Как укладывать арматуру для ленточного фундамента: Как правильно армировать ленточный фундамент

Содержание

Как правильно вязать арматуру на ленточный фундамент: инструкция

Каждый, кто строит дом или баню своими руками, задумывается над тем, как вязать арматуру на ленточный фундамент. Фундамент несет на себе большую нагрузку, поэтому к выполнению задачи необходимо подойти серьезно. Неверная закладка арматуры способна стать причиной преждевременного разрушения фундамента и появления трещин.

Сколько арматуры потребуется?

Для того чтобы узнать количество арматуры, важно знать площадь основания строения и глубину, на которое оно закладывается. На расчеты непосредственно влияют стабильность почвы и ее состав, близость грунтовых вод, конфигурация участка.

Как монтируют каркас?

Каркас для ленточного фундамента монтируют методом вязки. Метод сварки не приветствуется профессионалами. Под воздействием сварки металл подвергается резким температурным перепадам и теряет прочностные характеристики. Вязать каркас достаточно непросто, поэтому лучше делать это с помощниками и использовать специальную мягкую проволоку из стали. Не рекомендуют также применять пластиковые хомуты, так как полученные таким методом соединения будут смещаться вместе с подвижной бетонной смесью внутри опалубки.

Армирование повышает прочностные характеристики ленточного фундамента и позволяет создавать максимально устойчивую конструкцию. При соблюдении всех требований к технологическому процессу ленточный фундамент будет отвечать самым высоким требованиям к долговечности, надежности, способности противостоять высоким механическим нагрузкам и воздействию внешней среды.

Что может понадобиться?

Самостоятельно связать арматуру для ленточного или свайного фундамента можно при помощи самодельного или заводского крючка, используя схемы расположения арматуры внутри конструкции основания из бетона. Торцевые области усиливаются П-образными элементами. Армирование выполняют по специальным схемам, простым перехлестом прутьев армировать углы нельзя. Каркас связывают непосредственно внутри опалубки.

Как укладывают арматуру?

Максимального сцепления с бетоном позволяет добиться ребристая арматура. Ребристые пруты используют для продольных элементов конструкции, на которые приходится наибольшая нагрузка. При монтаже каркаса учитывают, что арматура не должна примыкать к дну траншеи, опалубке и верхней части бетонного основания. Величина отступа – не менее 50 мм. Таким образом, стальные прутья полностью скрываются в бетонной массе, и исключается риск коррозии. Однако углублять арматурный каркас слишком сильно не рекомендуется, так как наибольшая область растяжения ленточного фундамента расположена на его поверхности.

Преимущества армированного фундамента

В качестве основы большинства частных построек используют ленточный фундамент. Он обладает следующими преимуществами:

  • относительная конструктивная простота,
  • возможность оборудовать подвальное помещение,
  • способность выдерживать тяжелые перекрытия,
  • отсутствие необходимости использовать спецтехнику.

Ленточный фундамент формируется в зависимости от планировки помещений, он монтируется по всему периметру дома, под несущими стенами и внутренними перегородками. Бетонная масса усиливается в данном случае с помощью каркаса из металлических прутьев. Железобетонная конструкция выгодно совмещает в себе прочностные характеристики обоих материалов и позволяет возводить объекты малоэтажного домостроения, дома, бани, гаражи. Включение каркаса из металлических прутьев в бетонное основание и называется армированием.

Нагрузка на фундамент чаще всего бывает неравномерной, по этой причине в конструкции возникают внутренние напряжения. Причин этому множество: изменения грунта, неровность земельного участка, различный вес определенных частей постройки в силу неравномерной интенсивности использования. Бетон демонстрирует низкие показатели сопротивления растяжению. Стальная арматура обладает высокими пластичными свойствами, что компенсирует недостатки бетона.

Армированный бетон – идеальное решение для ленточного фундамента. Один материал противостоит сжатию, другой – растяжению, вместе они эффективно сопротивляются разнонаправленным нагрузкам, исключая риски разрушения оснований зданий и сооружений. Арматурный каркас увеличивает устойчивость конструкции. Кроме того, правильно проведенное армирование с использованием всех рекомендаций к технологическому процессу в отношении того, как вязать арматуру на ленточный фундамент, позволяет сэкономить средства, необходимые на строительство. Уменьшение массивности фундамента благодаря использованию стальной арматуры снижает фактические затраты бетона.

Купить бетон

Схемы вязки арматурного каркаса

Правильная вязка арматурного каркаса представляет соединение стальных прутьев в виде клетки. Ряды соединяются с вертикальными прутьями под прямым углом. Схема вязки выглядит следующим образом:

  • Фрагмент вязальной проволоки длиной 25-30 см сгибают посередине и заводят под стержни, располагая по диагонали к их пересечению;
  • Петля, образованная местом сгиба, цепляется крючком, противоположный конец проволоки укладывается над крючком;
  • Вращательными движениями крючка создается скрутка из нескольких оборотов;
  • Крючок убирается, а концы проволоки загибаются внутрь арматурной сетки.

Если армировать углы методом простого перехлестывания стержней, вы нарушите технологию строительства. Углы армируют согнутыми элементами и усиливают их П-образными анкерами. В противном случае конструкция будет недостаточно жесткой, и фундамент будет подвержен преждевременному разрушению.

Укладка каркаса

Арматурный каркас монтируется непосредственно внутри опалубки, затем внутри него укладываются трубы коммуникаций, и выполняется заливка бетонного раствора. Бетон распределяется равномерно, в несколько слоев. После того, как бетон полностью высохнет, проводятся работы по гидроизоляции фундамента.

Как вязать арматуру для монолитной плиты?

Арматурный каркас используется в монолитной плите фундамента для компенсации растяжения, повышая прочность конструкции в 10 раз. Можно использовать готовые железобетонные плиты, однако гораздо дешевле изготовить их непосредственно на месте.

Какие материалы требуются?

Для монолитных плит используют бетон, арматуру, металлические прутья и стальную проволоку для связывания каркаса из арматуры. Очевидный метод сварки применять также не рекомендуется: после воздействия сварочного аппарата металл быстро теряет первоначальные свойства и разрушается под воздействием влажной среды. Связывать арматуру для монолитной плиты намного проще, чем для ленточного фундамента. Из инструментов понадобятся специальный крючок и угловая шлифмашина. Иногда для ускорения работ используют шуруповерт с крючком, который вставляют в зажимной патрон.

Каким должен быть каркас?

Для монолитных плит используют двусторонний каркас, который состоит из верхнего и нижнего слоев. Арматура должна отставать от краев плиты фундамента на 3-5 см. Изгибать и дополнительно усиливать арматуру в углах не обязательно, в отличие от технологии устройства ленточного фундамента. Стальную проволоку затягивают на стыках прутьев арматурного каркаса, тем самым придавая конструкции высокую прочность.

Как избежать ошибок?

Главной ошибкой при частном строительстве считается использование готовой сетки, которая изготавливается промышленным способом. Производители таких конструкций чаще всего используют сварку, которая опасна снижением рабочих параметров металла и возникновением коррозии на месте стыков. Лучше всего не пожалеть времени и сил и связать арматурных каркас для монолитной плиты самостоятельно.

Соблюдая все технологические условия вязки арматуры для фундамента, можно добиться максимально возможного ресурса железобетонной конструкции. Нарушение технологического процесса неминуемо влечет снижение качественных характеристик, появление тенденции к разрушению основания, а затем и всей конструкции. Ремонт монолитных плит невозможен, поэтому лучшим решением будет выполнение всех существующих требований на первоначальном этапе.

Видео

Как правильно уложить арматуру в ленточном фундаменте

Главная » Блог » Как правильно уложить арматуру в ленточном фундаменте

Укладка арматуры в ленточный фундамент: этапы работ, особенности, расход

Главная-Изготовление-Укладка арматуры в ленточный фундамент: этапы работ, особенности, расход

Каждый из нас мечтает, чтобы дом для проживания был не только теплым, но и теплым, устойчивым и надежным. Чтобы этого добиться, необходимо обратить внимание на качество установленного фундамента. Так, укладка арматуры в ленточный фундамент способна увеличить его износоустойчивость и другие основные его качества на 60 — 70%.

Рассмотрим процедуру укладки арматурной сетки более подробно на примере наиболее популярного, а также востребованного типа цоколя – ленточного фундамента.

Ленточный тип основания

Для начала необходимо более подробнее остановиться на особенностях ленточного фундамента.

Он имеет вид «ленты», нанесенной вдоль всего периметра здания. Основной материал для нее — раствор бетона.

Рассмотрим основные его характеристики:

  • Простота установки
  • Минимальный срок проведения работ
  • Экономия денежных средств благодаря ручной работе без использования специализированной техники
  • Весь процесс строительства не требует работы с большим количеством сырья
  • Длительный срок эксплуатации (срок использования может достигать 100 лет)

Зачем необходимо проводить укрепление фундамента арматурной сеткой

Многие считают бетон самым крепким и прочным строительным материалом. Однако на самом деле этот материал достаточно хрупок.

  • Он может разрушиться из-за сдвига земной коры.
  • Подвержен влиянию влаги, которая может привести к постепенному разрушению.
  • С течением времени основные части, входящие в состав раствора, могут начать осыпаться.

Для предотвращения преждевременного разрушения и утраты крепости бетона необходимо проводить его укрепление путем наложения арматурной сетки. Укладка арматуры ленточного фундамента производится достаточно легко. Провести строительные работы самостоятельно могут практически все. В данном случае от строителей не требуется наличие специально образования или необычных навыков.

Особенности проведения укладки

Необходимо ознакомиться с основными особенностями установки:

  • Для работы необходимо использовать крепкие прутья из стали. Оптимальный диаметр – 1,2 см
  • Обращайте особенное внимание на работу в углах и на стыках фундамента. Очень важно соблюдать правильную технологию работы в этих местах. Ее нарушение приведет к дальнейшему разрушению всей конструкции.
  • Вязка арматуры ленточного фундамента производится следующим способом:

— за вертикальные прутья необходимо закрепить прутья, уложенные внахлест и по диагонали на горизонтальной поверхности сетки.

  • Внутри углов и на стыках должно появиться пересечение прутьев.
  • Прутья должны быть хорошо натянуты вдоль всего периметра здания.

Ленточный фундамент

Основные нюансы работы

Также при работе необходимо учитывать основные свойства арматурной сетки.

  • Материал бетон легко подвержен деформации и разрывам. Для его устранения применяют укрепление основания путем армирования.

Таким образом, достигается высокая прочность в углах, пересечениях и сгибах цоколя.

Снижается вероятность возникновения разрывов.

  • Чтобы основание имело повышенный уровень крепости на срезах, рекомендуется проводить процедуру вертикального его укрепления.
  1. металлические прутья имеет функцию поддерживающих основание стоек
  2. шаг установки вертикальной арматуры – не менее 50 см
  • Чтобы сетка не портилась и не разрушалась под воздействием окружающей среды, необходимо провести процедуру ее укрепления.

Для этого материал погружается в раствор бетона.

Нижняя часть вещества обрабатывается бетоном на 70 см, верхняя – на 6 см.

Правильный выбор материалов

  1. вспомогательные прутья
  2. основные
  • Правильный выбор диаметра сечения зависит от особенностей климата, требуемой величины нагрузки, уровня давления, технических характеристик материала (обычно он колеблется в районе 1-2 см)
  • Для связывания и закрепления элементов необходимо использовать вспомогательные прутья. Средний размер е толщины может достигать от 0,5 до 1 см
  • Вертикальные материалы устанавливаются 2 способами:
  1. вбиваются в грунт
  2. монтируются в жесткую поверхность основания

Проведение работы

Установка укрепляющего покрытия состоит из следующих основных этапов:

  1. Подготовительная работа
  2. Опалубка
  3. Обвязка арматуры ленточного фундамента
  4. Укладка ее непосредственно в основание

Используемые инструменты

Армированный фундамент

Для проведения работы нам потребуются следующие строительные материалы:

  • Стержневые прутья. Диаметр – до 1,4 см. оптимальное количество – от 4 до 8. Для достижения наибольшей прочности рекомендуется использовать не менее 8 прутьев.
  • Проволока. Из нее необходимо изготовить обвязывающие перемычки. Они размешаются вдоль периметра цоколя по всей его ширине. Шаг арматуры ленточного фундамента составляет не менее 50-70 см

Все инструменты должны иметь ровную поверхность, не иметь повреждений и сколов. Необходимо их предварительно обработать специальным раствором, предотвращающим коррозию.

  • Проволока для соединения. Диаметр ее составляет от 1 до 1,2 см. ее используют для соединения стержней (продольных и поперечных)
  • Специализированная скоба для вязки. Выполняет связывающую функцию проволоки. Однако обладает наилучшими характеристиками.
  • Специальный крюк для вязания сетки. Его можно выполнить своими руками или приобрести специальный электрический инструмент.
  • Из профессиональных инструментов можно выделить специализированный пистолет для связывания прутьев.
  • Оборудование для сварки. Используется в случаях, когда необходима дополнительная жесткость материалам.

Ленточное основание с арматурами

Проведение работы

  1. Подготовка участка. Разметка территории. Очистка фундамента от пыли, загрязнений, мусора.
  2. Расчет силы нагрузки на материалы. Определение количества используемого сырья.
  3. Выбор количества материалов, типа, размера сырья.
  4. Проведение опалубочных работ. Опалубка производится при помощи деревянных щитов. Закрепить их на земле и придать устойчивость можно, закрепив их специальными колышками из древесины или металла. Опалубочные щиты устанавливаются в вырытую траншею.
  5. Для укрепления конструкции можно провести систему дренажа. Она состоит из слоев щебня и песка. Слои следует хорошо утрамбовать. Высота их не должна превышать 10 см.
  6. Внутри траншеи на расстоянии 2 м друг от друга устанавливаются вертикальные металлические пруты. Укрепить их можно раствором бетона и заглублением в грунт.
  7. Проведение связывания арматурной сетки.
  8. Закрепление сетки на металлических вертикальных прутьях.
  9. Ячейки сетки должны быть установлены на расстоянии не менее 5 см от стенок фундамента. Это предотвратит их преждевременное ржавление и коррозию.
  10. Все элементы строительства должны быть установлены равномерно с соблюдением горизонтального и вертикального уровня. Для достижения прочности необходимо укрепить сетку обломками кирпичей.

Расход материала

Очень важно правильно рассчитать необходимое количество строительного сырья.

Оно зависит от общей площади ленточного фундамента, площади здания.

При средней площади основания в 36 кв.м рекомендуется использовать прутья с сечением 1,4 см. В данном случае потребуется 30 м сырья для 1 уровня сетки: 24 м арматуры по всему периметру цоколя, 6 м – для внутренней отделки.

Если используется 4 уровня сетки, то потребуется 120 м стройматериала: 100 м сырья на периметр, 20 м – на внутренние отделочные работы.

  • Средний шаг установки – 50 см
  • Приемлемая ширина ленты – 30 см

Проведение предварительных расчетов не потребуется, если приобрести композитный тип арматуры.

Своевременное армирование ленточного фундамента позволяет укрепить его и придать ему долговечность и прочность. При проведении работ необходимо производить предварительные расчеты и следовать основным этапам.

Укладка арматуры в ленточный фундамент — технология и правила

При строительстве дома основой служит фундамент. От его выбора во многом зависит прочность сооружения. Качество подобной конструкции определяет правильная укладка арматуры в ленточный фундамент. В большинстве случаев используют кручёный металлический прут диаметром 10 — 12 мм. Также будет полезно знать о заливке ленточного фундамента зимой.

Важно! Укладка арматуры в фундамент увеличивает его износоустойчивость на 60-70%.

Основание дома ленточного типа

Этот тип фундамента выполняется в виде ленты, опоясывающей по всему периметру будущее строение. Его основу составляет бетон.

Пару слов о преимуществах:

  1. Простота и удобство установки.
  2. Сжатые сроки.
  3. Минимальное использование сырья.
  4. Нет необходимости задействовать технику. Стоимость работ существенно снижается.
  5. Фундамент ленточного типа может прослужить до 100 лет.

Многие думают, что бетон сам по себе материал крепкий и прочный. Это не так ведь он не может противостоять влаге и другим природным явлениям. Для предотвращения утраты положительных свойств бетона его укрепляют с помощью кручёного металлического прута. Также полезно почитать о расчёте ленточного фундамента.

Укладка арматуры в фундамент

Самостоятельная укладка арматуры процесс поэтапный, простой, понятный. Его выполнение под силу любому строителю даже без специального образования. Но есть нюансы, о которых необходимо помнить. Использование стальных прутьев диаметром 10—12 мм лучший вариант.

Важно! Проводя укладку прута нужно наибольшее внимание уделять угловой стыковке. Именно от надёжного соединения в углах зависит прочность всей конструкции.

Технология укладки арматуры в фундамент ленточного типа — это кропотливый и сложный процесс. Чтобы подготовить и застропировать прутья понадобятся два человека. Для проведения работ по установке и надёжной фиксации изделий необходимо привлечь трёх человек.

Порядок выполнения операции следующий: два человека держат изделие при его подъёме, затем устанавливают в отведенное место. Один рабочий руководит процессом и подаёт команды на подъём и опускание. Стыки вяжут три человека. Если сборка проводится непосредственно в траншее, для опускания пользуются траверсом. Полезная статья об организации подушки под фундамент.

Правила укладки арматуры, её вязки

Крепление отдельных прутьев между собой для повышения прочности и надёжности называется вязка. Она выполняется следующим образом.

За вертикальные прутья необходимо закрепить металлические стержни, уложенные внахлест. Работы необходимо проводить по диагонали на горизонтальной поверхности сетки.

Пересечение прутьев должно появиться внутри углов и на стыках металлической конструкции. Все работы проводятся вручную.

Сегодня в строительстве всё чаще используют для ускорения процесса монтажа ручную сварку. Но специалисты не советуют использовать жёсткую конструкцию. Это связано с возможностью смещения грунта и перекоса соединений. Связка может ослабнуть в одном из мест, что приведёт к появлению трещин на фундаменте и доме.

Поэтому наиболее «правильным» будет вариант ручного соединения. Если принято решение о применении сварки в процессе монтажа прута, то работы лучше всего поручить опытному мастеру.

Важно! Обращаем внимание на недопустимость использования сварки для конструкции, если диаметр арматуры не превышает 20 мм.

Укладка арматуры технология, которая предусматривает перед началом вязки выполнения работ по установке опалубки. В целях надёжной защиты досок от влаги и грязи необходимо её внутреннюю часть обработать защитным материалом. В качестве рабочего материала можно использовать пергамин. Защитные мероприятия позволяют упростить процесс снятия конструкции после затвердевания бетона. Во время работ для закрепления материала используют строительный степлер.

Важно следить за натяжкой прутьев по всему периметру здания, не допуская провисания и слабины.

Для вязки используют два вида арматуры:

  • основную;
  • вспомогательную.

Диаметр основного вида должен быть в пределах 10—12 мм. Вспомогательные металлические пруты для вязки могут быть 0,5-1,0 мм.

А вы знаете как сделать фундамент дома своими руками?

Укладка арматуры в бетон

Для более прочного соединения арматуру погружают в бетон. При вертикальном положении каждый шаг металлического прута устанавливается на расстоянии от 500 до 700 мм друг от друга. Вертикальные материалы либо вбиваются непосредственно в грунт, или монтируются в жёсткую поверхность основания.

Используют стержневые прутья диаметром 140 мм. В связке желательно использовать от 4 до 8 единиц. Из связывающей проволоки делают перемычки, которые проходят вдоль периметра цоколя, захватывая всю ширину.

Важно! Обязательно учитывается, что в фундаменте ленточного типа большая часть нагрузок распределяется между нижними и верхними рядами.

При закладке арматуры в бетон можно использовать три или четыре слоя прута. Укладка арматуры в бетон видео- и фотоматериал можно найти в интернете, ознакомиться и иметь определённое представление о порядке последовательности процесса.

Расход материала для армирования

Просчитать предварительное количество материала важно. Расход зависит от общей площади фундамента и S здания.

Ориентировочный расход металлического кручёного прута для здания S 36 кв.м
1Общее количество стальных прутьев для первого уровня сетки(метров)30
2Сечениеммм140
3По периметру цоколя(метров)24
4Для внутренней отделки(метров)6

Соответственно при использовании четырёх уровней необходимо 120 метром материала, из которых 100 метров уйдёт на укладку по периметру здания, а 20 метров на отделку внутреннего помещения.

Важно!  Отпадёт необходимость предварительных расчетов, если использовать арматуру композитного типа.

В заключении

Качественное армирование даёт возможность прочно закрепить фундамент и продлить его долговечность. В работе нужно придерживаться поэтапного выполнения операций. Специальная техника в производственном процессе не задействуется. Поэтому себестоимость укладки прута в бетон ниже по сравнению с установкой других видов фундамента. Это немаловажный фактор, существенно влияющий на выбор основания для будущего дома.

Рекомендуем к прочтению — какая марка бетона нужна для укладки ленточного фундамента

Как правильно уложить арматуру в фундамент

У новичков строительного дела в процессе возведения частного дома, террасы, бани может возникнуть немало вопросов. Первый вопрос, с которым они столкнутся, звучит так: как армировать фундамент правильно или это делать вообще необязательно, так как арматура подразумевает дополнительные затраты.

Ответ на этот ворос очевиден – делать армирование просто необходимо, так как арматура придает основанию дополнительную прочность.

Армирование фундамента намного увеличивает его стойкость к воздействию низких температур и, что особенно важно, позволяет выдерживать зачастую неравномерно распределенные нагрузки, передающиеся от дома. Необходимо с умом подходить к данному процессу, в противном случае, придется столкнуться с преждевременным износом фундамента, что может привести к разрушению всего строения. Мы расскажем вам о некоторых правилах, следуя которым вы сможете возвести прочное и долговечное основание для вашей будущей постройки.

Как правильно армировать фундамент

Прежде всего, нужно подобрать правильную арматуру. Металлопрокат, предназначенный для этого, выпускается в виде проволоки, из которой сплетают каркасную решетку, и стержней, кроме того — уголков и швеллеров. Для фундаментов малоэтажных зданий применяют стержни диаметром от 1 до 4 см и длиной до 6 метров. Нередко люди, в первый раз выполняющие армирование, заблуждаются, думая, что чем больше диаметр арматуры, тем крепче получится конструкция. Все не так уж просто, как кажется вначале.

Лучший способ для крепления прутов каркаса – это обвязывание их специальной проволокой. Но ей, однако, возможно связать лишь пруты диаметром не более 2,5 см, в случае с большим диаметром связать их прочно не выйдет и тогда придется прибегнуть к сварке, все же уступающей по прочности способу вязания. В связи с этим, лучше выбрать арматуру небольшого диаметра, идеально, чтобы на ней было специальное рифление, грани и насечки, то есть она должна иметь наибольшую площадь для ее сцепки с бетоном. Это будет способствовать созданию качественного, монолитного сооружения.

Второе правило, заслуживающее внимания: чтобы правильно армировать фундамент, необходимо правильно уложить арматуру. Для этого надо сделать каркас, используя стержни, причем, расстояние между точками, в которых пересекаются вертикальные и горизонтальные стержни должно составлять 1,5 м, после чего нужно уложить в каждый ряд по 3-4 прута.

На что стоит обратить внимание?

1.Под каркас следует уложить армирующую сетку, ее же необходимо положить и сверху, затем, используя сварку, прикрепить к стержням.2.Рекомендуемое расстояние между прутами — не более 20 сантиметров; перехлест прутов – приблизительно 60 сантиметров.

Подобное фундаментное армирование подходит для строительства домов из дерева или кирпича, в случае, если дом будет с несущими колоннами, в местах их возведения необходимо уложить еще один слой армирующей сетки для большего укрепления фундамента.

И наконец, третье правило. Большинство людей, решивших заняться строительством, стараются подходить к этому вопросу максимально экономно. Порой, неопытные строители с целью экономии приобретают так называемый «металлолом» (б/у арматуру). Не стоит этого делать, так как это лишь приведет к уменьшению прочности фундамента. Правда, металлолом вполне подойдет для строительства бани, летней кухни либо террасы, в общем, там, где нагрузки на основание не столь велики и высокий уровень прочности не обязателен.

Выбирая арматуру, обращайте внимание на ее пластичность, она должна легко свариваться и быть устойчивой к коррозии. Помимо этого, она должна иметь хорошую сцепку с бетоном. Металлолом, к сожалению, не обладает такими свойствами.

После изготовления армирующего каркаса нужно сделать опалубку, в которую его надо уложить, причем, верхний край каркаса должен находиться чуть ниже высоты фундамента, примерно на 3-5 см и где-то на 5 см отступать от сторон опалубки.

Как производится укладка арматуры в фундамент

  • Для чего проводится армирование
  • Инструменты и оборудование для работы
  • Арматура и способы ее соединения
  • Особенности укладки арматуры

Укладка арматуры в фундамент необходима для улучшения прочности бетонных конструкций. Бетон #8211; это очень прочный строительный материал, но он не способен выдерживать большие нагрузки на растяжение. В этом случае и применяется арматура. В результате получается материал под названием железобетон.

Схема армирования фундамента.

Для чего проводится армирование
  • повышения несущей способности сооружения;
  • предупреждения процессов деформации несущего фундамента вследствие сдвигов грунта;
  • увеличения срока службы строения.

Изображение 1. Схема армированного фундамента.

Все это достигается благодаря тому, что арматура испытывает в ходе эксплуатации определенные физические процессы:

  • между бетоном и железом арматуры возникают значительные силы трения, в результате чего обеспечивается сцепление этих строительных материалов в железобетон;
  • между арматурой и бетонным раствором происходит активное электрохимическое взаимодействие;
  • арматурный каркас испытывает сильное сжатие под весом бетона.

Чтобы все эти процессы происходили нормально, укладывать арматурные прутья в фундамент нужно с соблюдением некоторых правил и требований.

Вернуться к оглавлению

Инструменты и оборудование для работы

Для укладки арматуры в опалубку могут понадобиться:

Инструменты для армирования фундамента.

  • стержни арматуры;
  • арматурная проволока;
  • сварочный аппарат;
  • рулетка;
  • проволока вязальная Ø 1,2 мм;
  • болгарка.

Для ленточного фундамента обычно используются от 4 до 8 прутьев арматуры (изображение № 1). Схема расположения армированного каркаса изображена на фото (изображение № 2). Вертикальные элементы арматуры устанавливаются с шагом 50 см. Между собой элементы связываются вязальной проволокой (изображение № 3).

Вернуться к оглавлению

Арматура и способы ее соединения

Армирование обычно производится таким образом:

  • подготавливается траншея под фундамент;
  • монтируется опалубка;
  • в опалубку опускается арматурная конструкция.

Арматурный каркас делается из специальных арматурных прутьев разного диаметра. Отдельные элементы каркаса соединяются друг с другом различными способами:

  • соединение с применением сварки;
  • обвязка элементов специальной проволокой;
  • соединение прутьев специальными пластмассовыми хомутами.

Изображение 2. Арматурный каркас производится из арматурных прутьев различного диаметра.

Сварка является самым простым способом устройства армирующих конструкций. Недостаток способа заключается в том, что он приводит к значительному увеличению стоимости фундамента. В месте сварки прутья изменяют свой состав, что приводит к ослаблению их прочности. При использовании арматурных прутьев диаметром более 20 мм применять сварочные работы не рекомендуется.

Обвязка проволокой #8211; самый правильный метод армирования. Он не вызывает дефектов арматурного каркаса. Вязка арматуры выполняется специальной вязальной проволокой диаметром 1,2 мм. Ее отжигают, в результате чего она становится пластичной и мягкой. Работать с таким материалом очень легко. Вяжут арматуру проволокой с помощью пассатижей. Для больших объемов работы применяются крючки, сделанные самостоятельно. Можно подобные инструменты купить в строительных магазинах. Работы проводятся в такой последовательности:

  1. Нарезается арматура на куски, определенные проектом стройки.
  2. Элементы раскладываются в соответствии с требованиями проекта.
  3. При сращивании прутьев между собой перехлест их не может быть меньше десятикратного диаметра арматуры.

В условиях опалубки не всегда можно осуществить вязку арматурных элементов. В таком случае эти работы проводятся на площадке поблизости. После окончания вязки вся конструкция опускается в опалубку. При размещении в опалубке арматуру укладывают таким образом, чтобы вся она оказалась закрытой массивом бетона. Со всех сторон металлический каркас должен быть закрыт слоем бетона толщиной не менее 5 см.

Изображение 3. Элементы арматуры связываются между собой при помощи вязальной проволоки.

Сегодня на стройках начинает применяться арматура из стеклопластика. Она имеет следующие отличия от металлической:

  • стоимость ее значительно ниже;
  • длина стержней может быть неограниченной;
  • вес арматуры значительно ниже, чем у привычной металлической;
  • стеклопластик #8211; диэлектрик, способный переносить низкие и высокие температуры;
  • арматуру из стеклопластика можно использовать с агрессивными материалами, она не подвергается коррозии.

Вернуться к оглавлению

Особенности укладки арматуры

Укладка арматуры #8211; процесс не очень простой. Для армирования обычно применяются 2, иногда 3 пояса арматуры, соединенных сваркой или проволокой. Горизонтальные прутья укладываются на ровной поверхности песчаной подушки. Под прутья подкладываются куски кирпича или другие прокладки толщиной около 5 см. Горизонтальные элементы связываются с вертикальными. В углах нельзя гнуть арматуру с помощью паяльной лампы. Гнуть их можно только в холодном виде, можно для этого пользоваться гибочным станком. Стеклопластиковая арматура скрепляется специальными хомутами и бобышками из полимерных материалов.

Для более точного выполнения работы можно воспользоваться таким методом. На длинной доске вбить по прямой линии гвозди на расстоянии 10 см друг от друга. Они будут служить направляющими для укладки прутьев арматуры. Теперь остается только устанавливать и укреплять проволокой вертикальные элементы и верхний ряд горизонтального пояса. Такая схема значительно сокращает время на выполнение работы.

Армирование бетонного фундамента #8211; важный этап работы по изготовлению прочного основания для строения.

Выбор материалов довольно большой. Нужно лишь правильно выполнять соединения прутьев. Лучше использовать для этого вязку проволокой. Правильная укладка арматурного каркаса сбережет дом от трещин и от преждевременного разрушения.

Портал о бетоне: калькуляторы, информация, производители.

Укладка арматуры в фундамент ленточного типа

Пару слов о преимуществах:

  1. Простота и удобство установки.
  2. Сжатые сроки.
  3. Минимальное использование сырья.
  4. Нет необходимости задействовать технику. Стоимость работ существенно снижается.
  5. Фундамент ленточного типа может прослужить до 100 лет.

Многие думают, что бетон сам по себе материал крепкий и прочный. Это не так ведь он не может противостоять влаге и другим природным явлениям. Для предотвращения утраты положительных свойств бетона его укрепляют с помощью кручёного металлического прута. Также полезно почитать о расчёте ленточного фундамента.

Укладка арматуры в фундамент

Самостоятельная укладка арматуры процесс поэтапный, простой, понятный. Его выполнение под силу любому строителю даже без специального образования. Но есть нюансы, о которых необходимо помнить. Использование стальных прутьев диаметром 10—12 мм лучший вариант.

Важно! Проводя укладку прута нужно наибольшее внимание уделять угловой стыковке. Именно от надёжного соединения в углах зависит прочность всей конструкции.

Технология укладки арматуры в фундамент ленточного типа — это кропотливый и сложный процесс. Чтобы подготовить и застропировать прутья понадобятся два человека. Для проведения работ по установке и надёжной фиксации изделий необходимо привлечь трёх человек.

Порядок выполнения операции следующий: два человека держат изделие при его подъёме, затем устанавливают в отведенное место. Один рабочий руководит процессом и подаёт команды на подъём и опускание. Стыки вяжут три человека. Если сборка проводится непосредственно в траншее, для опускания пользуются траверсом. Полезная статья об организации подушки под фундамент.

Правила укладки арматуры, её вязки

Крепление отдельных прутьев между собой для повышения прочности и надёжности называется вязка. Она выполняется следующим образом.

За вертикальные прутья необходимо закрепить металлические стержни, уложенные внахлест. Работы необходимо проводить по диагонали на горизонтальной поверхности сетки.

Пересечение прутьев должно появиться внутри углов и на стыках металлической конструкции. Все работы проводятся вручную.

Сегодня в строительстве всё чаще используют для ускорения процесса монтажа ручную сварку. Но специалисты не советуют использовать жёсткую конструкцию. Это связано с возможностью смещения грунта и перекоса соединений. Связка может ослабнуть в одном из мест, что приведёт к появлению трещин на фундаменте и доме.

Поэтому наиболее «правильным» будет вариант ручного соединения. Если принято решение о применении сварки в процессе монтажа прута, то работы лучше всего поручить опытному мастеру.

Важно! Обращаем внимание на недопустимость использования сварки для конструкции, если диаметр арматуры не превышает 20 мм.

Укладка арматуры технология, которая предусматривает перед началом вязки выполнения работ по установке опалубки. В целях надёжной защиты досок от влаги и грязи необходимо её внутреннюю часть обработать защитным материалом. В качестве рабочего материала можно использовать пергамин. Защитные мероприятия позволяют упростить процесс снятия конструкции после затвердевания бетона. Во время работ для закрепления материала используют строительный степлер.

Важно следить за натяжкой прутьев по всему периметру здания, не допуская провисания и слабины.

Для вязки используют два вида арматуры:

Диаметр основного вида должен быть в пределах 10—12 мм. Вспомогательные металлические пруты для вязки могут быть 0,5-1,0 мм.

Укладка арматуры в бетон

Для более прочного соединения арматуру погружают в бетон. При вертикальном положении каждый шаг металлического прута устанавливается на расстоянии от 500 до 700 мм друг от друга. Вертикальные материалы либо вбиваются непосредственно в грунт, или монтируются в жёсткую поверхность основания.

Используют стержневые прутья диаметром 140 мм. В связке желательно использовать от 4 до 8 единиц. Из связывающей проволоки делают перемычки, которые проходят вдоль периметра цоколя, захватывая всю ширину.

Важно! Обязательно учитывается, что в фундаменте ленточного типа большая часть нагрузок распределяется между нижними и верхними рядами.

При закладке арматуры в бетон можно использовать три или четыре слоя прута. Укладка арматуры в бетон видео- и фотоматериал можно найти в интернете, ознакомиться и иметь определённое представление о порядке последовательности процесса.

Расход материала для армирования

Просчитать предварительное количество материала важно. Расход зависит от общей площади фундамента и S здания.

Ориентировочный расход металлического кручёного прута для здания S 36 кв.м

Соответственно при использовании четырёх уровней необходимо 120 метром материала, из которых 100 метров уйдёт на укладку по периметру здания, а 20 метров на отделку внутреннего помещения.

Важно! Отпадёт необходимость предварительных расчетов, если использовать арматуру композитного типа.

В заключении

Качественное армирование даёт возможность прочно закрепить фундамент и продлить его долговечность. В работе нужно придерживаться поэтапного выполнения операций. Специальная техника в производственном процессе не задействуется. Поэтому себестоимость укладки прута в бетон ниже по сравнению с установкой других видов фундамента. Это немаловажный фактор, существенно влияющий на выбор основания для будущего дома.

Рекомендуем к прочтению #8212; какая марка бетона нужна для укладки ленточного фундамента

Источники: http://www.adviceskilled.ru/sovet-po-remontu/kak-pravilno-armirovat-fundament, http://tolkobeton.ru/fundament/ukladka-armatury-v-fundament.html, http://betonzone.com/ukladka-armatury-v-fundament-lentochnogo-tipa

Комментариев пока нет!

Как правильно разместить арматуру в ленточном фундаменте. Правильный фундамент. KakPravilno-Sdelat.ru

Армирование бетонных фундаментов проводится для увеличения прочности и несущей способности основания. Эти параметры зависят от толщины арматуры, ширины и длины ячеек каркаса, формы стальных прутьев, способа вязки мест их пересечений. Расчет производится с учетом напряжений, которые возникнут при возведении дома. Например, армирование ленточного фундамента осуществляется с учетом продольных растяжений, которые обусловлены его конструкцией. В узких и длинных траншеях поперечные и вертикальные прутья практически не участвуют в распределении нагрузки, а лишь являются скрепляющими элементами.

Расчет арматуры для ленточного основания

Расчеты производятся на этапе проектирования дома, и в документацию вносятся следующие данные:

  • класс и сечение арматуры,
  • способ укладки и вязки,
  • необходимое количество материалов.

В малоэтажном домашнем строительстве применяют, как правило, прутья d=12 мм. Для продольных элементов каркаса берут арматуру только с ребристой поверхностью, для поперечных и вертикальных можно использовать прутки гладкие, с меньшим диаметром. Если решено делать самостоятельные расчеты, обязательно учитываются нормы СНиП 52-01-2003 Бетонные и железобетонные конструкции . Они обозначают минимальное количество арматуры, которое составляет 0,1% площади сечения фундамента. От этой цифры зависит количество прутьев и размер их сечения. Для периодического профиля указывается размер наружного диаметра.

Площадь сечения ленточного фундамента определяется перемножением его ширины и высоты. Например, траншея имеет габариты 70 см в глубину, 40 см в ширину. Площадь сечения в таком случае составит:

Эту величину умножают на 0,1 и получают минимальную площадь прутка 2,8 см2. Также имеет большое значение количество поясов: 1, 2 или 3. Два пояса гарантируют более равномерное распределение нагрузки в мелко- и среднезаглубленном фундаменте, а 3 пояса применяют для глубоко заглубленных оснований. При расчете диаметра прутьев учитывают общую высоту каркаса, которая в случае 2-х поясов вычисляется сложением их высот. СНиП определяет граничное значение высоты 80 см. Это значит, что если суммарная высота каркаса меньше этой цифры, то минимальный диаметр прутка составляет 6 мм, если каркас выше 80 см, берут арматуру от 8 мм.

Формулы для расчета арматуры

Однако нельзя основываться лишь на этих данных, надо произвести конкретный расчет по таблицам СНиП с учетом габаритов своего фундамента. Для самостоятельных вычислений можно использовать следующие формулы:

  1. Длина арматуры в погонных метрах на 1 пояс D=PхK (P — длина фундамента, K — количество прутьев в 1-ом поясе).
  2. Число горизонтальных перемычек Q=P/L (L — длина ячейки каркаса).
  3. Длина перемычки C=Tх(K-1)+0,05 (T — шаг между продольной арматурой).
  4. Число вертикальных перемычек J=P/N (N — шаг между вертикальными прутьями).
  5. Длина вертикального прутка между поясами U=Hх(P-1)+0,05 (H — расстояние между поясами каркаса).
Армирование углов основания

Ленточный фундамент имеет несколько углов, в которых важно грамотно укладывать армопояс. В случае ошибок именно в этих местах начинается деформация основания, бетон трескается, что приводит со временем к разрушению дома. Для исключения погрешностей соблюдается схема армирования ленточного фундамента. предусматривающая использование хомутов. В каждом прутке делают загиб, который должен загнутым концом упереться в противоположную стену.

При этом часто длины прутка просто не хватает. Тогда делают соединение со стержнем Г-образной формы. Следует учесть, что армирование углов Г-образными и П-образными хомутами выполняется по всей высоте конструкции. Длина элементов П-хомутов составляет 2 ширины фундамента. Использование хомутов важно для предотвращения выгиба сжатых стержней в местах угловых сопряжений. Запрещено делать каркас в углах простым перекрещиванием арматуры.

Особенности конструкции арматурного каркаса

Конструкцию можно собрать 2-мя способами: непосредственно в траншее сразу всю или заранее отдельными блоками, залитыми бетоном (заводское изготовление). В первом случае получают более надежный ленточный монолитный фундамент (при условии грамотной вязки каркаса). Во втором случае слабыми местами основания считаются соединения блоков. Они скрепляются между собой так же: при помощи армированного бетона.

Сборка металлического каркаса на месте требует соблюдения следующих условий:

  1. На дно траншеи предварительно засыпается песчано-гравийная подушка высотой 30 см. Затем устанавливается съемная или несъемная опалубка. Ее устойчивость во время заливки бетона гарантируют внутренние распорки, которые ставят после монтажа арматуры, а также наружные подпорки из бруса или досок.
  2. Арматура должна находиться на расстоянии 5 см от опалубки, то есть, если ширина траншеи составляет 40 см, то ширина стального каркаса будет равна 30 см.
  3. Работы начинают с установки вертикальных стоек, к которым будут крепиться продольные прутья каркаса. Они имеют ребристую поверхность и самый большой диаметр из всей используемой арматуры. Например, если продольные прутья берут диаметром 16 мм, то вертикальные стойки — минимум 20 мм.
  4. Стойки должны зайти в грунт на глубину 2 м. В местах поворотов вертикальные стойки каркаса располагают на расстоянии в 2 раза меньше, чем на прямых участках.
  5. Вертикальные перемычки устанавливают в местах стыков горизонтальных перемычек, и дополнительно с шагом 20 см (шаг горизонтальных прутков стандартно выбирают 30 см).
  6. Места пересечений соединяют вязальной проволокой при помощи крючков, пистолета для вязки проволоки, шуруповерта или специальных скрепок. Также можно применить пассатижи. Длина одного отрезка проволоки составляет 20 см.

Продольную арматуру укладывают в количестве 2-3 прута. Расстояние между ними согласно СНиП должно быть 25-40 см. Важно соблюдать такое же количество прутьев во втором поясе каркаса, если он предусмотрен проектом. Вертикальные и горизонтальные ряды арматуры располагают под углом 90º относительно друг друга: продольные относительно вертикальных, а вертикальные — относительно горизонтальных.

  • Какой фундамент должен быть под газобетон
  • Составные железобетонные фундаменты под колонны

Схемы армирования ленточного фундамента

Арматура представляет собой стальной стержень гладкого или ребристого профиля. Наиболее часто используемые диаметры от 6 до32 мм.

В процессе эксплуатации фундамент постоянно подвергается различным нагрузкам, например, от веса самого дома или различных движений грунта, в то числе, из-за сил морозного пучения. Если рассматривать упрощенно, то нижняя часть ленты фундамента испытывает преимущественно нагрузку на растяжение, а верхняя часть – нагрузку на сжатие.

Поскольку устойчивость бетона к сжатию в 50 раз выше, чем к растяжению, а

Проверенное средство. Магнитный пластырь. Уже через неделю Вы навсегда забудете о болях в суставах и распрощаетесь с артритами, артрозами, шпорами и косточками на ногах

Избавьтесь от косточки на ногах

стальная арматура, наоборот, способна воспринимать большие нагрузки на растяжение, можно сделать вывод, что необходимо армирование нижней части ленточного фундамента. В то же время необходимо помнить о силах морозного пучения, подъемная сила которых может превысить вес дома и вызвать растяжение в верхней части ленточного фундамента.

Поэтому необходимо армирование нижней и верхней части ленточного фундамента. По сути, бетон с помощью армирования превращают в новый материал – железобетон, который способен выдерживать растягивающие и сжимающие нагрузки. Армировать же среднюю часть ленточного фундамента не имеет смысла, так как она практически не испытывает нагрузок.

На рисунке показана примерная схема армирования ленточного фундамента.

Продольные ярусы арматуры располагаются в верхней и нижней части фундамента, так как совместно с бетоном воспринимают основные нагрузки сжатия и растяжения, действующие вдоль продольной оси фундамента. При необходимости, если это потребуется при расчете, можно установить дополнительные ярусы. В качестве продольной используется арматура класса А III. которая представляет собой круглые профили, диаметром обычно от 10 до16 мм, с двумя продольными ребрами и поперечными выступами, идущими по трехзаходной винтовой линии.

Если высота фундамента более 15 см необходимо устанавливать вертикальную поперечную арматуру, в качестве которой используют преимущественно гладкие стержни класса А I диаметром 6 –8 мм.

Поперечная арматура при армировании ленточного фундамента устанавливается исходя из расчета нагрузок, действующих вдоль поперечной оси фундамента. Установка поперечной арматуры ограничивает развитие трещин в бетоне и закрепляет рабочие продольные стержни в проектном положении. Поперечную арматуру лучше гнуть в рамки и устанавливать продольную арматуру внутри этих рамок.

Расстояния между прутами продольного армирования и шаг поперечного армирования ленточного фундамента определяется СНиП 52-01-2003:

7.3.4 Минимальное расстояние между стержнями арматуры в свету следует принимать в зависимости от диаметра арматуры, размера крупного заполнителя бетона, расположения арматуры в элементе по отношению к направлению бетонирования, способа укладки и уплотнения бетона.

Расстояние между стержнями арматуры следует принимать не менее диаметра арматуры и не менее25 мм.

7.3.6 Расстояние между стержнями продольной рабочей арматуры следует принимать с учетом типа железобетонного элемента (колонны, балки, плиты, стены), ширины и высоты сечения элемента и не более величины, обеспечивающей эффективное вовлечение в работу бетона, равномерное распределение напряжений и деформаций по ширине сечения элемента, а также ограничение ширины раскрытия трещин между стержнями арматуры. При этом расстояние между стержнями продольной рабочей арматуры следует принимать не более двукратной высоты сечения элемента и не более400 мм, а в линейных внецентренно сжатых элементах в направлении плоскости изгиба — не более500 мм.

7.3.7 В железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном, следует устанавливать поперечную арматуру с шагом не более величины, обеспечивающей включение в работу поперечной арматуры при образовании и развитии наклонных трещин. При этом шаг поперечной арматуры следует принимать не более половины рабочей высоты сечения элемента и не более300 мм.

Также при армировании ленточного фундамента следует помнить, арматура должна отстоять от краев опалубки и верхнего уровня заливки бетона на 5-8 см.

Соединение отдельных прутов арматуры осуществляется при помощи вязальной проволоки и специального вязального крючка. Сваривать допускается только арматуру, которая в своей маркировке имеет букву «С», например А500С.

Схемы армирования углов и примыканий ленточного фундамента

Для армирования углов и примыканий арматуру класса А III требуется гнуть. Не допускается армирование углов простым перекрестием арматуры, если армирование углов фундамента ведется отдельными стержнями продольной арматуры.

Монолитный фундамент должен представлять собой единую жесткую пространственную раму, а это возможно только при правильном армировании углов и примыканий фундамента.

1 — горизонтальная арматура; 2 — нахлест; 3 — лапка; 4 — вертикальная арматура; 5 — поперечная арматура; 6 — дополнительная поперечная арматура; d — диаметр стержня арматуры; 50 см L 3/4 высоты сечения ленты

Схема армирования угла с помощью нахлеста и лапки

1 — горизонтальная арматура; 2 — нахлест; 3 — вертикальная арматура; 4 — поперечная арматура; 5 — дополнительная поперечная арматура; 6 — Г-образный хомут; d — диаметр арматуры; 50 см L 3/4 высоты сечения фундамента

Схема армирования углов ленточного фундамента с помощью Г-образного хомута

1 — горизонтальная арматура; 2 — нахлест; 3 — вертикальная арматура; 4 — поперечная арматура; 5 — дополнительная поперечная арматура; d — диаметр стержня арматуры; 50 см= L 3/4 высоты сечения ленты

Схема армирования ленточного фундамента в местах примыканий

1 — горизонтальная арматура; 2 — нахлест; 3 — вертикальная арматура; 4 — поперечная арматура; 5 — дополнительная поперечная арматура; 6 — Г-образный хомут; d — диаметр стержня арматуры; 50= L 3/4 высоты сечения ленты фундамента

Схема армирования ленточного фундамента в местах примыканий с помощью Г-образного хомута

Строительное оборудование, силовая техника, инструмент — все на одном сайте здесь.

Насколько информация оказалась для Вас полезной?

Правила расчета арматуры для ленточного фундамента

Применение конструкции

В строительстве нередко возникают ситуации, когда необходимо возводить сооружения на грунте неустойчивых, текучих, пластичных пород, или, как их еще называют, слабых. Основной выход в создавшейся ситуации #8211; это армирование ленточного фундамента. Большое распространение данный вид работ получил в индивидуальном строительстве дома, так как необходимо сооружение подвала. Сырьем могут служить любые виды кирпича, бутовый камень, строительные блоки. Однако наибольшую популярность приобретает монолитный железобетонный фундамент. Это связано с относительной простотой и экономичностью работ.

Для того что бы фундамент был крепче и устойчивей, его нужно армировать.

Необходимо только правильно провести расчет арматуры для ленточного фундамента собственными силами.

Этапы работ

Этапы фундаментных работ:1. Определение высоты фундамента.2. Разметка территории.3. Выкапывание траншеи.4. Укладывание на дно траншеи песка и слоя щебенки.5. Установка опалубки.

6. Армирование.

Вначале необходимо определить состав грунта, глубину залегания подземных вод, глубину промерзания. Все эти показатели, а также вес будущего сооружения помогут определить высоту основания, а значит, необходимое количество строительных материалов, чтобы провести армирование. Например, для легких построек такого типа, как сарай, баня или сооружение дачного дома, при стабильном грунте высота монолита может не превышать 75 см. А вот при слабом грунте и при сооружении больших построек следует закладку опустить ниже глубины промерзания почвы на не менее 30 см.

Для перехода к следующему этапу необходимо подготовить территорию: расчистить, разметить периметр будущей постройки. В идеале стоит воспользоваться теодолитом. Если его нет, то размечают территорию колышками, протянув между ними веревку. Особо внимательно следует отнестись к построению углов, они должны быть строго 90 градусов.

После разметки можно приступать к рытью траншей. Эти работы могут выполняться вручную или специальными машинами. Главное, чтобы основа дома была шире, чем толщина стен.

Для расчета нужно иметь следующие данные:1. длина фундамента2. количество поясов армирования3. расстояние между поясами армирования4. Количество прутьев в одном поясе арматуры5. шаг между прутьями в одном поясе6. шаг между горизонтальными перемычками прутьев

7. шаг между вертикальными перемычками прутьев

Подготовив траншеи, приступаем непосредственно к фундаментным работам. Дно утрамбовывается и на него укладывается слой песка, а затем слой щебенки. Толщина каждого слоя #8211; около 20 см. Полученную #8220;подушку#8221; заливают раствором цемента. Это делается для того, чтобы вода из бетона не уходила в почву.

Читайте также: Принцип работы арматуры в фундаменте

Вокруг траншеи устанавливают опалубку для монолитного железобетона. Она служит для укрепления боковых стенок траншеи и должна возвышаться над уровнем почвы сантиметров на тридцать-сорок. Это цокольная часть будущего дома. В местах прохождения канализационного трубопровода в опалубке делают отверстия нужного диаметра и вставляют соответствующие гильзы.

Для придания прочности перед заливкой бетона проводят армирование. Перед началом работ следует рассчитать, какое количество или какая длина армирования потребуется. Для этого необходимо рассчитать длину траншеи, количество поясов, расстояние между поясами, количество арматуры на один пояс, на каком расстоянии будет располагаться брусья для ленточного фундамента в пределах одного пояса.

Расчет арматуры

Зная периметр фундаментной траншеи, вычисляем армирование одного пояса в погонных метрах прута. Теперь определяем длину арматуры для ленточного фундамента, которая будет использована на горизонтальные перемычки внутри одного пояса. Для этого периметр делим на расстояние между перемычками. Необходимо добавить к длине каждой горизонтальной перемычки 5 см, потому что она должна выступать за границы каркаса на 2,5 см с каждой стороны.

Переходим к расчету длины вертикальных прутьев. Весь периметр делим на расстояние между вертикальными прутьями, также добавляя дополнительно по 5 см на каждую вертикаль. Теперь остается только сложить все полученные результаты, чтобы узнать точное армирование для фундамента. которое необходимо закупить.

Не забудьте добавить к конечному результату еще 10%. Тогда расчет арматуры для основания позволит избежать допущенных ошибок.

Арматура для фундамента должна быть от 6 до 14 мм.

Необходимо учитывать также, прут какого сечения должен быть использован. Это зависит в первую очередь от веса застройки. Но в любом случае диаметр должен быть в пределах 6-14 мм. Причем диаметр продольных брусков должен быть свыше 10 мм, так как на них ложится наибольшая нагрузка. От нагрузки зависит количество поясов, шаг будет между вертикальными и горизонтальными арматурами. Укладывать арматуру надо с отступом на 5 см от дна, стенок и верхней части. Подобная укладка позволит полностью погрузить металлические части в бетон, защищая их от ржавления.

Читайте также: Армирование кладки из газосиликатных блоков

Поперечные и вертикальные брусья могут иметь диаметр от 6 до 8 мм. Арматура, ленточный фундамент с которой имеет оптимальную жесткость, располагается друг от друга на шаг: по горизонтали #8211; 30 см, а в вертикальных рядах #8211; не меньше 10, не больше 50 см.

Приводим пример

Для наглядности проводим расчет арматуры для фундамента жилого дома размером 5х5 м

Схема расстояний между прутьями арматуры

  1. (5+5)х2= 20 м. Это периметр здания.
  2. 20+5 (внутренняя несущая стена) = 25 м. Это длина всего основания.
  3. 25х4 (количество продольных прутьев в одном поясе) = 100 м. Это общая длина продольных прутьев в одном поясе. Если нет возможности провести армирование заданной длины, то на каждый нахлест добавьте 1 м.
  4. 25/0,5 (шаг между поясами) = 50 шт. Это количество вертикальных и горизонтальных пересечений.
  5. 0,5 (высота фундаментного монолита) + 0,25 (шаг между пересечениями) х2 = 1,5 м. Это периметр одного пересечения.
  6. 50 шт.х1,5 м=75 м. Это общая длина пересечений.
  7. (100+75)+10%(необходимый запас во избежания ошибок)=192,5 м. Данного количества будет достаточно для закладки железобетона.

Примерно 195 метров армирующего профиля понадобится для основания дома площадью 25 квадратных метров. Но необходимая арматура продается чаще всего не длиной, а весом. Вес зависит от того, какая величина сечения или диаметр металлического прута использовался. Компании-производители имеют таблицы, которые указывают вес одного погонного метра арматуры в зависимости от диаметра. Чтобы рассчитать, вам останется только умножить длину всех прутьев на указанный вес. Для снижения себестоимости без ущерба качества диаметр продольных брусьев используйте не менее 10 мм, а вот для вертикальных и горизонтальных прутьев подойдет более дешевый профиль, диаметр которого #8211; 6-8 мм.

И хотя подобный расчет арматуры для фундамента на первый взгляд не представляет сложности, лучше довериться профессионалам.

Источники: http://osnovam.ru/stroitelnye/armirovanie-lentochnogo-fundamenta, http://harthaus.ru/stroitelstvo/fundament/sxemy-armirovaniya-lentochnogo-fundamenta/, http://1pobetonu.ru/armirovanie/raschet-armatury-dlya-lentochnogo-fundamenta.html

Комментариев пока нет! 

тонкости и нюансы, инструкция по шагам, выбор материалов и инструментов

Каждый из нас мечтает, чтобы дом для проживания был не только теплым, но и теплым, устойчивым и надежным. Чтобы этого добиться, необходимо обратить внимание на качество установленного фундамента. Так, укладка арматуры в ленточный фундамент способна увеличить его износоустойчивость и другие основные его качества на 60 – 70%.

Рассмотрим процедуру укладки арматурной сетки более подробно на примере наиболее популярного, а также востребованного типа цоколя – ленточного фундамента.

Ленточный тип основания

Для начала необходимо более подробнее остановиться на особенностях ленточного фундамента.

Он имеет вид «ленты», нанесенной вдоль всего периметра здания. Основной материал для нее – раствор бетона.

Рассмотрим основные его характеристики:

  • Простота установки
  • Минимальный срок проведения работ
  • Экономия денежных средств благодаря ручной работе без использования специализированной техники
  • Весь процесс строительства не требует работы с большим количеством сырья
  • Длительный срок эксплуатации (срок использования может достигать 100 лет)

Зачем необходимо проводить укрепление фундамента арматурной сеткой

Многие считают бетон самым крепким и прочным строительным материалом. Однако на самом деле этот материал достаточно хрупок.

  • Он может разрушиться из-за сдвига земной коры.
  • Подвержен влиянию влаги, которая может привести к постепенному разрушению.
  • С течением времени основные части, входящие в состав раствора, могут начать осыпаться.

Для предотвращения преждевременного разрушения и утраты крепости бетона необходимо проводить его укрепление путем наложения арматурной сетки. Укладка арматуры ленточного фундамента производится достаточно легко. Провести строительные работы самостоятельно могут практически все. В данном случае от строителей не требуется наличие специально образования или необычных навыков.

Особенности проведения укладки

Необходимо ознакомиться с основными особенностями установки:

  • Для работы необходимо использовать крепкие прутья из стали. Оптимальный диаметр – 1,2 см
  • Обращайте особенное внимание на работу в углах и на стыках фундамента. Очень важно соблюдать правильную технологию работы в этих местах. Ее нарушение приведет к дальнейшему разрушению всей конструкции.
  • Вязка арматуры ленточного фундамента производится следующим способом:

– за вертикальные прутья необходимо закрепить прутья, уложенные внахлест и по диагонали на горизонтальной поверхности сетки.

  • Внутри углов и на стыках должно появиться пересечение прутьев.
  • Прутья должны быть хорошо натянуты вдоль всего периметра здания.

Ленточный фундамент

Основные нюансы работы

Также при работе необходимо учитывать основные свойства арматурной сетки.

  • Материал бетон легко подвержен деформации и разрывам. Для его устранения применяют укрепление основания путем армирования.

Таким образом, достигается высокая прочность в углах, пересечениях и сгибах цоколя.

Снижается вероятность возникновения разрывов.

  • Чтобы основание имело повышенный уровень крепости на срезах, рекомендуется проводить процедуру вертикального его укрепления.
  1. металлические прутья имеет функцию поддерживающих основание стоек
  2. шаг установки вертикальной арматуры – не менее 50 см
  • Чтобы сетка не портилась и не разрушалась под воздействием окружающей среды, необходимо провести процедуру ее укрепления.

Для этого материал погружается в раствор бетона.

Нижняя часть вещества обрабатывается бетоном на 70 см, верхняя – на 6 см.

  • При проведении процедур можно использовать несколько слоев материала. Для его укрепления применяют не менее 3-4 прутьев на каждом слое.
  • Для достижения эффективного результата используются материалы с международной маркировкой А-Ш.
  • Количество материала обычно измеряется в тоннах. Для его расчета необходимо предварительно произвести замеры по необходимой толщине и длине сырья.

    Арматура для основания

  • Расчёт арматуры для ленточного фундамента производится с учетом особенностей грунта, несущей конструкции здания и степени нагрузки и давления на основание.
  • При работе используются 2 вида сырья:

Правильный выбор материалов

  1. вспомогательные прутья
  2. основные
  • Правильный выбор диаметра сечения зависит от особенностей климата, требуемой величины нагрузки, уровня давления, технических характеристик материала (обычно он колеблется в районе 1-2 см)
  • Для связывания и закрепления элементов необходимо использовать вспомогательные прутья. Средний размер е толщины может достигать от 0,5 до 1 см
  • Вертикальные материалы устанавливаются 2 способами:
  1. вбиваются в грунт
  2. монтируются в жесткую поверхность основания

Проведение работы

Установка укрепляющего покрытия состоит из следующих основных этапов:

  1. Подготовительная работа
  2. Опалубка
  3. Обвязка арматуры ленточного фундамента
  4. Укладка ее непосредственно в основание

Используемые инструменты

Армированный фундамент

Для проведения работы нам потребуются следующие строительные материалы:

  • Стержневые прутья. Диаметр – до 1,4 см. оптимальное количество – от 4 до 8. Для достижения наибольшей прочности рекомендуется использовать не менее 8 прутьев.
  • Проволока. Из нее необходимо изготовить обвязывающие перемычки. Они размешаются вдоль периметра цоколя по всей его ширине. Шаг арматуры ленточного фундамента составляет не менее 50-70 см

Все инструменты должны иметь ровную поверхность, не иметь повреждений и сколов. Необходимо их предварительно обработать специальным раствором, предотвращающим коррозию.

  • Проволока для соединения. Диаметр ее составляет от 1 до 1,2 см. ее используют для соединения стержней (продольных и поперечных)
  • Специализированная скоба для вязки. Выполняет связывающую функцию проволоки. Однако обладает наилучшими характеристиками.
  • Специальный крюк для вязания сетки. Его можно выполнить своими руками или приобрести специальный электрический инструмент.
  • Из профессиональных инструментов можно выделить специализированный пистолет для связывания прутьев.
  • Оборудование для сварки. Используется в случаях, когда необходима дополнительная жесткость материалам.

Ленточное основание с арматурами

Проведение работы

  1. Подготовка участка. Разметка территории. Очистка фундамента от пыли, загрязнений, мусора.
  2. Расчет силы нагрузки на материалы. Определение количества используемого сырья.
  3. Выбор количества материалов, типа, размера сырья.
  4. Проведение опалубочных работ. Опалубка производится при помощи деревянных щитов. Закрепить их на земле и придать устойчивость можно, закрепив их специальными колышками из древесины или металла. Опалубочные щиты устанавливаются в вырытую траншею.
  5. Для укрепления конструкции можно провести систему дренажа. Она состоит из слоев щебня и песка. Слои следует хорошо утрамбовать. Высота их не должна превышать 10 см.
  6. Внутри траншеи на расстоянии 2 м друг от друга устанавливаются вертикальные металлические пруты. Укрепить их можно раствором бетона и заглублением в грунт.
  7. Проведение связывания арматурной сетки.
  8. Закрепление сетки на металлических вертикальных прутьях.
  9. Ячейки сетки должны быть установлены на расстоянии не менее 5 см от стенок фундамента. Это предотвратит их преждевременное ржавление и коррозию.
  10. Все элементы строительства должны быть установлены равномерно с соблюдением горизонтального и вертикального уровня. Для достижения прочности необходимо укрепить сетку обломками кирпичей.

Расход материала

Очень важно правильно рассчитать необходимое количество строительного сырья.

Оно зависит от общей площади ленточного фундамента, площади здания.

При средней площади основания в 36 кв.м рекомендуется использовать прутья с сечением 1,4 см. В данном случае потребуется 30 м сырья для 1 уровня сетки: 24 м арматуры по всему периметру цоколя, 6 м – для внутренней отделки.

Если используется 4 уровня сетки, то потребуется 120 м стройматериала: 100 м сырья на периметр, 20 м – на внутренние отделочные работы.

  • Средний шаг установки – 50 см
  • Приемлемая ширина ленты – 30 см

Проведение предварительных расчетов не потребуется, если приобрести композитный тип арматуры.

Своевременное армирование ленточного фундамента позволяет укрепить его и придать ему долговечность и прочность. При проведении работ необходимо производить предварительные расчеты и следовать основным этапам.

Укладка арматуры в ленточный фундамент

При строительстве дома основой служит фундамент. От его выбора во многом зависит прочность сооружения. Качество подобной конструкции определяет правильная укладка арматуры в ленточный фундамент. В большинстве случаев используют кручёный металлический прут диаметром 10 — 12 мм. Также будет полезно знать о заливке ленточного фундамента зимой.

Важно! Укладка арматуры в фундамент увеличивает его износоустойчивость на 60-70%.

Основание дома ленточного типа

Этот тип фундамента выполняется в виде ленты, опоясывающей по всему периметру будущее строение. Его основу составляет бетон.

Пару слов о преимуществах:

  1. Простота и удобство установки.
  2. Сжатые сроки.
  3. Минимальное использование сырья.
  4. Нет необходимости задействовать технику. Стоимость работ существенно снижается.
  5. Фундамент ленточного типа может прослужить до 100 лет.

Многие думают, что бетон сам по себе материал крепкий и прочный. Это не так ведь он не может противостоять влаге и другим природным явлениям. Для предотвращения утраты положительных свойств бетона его укрепляют с помощью кручёного металлического прута. Также полезно почитать о расчёте ленточного фундамента.

Укладка арматуры в фундамент

Самостоятельная укладка арматуры процесс поэтапный, простой, понятный. Его выполнение под силу любому строителю даже без специального образования. Но есть нюансы, о которых необходимо помнить. Использование стальных прутьев диаметром 10—12 мм лучший вариант.

Важно! Проводя укладку прута нужно наибольшее внимание уделять угловой стыковке. Именно от надёжного соединения в углах зависит прочность всей конструкции.

Технология укладки арматуры в фундамент ленточного типа — это кропотливый и сложный процесс. Чтобы подготовить и застропировать прутья понадобятся два человека. Для проведения работ по установке и надёжной фиксации изделий необходимо привлечь трёх человек.

Порядок выполнения операции следующий: два человека держат изделие при его подъёме, затем устанавливают в отведенное место. Один рабочий руководит процессом и подаёт команды на подъём и опускание. Стыки вяжут три человека. Если сборка проводится непосредственно в траншее, для опускания пользуются траверсом. Полезная статья об организации подушки под фундамент.

Правила укладки арматуры, её вязки

Крепление отдельных прутьев между собой для повышения прочности и надёжности называется вязка. Она выполняется следующим образом.

За вертикальные прутья необходимо закрепить металлические стержни, уложенные внахлест. Работы необходимо проводить по диагонали на горизонтальной поверхности сетки.

Пересечение прутьев должно появиться внутри углов и на стыках металлической конструкции. Все работы проводятся вручную.

Сегодня в строительстве всё чаще используют для ускорения процесса монтажа ручную сварку. Но специалисты не советуют использовать жёсткую конструкцию. Это связано с возможностью смещения грунта и перекоса соединений. Связка может ослабнуть в одном из мест, что приведёт к появлению трещин на фундаменте и доме.

Поэтому наиболее «правильным» будет вариант ручного соединения. Если принято решение о применении сварки в процессе монтажа прута, то работы лучше всего поручить опытному мастеру.

Важно! Обращаем внимание на недопустимость использования сварки для конструкции, если диаметр арматуры не превышает 20 мм.

Укладка арматуры технология, которая предусматривает перед началом вязки выполнения работ по установке опалубки. В целях надёжной защиты досок от влаги и грязи необходимо её внутреннюю часть обработать защитным материалом. В качестве рабочего материала можно использовать пергамин. Защитные мероприятия позволяют упростить процесс снятия конструкции после затвердевания бетона. Во время работ для закрепления материала используют строительный степлер.

Важно следить за натяжкой прутьев по всему периметру здания, не допуская провисания и слабины.

Для вязки используют два вида арматуры:

  • основную;
  • вспомогательную.

Диаметр основного вида должен быть в пределах 10—12 мм. Вспомогательные металлические пруты для вязки могут быть 0,5-1,0 мм.

А вы знаете как сделать фундамент дома своими руками?

Укладка арматуры в бетон

Для более прочного соединения арматуру погружают в бетон. При вертикальном положении каждый шаг металлического прута устанавливается на расстоянии от 500 до 700 мм друг от друга. Вертикальные материалы либо вбиваются непосредственно в грунт, или монтируются в жёсткую поверхность основания.

Используют стержневые прутья диаметром 140 мм. В связке желательно использовать от 4 до 8 единиц. Из связывающей проволоки делают перемычки, которые проходят вдоль периметра цоколя, захватывая всю ширину.

Важно! Обязательно учитывается, что в фундаменте ленточного типа большая часть нагрузок распределяется между нижними и верхними рядами.

При закладке арматуры в бетон можно использовать три или четыре слоя прута. Укладка арматуры в бетон видео- и фотоматериал можно найти в интернете, ознакомиться и иметь определённое представление о порядке последовательности процесса.

Расход материала для армирования

Просчитать предварительное количество материала важно. Расход зависит от общей площади фундамента и S здания.

Ориентировочный расход металлического кручёного прута для здания S 36 кв.м
1Общее количество стальных прутьев для первого уровня сетки(метров)30
2Сечениеммм140
3По периметру цоколя(метров)24
4Для внутренней отделки(метров)6

Соответственно при использовании четырёх уровней необходимо 120 метром материала, из которых 100 метров уйдёт на укладку по периметру здания, а 20 метров на отделку внутреннего помещения.

Важно!  Отпадёт необходимость предварительных расчетов, если использовать арматуру композитного типа.

В заключении

Качественное армирование даёт возможность прочно закрепить фундамент и продлить его долговечность. В работе нужно придерживаться поэтапного выполнения операций. Специальная техника в производственном процессе не задействуется. Поэтому себестоимость укладки прута в бетон ниже по сравнению с установкой других видов фундамента. Это немаловажный фактор, существенно влияющий на выбор основания для будущего дома.

Рекомендуем к прочтению — какая марка бетона нужна для укладки ленточного фундамента

вид и толщина арматуры, ее шаг, правила и технология изготовления

Ленточный фундамент  — один из самых распространенных. Он несложен в изготовлении, с его помощью  легко реализуются самые разные конфигурации зданий. На нем можно выстроить дом в несколько этажей или небольшую баню. Для придания бетону большей прочности, а основанию большей надежности фундаменты армируют стальными прутками различной конфигурации.

При наличии стальных элементов в конструкции это уже не бетон, а железобетон, а у него прочность в разы выше. Работы эти не самые простые, но работа бригады стоит довольно дорого. Причем не факт, что они сделают так, как надо: для них это лишь очередной заказ, а для хозяина — любимый дом (баня, дача и т.д.). Потому армирование фундамента своими руками — отличный выбор. Есть только один нюанс: если грунты сложные, подпочвенные воды высоко, да еще и сооружение будет тяжелым, закажите лучше расчет фундамента в специализированной конторе. Так вы будете иметь гарантированно правильное и надежное основание для дома в таких непростых условиях.

Ленточный фундамент — один из самых широко используемых в нашей стране

Содержание статьи

Особенности армирования

Особенность ленточных оснований в том, что их длина во много раз превышает ширину и высоту. Нагрузка от здания давит на фундамент сверху. Получается, что при этом верх ленты сжимается, а низ растягивается. Так как при растяжении в монолите образуются трещины, то для обеспечения его целостности нижний пояс армирования обязателен.

Ленточный фундамент любой высоты практически всегда имеет два пояса армирования — верхний и нижний

С другой стороны, снизу, периодически давят на ленту силы, которые появляются при пучении грунтов. Тут картина противоположная — низ фундамента сжимается, верх — растягивается. И снова в местах растяжения образуются трещины. Потому, для предотвращения их появления и верхний край необходимо усилить.

Что характерно, середина основания практически не нагружается, а потому, какой бы ни была высота, средний пояс делают редко.

Если необходимо сильно углублять фундамент, желательно заказать профессиональный  расчет. Тогда специалисты вам точно скажут, сколько поясов потребуется для того, чтобы строение стояло долго, из какого прутка его делать.

Получается, что для ленточного фундамента обязательны два пояса армирования: один внизу, другой — в верхней части. Причем для защиты от коррозии они должны располагаться на 5 см вглубь от края.

Какую арматуру использовать

Теперь нужно понять, в каком направлении нужна арматура, какой толщины она должна быть. Это зависит от распределения нагрузок, а они в этом основании распределяются таким образом, что большая часть всех воздействий приходится на продольные прутки. Потому они должны быть прочными и рифлеными — класса AIII. На твердых и непучнистых грунтах для сооружений небольшой массы используют арматуру диаметром 12 мм. На более сложных почвах или для более тяжелых стен применяют 14 мм. Чтобы перестраховаться, укладывают 16 мм. Большие диаметры в малоэтажном строительстве — редкость, хотя временами кладут и 20 мм.

Продольные прутки арматуры обязательны рифленые, диаметром 12-16 мм, а для вертикальных и поперечных направляющих использовать можно гладкий прут 6-8 мм

Вертикальные и поперечные перекладины арматуры в ленточном фундаменте нагружаются слабо. Большей частью они нужны для придания формы и стабилизации конструкции. Потому для вертикальных и поперечных стоек используют гладкий пруток диаметра 6-8 мм. Его прочности более чем достаточно для выполнения этих функций.

Шаг армирования ленточных фундаментов (по СНиПу)

При расположении всех прутков соблюдается ключевое условие: от края до стали должно быть не менее 5 см бетона. Только в этом случае арматура оказывается защищенной от коррозии (на такую глубину уже не проникают вода и кислород). Но сильно заглублять пояса тоже нельзя: на поверхностные слои воздействует большие силы, чем ближе к середине. Потому сильно вглубь прятать армирование не следует: оно не будет выполнять своих задач. Расстояние от края 5-6 см — оптимальный вариант.

Для ленточного фундамента необходимо определиться с количеством продольных прутков в каждом из поясов. Согласно СНиПа 52-01-2003 (пункт 7.3.6) расстояние между ними должно быть не более 400-500 мм.

Так выглядит конструкция с привязкой к грунту

Но ширина ленты для небольших строений, которыми является баня (одно- двух- этажный дом тоже), редко бывает больше 40 см. Если учесть, что от краев нужно будет отступить по 5 см, получится, что расстояние между двумя прутками будет не более 30 см.  То есть 2-х продольно уложенных «арматурин» вполне достаточно.

Так как основные нагрузки приходятся именно вдоль ленты, то укладывать желательно цельные, без соединений стальные элементы. В среднем длина арматуры требуемого класса 6-11 м. Этого достаточно для большинства домов и бань. Неудобно при доставке, но зато основание будет надежным. Причем берите пруты минимум на 1,5 метра длиннее: их нужно будет загнуть при прохождении углов. Так получится надежно и прочно.

Следующий этап — определение шага для расположения вертикальных стоек и поперечин. Ссылаться опять будем на СНиП. Только в этот раз нужен пункт 7.3.7. В нем говорится, что поперечная арматура в ленточном фундаменте должна размещаться друг от друга на расстоянии не более 300 мм. Тут есть некоторое противоречие: практики говорят, что на нормальных грунтах достаточно расположить  поперечины не ближе 500 мм. Причем даже кирпичный дом на таком основании будет стоять нормально. Собственно, решать вам. Не знаете, как поступить — закажите расчет. Или перестрахуйтесь, и поставьте через 300 мм. Фундамент — это та часть, в которой лучше переусердствовать. Дешевле обойдется. Тем более что гладкий пруток не так и дорог.

Иногда вертикальные и поперечные стойки в ленточном фундпменте делают гнутыми. Это еще повышает его прочность и надежность. А некоторые, перестраховываясь, укладывают три прутка…

Итак, мы определились, что укладка арматуры в ленточный фундамент (до метра высоты и до 600 см ширины) необходима в два яруса: один на 5 см выше нижнего края, второй — на 5 см ниже верхнего. В каждом поясе будет по два рифленых продольных прутка диаметром 12-14 мм. Вертикальные стойки и поперечное армирование проходит через 300-500 мм и делают их из гладкого прутка 6-8 мм.

О том, как рассчитать количество прутков и проволоки для армирования ленточного фундамента, читайте тут.

Армирование углов ленточного фундамента

Углы любого здания — места, где соединяются разные вектора нагрузок. Потому так важно выполнить армирование углов правильно. Простое соединение двух прутков тут недопустимо: оно не в состоянии передать и распределить нагрузки. Этот участок требует особого подхода и специальных схем укладки арматуры.

Для правильного их укрепления необходимо использовать гнутые элементы. Желательно чтобы они были продолжением продольных прутков, и «заходили» за угол на 60-70 см (смотрите схему слева).

Правильное армирование углов требует использование гнутых элементов. Простое связывание не даст требуемой прочности

Если длины не хватает, используют отдельные гнутые в виде буквы «Г» элементы — хомуты. Их стороны должны быть не менее 50 диаметров прутков (если используете 12 мм, то стороны должны быть не менее 12 мм* 50 = 600 мм, для 14 мм прутка  — 700 мм). Как укладывают арматуру в этом случае, показано на правой схеме.

Обратите внимание, что в углах вертикальные и поперечные пояса нужно ставить в два раза чаще: шаг армирования тут вполовину меньше.

Не меньшего внимания требует и усиление мест, где от основного периметра отходят ленты под внутренние перегородки. Места прилегания этих стен также требуют использования гнутых элементов по тем же правилам. На схеме армирования слева показано, как укладывать прутки при наличии запаса длины, на схеме справа — с использованием отдельного Г-образного хомута.

Места примыкания стен требуют не меньшего внимания

Теперь вы знаете, как правильно уложить арматуру по углам.  Следуя этим правилам и реализуя схемы, вы создадите прочное основание, которое выдержит и статическую нагрузку от самого здания, и от сил пучения. И ваше здание никогда не даст трещин по углам, с которыми бороться очень непросто.

Когда и как устанавливать арматуру

Армирование ленточного фундамента начинают после того, как собрана и установлена опалубка. Продольные и поперечные направляющие необходимо каким-то образом соединить. Есть два метода: сварка и вязка проволокой. Сваривать быстрее, но использовать этот методе не рекомендуют: места сварки быстрее коррозируют, и слишком жесткая получается в результате конструкция, которая хуже противостоит нагрузкам. Потому желательно арматуру для ленточного фундамента вязать. Как это делать, читайте тут.

Вязать армирующий пояс можно прямо на месте, в траншее

Со способом соединения определились. Теперь необходимо выбрать, где собирать каркас. Есть два метода:

Оба способа используются. Удобнее, наверное, второй — находится в узкой траншее неудобно. К тому же можно повредить пленку, которой часто выстилают дно и стены опалубки (для минимизации утечек бетона и предотвращения его пересыхания).

Но при большой длине готовых модулей нужно будет каким-то образом доставить совсем нелегкую и довольно гибкую конструкцию к месту, да еще и ровно опустить ее на дно траншей. Тут без техники не обойтись. Так что тоже — есть трудности и недостатки.

Итоги

Армирование ленточного фундамента своими руками — дело непростое, но вполне реальное. Одному человеку работать придется долго, но и такой вариант реален для небольших домов (дачных домиков или бань).

Как правильно уложить арматуру в фундамент. Арматура для фундамента. ArmaturaSila.ru

Портал о бетоне: калькуляторы, информация, производители.

Укладка арматуры в фундамент ленточного типа

Пару слов о преимуществах:

  1. Простота и удобство установки.
  2. Сжатые сроки.
  3. Минимальное использование сырья.
  4. Нет необходимости задействовать технику. Стоимость работ существенно снижается.
  5. Фундамент ленточного типа может прослужить до 100 лет.

Многие думают, что бетон сам по себе материал крепкий и прочный. Это не так ведь он не может противостоять влаге и другим природным явлениям. Для предотвращения утраты положительных свойств бетона его укрепляют с помощью кручёного металлического прута. Также полезно почитать о расчёте ленточного фундамента.

Укладка арматуры в фундамент

Самостоятельная укладка арматуры процесс поэтапный, простой, понятный. Его выполнение под силу любому строителю даже без специального образования. Но есть нюансы, о которых необходимо помнить. Использование стальных прутьев диаметром 10—12 мм лучший вариант.

Важно! Проводя укладку прута нужно наибольшее внимание уделять угловой стыковке. Именно от надёжного соединения в углах зависит прочность всей конструкции.

Технология укладки арматуры в фундамент ленточного типа — это кропотливый и сложный процесс. Чтобы подготовить и застропировать прутья понадобятся два человека. Для проведения работ по установке и надёжной фиксации изделий необходимо привлечь трёх человек.

Порядок выполнения операции следующий: два человека держат изделие при его подъёме, затем устанавливают в отведенное место. Один рабочий руководит процессом и подаёт команды на подъём и опускание. Стыки вяжут три человека. Если сборка проводится непосредственно в траншее, для опускания пользуются траверсом. Полезная статья об организации подушки под фундамент.

Правила укладки арматуры, её вязки

Крепление отдельных прутьев между собой для повышения прочности и надёжности называется вязка. Она выполняется следующим образом.

За вертикальные прутья необходимо закрепить металлические стержни, уложенные внахлест. Работы необходимо проводить по диагонали на горизонтальной поверхности сетки.

Пересечение прутьев должно появиться внутри углов и на стыках металлической конструкции. Все работы проводятся вручную.

Сегодня в строительстве всё чаще используют для ускорения процесса монтажа ручную сварку. Но специалисты не советуют использовать жёсткую конструкцию. Это связано с возможностью смещения грунта и перекоса соединений. Связка может ослабнуть в одном из мест, что приведёт к появлению трещин на фундаменте и доме.

Поэтому наиболее «правильным» будет вариант ручного соединения. Если принято решение о применении сварки в процессе монтажа прута, то работы лучше всего поручить опытному мастеру.

Важно! Обращаем внимание на недопустимость использования сварки для конструкции, если диаметр арматуры не превышает 20 мм.

Укладка арматуры технология, которая предусматривает перед началом вязки выполнения работ по установке опалубки. В целях надёжной защиты досок от влаги и грязи необходимо её внутреннюю часть обработать защитным материалом. В качестве рабочего материала можно использовать пергамин. Защитные мероприятия позволяют упростить процесс снятия конструкции после затвердевания бетона. Во время работ для закрепления материала используют строительный степлер.

Важно следить за натяжкой прутьев по всему периметру здания, не допуская провисания и слабины.

Для вязки используют два вида арматуры:

Диаметр основного вида должен быть в пределах 10—12 мм. Вспомогательные металлические пруты для вязки могут быть 0,5-1,0 мм.

Укладка арматуры в бетон

Для более прочного соединения арматуру погружают в бетон. При вертикальном положении каждый шаг металлического прута устанавливается на расстоянии от 500 до 700 мм друг от друга. Вертикальные материалы либо вбиваются непосредственно в грунт, или монтируются в жёсткую поверхность основания.

Используют стержневые прутья диаметром 140 мм. В связке желательно использовать от 4 до 8 единиц. Из связывающей проволоки делают перемычки, которые проходят вдоль периметра цоколя, захватывая всю ширину.

Важно! Обязательно учитывается, что в фундаменте ленточного типа большая часть нагрузок распределяется между нижними и верхними рядами.

При закладке арматуры в бетон можно использовать три или четыре слоя прута. Укладка арматуры в бетон видео- и фотоматериал можно найти в интернете, ознакомиться и иметь определённое представление о порядке последовательности процесса.

Расход материала для армирования

Просчитать предварительное количество материала важно. Расход зависит от общей площади фундамента и S здания.

Ориентировочный расход металлического кручёного прута для здания S 36 кв.м

Соответственно при использовании четырёх уровней необходимо 120 метром материала, из которых 100 метров уйдёт на укладку по периметру здания, а 20 метров на отделку внутреннего помещения.

Важно! Отпадёт необходимость предварительных расчетов, если использовать арматуру композитного типа.

В заключении

Качественное армирование даёт возможность прочно закрепить фундамент и продлить его долговечность. В работе нужно придерживаться поэтапного выполнения операций. Специальная техника в производственном процессе не задействуется. Поэтому себестоимость укладки прута в бетон ниже по сравнению с установкой других видов фундамента. Это немаловажный фактор, существенно влияющий на выбор основания для будущего дома.

Рекомендуем к прочтению #8212; какая марка бетона нужна для укладки ленточного фундамента

Как производится укладка арматуры в фундамент

  • Для чего проводится армирование
  • Инструменты и оборудование для работы
  • Арматура и способы ее соединения
  • Особенности укладки арматуры

Укладка арматуры в фундамент необходима для улучшения прочности бетонных конструкций. Бетон #8211; это очень прочный строительный материал, но он не способен выдерживать большие нагрузки на растяжение. В этом случае и применяется арматура. В результате получается материал под названием железобетон.

Схема армирования фундамента.

Для чего проводится армирование

  • повышения несущей способности сооружения;
  • предупреждения процессов деформации несущего фундамента вследствие сдвигов грунта;
  • увеличения срока службы строения.

Изображение 1. Схема армированного фундамента.

Все это достигается благодаря тому, что арматура испытывает в ходе эксплуатации определенные физические процессы:

  • между бетоном и железом арматуры возникают значительные силы трения, в результате чего обеспечивается сцепление этих строительных материалов в железобетон;
  • между арматурой и бетонным раствором происходит активное электрохимическое взаимодействие;
  • арматурный каркас испытывает сильное сжатие под весом бетона.

Чтобы все эти процессы происходили нормально, укладывать арматурные прутья в фундамент нужно с соблюдением некоторых правил и требований.

Вернуться к оглавлению

Инструменты и оборудование для работы

Для укладки арматуры в опалубку могут понадобиться:

Инструменты для армирования фундамента.

  • стержни арматуры;
  • арматурная проволока;
  • сварочный аппарат;
  • рулетка;
  • проволока вязальная Ø 1,2 мм;
  • болгарка.

Для ленточного фундамента обычно используются от 4 до 8 прутьев арматуры (изображение № 1). Схема расположения армированного каркаса изображена на фото (изображение № 2). Вертикальные элементы арматуры устанавливаются с шагом 50 см. Между собой элементы связываются вязальной проволокой (изображение № 3).

Вернуться к оглавлению

Арматура и способы ее соединения

Армирование обычно производится таким образом:

  • подготавливается траншея под фундамент;
  • монтируется опалубка;
  • в опалубку опускается арматурная конструкция.

Арматурный каркас делается из специальных арматурных прутьев разного диаметра. Отдельные элементы каркаса соединяются друг с другом различными способами:

  • соединение с применением сварки;
  • обвязка элементов специальной проволокой;
  • соединение прутьев специальными пластмассовыми хомутами.

Изображение 2. Арматурный каркас производится из арматурных прутьев различного диаметра.

Сварка является самым простым способом устройства армирующих конструкций. Недостаток способа заключается в том, что он приводит к значительному увеличению стоимости фундамента. В месте сварки прутья изменяют свой состав, что приводит к ослаблению их прочности. При использовании арматурных прутьев диаметром более 20 мм применять сварочные работы не рекомендуется.

Обвязка проволокой #8211; самый правильный метод армирования. Он не вызывает дефектов арматурного каркаса. Вязка арматуры выполняется специальной вязальной проволокой диаметром 1,2 мм. Ее отжигают, в результате чего она становится пластичной и мягкой. Работать с таким материалом очень легко. Вяжут арматуру проволокой с помощью пассатижей. Для больших объемов работы применяются крючки, сделанные самостоятельно. Можно подобные инструменты купить в строительных магазинах. Работы проводятся в такой последовательности:

  1. Нарезается арматура на куски, определенные проектом стройки.
  2. Элементы раскладываются в соответствии с требованиями проекта.
  3. При сращивании прутьев между собой перехлест их не может быть меньше десятикратного диаметра арматуры.

В условиях опалубки не всегда можно осуществить вязку арматурных элементов. В таком случае эти работы проводятся на площадке поблизости. После окончания вязки вся конструкция опускается в опалубку. При размещении в опалубке арматуру укладывают таким образом, чтобы вся она оказалась закрытой массивом бетона. Со всех сторон металлический каркас должен быть закрыт слоем бетона толщиной не менее 5 см.

Изображение 3. Элементы арматуры связываются между собой при помощи вязальной проволоки.

Сегодня на стройках начинает применяться арматура из стеклопластика. Она имеет следующие отличия от металлической:

  • стоимость ее значительно ниже;
  • длина стержней может быть неограниченной;
  • вес арматуры значительно ниже, чем у привычной металлической;
  • стеклопластик #8211; диэлектрик, способный переносить низкие и высокие температуры;
  • арматуру из стеклопластика можно использовать с агрессивными материалами, она не подвергается коррозии.

Вернуться к оглавлению

Особенности укладки арматуры

Укладка арматуры #8211; процесс не очень простой. Для армирования обычно применяются 2, иногда 3 пояса арматуры, соединенных сваркой или проволокой. Горизонтальные прутья укладываются на ровной поверхности песчаной подушки. Под прутья подкладываются куски кирпича или другие прокладки толщиной около 5 см. Горизонтальные элементы связываются с вертикальными. В углах нельзя гнуть арматуру с помощью паяльной лампы. Гнуть их можно только в холодном виде, можно для этого пользоваться гибочным станком. Стеклопластиковая арматура скрепляется специальными хомутами и бобышками из полимерных материалов.

Для более точного выполнения работы можно воспользоваться таким методом. На длинной доске вбить по прямой линии гвозди на расстоянии 10 см друг от друга. Они будут служить направляющими для укладки прутьев арматуры. Теперь остается только устанавливать и укреплять проволокой вертикальные элементы и верхний ряд горизонтального пояса. Такая схема значительно сокращает время на выполнение работы.

Армирование бетонного фундамента #8211; важный этап работы по изготовлению прочного основания для строения.

Выбор материалов довольно большой. Нужно лишь правильно выполнять соединения прутьев. Лучше использовать для этого вязку проволокой. Правильная укладка арматурного каркаса сбережет дом от трещин и от преждевременного разрушения.

Как правильно армировать фундамент, несколько правил армирования

У новичков строительного дела в процессе возведения частного дома, террасы, бани может возникнуть немало вопросов. Первый вопрос, с которым они столкнутся, звучит так: как армировать фундамент правильно или это делать вообще необязательно, так как арматура подразумевает дополнительные затраты.


Ответ на этот ворос очевиден – делать армирование просто необходимо, так как арматура придает основанию дополнительную прочность.

Армирование фундамента намного увеличивает его стойкость к воздействию низких температур и, что особенно важно, позволяет выдерживать зачастую неравномерно распределенные нагрузки, передающиеся от дома. Необходимо с умом подходить к данному процессу, в противном случае, придется столкнуться с преждевременным износом фундамента, что может привести к разрушению всего строения. Мы расскажем вам о некоторых правилах, следуя которым вы сможете возвести прочное и долговечное основание для вашей будущей постройки.

Как правильно армировать фундамент

Прежде всего, нужно подобрать правильную арматуру. Металлопрокат, предназначенный для этого, выпускается в виде проволоки, из которой сплетают каркасную решетку, и стержней, кроме того — уголков и швеллеров. Для фундаментов малоэтажных зданий применяют стержни диаметром от 1 до 4 см и длиной до 6 метров. Нередко люди, в первый раз выполняющие армирование, заблуждаются, думая, что чем больше диаметр арматуры, тем крепче получится конструкция. Все не так уж просто, как кажется вначале.

Лучший способ для крепления прутов каркаса – это обвязывание их специальной проволокой. Но ей, однако, возможно связать лишь пруты диаметром не более 2,5 см, в случае с большим диаметром связать их прочно не выйдет и тогда придется прибегнуть к сварке, все же уступающей по прочности способу вязания. В связи с этим, лучше выбрать арматуру небольшого диаметра, идеально, чтобы на ней было специальное рифление, грани и насечки, то есть она должна иметь наибольшую площадь для ее сцепки с бетоном. Это будет способствовать созданию качественного, монолитного сооружения.

Второе правило, заслуживающее внимания: чтобы правильно армировать фундамент, необходимо правильно уложить арматуру. Для этого надо сделать каркас, используя стержни, причем, расстояние между точками, в которых пересекаются вертикальные и горизонтальные стержни должно составлять 1,5 м, после чего нужно уложить в каждый ряд по 3-4 прута.

На что стоит обратить внимание?

1.Под каркас следует уложить армирующую сетку, ее же необходимо положить и сверху, затем, используя сварку, прикрепить к стержням.
2.Рекомендуемое расстояние между прутами — не более 20 сантиметров; перехлест прутов – приблизительно 60 сантиметров.

Подобное фундаментное армирование подходит для строительства домов из дерева или кирпича, в случае, если дом будет с несущими колоннами, в местах их возведения необходимо уложить еще один слой армирующей сетки для большего укрепления фундамента.

И наконец, третье правило. Большинство людей, решивших заняться строительством, стараются подходить к этому вопросу максимально экономно. Порой, неопытные строители с целью экономии приобретают так называемый «металлолом» (б/у арматуру). Не стоит этого делать, так как это лишь приведет к уменьшению прочности фундамента. Правда, металлолом вполне подойдет для строительства бани, летней кухни либо террасы, в общем, там, где нагрузки на основание не столь велики и высокий уровень прочности не обязателен.

Выбирая арматуру, обращайте внимание на ее пластичность, она должна легко свариваться и быть устойчивой к коррозии. Помимо этого, она должна иметь хорошую сцепку с бетоном. Металлолом, к сожалению, не обладает такими свойствами.

После изготовления армирующего каркаса нужно сделать опалубку, в которую его надо уложить, причем, верхний край каркаса должен находиться чуть ниже высоты фундамента, примерно на 3-5 см и где-то на 5 см отступать от сторон опалубки.

Источники: http://betonzone.com/ukladka-armatury-v-fundament-lentochnogo-tipa, http://tolkobeton.ru/fundament/ukladka-armatury-v-fundament.html, http://www.adviceskilled.ru/sovet-po-remontu/kak-pravilno-armirovat-fundament


Комментариев пока нет!

Армирование ленточного фундамента

Схема армирования ленточного фундамента всегда нестандартная. Длина всегда в несколько раз будет превышать глубину. Такие расчёты проводятся для того, чтобы максимально равномерно распределить всю нагрузку вдоль всего фундамента. Ленточный фундамент без армирования не сможет выдержать нагрузки, особенно когда конструкцией предусмотрен изгиб. С целью придачи максимальной прочности строению и забора нагрузки, проектировщиками применяется армирование ленточных фундаментов – железобетон. Когда внутри бетона установлен металлический каркас из арматуры. Сам процесс называется армирование. Самостоятельно соорудить арматурный каркас для ленточного фундамента можно и нужно, но необходимо знать некоторые тонкости, о которых расскажем немного ниже.На вопрос: нужна ли арматура, однозначно ответ – нужна.

Данные, которые должны быть прописаны в проектной документации:

  • Количество, расстояние;
  • точное расположение ступенчатого каркаса;
  • диаметр;
  • сделанный чертеж укладки арматуры;
  • технология армирования ленточного фундамента, сорт металлических прутьев.

Вышеуказанные параметры могут видоизменяться в зависимости от типа сооружения и общей массы. Для капитальных строений социального значения – проектная документация обязательная. Если планируете армировать ленточный фундамент своими руками, то законодатель допускает стройку без проекта, но с обязательным приложением схемы (чертеж) армирования для малоэтажных зданий.

Руководство по СНиПам №2.03.01-84 гласит, что бетонные фундаменты без армирования не допускаются к использованию при сооружении постройки.Устройство конструкций предусматривает повышенные нагрузки.

Связка прутьев и их расположение

Пошаговая инструкция, шаг за шагом: армирование ленточного фундамента проводится с помощью металлического каркаса, который состоит из продольных веток арматуры. Каждая армированная ветка соединена с другой, уложенные.При помощи металлических перемычек, как вертикальных, так и горизонтальных. Количество таких «витков» определяется в каждом конкретном случае индивидуально. Как правило, это зависит от высоты строения, типа, общей массы.

Важно: армирование мелкозаглубленного ленточного фундамента прокладывается двумя ветками прутьев: верхней и нижней. Что касается глубокозаглубленного ступенчатого, то нужно дополнительно укреплять средину промежуточной веткой. Данное условие характерно для тех основ, высота которых не превышает расстояние 130 см. Правила армирования ленточного фундамента предусматривают ввязывание дополнительной ветки и поперечины, если монолитный фундамент  выше на 30,0 см и более.

Основные критерии при сооружении основы:

  • Строгое соблюдение всех правил и норм при сооружении ленты фундамента;
  • правильно читать чертеж;
  • никаких отклонений или упрощений при возведении ряда, ветки, плиты;
  • класть только качественные и рекомендованные материалы;
  • всегда делать поправку на погодные условия.

Понятия о ленточном фундаменте

  • Фундамент ленточный это сплошная бетонная полоса с металлическими прутьями внутри;
  • отсутствует разрыв на ступень, дверные, воротные проёмы;
  • лента заглублена в землю на строго определённую глубину;
  • наземная часть фундаментной ленты выступает одновременно в качестве цокольной части;
  • ленточные фундаменты разнообразны в своём исполнении: различают ленточный монолитный, сборный, блочный;
  • монолитному типу отдаётся предпочтение, когда нужно делать строения из камня, кирпича, армированного бетона, бетонных блоков. Одним словом, когда нужно поместить массу равномерно по всей площади основы;
  • применение арматуры в ленточном фундаменте, если проектировщики планируют использовать наземную часть основу в качестве цоколя или полуподвального помещения;
  • при сооружении многоэтажных капитальных строений с перекрытий из тяжелого материала;
  • монолитный армированный, когда земельный участок под застройку имеет неоднородную почву и воздушную подушку в верхней части;
  • мелкозаглубленный ленточный фундамент востребованный из-за его долговечности;
  • практичность при прокладке всевозможных инженерных сооружений;
  • наивысший показатель прочности, даже в сравнении с полноценными бетонными плитами. На изготовление плиты уходит больше затрат, нежели на основу.

Основные правила армирования

  • Укладка арматуры в ленточный фундамент классом А400, можно выше;
  • категорически запрещено использовать сварку для крепления поперечин, так как она только ослабляет молекулярную структуру ступенчатого каркаса;
  • каркас только связывается, иные варианты, кроме сварки в редких случаях, не предусмотрены;
  • при использовании хомутов для стяжки не используйте армирующие прутья с гладкой поверхностью;
  • защитный слой бетона положитьв 4,0 см, не менее. Это будет своеобразный антикоррозийная прокладка для металла, как работает пропитка для деревянного бруса;
  • частое расположение металлических веток может привести к тому, что бетон не сможет фактически проникнуть внутрь короба. В инженерии это называется крупность наполнения. В итоге получится пустотелая плита, вместо основы.

Совет по армированию ленточного фундамента: при прокладке длинных металлических веток, допускается накладка прутьев один на один с нахлёстом не менее 250 миллиметров в виде мелкой сетки;

Тип арматуры для сооружения

  • Армирование подошвы ленточного фундамента осуществляется рабочей или основной арматурой;
  • поперечины горизонтальной фиксации арматурного каркаса;
  • вертикальная арматура.

Пример: часто на практике можно встретить названия хомут из арматуры. Подразумевается, что это поперечная монолитная плита — арматура для фундамента ленточного типа.

Схема армирования

Итак, как правильно армировать углы:

  • Если длина ветки фундамента три и менее метров, то сечение располагать диаметром 0,1 % от общего сечения основы. На практике используется диаметр 2 см, если длина три и менее метров. Превышение длины требует большего диаметра прутьев, но не больше 4,0 см. Больший диаметр категорически запрещён всеми строительными нормами и СНиПами;
  • горизонтальные поперечины для армирования углов. Они не могут быть менее 0,6 см в диаметре;
  • вертикальные поперечины напрямую зависят от высоты ленты основы. Высота до одного метра ленты требует поперечину диаметром 0,6 см;
  • для заглубленного типа фундаментов предусматривается использование стержней не менее 0,8 см диаметром, но не больше двух. Как укладывать, описано выше.

Вязка стержней

Важно: в соответствие со строительными нормами, прутья соединяются между собой путём связывания. В отличие от сварного типа, связка обладает более сильной прочностью и надёжностью. Архитектурные правила допускают использовать сварной тип только на прямых участках ветки. Там, где планируется изгиб или поворот, сварка запрещена. Монолитная плита испытывает на прямой линии меньшую нагрузку.

Подготовительный этап. Прежде чем преступить к вязке прутьев, нужно подготовить все необходимые материалы и инструменты. Решение вязки:

  • Металлический крюк: актуален только для небольших строений и сооружений. Для многоквартирных домов способ категорически неприемлем и отнимет очень много времени;
  • пистолет: используется на практике для связывания больших объёмов при капитальном строительстве ленточных фундаментов. Проволока применяется диаметром 0,85 – 1,00 см. для армировки ленточных фундаментов.

Правила нахлёста:

  • Лапкой: на каждом изгибе делают лапку длиной не менее 350 мм, расстояние между поперечными можно более, но не менее. Изгиб присоединяют к новому витку и так далее укладывать арматуру;
  • использование хомутов: принцип несколько схож с предыдущим способом, но лапку не изготавливают, а используют кусок металла изогнутой формы вместо лапки. На каждый из витков прикрепляют конец хомута. Длина составляет не менее 500 мм. Армирование монолитных ленточных фундаментов продолжается по такой схеме;
  • хомут П-образной формы кладут на два параллельных прута, приваривают, а торцевую часть к одному перпендикулярному.

Самые распространённые ошибки при сооружении:

  • Армирование углов ленточного фундамента -угол в 90°;
  • неправильного связывания между внешним и внутренним периметром ветки;
  • продольные прутья соединены перекрестным способом раскладки. Нарушена технология правильного армирование углов ленточного фундамента.

Как видим, армирование ленточного фундамента своими руками процесс вовсе не сложный, нужна последовательность. Главное усвоить некоторые правила по укладке и связке прутьев, технологию нахлёста. Как уже упоминалось ранее, при сооружении частного строения наличие проектной документации вовсе не обязательно. Читайте статью, как правильно армировать ленточный фундамент, тренируйтесь, если не получается уложить арматуру, повторите процедуру заново. Успехов. Конструктивных решений. Грамотно составленный каркас – залог долголетия строения. Обязательно ли армировать – да, обязательно. Можно ли сделать своими руками – можно.

Автор: Максименко Игорь

основных моментов и полезных советов

Виды армирования фундамента. Требования к арматурным деталям. Технические особенности монтажа арматуры для различных фундаментных конструкций.

Бетон превращается в железобетон за счет армирования фундамента . Особая конструкция железобетонных фундаментов позволяет им воспринимать нагрузки, направленные, помимо сжатия, при изгибе и растяжении.

Как правильно укрепить фундамент

Во-первых, арматурные стержни должны быть чистыми, без грязи и мусора.Только чистая арматура хорошо сцепляется с бетоном. Фрейм имеет два типа детализации (для определенных целей): оперативную и распределительную. Назначение эксплуатационного армирования заключается в принятии внешних нагрузок и собственного веса здания. Распределительное армирование распределяет нагрузку на весь каркас.

Соединение между фитингами обеспечивается сварными швами или пучками проводов. Из соображений надежности чаще применяется сварка. Но если ожидаемая нагрузка на фундамент небольшая, можно обойтись вязальной проволокой.В основном арматурный каркас крепится по углам фундамента. Если диаметр арматурных стержней не менее 25 мм, их склеивают точечной сваркой или проволокой. Если их диаметр превышает 25 мм, применяется дуговая сварка.

Помните: по всей раме не менее половины перекрестков арматуры должны быть заделаны; по углам рекомендуется соединить все стыки.

Если ваша арматура имеет диаметр не более 40 мм, соединение выполняется с накладкой, при этом сварное соединение не должно быть слишком коротким, иначе крепление может быть разрушено.Для любого типа фундамента лучше использовать ребристые бруски, так как они прочно соединяются с бетоном.

Если будущий одноэтажный дом легкий и узкий, можно использовать арматуру диаметром 10 мм. Если дом двухэтажный или широкий (длинный), необходимо использовать арматуру 12 мм.

Армирование монолитных ленточных фундаментов

В зависимости от ширины и высоты ленточного фундамента армирование может выполняться в два и более слоев сетки с шагом 6-10.При работе с типичным ленточным монолитным фундаментом шириной 16 дюймов и высотой 20 дюймов горизонтальная и вертикальная набивка сетки может составлять 4-6 дюймов со всех сторон. В случае высокого фундамента расстояние по вертикали между горизонтальными стержнями арматуры может составлять от 12 до 16 дюймов.

Расстояние по горизонтали между вертикальной арматурой может составлять 12 дюймов или более, а расстояние до края бетона составляет? — 4 дюйма с каждой стороны. В результате количество арматурных сеток и шаг между ними рассчитывается исходя из нагрузки на фундамент.

Армирование фундамента опоры

Армирование опорного фундамента достаточно простое. Здесь достаточно деталей для армирования фундамента — это 4-6 длинных ребристых арматурных стержней и несколько тонких гладких стержней для их точного обвязывания. Длинный стержень должен иметь диаметр 10-12 мм, для гладкого достаточно 6 мм. Если пирс слишком узкий (например, 5 дюймов), его можно укрепить двумя стержнями. Когда длина опоры составляет 5-7 футов, арматурные стержни могут быть привязаны на расстоянии 16-20 дюймов. Если фундамент возводится под увесистую постройку, стыки следует заваривать.Армирование фундамента пирса делается таким образом, чтобы после заливки бетона бруски выступали на 4-8 дюймов. Таким образом, к нему удобно приклеивать арматурные детали плотного фундамента.

Свайный фундамент армируют аналогично опорному фундаменту. Единственное отличие состоит в том, что вертикальная арматура располагается по кругу, а не по квадрату. Можно использовать 3-5 прутков диаметром 10 мм.

Технология усиления фундамента

Процесс возведения армированного фундамента в целом несложный, если, конечно, вы уже определились с размещением арматуры.

Сначала подготовьте арматурные стержни необходимой длины, в том числе тонкие стержни для обвязки. Брусья изогнуты для установки по углам.

В вырытой траншеи под фундамент на песчаное основание укладывают стержни арматуры нижнего ряда. Чтобы обеспечить необходимое расстояние между будущим фундаментом и брусками, последние просто кладут на залитые в песок кирпичи. Прутки соединяются между собой в единую резьбу по длине, а также крест-накрест в горизонтальной плоскости.При этом строго соблюдается расстояние между несущими стержнями по ширине, а детали рамы выровнены по осям фундамента.

Вертикально расположенные поперечные стержни прикреплены к нижним стержням без выступов из бетонной подошвы внизу. Однако на время они просто опираются на край траншеи.

Далее монтируются верхние несущие планки. Для этого их подвешивают и закрепляют, например, на траншейных стержнях, уложенных поперек, а затем связывают поперечными стержнями в раме.

Горизонтальные поперечные стержни также привязаны к верхним стержням арматуры. В результате получается арматурный каркас, стоящий на кирпичах.

При установке железобетонного фундамента важно контролировать расположение стержней арматуры относительно центральной оси фундаментной ленты. Для этого нити, соответствующие осям фундамента, натягиваются на кольях над траншеей. По ним ориентируется усиленный фундаментный каркас с помощью отвеса.Также важно, чтобы каркас был строго вертикальным.

Фундаменты для недорогих зданий

Основные моменты

В анализе используются две различные системы фундаментов, а именно; прямоугольные ленточные фундаменты и гнутые ленточные фундаменты соответственно.

Программное обеспечение для анализа методом конечных элементов ADINA используется для моделирования и анализа структурных и геотехнических характеристик обоих типов оснований с акцентом на влияние изменения формы основания и типа грунта (Ks) на напряжения и грунт. поселок.

Результаты показали, что максимальное значение контактного давления снизилось примерно на 38% для гнутого ленточного фундамента по сравнению с традиционным ленточным фундаментом в жестком глинистом грунте и примерно на 25% в плотном песчаном грунте при увеличении вертикальной статики. нагрузки до пикового значения.

Уменьшение степени армирования между двумя типами опор составляет около 26% в пользу гнутых ленточных опор. При этом общая стоимость бетона для гнутого ленточного фундамента меньше прямоугольного примерно на 18%.Таким образом, сложенная форма экономичнее обычного прямоугольного ленточного фундамента.

Реферат

Достижение экономичного и безопасного проектирования конструкций рассматривается как необходимое условие для инженера-строителя. Рыночные цены на арматурную сталь за последние годы на международном уровне резко выросли. Таким образом, целью данной статьи является не просто снижение доли арматурной стали в фундаментах каркасных конструкций, а, скорее, минимизация этого соотношения за счет выбора наиболее эффективной формы опор (гнутых ленточных опор).Складчатые опоры использовались как альтернатива обычным прямоугольным ленточным опорам. Высота исследуемой модели — десять этажей. В анализе используются две различные системы фундамента, а именно: прямоугольные ленточные фундаменты и гнутые ленточные фундаменты соответственно. Обе формы фундаментов будут спроектированы как сплошные фундаменты с решетчатой ​​формой под зданием. Также представлено сравнение двух систем в отношении бетонных сечений и коэффициента армирования при одинаковых приложенных нагрузках.Программное обеспечение для анализа методом конечных элементов ADINA используется для моделирования и анализа структурных и геотехнических характеристик обоих типов фундаментов с акцентом на влияние изменения формы фундамента на напряжения в бетонном теле фундамента и нижележащих грунтах. В результатах исследований представлены внутренние напряжения в области основания и грунта, а также распределение контактного давления для усиленного гнутого ленточного фундамента, опирающегося на различные типы грунта. Также изучается влияние угла наклона складывания и типа почвы на результаты.Результаты показали, что гнутые ленточные опоры эффективны для уменьшения количества необходимого армирования, и такая эффективность в уменьшении необходимой стальной арматуры в опорах зависит от приложенных нагрузок на опоры и в некоторой степени от типа и свойств почвы. Уменьшение степени армирования между прямоугольными и фальцевыми типами фундаментов составляет около 26% в пользу гнутых ленточных фундаментов. Сравнительное экономическое исследование показывает, что общая стоимость железобетонного профиля для гнутых ленточных фундаментов меньше традиционного примерно на 18%.Эта разница в стоимости обоих типов опор в основном связана с относительно меньшей степенью армирования сталью, необходимой для гнутого типа по сравнению с прямоугольными. Таким образом, гнутый ленточный фундамент экономичнее прямоугольного ленточного фундамента.

Графический реферат

Ключевые слова

ADINA

Конечный элемент

Гнутый ленточный фундамент

Напряжение

Расчетное

Рекомендуемые статьиЦитирующие статьи (0)

© 2016 Design Society for Computational.Издательские услуги Elsevier.

Рекомендованные статьи

Цитирование статей

6 ключевых вещей, которые помогут держать фундаменты плота на плаву

Плотный фундамент — это железобетонная плита под всем зданием или пристройкой, «плавающая» по земле, как плот плывет по воде. Этот тип фундамента распределяет нагрузку здания на большую площадь, чем другие фундаменты, снижая давление на землю.

Это альтернатива, если вы не можете использовать традиционный ленточный или траншейный фундамент.Однако важно отметить, что фундаменты на плотах подходят не во всех случаях и обычно требуют проектирования инженером-строителем.

Вот важные соображения, если вы думаете об использовании фундамента на плоту:
  • Конструкция плота обычно имеет «краевую балку», образованную клеткой из стальной арматуры, которую необходимо тщательно собрать на месте. Иногда требуются и внутренние балки жесткости. Эти балки переносят строительные нагрузки через остальную часть плиты, а затем равномерно по земле.
  • Инженеру обычно требуется обследование площадки, чтобы понять, что такое земля. Очень плохой грунт может означать, что вам нужно другое решение, например сваи.
  • Конструкция плота обычно требует прочного основания, чтобы выровнять землю. Этот камень следует утрамбовать механически.
  • Вы должны убедиться, что стальная арматура притерта не менее 450 мм (как для сетки, так и для стержней из низкоуглеродистой стали) и снабжена бетонным покрытием толщиной 40 мм. «Наступление» арматуры во время заливки бетона не является подходящим способом размещения арматуры — используйте специальные «стулья» или «солдатики» для поддержки сетки.
  • Кромка плота должна быть тщательно детализирована с учетом влажного покрытия и положения мембраны, для чего может потребоваться формирование «ступеньки» в бетоне на краю плота.
  • Изоляция обычно размещается поверх плота — следите за тем, чтобы избежать образования мостиков холода в местах соединения с внешними стенами.

Важно! Инженер-строитель, проектирующий плотный фундамент, может быть не полностью осведомлен о проблемах сырости, мостиков холода или загрязнения земли. Убедитесь, что проектировщик здания учел эти детали перед тем, как строить плот — после заливки бетона это может быть трудно преодолеть.

В случае сомнений обратитесь к инспектору по контролю за зданием местного органа власти. Воспользуйтесь нашим бесплатным инструментом поиска по почтовому индексу, чтобы найти контакты местной команды LABC.

По LABC

Обратите внимание: были приняты все меры, чтобы информация в этой статье была верной на момент публикации. Любые предоставленные письменные инструкции не заменяют профессионального суждения читателя, и любой строительный проект должен соответствовать соответствующим Строительным нормам или применимым техническим стандартам.Однако для получения самого последнего технического руководства по гарантии LABC обратитесь к своему инспектору по управлению рисками и к последней версии технического руководства LABC Warranty .

Bentley — Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Справка службы автоматизации Bentley

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle — Справка по расширению администратора

Коннектор ProjectWise для Oracle — Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора геопространственного управления ProjectWise

Справка ProjectWise Geospatial Management Explorer

Сведения о геопространственном управлении ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Услуги цифрового двойника активов

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Управление эффективностью активов

Справка по AssetWise 4D Analytics

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительное проектирование

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Помощь в канализации и коммунальных услугах

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка конструктора надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe для OpenSite Designer

Инфраструктура связи

Справка по Bentley Coax

Справка по Bentley Communications PowerView

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка по OpenComms Designer

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительное ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

ConstructSim Work Package Server Руководство по установке

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергетическая инфраструктура

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e — управляемая конфигурация ProjectWise

Руководство по настройке подстанции

— управляемая конфигурация ProjectWise

Руководство пользователя sisNET

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода PLAXIS 2D

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Управление активами линейной инфраструктуры

Справка по услугам AssetWise ALIM Linear Referencing Services

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Картография и геодезия

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Карта OpenCities Map Ultimate для Финляндии Readme

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Проектирование шахты

Помощь по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности и аналитика

Справка по подготовке САПР LEGION

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование и визуализация

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Анализ морских конструкций

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Проектирование

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Выполнение проекта

Справка рабочего стола Bentley Navigator

Моделирование реальности

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Ознакомительные сведения о Декарте

Структурный анализ

Справка OpenTower iQ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

STAAD.Pro Physical Modeler

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

Что такое Mat Foundation? Функции, использование и конструкция

🕑 Время чтения: 1 минута

Плотный или матовый фундамент представляет собой большую непрерывную бетонную плиту прямоугольной или круглой формы, которая несет всю нагрузку на надстройку и распределяет ее по всей площади под зданием.Он считается одним из типов неглубоких фундаментов и используется для контроля дифференциальной осадки.

Матовый фундамент распространяется под следом здания и снижает контактное давление по сравнению с традиционным ленточным или траншейным фундаментом.

Это подходящее решение для грунта с низкой несущей способностью, разложенного основания, покрывающего около 70% конструкции, высоких нагрузок на конструкцию, мягких карманов или пустот в грунте до неизвестной протяженности плота и сильно сжимаемого грунта, который простирается на большую глубину.

Функции Mat Foundation
  1. Распределите нагрузки на надстройку и распределите их по всей площади основания здания.
  2. Уменьшение дифференциальной осадки конструкций, построенных на слабом грунте.

Использование матовой основы
  1. Применяется для строительства коммерческих зданий. В этом случае обычно большие нагрузки. Фундаменты из циновок популярны там, где обычны подвалы.
  2. Матовый фундамент также используется для грунтов с низкой несущей способностью, чтобы распределить нагрузку на здание и, следовательно, построить устойчивый фундамент.
  3. Используется для уменьшения дифференциальной осадки зданий.
  4. Плотный или матовый фундамент используется при нестабильном слое почвы. В этом случае ленточный фундамент покроет более 70% площади земли под зданием. Также в районах добычи полезных ископаемых обычно возникают ситуации, когда слой почвы может подвергаться подвижкам.
Фиг.1: Матовая основа

Строительство фундаментов из циновок или плотов
  1. Удалите грязь и выкопайте почву до однородного и ровного уровня.
  2. Фундамент затем уплотняется трамбовкой.
  3. Затем на землю укладывают водонепроницаемый пластиковый лист.
  4. После этого налейте примерно 7-сантиметровый слой простого цементного бетона, чтобы создать идеально ровное и ровное основание для фундамента.
  5. Уложите арматуру на распорки над основанием фундамента. В обоих направлениях предусмотрено усиление в виде стальной сетки.Две сетки усилены сверху и снизу фундамента для уравновешивания изгибающих сил, направленных вверх и вниз.
  6. После того, как вся сталь уложена, заливается бетон до желаемой толщины, которая обычно находится в диапазоне от 200 мм до 300 мм для небольших зданий: она может быть намного толще, если необходимо переносить тяжелые грузы. Минимальное покрытие арматуры должно составлять 50 мм.
  7. Наконец, следует использовать подходящий режим отверждения, чтобы убедиться, что бетон достигает заданной прочности на сжатие.
Рис. 2: Земляные работы для строительства фундамента на плоту или мате Рис. 3: Установленное армирование для фундамента на плоту или мате Рис. 4: Заливка бетона для плотного фундамента

Подробнее:

Плотный фундамент — проектные требования и применимость

Каковы требования к конструкции фундамента?

Безопасные значения несущей способности для различных грунтов

Фундаменты на плотах — типы и преимущества

Испытания грунта, необходимые для фундаментов мелкого заложения и фундаментов

Несущая способность ленточного фундамента на армированном песке

J Adv Res.2015 сен; 6 (5): 727–737.

Кафедра структурной инженерии, инженерный факультет, Университет Танта, Танта, Египет

Поступила в редакцию 8 января 2014 г .; Пересмотрено 2 апреля 2014 г .; Принято 11 апреля 2014 г.

Copyright © 2014 Производство и хостинг Elsevier B.V. от имени Каирского университета.

Это статья в открытом доступе под лицензией CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Эта статья цитируется в других статьях в PMC.

Реферат

В этой статье предельные нагрузки на фундамент из оболочек на неармированном и армированном песке были определены с помощью лабораторных модельных испытаний.Серия нагрузочных испытаний была проведена на основании модели оболочки с однослойной арматурой и без нее. Испытания проводились на фундаменте-оболочке при различной глубине заделки оболочки и плотности земляного полотна. Результаты сравнивались с результатами для плоских фундаментов без армирования. Результаты испытаний модели были проверены с помощью конечно-элементного анализа с помощью программы PLAXIS. Экспериментальные исследования показали, что предельная несущая способность фундамента оболочки на усиленном земляном полотне выше, чем на неармированном основании, и кривые осадки под нагрузкой были значительно изменены.Фундамент-оболочка поверх армированного земляного полотна можно считать хорошим методом увеличения эффективной глубины фундамента и уменьшения возникающей осадки. Кроме того, поверхность разрыва армированной системы оболочки была значительно глубже, чем обычное основание и основание корпуса без армирования. Численный анализ помогает понять деформационное поведение исследуемых систем и определить поверхность разрушения армированного основания оболочки.

Ключевые слова: Фундамент из ракушечника, Предельная грузоподъемность, Песок, Армирование, Эффективность ракушки, Коэффициент оседания

Введение

Фундамент из ракушечника считается лучшим мелким фундаментом для передачи большой нагрузки на слабые грунты, где обычно неглубокий фундамент подвергается воздействию. чрезмерная осадка из-за его экономического преимущества в области с высоким соотношением материальных и трудовых затрат.Куриан [1] и Фарид и Давуд [2]. Фундамент с конической оболочкой, представляющий собой комбинированный фундамент, подходит для резервуаров с водой и башенных конструкций. Концепция каркаса не нова в конструкции фундамента, учитывая, что в прошлом в этой категории использовался фундамент с перевернутой кирпичной аркой. Использование перевернутых кирпичных арок в качестве фундамента уже давно практикуется во многих частях мира. Оболочки — это, по сути, тонкие конструкции, поэтому конструктивно они более эффективны, чем плоские конструкции.Это преимущество в ситуации, когда большие сверхструктурные нагрузки передаются на более слабые почвы. Фундамент оболочки ограничен несколькими геометрическими формами, например конической, пирамидальной, гипер- и сферической опорой. Структурные характеристики основания оболочки в отношении мембранных напряжений, изгибающего момента, сдвига, прогиба и предельной прочности самой оболочки исследовались в широком диапазоне, как заявили Паливал и Рай [3], Паливал и Синха [4] и Мелерски. [5]. Однако геотехническим характеристикам оболочки-фундамента для определения реакции грунта в отношении осадки, несущей способности, распределения контактного давления и деформации в массиве грунта уделялось мало внимания.Экспериментальные и численные исследования, которые проводились для определения геотехнических характеристик фундамента оболочки, были ограничены. Абдель-Рахман [6], Ханна и Абдель-Рахман [7] сообщили о результатах экспериментов на конических основаниях оболочки на песке для условий плоской деформации. Махарадж [8], Хуат и Мохамед [9] и Кентаро и др. [10] провели анализ методом конечных элементов и экспериментальный анализ фундамента из оболочки, чтобы изучить эффекты увеличения модуля упругости грунта в дополнение к исследованию геотехнического поведения фундамента из оболочки.В большинстве публикаций в литературе изучается только поведение различных оснований из ракушек на неармированном песке, без учета существования армированного элемента ниже этого типа. Все работы проводились только на плоском фундаменте, размещенном на однослойной или многослойной арматуре, как обсуждали многие исследователи, такие как Латха и Сомванши [11] и Патра и др. [12], за исключением Шалиграма [13], который изучал поведение треугольного основания оболочки на армированном слоистом песке. Его исследование представляет собой исследование поверхности, которое объясняет только влияние такой техники на несущую способность без определения напряжения и деформации принятой системы.Следовательно, в этом исследовании был принят новый подход к изучению геотехнического поведения фундамента из ленточной оболочки, опирающегося на однослойную арматуру, с целью подтверждения эффекта армирования в сочетании с использованием фундамента из оболочки. Настоящее исследование было выполнено с использованием как экспериментального, так и численного анализа для подтверждения результатов испытаний модели и определения деформационных характеристик исследуемой системы.

Экспериментальный

Испытательный резервуар

a показывает схематический вид экспериментальной модели стального устройства, использованного в этом исследовании.Испытательный бокс, имеющий внутренние размеры 90 × 30 см в плоскости и 120 см в глубину, толщина стенок резервуара составляет 6 мм. Резервуар был построен достаточно жестким, чтобы поддерживать условия плоской деформации за счет минимизации смещения вне плоскости во всех направлениях. Стенки резервуара крепились к внешней поверхности с помощью горизонтальной стальной балки, установленной на средней глубине резервуара. Внутренние стенки резервуара гладко отполированы, чтобы уменьшить трение о почву, насколько это возможно, за счет оцинкованного покрытия на внутренней стене.

Схематическое изображение: (а) испытательной установки и (б) модели фундамента оболочки.

Погрузочная система состоит из гидравлического домкрата с ручным приводом и предварительно откалиброванного нагрузочного кольца для ручного приложения нагрузки к грунтовой системе основания, а оседание измерялось стрелочными индикаторами, закрепленными на поверхности основания.

Модели фундаментов

Модели фундаментов из ленточной оболочки были изготовлены из стальных пластин постоянной ширины ( B = 150 мм) в горизонтальной проекции с разной глубиной заделки a ( a = 60, 75 и 112.50 мм) и толщиной 20 мм. Поперечная длина опоры составляет 29 см, чтобы удовлетворить условию плоской деформации. Эскизы моделей фундаментов показаны на б. Приблизительное состояние основания было достигнуто за счет фиксации тонкого слоя песка на основании основания модели с помощью эпоксидного клея. Нагрузка передается на опору через стальной погрузочный рычаг, который был жестко закреплен сваркой в ​​середине модели фундамента, как показано в соответствующем пункте b.

Материалы для испытаний

Песок, используемый в данном исследовании, представляет собой кварцевый песок со средним и крупным размером частиц.Образовался однородный слой сухого кварцевого песка. Средний размер зерна D 50% = 0,33 мм и коэффициент однородности 3,5. Физические свойства испытанного песка следующие: удельный вес был определен с использованием метода газового ящика и оказался равным 2,65; максимальная и минимальная плотность в сухом состоянии были получены японским методом и составили 17,96 и 15,6 кН / м 3 соответственно.

Для подготовки уплотненного песчаного слоя был принят японский метод [14] с использованием ручного компактора.Глубина песка во время испытаний поддерживалась постоянной. Были проведены три серии испытаний на рыхлом, среднем и очень плотном песке. Удельный вес песка и, следовательно, требуемая относительная плотность контролировались путем заливки предварительно определенного веса песка в испытательный резервуар для заполнения каждого слоя, а затем поверхность песка выровнялась и уплотнилась. Рыхлый песчаный слой был получен за счет укладки слоев грунта толщиной 50 мм на нулевой высоте падения. Чтобы получить плотную структуру песка, песок укладывают слоями, каждый слой имеет толщину 50 мм и уплотняют с помощью ручного уплотнителя 35 Н.Количество проходов уплотнения предварительно оценивается для каждого слоя в начале программы для достижения требуемой плотности песка. Для среднего и плотного ящика высота падения составляет 40 см и 90 см соответственно. Относительная плотность, достигнутая в ходе испытаний, контролировалась и оценивалась путем сбора образцов в небольшие емкости известного объема, помещенные в различные произвольные места в емкости для испытаний. Относительные плотности во время программы испытаний составили 50%, 72% и 83%. Соответствующие углы сопротивления сдвигу составляют 31 °, 36 ° и 41 °, соответственно, которые были получены путем применения серии испытаний на прямой сдвиг в боксе при соответствующей относительной плотности при различных нормальных напряжениях.

Чтобы подготовить ядро ​​грунта под модель оболочки, пространство под оболочкой было заполнено песком в соответствии с требуемым удельным весом, указанным Ханной и Абдель-Рахманом [7]. Процесс заполнения модели оболочки песком был выполнен путем размещения тонкой стальной пластины на дне модели оболочки перед ее установкой на место. Затем стальную пластину медленно вытягивали горизонтально под оболочку сбоку.

Армирование, принятое в настоящем исследовании, представляло собой термосваренный нетканый геотекстиль (Typar-3857), изготовленный из полипропиленовых мультифиламентных волокон.По данным производителя, он имеет номинальную толщину 2 мм и массу на единицу площади 290 г / м 2 . Предел прочности при растяжении по методу испытания полосы составляет 20,1 кН / м, а относительное удлинение при максимальной нагрузке составляет 10%.

Программа экспериментальных испытаний

Всего было проведено 34 испытания на заранее подготовленных моделях фундамента с использованием трех различных плотностей песка и при различной глубине заделки ( a / B ). Была проведена серия нагрузочных испытаний для фундамента как на неармированном, так и на армированном песчаном грунте с использованием геотекстиля, который был размещен на фиксированном расстоянии, равном 0.5B ниже кончика фундамента с постоянной длиной, равной 4B, как утверждали Androwes [15], Abdel-Baki и Raymond [16] и Abu-Farsakh et al. [17]. Во всех программах испытаний обе стороны плит фундамента оболочки были погружены в песок.

Увеличение предельной нагрузки основания оболочки по сравнению с ее плоским аналогом признано в настоящем исследовании как коэффициент полезного действия оболочки ( η ). Он определяется, как указано в формуле. (1), как отношение разницы предельных нагрузок на опоры оболочки к предельной нагрузке на плоские опоры.

, где η : КПД оболочки; Q us : предельная нагрузка на подошву корпуса; Q uf : предельная нагрузка на плоское основание.

Чтобы исследовать характеристики осадки фундаментов из оболочек по сравнению с обычными плоскими, был введен безразмерный коэффициент осадки ( F δ ). Коэффициент осадки был рассчитан при предельной нагрузке ( Q и ), чтобы отразить характеристики осадки опор в процессе загрузки.Расчетный коэффициент представлен в формуле. (2). Следует отметить, что более низкое значение коэффициента расчетности указывает на лучшие расчетные характеристики.

, где δ u : осадка при предельной нагрузке; γ : удельный вес грунта; A b : опорная поверхность в горизонтальной проекции; Q u : предельная нагрузка.

Результаты и обсуждение

Кривые осадки фундамента оболочки с арматурой и без нее

Данные по оседанию нагрузки суммированы для данных испытаний из-за ограниченного пространства, и некоторые результаты представлены в.Представлены графики расчета нагрузок для плоских и оболочечных фундаментов с армированием и без армирования при разной плотности песка. Было обнаружено, что кривые осадки нагрузки были значительно изменены по мере увеличения плотности земляного полотна. Наличие опоры корпуса может улучшить и увеличить предельную нагрузку по сравнению с плоской опорой. Можно видеть, что предельная нагрузка увеличивается из-за эффектов оболочки и усиления, как показано на соответствующем рисунке, на глубине заделки оболочки ( a / B = 0.5). Из этого рисунка также видно, что предельная нагрузка возрастает с увеличением угла сопротивления сдвигу, а также опоры оболочки имеют более высокие предельные нагрузки, чем плоские. Наличие арматуры под фундаментом корпуса может значительно улучшить и увеличить предельную несущую способность фундамента корпуса. Несущая способность фундамента оболочки над армированным земляным полотном выше, чем у основания оболочки без армирования; это указывает на то, что усиление оказывает значительное влияние на увеличение несущей способности фундамента с увеличением глубины заделки оболочки.Основание корпуса обеспечивает лучшую изоляцию корпуса внутри пространства основания, предотвращая вытекание почвы наружу. Кроме того, клин грунта внутри основания корпуса постепенно уплотняется на этапах загрузки; таким образом улучшается грунт земляного полотна и уменьшается осадка. Это может быть очень значительным, особенно когда плотность почвы плохая / низкая.

Сводка кривых расчета нагрузок для плоского и оболочкового фундамента при разной плотности с армированием и без него.

Несущая способность опоры на рыхлом песке увеличена по сравнению с опорой на ровном грунте. С другой стороны, армирование может привести к дополнительному улучшению оболочки, где клин грунта между оболочкой и грунтом над арматурой был эффективно заблокирован, и было достигнуто уплотнение земляного полотна. Это связано с армированием, которое контролирует и уменьшает вертикальную деформацию, вызывая постепенное уплотнение. Можно видеть, что был индуцирован комбинированный эффект, который представлен в эффекте оболочки и в эффекте усиления.Таким образом, и грунт внутри клина оболочки, и грунт над армированным слоем стали более жесткими, как единое целое и эффективно сцепились. В результате увеличилась несущая способность фундамента и уменьшилась осадка.

Степень улучшения предельной несущей способности системы зависит от соотношения ( a / B ) и плотности грунта или угла сдвига. Эти результаты согласуются с Ханной и Адель-Рахманом [7].

Влияние глубины заделки обечайки и усиления на предельную нагрузку

Для изучения влияния глубины заделки обечайки и арматуры на предельную несущую способность фундамента было установлено соотношение между углами сопротивления сдвигу от предельной нагрузки. нанесены на разную глубину заделки обечайки как с армированием, так и без него.Замечено, что увеличение глубины заделки увеличивает предельную нагрузочную способность основания оболочки по сравнению с плоской опорой. Поскольку увеличение глубины заделки приводит к эффективному увеличению глубины фундамента и замкнутой зоны, таким образом увеличивается предельная несущая способность. По мере увеличения угла сдвига земляного полотна грузоподъемность основания также увеличивается. Настоящий армированный слой под носком оболочки снижает давление, создаваемое внутри земляного полотна, и увеличивает предельную нагрузочную способность, как показано в соответствующих случаях, для различных усиленных случаев.Комбинированный эффект такой арматуры может существенно снизить степень деформации в зоне сдвига и ограничить наведенные деформации растяжения, возникающие при разрушении. Кроме того, этот рисунок еще раз подтверждает, что армирование может значительно улучшить способность земляного полотна за счет комбинированного эффекта (эффект оболочки и армирования).

Соотношение между углом сопротивления сдвигу и предельной нагрузкой для плоского и оболочечного фундамента с армированием и без него при различных подъемах оболочки.

Взаимосвязь между предельной нагрузкой ( Q u ) и углом сдвига земляного полотна ( ϕ ) для основания оболочки с армированием и без него может быть выражена следующей нелинейной зависимостью, основанной на регрессионном анализе:

, где C 1 и C 2 — это факторы, связанные с соотношением ( a / B ) и наличием армирующего слоя. Значения факторов C 1 и C 2 в различных случаях были извлечены и построены в зависимости от отношения ( a / B ) для основания оболочки с армирующим слоем и без него, как показано на.Было обнаружено, что увеличение глубины заделки оболочки может увеличить значения коэффициента C 1 как для основания оболочки, так и без армирования. Однако значения коэффициента C 1 усиленных корпусов выше, чем у основания корпуса без усиления (а). Это также может подтвердить влияние армирования на увеличение предельной несущей способности основания оболочки на армированном песке.

Изменение коэффициента C 1 и C 2 с соотношением a / B для фундамента-оболочки с армированием и без него.

С другой стороны, было обнаружено, что резкое уменьшение коэффициента C 2 было достигнуто для неармированного основания оболочки, когда коэффициент заделки a / B увеличился с 0,5 до 0,75 (b). Значения коэффициента C 2 усиленного корпуса выше, чем у неармированного основания оболочки, но между усиленным и неармированным корпусом есть тривиальная разница. Также было обнаружено, что коэффициенты C 1 и C 2 зависят от начальной плотности земляного полотна, особенно от угла внутреннего трения.

Это уравнение можно использовать в качестве приблизительного ориентира для определения предельной прочности основания корпуса в исследуемых условиях. Можно видеть, что на основе приведенного выше уравнения конечные теоретические значения почти равны конечным лабораторным значениям. Поскольку разница между полученными значениями незначительна, это уравнение справедливо выражает измеренные значения Q u в лабораторных испытаниях, если фактор C 1 , C 2 и угол сопротивления сдвигу. известны.

Влияние оболочки и арматуры на эффективность фундамента

представляет расчетные коэффициенты эффективности оболочки ( η , которые были выведены в ходе настоящего экспериментального исследования. В целом можно сделать вывод, что эффективность оболочки увеличивается с увеличением заделки оболочки. глубина ( a / B ). Видно, что влияние конфигурации оболочки уменьшается, когда почва становится более плотной. Более того, коэффициент полезного действия оболочки значительно уменьшается, когда почва более плотная.Это мнение аналогично мнению, высказанному Ханной и Адель-Рахманом [18]. Эффективность оболочки заметно возрастает в испытаниях, проведенных на армированном земляном полотне, по сравнению с основанием оболочки без армирования.

Коэффициент полезного действия оболочки по сравнению с оболочкой увеличивается для оснований оболочки с армированием и без него при разной относительной плотности.

Коэффициенты эффективности оболочки также уменьшаются с увеличением угла сопротивления сдвигу, что подтверждается в. На этом рисунке представлено изменение эффективности оболочки ( η ) с углом сдвига ( ϕ ) при различной глубине заделки оболочки.Отмечено резкое снижение КПД оболочки при увеличении угла сдвига, а значения КПД оболочки увеличиваются с увеличением глубины заделки оболочки. Было обнаружено, что увеличение плотности земляного полотна значительно снижает коэффициент полезного действия оболочки как для усиленного, так и для неармированного основания оболочки. Можно сделать вывод, что при более высокой плотности земляного полотна диапазон улучшений невелик по сравнению с рыхлой и средней относительной плотностью. Это происходит из-за увеличения степени улучшения рыхлого состояния за счет эффекта оболочки и лучшего улучшения за счет наличия армированного слоя.

Изменение эффективности оболочки в зависимости от угла сопротивления сдвигу для опор оболочки с армированием и без него при разном коэффициенте подъема.

Влияние конфигурации оболочки и арматуры на характеристики осадки

В этой части была предпринята попытка изучить влияние основы оболочки, а также наличие армированного слоя на результирующую осадку при разрушении. Расчетный коэффициент осадки ( F δ ), который был выведен из настоящего экспериментального исследования при различных исследуемых параметрах, нанесен на график.Как правило, для любого основания коэффициент осадки уменьшается для более плотного песка. Сравнение опор из оболочки и плоских оснований для любого данного состояния песка показывает, что опоры из оболочки имеют более низкий коэффициент осадки, что демонстрирует лучшие характеристики осадки для опор из оболочек. Сравнение фундамента из оболочки без армирования и с армированием показывает, что коэффициент осадки заметно уменьшается для фундамента из оболочки с армированием. Также на коэффициенты осадки влияет глубина заделки оболочки.Увеличение глубины заделки оболочки ( a / B ), очевидно, уменьшает осадку грунтовой системы основания оболочки как в усиленных, так и в неусиленных условиях. Но снижение осадки для усиленного фундамента корпуса выше, чем для неармированного корпуса. Было обнаружено, что при низкой относительной плотности и на глубине заделки ( a / B = 0,75 усиленное состояние) улучшение коэффициента осадки достигает 50% от его начального значения плоского основания, в то время как это значение составляет 26%. для фундамента без армирования.С другой стороны, в плотном состоянии эти значения достигают 55% для усиленного основания оболочки при ( a / B = 0,75) и 31% для неармированного основания оболочки. Это еще раз подтвердило эффективность армированного слоя в регулировании вертикальной осадки основания оболочки за счет результирующего комбинированного эффекта.

Соотношение между углом сопротивления сдвигу и коэффициентом осадки для плоского и оболочкового фундамента с армированием и без армирования различной плотности.

Механизм разрушения несущей способности системы

В следующем анализе приводятся некоторые полезные комментарии по поводу разрушения системы грунтов основания оболочки с одинарным армированным слоем и без него.экспериментально и теоретически показаны режимы разрушения фундамента оболочки с армированием и без него. Как правило, в случае нормального плоского основания, расположенного в среднем и плотном состоянии, можно видеть, что общее разрушение при сдвиге представляет собой четко определенный образец, который состоит из непрерывной поверхности разрушения, которая развивается от одного края основания до поверхности земли. . Механизм обрушения грунта нормального плоского основания на армированном слое, размещенном на заданной глубине ниже основания, был подробно исследован Яхмамото и Кусудой [19] и Михаловски и Ши [20].Их исследование доказало, что разрушение было вызвано и образовалось непосредственно под арматурой. Армирование может способствовать увеличению несущей способности за счет значительного изменения геометрии схемы обрушения, предотвращая проникновение механизма глубоко в почву. Армирование предотвращает возникновение наиболее неблагоприятных механизмов, приводящих к увеличению предельной нагрузки. Основная роль включения заключается в уменьшении скорости деформации в зоне сдвига и уменьшении предельного напряжения сдвига, возникающего в зоне сдвига.Армирование обеспечивает эффективное сдерживание и играет важную роль в предотвращении вертикального распространения почвы. В результате прочность земляного полотна на сдвиг заметно увеличивается, а характер разрушения изменяется, как заявили Михаловски и Ши [20].

Модифицированная картина разрушения фундамента оболочки без и с усиленным одинарным армирующим слоем, a / B = 0,50.

Применяя эту терминологию к испытанному основанию оболочки на армированном песке, можно сделать вывод, что присутствие такого армированного слоя под основанием оболочки вызывает постепенное уплотнение замкнутого земляного полотна и действует как улучшенная зона.Зона между оболочкой и арматурой может постепенно уплотняться на этапах нагружения и вести себя как закладной блок или один блок (как указано в уплотненном треугольнике или клине, как показано на a, с воображаемой шириной основания B в зависимости от передачи нагрузки механизм). В результате разрушение грунта при сдвиге происходит ниже армированного элемента из-за более высокой деформации армированного слоя при разрушении. Фундамент оболочки и почва внутри оболочки, расположенная над арматурой, могут препятствовать эффекту глубокого фундамента.Это подтверждает, что основание оболочки и ограниченный грунт поверх арматуры ведут себя как заложенный фундамент или жесткий блок, а разрушение грунта распределяется непосредственно под арматурой, что подтверждается экспериментальными результатами, показанными в b и c. Этот рисунок продемонстрировал, что плоскости разрушения при сдвиге начинаются и рассеиваются ниже армированного слоя.

Необходимо отметить, что не только форма фундамента и плотность грунта, но и другие вышеупомянутые определяющие факторы влияют на изменение характера индуцированных отказов.Например, увеличение глубины заделки может значительно увеличить действующее напряжение на арматуру, в результате чего повышается несущая способность и модифицируется механизм разрушения. Также воображаемая ширина подошвы оболочки на поверхности армированного слоя может играть важную роль в изменении плоскости разрушения ( B ). Увеличение ширины обечайки увеличило воображаемую ширину, следовательно, увеличилась несущая способность. Поверхности разрушения или плоскости сдвига имели место в нижней части армированного слоя (с).На этом рисунке показан механизм передачи нагрузки и концентрация напряжения, которая в основном находится под арматурой.

Анализ методом конечных элементов подтверждает и показывает изменение характера разрушения испытываемого основания оболочки.

С другой стороны, для основания оболочки с армированием и без него, поверхность разрыва изменяется, как показано на рисунках a, b и c, и нарушение несущей способности происходит на носке оболочки. Клин поверхности разрушения основания оболочки более глубокий, чем у плоского основания, из-за эффекта закладки.Можно сделать вывод, что использование ракушечного фундамента можно считать хорошим методом увеличения эффективной глубины фундамента, как это ясно видно на диаграммах соединения. Таким же образом армированный слой под подошвой основания оболочки также может заметно увеличить эффективную глубину фундамента, и поверхность разрушения возникает непосредственно под армированным слоем. Отмечено, что клин поверхности разрыва основания оболочки с арматурой более глубокий, чем у других систем.Это связано с тем, что образовавшийся клин грунта внутри оболочки и над арматурой больше, чем в основании оболочки без армирования. Это также указывает на то, что фундамент с армированием имеет более высокую несущую способность, чем другие системы. В то время как при низкой относительной плотности усиленная опора оболочки может значительно уменьшить вызванное пробивным сдвигом разрушение в виде упругой осадки по сравнению с большой оседкой, вызванной в случае плоской опоры.

Численное моделирование

В следующей части представлена ​​проверка численного анализа по результатам модельных испытаний.Результаты, полученные в результате модельных испытаний, были проверены путем проведения численных исследований с использованием метода конечных элементов. Упругопластический анализ методом конечных элементов плоской деформации проводился с использованием коммерческой программы PLAXIS [21]. Этот анализ направлен на выявление характера разрушения и поведения напряжений в системе усиленной оболочки. Это также считается хорошим методом для проверки параметров, которые невозможно измерить в лаборатории, таких как эффект масштаба при использовании крупномасштабного основания оболочки.

Почва в этом анализе моделировалась критерием разрушения Мора – Кулона. Это просто и достаточно совместимо и согласуется с результатами экспериментальных испытаний по сравнению с другими моделями. Для этого анализа использовались условия плоской деформации и 6-узловые треугольные элементы. Модуль упругости грунта при различной плотности песка был получен в результате трехосных испытаний.

Элемент основания оболочки, использованный в этом исследовании, представляет собой элемент балки, который считается очень жестким и грубым (прочность на границе R inter была взята 0.67, границы раздела из песчаной стали). Свойства материала балки: упругая нормальная жесткость EA и жесткость на изгиб EI . Принимая во внимание, что E : модуль упругости используемого материала балки, A : площадь поперечного сечения и I : момент инерции модели основания оболочки. Армированный слой принятой модели был смоделирован как геотекстильный элемент, который определяется осевой горизонтальной жесткостью EA (кН / м) для геотекстильного материала.Виртуальный интерфейсный элемент с геотекстилем был смоделирован до создания сетки. В программе моделируются положительные и отрицательные элементы интерфейса с виртуальной толщиной.

Во всех расчетах, описанных в этом исследовании, рассматривается метод управления силой, в котором сосредоточены точечные силы, силы, которые действуют на геометрическую точку в центре опор оболочки. Точечные силы на самом деле являются линейными нагрузками, направленными вне плоскости. Входные значения точечных сил даны в силе на единицу длины (например, кН / м).Значение приложенной точки (система нагрузки A) берется в соответствии с полученным значением в результате модельного испытания, деленным на ширину основания в плоскости.

Свойства принятого песка, которые были смоделированы и определены в программе: ( γ = 18 кН / м 3 , ν = 0,3, E = 7500 кПа, угол трения ϕ = 41 ° и угол дилатансии = 11 °). Фундамент оболочки моделируется как элемент упругой балки и определяется с коэффициентом заделки ( a / B = 0.75). Основные характеристики фундамента (осевая жесткость, EA = 20,1 кН / м и жесткость на изгиб, EI = 151 200 кН / м 2 / м).

Проверка анализа методом конечных элементов

Сравнение между реакциями на смещение нагрузки было рассчитано с использованием анализа методом конечных элементов, и результаты, полученные в ходе соответствующих испытаний модели для основания оболочки с арматурой и плоского основания, показаны на рис. Расчеты методом конечных элементов умеренно корректны для расчетных значений предельных нагрузок.Результаты конечных элементов близки к результатам лабораторных испытаний моделей и согласуются с теми же тенденциями.

Кривые осадки под нагрузкой для модельных испытаний и численных результатов в плотном состоянии, ϕ = 41 °.

Результаты анализа методом конечных элементов подтверждают экспериментальное значение. Однако есть небольшая разница между результатами анализа методом конечных элементов и результатами модельного испытания. Это различие связано с обычными условиями деформации и эффектом масштаба в дополнение к условиям окружающей среды в лаборатории.

Численные результаты

Результаты анализа методом конечных элементов и его выходные данные показаны на a – g для различных вариантов фундамента: плоского, оболочки без армирования и с армированием. Вектор полного смещения, полученный в результате анализа, показан на (a – c) при соответствующей предельной несущей способности. Можно видеть, что оболочка и арматура могут значительно изменить направление деформации по сравнению с плоскими случаями (а), в то время как деформация и поток частиц грунта для плоского основания происходят в основном под основанием, а вдоль сторона плоского основания, как ясно показано, и наличие оболочки заставляет почву значительно вздыбляться вдоль каждой стороны оболочки (b).Кроме того, армирование может ограничивать и уменьшать деформацию грунта, как показано в c. Как правило, сравнение плоских фундаментов и фундаментов из оболочек показывает, что поверхность разрыва фундамента оболочки глубже, чем поверхность разрыва плоского типа. Это также подтверждает характер отказов системы, показанный и согласуемый с Абд-Аль-Рманом [6].

Отклик нормального и оболочечного фундамента с армированием и без него ( a / B = 0,75 и ϕ = 41 °).

Кроме того, при отказе происходит постепенное уплотнение. Следовательно, клин грунта внутри оболочки, который расположен непосредственно над армированным элементом, ведет себя как единое целое и оседает одновременно, как указано в c. Это показывает, что векторы смещения распределяются непосредственно под арматурой и простираются до глубины, равной 0,5B, что подтверждает наличие встроенного блока.

С другой стороны, деформации сдвига, связанные с разрушением, показаны на (d – f) для различных типов фундаментов.Распределение предельных деформаций сдвига представлено в заштрихованной области, где красная заливка относится к максимальным деформациям. Замечено, что для плоского основания максимальные деформации или зоны с высоким сдвигом находятся непосредственно под основанием на глубине, равной B, и заметно уменьшаются как на более низкой глубине, так и по горизонтали на соседних сторонах основания (d). В то время как для испытанного основания оболочки без армирования максимальные деформации (зоны с высоким сдвигом) возникают на краю основания оболочки и уменьшаются на более низкой глубине грунта.Он также увеличен до расстояния, равного 2B, как показано на рисунке e. Это еще раз подтверждает, что оболочка может значительно сделать поверхность разрушения глубже, чем это плоское основание, тогда как наличие арматуры под основанием оболочки изменяет результирующие экстремальные напряжения. Максимальные деформации сдвига обнаруживаются только у носка оболочки и распространяются на расстояние, равное 0,5B, вдоль сторон оболочки, как ясно показано красной штриховкой f. Это относится к эффективности оболочки и армирования в изменении распределения деформаций.Это также оправдывает эффект армирования при изменении плоскости разрушения. Замечено, что разрушение грунта при сдвиге происходит под арматурой непосредственно под опорным блоком оболочки, который действует как закладной фундамент. Этот фундаментный блок оседает одновременно и передает напряжение ниже арматуры, как показано на f. Он показал, что максимальные деформации сдвига индуцируются ниже армированного грунтового блока. Таким образом, g подтвердил и обосновал возникновение разрушения грунта при сдвиге в нижней части армированного элемента.Как видно из этого рисунка, пластические точки и отсечки растяжения находятся в основном в ограниченной зоне и простираются на глубину ниже арматуры. Это подтверждает и подтверждает, что разрушение грунта при сдвиге изменяется и становится отличным от основания оболочки без армирования. Это также подтверждает полученные и ожидаемые ранее результаты, представленные в.

Для изучения влияния основания оболочки и наличия арматуры значения контактного давления под фундаментом оболочки с армированием и без него были численно извлечены из результатов программы при различной плотности земляного полотна и глубине заделки ( a / В ).Эти значения были определены на глубине, равной расстоянию ( a /2) ниже центральной линии оболочки, и в пределах ограниченной области стенками оболочки.

Как правило, можно заметить, что контактное давление при разрыве увеличивается с увеличением глубины заделки оболочки, как показано на. Увеличение глубины заделки оболочки обеспечивало большее ограничение для более плотного состояния песка, так как угол сопротивления сдвигу увеличивается, а контактное давление при разрушении увеличивается. Сравнение основания оболочки с армированием и без него показывает, что арматура имела более ограниченное давление, как показано на соответствующем рисунке, в то время как значения контактного давления плоского основания на той же глубине ниже основания были меньше, чем у корпусов корпусов. .

Изменение контактного давления в зависимости от отношения a / B для фундамента оболочки с армированием и без него ниже центра оболочки на глубине a /2, полученное в результате численного анализа.

Масштабный эффект

Как и во всех тестах маломасштабных моделей, особенно в песке, необходимо учитывать масштабные эффекты. Есть несколько важных факторов, которые делают невозможным использование мелкомасштабных моделей, которые были построены из песка и испытаны при весе 1 г.Работа, описанная в этом исследовании, была выполнена на мелкомасштабных физических моделях весом 1 г. Для таких мелкомасштабных моделей размер частиц грунта, методы строительства, граничные условия, особенности сопряжения грунта и армирования, жесткость арматуры и дилатансия при низком напряжении являются важными факторами, которые необходимо учитывать. Кусакабе [22] обобщил данные испытаний и указал, что влияние размера частиц на несущую способность основания становится менее заметным при соотношении ( D 50 / B ), которое меньше 1/100.Следовательно, влияние размера частиц в этом исследовании должно быть меньше, поскольку отношение D 50 / B , используемое в модели, составляло 0,0092. Согласно Брансби и Смиту [23], с гладкими боковыми стенками и относительно широким резервуаром, боковое трение и граничные условия не имеют существенного влияния на результаты модели уменьшенного масштаба. Таким образом, внутренние стенки контейнера гладко отполированы, чтобы уменьшить трение о песок, насколько это возможно. Кроме того, чтобы пренебречь влиянием граничных условий, длина резервуара была взята в 6 раз больше ширины основания, а толщина слоя почвы в 7 раз больше ширины основания [24,25].Кроме того, для обеспечения надлежащей жесткости модели резервуара и предотвращения бокового смещения стенок резервуара его борта и верх были усилены за счет установки стальных уголков. Строительные методы, использованные для построения макета модели в лаборатории, были аналогичны полевым требованиям.

Эффект масштаба и валидация использования такого армирования с опорой оболочки мелкомасштабной модели были обеспечены и сопоставлены с результатами лабораторной модели основания, как было представлено ранее.

Эта часть исследования направлена ​​на изучение масштабного эффекта принятой оболочки-фундамента на усиленный грунт с использованием анализа методом конечных элементов, как указано DeMerchant et al.[26] и Чен и Абу-Фарсах [27]. Модель конечных элементов сначала была проверена результатами лабораторных модельных испытаний фундаментов, представленных в, а затем использовалась для численного исследования реакции осадки на нагрузку для различных размеров фундаментов больших размеров и глубины заделки ( a / B ) на армированных элементах. грунтовые основания. В этом исследовании принятая ширина основания оболочки составляет 2 м, а коэффициент заделки варьируется и принимается, как указано в этом исследовании. Результаты крупномасштабных модельных фундаментов оболочек сравнивались с модельными испытаниями безразмерным образом.Было получено улучшение предельной несущей способности опор корпуса как для малых, так и для больших опор по сравнению с плоскими опорами. Соотношение нагрузки основания оболочки на армированном песке определялось при различной глубине заделки ( a / B ). Коэффициент нагрузки может быть получен из следующего выражения ( Lr = Q ultR / Q ultF ), где Qi ultR — предельная нагрузка на подошву корпуса на армированном песке, а Q ultF — это максимальная несущая способность плоского фундамента без армирования.показывает изменение отношения нагрузки к коэффициенту заделки как для модельной, так и для аналитической крупномасштабной опоры оболочки в плотном состоянии. Было замечено, что численные результаты натурного фундамента оболочки на армированном песке согласуются с результатами лабораторных испытаний модели и имеют ту же тенденцию. Но есть небольшое расхождение в результатах около 7%. Как видно на этом рисунке, значения численного анализа (полномасштабного) близки к значениям лабораторных тестовых моделей, подтверждая результаты, полученные в обоих исследованиях.Конечно, небольшие различия между экспериментальными (малая модель) и численными значениями (натурные) связаны с ошибками и условиями окружающей среды в лаборатории. В дополнение к изменению уровня напряжения, которое применялось к армированному элементу как в модельном испытании, так и в программе, можно сделать вывод, что текущие результаты модельного испытания могут подтвердить полномасштабный фундамент, представленный DeMerchant et al. [26] и Чен и Абу-Фарсах [27].

Сравнение повышения несущей способности фундамента оболочки на усиленном земляном полотне для модельных испытаний и теоретического анализа крупномасштабного фундамента оболочки.

Выводы

В данной статье геотехническое поведение фундамента из оболочки с однослойным армированием и без него было исследовано экспериментально и по сравнению с плоским основанием. Следующие основные выводы, насколько это возможно, изложены в количественной форме. Несмотря на то, что приведенные таким образом значения применимы к конкретным данным, используемым в анализе, их можно считать показательными для общей тенденции этих результатов.

  • 1.

    Клин грунта между оболочкой и грунтом над арматурой эффективно блокируется, и достигается уплотнение земляного полотна, в результате повышается грузоподъемность основания и уменьшается осадка.

  • 2.

    Было обнаружено, что несущая способность основания оболочки на усиленном плотном земляном полотне увеличилась примерно в 2,5 раза по сравнению с плоским основанием, когда коэффициент глубины заделки a / B увеличился с 0,40 до 0,50 и увеличилась в 2,9 раза при увеличении коэффициента глубины заделки с 0,5 до 0,75.

  • 3.

    Повышение несущей способности основания оболочки на усиленном рыхлом грунтовом полотне достигнуто до 2.80 раз ровное основание при коэффициенте глубины заделки 0,75.

  • 4.

    Увеличение угла сопротивления сдвигу земляного полотна с 31 ° до 41 ° для усиленного основания оболочки снижает коэффициент осадки плоского типа на 200–230% от плоского основания при a / B = 0,75.

  • 5.

    Коэффициент осадки основания оболочки на усиленном рыхлом грунтовом полотне был снижен на 200% от плоского основания при соотношении глубины заделки a / B = 0.75 и уменьшена на 230% для плотного состояния.

  • 6.

    Наблюдается резкое снижение эффективности оболочки при уменьшении угла сдвига и увеличение значений КПД оболочки с увеличением глубины заделки оболочки.

  • 7.

    Эффективность оболочки заметно возрастает при испытаниях, проводимых на основании оболочки на усиленном земляном полотне, по сравнению с основанием оболочки без армирования.

  • 8.

    Наличие армированного слоя под носком кожуха значительно изменяет нарушение несущей способности.Клин поверхности разрыва фундамента оболочки с армирующим слоем более глубокий, чем у плоского фундамента и фундамента без арматуры.

  • 9.

    Анализ методом конечных элементов был подтвержден результатами модельных испытаний и определяет характер разрушения основания оболочки с армированием и без него.

  • 10.

    В будущей работе рекомендуется обеспечить результаты на крупномасштабной основе в полевых условиях, чтобы сделать общие и исчерпывающие выводы на основе этой рукописи.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Соответствие этическим требованиям

Эта статья не содержит исследований с участием людей или животных.

Сноски

Экспертная проверка под ответственностью Каирского университета.

Список литературы

1. Куриан Н.П. Экономия гиперболических параболоидальных оснований оболочек. Geotech Eng. 1977; 8: 53–59. [Google Scholar]

2.Фарид А, Давуд Р. Цилиндрические оболочки на упругом основании. Всемирный конгресс, ракушечные и пространственные конструкции. Мадрид, Испания; 1979, 1 (3). п. 33–46.

3. Паливал Д.Н., Рай Р.Н. Неглубокая сферическая оболочка на фундаменте Пастернака, подверженная повышенным температурам. J Тонкостенная конструкция. 1986. 5 (1): 343–349. [Google Scholar] 4. Паливал Д.Н., Синха С.Н. Статическое и динамическое поведение мелких сферических оболочек на фундаменте Винклера. J Тонкостенная конструкция. 1986. 4 (2): 411–422. [Google Scholar] 5. Мелерски Э. Тонкостенный фундамент, опирающийся на стохастический грунт.J Struct Eng ASCE. 1988. 114 (8): 2692–2709. [Google Scholar]

6. Абдель-Рахман М. Геотехническое поведение оснований из оболочек. Кандидатская диссертация. Факультет гражданского строительства, Университет Конкордия, Монреаль, Канада; 1996.

7. Абдель-Рахман М., Ханна А.М. Максимальная несущая способность треугольных опор на песке. J Geotech Eng ASCE. 1990; 116 (2): 851–1863. [Google Scholar] 8. Махарадж Д.К. Конечно-элементный анализ фундамента конической оболочки. Electron J Geotech Eng — EJGE. 1990; 348: 500–516. [Google Scholar] 9.Хуат Б., Мохамед А. Исследование методом конечных элементов с использованием кода КЭ Plaxis геотехнического поведения основания оболочки. J Comput Sci. 2006. 2 (1): 104–108. [Google Scholar] 10. Кентаро Ю., Андрия В., Мизуки Х. Несущая способность и механизм разрушения различных типов фундаментов на песке. J почва найдена. 2009. 49 (4): 305–314. [Google Scholar] 11. Лата Г.М., Сомванши А. Несущая способность квадратных фундаментов на геосинтетическом армированном песке. Geotext Geomembr. 2009. 27 (2): 81–294. [Google Scholar] 12. Патра К., Дас Б., Аталар С. Несущая способность закладного ленточного фундамента на песке, армированном георешеткой. J Geotex Geomembr. 2010. 23 (1): 454–462. [Google Scholar] 13. Шалиграм П.С. Поведение треугольного ленточного фундамента на геоармированном слоистом песке. Int J Adv Eng Tech IHEAT. 2011. 2 (1): 192–196. [Google Scholar]

14. Йоскими Ю., Тохано И. Статистическая значимость относительной плотности. Оценка относительной плотности и ее роли в геотехнических проектах с участием несвязных грунтов: ASTM STP523-EB.7744-1, Лос-Анджелес; 25-30 июня 1972 г.п. 74–84.

15. Androwes KZ. Изменение поведения почвы включениями. Конференция по наземной инженерии, Париж; 1978. стр. 234–45.

16. Абдель-Баки С., Раймонд Г.П. Повышение несущей способности фундамента за счет однослойного армирования, В: Материалы конференции по геосинтетике в Ванкувере; 1994. стр. 356–67.

17. Абу-Фарсах М., Чен К., Шарма Р. Экспериментальная оценка поведения оснований на геосинтетически армированном песке. Почва найдена. 2013. 53 (2): 335–348.[Google Scholar] 18. Ханна А., Абдель-Рахман М. Экспериментальное исследование фундаментов из ракушек на сухом песке. Кандидат Геотек Дж. 1998; 35: 847–857. [Google Scholar] 19. Яхмамото К., Кусуда К. Механизмы разрушения и несущая способность усиленного фундамента. Geotex Geomembr. 2001. 19 (3): 127–162. [Google Scholar] 20. Михаловски Р.Л., Ши Л. Модели деформации армированного песка для фундамента при разрушении. J Geotech Geonviron Eng. 2003. 129 (3): 439–449. [Google Scholar]

21. Bringkgreve RB, Vermeer PA. Программа конечных элементов Plaxis для анализа грунтов и горных пород.Версия 7 Plaxis B.V., Нидерланды; 1998.

22. Кусакабэ О. Фонды. В: Тейлор Р.Н., редактор. Геотехническая центрифуга. Блэки Академический и Профессиональный; Лондон: 1995. Глава 6. [Google Scholar] 23. Брансби П.Л., Смит И.А.А. Боковое трение в модельных экспериментах с подпорной стенкой. J Geotech Eng, ASCE. 1975; GT7: 615–632. [Google Scholar]

24. Абдель-Баки С., Раймонд Г.П. Армирование грунта для неглубокого фундамента. В: Материалы 2-й инженерно-геологической конференции, Каир; 1993 г.п. 488–99.

25. Раймонд Г.П. Армированный сыпучий грунт для улучшения грунта для цементирования опор пути. ASCE Geotech Special Publ. 1992. 30 (2): 1104–1115. [Google Scholar] 26. ДеМерчант М., Валсангкар А., Шрайвер А. Испытания под нагрузкой плиты на легком заполнителе из расширенного сланца, армированного георешеткой. Geotex Geomembr. 2002. 20 (3): 173–190. Дата публикации в сети: 01.06.2002. [Google Scholar] 27. Чен К., Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на укрепленных грунтах. Гео-границы.2011: 595–604. [Google Scholar]

Непрерывное усиление фундамента полосой | Tekla User Assistance

Последнее обновление 16 октября 2018 г. от Анил Кумар Колла [email protected]

Непрерывная ленточная опора, которая поддерживает несколько точек соприкосновения или область точек соприкосновения.

Ленточная опора поддерживает, например, длину стены или ряд близко расположенных колонн.

В Tekla Structures ленточный фундамент имеет форму многоугольника, которую пользователь определяет путем выбора точек.

Плагин армирования позволяет создавать арматуру для ленточных фундаментов любой формы (полигональной формы).

Как найти

Плагин

« Непрерывное армирование опор » доступен в «Прикладной части функциональности Tekla Structures, которая разработана для расширения возможностей Tekla Structures, но не включена в установку Tekla Structures

и Компонент» после установки.

Использование

Щелкните значок « Непрерывная ленточная арматура » в разделе «Применение и компонент».

Порядок ввода

1) Подобрать ленточный фундамент.

После установки плагина армирование расположено, как показано ниже

Плагин Dialog

Крышки

Дополнительная длина стержня под углом:

Значение коэффициента
Точная длина

Поля, выделенные на приведенном выше рисунке цветом Blue , являются начальным и конечным смещениями основных стержней относительно фундамента.
Поле, выделенное зеленым цветом , представляет собой угловое смещение для всех сетевых шин во всех углах.
Поля, выделенные цветом Red , предназначены для определения начального и конечного смещений для хомутов.

Поля, выделенные красным цветом на приведенном выше рисунке, являются закрытием боковых полос к верхней и нижней полосам.
Поля, выделенные синим цветом, являются прикрытием для стремени к опоре.

Основные стержни

На этой вкладке пользователь может определить следующие параметры.
1) Количество стержней (по количеству стержней или расстоянию).
2) Свойства бара.
3) Конечные условия (крючки на концах и их длина).

Стремена

Форма хомутов
Пользователь может определить следующие формы хомутов.

Направление изгиба
Это поле определяет направление изгиба и имеет следующие параметры

1) Верх

2) снизу

3) Левый

4) Правая


Поля, показанные выше, определяют шаг хомутов.Расстояние может составлять Целевое расстояние или Точное пространство, гибкое на концах .


Поля, показанные выше, определяют свойства стержня.

.