График нарастания прочности бетона в зависимости от температуры: График набора прочности бетона, таблица прочности бетона

Содержание

График набора прочности бетона – таблица по времени

Возведение конструкций различной конфигурации и назначения предполагает заливку фундамента. Поэтому многие строители, преимущественно начинающие, интересуются тем, каково же время набора прочности бетона. Сразу стоит отметить, что этот процесс зависит от многочисленных моментов, среди которых не только условия окружающей среды, но и составляющие самого раствора, используемого для заливки фундамента.

В этой статье мы попробуем разобраться, как набирает прочность бетон и есть ли методы ускорения этого процесса.

В чем суть процесса?

Условно, он делится на 2 этапа:

  1. Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
  2. Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.

Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности – температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.

В сухом материале присутствуют 4 основных элемента:

  • аллит;
  • белит;
  • трехкальциевый алюминат;
  • четырехкальциевый аллюмоферрит.

Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.

Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени

Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.

Что влияет на вызревание фундамента

Как было сказано ранее, на то, сколько бетон набирает прочность, влияет целый ряд нюансов, к основным из которых относится:

  • температурные условия окружающей среды;
  • уровень влажности в месте, где производится заливка основы;
  • марка цемента;
  • время.
Температурные условия

Набор прочности бетона в зависимости от температуры окружающей среды, это актуальный вопрос для большинства людей, которые собственными силами занимаются заливкой фундамента. Тут стоит запомнить одно главное правило: чем холоднее на улице или в помещении, где проводится бетонирование поверхности, тем больше время твердения.

Скорость набора прочности бетона в зависимости от температуры

При температуре ниже 0°С укрепление основы приостанавливается и, как следствие, срок набора прочности увеличивается на неопределенное время. Порой достижение заявленных производителем прочностных характеристик происходит спустя несколько лет. Это когда процесс происходит в северных регионах. Такое явление обусловлено тем, что вода, имеющаяся в цементной массе, замерзает. А поскольку за счет влаги обеспечивается необходимая для процесса гидратация, то и затвердевание, так сказать, «замораживается».

Но как только на улице начнет теплеть и станет выше нулевой отметки, твердение продолжится. И так далее. Так выглядит набор прочности бетона в зависимости от температуры.

Теплые погодные условия «активизируют» и ускоряют твердение цементной основы. Скорость твердения бетона в зависимости от температуры прямо пропорциональна увеличению показателей окружающей среды. Так, при 40°С заявленные производителем показатели достигаются через 7-8 дней. Именно по этой причине многие опытные специалисты рекомендуют проводить заливку бетонного фундамента на приусадебном участке в жаркую погоду, за счет чего требуется гораздо меньше времени на организацию всего строительного процесса в целом, нежели в случае с заливкой фундамента в более холодную погоду.

Зимой, как только температура опускается до отметки 0 градусов, процесс гидратации полностью прекращается

Но даже в этом случае не стоит «пережаривать» бетон – пока нижние слои схватятся, верхние начнут трескаться. Это не добавляет ни эстетики, ни твердости. При проведении работ в жаркое время поверхность 2-3 раза в день обильно поливают водой и накрывают целлофаном.

За сколько бетон набирает прочность в зимнее время года? По сути, возведение фундамента зимой – это трудоемкий процесс, который требует использования специального оборудования для регулярного прогрева цементной массы с целью ускорения процесса его затвердевания.

При работе с бетонной массой с целью ускорения ее затвердевания нагрев свыше 90°С недопустим. Это может привести к растрескиванию будущей поверхности.

Для того, чтобы понять каким образом температура влияет на процесс затвердевания, можно изучить график набора прочности бетона. Это позволит визуально разобраться в данном явлении. График набора состоит из линий, которые выстроены на основании данных, собранных для цемента М400 при разном режиме.

График твердения бетона позволяет определить, какое процентное соотношение от марочных показателей будет достигнуто через некоторый временной промежуток. Проще говоря, по этим линиям можно узнать, сколько дней масса набирает марочное значение твердости при той или иной температуре.

График набора прочности по марке цемента

Время

С целью определения оптимального, можно даже сказать, безопасного срока начала проведения строительных работ зачастую берется во внимание таблица набора прочности. По ней можно с легкостью определить за какое время застынет фундамент, приготовленной из той или иной марки цемента. Поэтому опытные специалисты всегда и пользуются подобными информационными таблицами.

Марка цемента

Среднесуточная t цементной основы, °С

Срок затвердевания по суткам

1

2

3

5

7

14

28

Показатели твердости бетонной массы на сжатие (% от заявленной)

М200-300, замешанный на портландцементе марки 400-500

2

3

6

8

12

15

20

25

0

5

12

18

28

35

50

65

+5

9

19

27

38

48

62

77

+10

12

25

37

50

58

72

85

+20

23

40

50

65

75

90

100

+30

35

55

65

80

90

100

В том случае, если нормативно-безопасный срок установлен на отметке в 50%, то самым оптимальным сроком старта строительных работ будет 72-80% от заявленных марочных показателей.

Показатели влажности

Сниженные показатели влажности окружающей среды негативно отражаются на процессе твердения фундаментной базы. При полнейшем отсутствии влаги процесс гидратации практически не происходит, и набор твердости неизбежно останавливается. Именно поэтому очень важно следить за влажностью заливаемого фундамента.

Если в помещении или на улице, где осуществляется заливка или кладка фундамент, повышенная влажность (70-90°), то скорость нарастания прочностных показателей возрастает.

Прогрев до такого высокого температурного режима при минимальных значениях влажности обязательно приведет к засыханию залитой поверхности и снизит скорость твердения. Чтоб избежать таких последствий, необходимо регулярно производить увлажнение. При таких обстоятельствах в жаркую погоду твердение будет происходить очень быстро.

ВИДЕО: Сколько твердеет бетон

Состав и эксплуатационные данные цемента

Если цемент обладает способностью тепловыделения и сразу после заливки он быстро твердеет, то после замерзания в цементной массе воды процесс твердения неизменно остановится. По этой причине во время строительных работ холодное время года лучше отдавать предпочтение смесям, приготовленным на основе противоморозных добавок.

Так, к примеру, глиноземистая масса после заливки выделяет в 7 раз больше теплоэнергии, нежели обычный портландцемент. Благодаря этому замешанная на основе такого цемента строительная смесь способна быстро набирать прочность даже при температуре ниже 0°С. что, собственно, и обусловлено его популярностью использования в холодное время года.

Стоит отметить и то, что марка цемента также влияет на скорость твердения заливки или кладки. Представленная дальше таблица наглядно демонстрирует эти данные.

Марка цемента

Показатели критической твердости (% от заявленной), минимум

Для предварительно напряженных поверхностей

70

М15-150

50

М200-300

40

М400-500

30

Вот, собственно, и все, что нужно знать о затвердевании фундамента. Надеемся, эта информация будет использована вами на практике и поможет достичь поставленной задачи наилучшим образом!

ВИДЕО: Как ускорить затвердевание бетона


график твердения В25 в зависимости от температуры, время созревания, таблица, скорость схватывания

Когда необходимо изготовить определенную конструкцию, то порой бывает невозможно этого сделать без заливки бетона. Этот материал очень активно используется в области строительства. Главной его характеристикой является прочность на сжатие. Причем устанавливать определенную нагрузку на конкретный элемент запрещено, пока бетон полностью не наберет необходимую прочность. При осуществлении данного процесса имеется ряд факторов, которые так или иначе оказывают свое влияние: состав смеси, внешние условия.

Как это происходит

Процесс схватывания может происходить сразу после того, как была выполнена заливка бетона. Длительность напрямую зависит от температурного режима окружающего воздуха. При ее значении 20 градусов, для схватывания может понадобиться примерно час. Так как этот процесс не носит мгновенный характер, то бетоны, чтобы набрать прочностные характеристики может понадобиться пару месяцев.

Каков состав бетона м 400 на 1 м-3 можно узнать из таблицы в статье.

Очень часто бетон начинает твердеть уже по прошествии двух часов с того момента, как были соединены цемент и вода. А вот для окончательного схватывания нужно подождать 3 часа. Увеличить время твердения помогают специальные добавки в бетон.

Схватывание бетона подразумевает под собой подвижность раствора на весь период, благодаря чему удается воздействовать на смесь. При этом механизм тиксотропии, который указывает на снижение вязкости бетона, твердение и высыхание не происходят. Это условие необходимо учитывать в ходе доставки раствора на бетоносмесители. В этом случае раствор должен перемешиваться в миксере, в результате чего удается сохранить все его важные качества.

Как использовать бетон марки м200, указано в статье.

На видео показывают проверку бетона на прочность сжатия.

Какова пропорция бетона м200 на 1 куб указано здесь.

Благодаря вращению миксера удается предотвратить высыхание бетона, а также набора твердости. Но в этом случае может произойти другая неприятная ситуации – это сваривание материала, в результате чего все его положительные характеристики снижаются. Происходит такое явление чаще всего в летнее время.

Временные рамки

Этот график несет в себе информацию, которая показывает кривую роста прочности на протяжении 28 дней. Именно этого времени будет достаточно, чтобы бетон сумел просохнуть при естественных условиях.

Время, которого будет достаточно, чтобы раствор набрал вес необходимые эксплуатационные качества, носит название период выдерживания бетона. График набора прочностных характеристики показывает время, которые необходимо раствору, чтобы добиться максимальной отметки по прочности.

Каковы технические характеристики по ГОСТу бетона м 200 можно узнать из данной статье.

На видео – набор прочности бетона в зависимости от температуры:

Какова прочность бетона в15 указано здесь.

При нормальных условиях созревание бетона осуществляется в течение 28 дней. Первые 5 дней – это интенсивное твердение материала. Когда позади неделя, то бетон уже набрал 70% всей прочности для выбранной марки. Но приступать к дальнейшим строительным мероприятиям можно после того, как прочность достигал 100%, а это не ранее 28 дней.

Этот период для определенного случая свой. Чтобы точно определить период застывания раствора необходимо выполнять контрольные испытания образцов материала. При проведении работ летом в монолитном домостроении в целях оптимизации процесса для обретения раствору всех физических свойств требуется выполнение следующих условий:

  • Выдерживание в опалубке раствора.
  • Дозревание состава после того, как опалубка была удалена.

Условия

Когда необходимо, чтобы раствор приобретал необходимые показатели прочности, требуется придерживаться конкретных условий. Например, самой оптимальной температурой для его твердения считается 20 градусов. Но это далеко не все параметры.

Какова характеристика бетона класса в 25 указано в статье.

Температура

Чем ниже температурные показатели на улице, тем медленнее происходит набор прочности бетона. Если температурный режим предполагает отрицательные показатели, то процесс приостанавливается по той причине, что застывает жидкость, которая обеспечивает гидратацию цемента. Когда температура воздуха начинает повышаться, то процесс набора прочности снова в действии. 

Если в составе раствора имеются различные модификаторы, то длительность твердения может во много раз уменьшиться, а температура, которая необходима для установки процесса, снизиться. Изготовители предлагают разнообразные быстротвердеющие составы, благодаря которым удается набирать прочностные характеристики уже по прошествии 14 дней.

Какова таблица набора прочности бетона, можно узнать из данной статьи.

При повышении температуры воздуха процесс созревания раствора начинает ускоряться. Если на улице 40 градусов, то установленная маркой прочность будет достигнута через 7 дней. По этой причине процесс заливки бетона на приусадебном участке в целях сокращения сроков строительства необходимо выполнять в летнее время года.

Если работы осуществляются зимой, то здесь понадобиться ряд дополнительных мероприятий, например, таких как подогрев бетона. Осуществить такие действия очень непросто, ведь для этого нужно обладать подходящим оборудованием и знаниями в этой области. Кроме этого, нужно понимать, что нагрев материала нельзя проводить выше температуры 90 градусов.

Как сделать бетон для отмостки пропорции, указано в статье.

Для того чтобы определить, какое влияние оказывает температурный режим на процесс твердение, необходимо снова обратиться к графику набора прочности. Присутствующие на нем линии с учетом данных, которые собраны с бетона М400 при различных значениях температуры. Согласно этому графику удается понять процент прочности, который будет достигнут по прошествии конкретного количества дней. Для каждой кривой характерна своя температура. Первая линия – это 5 градусов, а вторая – 50 градусов. 

При помощи графика удается понять длительность распалубки монолитной конструкции. Демонтаж опалубки ожжет происходить после того, как показатели прочности увеличились на 50% от заданного маркой значения. Кроме этого, важно обращать внимание на то, что при температуре ниже 10 градусов значение прочности, заданное конкретной маркой, не будет достигнуто даже по прошествии 14 дней. Если присутствуют такие погодные условия, то нужно предпринимать меры по прогреванию заливаемого раствора.

Каков график прогрева бетона в зимнее время, можно узнать из данной статьи.

Время

Чтобы определить нормативно-безопасное время начало строительных мероприятий применяется специальная таблица. Она содержит в себе данные марки бетона и его среднесуточные температурные показатели. На основании этих данных удается отыскать информацию, как происходит набор прочности по прошествии конкретного количества суток.

Таблица 1 – Набор прочности в зависимости от количества дней

Марка бетонаСреднесуточная температура бетона в °CСрок твердения в сутках
123571428
Прочность бетона на сжатие
М200–300, замешанный на портландцементе М 400–500-336812152025
05121828355065
+59192738486277
+1012253750587285
+20234050657590100
+303555658090100

После того, как нормативно-безопасный срок поставлен на уровне примерно 50%, то обозначить безопасный срок начала мероприятий можно 72-80% от значения, установленного маркой бетона.

Состав и характеристики бетона

Так как после заливки бетон способен приобретать прочность по причине своего выделения тепловой энергии, то после замерзания жидкости этот процесс останавливается. По этой причине на момент проведения всех работ в зимнее время необходимо задействовать смеси, в составе у которых имеются противоморозные добавки. Цемент марки М-400 необходимый для приготовления бетона изготавливают согласно жестким техническим нормам ГОСТ 31108.

На фото – состав и характеристики бетона

Глиноземистый цемент после его укладки может выделить тепловую энергию в 7 раз большую, чем при использовании обычного портландцемента. По этой причине полученная смесь на его основе начинает набирать прочностные параметры даже, когда на улице отрицательные показатели температуры. На скорость набора прочности немаловажную роль играет марка бетона. Чем она ниже, тем выше максимальная прочность.

Сколько мешков цемента в одном кубе бетона, указано здесь в статье.

Влажность

Если на улице уровень влажность повышен, то это отрицательно влияет на процесс набора прочности. Однако и полное отсутствие влаги делает невозможным процесс гидратации цемента и как результат, твердение полностью останавливается. 

Если присутствует максимальная влажность и высокая температура, то скорость набора прочности во много раз повышается. При таком режиме происходит пропаривание материала в автоклавах паром высокого давления.

Влияние таких высоких температурных показателей при минимальной влажности приведет к высыханию. Раствора и снижению скорости твердения. Чтобы можно было избежать такой ситуации, стоит производить увлажнение. В результате таких действий в жаркое время года удастся набрать прочность в минимально возможные сроки.

Специальные добавки

Чтобы бетон смог быстрее набирать прочность, нужно задействовать особые вспомогательные компоненты. Их добавляют при приготовлении раствора. Дозировка зависит от количества цемента. Благодаря таким добавкам бетон способен набрать прочность, соответствующую выбранной марки, всего за 2 недели.

Но достичь таких показателей реально при условии, что процесс твердения осуществляется в летнее время. Для холодной поры необходимо задействовать противоморозные добавки. Благодаря им можно поддерживать в бетоне положительный температурный режим на момент набора прочности. 

Электропрогрев

Для ускорения набора прочности бетона в зимнее время задействуют такой метод, как электропрогрев. Еще он носит название контактного обогрева термоопалубкой. При обычных и высоких температурных режимах длительность влияние электропрогрева может достигать 3-8 часов. После этого конструкция уже самостоятельно способна набирать прочностные показатели. 

Согласно ГОСТ

Необходимая марка и класс бетона определяется с учетом составленного проекта. Необходимые показатели прочности могут меняться в зависимости от применяемых строительных материалов. Например, при возведении дома на основе легких бетона для основания нет необходимости применять бетон высокой прочности. Когда стены строения будут выполнены из кирпича, то бетон должен иметь высокие прочностные характеристики. Например, для этого используют тяжелый и мелкозернистый бетон по стандарту 26633 ГОСТ.

Для определения прочности применяется ГОСТ 18105-86. В этом случае необходимо подготовить проект или же посмотреть информацию со схожего.

Прочность – это главный показатель качества для бетона ГОСТа любого уровня. Процесс его затвердения начинает происходить уже в первые часы после того, как соединили воду и цемент, а вот его длительность зависит от различных факторов: температуру, влажность, состав бетона. Если вес необходимые условия были соблюдены точно, то процесс набора прочности будет окончен по прошествии 28 дней, а вы сможете приступить к необходимым работам.

График набора прочности бетона в зависимости от температуры

Сегодня бетон является самым популярным материалом для строительства. Широкое распространение этому материалу принесла высокая прочность. Чтобы получить максимальный показатель, необходимо учитывать ряд факторов, среди которых мы выделим температуру. Мы подробно разберем процесс формирования бетона и узнаем, сколько нужно времени для полного застывания в тех или иных условиях. Освоить материал помогут вспомогательные таблицы и графики.

Основными факторами, которые влияют на процесс набора прочности, являются:

  • температура окружающей среды;
  • время застывания;
  • влажность воздуха;
  • марка.

Также стоит учитывать соотношение цемента и воды в смеси, пропорции ингредиентов, способ перемешивания, скорость укладки и регулярность увлажнения. Максимально качественный результат можно получить только при использовании спецтехники. Ручное замешивание не сможет довести смесь до идеальной однородной массы. Это важно для возведения промышленных объектов, но для частного одноэтажного дома способ замеса особой роли не сыграет. На таблице ниже показано, как длительность набора прочности зависит от температуры:

Этапы твердения раствора

Уже довольно давно при строительстве любых объектов стали применять этот материал. Причем его применяют на любых стадиях этого процесса начиная с фундамента и заканчивая плитами перекрытия. Удобен этот материал тем, что способен в жидком состоянии принимать форму опалубки и, по мере его застывания, получается требуемая конструкция.

При этом необходимо знать промежуток времени, за сколько бетон набирает прочность. Обычно полная готовность бетона достигается через 28 суток. Обязательно все работы проводят согласно требованиям строительных норм и правил (СНиП). В этом документе полностью описано как работать с этим материалом в любое время года, чтобы объекты прослужили затем в течение 50—100 лет.

Причем при современном строительстве постоянно появляются новые технологии и конструктивные решения, позволяющие продлить этот срок. Но до сих пор процессу набора прочности уделяют большое внимание и следят за проведением каждого этапа, в которые входят:

  1. Застывание — начинается с первых минут, после залития бетонной смеси, которое производят с помощью автобетоносмесителя. В начальный период прямую зависимость имеет время набора прочности бетона от температуры. Чем температура выше, тем быстрее схватывается раствор. Например, при 20° C этот процесс протекает в течение часа, летом на открытом солнце — от 15 до 30 минут, а при 0° C — до 20 часов.
  2. Твердение — важный этап, при котором материал набирает до 70% расчетного значения прочности. Длительность этого процесса зависит от марки материала и протекает от 7 до 14 дней.

Во время заливки раствора одновременно берутся и контрольные пробы, которые затем проверяют специалисты и сравнивают с нормативами, через определенное время, по таблице твердения бетона.

Дополнительно о влиянии температуры внешней среды на твердение материала

Набор прочности бетона, особенности, график которого описаны в статье, зависит от температуры. Чем холоднее, тем медленнее будет повышаться прочность. При отрицательных температурах процесс и вовсе останавливается, так как вода замерзает, а ведь она обеспечивает гидратацию цемента. С повышением температуры набор продолжится. Но при снижении этот процесс снова остановится. Если в составе присутствуют модификаторы, время твердения уменьшается, тогда как температура, при которой процесс останавливается, снижается.

В продаже можно найти быстродействующие составы, которые имеют способность придавать бетону марочную прочность через 2 недели. Так как потепление будет способствовать сокращению процесса созревания материала, то можно утверждать, что при 40 °C марочное значение будет достигнуто через 7 дней. Поэтому заливка бетона должна осуществляться в жаркую погоду. Зимой для обеспечения нормальных условий потребуется подогрев материала, а своими силами осуществить такие работы будет проблематично, ведь потребуется специальное оборудование. Кроме того, нагревать раствор до 90 °C и выше недопустимо.

Факторы, влияющие на прочность

Практически все работы с раствором проводятся на открытом воздухе как летом, так и зимой. Погодные условия и температура воздуха оказывает непосредственное влияние на время застывания бетона. Таким образом, на набор прочности влияют следующие факторы:

  • температура;
  • влажность;
  • класс материала;
  • время.

Чем ниже температура на улице, тем медленнее и дольше будет происходить процесс затвердения. Зимой, в естественных условиях, эта процедура полностью останавливается, так как вода не испаряется, а замерзает. При повышении температуры застывание раствора опять продолжится. Чтобы это лучше понять, стоит обратиться к графику твердения бетона В25 или В30.

График представляет собой кривые линии, показывающие, как долго и при какой температуре достигается определенная прочность бетона. Если летом твердение бетона протекает естественным образом, то зимой необходимо принимать меры для его застывания. Для этого в бетонную смесь добавляют специальные противоморозные вещества, которые способствуют сохранению свойств приготовленного раствора.

При этом они не дают воде быстро замерзать и позволяют качественно провести заливку бетонной смеси. При более низких температурах сразу после заливки раствора обеспечивают его прогрев. Обычно для этого используют электрический ток или тепловые обогреватели. В первом случае с помощью проводов по контурам производят подключение непосредственно арматуры в опалубке или через электроды, погруженные в раствор.

Причем контуры не должны касаться друг друга, иначе будет короткое замыкание. Все подключение ведется через специальный масляный трансформатор для прогрева бетона. Во втором случае место бетонирования накрывают шатром и подключают несколько воздушных обогревателей. Большую роль играет повышенная влажность воздуха. Если ее показатели достигают 70—90%, то прочность раствора значительно увеличивается.

Зависимость уровня набора прочности от показателей температуры материала

Набор прочности бетона в зависимости от температуры материала будет происходить по-разному. В качестве примера можно рассмотреть марки бетона в пределах от М-200 до М-300, которые были затворены на портландцементе с маркировкой в пределах от М-400 до М-500. За сутки материал достигнет трехпроцентной прочности на сжатие, если его температура будет равна -3 °C. При условиях, что смесь будет иметь температуру в +30 °C, прочность за сутки составит 35%.

За трое суток прочность достигнет 8%, если температура материала будет равна -3 °C. 60% прочности удастся добиться при +30 °C температуры за этот же период времени. Если температура материала будет равна +5 °C в течение 28 дней, то прочность материала составит 77%. Стопроцентной прочности удастся добиться за 14 дней, если температура материала будет равна +30 °C.

Методы ускорения застывания бетона

Очень часто в процессе строительства необходимо ускорить процесс набора прочности бетона. Так, при заливке монолитных конструкций и ограничении сроков строительных работ применяют смеси на основе сернокислых, углекислых и аммонийных солей, хлоридов и нитратов кальция.

Применение этих добавок позволяет сократить длительность застывания бетона в 2 раза. Стоит заметить, что такие работы проводят в летний период и антиморозные добавки здесь не подойдут. В сильно жаркую и сухую погоду проводят увлажнение залитого раствора, так как очень быстро испаряется вода и происходит нарушение графика набора прочности материала.

Для этого верхнюю часть раствора накрывают материалом или посыпают опилками и периодически смачивают их по мере испарения воды. На асфальтобетонных заводах для ускорения застывания раствора применяют способ пропаривания. Процедуру эту проводят на открытом воздухе или в специальных закрытых камерах, где за 6—16 часов изделия из бетона набирают 60—70% прочности.

Как происходит набор прочности бетона

Схватывание состава может произойти в первые дни с того момента, как была изготовлена консистенция из цемента и воды. Время ее схватывания находится в прямой зависимости от температуры воздуха. Если она составляет 20°С, то может понадобиться около одного часа. Поскольку процесс застывания бетона не мгновенный, а достаточно долговременный, то для набора прочности материала может потребоваться несколько месяцев.

Зачастую схватывание цемента происходит приблизительно спустя около двух часов с того момента, как был затворен цементный раствор, а окончательный процесс может начаться приблизительно спустя три часа. Поэтому на данной стадии может помочь ускоритель схватывания бетона.


Изображение 1. График набора прочности бетона.

Начало данной стадии может быть отодвинуто в результате снижения температурного уровня, а ее продолжительность существенно возрастает. Если уровень температуры воздуха составляет 0°С, то начало этапа схватывания может произойти спустя от 6 до 10 часов после того, как произошло затворение смеси. При этом данный процесс способен растянуться на 15-20 часов. Если температуры завышены, то период схватывания бетона может быть сокращен, что составит около 10-20 мин.

Схватывание бетона предполагает то, что данный состав должен оставаться подвижным весь период, что позволяет оказывать влияние на смесь. Механизм тиксотропии, связанный с уменьшением вязкости субстанции в условиях механического воздействия на нее, то есть периодического смешивания бетона, который схватился не полностью, твердение и процесс высыхания бетона не начинаются. Данное свойство учитывают в процессе доставки раствора на бетоносмесителе, поскольку состав при этом должен перемешиваться в миксере, что позволяет сохранять все его важные свойства.

Вращение миксера машины препятствует высыханию цементного раствора, не позволяя твердеть смеси достаточно долго. Возможно и развитие необратимых последствий, которые называют «свариванием» бетона, а это снижает его полезные свойства. Данный процесс особенно быстро может происходить летом.

Что представляет собой процесс твердения бетона

Ниже перечислены особенности, характерные для бетона:


Относительная прочность бетона в разные сроки твердения при различных температурах.

  1. Чем ниже уровень температуры внешней среды, тем медленней твердеет состав и нарастает его прочность.
  2. Если температура не превышает нулевую отметку по Цельсию, то вода в составе начинает замерзать, а твердение смеси уже не происходит. Повышение уровня температуры влечет за собой возобновление твердения.
  3. Влажность среды позволяет всей строительной массе приобретать более высокую прочность, чем в процессе затвердевания бетона вне помещения.
  4. Процесс схватывания бетона может стать замедленным и практически непрерывным при отсутствии влаги, так как именно она необходима в первую очередь при гидратации цемента.
  5. Если температура повышается до 80-90°С, то происходит значительное увеличение скорости процесса нарастания прочности в условиях максимальной влажности.

Пар высокого давления позволяет пропаривать смесь автоклавным способом, что осуществляется только при создании соответствующих условий.

Набор прочности бетона — это непостоянная величина. Если твердение бетона происходит в нормальных условиях, то набор прочности начинается через одну-две недели, что составляет от 60 до 70% от того уровня прочности, который набирается за 28 дней. Далее он продолжается, но очень медленно. С момента, когда была произведена заливка раствора, затвердевание бетона является максимальным.

При правильном течении процесса гидратации должны соблюдаться определенные условия. Уровень влажности должен составлять от 90 до 100%, а температуры — от 18 до 20°С. При нарушении данных условий может произойти изменение времени застывания состава.

Переход воды при отрицательных температурах в твердое состояние вызывает в результате промерзания бетона давление кристаллов льда на массу частиц цемента, что может снижать качество состава.


Таблица соответствия марок и классов бетона.

Смесь начинает затвердевать и при низком уровне влажности. Это вызвано прекращением поступления влаги, что требуется для гидратации цемента.

Если для конструкции характерны идеальные условия, то гидратация возобновляется. Когда подходит к концу уже вторая неделя, то смесь уже имеет прочность, составляющую 80% от основной первоначальной прочности. После этого ее набор замедляется.

На практике по истечении 28 дней завершение набора прочности не происходит, поскольку длительность данного процесса может составлять несколько лет. Когда смесь достигает трехлетнего возраста, то его прочность соответствует 200-250% от величины, характерной для возраста бетона, равного 28 суткам.

Никто не может дать однозначного ответа на вопрос о длительности процессов твердения смеси. Все зависит от той нагрузки, которая запланирована для той или иной конструкции.

Как осуществляют испытания

Например, если планируется строительство забора из металлического сайдинга либо досок, то для его возведения будет достаточно устройства бетонного ленточного фундамента. Если требуется начать строительство дома на бетонном фундаменте, то без помощи специалиста высокой квалификации здесь не обойтись. Процесс набора прочности в зависимости от температуры показан на рисунке (ИЗОБРАЖЕНИЕ 1).


Изображение 2. Таблица набора прочности бетона.

Марочная прочность, которая набрана за 28 суток, на рисунке взята за 100%. Оценка класса бетона производится спустя 28 суток. Осуществление процесса испытаний возможно с использованием образцов, имеющих стандартную кубическую форму. Сторона куба при этом может составлять 15 см. Температура, позволяющая выдержать образец, должна достигать 20°С, а относительная влажность колебаться в пределах 95%. Хранить смесь в виде испытуемых образцов можно в камере нормального хранения в нормальных условиях.

Если уровень температуры твердения отклоняется от нормального в наибольшую сторону, то созревание бетона будет осуществляться в условиях повышенной температуры. Если происходит ее отклонение к наименьшей стороне, то твердение бетона может предполагать сниженную температуру.

В таблице (ИЗОБРАЖЕНИЕ 2) отражена информация, связанная с набором прочности бетонного состава, имеющего марку от М200 до М300, изготавливаемого на основе портландцемента, маркой М-400 или М-500, за первые прошедшие 28 суток, что определяется среднесуточной температурой.

Контроль за процессом

Набор прочности бетона в зависимости от температуры был освещен выше. Однако важно следить за процессом в течение первой недели. Мероприятия, направленные на обеспечение условий для выдержки, выражены в:

  • электрообогреве;
  • увлажнении;
  • укрывании влагозащитными и теплоизолирующими материалами;
  • обогреве тепловыми пушками.

Нужно будет уделить внимание смачиванию поверхности. Через неделю после выработки состава конструкция может быть нагружена, это верно, если температура воздуха будет равна 25-30 °C.

График твердения бетона в зависимости от температуры

Главная » Статьи » График твердения бетона в зависимости от температуры

От чего зависит и как быстро происходит набор прочности бетона

Изготовление различных конструкций предполагает заливку бетона, главной характеристикой которого является прочность на сжатие. При этом нагружать конкретный элемент нельзя, пока не завершится набор прочности бетона. Данный процесс зависит от ряда факторов, к которым относятся не только внешние условия, но и состав самой смеси.

Для достижения марочного значения, как правило, требуется четыре недели (28 дней). Чтобы будущая конструкция прослужила достаточно долго, необходимо ясно представлять, как осуществляется сам процесс, и сколько времени требуется для его завершения. Процесс включает две стадии. На первой происходит схватывание бетона. На второй он твердеет и набирает прочность.

Стадия схватывания

Схватывание происходит в течение первых суток с момента его приготовления. Сколько времени потребуется для завершения первой стадии напрямую зависит от температуры окружающей среды.

Теплая погода

В летний период, когда температура 20 °C и выше, на схватывание может потребоваться около часа. Процесс начнется приблизительно через два часа после приготовления смеси и завершится, следовательно, через три.

Прохладное время года

При похолодании время начала и завершения стадии сдвигается. Для схватывания требуется больше суток. При нулевой температуре процесс начинается, как правило, только через 6 – 10 часов после приготовления раствора и может длиться до 20 часов после заливки. В жаркую погоду время, наоборот, уменьшается. Иногда для схватывания достаточно 10 минут.

Уменьшение вязкости раствора

На первой стадии приготовленная смесь остается подвижной. В этот период еще можно оказать механическое воздействие, придав изготавливаемой конструкции требуемую форму.

Продлить стадию схватывания позволяет механизм тиксотропии, способствующий уменьшению вязкости смеси при оказании механического воздействия. Именно поэтому перемешиваемый в бетономешалке раствор намного дольше может находиться на первой стадии.

Однако следует учесть, что ряд процессов вызывает необратимые изменения в смеси, что негативно отражается на качестве затвердевшего бетона. Особенно быстро «сваривание» происходит в летний период.

Стадия твердения

После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.

Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.

В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.

Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.

От чего зависит набор прочности?

На процесс набора прочности влияет множество факторов. Однако основными можно считать:

  • температуру;
  • влажность;
  • марку бетона;
  • время.
Температура

Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.

При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.

Потепление способствует ускорению процесса созревания бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.

Зимой может потребоваться подогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.

Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.

График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.

Время

Для определения нормативно-безопасного срока начала работ часто используется следующая таблица. В ней в зависимости от марки бетона и его среднесуточной температуры приведена информация о наборе прочности через определенное количество суток:

Марка бетонаСреднесуточная температура бетона в °CСрок твердения в сутках
123571428
Прочность бетона на сжатие (процент от марочной)
М200–300, замешанный на портландцементе М 400–500-336812152025
05121828355065
+59192738486277
+1012253750587285
+20234050657590100
+303555658090100

Если нормативно-безопасный срок установлен на уровне приблизительно 50%, то безопасным сроком начала работ можно считать 72 – 80% от марочного значения.

В зависимости от времени выдержки искомое значение можно определить по следующей формуле:

прочность на n-ый день = марочная прочность *(lg (n) / lg (28)). Причем n не может быть меньше 3-х дней.

Состав и характеристики цемента

Если сразу после заливки цемент способен набирать прочность благодаря своему тепловыделению, то после замерзания воды процесс неизменно остановится. Именно поэтому при выполнении работ в зимний и осенне-весенний период предпочтительно использовать смеси с противоморозными добавками.

Глиноземистый цемент после укладки способен выделить в семь раз больше тепла, чем обычный портландцемент. Именно поэтому приготовленная на его основе смесь набирает прочность даже при отрицательной температуре.

Марка также оказывает влияние на скорость процесса. Чем ниже марка, тем выше критическая прочность. Таблица наглядно отражает такую зависимость:

Марка бетона (по прочности на сжатие)Критическая прочность (процент от марочной), минимум
для предварительно напряженных конструкций70
М15 – 15050
М200 – 30040
М400 – 50030
Влажность

Пониженная влажность негативно отражается на процессе. При полном отсутствии влаги гидратация цемента становится невозможной, и твердение практически останавливается.

При максимальной влажности и высокой температуре (70 – 90 °C) скорость нарастания прочности значительно повышается. В таком режиме осуществляется пропаривание состава в автоклавах паром высокого давления.

Нагрев до столь высоких температур при минимальной влажности неизбежно приведет к высыханию залитого раствора и снижению скорости набора. Чтобы этого не произошло, следует своевременно производить увлажнение. В таком случае в жаркую погоду прочность будет набрана в минимально возможные сроки.

tehno-beton.ru

Время застывания бетона в зависимости от температуры окружающего воздуха

Процесс твердения бетонного раствора относится к значимым этапам производства строительных работ. От его продолжительности, в конечном итоге, зависит прочность монолитной конструкции. После заливки смеси в опалубку, по графикам или таблицам устанавливается приблизительное время застывания бетона, в зависимости от температуры и влажности окружающего воздуха. Также учитывается проектная марка искусственного камня.

Что влияет на сроки твердения бетонной массы

Температурно-влажностный режим играет огромную роль в процессе схватывания и отверждения бетона. В жаркие дни поверхность монолита смачивают водой, чтобы цементному порошку хватило жидкой составляющей для полноценного завершения химических реакций. В таких условиях схватывание камня происходит гораздо быстрее, чем при низких температурах. Следует принимать во внимание тот факт, что минусовые значения и недостача воды способны даже остановить застывание растворной массы.

Лабораторные исследования показали, что оптимальной температурой окружающего воздуха для начала и продолжения процесса твердения бетона является 20-30 градусов. При этом влажность на его поверхности должна составлять не менее 90 процентов, что достигается путем полива и накрытия глыбы полиэтиленовой пленкой или рубероидом. Описанные условия позволят камню набрать 70-типроцентную прочность в течение первых пяти-семи дней после заливки опалубки. Марочные же показатели достигаются через две-четыре недели.

Конечно же, лабораторные условия перенести в реальность не представляется возможным. На открытых площадках температура и влажность постоянно меняются в зависимости от:

  • времени суток;
  • сезонных изменений;
  • климатических особенностей;
  • наличия атмосферных осадков и т.д.

Фактически, набор бетоном прочности на сжатие происходит намного дольше 28 суток, но последующий процесс твердения продвигается настолько медленно по сравнению с первой семидневкой, что после четырех недель его в большинстве случаев не принимают во внимание. Хотя при неблагоприятных условиях, спровоцированных низкой температурой, сроки застывания увеличивают на несколько дней, а то и недель.

В промышленных условиях заливку бетона допускается выполнять при минусовых температурах. Для предотвращения замерзания воды в растворе и для ускорения отверждения бетонной массы, производится ее принудительный прогрев. Нередко в раствор подмешивают специальные добавки.

Частным застройщикам рекомендуется заливать монолитные конструкции в летний период года, когда среднесуточная температура не опускается ниже 15-20 градусов.

Проведение работ следует планировать заранее. Важно позаботиться о том, чтобы срок застывания бетона закончился раньше наступления холодных ночей. В случае понижения среднесуточной температуры до уровня +5 градусов, находящийся в процессе твердения камень накрывают теплоизолирующими материалами, а при угрозе появления заморозков – над монолитной глыбой устанавливают парник.

Как упоминалось выше, продолжительность застывания бетонной массы увеличивается по мере снижения температуры окружающего воздуха. В идеале, бетон марки М300 набирает стопроцентную прочность на сжатие при +20 градусах через 28 суток, тогда как при среднесуточных показателях температуры в пределах +5 градусов прочность за четыре недели сможет достичь лишь 77 процентов. Рассматривая графики твердения бетонного камня, представляющие собой выгнутые линии, можно с уверенностью сказать, что в последнем случае срок набора проектной прочности увеличится вдвое по сравнению с предыдущим вариантом.

В определенных случаях пригрузка бетонных конструкций разрешается после 50-процентного отверждения монолита. Здесь зависимость прочности от температуры выглядит следующим образом:

  • при +20 градусах должно пройти более 3 суток после заливки опалубки;
  • при +10 градусах – не менее 5 суток;
  • при +5 – 8 дней и более.

В жаркую погоду, когда столбик термометра поднимается выше 30 градусов, для набора 55-процентной прочности может понадобиться всего лишь 48 часов. Но при столь быстром застывании бетона нагружать конструкцию рекомендуется, все же, не раньше чем через 4-5 суток. В таком случае лучше будет перестраховаться, чем переделывать работу.

semidelov.ru

Набор прочности бетона в зависимости от температуры: график

Одним из значимых показателей качества бетона является его прочность. Если заглянуть в государственные стандарты, то в них можно отыскать условия сжатия. Согласно им, прочность может быть равна пределу от М50-800. В качестве одних из наиболее часто используемых выступают марки цемента до М-500. Многие профессиональные строители и частные застройщики учитывают график набора прочности материала. О нём и пойдет речь ниже.

Для вас данная информация тоже может оказаться полезной, ведь из неё вы сможете узнать, через какой период времени после затворения раствора можно начинать дальнейшую работу. Это обусловлено тем, что манипуляции по проведению строительства могут предполагать нагружение конструкций из бетона. Наиболее часто в связке с этим речь идет о фундаментах, которые обязательно должны быть выдержаны в течение 28 дней перед началом возведения стен.

Набор прочности по графику

Набор прочности бетона в зависимости от температуры определяется графиком, который представляет собой временной интервал. В процессе этого раствор обретает эксплуатационные свойства, после чего можно проводить формирование финишного слоя. График набора прочности – это время, которое необходимо бетону для достижения нужного значения прочности. Если поддерживаются нормальные условия, то состав созреет за 28 дней.

В течение 5 дней можно наблюдать наиболее быстрое твердение. По истечении этого времени материал достигнет 70-процентной прочности. Последующие работы следует продолжать лишь через 28 дней, ведь только тогда материал достигнет 100-процентного уровня прочности.

Твердение и набор прочности бетона происходят по-разному для каждого конкретного случая. Для того чтобы определить сроки, проводятся испытания образцов. В теплое время в монолитном домостроении для обретения составом оптимальных свойств осуществляются некоторые операции. Например, материал выдерживается в опалубке, его оставляют дозревать и после удаления ограждений. Набор прочности бетона в зависимости от температуры будет происходить за разный период времени. Это объясняется еще и тем, что мероприятия могут проводиться в холодное время года. В этом случае для достижения марочной прочности необходимо обеспечить обогревание материала и гидроизоляцию бетона. Это обусловлено тем, что снижение температуры замедляет процесс полимеризации.

Рекомендации по ускорению процесса

Для того чтобы ускорить набор прочности и снизить время выдержки материала, необходимо использовать пескобетон, в котором низкое соотношение воды и цемента. Если это соотношение выглядит как 1 к 4, то сроки будут сжаты в два раза. Для того чтобы добиться такого результата, состав следует дополнить пластификаторами. Сократить срок созревания материала можно и искусственным способом, увеличив температуру.

Зависимость уровня набора прочности от показателей температуры материала

Набор прочности бетона в зависимости от температуры материала будет происходить по-разному. В качестве примера можно рассмотреть марки бетона в пределах от М-200 до М-300, которые были затворены на портландцементе с маркировкой в пределах от М-400 до М-500. За сутки материал достигнет трехпроцентной прочности на сжатие, если его температура будет равна -3 °C. При условиях, что смесь будет иметь температуру в +30 °C, прочность за сутки составит 35%.

За трое суток прочность достигнет 8%, если температура материала будет равна -3 °C. 60% прочности удастся добиться при +30 °C температуры за этот же период времени. Если температура материала будет равна +5 °C в течение 28 дней, то прочность материала составит 77%. Стопроцентной прочности удастся добиться за 14 дней, если температура материала будет равна +30 °C.

Контроль за процессом

Набор прочности бетона в зависимости от температуры был освещен выше. Однако важно следить за процессом в течение первой недели. Мероприятия, направленные на обеспечение условий для выдержки, выражены в:

  • электрообогреве;
  • увлажнении;
  • укрывании влагозащитными и теплоизолирующими материалами;
  • обогреве тепловыми пушками.

Нужно будет уделить внимание смачиванию поверхности. Через неделю после выработки состава конструкция может быть нагружена, это верно, если температура воздуха будет равна 25-30 °C.

Дополнительно о стадиях набора прочности

Схватывание залитого бетона происходит за первые сутки после его приготовления. Частным строителем обязательно необходимо знать, какова зависимость набора прочности бетона от температуры воздуха. Например, в теплую погоду, когда температура за окном находится в пределах 20 °C, схватывание произойдет в течение часа. Процесс начнется через пару часов, отсчет необходимо вести после соединения составляющих, а завершится через 3.

Прохладное время

При похолодании начало и завершение схватывания сдвигаются. Для схватывания будет достаточно больше суток. Если температура находится на нулевой отметке, то процесс начнется минимум через 6 часов после затворения. При таких условиях он длится до 20 часов, отсчет времени начинается после того, как раствор окажется в опалубке. В жаркий день время уменьшается. Это указывает на то, что иногда для схватывания достаточно всего лишь 10 минут.

Снижение вязкости раствора

Вами обязательно должен быть изучен процесс набора прочности бетона в зависимости от температуры. Важно знать и об уменьшении вязкости. На первой стадии смесь будет сохранять подвижность. В течение этого времени на материал может быть оказано механическое воздействие, а конструкции при этом все еще можно придать нужную форму. Продлить стадию схватывания можно тиксотропией, которая будет способствовать снижению вязкости при оказании механического воздействия.

Отличным примером может стать раствор, перемешиваемый в бетономешалке. В течение этого периода раствор дольше будет оставаться на первой стадии. Но необходимо учитывать, что многие процессы вызывают необратимые изменения в растворе, что может негативно отразиться на качестве затвердевшего бетона. Например, довольно быстро происходит «сваривание» в летний период.

Стадия твердения

Набор прочности бетона, график по времени которого описан в статье, начинается после схватывания. Этот процесс все еще не закончится и через несколько лет. Но уже через 4 недели можно определить марку бетона. Прочность материала будет набираться с разной скоростью. Максимально интенсивно этот процесс будет протекать в первые 7 дней. В первые трое суток при нормальных условиях прочность достигнет 30% от марочного значения. В течение первых двух недель раствор достигнет 70% прочности от указанного значения. Через 3 месяца этот параметр увеличится на 20%, после процесс замедлится, но не прекратится. Через 3 года показатель может повыситься в 2 раза.

Дополнительно о влиянии температуры внешней среды на твердение материала

Набор прочности бетона, особенности, график которого описаны в статье, зависит от температуры. Чем холоднее, тем медленнее будет повышаться прочность. При отрицательных температурах процесс и вовсе останавливается, так как вода замерзает, а ведь она обеспечивает гидратацию цемента. С повышением температуры набор продолжится. Но при снижении этот процесс снова остановится. Если в составе присутствуют модификаторы, время твердения уменьшается, тогда как температура, при которой процесс останавливается, снижается.

В продаже можно найти быстродействующие составы, которые имеют способность придавать бетону марочную прочность через 2 недели. Так как потепление будет способствовать сокращению процесса созревания материала, то можно утверждать, что при 40 °C марочное значение будет достигнуто через 7 дней. Поэтому заливка бетона должна осуществляться в жаркую погоду. Зимой для обеспечения нормальных условий потребуется подогрев материала, а своими силами осуществить такие работы будет проблематично, ведь потребуется специальное оборудование. Кроме того, нагревать раствор до 90 °C и выше недопустимо.

Заключение

График набора прочности бетона, условия затвердевания вами обязательно должны быть изучены перед началом работ. Таким образом, согласно графику, вы сможете определить, через какое количество времени может быть осуществлена распалубка монолитных конструкций. Демонтаж опалубки может быть осуществлён только лишь после того, как прочность материала превысит 50% от марочного значения.

При этом необходимо учитывать, что если столбик опустился ниже +10 °C, то это значение не будет достигнуто и через 2 недели после заливки. При таких условиях необходимо задуматься о подогреве раствора. Нормативно безопасный срок устанавливается на 50-процентной прочности. Тогда как приступать к дальнейшим работам можно лишь после того, как марочное значение раствора достигнет 80%.

fb.ru

Технология набора прочности бетона в процессе выполнения строительных работ

Комментариев:

Рейтинг: 57

Оглавление: [скрыть]

  • Как происходит набор прочности бетона
    • Что представляет собой процесс твердения бетона
    • Как осуществляют испытания
  • Способы заливки бетона при повышенных температурах

Главное свойство бетонной смеси определяет набор прочности бетона, отражающий качественное состояние монолитной конструкции. Поскольку она находится во взаимосвязи со структурой данного строительного материала, то набор прочности можно поделить на два шага, связанных со схватыванием и затвердеванием бетона. Для последнего характерно наличие физико-химических свойств, возникающих при взаимодействии цемента с водой. Кода идет формирование бетона, то гидратация цемента вызывает образование других соединений.

Схема приготовления бетона.

Как происходит набор прочности бетона

Схватывание состава может произойти в первые дни с того момента, как была изготовлена консистенция из цемента и воды. Время ее схватывания находится в прямой зависимости от температуры воздуха. Если она составляет 20°С, то может понадобиться около одного часа. Поскольку процесс застывания бетона не мгновенный, а достаточно долговременный, то для набора прочности материала может потребоваться несколько месяцев.

Зачастую схватывание цемента происходит приблизительно спустя около двух часов с того момента, как был затворен цементный раствор, а окончательный процесс может начаться приблизительно спустя три часа. Поэтому на данной стадии может помочь ускоритель схватывания бетона.

Изображение 1. График набора прочности бетона.

Начало данной стадии может быть отодвинуто в результате снижения температурного уровня, а ее продолжительность существенно возрастает. Если уровень температуры воздуха составляет 0°С, то начало этапа схватывания может произойти спустя от 6 до 10 часов после того, как произошло затворение смеси. При этом данный процесс способен растянуться на 15-20 часов. Если температуры завышены, то период схватывания бетона может быть сокращен, что составит около 10-20 мин.

Схватывание бетона предполагает то, что данный состав должен оставаться подвижным весь период, что позволяет оказывать влияние на смесь. Механизм тиксотропии, связанный с уменьшением вязкости субстанции в условиях механического воздействия на нее, то есть периодического смешивания бетона, который схватился не полностью, твердение и процесс высыхания бетона не начинаются. Данное свойство учитывают в процессе доставки раствора на бетоносмесителе, поскольку состав при этом должен перемешиваться в миксере, что позволяет сохранять все его важные свойства.

Вращение миксера машины препятствует высыханию цементного раствора, не позволяя твердеть смеси достаточно долго. Возможно и развитие необратимых последствий, которые называют «свариванием» бетона, а это снижает его полезные свойства. Данный процесс особенно быстро может происходить летом.

Вернуться к оглавлению

Ниже перечислены особенности, характерные для бетона:

Относительная прочность бетона в разные сроки твердения при различных температурах.

  1. Чем ниже уровень температуры внешней среды, тем медленней твердеет состав и нарастает его прочность.
  2. Если температура не превышает нулевую отметку по Цельсию, то вода в составе начинает замерзать, а твердение смеси уже не происходит. Повышение уровня температуры влечет за собой возобновление твердения.
  3. Влажность среды позволяет всей строительной массе приобретать более высокую прочность, чем в процессе затвердевания бетона вне помещения.
  4. Процесс схватывания бетона может стать замедленным и практически непрерывным при отсутствии влаги, так как именно она необходима в первую очередь при гидратации цемента.
  5. Если температура повышается до 80-90°С, то происходит значительное увеличение скорости процесса нарастания прочности в условиях максимальной влажности.

Пар высокого давления позволяет пропаривать смесь автоклавным способом, что осуществляется только при создании соответствующих условий.

Набор прочности бетона — это непостоянная величина. Если твердение бетона происходит в нормальных условиях, то набор прочности начинается через одну-две недели, что составляет от 60 до 70% от того уровня прочности, который набирается за 28 дней. Далее он продолжается, но очень медленно. С момента, когда была произведена заливка раствора, затвердевание бетона является максимальным.

При правильном течении процесса гидратации должны соблюдаться определенные условия. Уровень влажности должен составлять от 90 до 100%, а температуры — от 18 до 20°С. При нарушении данных условий может произойти изменение времени застывания состава.

Переход воды при отрицательных температурах в твердое состояние вызывает в результате промерзания бетона давление кристаллов льда на массу частиц цемента, что может снижать качество состава.

Таблица соответствия марок и классов бетона.

Смесь начинает затвердевать и при низком уровне влажности. Это вызвано прекращением поступления влаги, что требуется для гидратации цемента.

Если для конструкции характерны идеальные условия, то гидратация возобновляется. Когда подходит к концу уже вторая неделя, то смесь уже имеет прочность, составляющую 80% от основной первоначальной прочности. После этого ее набор замедляется.

На практике по истечении 28 дней завершение набора прочности не происходит, поскольку длительность данного процесса может составлять несколько лет. Когда смесь достигает трехлетнего возраста, то его прочность соответствует 200-250% от величины, характерной для возраста бетона, равного 28 суткам.

Никто не может дать однозначного ответа на вопрос о длительности процессов твердения смеси. Все зависит от той нагрузки, которая запланирована для той или иной конструкции.

Вернуться к оглавлению

Например, если планируется строительство забора из металлического сайдинга либо досок, то для его возведения будет достаточно устройства бетонного ленточного фундамента. Если требуется начать строительство дома на бетонном фундаменте, то без помощи специалиста высокой квалификации здесь не обойтись. Процесс набора прочности в зависимости от температуры показан на рисунке (ИЗОБРАЖЕНИЕ 1).

Изображение 2. Таблица набора прочности бетона.

Марочная прочность, которая набрана за 28 суток, на рисунке взята за 100%. Оценка класса бетона производится спустя 28 суток. Осуществление процесса испытаний возможно с использованием образцов, имеющих стандартную кубическую форму. Сторона куба при этом может составлять 15 см. Температура, позволяющая выдержать образец, должна достигать 20°С, а относительная влажность колебаться в пределах 95%. Хранить смесь в виде испытуемых образцов можно в камере нормального хранения в нормальных условиях.

Если уровень температуры твердения отклоняется от нормального в наибольшую сторону, то созревание бетона будет осуществляться в условиях повышенной температуры. Если происходит ее отклонение к наименьшей стороне, то твердение бетона может предполагать сниженную температуру.

В таблице (ИЗОБРАЖЕНИЕ 2) отражена информация, связанная с набором прочности бетонного состава, имеющего марку от М200 до М300, изготавливаемого на основе портландцемента, маркой М-400 или М-500, за первые прошедшие 28 суток, что определяется среднесуточной температурой.

Вернуться к оглавлению

Среди многих факторов, оказывающих влияние на набор прочности бетонного раствора, в большей степени можно отметить следующие:

  1. Соотношение воды с цементом.
  2. Уровень уплотнения смеси.
  3. Тип цемента, необходимый при производстве раствора.
  4. Определенная температура, которая характерна в процессе твердения бетона.

Таблица критической прочности для разных марок бетона.

В подавляющем большинстве случаев, связанных с осуществлением работ с использованием раствора бетона, влияние атмосферных условий может быть слишком далеким от идеальных, поэтому необходимо принятие дополнительных мер. Когда заливка раствора осуществляется в холодный период, то отрицательные температуры требуют обеспечения прогрева смеси.

С этой целью можно применять ряд различных способов. Среди них можно выделить процесс прогрева бетона с применением электрических проводов. При этом заливку раствора делают, используя теплую опалубку. Для предотвращения процесса кристаллизации воды зимой в бетон производится ввод соответствующих антиморозных присадок.

В зимних условиях иногда может быть использован способ, который предполагает гидратацию цемента. С этой целью в бетон добавляют противоморозные вещества в небольших количествах. Температура при заливке смеси должна составлять не менее -15°С. Данные условия связаны с быстрым замерзанием воды и прекращением процесса гидратации, возобновление которого происходит только в весенний период. Применение данного метода способно приводить к процессу снижения качества бетонной конструкции.

Другое экстремальное условие связано с повышенным уровнем температуры окружающего воздуха. Данный случай позволяет увлажнять застывающий раствор. При этом после поливания раствора водой бетон должен быть укрыт специальной пленкой и слоем состава, который имеет битумную основу. Созревание бетона требует осуществления контроля над изменением объема смеси. Превышение в процентах не должно составлять 1% от первоначального уровня показателя.

Отсутствие усадки при этом является идеальным моментом, хотя на практике это не всегда становится возможным. При изменении объемов, которое имеет практическое значение, возможно применение специальных мер, далеко не всегда являющихся эффективными. Если времени на процесс высыхания бетона недостаточно, то на заливке могут появиться трещины, которые способны вызвать понижение прочности всей строительной конструкции.

tolkobeton.ru

Время набора прочности бетона от температуры

Процесс набора прочности бетона

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

От чего зависит и как быстро происходит набор прочности бетона

Изготовление различных конструкций предполагает заливку бетона, главной характеристикой которого является прочность на сжатие. При этом нагружать конкретный элемент нельзя, пока не завершится набор прочности бетона. Данный процесс зависит от ряда факторов, к которым относятся не только внешние условия, но и состав самой смеси.

Для достижения марочного значения, как правило, требуется четыре недели (28 дней). Чтобы будущая конструкция прослужила достаточно долго, необходимо ясно представлять, как осуществляется сам процесс, и сколько времени требуется для его завершения. Процесс включает две стадии. На первой происходит схватывание бетона. На второй он твердеет и набирает прочность.

Стадия схватывания

Схватывание происходит в течение первых суток с момента его приготовления. Сколько времени потребуется для завершения первой стадии напрямую зависит от температуры окружающей среды.

Теплая погода

В летний период, когда температура 20 °C и выше, на схватывание может потребоваться около часа. Процесс начнется приблизительно через два часа после приготовления смеси и завершится, следовательно, через три.

Прохладное время года

При похолодании время начала и завершения стадии сдвигается. Для схватывания требуется больше суток. При нулевой температуре процесс начинается, как правило, только через 6 – 10 часов после приготовления раствора и может длиться до 20 часов после заливки. В жаркую погоду время, наоборот, уменьшается. Иногда для схватывания достаточно 10 минут.

Уменьшение вязкости раствора

На первой стадии приготовленная смесь остается подвижной. В этот период еще можно оказать механическое воздействие, придав изготавливаемой конструкции требуемую форму.

Продлить стадию схватывания позволяет механизм тиксотропии, способствующий уменьшению вязкости смеси при оказании механического воздействия. Именно поэтому перемешиваемый в бетономешалке раствор намного дольше может находиться на первой стадии.

Однако следует учесть, что ряд процессов вызывает необратимые изменения в смеси, что негативно отражается на качестве затвердевшего бетона. Особенно быстро «сваривание» происходит в летний период.

Стадия твердения

После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.

Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.

В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.

Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.

От чего зависит набор прочности?

На процесс набора прочности влияет множество факторов. Однако основными можно считать:

Температура

Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.

При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.

Потепление способствует ускорению процесса созревания бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.

Зимой может потребоваться подогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.

Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.

График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.

Для определения нормативно-безопасного срока начала работ часто используется следующая таблица. В ней в зависимости от марки бетона и его среднесуточной температуры приведена информация о наборе прочности через определенное количество суток:

Набор бетоном прочности

Содержание статьи:

Схватывание и твердение

Прочность бетона считается его основным свойством и отражает качество монолитной конструкции, так как напрямую связана со структурой бетонного камня. Твердение бетона – сложный физико-химический процесс, при котором взаимодействуют цемент и вода. В результате гидратации цемента образуются новые соединения, и формируется бетонный камень.

При твердении бетон набирает прочность, но происходит это не одномоментно, а в течение длительного периода времени. Набор прочности бетона происходит постепенно – в течение многих месяцев.

Набор прочности условно делят на два этапа:

1. Стадия первая — схватывание бетона

Схватывание происходит в первые сутки с момента приготовления бетонной смеси. Время схватывания бетонной смеси напрямую зависит от температуры окружающего воздуха. При температуре 20 °С процесс схватывания занимает всего 1 час: цемент начинает схватываться примерно через 2 часа с момента затворения цементного раствора, а окончание схватывания происходит примерно через 3 часа. С понижением температуры начало этой стадии отодвигается, а длительность значительно увеличивается. Так, при температуре воздуха около 0 °С период схватывания бетона начинается через 6-10 часов после затворения бетонной смеси и растягивается до 15-20 часов. При повышенных температурах период схватывания бетонной смеси сокращается и может достигать 10-20 минут.

В течение периода схватывания бетонная смесь остается подвижной и на неё можно воздействовать. Благодаря механизму тиксотропии (уменьшение вязкости субстанции при механическом воздействии) при перемешивании несхватившегося до конца бетона, он остается в стадии схватывания, а не переходит в стадию твердения. Именно это свойство бетонной смеси используют при её доставке на бетоносмесителях: смесь постоянно перемешивается в миксере, чтобы сохранить её основные свойства. Во вращающемся миксере автобетоновоза бетон не твердеет в течение длительного времени, но при этом с ним происходят необратимые последствия (говорят бетон «сваривается»), что в дальнейшем значительно снижает его качества. Особенно быстро бетонная смесь сваривается летом.

2. Стадия вторая — твердение бетона

Твердение бетона наступает сразу после схватывания цемента. Процесс твердения и набор прочности продолжается в течение нескольких лет. При этом марка бетона определяется в возрасте 28 суток. Процесс набора прочности и график набора прочности описаны ниже.

Как и сколько бетон твердеет и набирает прочность

Класс бетона по прочности оценивают в возрасте 28 суток. Для испытаний берут образцы в форме стандартного куба со стороной 15 см, испытуемый образец при этом выдерживают при температуре 20±3°С и относительной влажности воздуха 95±5%. Эти параметры хранения бетонной смеси и есть нормальные условия твердения бетона, а сама камера для хранения испытуемых образцов называется камерой нормального хранения (НХ).

При отклонении температуры твердения в большую сторону от «нормальной» получают твердение бетона при повышенной температуре, а при отклонении в меньшую – твердение при пониженной температуре.

В таблице приведена информация о наборе прочности бетона марок М200 — М300 на портландцементе М-400, М-500 в первые 28 суток в зависимости от среднесуточной температуры:

График набора прочности при различных температурах твердения приведен ниже (за 100% берется набор марочной прочности в первые 28 суток):

Для справки: данными вышеприведенной таблицы и графика можно воспользоваться для определения срока распалубки монолитной железобетонной конструкции, который в соответствии с нормативными документами наступает с того момента, когда бетонная смесь наберет 50-80% от своей марочной прочности (подробнее в статьях «Когда снимать опалубку» и «Уход за бетоном»).

Для твердения бетона характерны следующие особенности:

  • чем ниже температура окружающего воздуха, тем медленнее происходит твердение и нарастает прочность;
  • при температуре ниже 0°С вода, необходимая для гидратации цемента, замерзает и твердение прекращается. При последующем повышении температуры твердение и набор прочности возобновляются;
  • при прочих равных условиях во влажной среде к определенному сроку бетон приобретает прочность выше, чем при твердении на воздухе;
  • в сухих условиях дальнейшее твердение замедляется и практически прекращается, из-за отсутствия влаги, необходимой для гидратации цемента;
  • при повышении температуры до 70-90° С и максимальной влажности скорость нарастания прочности значительно увеличивается. Именно такие условия создают при пропаривании бетона паром высокого давления в автоклавах.

Заметим, что скорость набора прочности бетона – величина непостоянная. Твердение имеет наибольшую интенсивность в первые 7 суток с момента заливки бетонной смеси. При нормальных условиях твердения через 7—14 дней бетон набирает 60—70% от своей 28-дневной прочности. В дальнейшем набор прочности не прекращается, но происходит гораздо медленнее, а к трехлетнему возрасту прочность бетона может достигать 200-250% от величины, определенной в возрасте 28 суток.

От чего зависит набор прочности и твердение

На набор прочности бетона влияют множество факторов, среди них можно выделить следующие:

  • тип цемента, используемого при производстве бетонной смеси;
  • температура, при которой происходит твердение бетона;
  • водоцеметное отношение;
  • степень уплотнения бетонной смеси.

Влияние каждого из вышеперечисленных факторов на твердение и набор прочности приведено ниже в виде таблицы и графиков.

Зависимость от типа цемента и температуры твердения:

Ниже приведены данные по набору тяжелым бетоном относительной прочности в зависимости от вышеуказанных двух параметров (типа цемента и температуры твердения).

Набор прочности бетона

Самым важным показателем качества бетонов является прочность материала. Согласно требованиям ГОСТ в условиях сжатия она может варьировать в диапазоне М50-800. Наибольшей популярностью пользуются марки цемента М100-500.

Срок твердения бетона

Подавляющее большинство самодеятельных строителей считают по не совсем понятным причинам, что за окончанием укладки в опалубку либо завершением работ по выравниванию стяжки процесс бетонирования законченным. Между тем, время схватывания бетона значительно больше, чем время на его укладку. Бетонная смесь – живой организм, в котором по окончании укладочных работ происходят сложные и протяженные по времени физико-химические процессы, связанные с превращением раствора в надежную основу строительных конструкций.

Прежде чем производить распалубку и наслаждаться результатами приложенных усилий, нужно создать максимально комфортные условия для созревания и оптимальной гидратации бетона, без которой невозможно достижение требуемой марочной прочности монолита. Строительные нормы и правила содержат выверенные данные, которые приведены в таблицах времени схватывания бетона.

Содержащиеся в официальных таблицах данные, конечно, должны служить ориентиром при самостоятельном обустройстве бетонных или железобетонных конструкций. Но применение таких данных должно происходить в плотной практической привязке к реальным условиям строительства.

В чем суть процесса?

Условно, он делится на 2 этапа:

  1. Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
  2. Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.

Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности – температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.

В сухом материале присутствуют 4 основных элемента:

  • аллит;
  • белит;
  • трехкальциевый алюминат;
  • четырехкальциевый аллюмоферрит.

Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.

Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени

Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.

График набора прочности бетона

Временной интервал, на протяжении которого происходит обретение раствором необходимых эксплуатационных свойств, называется периодом выдерживания бетона, после которого можно наносить защитный слой бетона. График набора прочности отражает время, которое требуется бетону для достижения максимального значения прочности.

В нормальных условиях состав «созревает» за 28 дней. На протяжении первых 5-ти дней происходит интенсивное твердение бетона. Спустя 7 дней после заливки достигаются 70% прочности выбранной марки. Однако дальнейшие строительные работы специалисты советуют начинать лишь при достижении 100% — не ранее, чем через 28 дней после заливки.

Время набора прочности бетона для каждого отдельного случая может несколько отличаться. Для точного определения срока твердения состава проводят контрольные испытания образцов материала.

В теплое время года в монолитном домостроении для оптимизации процесса выдерживания состава и обретения им оптимальных механических и физические свойства достаточно следующих операций:

  • Выдерживание в опалубке бетона.
  • Дозревание состава после удаления опалубки.

Если мероприятия проводятся в холодное время года, для достижения должной марочной прочности следует обеспечить дополнительное обогревание бетона и его гидроизоляцию. Связано это с тем, что при снижении температуры происходит замедление процесса полимеризации.

Чтобы ускорить набор прочности и минимизировать время выдержки бетона рекомендуется использовать пескобетоны с низким водоцементным соотношением. При соотношении вода и цемент 1/4 сроки, приведенные в таблице, сокращаются в 2 раза. Для достижения такого результата в состав добавляются пластификаторы. Также сократить срок созревания состава можно, искусственно увеличив температуру.

Уход за бетоном после заливки: основные цели и методы

Процессы, связанные с проведением мероприятий, которые предшествуют распалубке, содержат несколько технологических приемов. Цель выполнения таких мероприятий одна – создание железобетонной конструкции, максимально соответствующей по своим физико-техническим свойствам параметрам, которые заложены в проект. Основополагающим мероприятием, безусловно, является уход за уложенной бетонной смесью.

Уход заключается в выполнении комплекса мероприятий, которые призваны создать условия, оптимально соответствующие происходящим в смеси физико-химическим преобразованиям, во время набора прочности бетона. Неукоснительное следование предписанным технологией ухода требованиям позволяет:

  • свести к минимальным значениям усадочные явления в бетонном составе пластического происхождения;
  • обеспечить прочностные и временные значения бетонного сооружения в параметрах, предусмотренных проектом;
  • предохранить бетонную смесь от температурных дисфункций;
  • препятствовать прелиминарному отвердению уложенной бетонной смеси;
  • предохранить сооружение от различного происхождения воздействий механического или химического генеза.

Процедуры ухода за свежеобустроенной железобетонной конструкцией следует начинать непосредственно по окончании укладки смеси и продолжаться до тех пор, пока ей не будет достигнуто 70 % прочности, предусмотренной проектом. Это предусматривается требованиями, изложенными в пункте 2.66 СНиПа . Распалубку можно провести и в более ранние сроки, если это обосновано сложившимися параметрическими обстоятельствами.

После окончания укладки бетонной смеси следует провести осмотр опалубочной конструкции. Цель такого осмотра – выяснение сохранения геометрических параметров, выявление протечек жидкой составляющей смеси и механических повреждений элементов опалубки. С учетом того, сколько времени застывает бетон, точнее сказать – с учетом времени его схватывания, проявившиеся дефекты необходимо устранить. Среднее время, за которое может схватиться свежеуложенная бетонная смесь, составляет около 2-х часов, в зависимости от температурных параметров и марки портландцемента. Конструкцию необходимо предохранять от любого механического воздействия в виде ударов, сотрясений, вибрационных проявлений столько, сколько времени сохнет бетон.

Как и сколько бетон твердеет и набирает прочность

Класс бетона по прочности оценивают в возрасте 28 суток. Для испытаний берут образцы в форме стандартного куба со стороной 15 см, испытуемый образец при этом выдерживают при температуре 20±3°С и относительной влажности воздуха 95±5%. Эти параметры хранения бетонной смеси и есть нормальные условия твердения бетона, а сама камера для хранения испытуемых образцов называется камерой нормального хранения (НХ).

При отклонении температуры твердения в большую сторону от «нормальной» получают твердение бетона при повышенной температуре, а при отклонении в меньшую – твердение при пониженной температуре.

В таблице приведена информация о наборе прочности бетона марок М200 — М300 на портландцементе М-400, М-500 в первые 28 суток в зависимости от среднесуточной температуры:

График набора прочности при различных температурах твердения приведен ниже (за 100% берется набор марочной прочности в первые 28 суток):

Для справки: данными вышеприведенной таблицы и графика можно воспользоваться для определения срока распалубки монолитной железобетонной конструкции, который в соответствии с нормативными документами наступает с того момента, когда бетонная смесь наберет 50-80% от своей марочной прочности (подробнее в статьях «Когда снимать опалубку» и «Уход за бетоном»).

Для твердения бетона характерны следующие особенности:

  • чем ниже температура окружающего воздуха, тем медленнее происходит твердение и нарастает прочность;
  • при температуре ниже 0°С вода, необходимая для гидратации цемента, замерзает и твердение прекращается. При последующем повышении температуры твердение и набор прочности возобновляются;
  • при прочих равных условиях во влажной среде к определенному сроку бетон приобретает прочность выше, чем при твердении на воздухе;
  • в сухих условиях дальнейшее твердение замедляется и практически прекращается, из-за отсутствия влаги, необходимой для гидратации цемента;
  • при повышении температуры до 70-90° С и максимальной влажности скорость нарастания прочности значительно увеличивается. Именно такие условия создают при пропаривании бетона паром высокого давления в автоклавах.

Заметим, что скорость набора прочности бетона – величина непостоянная. Твердение имеет наибольшую интенсивность в первые 7 суток с момента заливки бетонной смеси. При нормальных условиях твердения через 7—14 дней бетон набирает 60—70% от своей 28-дневной прочности. В дальнейшем набор прочности не прекращается, но происходит гораздо медленнее, а к трехлетнему возрасту прочность бетона может достигать 200-250% от величины, определенной в возрасте 28 суток.

Контроль за набором прочности бетона

На протяжении первых 5-7 дней следует проводить мероприятия по обеспечению условий для выдержки бетона (увлажнение, электрообогрев, укрывание теплоизолирующими и влагозащитными материалами, обогрев тепловыми пушками). Далее следует уделить особое внимание увлажнению поверхности. При этом через неделю после окончания заливки (при условии, что температура воздуха составляет 25-30°С) конструкцию можно нагружать.

Состав и эксплуатационные данные цемента

Если цемент обладает способностью тепловыделения и сразу после заливки он быстро твердеет, то после замерзания в цементной массе воды процесс твердения неизменно остановится. По этой причине во время строительных работ холодное время года лучше отдавать предпочтение смесям, приготовленным на основе противоморозных добавок.

Так, к примеру, глиноземистая масса после заливки выделяет в 7 раз больше теплоэнергии, нежели обычный портландцемент. Благодаря этому замешанная на основе такого цемента строительная смесь способна быстро набирать прочность даже при температуре ниже 0°С. что, собственно, и обусловлено его популярностью использования в холодное время года.

Стоит отметить и то, что марка цемента также влияет на скорость твердения заливки или кладки. Представленная дальше таблица наглядно демонстрирует эти данные.

Марка цемента

Показатели критической твердости (% от заявленной), минимум

Для предварительно напряженных поверхностей

График набора прочности бетона – определение скорости гидратации раствора

Создание различных строительных конструкций предполагает выполнение работ с цементным раствором, потому чрезвычайно важно предварительно изучить график набора прочности бетона, чтобы строительство завершилось успешно. Для достижения раствором марочной твердости обычно необходимо 4 недели, однако на протекание затвердевания могут влиять различные факторы, которые следует учитывать.

Первый этап приобретения цементом марочной твердости – процесс схватывания, который происходит за несколько суток с момента подготовки смеси. Скорость схватывания напрямую зависит от температуры воздуха:

  1. 1. Летом при достижении воздухом температуры 20 градусов по Цельсию процесс схватывания начнется уже через 120 минут после заливки смеси и полностью завершится еще через 60 минут. Итого на весь процесс уйдет примерно 3 часа.
  2. 2. При охлаждении воздуха схватывание начнется намного позже. При 0 градусов оно начинается через шесть и более часов, а на всю первую стадию твердения уйдет до суток.

Чем теплее воздух, тем быстрее схватывается смесь. Жарким летом для схватывания бывает достаточно 10-15 минут.

В жаркую погоду бетон может схватиться за 10-15 минут

Схватывание бетонного раствора приводит к началу его затвердевания, потому очень важно придать смеси нужную форму максимально быстро. При высоких температурах требуется увеличение времени схватывания, чему способствует механизм тиксотропии. Так называют способность раствора уменьшать вязкость из-за встряхивания. Из-за этого смесь в бетономешалке на протяжении длительного времени сохраняет свои качества и не твердеет.

После схватывания запускается процесс твердения. На набор максимально возможной жесткости уходит до нескольких лет, однако свои характеристики цемент приобретает уже спустя 4 недели. Процесс затвердения раствора очень неравномерен. Наиболее интенсивно он идет в течение первой недели-двух с момента заливки, за это время он приобретает до 70 процентов от своего максимального значения, после чего твердение замедляется, однако не прекращается.

Набор прочности бетона – продолжительная процедура, на которую могут оказывать влияние различные факторы. К наиболее значимым из них относят:

  • внешнюю температуру;
  • влажность воздуха;
  • марку.

Теплота воздуха – самый важный фактор, влияющий на скорость приобретения бетоном его характеристик. При прохладном воздухе процесс затвердевания происходит намного медленнее, чем жарким летом. При морозе процесс набора жесткости полностью останавливается, так как входящая в состав смеси вода замерзает, а она необходима для гидратации цемента. При повышении температуры выше нуля процесс затвердевания продолжится, но способен вновь остановиться из-за мороза.

Зимой процесс затвердевания происходит намного медленнее

Для работы в зимнее время обычно используют смеси, в состав которых входят специальные вещества, обеспечивающие ускорение процедуры затвердевания и снижающие температуру, при которой процедура гидратации останавливается. На современном рынке представлены качественные составы, твердеющие максимально быстро и способные достичь крепости за 14 дней.

Горячий воздух среды позитивно сказываются на скорости затвердевания бетона. При +40 градусах по Цельсию раствор приобретает твердость в течение первой недели. Именно по этой причине все работы с растворами принято проводить в летний период.

Зимой для ускорения процесса твердения и предотвращения замерзания воды могут использовать специальное оборудование и средства для подогрева залитой конструкции. Однако это, во-первых, требует профессиональных знаний, во-вторых, приводит к существенному удорожанию всех запланированных строительных работ. Нагрев до температуры более 90 градусов недопустим, так как из-за этого может пострадать сама структура возводимых частей.

Ниже представлен график, отражающий время набора марочной прочности бетона в зависимости от температуры. Кривые построены из расчета характеристик материала марки М400 и они позволяют определить процент прочности, набираемой за определенное количество суток в соответствии с различными температурными условиями. Первая линия – это +50 градусов по Цельсию, последняя – +5 градусов.

К примеру, график дает возможность определить, что при +50 градусах смесь за первые 2 суток наберет около 75% от марочной прочности. При +5 градусах эти же характеристики бетон приобретет только спустя 20 дней.

Существует специальное оборудование для ускорения затвердевания бетона

С помощью информации из графика можно также узнать сроки распалубки заливаемой конструкции. Распалубка может осуществляться после того, как смесь наберет более 50% от величины жесткости. Учитывая, что при температуре ниже +10 градусов для набора полной прочности бетону не хватит даже 4 недель, в таких условиях стоит задуматься о возможности подогрева заливаемых конструкций.

Определить оптимальное время заливки цементного раствора поможет приведенная ниже таблица. Она, в зависимости от марки материала и условий, показывает необходимое количество суток для гидратации.

В таблице красным цветом выделена нормативно-безопасная жесткость раствора, приобретаемая в течение указанного времени при определенных условиях. Зеленым – безопасная твердость смеси, приобретаемая в течение указанного времени при определенных условиях. Синим – твердость смеси, приобретаемая в течение указанного времени при определенных условиях.

Марка используемого цемента напрямую влияет на скорость затвердевания. Более того, марка определяет также критическую прочность раствора, которую он должен успеть приобрести на начальном этапе схватывания. Ниже приведено соотношение, описывающее критическую прочность (в проценте от марочной) для разных цементов:

  1. 1. М15-М150 – 50%.
  2. 2. М200-М300 – 40%.
  3. 3. М400-М500 – 30%.

Если планируется осуществлять заливку предварительно напряженных конструкций, критическая твердость будет составлять более 70% от марочной.

Что касается влажности окружающей среды, то пониженный уровень данного параметра может отрицательно влиять на процесс гидратации. Если влага будет полностью отсутствовать, то процедура гидратации цемента полностью остановится. Если же влажность будет высокой то скорость твердения будет увеличиваться. Оптимальные условия для быстрого затвердевания – высокая влажность и высокая температура.

Особенно критичной малая влажность станет для заливки при высоких температурах. Жара приведет к быстрому высыханию воды, что отрицательно скажется не только на времени гидратации, но и на характеристиках заливаемых конструкций. Из-за этого в теплое время года может требоваться периодическое увлажнение залитого цемента.

Так как на гидратацию цемента влияет множество факторов, заливку смеси необходимо осуществлять только после определения оптимальных условий и с их соблюдением. Если не учитывать влияющие на процедуру условия, все строительство способно завершиться совсем не так, как изначально планировалось и потраченные собственником деньги просто уйдут в трубу.

График набора прочности бетона

Содержание статьи:

График набора прочности бетона

Прежде чем говорить о графике набора прочности, необходимо знать, что же собой представляет прочность бетона.

Прочность бетона – это основной из нескольких критериев его качества. Её бетон обретает не мгновенно, а постепенно. Время, влажность, температура воздуха – это факторы, влияющие на набор прочности этого строительного материала.

При температурном режиме ниже 10 градусов бетон набирает прочность намного медленнее, при заморозках вода в составе бетона даже способна его разрушить. Чтобы этого не допускать, его обогревают.

Когда невозможно соблюсти необходимые условия, работы, связанные с использованием этого строительного материала, специалисты советую приостановить. Наилучшая температура воздуха для набора необходимой прочности – около 25 градусов.

В благоприятных условиях и при уплотнённой укладке смеси график набора прочности бетона возрастает. И процесс этот идёт на протяжении нескольких лет.

Примерно через неделю после того, как он «схватится», прочность вырастает до 70 процентов от расчётной прочности. Потом бетон продолжает твердеть довольно долго. Это и полгода, а может, и год.

Выбор марки бетона для составления правильного графика

Прочность бетона и марка

Цементы М50, М75, М100 считаются материалами менее прочными. При строительстве ответственных конструкций их не используют.

Там, где требуется большая прочность, подходит бетон М300-М500. Марки более высокой прочности — из разряда самых крепких. Но они применяются в исключительных случаях.

Для чего нужно подбирать марку

Для чего же подбирается марка бетона? Марка бетона выбирается до начала строительства, когда создаётся проектная документация на возведение объекта. Выбор зависит от материалов, используемых при строительстве.

Дом, например, планируется строить из легкого бетона. В таком случае фундамент не требует применения высокопрочного бетона. Эта марка потребуется, если для возведения стен используется кирпич.

Прочность марок бетона зависит от пропорций цемента, щебня и песка (читайте нашу статью: как замесить бетон, пропорции).

Цемент играет большую роль в смеси: чем больше его доля, тем прочнее смесь. Прочность на растяжение у бетона меньше, чем на сжатие. Этот недостаток восполняют с помощью арматуры, изготавливая железобетонные изделия.

Где применяется график набора прочности бетона

График прочности бетона

Что касается графика набора прочности бетона, то он применяется сейчас в современном строительстве. В самом графике отражается, за какой период времени бетон набирает 100%-ную прочность.

Здесь же указывают сроки выполнения строительных работ и сдачи объектов. В оптимальных условиях бетон после заливки «созревает» около месяца. Продолжать строительные работы специалисты рекомендуют не раньше этого периода. Но время его окончательного затвердения в каждом случае отличается.

Зимой бетонная укладка особенна. На скорость твердения материала внешние факторы очень влияют. После заливки бетон в течение суток выделяет тепло и не может набрать хорошую прочность, затем замерзает, так и не приобретая нужную твердость. Впрочем есть технологии прогрева бетона как электродами, так и термоматами.

 

Уход за бетоном

Уход за таким слоем особенный: бетонную массу надо согревать до набора необходимого процента прочности. Также в это время необходимо бетонной смеси обеспечить гидроизоляцию, чтоб набор прочности не замедлялся.

При оптимальных условиях, когда тепло, достаточно следующих действий:

  • выдержка в опалубке
  • последующее созревание бетона

Чтобы уменьшить время его выдержки, а также ускорить время набора прочности состава, специалисты рекомендуют применять пескобетоны с небольшим водоцементным соотношением,  у нас можно прочитать о пропорциях замеса бетона, воспользовавшись онлайн калькулятором. Для сокращения сроков «созревания» искусственно подогревают бетон или в него добавляют пластификаторы.

Контроль над набором прочности бетона

В течение первой недели обязателен контроль над тем, в каких условиях выдерживается бетон. Контроль необходим, особенно когда применяют определённые действия: электрический обогрев, увлажнение и укрывание бетона влагозащитными материалами. Особое внимание надо уделить увлажнению его поверхности.

Бетон нужно накрывать

Прочность состава проверяют с помощью контрольных проб. Особенно важен контроль за только что вылитым слоем бетона. Контролируют и защиту его от механических повреждений, от чего не защищена свежая кладка.

Через неделю после заливки конструкцию можно будет нагружать, если температура воздуха всё это время была оптимальной. Качество монолитных элементов из бетона, выпущенных на заводе, обследуют следующим образом.

Для начала оценивают его внешне, то есть как он выглядит. Далее обследуют его размеры согласно проекту. А уже потом оценивают уровень выравнивания и наклона.

И на последнем этапе выявляют антикоррозийную защиту закладной части, если это отражено в проекте. Таким образом, происходит составление графика набора прочности бетона.

Всё это можно сделать и самостоятельно, но лучше перед началом работ посоветоваться с квалифицированными экспертами, которые имеют огромный опыт работы данной сфере области. И потом уже после составления данного графика браться за более сложную работу – это строительство.

Набор прочности бетона: графики, особенности, факторы

Все жилые здания и хозяйственные постройки выполняются с применением бетона. В зависимости от его класса, вы можете выложить аллейки, создать фундамент, несущие конструкции, дом, фонтан в саду. Чтобы конструкция прослужила долго, важно использовать правильные марки материалов, соответствующей прочности.

Содержание статьи

Какой бывает прочность бетона

Многие считают бетон прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки его прочности, как и разные виды. Знания о прочности конструкций позволят избежать дефектов и ускоренного разрушения постройки, включая появление трещин и досрочный выход здания из строя.

Прочность на сжатие бетона

Это наиболее известное, распространенное и общепринятое измерение прочности, которое применяют для оценки характеристик конкретной смеси. Прочность на сжатие измеряет способность бетона выдерживать расчетные нагрузки, и соответственно, позволяет уменьшить количество задействованного бетона в конструкции.

Прочность на сжатие проверяют путем разрушения цилиндрических образцов бетона в специальной машине, предназначенной для измерения этого показателя.

Единица измерения кгс/кв. см.  Чем выше значение, тем бетонная смесь прочнее и тем больше ее цена. И чем прочнее бетон, тем он долговечнее.

Прочность на сжатие является главным критерием для ответа на вопрос, будет ли конкретно взятая смесь бетона соответствовать потребностям конкретной работы.

Каждая бетонная конструкция имеет свой диапазон прочности на сжатие. Например:

  • бетон М100 имеет среднюю прочность (кгс/кв. см.) 98;
  • М150 — 131-164;
  • М200 — 196;
  • М250 — 262;
  • М300 — 302;
  • М350 — 327;
  • М400 — 393.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 суток, чтобы определить диапазон прочности на сжатие.  Семидневный тест проводится для определения раннего усиления конструкции, но в стандартах подразумевается результат 28-ми дневного теста.

Для строительной конструкции используют понятие класса прочности, который соотносится с маркой. Например, класс В3,5 соответствует марке бетона М50.

Прочность на разрыв

Прочностью на разрыв называется способность бетона противостоять разрушению или растрескиванию при растяжении. Этот параметр влияет на размер трещин в бетонных конструкциях и степень их возникновения. Трещины появляются, если растягивающие усилия превышают предел прочности бетона.

Обычно бетон имеет более низкую прочность на разрыв по сравнению с прочностью на сжатие.  Из чего следует, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, например, сталью.

Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение. Параметр определяют с помощью испытания на разрыв бетонных цилиндров.

Прочность бетона на изгиб

Такой вид прочности используется как еще один измеритель прочности на разрыв. Он определяется, как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона сопротивляться изгибу. Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

Измеряют прочность на изгиб для влажного бетона. Поэтому при описании прочности на бетона, чаще используются результаты испытаний прочности на сжатие, поскольку эти числа более надежны.

От чего зависит набор прочности бетона?

Главные причины, которые влияют на прочность бетона дополняются химическими процессами, влиянием атмосферы, взаимодействием с влагой. Все это факторы, которые влияют на прочность. Избежать этого невозможно. Но можно учесть на этапе проектирования.

Дополнительные причины, влияющие на проектную прочность бетона, включают:

  1. Соотношение вода / цемент. Чем меньше воды, тем прочнее цемент, но тем труднее работать. Например, бетонная смесь, содержащая 400 кг цемента и 240 литров (= 240 кг) воды, будет иметь отношение вода / цемент 240/400 = 0,6. В смесях, где соотношение выше, можно говорить о наличии пор, заполненных водой или воздухом.
  2. Пористость бетона: пустоты в бетоне можно заполнять воздухом или водой. Чем пористее бетон, тем он слабее. Вероятно, наиболее важным источником пористости в бетоне является соотношение воды и цемента в смеси.
  3. Дозирование. Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия. Правильное соединение этих ингредиентов является ключевым для достижения более высокой прочности бетона. Например, смесь, в которой много цемента легче заливать, но она легко растрескивается и не выдержит испытания временем. И наоборот, при малом количестве цемента получится грубый и пористый бетон.
  4. Смешивание. Прочность имеет тенденцию усиливаться до определенного момента. Чем дольше вы размешиваете, тем больше испарится воды и смесь станет менее прочной.

Дополнительные факторы:

  • температуру;
  • влажность;
  • марку бетона;
  • время.

Температура

Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.

При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.

Потепление способствует ускорению твердения бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.

Зимой может потребоваться прогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.

Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.

График набора прочности бетона по суткам

График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.

Время

Для определения нормативно-безопасного срока начала работ часто используется следующая таблица. В ней в зависимости от марки бетона и его среднесуточной температуры приведена информация о наборе прочности через определенное количество суток:

Марка бетона Среднесуточная температура бетона в °C Срок твердения в сутках
1 2 3 5 7 14 28
Прочность бетона на сжатие (процент от марочной)
М200–300, замешанный на портландцементе М 400–500 -3 3 6 8 12 15 20 25
0 5 12 18 28 35 50 65
+5 9 19 27 38 48 62 77
+10 12 25 37 50 58 72 85
+20 23 40 50 65 75 90 100
+30 35 55 65 80 90 100

Если нормативно-безопасный срок установлен на уровне приблизительно 50%, то безопасным сроком начала работ можно считать 72 – 80% от марочного значения.

В зависимости от времени выдержки искомое значение можно определить по следующей формуле:

прочность на n-ый день = марочная прочность *(lg (n) / lg (28)). Причем n не может быть меньше 3-х дней.

Состав и характеристики цемента

Если сразу после заливки цемент способен набирать прочность благодаря своему тепловыделению, то после замерзания воды процесс неизменно остановится. Именно поэтому при выполнении работ в зимний и осенне-весенний период предпочтительно использовать смеси с противоморозными добавками.

Глиноземистый цемент после укладки способен выделить в семь раз больше тепла, чем обычный портландцемент. Именно поэтому приготовленный на его основе бетон набирает марочную прочность даже при отрицательной температуре.

Марка также оказывает влияние на скорость процесса. Чем ниже марка, тем выше критическая прочность. Таблица наглядно отражает такую зависимость:

Марка бетона (по прочности на сжатие) Критическая прочность (процент от марочной), минимум
для предварительно напряженных конструкций 70
М15 – 150 50
М200 – 300 40
М400 – 500 30

Влажность

Пониженная влажность негативно отражается на процессе. При полном отсутствии влаги гидратация цемента становится невозможной, и твердение бетонов практически останавливается.

При максимальной влажности и высокой температуре (70 – 90 °C) скорость нарастания прочности значительно повышается. В таком режиме осуществляется пропаривание состава в автоклавах паром высокого давления.

Нагрев до столь высоких температур при минимальной влажности неизбежно приведет к высыханию бетона и снижению скорости набора. Чтобы этого не произошло, следует своевременно производить увлажнение. В таком случае в жаркую погоду прочность будет набрана в минимально возможные сроки.

Способы определения прочности бетона на сжатие в лабораторных условиях

Все испытания проводятся в сертифицированной лаборатории и соответствуют требованиям, описанным в ГОСТ 10180-2012. Согласно правилам, описанным в документе, для исследования подходят:

  • кусок бетона кубической формы с длиной ребра 100-300 мм и шагом 50 мм;
  • бетонный цилиндр с диаметром основания 100-300 мм и шагом 50 мм; высота цилиндра должна быть равна или больше диаметра основания.
Один из способов определения прочности бетона

Лабораторный образец изготавливается также, как это происходило бы по правилам в реальных условиях. Затем его загружают в испытательную машину-пресс и начинают прилагать равномерное усилие до тех пор, пока испытательный образец не будет разрушен. В испытании используют несколько образцов для того, чтобы определить среднее значение. Метод применяется в заводских или лабораторных условиях.

Неразрушающие методы контроля прочности бетона или способы определения прочности на месте

Оценка прочности бетона на месте является основной проблемой при оценке состояния существующей инфраструктуры или при контроле качества нового строительства. Поэтому кроме лабораторных методов определения прочности строителям важны и те, которые позволяют измерить ее на месте. Это неразрушающие методы, использующие показания приборов.

Регламентируется такой способ измерения другим ГОСТом — 22690-2015 «Бетоны. Определение прочности механическими методами». Для тестирования тоже применяют электронный измеритель прочности бетона, который изучает прочность при помощи ударного импульса.

К неразрушающим методам относится метод отскока. Он состоит в ударе и последующем измерении отскока массы молота с пружинным приводом после его удара о бетон. Благодаря простоте и дешевизне способ используется довольно часто. Существуют эмпирические корреляции между прочностными характеристиками и числом отскока.  Поэтому его считают достаточно надежным.

Достоинства метода:

  • его легко можно применить в полевых условиях;
  • подходит для изучения однородности бетона.

Минусы:

  • наличие подповерхностных пустот, включение в состав стальной арматуры, состояние поверхности могут повлиять на результаты испытаний.

Также существует ультразвуковой метод измерения. Концепция, лежащая в основе данной технологии, состоит в измерении времени, за которое расширятся акустические волны с последующим сравнением с плотностью и упругостью материала. Время прохождения ультразвуковых волн отражает внутреннее состояние испытываемой поверхности. Применяется для измерения колонн, балок, ригелей.

Плюсы:

  • УПВ можно использовать для обнаружения других подповерхностных недостатков.

Минусы:

  • на способ влияет наличие арматуры, пустот и трещин.

Схватывание бетона

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Схема возможного расслоения бетонной смеси: а — в процессе транспортирования и уплотнения, б — после уплотнения; 1 — направление, по которому отжимается вода, 2 — вода, 3, 4 — мелкий и крупный заполнители.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка монолитного фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание цемента начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Стадия твердения бетона

После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.

Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.

В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.

Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.

Графики набора прочности бетона при сжатии в сутках и часахНарастание прочности бетона класса В25…В30 на портладцементе марки 500 в % от R28 при температуре твердения от 00С до +600С График набора прочности бетона в зависимости от температуры

Комбинированные методы контроля

Отбойный молоток и скорость ультразвукового импульса являются наиболее широко используемыми методами неразрушающего контроля для оценки прочности бетона в существующих конструкциях. Если использовать их вместе, то получится комбинированный метод. А комбинированные методы проверки включают в себя сочетание методов неразрушающего контроля. Это позволяет повысить точность полученных значений.

Комбинированный метод проверки

Виды бетонных смесей и сфера их использования

От того, какова степень сжатия бетона зависит сфера применения материала.

Класс бетона по ГОСТ 26633-91 Класс бетона по СНБ 5.03.01-01 Применение
В0,35-В2,5 используется при проведении подготовительных работ, для бетонирования конструкций, не несущих нагрузку
В3,5-В5 применяется для монтажа бордюров в дорожном строительстве, для создания подушки или подбетонки под фундаментом
В7,5 используется также, как и предыдущая позиция, а также при бетонировании дорожек, для заливки фундамента, для формирования дорожных плит
В10-В12,5 С 8/10 Самая популярная смесь, используемая в домашнем и коммерческом строительстве. Этот бетон обычно используется для неструктурных строительных элементов, таких как плиты патио и дорожки. Также подходит для создания конструктивных элементов, например, перемычек.
В15 С12/15 Идеальная бетонная смесь для заделки дорожек и бордюров.
В20 С16/20 Бетон с такой прочностью часто применяется для внутренних полов и фундаментов, где вес общих конструкций на бетон будет меньше. Он идеально подходит для оснований домашних мастерских и гаражей, а также для подъездных путей и внутренних плит перекрытия.
В25 С20/25 Универсальный бетон, который используется на многих коммерческих и бытовых строительных площадках. Часто используется при заливке фундаментов (опор). Это также идеальный бетон для плитных фундаментов для полов в домах и бунгало.
В30 С25/30 Универсальный бетон, который используется на многих коммерческих и бытовых строительных площадках. Он часто используется при заливке фундаментов (опор). Это также идеальный бетон для плитных фундаментов для полов в домах и бунгало.
В35 С 28/35 Конструктивно прочная смесь для интенсивного использования, которая идеально подходит для коммерческих структур и объектов, которые должны выдерживать интенсивное использование. Он обычно используется для несущей конструкции и создания внешних перекрытий и стен. Другие области применения включают коммерческие плиты, включая металлическую арматуру, а также зоны сдерживания сельскохозяйственной и строительной промышленности, такие как дворы и сараи.
В40 С32/40 Конструктивно прочная смесь для интенсивного использования, которая идеально подходит для коммерческих структур и объектов, которые должны выдерживать интенсивное использование. Он обычно используется для несущей конструкции и создания внешних перекрытий и стен. Другие области применения включают коммерческие плиты, включая металлическую арматуру, а также зоны сдерживания сельскохозяйственной и строительной промышленности, такие как дворы и сараи.

Использование бетонных конструкций для частных построек

Использование тех или других бетонных конструкций и смесей в рамках проекта одобряется квалифицированными инженерами, имеющими соответствующий опыт работы. Планы и проекты проходят утверждение в соответствии с требованиями и только после согласования всех технических деталей, можно приступать к началу строительства.

Подъемное оборудование должно иметь маркировку с указанием номинальной грузоподъемности и должно выдерживать, вес, в 2,5 раза превышающий тот, который будет фактически подниматься подъемной установкой.

Прочность бетона — обязательный и важный параметр для проектирования конструкций. Она зависит от ряда факторов, таких как характеристики и свойства конструкции. Ее можно измерить в заводских условиях или в полевых условиях и для этого используют разные методы.

Влияние историй температуры отверждения на развитие прочности на сжатие высокопрочного бетона

В этом исследовании изучалась взаимосвязь относительной прочности и зрелости высокопрочного бетона (HSC), специально разработанного для конструкций ядерных объектов, с учетом экономической эффективности и долговечности конкретный. Два типа пропорций смеси с соотношением воды к связующему 0,4 и 0,28 были испытаны при различных температурах, включая (1) изотермические условия отверждения при 5 ° C, 20 ° C и 40 ° C и (2) ступенчатые температурные режимы 20 ° C для начального возраста человека 1, 3 или 7 дней и постоянная температура 5 ° C для последующих возрастов.На основе результатов испытаний традиционная функция зрелости эквивалентного возраста была изменена с учетом смещения зрелости и незначительности последующей температуры отверждения после возраста 3 дней для более поздней прочности бетона. Для определения ключевых параметров функции зрелости также были измерены параметры схватывания, кажущаяся энергия активации и константа скорости приготовленных смесей. Это исследование показывает, что на развитие прочности на сжатие HSC, отвержденных при эталонной температуре в раннем возрасте 3 дней, незначительно влияет последующая история температур отверждения.Предлагаемый подход к зрелости с модифицированным эквивалентным возрастом точно предсказывает развитие силы HSC.

1. Введение

Растет интерес к практическому применению высокопрочного бетона (HSC) в быстром строительстве конструкций ядерных установок с системой предварительного напряжения. Как показали несколько исследований [1, 2], ускоренные графики строительства конструкций могут быть достигнуты с помощью HSC из-за его естественного высокого прироста прочности в раннем возрасте по сравнению с бетоном нормальной прочности (NSC).Таким образом, точная оценка начальных свойств HSC важна для определения следующих этапов строительства [2]: минимальное время снятия бетонной опалубки и опалубки; минимальный возраст бетона для приложения усилия предварительного напряжения к элементу конструкции; и температура и продолжительность ускоренных процессов отверждения на месте, особенно в холодную погоду. Кроме того, необходимо тщательно изучить влияние начальной температуры отверждения на развитие прочности бетона в долгосрочной перспективе, поскольку длительная прочность влияет на реконструкцию и долговечность бетонных конструкций.Прирост прочности бетона на месте при различных температурных условиях обычно отслеживается с помощью отношения зрелости к прочности [3, 4]. Однако большая часть существующих взаимосвязей [3–11] между функцией зрелости и развитием силы была получена на основе данных НСК и проверена с использованием таких данных. Более того, для HSC имеется гораздо меньше данных о зрелости [2, 12], чем для NSC.

Понятие зрелости используется для описания комбинированного воздействия температуры и возраста на повышение прочности бетона.Однако точность и возможность соотношения зрелости и прочности остаются спорными из-за отсутствия научного консенсуса относительно совместимости между зрелостью и кинетикой гидратации цемента [12]. Концепция эквивалентного возраста, полученная из функции Аррениуса [13], в основном использовалась как функция зрелости для описания температурной чувствительности реакции вяжущих материалов. В последние годы для объяснения эффекта кроссовера и точного прогнозирования долговременной прочности монолитного бетона в функцию Аррениуса была введена конкретная взаимосвязь между степенью гидратации и относительной прочностью [3–7].Традиционно кажущаяся энергия активации и / или константа скорости для данного бетона считаются ключевыми параметрами в функции зрелости, основанной на эквивалентном возрасте. Несколько исследователей [4, 5] предложили простые уравнения для определения кажущейся энергии активации, используя регрессионный анализ экспериментальных данных для NSC. Однако необходима дальнейшая экспериментальная проверка, чтобы распространить эти уравнения на HSC, потому что энергия активации существенно зависит от степени гидратации, на которую влияет соотношение вода / вяжущее и дозировка дополнительных вяжущих материалов (SCM).

Целью настоящего исследования было оценить взаимосвязь зрелости и силы в HSC. Пропорции смеси HSC были специально определены для его использования в конструкциях ядерных установок с учетом экономической эффективности и долговечности бетона. Два типа пропорций смеси с расчетной прочностью 42 МПа и 65 МПа были испытаны при различных температурах, а именно: в условиях изотермического отверждения 5 ° C, 20 ° C и 40 ° C и ступенчатых температурных режимах 20 ° C для начальной возраст особи 1, 3 или 7 дней и постоянная температура 5 ° C для последующих возрастов.Характеристики схватывания, кажущаяся энергия активации и константа скорости обеих приготовленных смесей также были измерены в соответствии с процедурами ASTM [14]. Подход к зрелости, предложенный Карино и Танком [3], был изменен, чтобы учесть влияние температуры отверждения в раннем возрасте на более позднее увеличение прочности бетона. Модифицированная версия принимает соотношение прочности относительно 28-дневной прочности, температуры до 3-дневного возраста и зависящую от степени гидратации кажущуюся энергию активации на этапе отверждения.Для оценки прочности на сжатие в разном возрасте на основе предложенного отношения относительной прочности к зрелости с использованием результатов испытаний было сформулировано простое уравнение для прямого прогнозирования 28-дневной прочности.

2. Подход к зрелости

На основе обзора ранее описанных взаимосвязей [3, 8, 14, 15] между функцией зрелости и силой, основная формула, предложенная Карино и Танком [3], была изменена для достижения настоящего зрелый подход. При одинаковом значении индекса зрелости большинство бетонных смесей демонстрируют переходное поведение, то есть более высокие температуры в раннем возрасте приводят к более высокой начальной прочности и более низкой долговременной прочности, как показано на рисунке 1.Данная бетонная смесь не обладает уникальным соотношением прочности и зрелости. Это указывает на то, что функция зрелости связана с отношением относительной прочности, а не с абсолютной прочностью, и что энергию активации для данного бетона необходимо оценивать в соответствии со зрелостью. Время смещения для введения индукционного периода перед быстрым ростом прочности также чувствительно к температуре. Настоящий подход к зрелости принимает соотношение прочности относительно 28-дневной прочности и зависящую от степени гидратации кажущуюся энергию активации на этапе отверждения.Функция зрелости определяется с использованием эквивалентного возраста, включая фазы смещения и упрочнения.


2.1. Развитие относительной прочности

При изотермическом отверждении прочность на сжатие () бетона в возрасте (в днях) обычно определяется по следующей гиперболической функции: где — константа скорости (в единицах -1 дней) для развития прочности при температура отверждения — это время смещения (в днях), указывающее возраст, в котором предполагается, что начинается развитие прочности, и является предельной прочностью.При оценке предельной силы в бесконечном возрасте пренебрежимо мало. Таким образом, (1) можно переписать в терминах 28-дневной прочности на сжатие () следующим образом:

Зрелость представляет собой срок отверждения при фиксированной эталонной температуре, необходимый для достижения того же уровня зрелости при отверждении при другой температурной предыстории. Следовательно, в терминах эквивалентного возраста (), (2) можно переписать, чтобы описать соотношение относительной прочности и зрелости [3, 15]: где и — константа скорости и время смещения, соответственно, при эталонной температуре.

2.2. Эквивалентный возраст и время смещения

Поскольку константа скорости связана со скоростью набора прочности в данном возрасте, изменение константы скорости в зависимости от температуры отверждения должно быть определено для надежной функции зрелости данной бетонной смеси. Функция константы скорости обычно выражается с помощью функции Аррениуса [13] следующим образом: где — экспериментальная константа (в день -1 ), — кажущаяся энергия активации (в Дж / моль), (= 8,314 Дж / моль · моль · K) — универсальная газовая постоянная и температура отверждения (в ° C).Согласно принципу зрелости, эквивалентный возраст в фазе затвердевания () можно записать следующим образом [3]: где — эталонная температура (в ° C). Обратите внимание, что в (6) обозначается коэффициент преобразования возраста, который определяется как коэффициент сродства () констант скорости на этапе упрочнения. Из (6) коэффициент, используемый для расчета значения, может быть выражен в следующей форме:

Время смещения () при эталонной температуре связано с характером схватывания данного бетона.В то время как эквивалентный возраст на этапе затвердевания для достижения той же доли предельной прочности при различных температурах пропорционален коэффициенту сродства, время смещения на этапе отверждения обратно пропорционально коэффициенту сродства, поскольку чем выше температура, тем быстрее время схватывания. По этой причине Пинто и Ховер [16] указали, что кажущуюся энергию активации для периода до начального и конечного набора можно оценить по графику Аррениуса, используя вместо, где — время схватывания.Точная точка времени смещения () при заданной температуре остается неопределенной из-за различных факторов, включая содержание связующего, соотношение воды и связующего (), а также типы и количества добавленных SCM и химических агентов. Однако в нескольких исследованиях [3, 15, 16] делается вывод, что время схватывания близко к окончательному времени схватывания () бетона при данной температуре. Пинто и Шиндлер [15] также указали, что выбор для существенно не влияет на прогноз прочности бетона на месте.На основании имеющихся выводов настоящее исследование предполагает, что равно. Следовательно, из функции Аррениуса можно просто выразить следующее: где — время окончательного схватывания бетона при эталонной температуре, — константы скорости развития схватывания при эталонной температуре и другой температуре, соответственно, — кажущаяся энергия активации до окончательного времени схватывания. В целом, принимая во внимание фазы схватывания и затвердевания, эквивалентный возраст () в (4) может быть получен из

2.3. Энергия активации в фазе затвердевания

Общеизвестно [17], что цемент с обычной крупностью не может полностью гидратироваться при нормальных условиях, даже при возрасте более 100 лет. Ча [17] продемонстрировал, что степень гидратации в зависимости от возраста в целом можно охарактеризовать как параболу, сходящуюся к конечному значению. Это указывает на то, что температура отверждения играет важную роль в степени гидратации в раннем возрасте, тогда как ее эффект становится минимальным в долгосрочном возрасте, потому что реакция гидратации постепенно достигает стабильного состояния с возрастом.Эта зависящая от температуры реакция гидратации также влияет на значение энергии активации () в фазе затвердевания. Byfors [18] показал, что после определенного возраста, который зависит от температуры отверждения, он резко уменьшается. Следовательно, ожидается, что это в некоторой степени зависит от температуры отверждения и возраста. В настоящем исследовании используется следующая простая модель, эмпирически подобранная Kim et al. [19] для оценки в зависимости от возраста и температуры: где — начальная кажущаяся энергия активации в фазе твердения.

2.4. Определение ключевых параметров

В вышеупомянутом подходе к зрелости для прогнозирования развития прочности на месте бетона, смешанного в заданных пропорциях, необходимо предоставить несколько ключевых параметров, таких как,, и. Чтобы свести к минимуму погрешность в прогнозировании прочности бетона на месте, желательно, чтобы эти параметры для данного бетона определялись на основе соответствующей экспериментальной программы. Величину можно определить по наклону наиболее подходящей линии данных, представленных в виде натурального логарифма значений в зависимости от температуры, в соответствии с ASTM [14].Значение можно определить из графика Аррениуса, используя обратное время окончательной схватывания вместо константы скорости [16]. Значения и могут быть получены непосредственно из образцов бетона, отвержденных при эталонной температуре. При прогнозировании прочности на месте с использованием отношения относительной прочности к зрелости иногда нецелесообразно использовать результаты лабораторных испытаний для представления фактического значения на месте. Стандартные образцы бетона обычно отверждаются и испытываются в идеальных условиях с постоянной комнатной температурой.Однако в процессе эксплуатации бетонные конструкции подвергаются воздействию внешней среды. Вот почему нелегко подогнать лабораторную температуру отверждения к условиям in situ в широких пределах [20–22]. Следовательно, для практического и прямого применения подхода к зрелости для прогнозирования прочности бетона на месте в разном возрасте, в идеале должна быть установлена ​​взаимосвязь между и для данного бетона, где 28-дневная прочность на сжатие бетона, затвердевшего на эталонном уровне. температура.

3. Детали эксперимента
3.1. Образцы бетона

Были приготовлены два типа пропорций бетонной смеси, как указано в таблице 1. При обычных условиях твердения при постоянной температуре и относительной влажности 20 ° C и 60% соответственно расчетная прочность бетона на сжатие составляла 42 МПа. и 65 МПа для смесей типа I и II соответственно. Пропорции для обеих бетонных смесей были определены в ходе многочисленных лабораторных испытаний для практического применения в конструкциях ядерных установок.Для смесей типа I и типа II было выбрано 0,4 и 0,28 соответственно.


Тип Расчетная прочность (МПа) W / B Вес устройства (кг / м 3 )
Вода Цемент Пары кремнезема Песок Гравий (%)

I 42 0,4 155 368 19.4 763 973 0,9
II 65 0,28 155 526 27,7 701 895 2,0

= массовое соотношение водовосстанавливающего агента и связующего с высоким диапазоном.

В качестве основного вяжущего был выбран цемент, который обычно используется для конструкций атомных электростанций в Южной Корее.Химический состав цемента был специально изменен для уменьшения теплоты гидратации. В результате химический состав цемента был близок к химическому составу цемента умеренной температуры, как указано в таблице 2. По сравнению с обычным химическим составом обычного портландцемента (OPC) оксид алюминия (Al 2 O 3 ) в модифицированном цементе было ниже примерно на 2%, тогда как содержание оксида кремния (SiO 2 ) было на 1% выше. Расчет минерального состава на основе химического состава показал, что содержание C 3 S и C 3 A в модифицированном цементе было на 16% и 54% ниже, чем у OPC, соответственно, тогда как C 2 S содержание первого было 37.На 6% выше, чем у последнего. Основным компонентом микрокремнезема (SF) был SiO 2 . Удельный вес и удельная поверхность используемых вяжущих материалов составляли 3,15 и 3466 см 2 / г для цемента и 2,32 и 200000 см 2 / г для SF, соответственно.

2 O

Материалы SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO Na 2 O TiO 2 SO 3

OPC 23.30 3,85 3,83 63,4 1,24 1,47 0,15 0,33 2,01 0,42
SF 98,94 0,30 0,08 0,1255 0,04 0,1255 0,04 0,13 0,05 0,28 0,06

Потери при возгорании.

Смешивание и подготовку образцов проводили при комнатной температуре ° C.Мелкие и крупные агрегаты вместе с предварительно смешанным связующим были смешаны в сухом виде в смесительном поддоне вместимостью 0,35 м 3 в течение 1 мин, а затем смешаны во влажном состоянии в течение еще 1 мин. Сразу после литья все образцы были покрыты пластиковым листом для предотвращения испарения гидратной воды и перенесены в камеру с регулируемой температурой.

3.2. Процесс отверждения

Средние температуры отверждения в каждой камере были предварительно установлены на 5 ° C, 20 ° C и 40 ° C для имитации зимних (холодных), контролируемых лабораторных (эталонных) и летних (жарких) условий, соответственно.Для каждого типа бетонной смеси история температур отверждения была разделена на два режима: изотермический и террасный с переменными условиями. Таким образом, обозначения образцов были идентифицированы в соответствии с типом смеси и температурным режимом, как указано в таблице 3. Образцы в изотермических условиях непрерывно отверждались в ранее установленной камере до момента испытания. Образцы для террасных температурных историй были разработаны для оценки возраста, при котором будет получено 80% -ное увеличение 28-дневной прочности на сжатие, что соответствует времени удаления бетонной опалубки для конструкций ядерных установок в холодную погоду.В террасных историях температуры начальные периоды при эталонной температуре были выбраны как 1, 3 и 7 дней, а последующая температура поддерживалась на уровне 5 ° C. Таким образом, образцы с террасными историями температуры сначала выдерживались в эталонной камере до указанного возраста для испытаний, а затем переносились в холодную камеру.

50,0

Образец Тип смеси История температур (° C) (ч) (ч) (Дж / моль) (день -1 ) (Дж / моль) Прочность на сжатие (, МПа) при различных возраст (дни)
1 3 7 13 22 28 56 91

IC Я 17.2 25,2 23204 0,13 43332 12,4 29,5 42,0 46,8 48,2 53,3 55,6
IR 11,5 15,6 0,26 5,3 25,6 0,26 5,3 25,6 45,5 47,5 48,7 51,9 52.0
IH 5,0 9,0 0,88 22,0 44,7 48,0 52,0 56,0 58,0 58,5 59,1
IR (1) C 5,3 17,1 30,4 39,7 46,9 48,1 51,3 53,6
ИК (3) C 5.3 25,6 39,8 45,6 48,0 49,4 50,6 50,9
ИК (7) C 5,3 25,6 40,0 44,8 48,6 50,3 52,3 52,8

II-C II 13.5 23,2 20304 0,22 41777 0,5 22,1 41,1 53,5 58,9 61,5 63,9 66,3
II-R 9,6 14,7 0,49 11,5 40,4 57,0 63,9 64,4 65,4 65.4
II-H 7,0 9,4 1,41 32,2 61,2 65,7 65,9 66,3 66,5 66,8 66,9
II-R ( 1) C 11,5 29,9 49,1 54,8 59,3 61,8 64,8 69,3
II-R (3) C 11.5 40,4 48,6 56,4 60,8 62,1 63,5 63,8
II-R (7) C 11,5 40,4 50,0 58,8 62,4 63,5 65,3 65,7

Примечание: = время начального схватывания, = время окончательного схватывания, = кажущаяся энергия активации в момент окончательного схватывания, = константа скорости при данной температуре и = начальная кажущаяся энергия активации в фазе затвердевания.
Для обозначения образца в изотермических условиях первая и вторая части относятся к типу смеси и температуре отверждения, соответственно. Обозначение образца в террасной истории включает следующие обозначения: первая часть указывает тип смеси, вторая буква и третья цифра относятся к начальной температуре отверждения и соответствующему периоду, соответственно, а четвертая часть обозначает последующую температуру отверждения. Температура отверждения обозначается сокращениями C, R и H, которые обозначают холодный (5 ° C), эталонный (20 ° C) и горячий (40 ° C) условия соответственно.
3.3. Тестирование

Температуру отверждения в реальном времени контролировали в центре образцов и в климатической камере с помощью термопар и автоматически сохраняли в регистраторе данных. Чтобы определить термочувствительный фактор и кажущуюся энергию активации бетона на этапе схватывания, свежий раствор был извлечен из бетона с помощью сита сита 4,75 мм. Испытания на сопротивление проникновению для проверки схватывания бетона проводились в соответствии с ASTM [14].Испытания, необходимые для экспериментального определения кажущейся энергии активации на этапе отверждения, были выполнены с использованием 18 кубиков с размерами 50 мм на изотермическую историю отверждения в соответствии с ASTM [14]. Измерение прочности бетона на сжатие было запланировано в возрасте 1, 3, 7, 13, 22, 28, 56 и 91 дней с использованием цилиндра 100 × 200 мм. Однако испытание прочности на сжатие образца I-C в возрасте одного дня не удалось, поскольку образцы находились в пластическом состоянии.

4. Результаты тестирования и обсуждение

В таблице 3 перечислены значения ключевых параметров, необходимых для предлагаемого подхода к зрелости.В таблицу также включены результаты испытаний средней прочности на сжатие, полученные для трех цилиндров в каждом возрасте испытаний. Настоящее обсуждение фокусируется на влиянии на кажущуюся энергию активации на этапах схватывания и твердения, а также на развитие прочности бетона на сжатие при различных температурах, чтобы исследовать тенденцию функции зрелости в HSC.

4.1. Энергия активации до времени окончательного схватывания

Общая характеристика схватывания двух испытанных смесей показана на Рисунке 2.Кривые наилучшего соответствия, определенные из каждого набора данных, также показаны на рисунке. ASTM C 403 [14] определяет начальную и конечную схватывание при сопротивлении пробиванию 3,4 и 27,6 МПа соответственно. Фактическое начальное и конечное время схватывания значительно варьировалось в зависимости от температуры, показывая, что окончательное время схватывания для смеси типа I составляло 25,2, 15,6 и 9,0 часов при температуре отверждения 5, 20 и 40 ° C, соответственно. Начальная и конечная настройки произошли раньше с увеличением начальной температуры отверждения. Подобное поведение схватывания в обеих смесях наблюдалось в условиях высоких температур, тогда как время схватывания при стандартных и холодных температурных условиях было меньше в смеси типа II, чем в смеси типа I.Разница между временем схватывания в соответствии с уменьшением с увеличением температуры отверждения. Более низкий уменьшает заполненные водой пространства в свежей пасте, что приводит к быстрому установлению гидратированной цементной пасты [23]. Таким образом, концентрация Ca (OH) 2 увеличивается быстрее с уменьшением. Ускоренные химические реакции гидратации из-за повышения температуры отверждения происходят быстрее с уменьшением заполненных водой пространств в пасте.


Значения, рассчитанные по графику Аррениуса с использованием обратной величины времени окончательного схватывания, составили 23200 Дж / моль для бетона с 0.4 и 20300 Дж / моль для бетона с 0,28. Тесты, проведенные Wade et al. [24] обнаружили, что значения OPC-бетона составляют 33400 Дж / моль для 0,48 и 27100 Дж / моль для 0,41. В целом имеет тенденцию к уменьшению с уменьшением. Для температуры отверждения 5, 20 и 40 ° C эквивалентные возрасты до окончательного времени схватывания, рассчитанные с использованием (8), составили приблизительно 15,1, 15,6 и 16,5 часов, соответственно, для смеси типа I и 13,9, 14,7 и 17,3 часа. ч, соответственно, для смеси типа II. Эквивалентный возраст до последнего установленного времени был более однородным, чем фактическое время.

4.2. Начальная энергия активации на этапе отверждения

При одинаковой температуре отверждения константа скорости, определенная на этапе отверждения, была ниже в смеси типа I, чем в смеси типа II, и эти различия в обеих бетонных смесях уменьшались с понижением температуры твердения, поскольку показано на рисунке 3. Для условий низких температур значения константы скорости были близки в обеих бетонных смесях. Это указывает на то, что влияние на константу скорости постепенно уменьшается с понижением температуры отверждения.С другой стороны, характер температурной зависимости константы скорости был одинаковым в обеих бетонных смесях, показывая нелинейное изменение в зависимости от температуры отверждения. Следовательно, константа скорости HSC может быть подобрана с использованием экспоненциальной функции температуры отверждения, как определено функцией Аррениуса.


Начальная энергия активации (), рассчитанная по графику Аррениуса натурального логарифма значений в зависимости от температуры, составила 43332 Дж / моль для смеси типа I и 41777 Дж / моль для смеси типа II.В целом, значения для бетона OPC без SCM [14] составляют от 40000 до 45000 Дж / моль. Значение измеряемой для текущих бетонных смесей соответствовало общему диапазону, указывая на уменьшение с уменьшением.

4.3. Прочность на сжатие в течение 28 дней

Бетон, изготовленный с использованием смеси типа I, достиг проектной прочности 42 МПа в возрасте 28 дней независимо от истории отверждения, в то время как прочность на сжатие в течение 28 дней бетона смеси типа II, за исключением бетона затвердевший в условиях высоких температур, был немного ниже расчетной прочности 65 МПа, как указано в Таблице 3.В целом, более высокая 28-дневная прочность на сжатие была получена у бетона, отвержденного в условиях высоких температур, чем у других образцов бетона при других температурных условиях, как показано на Рисунке 4. По сравнению с бетоном, отвержденным при эталонной температуре, бетон затвердел в горячем состоянии. температура развила прочность, которая была в 1,19 раза выше для типа I и в 1,03 раза выше для типа II, тогда как бетон, отвержденный при низкой температуре, показал прочность на 1–4,5% ниже. В целом, пороговый возраст для эффекта кроссовера наблюдается в OPC-бетоне от 7 до 14 дней [3, 4, 7, 8].Однако настоящие смеси допускают отсроченный пороговый возраст после 91 дня, демонстрируя более низкую 28-дневную прочность при низких температурах. Химический состав цемента, использованного для данной смеси, был близок к химическому составу цемента средней температуры, давая более низкое содержание C 3 S и C 3 A, чем OPC. Пониженное содержание C 3 S и C 3 A в модифицированном цементе было неблагоприятным для развития прочности в раннем возрасте и при температуре холодного отверждения.


Также интересно, что близкие значения 28-дневной прочности наблюдались между образцами бетона, отвержденными в условиях низких температур, и образцами, отвержденными при 20 ° C в течение 1 дня и последующей низкой температуре.Эти близкие значения наблюдались также между образцами бетона, отвержденными при эталонной температуре, и образцами, отвержденными при 20 ° C в течение 3 или 7 дней и последующих низких температурах. В целом, уменьшение позволяет увеличить скорость гидратации цементного теста, что приводит к более высокому развитию прочности и большей чувствительности к температуре отверждения в раннем возрасте. Таким образом, ранний возраст, равный 3 дням, можно рассматривать как критический период с точки зрения влияния истории температуры отверждения на 28-дневный прирост прочности на сжатие HSC.

4.4. Относительное развитие прочности на сжатие

Отношение развития прочности на сжатие для различных возрастов по сравнению с 28-дневной прочностью показано на рисунке 5. Образцы бетона, отвержденные в изотермических холодных условиях, показали более низкую начальную прочность, чем образцы в горячих и исходных температурных условиях. , в то время как самая высокая скорость набора прочности наблюдалась в бетоне, отвержденном в изотермических условиях холода при длительном возрасте через 28 дней. Следовательно, перекрестный эффект может быть обнаружен в образцах бетона, отвержденных в изотермических условиях, хотя абсолютная прочность бетона, отвержденного при высокой температуре, обычно была выше, чем у бетона при низкой температуре из-за более низких значений C 3 S и C 3 A содержание в модифицированном цементе.Для смеси типа I скорость набора прочности в возрасте 3 суток при горячей температуре была примерно вдвое выше, чем у сопутствующего бетона при холодной температуре. Эти различия в зависимости от температуры отверждения постепенно уменьшались до возраста 28 дней, после которого скорость набора прочности бетона при холодной температуре была в 1,1 раза выше, чем у сопутствующего бетона при горячей температуре. При высоких температурах раннее развитие прочности у бетона типа I было выше, чем у бетона типа II, показывая постоянный прирост прочности после 7-дневного возраста.Прирост долговременной прочности при высоких температурах был только в 1,04 раза выше у бетона типа I, чем у бетона типа II. В целом кроссоверный эффект смягчался с уменьшением.

Бетон, отвержденный при террасе-форме при различных температурах, показал одинаковую скорость набора прочности независимо от эталонного температурного периода в раннем возрасте, хотя несколько более очевидный перекрестный эффект наблюдался в бетоне при эталонной температуре в течение первого дня и последующих. холодная температура, чем в конкретных образцах в других историях.Во всех образцах бетона, отвержденных при различных температурах, за исключением образца IRC, увеличение прочности примерно на 80% было достигнуто в течение первых 7 дней. При строительстве конструкций ядерных установок в условиях сильного замораживания-оттаивания опалубку для нормально твердеющего бетона необходимо сохранять до тех пор, пока не будет достигнуто 80% расчетной прочности бетона. Принимая во внимание это требование, бетон, произведенный с использованием настоящих пропорций смеси, в идеале должен выдерживаться при 20 ° C в течение как минимум первых 3 дней, чтобы облегчить снятие опалубки и опалубки в течение 7 дней.Кроме того, переменные температурные режимы отверждения указывают на то, что скорость набора прочности бетона не зависит от последующего изменения температуры отверждения в холодном состоянии после того, как бетон выдерживается при эталонной температуре в течение первых 3 дней.

5. Проверка предлагаемого подхода к зрелости

Развитие прочности бетона на сжатие при использовании нынешних пропорций смеси было спрогнозировано на основе предложенного подхода к зрелости. Для применения отношения относительной прочности зрелости, значения ключевых параметров (,,, и), перечисленные в таблице 1, были использованы для каждого конкретного образца, независимо от истории температуры отверждения.Чтобы рассчитать прочность на сжатие в заданном возрасте из отношения относительной прочности, соотношение между и также было эмпирически сформулировано с использованием текущих данных испытаний. На соотношение между и существенно повлияла история температуры отверждения. В частности, температура до 3-х дневного возраста может рассматриваться как критический фактор для представления всей температурной истории, как показано на рисунках 4 и 5. На основе регрессионного анализа с использованием этих двух влияющих параметров можно определить следующую взаимосвязь между и. (Рисунок 6): где — средняя температура до 3-х дневного возраста.


5.1. Отношение относительной прочности к зрелости

Отношение относительной прочности к зрелости, измеренное для бетона типа I, сравнивается с прогнозами, полученными с использованием (4) (см. Рисунок 7). На соотношение относительной прочности и зрелости незначительно повлиял ранний период отверждения при эталонной температуре. Для условий изотермического отверждения предлагаемый подход к зрелости обеспечивает сравнительно высокую точность в прогнозировании относительной прочности HSC, хотя этот подход имеет тенденцию слегка недооценивать начальную прочность бетона при низких температурах.Напротив, прогнозы относительного развития прочности бетона при различных температурах обычно ниже, чем прогнозы, полученные в ходе испытаний в раннем возрасте, но выше, чем прогнозы, полученные в результате испытаний после возраста 28 дней (эквивалентный возраст примерно 13 лет. дней). Различия между измеренными и прогнозируемыми значениями после возраста 28 дней постепенно увеличиваются с возрастом. Остаток заполненных водой пространств в свежей пасте, называемый капиллярными порами, зависит от степени гидратации.Свободная вода, содержащаяся в капиллярах, задерживает процесс гидратации пасты. Таким образом, более низкая благоприятна для получения раствора, перенасыщенного Ca (OH) 2 и содержащего концентрации гидрата силиката кальция в метастабильных условиях [23]. Последующее отверждение происходит из-за удаления воды из гидратированного материала. Этот процесс гидратации цементного теста происходит быстрее с повышением температуры отверждения из-за ускоренного испарения свободной воды. В целом, HSC становится более чувствительным к температуре раннего отверждения, чем NSC.

Развитие прочности HSC не зависит от температуры отверждения после раннего критического возраста. Принимая во внимание этот эффект температуры отверждения в раннем возрасте и то, что первые 3 дня являются критическим периодом, эквивалентный возраст (9) может быть изменен для HSC следующим образом:

Относительная прочность образцов бетона, отвержденных при переменной температуре предыстории, сравнивается с подход к зрелости с использованием модифицированного эквивалента возраста, приведенного выше (см. рисунок 8). По сравнению с рисунком 7 (b), прогнозы с использованием модифицированного эквивалентного возраста лучше согласуются с результатами испытаний, даже в отдаленном возрасте.Различия между прогнозами и измеренными значениями относительной прочности одинаковы для обоих типов бетона. Следует отметить, что (12) необходимо дополнительно изучить для бетона, отвержденного при переменной истории с высокой или низкой температурой в раннем возрасте.

5.2. Развитие прочности при разном возрасте

Сравнение измеренной прочности бетона на сжатие в разном возрасте и прогнозы показаны на Рисунке 9. В прогнозах с использованием предлагаемого подхода к зрелости 28-дневная прочность и эквивалентный возраст каждого образца бетона определяются из ( 11) и (12) соответственно.Для объективной статистической оценки для каждого возраста было рассчитано следующее стандартное отклонение () абсолютной ошибки (см. Таблицу 4): где — количество точек данных, и — измеренная и прогнозируемая прочность на сжатие, соответственно, в возрасте каждого возраста. образец. В целом, предложенный подход к зрелости имел тенденцию к занижению ранней прочности до возраста 7 дней для бетона типа I независимо от температурных режимов отверждения. Для бетона типа II наибольший разброс наблюдался в возрасте 3 суток.Следовательно, максимальное значение было оценено в 4,78 МПа в возрасте 3 дней для бетона типа I и 4,77 МПа в возрасте 7 дней для бетона типа II. После возраста 22 дней полоса рассеяния уменьшилась, дав значения ниже 2,17 МПа для смеси типа I и 1,41 МПа для смеси типа II. В целом, определенный для всех испытанных возрастов и температурных режимов отверждения составил 2,81 МПа для бетона типа I и 2,32 МПа для бетона типа II. По сравнению с расчетной прочностью бетона эти значения соответствуют примерно 6.7% для смеси типа I и 3,6% для смеси типа II. Кроме того, коэффициент вариации соотношений между измеренной и прогнозируемой силой в разном возрасте находился в диапазоне от 0,015 до 0,090. Таким образом, предлагаемый подход к зрелости с модифицированным эквивалентным возрастом представляется полезным в качестве альтернативного инструмента для практической оценки развития прочности HSC на месте при различных температурах отверждения.


Тип бетона Возраст (дни) Всего
1 3 7 13 22 28 56 91

I 0.93
(0,041)
4,09
(0,040)
4,78
(0,090)
4,34
(0,077)
2,17
(0,037)
1,01
(0,015)
1,59
(0,019)
2,35
(0,018)
2,81
(0,084)

II 0,80
(0,057)
4,77
(0,027)
3,91
(0,076)
1,59
(0,027)
1,41
(0,019)
0.89
(0,014)
1,45
(0,024)
1,97
(0,018)
2,33
(0,052)

Примечание: цифры в скобках относятся к коэффициенту дисперсии соотношение между измеренной и прогнозируемой сильными сторонами.
6. Выводы

На основе результатов испытаний традиционная функция зрелости эквивалентного возраста была изменена, чтобы учесть офсетную зрелость и незначительность последующей температуры отверждения после возраста 3 дней при более поздней прочности конкретный.Однако предлагаемые уравнения, особенно модифицированный эквивалентный возраст, необходимо дополнительно исследовать для различных пропорций смеси с SCM и различных температурных режимов с начальной горячей или холодной температурой и другой последующей температурой. Из исследования развития прочности HSC, основанного на предлагаемом подходе к зрелости, можно сделать следующие выводы: (1) При уменьшении отношения воды к связующему () кажущаяся энергия активации на этапах схватывания и твердения имеет тенденцию к снижению. .(2) По сравнению с бетоном, отвержденным при эталонной температуре (20 ° C), бетон при горячей температуре (40 ° C) развил прочность, которая была в 1,19 раза выше для смеси типа I и в 0,4 и 1,03 раза выше для смеси типа II с 0,28, тогда как бетон при холодной температуре (5 ° C) показал снижение прочности на 1,0–4,5%. (3) Подобное развитие прочности было достигнуто для образцов бетона при изотермической эталонной температуре и образцов, отвержденных при переменной истории эталонная температура для начального возраста 3 или 7 дней и последующая низкая температура.(4) Перекрестный эффект на развитие относительной прочности был немного уменьшен при уменьшении. (5) Время схватывания и развитие прочности были более чувствительны к температуре раннего отверждения при понижении. (6) Предлагаемый подход к зрелости с модифицированным эквивалентным возрастом точно предсказывает развитие прочности HSC в зависимости от возраста с указанием значения стандартного отклонения абсолютной погрешности 2,81 МПа для бетона типа I и 2,32 МПа для бетона типа II.

Обозначения
: Экспериментальная постоянная (дни -1 )
: Кажущаяся энергия активации (Дж / моль)
: Кажущаяся энергия активации до времени окончательного схватывания (Дж / моль)
: Начальная кажущаяся энергия активации в фазе отверждения (Дж / моль)
: Константа скорости (день -1 ) для развития прочности при температуре отверждения
: Константы скорости (сутки -1 ) для развития схватывания при эталонной температуре
: Константы скорости ( -1 сутки) для развития схватывания при температуре отверждения
: Константа скорости (сутки -1 ) при эталонной температуре
: Универсальная газовая постоянная (= 8.314 Дж / моль · К)
: Прочность на сжатие (МПа)
: Предел прочности (МПа)
: 28-дневная прочность на сжатие (МПа)
: Прочность на сжатие в течение 28 дней бетона, отвержденного при эталонной температуре (МПа)
: Температура отверждения (° C)
: Эталонная температура (= 20 ° C)
: Возраст (дни)
: Эквивалентный возраст (дни)
: Эквивалентный возраст на стадии затвердевания (дни)
: Время смещения (дни)
: Время смещения (дни) при эталонной температуре
: Время окончательного схватывания (дни) бетона при эталонной температуре
: Окончательное схватывание Время г (дни)
: Отношение воды к связующему по массе
: Отношение предельной прочности к 28-дневной прочности
: Отношение сродства констант скорости на этапе затвердевания.
Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Благодарность

Эта работа была поддержана Программой исследований и разработок в области ядерной энергетики Корейского института оценки и планирования энергетических технологий (KETEP), грант, финансируемый Министерством экономики знаний правительства Кореи (№ 2011T100200161).

Что такое кривая зрелости бетона?

Бетон обладает множеством свойств, которые можно изучать и регистрировать, но его прочность на сжатие обычно находится в центре внимания.Действительно, в большинстве проектов конструкции будут использовать смешанные конструкции с основным упором на достижение определенной прочности на сжатие, а также требований к текучести и содержанию воздуха. Самый прямой способ получить такую ​​информацию о прочности бетона на сжатие — это отбор проб сопутствующих цилиндров, которые нужно испытать на сжатие. Однако этот метод неудобен и может быть неточным. К счастью, есть способ обойти это: кривая зрелости.

Что такое кривая зрелости бетона и почему она имеет значение для испытания прочности бетона?

Начнем с того, что зрелость бетона — это индекс, числовой параметр, который указывает относительный возраст бетона в зависимости от его отверждения.Отверждение бетона во многом определяется его температурой. Во время отверждения бетон будет набирать прочность со скоростью, зависящей от температуры, что и является признаком зрелости. Например, бетон, который хранится при температуре 60 ° F (16 ° C), будет иметь гораздо меньшую скорость набора прочности, чем бетон из той же смеси, которая хранится при температуре 81 ° F (27 ° C), но оба значения приемлемы в соответствии с ASTM C31 / C31M: Стандартная практика изготовления и отверждения бетонных образцов для испытаний в полевых условиях. Параметр зрелости позволяет специалистам учитывать изменение температуры бетона с момента его заливки, а это означает, что разница в прочности будет известна для обоих образцов, упомянутых в примере.Для проведения таких расчетов необходимо знать кривую зрелости. Кривая зрелости — это соотношение между зрелостью бетона и его прочностью. В целом, с помощью температурной кривой можно установить зависимость между сроками погашения. С помощью кривой зрелости ее можно преобразовать в соотношение силы и времени, давая силу в любой момент времени.

Щелкните здесь, чтобы получить дополнительную информацию о зрелости бетона.

Как измеряется зрелость бетона?

Как указывалось ранее, зрелость зависит от температуры бетона.Точнее, он измеряет гидратацию цемента, которая прекращается, когда температура бетона ниже определенной температуры, называемой исходной температурой, T 0 . Следовательно, важна разница между исходной температурой и фактической средней температурой бетона. Более простой способ понять эту связь — увидеть ее как площадь под кривой зависимости температуры от времени. В качестве примера представим, что зрелость должна быть рассчитана для следующей заливки бетона, и предположим, что исходная температура равна 0 ° C.

Рис. 1: График зависимости температуры от времени — область под кривой Пример

Затем, если срок погашения должен быть рассчитан 27 марта, тогда это просто область под кривой температуры (выделена зеленым цветом). В данном случае это 750 ° C. -hrs, что можно увидеть на следующем графике сроков погашения. Срок погашения 27 марта рассчитывается выше: 750 ° C-часов. Обратите внимание, что те же расчеты можно было провести с использованием градусов Фаренгейта.

Рисунок 2: Кривая сроков погашения — площадь под кривой Пример

Существует простая формула для описания этого расчета:

Где M (t) — зависящая от времени зрелость (градус-часы), T a 0 — исходная температура ( ° C), а ∆t — временной интервал (ч) с момента заливки.По сути, температура бетона измеряется через частые промежутки времени, чтобы получить среднее значение, а затем значение зрелости из приведенного выше уравнения в определенное время.

ASTM C1074 — Стандартная практика оценки прочности бетона по методу зрелости гласит, что временной интервал между измерениями температуры не должен превышать 30 минут в течение первых 48 часов и 1 час после этого. С помощью этих мер можно построить точную кривую зрелости для конкретной заливки.

Рисунок 3: Пример эволюции зрелости бетона

Для получения дополнительной информации о методе расчета зрелости бетона щелкните здесь.

Как рассчитывается кривая зрелости?

Кривая зрелости, или соотношение прочности и зрелости, разработана для смеси с точными шагами, указанными в ASTM C1074. Всего отлито 17 бетонных цилиндров с желаемой смесью, а в 2 из них встроены датчики температуры. Цилиндры выдерживают в резервуаре для воды при температуре 73 ± 4 ° F (23 ± 2 ° C) для испытания на сжатие через 1, 3, 7, 14 и 28 дней.При каждом испытании необходимо испытать 3 образца. Если некоторые результаты отличаются от среднего значения более чем на 10%, результаты низкого теста следует повторить с дополнительными баллонами, изготовленными вначале. В каждом возрасте тестирования индекс зрелости измеряется на основе температурных записей датчиков и с помощью процедуры, описанной выше. Средние результаты прочности на сжатие нанесены в зависимости от зрелости. Тогда наиболее подходящей кривой для графика прочности-зрелости являются кривые зрелости.См. Пример ниже.

Рис. 4. Пример зависимости зрелости и прочности, или кривая зрелости

. Эта связь может быть описана логарифмической кривой с использованием двух факторов, A и B:

Где S (t) — прочность бетона (МПа), M (t) — зрелость (° C-час), а A и B — коэффициенты, отображающие кривую. Затем эту кривую можно проверить, чтобы убедиться, что факторы подходят для дизайна смеси. Для этого на месте изготавливаются формованные цилиндры с датчиками температуры / зрелости.Когда метод зрелости показывает, что образцы достигли своей целевой прочности, измеряется фактическая прочность на сжатие, чтобы сравнить прогноз зрелости с фактическим значением. Если разница между этими значениями стабильно превышает 10%, найденная кривая зрелости не соответствует структуре смеси и должна быть построена заново. Этот метод является частью ASTM C1074, который предоставляет более подробную информацию и пояснения по процессу валидации.

Кроме того, с помощью системы Giatec 360 искусственный интеллект компании Giatec, Roxi ™, может использоваться для проверки соотношения прочности и зрелости.Этот помощник ИИ может, основываясь на пропорциях бетонной смеси, определить, является ли полученное соотношение зрелости и прочности точным, или в процессе произошли ошибки, связанные с человеческим фактором. В сочетании с методом проверки ASTM C1074 Roxi обеспечивает оптимальную кривую зрелости бетона и дает точные значения прочности на сжатие.

Щелкните здесь, чтобы узнать больше о Roxi.

Почему важна кривая зрелости?

Проще говоря, кривая зрелости позволяет преобразовать показатели зрелости в значения силы.Как объяснялось ранее, с помощью измерений температуры бетонного элемента можно построить график зависимости температуры от времени. С помощью уравнения зрелости эту кривую можно преобразовать в кривую сроков погашения. В свою очередь, эта кривая окончательно преобразуется в кривую зависимости силы от времени с использованием уравнения прочности с факторами A и B, определенными с использованием кривой зрелости, откалиброванной для конкретного дизайна смеси. Кривая зрелости является важным шагом в процессе определения прочности бетонного элемента на месте в любой момент времени.Используя беспроводные датчики температуры бетона, такие как SmartRock®, вы можете доставить интеллектуальный бетон на свою строительную площадку и получить результаты прочности в любое время и в любом месте благодаря кривой зрелости.

Изменение прочности бетона на сжатие во времени

🕑 Время чтения: 1 минута

Возраст бетонных конструкций во многом зависит от их прочности и долговечности. Понимание зависимости прочности бетона от времени помогает узнать эффект нагрузки в более позднем возрасте.В этом разделе объясняется различное влияние на прочность бетона с возрастом.

Изменение прочности бетона во времени Согласно исследованиям и исследованиям, прочность бетона на сжатие будет увеличиваться с возрастом. Большинство исследований проводилось для изучения прочности бетона на 28-е сутки. Но на самом деле сила на 28-й день меньше по сравнению с долгосрочной силой, которую он может набрать с возрастом. Изменение прочности бетона с возрастом можно изучать разными методами.На рисунке 1 ниже показано изменение прочности бетона в сухом и влажном состоянии. Этот график основан на исследовании, проведенном Байкофом и Сиглофом (1976). Они обнаружили, что в сухих условиях через 1 год прочность бетона не увеличивается, как показано на рисунке 1. С другой стороны, прочность образцов, хранящихся во влажной среде (при 15 ° C), значительно увеличивается.

Рис.1: Изменение прочности бетона во времени

Рис. 2: Изменение прочности бетона на сжатие со временем (Washa and Wendt (1989))

Скорость увеличения силы со временем Процесс постоянного увлажнения повысит прочность бетона.Если условия окружающей среды, которым подвергается бетон, способствуют гидратации, прочность с возрастом постоянно увеличивается. Но эта скорость гидратации высока на ранних стадиях и задерживается позже. Таким образом, прочность на сжатие, полученная бетоном, измеряется на 28-й день, после чего показатель прочности снижается. Прочность на сжатие, полученная в более позднем возрасте, проверяется неразрушающими испытаниями. Подробнее: Почему мы проверяем прочность бетона на сжатие через 28 дней? В таблице 1 ниже показан темп набора силы с первого по 28 день. Таблица 1: Прочность бетона с возрастом
Возраст Повышенная сила (%)
1 день 16%
3 дня 40%
7 дней 65%
14 дней 90%
28 дней 99%
Правильные условия отверждения помогут предотвратить утечку влаги, которая облегчит реакции набора прочности.На рисунке 3 ниже показано изменение прочности на сжатие с возрастом для различных условий отверждения.

Рис.3. Прочность на сжатие в зависимости от возраста для различных сред отверждения (Мамлук и Заневски)

Факторы, влияющие на длительную прочность бетона на сжатие Достижение прочности бетона на сжатие в долгосрочной перспективе отличается от набора прочности в раннем возрасте. На долговременную прочность бетона на сжатие влияют следующие факторы:

1.Соотношение вода-цемент Адекватное водоцементное соотношение необходимо для прохождения реакций гидратации в более позднем возрасте. Реакции гидратации улучшают прочность бетона на сжатие. Недостаточное содержание воды приведет к образованию огромного количества пор до 28 дней, что со временем увеличит вероятность сползания и усадки. Это отрицательно скажется на прочности бетона на сжатие. Также читайте: Технологичность бетона — типы и влияние на прочность бетона

2.Условия отверждения Правильные условия отверждения — это своего рода подготовка бетона перед его эксплуатацией. Степень отверждения бетона определяется в зависимости от предполагаемых условий воздействия на конструкции. Правильно затвердевший и качественный бетон не подвержен старению в экстремальных условиях. Следовательно, эффективное отверждение улучшает сжимаемость бетона. Также читайте: Отверждение цементного бетона — время и продолжительность

3. Температура Исследования показали, что высокая температура ускоряет реакцию гидратации, но получаемые продукты не будут однородными или хорошего качества.В результате могут остаться поры, влияющие на прочность бетона.

4. Условия окружающей среды Бетонная конструкция с возрастом подвергается воздействию таких условий окружающей среды, как дождь, замерзание и таяние, химические воздействия и т. Д. Непроницаемый бетон может подвергаться проникновению влаги, частому замерзанию и оттаиванию, что приводит к образованию трещин в бетоне. Химические воздействия могут вызвать коррозию арматуры, что снизит предел текучести арматуры. Все это может повлиять на прочность бетона.

Почему температура бетона важна, особенно во время экстремальных температур »Canzac

Тепло, выделяемое бетоном во время его отверждения, называется теплотой гидратации. Эта экзотермическая реакция происходит при взаимодействии воды и цемента. Количество тепла, выделяемого во время реакции, в основном связано с составом и крупностью цемента.

ПЯТЬ ФАЗ ТЕПЛОЭВОЛЮЦИИ В БЕТОНЕ

Тепловыделение в бетоне — очень сложная и широко изученная тема.Чтобы упростить этот процесс, выделение тепла с течением времени можно разделить на пять отдельных фаз. Тепловой профиль может меняться в зависимости от типа цемента. Типичная гидратация цемента типа I графически представлена ​​на рисунке ниже.

ФАЗА i: ПРЕДВАРИТЕЛЬНАЯ ИНДУКЦИЯ

Через некоторое время после контакта воды с цементом происходит резкое повышение температуры, которое происходит очень быстро (в течение пары минут). В течение этого периода основными реактивными фазами бетона являются алюминатные фазы (C3A и C4AF).Фазы алюмината и феррита реагируют с ионами кальция и сульфата с образованием эттрингита, который осаждается на поверхности частиц цемента. Во время этой фазы, в меньшей степени, силикатные фазы (в основном C3S) также будут реагировать в очень малых фракциях по сравнению с их общим объемом и образовывать очень тонкий слой гидрата силиката кальция (C-S-H).

, ФАЗА II: ПЕРИОД БЕЗОПАСНОСТИ

Эта фаза также известна как фаза индукции. В этот период скорость гидратации значительно замедляется.Традиционно считается, что это происходит из-за осаждения вышеупомянутых соединений на поверхности частиц цемента, что приводит к возникновению диффузионного барьера между частицами цемента и водой. Тем не менее, существуют серьезные споры о физических и химических причинах возникновения этой стадии и методах ее прогнозирования. Это период, в течение которого свежий бетон транспортируется и укладывается, поскольку он еще не затвердел и все еще пригоден для обработки (пластичный и жидкий).Было показано, что продолжительность периода покоя варьируется в зависимости от множества факторов (типа цемента, примесей, Вт / см). Конец периода покоя обычно характеризуется начальным наступлением.

ФАЗА III и IV:

ПРИОБРЕТЕНИЕ ПРОЧНОСТИ На этом этапе бетон начинает затвердевать и набирать прочность. Тепло, выделяемое во время этой фазы, может длиться несколько часов и вызвано в основном реакцией силикатов кальция (в основном C3S и в меньшей степени C2S). В результате реакции силиката кальция образуется гидрат силиката кальция «второй стадии» (C-S-H), который является основным продуктом реакции, придающим прочность цементному тесту.В зависимости от типа цемента также можно наблюдать третий, более низкий пик тепла от возобновленной активности C3A.

ФАЗА V: УСТОЙЧИВОЕ СОСТОЯНИЕ

Температура стабилизируется при температуре окружающей среды. Процесс гидратации значительно замедлится, но не остановится полностью. Гидратация может продолжаться в течение месяцев, лет или даже десятилетий при условии наличия достаточного количества воды и свободных силикатов для гидратации, но прирост прочности будет минимальным в течение такого периода времени.

Зачем нужно контролировать температуру бетона?

На этапе II можно измерить температуру бетона во время его заливки. Измерение температуры обычно проводится, чтобы убедиться, что бетон соответствует определенным спецификациям, которые определяют определенный допустимый диапазон температур. Типичные спецификации требуют, чтобы температура бетона во время укладки находилась в диапазоне от 10 ° C до 32 ° C. Однако в зависимости от размера элемента и условий окружающей среды предусмотрены различные указанные пределы (ACI 301, 207).Температура, которую демонстрирует бетон во время укладки, влияет на температуру бетона во время следующей фазы гидратации. Мониторинг температуры бетона на этапах III и IV — это регулярный компонент контроля качества. Основная причина этого измерения — убедиться, что бетон не достигает слишком высоких или слишком низких температур, чтобы обеспечить надлежащее развитие прочности и долговечность бетона. Другой причиной для мониторинга температуры бетона на этом этапе является оценка прочности на месте, где скорость гидратации является основным фактором, определяющим метод зрелости (ASTM C 1074).

ГОРЯЧЕЕ БЕТОННО

Обычно для температуры бетона во время гидратации устанавливается предел 70 ° C. Если температура бетона во время гидратации будет слишком высокой, это приведет к тому, что бетон будет иметь высокую начальную прочность, но, следовательно, получит меньшую прочность на более поздней стадии и покажет меньшую долговечность. Кроме того, было замечено, что такие температуры мешают образованию эттрингита на начальной стадии, и впоследствии его образование на более поздних стадиях ускоряется; что вызывает реакцию расширения и последующее растрескивание.Кроме того, проблемы с высокими температурами вызывают беспокойство, особенно при заливке массивного бетона, где внутренняя температура может быть очень высокой из-за эффекта массы, а температура поверхности ниже. Это вызывает температурный градиент между поверхностью и сердечником, а если разница температур слишком велика, это вызывает термическое растрескивание.

БЕТОННОЕ ОБОРУДОВАНИЕ ДЛЯ ХОЛОДНОЙ ПОГОДЫ

Если температура окружающей среды слишком низкая, гидратация цемента значительно замедлится или полностью прекратится, пока температура снова не повысится.Другими словами, будет значительное снижение или прекращение развития силы. Если температура бетона достигает точки замерзания до достижения определенной прочности (3,5 МПа) (ACI 306), общая прочность бетона снижается. Это также вызовет растрескивание, поскольку бетон не имеет достаточной прочности, чтобы противостоять расширению воды из-за образования льда. Чтобы обеспечить надлежащее развитие прочности и избежать растрескивания бетона, общие рекомендации предполагают, что температура бетона должна поддерживаться выше определенной температуры в течение определенного времени (> 5 ° C в течение 48 часов) (ACI 306).

НУЖНА ПОМОЩЬ В ВАШЕМ ПРОЕКТЕ? ЗАТЕМ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ!

Как оценить прочность бетона на месте

Бетон должен набрать достаточную прочность, чтобы выдерживать свой вес и строительные нагрузки, прежде чем снимать опалубку, перекладывать шоры или задвигать. Инженеры часто указывают минимальную прочность бетона на месте, прежде чем подрядчики смогут выполнить последующее натяжение, засыпать стены, открыть тротуары для движения или прекратить защиту в холодную погоду. По этим причинам подрядчики должны знать, как правильно оценить прочность бетона на месте для недавно уложенного бетона, особенно в холодную погоду.В противном случае безопасность рабочих и качество конструкции могут быть поставлены под угрозу.

Испытательные цилиндры для испытаний в полевых условиях и коэффициенты зрелости часто используются для оценки прочности бетона на месте. Однако испытание цилиндров, отвержденных в полевых условиях, является стандартной процедурой, установленной строительными нормами. Другие методы — включая факторы зрелости и монолитные цилиндры для плит, сопротивление проникновению и прочность на вырыв — требуют одобрения архитектора / инженера и могут потребовать одобрения должностных лиц, ответственных за строительство.

Температура и время

Прирост прочности бетона зависит от комбинации температуры и времени выдержки. Скорость гидратации или химической реакции между цементом и водой зависит от температуры бетона. По мере повышения температуры бетона скорость гидратации и, как следствие, увеличение прочности увеличивается. И наоборот, скорость набора прочности снижается с понижением температуры бетона. По этой причине замедленная прочность бетона является обычным явлением в холодную погоду, если подрядчики не соблюдают меры предосторожности.Конечно, прочность бетона со временем увеличивается, если есть соответствующие условия отверждения, способствующие гидратации.

Испытательные цилиндры полевого отверждения

Стандартное и полевое отверждение — это разные процедуры, определенные ASTM C31 для отверждения бетонных испытательных цилиндров. Испытательные цилиндры стандартного отверждения, иногда называемые цилиндрами лабораторного отверждения, представляют собой идеальную или номинальную прочность бетона. Диапазон температур для стандартного отверждения составляет от 60 ° F до 80 ° F в течение периода до 48 часов (начальное отверждение) и 73.5 ± 3,5 ° F для баланса 28-дневного периода отверждения (окончательное отверждение) для бетонов с указанной прочностью до 6000 фунтов на квадратный дюйм. Бетон с указанной прочностью 6000 фунтов на квадратный дюйм или выше должен соответствовать более жесткому диапазону температур от 68 ° F до 78 ° F для начального отверждения. Для стандартного отверждения температура и время стандартизированы для обеспечения однородных условий отверждения. Вот почему значения прочности, полученные из испытательных цилиндров стандартного отверждения, используются для определения прочности бетона.

Полевое отверждение отличается от стандартного.Он заключается в хранении испытательных цилиндров как можно ближе к бетону на месте и защите цилиндров от элементов таким же образом, как и бетон на месте. Условия отверждения испытательных цилиндров должны быть такими же, как и условия отверждения монолитного бетона. Подвергая испытательные цилиндры той же зависимости температуры от времени, что и бетон на месте, предполагается, что прочность испытательных цилиндров представляет собой прочность бетона на месте.

Испытательные цилиндры, отверждаемые в полевых условиях, обычно недооценивают истинную прочность бетона на месте из-за тепловой массы испытательного цилиндра (4 дюйма.x 8 дюймов или 6 дюймов x 12 дюймов) по сравнению со значительно большей тепловой массой представленного бетонного элемента. Обычно температуры отверждения для испытательных цилиндров ниже, чем фактические температуры бетона на месте, даже когда испытательные цилиндры заправлены под отверждаемое одеяло и хранятся рядом с представленным бетоном.

Значения прочности, полученные на испытательных цилиндрах, отвержденных в полевых условиях, обычно являются консервативными. Тем не менее, отвержденные в полевых условиях цилиндры могут сильно завышать прочность бетона на месте, если отвержденные в полевых условиях цилиндры хранятся и отверждаются в рабочем прицепе.

За некоторыми исключениями, прочность цилиндров стандартного отверждения выше прочности цилиндров, отвержденных в полевых условиях, поскольку стандартные температуры отверждения обеспечивают более высокие скорости гидратации и увеличения прочности, чем при типичных температурах отверждения в полевых условиях. По этой причине всегда используйте цилиндры стандартной прочности для определения прочности бетона. Что еще более важно, используйте только прочность цилиндров, отверждаемых в полевых условиях, для принятия конструктивных решений, таких как определение того, когда следует снимать опалубку и опоры, начинать последующее натяжение или определять, когда вводить конструкцию в эксплуатацию.Никогда не используйте испытательные цилиндры стандартного отверждения вместо испытательных цилиндров, отвержденных в полевых условиях. Неспособность правильно оценить прочность бетона на месте может поставить под угрозу безопасность рабочих и привести к повреждению конструкции.

Метод погашения

Метод зрелости (ASTM C1074) является более точным, надежным и экономичным для оценки прочности бетона на месте, чем испытательные цилиндры, отверждаемые в полевых условиях. Он основан на концепции, согласно которой температура и время отверждения бетона напрямую связаны с прочностью бетона.В частности, этот метод использует предварительно установленное соотношение температуры-времени-прочности для данной бетонной смеси для оценки прочности бетона на месте.

Шаги по оценке прочности бетона на месте с использованием метода зрелости включают:

1. Подготовьте не менее 15 цилиндров для лабораторных испытаний и вставьте датчики температуры по крайней мере в два из цилиндров для данной бетонной смеси, отвердите при комнатной температуре и вычислите коэффициенты зрелости M (t) для различного прошедшего времени, соответствующего испытаниям на прочность с использованием следующее уравнение:

M (t) = СУММ (Ta минус To) Δt

где:

M (t) = коэффициент зрелости в возрасте (t), градус – часы, ° F – ч

Δt = временной интервал, час

Ta = средняя температура бетона за интервал времени (Δt), ° F

To = температура, ниже которой не происходит увеличения прочности, ° F (от 14 ° F до 32 ° F)

Затем создайте гладкую кривую зависимости прочности от зрелости, построив рассчитанные коэффициенты зрелости M (t) в зависимости от соответствующей прочности бетона.

2. Измерьте зависимость температуры и времени бетона на месте путем встраивания датчиков температуры в критические места, в зависимости от степени воздействия бетона и условий нагрузки.

3. Считайте данные температура-время и рассчитайте коэффициент зрелости для прошедшего времени бетона на месте, используя уравнение коэффициента зрелости M (t). Современное оборудование для погашения автоматически рассчитывает и записывает коэффициенты погашения.

4. Оцените прочность бетона на месте, введя предварительно установленную кривую зависимости прочности от зрелости с вычисленным M (t) для бетона на месте и считайте расчетную прочность, как показано на Рисунке 1.Опять же, этот шаг обычно выполняется автоматически с помощью современного современного оборудования и программного обеспечения.

Пример

Из-за приближения холодного фронта подрядчик установил датчики температуры в стене, помещенные в 9:00 1 сентября. Поставщик бетона предоставил кривую зависимости зрелости от прочности для используемого бетона, как показано на Рисунке 1. Технические характеристики для Проект требовал минимальной прочности бетона 3000 фунтов на квадратный дюйм перед укладкой и уплотнением обратной засыпки у стены.

Как показано в таблице 1, истекшее время и температура бетона на месте были записаны в столбцах 2 и 3 для дат, указанных в столбце 1. Используя столбец 3, средние температуры бетона на месте были вычислены и занесены в столбец 4. Затем, подрядчик вычел 23 ° F, или температуру, при которой рост прочности практически прекращается, из средних температур, показанных в столбце 4, и ввел скорректированные температуры в столбец 5. Истекшее время в часах из столбца 2 было вычислено и введено в столбец 6.Затем подрядчик умножил температуры в столбце 5 на истекшее время в столбце 6 и ввел значения (° F-h) в столбец 7. Для столбца 8 были вычислены совокупные коэффициенты зрелости и введены для различных прошедших периодов времени.

Наконец, подрядчик ввел предварительно установленную кривую зависимости прочности от зрелости (рис. 1), предоставленную поставщиком бетона с учетом совокупных коэффициентов зрелости на месте из столбца 8, и прочитал соответствующие значения прочности бетона на месте.Расчетная прочность бетона на месте была введена в столбец 9 (например, для коэффициента зрелости 5070 ° F-ч соответствующая прочность бетона составила 3100 фунтов на квадратный дюйм из Рисунка 1).

Поскольку спецификации требовали прочности бетона не менее 3000 фунтов на квадратный дюйм для обеспечения достаточной прочности стены для установки обратной засыпки, подрядчик должен подождать, пока бетон достигнет коэффициента зрелости не менее 5000 ° F в час. Чтобы сократить период отверждения, подрядчик может использовать горячую воду для замеса, добавить химически ускоряющую добавку к бетону или добавить дополнительные теплоизоляционные покрытия, чтобы можно было генерировать и поддерживать больше тепла.

Ограничения

Ошибочные оценки прочности могут произойти, если бетон на месте значительно отличается от бетона, используемого для построения предварительно установленной кривой зависимости температуры от времени и прочности. Изменения в материалах, содержании воды и воздуха, а также в точности дозирования могут привести к ошибкам при оценке прочности. ASTM C1074 рекомендует проводить дополнительные испытания для периодической проверки кривой зависимости температуры от времени и прочности, особенно когда опасные для жизни строительные работы основаны на расчетной прочности бетона на месте.

Список литературы
ACI306R-10 Руководство по бетонированию в холодную погоду, Американский институт бетона, www.concrete.org, Mindness, S., Young, J.F, and Darwin, D., Concrete, 2nd Edition, Prentice Hall, 2003.

Ким Башам, PhD, P.E. FACI является президентом компании KB Engineering LLC, которая предоставляет инженерные и научные услуги бетонной промышленности. Бэшем также проводит семинары и тренинги, посвященные всем аспектам бетонных технологий, строительства и устранения неисправностей.С ним можно связаться по электронной почте [email protected].

Вот несколько альтернатив испытательным цилиндрам, отверждаемым в полевых условиях, для оценки прочности бетона на месте.

ASTM C31 / C31M-12 Стандартная практика изготовления и отверждения бетонных образцов для испытаний в полевых условиях — Описано в этой статье.

ASTM C873 / C873M-10a Стандартный метод испытаний прочности на сжатие бетонных цилиндров, отлитых на месте в цилиндрических формах. — Включает в себя заливку на месте испытательных цилиндров в плиты только с глубиной от 5 до 12 дюймов.

ASTM C803 / C803M-03 (2010) Стандартный метод испытаний на сопротивление проникновению затвердевшего бетона — Включает в себя выстреливание штифтов в бетон с помощью инструмента с механическим приводом и проникновение измерительного штифта.

ASTM C900-06 Стандартный метод испытания прочности на вырыв затвердевшего бетона — требует установки болтов в опалубку перед укладкой бетона.

ASTM C1074-11 Стандартная практика для оценки прочности бетона по методу зрелости — Описано в этой статье.

404 — Не найдено — Hilti USA

404 — Не найдено — Hilti USA Перейти к основному содержанию

Страница, к которой вы пытаетесь получить доступ, не существует

Это может быть потому, что

  • Страница удалена.
    Если вы использовали закладку, рекомендуем обновить ссылку.
  • Также возможно, что в ссылке есть опечатка.

Пожалуйста, попробуйте следующие варианты

  • Используйте наш поиск, чтобы найти то, что вы искали.
  • Используйте нашу основную навигацию для доступа к информации о наших продуктах и ​​услугах.
  • Начните просматривать нашу домашнюю страницу.
Нужна помощь? Свяжитесь с нами

Зарегистрируйтесь здесь

Выполняйте работу быстрее онлайн.
Воспользуйтесь всеми преимуществами использования веб-сайта Hilti.

Зарегистрируйтесь сейчас

Не можете войти в систему или забыли пароль?

Пожалуйста, введите свой адрес электронной почты ниже. Вы получите инструкции по созданию нового пароля.

Нужна помощь? Свяжитесь с нами

Зарегистрируйтесь здесь

Выполняйте работу быстрее онлайн.
Воспользуйтесь всеми преимуществами использования веб-сайта Hilti.

Зарегистрируйтесь сейчас

Выберите следующий шаг для продолжения

Ошибка входа

К сожалению, мы не можем войти в систему.
Адрес электронной почты, который вы использовали, не зарегистрирован для {0}, но был зарегистрирован для другого веб-сайта Hilti.

Обновление количества

Обратите внимание, объем заказа обновлен.Это связано с упаковкой и минимальным объемом заказа.

Обратите внимание, объем заказа был обновлен до. Это связано с упаковкой и минимальным объемом заказа.

Сравнение моделей прочности и зрелости с учетом теплоты гидратации в массивных стенах | Международный журнал бетонных конструкций и материалов

Бетонные смеси

Для повышения экономической эффективности за счет сокращения времени строительства и увеличения ожидаемого срока службы конструкций ядерных объектов был установлен целевой показатель прочности бетона на сжатие в размере 55 МПа в течение 28 дней. .Принимая во внимание удобоукладываемость и необходимость минимизировать просачивание бетона в первичную защитную оболочку ядерного реактора с арматурными стержнями большого диаметра, было выбрано значение 150 ± 15 мм для целевой начальной осадки свежего бетона. Для достижения заданной прочности бетона и начальной осадки ранее проводились испытания многочисленных лабораторных смесей при различных температурах отверждения, составляющих приблизительно 5, 20 и 35 ° C. В результате были специально определены три пропорции смеси для использования при трех температурах окружающей среды, как указано в таблице 1 (Yang 2014).

Таблица 1 Пропорции бетонной смеси.

В зависимости от температуры отверждения в окружающей среде, различные дополнительные вяжущие материалы (SCM) были добавлены в качестве частичной замены цемента. Теплота гидратации и скорость тепловыделения в бетоне обычно возрастают с увеличением содержания C 3 S и C 3 A в цементе. С другой стороны, пуццолановая реакция протекает медленнее, чем гидратация C 3 S, и выделяет меньше тепла, чем гидратация цемента (Nili and Salehi 2010).В результате бетон, содержащий SCM, обычно испытывает медленную гидратацию, сопровождаемую более низким повышением температуры. Бамфорт (1980) сообщил, что измельченный гранулированный доменный шлак (GGBFS) в качестве частичной замены обычного портландцемента (OPC) вызывает более низкое повышение температуры и более медленную скорость повышения, чем массовый бетон OPC. Весовые соотношения SCM, выбранные для трех смесей, были следующими: 5% микрокремнезема (SF) для температуры отверждения окружающей среды 5 ° C, 50% GGBFS для температуры 20 ° C и комбинация 65% GGBFS. и 5% SF для температуры 35 ° C.Три смеси были идентифицированы как S5, G50 и G65S5 на основе замен SCM. Для всех трех смесей соотношение воды и вяжущего материала ( Вт / см ) и удельное содержание воды были зафиксированы на уровне 0,34 и 155 кг / м 3 , соответственно. Для достижения заданного начального оседания также была добавлена ​​водоредуцирующая добавка с высоким содержанием воды, как указано в таблице 1. Основным составом этой смеси был сополимер акриловой кислоты и сложного эфира акриловой кислоты, лигносульфонат и глюконат натрия.

Материалы

В таблице 2 приведены химические составы вяжущих материалов, полученные с помощью рентгенофлуоресцентного анализа (XRF).В качестве основного вяжущего был выбран цемент, который обычно используется для конструкций атомных электростанций в Южной Корее. Химический состав цемента был изменен, чтобы уменьшить тепловыделение гидратации. В результате химический состав цемента был близок к цементу средней жары. По сравнению с обычным химическим составом портландцемента типа I, указанным в ASTM C150 (2011), содержание оксида алюминия (Al 2 O 3 ) в модифицированном портландцементе было ниже примерно на 2%, тогда как оксида кремния (SiO 2 ) содержание было на 1% выше.Из потенциального состава Bogue (1955) минеральных соединений на основе процентного содержания данного оксида в общей массе модифицированного портландцемента, C 3 S, C 2 S, C 3 A и C 4 Содержание AF согласно расчетам составило 43,9, 33,9, 3,7 и 11,6% соответственно. Это указывает на то, что содержание C 3 S и C 3 A в модифицированном цементе было на 16 и 54% ниже, чем те, которые традиционно определены для цемента типа I, соответственно, тогда как содержание C 2 S в первом было 37 .На 6% выше, чем у последнего. GGBFS, который соответствовал стандарту ASTM C989 (2011), имел высокое содержание оксида кальция (CaO) и массовое отношение SiO 2 – к – Al 2 O 3 , равное 2,29. Основность GGBFS, рассчитанная по химическому составу, составила 1,94. Первичным компонентом SF был SiO 2 . Удельный вес и удельная поверхность вяжущих материалов составляли 3,15 и 3466 см 2 / г соответственно для модифицированного портландцемента 2.94 и 4497 ​​см 2 / г для GGBFS и 2,32 и 200000 см 2 / г для SF.

Таблица 2 Химический состав вяжущих материалов (% по массе).

Природный песок и местный гранитный щебень с максимальным размером частиц 25 мм использовались для мелких и крупных заполнителей соответственно. Удельный вес, водопоглощение и модуль дисперсности приведены в таблице 3.

Таблица 3 Физические свойства заполнителей.

Макет образцов стенок и отверждение

Для моделирования первичной защитной оболочки ядерного реактора были подготовлены образцы стенок.Размер этих образцов стен составлял 1200 × 1000 × 2000 мм, как показано на рис. 1. Для вертикальной и горизонтальной арматуры деформированные стержни диаметром 35 мм располагались на расстоянии 300 мм как минимальная конфигурация арматуры стены. . Оба конца стен утеплены пенополистиролом толщиной 50 мм. Внизу стен не было изоляционных материалов. Для отверждения стеновых образцов при изотермических температурах окружающей среды были изготовлены три камеры из сэндвич-панелей толщиной 75 мм, как показано на рис.2. Каждая камера отверждения была оборудована автоматической системой контроля постоянной температуры. Средние температуры в камерах были установлены на 5, 20 и 35 ° C для имитации холодной погоды (зимой), эталонных (контрольная лаборатория) и жаркой погоды (летом), соответственно, поскольку три пропорции смеси бетона были определены с учетом разная температура окружающей среды в Южной Корее. После установки стеновой опалубки в камерах бетон был заложен автобетононасосом.Бетоны были произведены на заводе по производству товарного бетона с использованием пропорций смеси, приведенных в таблице 1. Поскольку макетные испытания проводились в холодную погоду, минимальные температуры бетона во время укладки и смешивания поддерживались выше 7 и 10 °. C соответственно, согласно отчету ACI 306 (2010). Сразу после литья образцы были покрыты листом винилхлорида для контроля испарения. Образцы стенок непрерывно выдерживались в камерах при предварительно заданных температурных условиях окружающей среды.Для сравнения с прочностью цилиндров, отвержденных в полевых условиях, цилиндры размером 100 × 200 мм, отлитые из каждой бетонной смеси, были одновременно отверждены с образцами стен при одинаковых температурах окружающей среды. Цилиндры и образец стенки, отвержденные в холодном состоянии, были удалены в возрасте 3 дней, тогда как другие образцы, отвержденные в контрольных или горячих условиях, были удалены через 1 день.

Рис. 1

Детали макетов образцов стен и расположение термопар (все размеры в мм).

Рис. 2

Камеры отверждения, оборудованные системой контроля постоянной температуры.

Testing

Температуры контролировались с помощью термопар внутри камер и в восьми различных местах для образцов стенок, включая центральную и приповерхностную области, как показано на рис. 1. Температурные данные регистрировались с помощью регистратора данных с 20-минутными интервалами. до конца первого дня, а затем каждые 2 ч.Чтобы оценить время схватывания по сопротивлению проникновению и определить кажущуюся энергию активации приготовленной бетонной смеси, свежий раствор был извлечен из каждой бетонной смеси с помощью сита 4,75 мм. Растворы были одновременно отверждены с каждым образцом стены при одинаковых температурах окружающей среды. Испытания на сопротивление проникновению для определения времени схватывания бетона проводились в соответствии с ASTM C403 / C403 M (2011). Испытания, необходимые для экспериментального определения кажущейся энергии активации фазы твердения, были выполнены с использованием 18 кубиков размером 50 мм, отвержденных при трех температурах (5, 20 и 35 ° C) в соответствии с ASTM C1074 (2011).Чтобы измерить прочность бетона в стенах на месте, стержни диаметром 100 мм были просверлены в разных местах с разными тепловыми характеристиками гидратации, как показано на рис. 3. Все стержни просверливались горизонтально. В нижних частях стен керны не просверливались, потому что там было сложно установить стержневой станок. Добыча была тщательно проведена опытными операторами, чтобы свести к минимуму повреждения при бурении. Керны были разделены на четыре группы в зависимости от места их бурения следующим образом (рис.3): часть внутренней поверхности в верхней области [верхняя поверхность (TS)], центральная часть в верхней области [верхний центр (TC)], часть внутренней поверхности в средней области [средняя поверхность (MS)] и центральная часть в средней области. [средний центр (MC)]. Ядра, не содержащие арматуры, были отрезаны на длину 200 мм и испытаны таким же образом, как и стандартные цилиндрические образцы того же размера, в соответствии с ASTM C42 / C42 M (2011). Концы сердечников шлифовали, чтобы минимизировать эксцентриситет. Сразу после бурения кернов буровая вода удалялась с их поверхности с помощью сухих полотенец.Измерения прочности на сжатие кернов были запланированы в возрасте 3, 7, 14, 28, 56 и 91 дня. Были протестированы только 2 ядра для каждого местоположения и возраста тестирования из-за ограничений по размеру макетов стен.

Рис. 3

Места колонкового сверления в образцах стен в разном возрасте испытаний.

На прочность сердечника влияют соотношение сторон и диаметр сердечника, наличие встроенной арматуры и возмущение из-за бурения (Ува и др.2013). Таким образом, прочность на сжатие ( f ядро ​​ ) ядер был исправлен с использованием единственной взаимосвязи, указанной в ACI 214.4R-10 (2010), а именно:

$$ S = F_ {H / D} F_ {dia} F_ {mc} F_ {d} f_ {core} $$

(1)

, где S — скорректированная прочность бетона, а \ (F_ {H / D} \), F диаметр , \ (F_ {mc} \) и F д — это поправочные коэффициенты для учета гибкости, диаметра, содержания влаги и повреждения поверхности сердечника.Поправочные коэффициенты для текущих ядер \ (F_ {H / D} \), \ (F_ {dia} \) и \ (F_ {mc} \) рассчитываются равными 1,0 и F д — 1,06.

Поскольку макетные стены не подвергались никаким нагрузкам, в ядрах не было трещин от внешних нагрузок. Кроме того, на поверхности кернов не наблюдалось видимых повреждений или трещин в результате сверления, как показано на Рис. 4.

Рис. 4

Типичное состояние поверхности образцов керна.

.