорогие азиатские страны. Непрерывная и быстрая индустриализация в таких крупных регионах, как Китай и Индия, также является движущим фактором. Повышение уровня доходов, рост покупательной способности, повышение уровня жизни и т. Д. Приводят к увеличению спроса на жилые и коммерческие постройки. В настоящее время в Индии насчитывается около 35 заводов по производству блоков AAC, большая часть которых находится недалеко от Сурата, Гуджарат. По всей Индии создается все больше и больше заводов по производству блоков AAC, так как осведомленность о блоках AAC растет.(Таблица 1: пункт 14)

    Локальная доступность кирпичей больше, чем у блоков AAC. Тем не менее, глиняные кирпичи производятся в процессе, который начинается с подходящей смеси глин, которую необходимо добыть, выдержать, затем измельчить / смешать до однородной консистенции. Затем глина выдавливается через специальный пресс и нарезается по размеру. Эти необожженные кирпичи сушат перед тем, как поместить в печь, нагретую до температуры от 7000 до 11000 градусов. После этого по окончании обжига кирпичи необходимо охладить и классифицировать по цвету и прочности.Процесс очень энергоемкий, генерирует большое количество углекислого газа, его довольно сложно контролировать и он занимает до 3 месяцев. Если это еще не все, стоимость установки разумного завода примерно в 10 раз больше, чем стоимость бетона при той же производительности. Бетонные кирпичи намного проще в производстве: подходящий песчаник и цемент пропорционально смешиваются с водой, вибрируют в прессе, оставляют для застывания в течение примерно 14-28 дней, а затем готовы к

    .

    использовать. Общее время обработки от 15 до 30 дней.Затраты на энергию довольно низкие, а загрязнение минимально [11]. Соотношение места на

    production v / s Скорость производства высока, что очень мало при изготовлении блоков AAC. Производство кирпича в обычных зажимах невозможно в сезон дождей. Темп производства

    low в обычных / обычных зажимах. (Таблица 1: пункт 13, 14, 15, 19, 21, 24)

    Блок

    AAC — это 100% зеленый строительный материал и предпочтительный материал для стен в зданиях с сертификатом LEED.Это помогает уменьшить углеродный след.

    В самой Индии блоки AAC могут предотвратить выброс 200 млн тонн CO2 в окружающую среду

    экономия 20 миллиардов долларов каждый год.

    Балл. №

    Сравнительный анализ обожженных кирпичей и блоков из автоклавного пенобетона

    Параметр

    Обожженные глиняные кирпичи

    Блоки AAC

    Замечания

    1

    Состав материала

    Кремнезем (песок) + глинозем (глина) + известь + оксид железа

    + магнезия

    Другими словами — Top Soil

    Кварцевый песок + кальцинированный гипс + известь (минеральная) и / или цемент Алюминиевый порошок + летучая зола

    Другими словами-Цемент + Летучая зола

    Было установлено, что сырье, используемое для производства блоков AAC, является экологически чистым, так как используется очень мало цемента.Использование летучей золы в этом предприятии заставляет нас утилизировать отходы тепловых электростанций. Блоки AAC могут использовать летучую золу (70% от ее веса), что обеспечивает наиболее конструктивное решение для летучей золы

    .

    проблема использования.

    2

    Размер

    225 мм x 100 мм x 65 мм / 230 мм x 75 мм x 115 мм

    600/625 мм x 200/240 мм x

    100-300 мм

    Для кирпичей требуется больше раствора, так как их размер меньше.Но в блоках AAC требования к строительному раствору меньше из-за большего размера.

    3

    Прецизионный размер

    5 мм (+/-)

    1,5 мм (+/-)

    Блок AAC имеет более точные размеры, поскольку он производится с использованием технологии проволочной резки на сертифицированном заводе.

    4

    Прочность на сжатие

    2.5-3 Н / мм2

    3-4 Н / мм2 (IS 2185, Часть 3)

    Блоки

    AAC имеют более высокую прочность на сжатие, т. Е. Выдерживают большие нагрузки, чем кирпичи

    5

    Плотность в сухом состоянии

    1800-2000 кг / м3

    600-800 кг / м3

    Использование блоков AAC снижает нагрузку на фундамент и другие структурные компоненты конструкции за счет меньшего собственного веса.Снижение веса стен на 55%. Наблюдается экономия стоимости конструкции до 15%.

    Благодаря уменьшению собственного веса конструкция из блоков AAC привлекает меньше сейсмической нагрузки.

    6

    Огнестойкость (8 стен)

    Около 2 часов

    До 7 часов.

    Блоки

    AAC имеют воздушные пустоты и, следовательно, имеют лучшую огнестойкость по сравнению с кирпичами из красной глины.

    Температура плавления блоков AAC превышает 1600 градусов Цельсия, что более чем в два раза превышает типичную температуру при возгорании зданий 650 градусов Цельсия.

    7

    Энергосбережение

    Низкая

    Прибл. Снижение нагрузки на кондиционер на 25% /

    На 25 30% меньше потребление электроэнергии при ОВК

    Блоки

    AAC устойчивы к тепловым колебаниям. Это снижает общую нагрузку на охлаждение и кондиционирование воздуха.Хотя первоначальная стоимость установки может остаться прежней, но блоки AAC сокращают работу

    и очень дорого обходится.

    8

    Повторное использование отходов

    товар

    Нет

    Летучая зола

    Блоки ААЦ используют Биопродукт электростанций

    9

    Выцветание

    Обычно присутствует

    Отсутствует

    Блоки AAC не имеют высолов, выше

    , чем кирпичи

    10

    Пигментация

    Минеральные оксиды в глине плюс природный и синтезированный минерал

    пигменты оксидные

    природные и синтезированные минеральные оксидные пигменты

    11

    Теплопроводность

    Значение K = 0.81 Вт / мк

    Значение K = 0,16 Вт / мК

    Блоки AAC с очень низкой теплопроводностью сохраняют прохладу в помещении летом и тепло зимой и лучше всего подходят как для внутреннего, так и для внешнего использования

    строительство.

    12

    Воплощенной энергии / Energy required to

    производят строительные материалы

    Высокая (900-1000 кВтч / м3)

    Низкий.(50-100 кВтч / м3)

    блоков AAC потребляют прибл. На 70% меньше энергии, чем у глиняных кирпичей. Блок AAC покрывает большую площадь

    для той же массы используемого кирпича, что позволяет сэкономить на транспортных расходах и сэкономить драгоценное топливо.

    13

    Воздействие на окружающую среду

    Расход почвы

    На один глиняный кирпич уходит 3,2 кг верха

    почва

    Верхний слой почвы не используется

    На один квадратный фут коврового покрытия с облицовкой из глиняного кирпича потребуется 25,5 кг верхнего слоя почвы

    Использует летучую золу, которая является тепловой электростанцией

    отходы и, следовательно, отсутствие потребления верхнего слоя почвы

    Расход топлива

    На один квадратный фут коврового покрытия из глиняных кирпичей потребуется 8 кг угля

    Один квадратный фут ковра с блоками AAC потребляет 0.9677 кг

    уголь

    Выбросы CO2

    Балл. №

    Сравнительный анализ обожженных кирпичей и блоков из автоклавного пенобетона

    Параметр

    Обожженные глиняные кирпичи

    Блоки AAC

    Замечания

    Один квадратный фут ковра выделяет 17.6 кг

    СО2.

    Один квадратный фут ковра

    выбрасывает 2,2 кг CO2.

    14

    Социальное воздействие

    Труда

    Блоки

    AAC производятся в организованном секторе, который оплачивает государственные налоги и имеет стандартные производственные мощности.

    Неорганизованный сектор (детский труд широко распространен в неорганизованном секторе)

    Организованный сектор.Построение нации через корпоративное управление, уставный труд и управление персоналом

    практики

    Налоговые сборы

    Не отчисляет в государственную казну (налоги)

    Относится к государственным налогам по форме

    Центрального акциза, НДС и Octroi

    Производственный комплекс

    Нездоровые условия труда из-за токсичных газов.В основном это ручные процессы.

    Стандартизированный завод с автоматизированной системой

    процессов.

    15

    Скорость строительства

    Сравнительно ниже

    Очень высокий за счет большего размера, легкий вес.

    Может иметь профиль «язык — паз», что позволяет ускорить строительство, сократить трудозатраты и соединить раствор.

    за счет устранения вертикальных швов

    Производительность каменной кладки (с блоками AAC) увеличивается до 3 раз за счет меньшего количества стыков.

    16

    Влагостойкость

    Среднее значение

    Очень хорошо

    Блоки

    AAC не имеют микропор или непрерывных капилляров, через которые вода с внешней поверхности может попадать внутрь. Это означает более длительный срок службы красок и внутренних помещений без роста каких-либо грибков, обеспечивая более здоровые и долговечные интерьеры для пассажиров.

    Водонепроницаемые свойства

    AAC Blocks дополнительно улучшаются за счет добавления добавок на основе силикона.

    17

    Коэффициент водопоглощения

    дюйм кг / м2 x h0,5

    22 30 (всасывание за счет капиллярного действия)

    4 6 (без сплошных пор и капилляров)

    Использование блоков AAC ведет к долгому сроку службы краски и здоровым интерьерам

    18

    Водопоглощение

    % по весу

    Высокий.20% к объему

    Очень высокий. 45% к объему

    Объем AAC состоит из 20% твердого материала и 80% воздуха. Из-за закрытой ячеистой структуры AAC водопоглощение происходит только через твердый материал. Это твердое вещество составляет всего 20% от объема, что сильно снижает поглощение воды ААС.

    19

    Шумопередача / звукоизоляция

    Более 50 дБ для стены толщиной 230 мм

    40-45 дБ для стены толщиной 200 мм

    Блок AAC имеет лучшие звукоизоляционные свойства за счет наличия воздушных пустот.Блоки AAC имеют отличный класс передачи звука (STC) до 45 дБ. Следовательно, это

    идеальный материал для строительства стен в отелях, аудиториях, студиях, больницах и т. Д.

    20

    Простота использования / Удобство работы

    Низкая

    Высокий.

    Нарезается на необходимые размеры.

    Его можно распиливать, просверливать, прибивать гвоздями, рифить и т. Д. Можно использовать для создания арок, кривых и т. Д.

    Могут иметь ручки,

    , который упрощает подъем и установку.

    Блоки

    AAC можно легко разрезать, просверливать, забивать гвоздями, фрезеровать и нарезать канавки в соответствии с индивидуальными требованиями. Доступны нестандартные размеры.

    Упрощает гидросанитарные и электрические установки, такие как трубы или воздуховоды, которые могут быть установлены после завершения основного строительства.

    21

    Рентабельность

    Нет

    Снижение собственного веса ведет к снижению расхода стали и цемента и менее

    котлован под фундамент.

    блоков AAC снижают общую стоимость строительства

    22

    Скорость изготовления

    Низкая

    Высокая

    AAC Сокращает время строительства на 20%. Разные размеры блоков позволяют уменьшить количество стыков в кладке стен.

    Более легкие блоки делают строительство проще и быстрее.

    Простота установки. Быстро схватывается и затвердевает.

    Балл. №

    Сравнительный анализ обожженных кирпичей и блоков из автоклавного пенобетона

    Параметр

    Обожженные глиняные кирпичи

    Блоки AAC

    Замечания

    23

    Качество / Долговечность

    Обычно изменяется

    Одежда форменная и законченная

    Блоки

    AAC производятся на заводе с автоматизированными процессами, поэтому они имеют одинаковое качество и, следовательно, более долговечны.

    24

    Использование воды во время производства

    Высокий, перед использованием необходимо отвердить

    Низкий, перед использованием необходимо только смачивать поверхность

    AAC экономит воду

    25

    Применимость

    Несущая и ненесущая

    -Нагрузка несущая кладка от 2 до 3 этажа.

    -Перегородки в несущих и каркасных конструкциях.

    -Заполнение стен в каркасах многоэтажных зданий как внутренних, так и внешних.

    -Все площадки засыпки, в том числе в плоских плитах и ​​взамен кирпичных плит при выветривании, более

    крыша.

    Ширина диапазона применимости выше в блоках AAC, особенно они используются в

    26

    Землетрясение

    Среднее.Условное соответствие сейсмическим зонам IV и V

    Хорошо. Как правило, они соответствуют требованиям сейсмической зоны IV и V

    .

    Силы землетрясения, действующие на конструкцию, пропорциональны весу здания, поэтому блоки AAC демонстрируют отличную устойчивость к силам землетрясений.

    Они поглощают и передают меньше сейсмических сил в случае любого землетрясения. В структуре есть миллионы крошечных ячеек, которые амортизируют здания от основных сил, предотвращая прогрессирующее обрушение.Районы сейсмической активности используют исключительно блоки AAC. Доказано

    выдерживает ветровые нагрузки тропических штормов 5 категории.

    27

    Расход раствора на м3 с 1: 6

    1,40 мешок цемента

    0,5 мешок цемента

    Блоки переменного тока

    в 7 раз больше обычных кирпичей. Чем больше размер, тем меньше стыков.Меньшее количество стыков приводит к меньшему количеству строительного раствора. Всего

    60% сокращение использования минометов.

    28

    Экономия на гипсе

    общее снижение стоимости штукатурных работ на 35%

    Блоки

    AAC имеют однородную форму и текстуру, что обеспечивает ровную поверхность стен. Блок AAC, когда он построен, имеет обе стороны как светлые лица, в отличие от кирпичной кладки, у которой только одно лицо как светлая поверхность.Следовательно, толщина

    Штукатурка для блока AAC намного меньше по сравнению с обычным кирпичом.

    29

    Техническое обслуживание

    Высокая

    Сравнительно меньше по своим превосходным свойствам

    Блок

    AAC снижает эксплуатационные расходы на 30-40%.

    Снижает общую стоимость строительства на 2,5%, так как требует меньшего количества стыков и снижает потребность в цементе и стали.

    Блоки с высокой изоляцией экономят до 30% затрат на электроэнергию.

    Покраска стен и штукатурка служат дольше, так как почти полное отсутствие высолов влияет на AAC. Это приводит к снижению затрат на техническое обслуживание.

    30

    Убытки из-за поломок

    Примерно от 10 до 12%

    Минимальная (1-2%)

    В случае разрушения блоков AAC, он будет разделен на две или три части, которые могут быть использованы в кладке как «кирпичная бита».

    31

    Устойчивость к вредителям и термитам

    Низкая

    Высокий.

    Блоки

    AAC — это неорганический, устойчивый к насекомым и прочный строительный материал для стен.

    Термиты и муравьи не едят и не гнездятся в блоках AAC.

    Блоки

    AAC не допускают распространения термитов и роста вредителей и, следовательно, продлевают срок службы дорогих деревянных интерьеров.

    32

    Устойчивость к дыму

    Среднее значение

    Хорошо.

    Блоки

    AAC полностью неорганические и, следовательно, не выделяют токсичных паров или ядовитых газов, вредных для людей. Герметичность блоков также предотвращает появление токсичных паров от

    .

    распространяется на другие части здания.

    33

    Стоимость кубометра

    (регион Мумбаи)

    рупий. 4000 / —

    рупий. 3800–4000 / —

    Ставки почти на уровне

  • СТОИМОСТЬ

    В конечном счете, наиболее важным и мотивирующим фактором, который стимулирует принятие и использование любого материала, которого ждут все разработчики, подрядчики и конечные пользователи, является экономия затрат. Один блок AAC размером эквивалентен 8 красным кирпичам, следовательно, он уменьшает 1 / 3-й стык, в результате чего экономия раствора

    — до 60% [12].Блоки AAC вырезаются автоматически, имеют точные размеры, что приводит к более тонкому слою штукатурки по сравнению с глиняными кирпичами. Он экономит раствор в штукатурке от 35% до 40% и имеет преимущество в увеличении площади ковра, а также блоки AAC позволяют резко снизить собственный вес [13]. Даже такое уменьшение собственного веса приводит к сокращению расхода стали и цемента и меньшим объемам земляных работ для фундамента. Стоимость строительных материалов варьируется от региона к региону. В Мумбаи кирпич стоит от 6 до 7 рупий за единицу.Например, один кубический метр состоит из 600 кирпичей, что стоит около 4000 рупий за кубический метр. Однако блоки AAC доступны по цене от 3800 до 4000 рупий за см3 [14]. Строители предпочитают AAC, учитывая многочисленные преимущества материалов, как показано выше. (Таблица 1: точки 15, 20, 28, 32)

  • ЗАКЛЮЧЕНИЕ

  • Однако заменить 7милленовые старые материалы на новые сложно. Кроме того, доступность по-прежнему остается проблемой в Индии. Блоки AAC легко доступны в южных и западных регионах страны.Блоки AAC набирают популярность в северных регионах и пользуются спросом в городах второго уровня.

    Сравнительный анализ показывает, что почти по всем параметрам блоки AAC имеют преимущество перед кирпичами из обожженной глины. Использование блоков AAC приводит к экономии общей стоимости проекта; позволяет ускорить процесс строительства, снизить воздействие на окружающую среду и социальную сферу. Таким образом, можно сделать вывод, что рекомендуется использовать блоки ACC вместо кирпича из обожженной глины. Разработчикам, подрядчикам и частным лицам рекомендуется поощрять использование этого продукта, поскольку его использование отвечает национальным интересам.

    Г-н Сахил Суман Спасибо за вашу необходимую поддержку.

  • Майкл Чусид, РА, FCSI, Стивен Х. Миллер, CSI, и Джули Рапопорт, доктор философии, PE, LEED AP, Строительный кирпич устойчивого развития, спецификация строительства, май 2009 г.

  • www. Wikipedia.com

  • Чарльз (Чип) Б. Кларк мл., ЧП, AIA, LEED AP, одетый в зеленое, Спецификация строительства, октябрь 2008 г.

  • www.biltechindia.com

  • конструктор.орг / экологически чистые строительные материалы

  • www.level.org.nz,

  • www.grihaindia.org, PPT, Атул Капур, HIL — Улучшение жизненных пространств Индии, 26 февраля 2013 г.

  • www.biltechindia.com

  • www.swedgeo.se, PPT Питера Нильсена, Йеруна Фрайдерса, Криса Брооса, Мике Квагебер, Переработка газобетона в автоклаве (AAC), 14 июня 2012 г.

  • www.aac-india.com

  • www.westerngranite.co.za

  • www.indiamart.com

  • www.constructionworld.in

  • www.constructionworld.in, Вершина квартала, сентябрь 2013 г.

  • A Кратковременно автоклавные газобетонные блоки — белые кирпичи Krrish

    AAC или Блоки из автоклавного пенобетона — это легкий, сборный железобетон, с высокими изоляционными свойствами, несущий нагрузку, прочный строительный продукт, который доступен на рынке в широком диапазоне размеров и прочности.
    Автоклавный газобетон или материал AAC был впервые разработан в Швеции в 1924 году. Это очень популярный строительный материал такого рода в Европе и быстро принимается во всем мире. Материал, используемый для изготовления блоков AAC, — это известь, песок, цемент и вода, небольшое количество разрыхлителя.
    Преимущества автоклавного газобетона следующие: —

    • Огнестойкость: В зависимости от толщины блоков AAC они обладают огнестойкостью от 2 до 6 часов.
    • Устойчивость к вредителям: Материалы, используемые для изготовления блоков AAC, неорганические, что помогает предотвратить появление таких вредителей, как термиты.
    • Звукоизоляция: Пористость блоков AAC способствует звукопоглощению. Класс передачи звука (STC) составляет до 45 дБ, что делает его идеальным материалом для строительства стен в аудиториях, отелях, студиях, больницах и т. Д.
    • Сейсмостойкость: Легкость блоков AAC делает их идеальным строительным материалом.
    • Быстрая конструкция: Поскольку блоки AAC очень удобны в обращении, для блоков AAC можно легко использовать обычные инструменты, которые используются для резки дерева, такие как дрель, ленточные пилы и т. Д. Кроме того, блоки AAC бывают больших размеров, поэтому в них меньше стыков, что в конечном итоге приводит к более быстрому строительству.
    • Долговечность: Блоки AAC очень прочные и долговечные. Он изготовлен из материалов, не поддающихся биологическому разложению, которые не гниют и не плесневеют.
    • Экономия затрат: Блоки AAC не только легче красных кирпичей, но и дешевле красных кирпичей.
    • Нетоксично: Блоки AAC не содержат токсичных газообразных веществ.
    • Высокая прочность на сжатие: Блок имеет среднюю прочность на сжатие (3–4,5) Н / мм3, что превосходит большинство других легких блоков и на 25% прочнее других изделий той же плотности.
    • Теплоизоляция: Блоки AAC обладают исключительными теплоизоляционными качествами, которые помогают поддерживать внутреннюю температуру, чтобы тепло зимой и прохладно летом, что приводит к экономии нагрузки на систему кондиционирования и, следовательно, к повышению энергоэффективности.
    • Влагостойкость: Блоки AAC избегают как внешних, так и внутренних источников влаги, которые могут вызвать повреждение зданий.
    • Экологичность: Блоки AAC — это нетоксичный продукт, который не загрязняет воздух, землю или воду ни при производстве, ни во время строительства.
    • Легкий вес: Одной из уникальных особенностей блока AAC является его легкий вес. Он в 3 раза легче красного кирпича.
    • Высокая стойкость к проникновению воды: Ячеистая и прерывистая микроструктура блоков AAC делает их лучше, чем обычные глиняные кирпичи, по водонепроницаемости и, таким образом, обеспечивает лучшую устойчивость к проникновению влаги.

    Монтаж на известково-песчаные блоки, кирпич и кладку из пенобетона

    ЗАГРУЗКА
    ВЫРАВНИВАНИЕ

    Не прогибается, на цементной основе, быстро затвердевает, модифицированный полимером, с низкой усадкой и кремообразным выравнивающим составом, 2-50 мм

    ГИДРОИЗОЛЯЦИЯ

    Гибкая паропроницаемая водонепроницаемая суспензия на минеральной основе для помещений с повышенными требованиями во внутренних и внешних помещениях

    Однокомпонентный гибкий водостойкий раствор для стен / пола

    Армированная тканью водонепроницаемая мембрана из листового материала

    УСТАНОВКА ПЛИТКИ

    Легкий эластичный клей с низким содержанием пыли для монтажа на тонкие, средние и толстые станины

    Сильнодеформируемый эластичный клей для тяжелых условий эксплуатации

    Серый, очень эластичный клей для внутренних и наружных работ

    Эластичный клей для натурального камня

    ЗАЗЕМЛЕНИЕ

    Простой в использовании раствор, ширина швов до 6 мм

    Быстротвердеющий эластичный раствор, ширина шва 3-20 мм

    Многофункциональная эластичная затирка на минеральной основе для плитки, натурального камня и других отделочных материалов с шириной шва от 1 до 10 мм, с FAST TECHNOLOGY

    Герметик силиконовый для деформационных швов

    Силиконовый герметик для эластичных швов без изменения цвета

    3 Ключевые перспективы автоклавного газобетона на будущее

    Роквилл, Мэриленд, 1 марта 2018 г. (ГЛОБУС НОВОСТЕЙ) — Новый исследовательский отчет Fact.MR прогнозирует, что мировой рынок автоклавного газобетона будет отражать умеренный среднегодовой темп роста объема в 4,3% в период с 2017 по 2026 год. К концу 2026 года прогнозируется глобальная продажа автоклавного газобетона на сумму более 7 миллиардов долларов США.

    Материалы AAC считаются экологически чистой и превосходной альтернативой традиционным строительным материалам

    Материалы AAC стали превосходной альтернативой традиционным кирпичным и бетонным блокам. AAC также занимает лидирующие позиции с точки зрения надежности поставок и воздействия на окружающую среду в плане снижения энергопотребления и переработки отходов.AAC производится из цемента, мелких заполнителей и расширительных агентов, вызывающих расширение свежей смеси. По сравнению с обычным бетоном AAC схватывается и затвердевает быстрее. Такие характеристики продукта чрезвычайно важны для современного строительства. Кроме того, блоки AAC можно легко просверлить, резать, фрезеровать, прибивать гвоздями и нарезать канавки в соответствии с конкретными требованиями.

    Запрос образца отчета — https://www.factmr.com/connectus/sample?flag=S&rep_id=509

    Материалы AAC являются отличными теплоизоляторами и находят применение в архитектурных проектах, где звукопоглощение является должен иметь.В то же время огнестойкость и устойчивость к плесени AAC делают его подходящим строительным материалом для критически важных инфраструктур. AAC считается экологически чистым и устойчивым строительным материалом. Производство AAC требует относительно меньшего количества энергии и минимальных или нулевых выбросов загрязняющих веществ. Это связано с тем, что материалы, используемые при производстве AAC, можно повторно использовать или просто снова добавить в смесь, поэтому проблемы с отходами незначительны.

    Концентрация пара и газы, образующиеся во время производственного процесса, фактически диффундируют через ячеистую анатомическую структуру AAC.Многие экологические организации, включая Международный институт здорового строительства и Федеральную ассоциацию здоровых строительных материалов, распространяют информацию о материалах AAC. Более того, возросшая озабоченность по поводу глобального потепления и введения новой международной экологической политики, вероятно, частично будет способствовать принятию AAC в течение отчетного периода.

    3 Основные выводы из отчета Fact.MR о рынке автоклавного газобетона на прогнозный период 2017-2026 гг. автоклавный газобетон, за которым следует Северная Америка.Предполагается, что почти половина стоимости рынка будет принадлежать продажам AAC в APEJ и Северной Америке в совокупности. Европа также захватит большую долю доходов на рынке и будет регистрировать сравнительно более быстрое расширение рынка, чем Северная Америка до 2026 года.

    Просмотрите полный отчет с TOC- https://www.factmr.com/report/ 509 / autoclaved-газобетон-рынок

    2- Ожидается, что в зависимости от типа продукта продажи блоков будут значительно выше, чем продажи панелей и перемычек вместе взятых.Тем не менее, предполагается, что панели и перемычки будут отражать параллельное расширение продаж при CAGR выше, чем продажи блоков до 2026 года.

    3- Ожидается, что продажи AAC останутся самыми большими для конечного использования в коммерческом строительстве и строительстве инфраструктуры, и в совокупности прогнозируется закрытие примерно в 90 000 тыс. м 3 к концу 2026 года.

    Наличие нескольких поставщиков привело к фрагментации мирового рынка автоклавного пенобетона, однако несколько глобальных поставщиков будут продолжать доминировать на рынке.В отчете также оценивается приток региональных и местных поставщиков на рынок, вызванный устойчивой индустриализацией в развивающихся странах. Чтобы сохранить свои позиции на рынке, глобальные поставщики принимают стратегии слияний и поглощений, в то время как МСП направляют свою концентрацию на расширение своих инновационных возможностей. Эти МСП конкурируют с точки зрения затрат, производительности, клиентоцентризма и качества.

    Ключевые игроки рынка, представленные в отчете, включают Buildmate Projects Pvt.Ltd., Brickwell Infra Private Limited, Biltech Building Elements Limited, AKG Gazbeton, Aercon Florida Llc, Eastland Building Materials Co., Ltd., Aircrete Group NV, Solbet Sp ZOO, UAL Industries Ltd., H + H International AS, ACICO Industries Co. KSC, JK Lakshmi Cement, Xella Group, CSR Ltd. и UltraTech Cement Ltd.

    Запросить скидку на этот отчет — https://www.factmr.com/connectus/sample?flag=D&rep_id=509

    О факте.MR

    Факт.MR — это быстрорастущая исследовательская компания, предлагающая наиболее полный набор синдицированных и специализированных отчетов о маркетинговых исследованиях. Мы считаем, что трансформирующий интеллект может обучать компании и вдохновлять их на принятие более разумных решений. Мы знаем ограничения универсального подхода; именно поэтому мы публикуем многоотраслевые отчеты о глобальных, региональных и национальных исследованиях.

    Контакт

    Г-н Рохит Бхисей
    Fact.MR
    11140 Rockville Pike
    Suite 400
    Rockville, MD 20852
    США
    Электронная почта: sales @ factmr.com
    Интернет: https://www.factmr.com/
    Читайте новости отрасли на — https://www.industrynewsanalysis.com/

    (PDF) ОБЗОР СВОЙСТВ ПЕНОПЕТРОБЕТОНА И ЕГО ПРЕИМУЩЕСТВА ПЕРЕД НОЖГЕННЫМ КИРПИЧОМ

    A C S T — 2 0 1 8 1 | Стр.

    ОБЗОР СВОЙСТВ ПЕНОПЕННОГО БЕТОНА

    И ПРЕИМУЩЕСТВА ПЕРЕД НОЖЕННЫМ КИРПИЧОМ

    * Камал Кумар шарма1, Хина Гупта 2

    1MabalandTech Студент 9000 Punjit, инженер-конструктор Njit 2 Центральный научно-исследовательский институт строительства (CBRI) Roorkee, Uttarakhand

    1kamalsharma25091994 @ gmail.com

    [email protected]

    РЕЗЮМЕ

    Зеленое здание — это экологичное здание. Обожженный глиняный кирпич — преобладающий сужающийся материал

    , используемый для перегородок в зданиях. Производство глиняного кирпича требует

    большого количества энергии. При производстве глиняного кирпича выбросы дыма являются основным фактором загрязнения окружающей среды и глобального потепления. Это основные проблемы

    , потому что он отвечает за разбалансировку окружающей среды и вызывает различные заболевания.Итак,

    с точки зрения зеленой среды, лучшим решением будет использование пенобетона

    . Пенобетон — это легкий бетон. Не содержит крупных заполнителей

    и представляет собой пористый раствор. Пенобетон очень прочен на песок, а

    имеет высокую дозу летучей золы, что делает его экономичным и экологически чистым продуктом.

    Разнообразие прочности и плотности делает пенобетон более гибким.В этой статье описываются свойства пенобетона

    по сравнению с другими альтернативными материалами, что делает его

    превосходящим аналогичный альтернативный материал и делает строительство экологически чистым, экономичным, сейсмостойким, сейсмостойким, огнестойким, долговечным и удобным для дизайна.

    Ключевые слова: Зеленое строительство, устойчивая среда, обожженный глиняный кирпич, пенобетон

    пенобетонные блоки.

    ВВЕДЕНИЕ

    Общая цель зеленого строительства — уменьшить воздействие искусственной среды

    на здоровье человека и окружающую среду за счет правильного использования воды, энергии и других ресурсов,

    , а также снижения загрязнения, отходов и деградации окружающей среды.Деградация окружающей среды

    усугубляется из-за истощения таких ресурсов, как воздух, вода и почва.

    Деградация окружающей среды является причиной разрушения экосистемы и исчезновения

    диких животных. Как мы знаем, производство кирпича из обожженной глины требует большого количества энергии

    и выделяет дым в печи для обжига кирпича и разрушение верхнего слоя почвы при производстве кирпича. Итак,

    нуждаются в поиске другого альтернативного строительного материала.Пенобетон — зеленый строительный материал

    . Он производится из неорганических и природных материалов, таких как песок, и использует отходы

    , такие как летучая зола, и не имеет остатков. Эти особенности делают его зеленым строительным материалом

    . Пенобетон — это смесь цемента, воды, мелких заполнителей

    (песок, летучая зола и др.) И стабильной пены. По словам Невилла, А. (1995) диапазон плотности легкого бетона

    составляет от 300 до 1850 кг / куб.Пенобетон имеет желательные характеристики

    , такие как низкая прочность на сжатие, хорошая теплоизоляция, огнестойкость и хорошая звукоизоляция

    .

    МЕТОДОЛОГИЯ

    Пенобетон представляет собой смесь цемента, воды, мелких заполнителей (песок и летучая зола) и пены

    .

    Цемент: Обычно мы использовали портландцемент марок 33, 43 или 53 из имеющихся в продаже.

    Содержание цемента, используемое для большинства обычных смесей, составляет 300 — 375 кг / куб.

    Воздействие стен с заполнением из кирпича и пенобетона на здания

    П. Говиндан, М. Лакшмипати А. Р. Сантакумар, «Пластичность заполненных рам», Journal Proceedings, Vol. 83, No. 4, pp. 567-576, 1986. DOI: https://doi.org/10.14359/10450

    Э. Винцелеу, «Заполнение железобетонных рам как усиливающее вмешательство», Семинар по оценке и перепроектированию железобетонных конструкций, Измир, Турция, 1989 г.

    стр.Негр. Дж. Верзелетти, «Влияние заполнения на глобальное поведение корпусов R / C: энергетические соображения от псевдосинамических испытаний», Earthquake Engineering and Structural Dynamics, Vol. 25, No. 7, pp. 753-773, 1996. DOI: https://doi.org/10.1002/(SICI)1096-9845(199608)25:8<753::AID-EQE578>3.0.CO;2-Q

    И. Х. Чагатай, «Binalarda Kisa Kolona Etki Eden Parametrelerin Incelenmesi», Altinci Ulusal Deprem Muhendisligi Konferansi (Шестая национальная конференция по сейсмостойкости), Стамбул, Турция, 16-20 октября 2007 г. (на турецком языке)

    р.Зарник, «Моделирование реакции каркаса, заполненного каменной кладкой», 10-я Европейская конференция по сейсмостойкости, Вена, Австрия, 28 августа — 2 сентября 1995 г.

    А. Коджак, De Supreme, Dayanikli Yapi Tasarimi Ders Notlari, Yildiz Teknik Universitesi, 1998 (на турецком языке)

    Х. Билир Ожан, И. Х. Чагатай, «Механическое поведение кирпичных панелей при одноосном сжатии», Журнал механики материалов и конструкций, Vol. 9, No. 4, pp. 385-395, 2014 г. DOI: https: // doi.org / 10.2140 / jomms.2014.9.385

    И.О. Демирель, Э. Канбай, Б. Биничи, А. Якут, З. Эрюртлу, «Газбетон Долгулу Бетонарме Черчевелерин Депрем Перформанси Узерин Денейсель Шализма», 3. Турция Депрем Мухендислиги ве Сисмолоджи Конферанси, инженерная конференция по сейсмологии Турции , Турция, 14-16 октября 2015 г. (на турецком языке)

    I. Aydogdu, Dolgu Duvarli Cercevelerin Davranisi, MSc Thesis, Yildiz Teknik Universitesi, 1995 (на турецком языке)

    E.Ялчин, Долгу Дуварлари ве Конумларинин Кок Катли Бетонарме Япиларин Депрем Кувветлери Алтиндаки Давранисина Эткилери, диссертация на степень магистра, ITU, 1999 (на турецком языке)

    И. Х. Чагатай, С. ве Гузельдаг, Йени Депрем Йонетмелиги (TDY-98) SAP2000N Уйгуламалари, Бирсен 2002 (на турецком языке)

    O. Oktem, Betonarme Cerceve Sistemlerinin Lineer Olmayan Hesabi ve Dolgu Duvarların Modellenmesi, диплом магистра, ITU, 2003 (на турецком языке)

    Э. Дундар, Cok Katli Betonarme Yapılarda Bolme Duvarlarının Deprem Davranisina Etkisi, MSc Thesis, Cukurova Universitesi, 2007 (на турецком языке)

    А.Budak, Dolgu Duvarli Cercevelerin Sonlu Elemanlar Yontemi Ile Malzeme Bakimindan Dogrusal Olmayan Hesabi, кандидатская диссертация, Karadeniz Teknik Universitesi, 1997 (на турецком языке)

    S. Donmez, Deprem Etkisinde Betonarme Binalarda Hasarin Olusmasinda Dolgu Duvarların Modellenmesi ve Tasiyici Sisteme Katkisi, диплом магистра, ITU, 2006 (на турецком языке)

    B. Yucesan, Betonarme Cercevelerin Guclendirilmesinde Yuksek Dayanimli Тугла Дуварлар, диплом магистра, ITU, 2005 (на турецком языке)

    А.Карадуман, «Долгу Дуварли Cercevelerin Yatay Yukler Altindaki Davranislari Uzerine Deneysel Bir Calısma», Muhendislik Fakultesi Muhendislik Bilimleri Dergisi, (Журнал технических наук), Университет Памуккале, Vol. 11, No. 3, pp. 345-349, 2005 (на турецком языке)

    З. Бабаев, Ч. Эйюбов, И. Мурат, Ч. Аскеров, «Кирец Тасиила Япилмис Тасийичи Дуварларин Дусей ве Ятай Юклерин Эткиси Алтиндаки Давранисинин Арастирилмаси», Пятый международный конгресс ACE по достижениям в области гражданского строительства, Стамбул, 2002 г., ITU Турецкий)

    H.Сесигур, О. С. Челик, Ф. Цили, «Депрем Риски Дусук Болгелерде Орта Юксекликтеки Донатили Газбетон Биналарин Уйгуланабилирлиги, Алтинчи Улусал Депрем Мухендислиги Конферанси (Шестая национальная конференция по сейсмостойкости), Стамбул, Турция, 16-20 октября 2007 г.

    Б. С. Смит, К. А. Картер, «Метод анализа заполненных рам», Труды Института инженеров-строителей, Vol. 44, No. 1, pp. 31-48, 1969. DOI: https://doi.org/10.1680/iicep.1969.7290

    Р. Дж. Мейнстоун, «О жесткости и прочности заполненных рам», в: ICE Proceedings, Suppl. iv, стр. 57-90, 1974

    Э. Чаглаян, «Betonarme Cercevelerin Yatay Yuklere Gore Analizinde Dolgu Duvar Etkisinin Incelenmesi, кандидатская диссертация, Fen Bilimleri Enstituss — Manisa Celal Bayar Universitesi, 2006 г. (на турецком языке)»

    Турок Депрем Йонетмелиги, Депрем Болгелеринде Япилакак Япилар Хаккинда Йонетмелик, 26454 2007 (на турецком языке)

    Невероятный кирпич из пенобетона по низкой цене

    Превосходное повышение производительности вашего производства кирпича. кирпич газобетонный . Они доступны на Alibaba.com в виде заманчивых предложений, которые нельзя игнорировать. Премия. Газобетонный кирпич обладает непревзойденными качествами, которые были достигнуты благодаря передовым технологиям и изобретениям. Они увеличивают скорость производства кирпича, следовательно, экономят время и энергию. Материалы, используемые в. Газобетонный кирпич прочен и долговечен, что обеспечивает долгий срок службы и неизменно высокую производительность.

    Обширная коллекция. Кирпич из газобетона существует в различных моделях, которые учитывают различные бизнес-требования и индивидуальные особенности для всех видов строительных работ. Alibaba.com стремится убедить всех покупателей, что товары только высшего качества. На участке продаются газобетонный кирпич . Соответственно, поставщики подвергаются тщательному контролю на предмет соблюдения всех нормативных стандартов. Таким образом, покупатели всегда получают. газобетонный кирпич , который превосходит то, что обещает.

    Благодаря постоянному техническому прогрессу производители внедрили изобретения, которые снижают потребность в энергии. кирпич газобетонный . В результате вы экономите больше денег на счетах за топливо и электроэнергию. Файл. Газобетонный кирпич также обладает исключительными характеристиками безопасности, чтобы гарантировать минимальный риск, связанный с производством. При относительно низких затратах на их приобретение и обслуживание расширение. Кирпич из пенобетона разумно доступен и предлагает соотношение цены и качества.

    Это ваше время, чтобы сэкономить деньги и время, делая покупки в Интернете на Alibaba.com. Исследуй разные. газобетонный кирпич на сайте и доверьтесь самому привлекательному и подходящему для вас. Если вы ищете индивидуальную настройку в соответствии с конкретными требованиями, ищите.