Что входит в состав чугуна: понятие, производство, особенности, структура, свойства и применение

Содержание

Чем чугун отличается от стали: характеристики, свойства

Содержание


Оба материала относятся к группе черных металлов. Внешне их сложно различить, а некоторые свойства перекликаются между собой. Это объясняется тем, что и сталь, и чугун представляют собой углеродистые сплавы железа. Именно содержание Fe и C определяет их главное различие.

Характеристики стали

Сталь ‒ это сплав железа и углерода, соотношение которых составляет от 45% и до 2% соответственно. В зависимости от марки в состав могут входить никель, хром, кремний, марганец и прочие добавки. Вариативность легирующих компонентов обеспечивает материалу обилие свойств.

Углерод отвечает за твердость и прочностные характеристики сплава. Благодаря ему металл обладает высокой прочностью, пластичностью, легко поддается обработке.

Сталь различают:

  • по наличию легирующих компонентов:
  • низколегированную;
  • среднелегированную;
  • высоколегированную;
  • по содержанию углерода:
  • низкоуглеродистую;
  • среднеуглеродистую;
  • высокоуглеродистую.

Температура плавления всех марок находится в диапазоне от 1450 до 1520 °С. Плотность составляет 7700-7900 кг/м3.

Применяют сталь повсеместно: в промышленности при производстве различных металлоконструкций, деталей машин, трубопроводов и прочих изделий, в быту мы пользуемся стальными столовыми приборами, кухонной утварью, предметами интерьера, мебелью и т.д.

Характеристики чугуна

Железо и углерод также являются основой чугуна. Количество последнего составляет от 2%. Сырье также легируют различными добавками: фосфором, марганцем, кремнием и другими.

В зависимости от сформированной кристаллической решетки (цементит / графит) выделяют следующие типы чугуна:

  • белый ‒ наличие цементита определяет цвет излома, благодаря которому материал получил название «белый», одновременно с твердостью обладает хрупкостью, путем отжига из него изготавливают ковкие чугуны;
  • серый ‒ содержание графита в большом количестве определяет цвет сырья и его пластичность, легок в обработке, в состав входят кремний, магний, фосфор, сера;
  • ковкий ‒ длительный отжиг белого чугуна образует графит, который придает металлу высокую пластичность, вязкость, твердость, ударную сопротивляемость;
  • высокопрочный ‒ образование шаровидного графита в процессе кристаллизации обеспечивает материалу повышенную прочность;
  • предельный ‒ подвергается дальнейшей обработке, не применяется, как самостоятельная единица.

Температура плавления чугуна составляет от 1160 до 1250 °С, зависит от содержания в нем углерода. Чем больше элемента в составе, тем меньше его температура и выше текучесть при нагревании. Такая зависимость определяет хрупкость материала.

Производство чугуна и стали

Чугун изготавливают в доменных печах из железной руды (агломерата), кокса, известняка и горячего воздуха. Сначала закладывают кокс, а затем послойно агломерат и кокс. В нижнюю часть печи через специальные отверстия подается горячий воздух, обогащенный кислородом.

Кокс, сгорая в домне, образует углекислый газ, который проходя через слои сырья, высвобождает оксид углерода. Таким образом руда постепенно претерпевает превращения. К ней добавляют известняк. Появляется силикат кальция, который отделяется в виде шлака. Окись углерода является главным восстановителем железа. Образование чугуна происходит за счет опускания Fe в более горячую часть домны и растворения в нем C.

Сталь производят из чугуна путем снижения количества углерода, серы, фосфора, марганца. Сплав получают в кислородных конвертерах, мартеновских печах и электропечах.

Как отличить чугун от стали

Определить, какое изделие перед вами находится, стальное или чугунное, можно тремя способами:

  1. По излому (визуально) ‒ этот метод применим для деталей, которые идут в лом или в качестве заготовок. На чугунном сломе виден матовый темно-серый оттенок, образовавшиеся трещины имеют выраженную структуру. Стальное изделие ‒ более светлое, поверхность глянцевая.
  2. Сверлением ‒ стальная стружка имеет витую форму, по длине она больше сверла, хорошо гнется. Чугунная стружка крошится при малейшем воздействии.
  3. Шлифовкой ‒ при прохождении шлифовальной машиной стальной поверхности образуется множество продолговатых искр желтого и белого цвета. У чугуна искр меньше, они короче, красноватого оттенка.

Итоги кратко

  • Сталь обладает большей прочностью за счет более низкого содержания углерода.
  • Чугунные металлоизделия более хрупкие.
  • Стальные изделия используют повсеместно: и в быту, и в производстве.
  • Чугун является основой для производства стали.

Чугун: серый и белый: cвойства, производство, литье, маркировка

Чугун начали применять много десятилетий назад. Этот материал обладает особыми эксплуатационными характеристиками, которые отличаются от свойственных стали. Производство чугуна, несмотря на появление большого количества различных сплавов, налажено во многих странах. Для того чтобы определить свойства чугуна, следует рассмотреть особенности его химического состава, от чего зависят те или иные физические качества.

Чугун

Химический состав чугуна является важным фактором, который во многом определяет механические свойства получаемых отливок. Кроме этого, на многие свойства оказывает влияние механизмы первичной и вторичной кристаллизации.

Содержание углерода в чугуне может варьироваться в пределах от 2,14 до 6,67 процентов. Современные технологии производства позволяют с высокой точностью контролировать концентрацию всех элементов в составе, за счет чего снижается показатель хрупкости и увеличиваются другие эксплуатационные характеристики.

Рассматривая химический состав чугуна следует отметить, что в него, кроме железа и углерода, обязательно входят следующие элементы:

  1. Кремний (концентрация не более 4,3%). Данный элемент оказывает благоприятное воздействие на чугун, делая его более мягким и улучшая его литейные свойства. Однако слишком высокая концентрация может сделать материал более восприимчивым к пластичной деформации.
  2. Марганец (не более 2%). За счет добавления этого элемента в состав существенно увеличивается прочность материала. Однако слишком большая концентрация может стать причиной хрупкости структуры.
  3. Сера относится к вредным примесям, который могут существенно ухудшать эксплуатационные качества материала. Как правило, концентрация серы в составе чугуна не превышает показателя 0,07%. Сера становится причиной появления трещин при нагреве состава.
  4. Фосфор содержится в составе в концентрации менее 1,2%. Повышение концентрации фосфора в составе становится причиной появления трещин при охлаждении состава. Кроме этого, данный элемент становится причиной ухудшения других механических качеств.

Как и во многих других составах, наиболее важным из химических элементов чугуна является углерод. От его концентрации и вида зависит разновидность материала. Структура чугуна может существенно различаться в зависимости от применяемой технологии производства.

Физический свойства

Чугун получил широкое распространение благодаря привлекательным физическим качествам:

  1. Стоимость материала существенно ниже стоимости других сплавов. Именно поэтому его применяют для создания самых различных изделий.
  2. Рассматривая плотность чугуна, отметим, что данный показатель существенно ниже, чем у стали, за счет чего материал становится намного легче.
  3. Температура плавления чугуна может несколько различаться в зависимости от его структуры, в большинстве случаев составляет 1 200 градусов Цельсия. За счет включения в состав различных добавок температура плавления чугуна может существенно повышаться или уменьшаться.
  4. При выборе материала многие уделяют внимание тому, что цвет чугуна может несколько отличаться в зависимости от структуры и химического состава.

Температура кипения чугуна также во многом зависит от химического состава. Для того, чтобы рассмотреть физические свойства материала, следует уделить внимание каждой его разновидности. Иная структура и химический состав становятся причиной придания иных физико-механических качеств.

Технология производства

Выплавка чугуна проводится на протяжении нескольких десятилетий, что связано с его уникальными эксплуатационными качествами. Большое количество разновидностей сплавов определяет применение особых правил маркировки. Маркировка чугунов проводится следующим образом:

  1. Литейные обозначаются буквой Л.
  2. Серый получил широкое распространение, для его обозначения применяется сочетание букв «СЧ».
  3. Ковкий обозначают КЧ.
  4. Предельный или белый обозначают буквой П.
  5. Антифрикционный или серый обозначают АЧС.
  6. Легированные чугуны могут обладать самым различным химическим составом и обозначаются буквой «Ч».

Технология производства чугуна предусматривает проведение нескольких этапов, которые позволяют получить требуемую структуру. Рассматривая процесс получения чугуна, отметим следующие моменты:

  1. Производство проводится в специальных доменных печах.
  2. Легированный и жаростойкий чугун могут получаться при использовании в качестве сырья железной руды.
  3. Технология представлена в восстановлении оксидов железа руды. В результате перестроения кристаллической решетки и изменения структуры на выходе получается материал, который называют чугуном.
  4. Рассматривая способы производства, отметим, что особенности технологии также заключаются в применяемых материалах – коксах. Под коксом подразумевают природный газ или термоантрацит, выступающие в качестве топлива.
  5. Изготовление чугуна предусматривает отпуск железа в твердой форме при применении специальной печи. На данном этапе получается жидкий чугун.

Оборудование для производства чугуна может существенно отличаться. Кроме этого, применяемая технология производства во многом определяет то, какой будет получен материал. Примером можно назвать производство ВЧШГ, которое связано с приданием структуре необычную форму.

Разновидности чугуна

Существует довольно большое количество разновидностей рассматриваемого материала. Классификация чугунов во многом зависит от структуры и химического состава. Выделяют следующие виды чугуна:

  1. Серый. Эта разновидность материала характеризуется низкой пластичностью и высокой вязкостью, а также хорошей обрабатываемостью резанием. В составе углерод содержится в виде графита. Область применения – машиностроение; производство деталей, работающих на износ. Как показывает практика, концентрация фосфора может варьироваться в достаточно большом диапазоне: от 0,3 до 1,2%. За счет особого химического состава материал обладает высокой текучестью и часто применяется в художественном литье. Антифрикционный чугун обходится в относительно невысокую стоимость, что также определяет его широкое распространение.
  2. Белый. За счет того, что в этом составе углерод представлен в качестве цементита, структура характеризуется чрезвычайной хрупкостью и повышенной твердостью, а также низкими литейными свойствами и плохой обрабатываемостью резанием. Стоит учитывать, что белый чугун применяется для переделки в сталь или изготовлении ковкого. Очень часто его называют предельным.
  3. Половинчатый характеризуется повышенной устойчивостью к износу, что связано с распределением углерода на цементитную и свободную основу. Часто эта разновидность материала применяется в машиностроении и станкостроении.
  4. Легированный. Для того чтобы придать особые свойства чугуну также проводится его легирование. Легированный чугун обладает повышенной износостойкостью, коррозионной стойкостью за счет включения в состав никеля и хрома, а также меди. Подобные варианты исполнения чугуна получают свое название в зависимости от того, как легирующий элемент использовался при их изготовлении.
  5. Высокопрочный чугун производится путем введения в состав жидкого серого чугуна различных элементов, к примеру, магния и кальция. В результате легирования меняется форма графита – он напоминает шар и при этом не меняет кристаллическую решетку. Стоит учитывать, что по своим свойствам этот металл напоминает углеродистую сталь, применяется, в основном, при изготовлении различных износостойких деталей.
  6. Ковкий. Получают его при переплавке белого чугуна, который следует нагреть до высокой температуры и выдерживать в подобном состоянии. В некоторых случаях для придания составу особых качеств проводится добавление легирующих элементов. Основными свойствами можно назвать высокую вязкость и повышенную степень пластичности. Получил широкое распространение в машиностроительной промышленности.
  7. Специальный. Представляет собой сплав, в который входит большое количество марганца и кремния. Зачастую применяется для удаления кислорода из стали при его производстве или переплавке, за счет чего понижается температура плавления.

Литье чугуна

Каждая разновидность чугуна обладает своей особой структурой и химическим составом, которые и определяют область применения.

Применение

Из-за особых физико-механических качеств применение чугуна стало возможно в самых различных сферах:

  1. Для производства различных деталей в машиностроительной отрасли. На протяжении многих лет именно этот сплав применяется при изготовлении самых различных деталей для двигателя внутреннего сгорания. При этом автопроизводители проводят изменение основных свойств материала путем его легирования, что необходимо для достижения уникальных качеств. Кроме этого, большое распространение получили тормозные колодки из данного сплава.
  2. Изделия из чугуна могут выдерживать воздействие низкой температуры. Поэтому материал применяется при производстве техники и инструментов, которые эксплуатируются в жестких климатических условиях.
  3. Ценится чугун в металлургической области. Это связано с невысокой стоимостью, которая во многом зависит от концентрации углерода и особенностей получаемой структуры. Высокие литейные качества также делают материал более привлекательным. Получаемые изделия характеризуются высокой прочностью и износостойкостью.
  4. На протяжении нескольких последних десятилетий рассматриваемый сплав широко применяется при изготовлении сантехнического оборудования. Это связано с высокими антикоррозионными способностями, а также возможностью получения изделий самой различной формы. Примером можно назвать чугунные ванны и радиаторы, различные трубы, батареи и мойки. Несмотря на появление материалов, которые могли бы заменить чугун, подобные изделия пользуются большой популярностью. Это связано с тем, что они сохраняют первозданный вид на протяжении длительного периода эксплуатации.
  5. Применяется сплав и для изготовления различных декоративных элементов, что связано с высокими литейными качествами. Примером можно назвать решетку для перил, различные статуэтки и многое другое.
Чугунные сковороды
Чугунные радиаторы

Кроме этого, область применения зависит от нижеприведенных свойств рассматриваемого материала:

  1. Некоторые марки обладают высокой прочностью, которая характерна для стали. Именно поэтому материал применяется даже после появления современных сплавов.
  2. Чугунные изделия могут на протяжении длительного периода сохранять тепло. При этом тепловая энергия может равномерно распространяться по материалу. Эти качества стали использоваться при изготовлении отопительных радиаторов или других подобных изделий.
  3. Принято считать, что чугун – экологически чистый материал. Именно поэтому его часто применяют при изготовлении различной посуды, к примеру, казана.
  4. Высокая стойкость к воздействию кислотно-щелочной среды.
  5. Высокая гигиеничность, так как все загрязняющие вещества могут легко удаляться с поверхности.
  6. Рассматриваемый материал характеризуется достаточно длительным сроком службы при условии соблюдения рекомендаций по эксплуатации.
  7. Входящие в состав химические вещества не могут нанести вреда здоровью.

В заключение отметим, что давно открытая технология производства рассматриваемого материала на протяжении многих лет оставалась практически неизменной. Это связано с тем, что при относительно невысоких затратах можно было получить большой объем расплавленного сплава. На сегодняшний день часто проводится производство материала из лома, что позволяет еще в большой степени снизить себестоимость получаемого продукта.

Чугун литейный

Чугун литейный — это сплав железа, в состав которого входит кремний и углерод, а также всегда присутствующие примеси Mn, P, S. Весь углерод, который содержит материал, находится в виде графита формы пластины. Такой чугун при изломе имеет серый цвет, на цветовой фактор влияет содержащийся в сплаве графит. Поэтому литейный чугун называют серым, поэтому /серый чугун/ и литейный – это практически один и тот же сплав.

Такой металл является основным сплавом в машиностроении. Название серого чугуна литейным приобрело благодаря его отличным литейным способностям, он обладает хорошей текучестью и соответственно хорошо заполняет формы для заливки.

Если Вы ищете, где дорого сдать чугун, рекомендуем изучить актуальные цены на лом чугуна по ссылке: https://citylom.ru/priem-chuguna

Состав литейного чугуна

Химический состав литейного чугуна сказывается на качестве отливок. Очень большое влияние оказывает углерод, который содержится в чугуне в виде графита, карбида, углерода закала. Когда много графита он разрыхляет чугун, придает мягкость. Когда графита более 2,5%понижается прочность и вязкость металла. Соответственно сплав будет непригоден к отливке.

Кремний производит вытеснение углерода из соединения с железом, в результате такой реакции выделяется графит. Высокое содержание кремния препятствует насыщению углерода. Литейный чугун состав которого включает  марганец ,получает часть своих свойств благодаря этому включению. Так марганец повышает степень твердости, но придает хрупкость отливке, поэтому считается ненужной примесью. Но, данный элемент защищает железо и другие примеси от окисления.

Химический состав литейного чугуна включает также фосфор, который играет особую роль в придании сплаву определенных качества и свойств. Он придает чугуну особую твердость, уменьшая при этом упругость и ненужную вязкость. Чтобы чугун был с  достаточно хорошей прочностью, необходимо не более 0,3% фосфора. Фосфор увеличивает хорошую плавкость чугуну, что позволяет точнее подчеркнуть формы при заливке и застывании придать более гладкую поверхность. Сера препятствует насыщению углерода, а также замедляет выделение графита.

Литейный чугун состав, которого включает и серу, может несколько терять свою плавкость. При высоком содержании данной примеси он становится густым и соответственно плохо заполняет форму. Поэтому материал с большим содержанием серы не применяют для тонкого литья. От того каким будет начальный состав чугуна зависит химический состав готовой отливки.

Свойства литейного чугуна

Главные свойства литейного чугуна — хорошие литейные показатели, мягкая текучесть и малая объемная усадка. Детали из данного металла малочувствительны внешнему напряжению при периодических нагрузках, степень поглощения колебаний, когда есть вибрация достаточно высокая, выше, чем у стали в 2-4 раза. Также благодаря графиту свойства литейного чугуна имеют хорошие антифрикционные свойства, что повышает работоспособность детали. Однако графитные включения в составе сплава придают ему хрупкость. Эти включения словно многочисленные надрезы в литом металле.

 Никель, как легирующий элемент, оказывает хорошее влияние на свойства литейного чугуна, он увеличивает коррозийные функции и улучшает обработку сплава. Медь графитизирует углерод, значительно повышает текучесть, прочность и достаточную твердость металла. Температура плавления зависит от химического состава материала и может колебаться в пределах 1130 — 1350 градусов Цельсия.

Основные маркировки по ГОСТ литейного чугуна:

  • Л1, Л2, Л3, Л4, Л5,
  • Л6, ЛР1, ЛР2, ЛР3, ЛР4,
  • ЛР5,ЛР6, ЛР7.

Влияние элементов на свойства чугуна

Микроструктура чугунов (табл. 1) зависит от скорости охлаждения металла: при быстром охлаждении будет белый чугун (углерод находится в химически связанном состоянии в виде цементита и ледебурита), а при медленном охлаждении будет серый чугун (углерод находится в виде графита).

Табл. 1. Марки и механические свойства чугуна разлиных типов.

 

ГруппаМарка чугунаσВ, МПаНВδ
серыеСЧ10100120…150
СЧ15150130…241
СЧ35350179…290
ВысокопрочныеВЧ35350140…17022
ВЧ40400140…20215
ВЧ1001000270…3602
КовкиеКЧ30-63001636
КЧ33-83301638
КЧ37-1237016312
КЧ63-26302692

Кремний Si способствует графитизации чугуна, и улучшает его литейные свойства. В серых чугунах содержится 0,8 …4,5 % Si.

Марганец Mn способствует отбеливанию чугуна, но содержание Mn до 1,2% полезно, т.к. увеличиваются твердость и прочность чугуна.

Фосфор Р повышает жидкотекучесть чугуна, поэтому допустимо его содержание до 0,4%, но в ответственных чугунных отливках содержится фосфора менее 0,15%, т.к. с ростом содержания его увеличивается хрупкость чугуна.

Сера S затрудняет графитизацию, увеличивает хрупкость и ухудшает жидкотекучесть чугуна, поэтому серы в чугунах должно быть не более 0,1%.

Серые чугуны делятся на модифицированные, высокопрочные и ковкие (табл. 2).

В серых чугунах графит имеет пластинчатую форму, в высокопрочных — шаровидную, а в ковких — хлопьевидную.П римеры обозначения чугунов:

Формирование структуры чугуна происходит при затвердевании отливки. Основными факторами, влияющими на структурообразование чугуна, являются его химический состав (см. табл. ниже) и скорость охлаждения отливки в форме.

Табл. 2 — Влияние химических элементов на свойства чугуна

Серый чугунВысокопрочный чугунКовкий чугун
Углерод
Повышенное содержание углерода приводит к уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугунаУвеличенное содержание углерода улучшает литейные свойства чугунаУглерод — основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегрева
Кремний
Кремний (с учетом содержания углерода) способствует выделению графита и снижает твердость, а также уменьшает усадку; повышенное содержание кремния снижает пластичность и несколько увеличивает твердостьС повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания — уменьшаются предел прочности при растяжении и относительное удлинениеДля ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаются
Марганец
Марганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении — снижаются. Марганец увеличивает усадку сплаваС повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном — 1,0%
Магний
Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния — 0,04-0,08%
Сера
Сера снижает прочность и пластичность, но несколько повышает износостойкость сплава, считается вредной примесью, придает чугуну красноломкость (образование трещин при высоких температурах), препятствует выделению графитаЧем выше содержание серы в исходном чугуне, тем труднее получить полностью шаровидную форму графита и, следовательно, высокие механические свойстваСодержание серы в ферритном ковком чугуне, модифицированном алюминием, может быть повышено до 0,2 %; при этом механические свойства возрастают за счет улучшения формы графита. Определяющее влияние на механические свойства чугуна оказывает отношение содержания марганца и серы, которое должно быть в пределах 0,8-3,0
Фосфор
Фосфор на процесс графитизации углерода влияет слабо, но повышает жидкотекучесть сплава, придает чугуну хладноломкость, т. е. хрупкостьФосфор оказывает существенное влияние на структуру и механические свойства. Чтобы получить чугун с высокой пластичностью, содержание фосфора не должно превышать 0,08%. Для получения чугуна с невысокой пластичностью содержание фосфора увеличивают до 0,12-0,15%Фосфор оказывает такое же, как для серого чугуна влияние на структуру и механические свойства сплава
Никель
Никель — легирующий элемент, благоприятно влияет на выравнивание механических свойств в отливках с различной толщиной стенок, повышает твердость на 10 НВ. С увеличением содержания никеля возрастает коррозионная стойкость и улучшается обрабатываемость сплаваНикель влияет на тепло- и электропроводность, а также на коррозионную стойкость и жаростойкость сплава. С увеличением содержания никеля эти свойства повышаютсяНикель способствует графитизации углерода и увеличивает количество перлита в металлической основе сплава
Хром
Хром — карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углеродаС увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплаваХром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов
Молибден
Молибден — легирующий элемент; замедляет процесс графитизации углерода и способствует карбидообразованию. С увеличением содержания молибдена повышается твердость без ухудшения обрабатываемости и возрастает сопротивление износуМолибден способствует измельчению перлита и графитовых включений, увеличивает предел прочности на 3-7 кгс/мм2 при содержании молибдена 0,5%; замедляет процесс графитизации углерода
Медь
Медь способствует графитизации углерода, увеличивает жидкотекучесть, повышает прочность и твердость сплаваПри содержании в сплаве 1 % меди прочность при растяжении повышается до 40%, а текучесть — до 50 % и соответственно при 2% меди — до 65% и до 70%. Содержание меди более 2% препятствует образованию в структуре сплава шаровидного графитаМедь способствует графитизации углерода и увеличивает содержание в сплаве перлита

Небольшие количества множества элементов могут попасть в состав литейного чугуна и оказывать заметное воздействие на структуру и свойства отливок. Добавки некоторых из этих элементов производят специально, в то время как другие представляют собой примеси, привнесенные в металл из шихты. Некоторые из этих элементов оказывают положительное воздействие, особенно в сером чугуне, в то время как другие оказывают отрицательное воздействие и попадания их с расплав следует избегать. В таблице перечислены обычные источники этих элементов, часто встречающиеся уровни их содержания и основное воздействие на чугун. Результаты применения некоторых элементов в качестве основных легирующих (например, хром), в таблице не указаны.

ЭлементОбычный источникОбычное содержание (%)Воздействие на литейный чугун
Алюминий AlСтальной лом, раскисленный Al, модификаторы, ферросплавы, добавки алюминияДо 0,03Способствует образованию водородных газовых пор в тонких сечениях при содержании Al выше 0,005%. Нейтрализует азот. Способствует образованию дросса. При Al свыше 0,08% оказывает отрицательное воздействие на форму шаровидных включений графита. Может быть нейтрализован церием. Сильный стабилизатор графита.
Сурьма SbСтальной лом, эмалированный лом, корпуса подшипников, добавки сурьмыДо 0,02Сильный стабилизатор перлита и карбидов. Препятствует образованию шаровидного графита в отсутствие РЗМ.
Мышьяк
As
Чугун, стальной ломДо 0,05Сильный стабилизатор перлита и карбидов. Улучшает форму шаровидного графита.
Барий
Ba
Модификаторы с бариемДо 0,003Усиливает образование центров графитизации графита и увеличивает продолжительность действия модификатора. Снижает тенденцию к отбелу и способствует образованию графита.
Висмут
Bi
Специальные добавки, покрытие литейной формы, содержащее висмутСвыше 0,01Способствует образованию отбела и нежелательных форм графита. Увеличивает число включений шаровидного графита в ВЧ, содержащем РЗМ (церий). Чрезмерное число шаровидных включений графита может спровоцировать усадку.
Бор
B
Эмалированный лом, специальные добавки (например, FeB).До 0,01Свыше 0.001 % способствует образованию карбидов особенно в ВЧ. 0,002 % B улучшает способность к отжигу ковкого чугуна.
Кальций
Ca
Ферросплавы, модификаторыДо 0,01Улучшает степень шаровидности включений графита. Снижает тенденцию к отбелу и способствует образованию графита.
Церий
Ce
Большинство магниевых сплавов, мишметалл или другие источники РЗМДо 0,02Как правило, не используется в сером чугуне. Подавляет отрицательное воздействие нежелательных элементов в ВЧ. Улучшает степень шаровидности графита. Стабилизатор карбидов из-за сегрегации.
Хром
Cr
Легированная хромом сталь, некоторые чугуны, феррохромДо 0,3Способствует образованию отбела и перлита. Повышает прочность. Образует скопления карбидов в ВЧ при содержании выше 0,05 %.
Кобальт
Co
Инструментальная стальДо 0,02Не оказывает существенного воздействия на чугун.
Медь
Cu
Медная проволока, сплавы на основе меди, стальной лом, специальные добавки меди.До 0,5Способствует образованию перлита. Повышает прочность. Ослабляет процесс ферритизации в ВЧ. Отсутствие вредного воздействия.
Водород
H
Сырые огнеупоры, материалы литейных форм и влажные добавки.Образует подповерхностные газовые поры. В незначительной степени способствует образованию отбела. Способствует отбелу при недостатке марганца для нейтрализации серы. Способствует образованию крупных включений графита.
Свинец
Pb
Старые краски, некоторые виды эмалей, автоматная сталь, припой, отложения на бензиновом двигателе.До 0,005Способствует образованию нежелательных структур графита в сером чугуне и существенно снижает прочность при содержании > 0,004 %. Способствует образованию перлита и карбидов. Вызывает образование дегенеративных форм шаровидных включений графита. Отрицательное воздействие на графит в ВЧ нейтрализуется РЗМ (церием).
Магний
Mg
Добавки магний содержащих модификаторов.0,03 — 0,08Способствует образованию шаровидных включений графита и стабилизирует карбиды в ВЧ. Не используется в серых чугунах.
Марганец
Mn
Большинство чугунов, стальной лом, добавки кускового или брикетированного ферромарганца.0,2 — 1,0Нейтрализует серу, образуя MnS. Способствует образованию перлита. Образует скопления карбида в ВЧ. При высоком содержании способствует образованию газовых пор в сочетании с высоким содержанием серы.
Молибден
Mo
Рафинированный чугун, легированная сталь, добавки ферромолибденаДо 0,1Способствует образованию перлита. Повышает прочность. Может способствовать формированию усадки и образованию карбидов.
Никель
Ni
Никелированный лист, стальной лом, специальные чугуны. Сплав Ni/MgДо 0,5В небольших количествах слабое воздействие на расплав. Графитизирующий эффект в больших количествах.
Азот
N
Кокс, науглероживатели, связующие, стальной лом, добавки азотированного ферромарганца.До 0,015Способствует формированию компактных структур графита. Способствует образованию перлита. Повышает прочность. Высокое содержание приводит к образованию трещин в толстых сечениях. Может быть нейтрализован Al, Ti и Zr. Оказывает незначительное влияние на ВЧ.
Фосфор
P
Фосфористый чугун и лом, добавки FeP.До 0,1Повышает углеродный эквивалент. Повышает жидкотекучесть. Формирует фосфидную эвтектику. Оказывает отрицательное воздействие на ВЧ при содержании > 0,05 %. При содержании > 0,04 % вызывает образование пригара.
Кремний
Si
Сплавы ферросилиция, стальной лом, чугун.0,8-4,0Способствует графитизации, снижает отбел, стабилизирует феррит, повышает литейные свойства.
Сера
S
Кокс, науглероживатели, чугун, чугунный лом, добавки сульфида железа.До 0,15 (серый чугун)Оказывает сильное отрицательное воздействие на структуры и свойства, если не сбалансирована марганцем. Повышает чувствительность СЧ к модифицированию. Может требовать увеличения навесок Mg в ВЧ. Содержание серы в ВЧ не должно превышать 0,03 %.
Стронций
Sr
Стронций содержащие модификаторыДо 0,003Способствуют формированию графита в СЧ и ВЧ. В значительной степени снижает отбел в сером чугуне.
Теллур
Te
Автоматная медь, покрытия литейной формы, остатки от проб при термическом анализе.До 0,003Сильный стабилизатор карбидов. Вызывает образование многих нежелательных форм графита. Влияние Те выражено при содержании с 0,0003 %. Влияние уменьшается в сочетании Те с Mg и Ce в ВЧ
Олово
Sn
Припой, жестяной лом, бронзовые компоненты, добавки олова.До 0,15В значительной степени способствует образованию перлита. Повышает прочность. Охрупчивает ВЧ при содержании > 0,08%. Не отмечено других вредных проявлений.
Титан
Ti
Некоторые чугуны, некоторые краски и эмали, возврат ЧВГ, добавки титана и ферротитана.До 0,10Нейтрализует азот в сером чугуне. Вызывает формирование водородной пористости в присутствии алюминия. Вызывает образование переохлажденного графита в сером чугуне. Подавляет формирование шаровидных включений графита при производстве ЧВГ.
Вольфрам
W
Быстрорежущая инструментальная стальДо 0,05Редко присутствует в существенных объемах. Средний по силе стабилизатор перлита.
Ванадий
V
Лом, инструментальной стали, некоторые чугуны, добавки феррованадия.До 0,10Вызывает образование отбела. Измельчает включения пластинчатого графит. Существенно повышает прочность.

 

Предлагаем услуги по оптимизации геометрии разливочной оснастки с целью обеспечения повышения коэффициента использования металла и снижения осевой пористости слитков

подробнее

Отличия чугуна от стали: определение металла визуально Статьи про металлолом

18.01.2018 18:12

Сталь и чугун – это одни из наиболее популярных видов литейных материалов, применяющихся в промышленности. По своим свойствам они довольно схожи, понять, чем отличается сталь от чугуна, можно разными способами. Некоторые из методов можно использовать только в заводских условиях с помощью высокоточного оборудования, другие подходят для применения в быту.

Основное отличие чугуна от стали заключается в составе металлов. Сталь представляет собой сплав железа (45%) с углеродом (не более 2%) и легирующими примесями, в качестве которых могут выступать такие вещества, как никель, молибден либо другие. Этот металл отличается высокой прочностью, пластичностью, легкостью обработки. В состав чугуна также входит железо с углеродом, но последнего должно быть от 2% и больше. В качестве легирующих добавок обычно выступает кремний, фосфор, марганец или другие компоненты.

Различия физико-химических характеристик

Основная разница в качествах этих металлов заключается в следующем:

  • Твердость стали выше, чем у чугуна.
  • Масса стальных изделий меньше, при этом материал легче плавится.
  • Определенные виды обработки доступны только для стальных заготовок (ковка, сварка), в то время как чугунные изделия изготавливаются только литьевым методом.
  • Теплопроводность чугунных изделий ниже, чем у стальных аналогов.
  • Чугун не нуждается в обязательной закалке.

Можно ли отличить чугун от стали визуально?

Если речь идет о фрагментах или заготовках, обработка которых не нанесет вреда, можно посмотреть на визуальные отличия металлов. На сломе изделия из чугуна появляется темно-серый матовый оттенок, стальная поверхность более светлая, имеет глянцевую текстуру. Внешний вид зависит от содержания углеродистых компонентов, различить их можно по типу трещин: на высокоуглеродистых стальных поверхностях они похожи на дефект в виде раскола, на изделии из низкоуглеродистого сплава железа трещины выглядят как разрыв пластичного типа.

На вопрос о том, можно ли отличить готовые изделия по оттенку или текстуре, можно дать однозначный ответ: предметы из стали более светлые, практически всегда имеют глянцевый оттенок, изделия из чугуна – темные и матовые.

Как отличить чугун от стали?

Чтобы отличать эти металлы друг от друга, можно использовать следующие способы:

  • Сверление. Для этого понадобится взять насадку с маленьким диаметром и, выбрав на заготовке ровный участок, высверлить небольшое отверстие. Если при обработке материала образуется тонкая стружка, которая формируется в витую полоску длиной больше используемого сверла, имеет цвета побежалости по всей длине и достаточно хорошо гнется, заготовка сделана из стали. Чугунный сплав менее пластичен, он практически не образует вьюна, а стружка крошится от малейшего механического воздействия: ее легко растереть до состояния порошка, поскольку материал более хрупкий;
  • Шлифование. Для этого используется углошлифовальная машинка, для обработки выбирают участок, на который не воздействуют силы трения, контакт с другими металлическими поверхностями или деталями, в противном случае после шлифовки изделие может быть непригодным к дальнейшему использованию. В процессе обработки требуется следить за цветом искры и ее формой. Если сплав чугунный, искра будет короткой, звездочка будет иметь красноватый тон, а если деталь сделана из стали, искр вылетает больше, они имеют увеличенный размер и продолговатую форму. Сами искры имеют желтый или белый цвет. Исключением являются стальные сплавы с повышенным содержанием углерода, которые дают короткую багровую искру с укороченным треком и малой звездочкой.

Методы механического воздействия могут применяться в бытовых условиях, когда нужно определить, чугун или сталь перед вами, без применения специального оборудования. В лаборатории может использоваться современная техника, с помощью которой проводится спектральный или микроскопический анализ свойств металлов. Эти методы обеспечивают результат высокой точности, но используются преимущественно в промышленных целях, на производстве и в научно-технической отрасли ввиду сложности и дороговизны оборудования.

Характеристики стали и чугуна, как основных железоуглеродистых сплавов

Из всего разнообразия металлов, применяемых в производстве кованых изделий, наибольшее распространение получили железоуглеродистые сплавы. К ним, в первую очередь, относятся сталь и чугун. Эти материалы служат для изготовления таких конструкций, как кованые заборы, ограждения, ворота. Также стальные и чугунные элементы являются частью конструкций фонарных столбов, кованых урн и других изделий.

Сталь – это железоуглеродистый сплав, содержание углерода в котором колеблется в пределах до 2%. Чугун же, являясь более хрупким металлом, имеет в своем составе углерод в количестве более 2%. При этом, как можно понять, чем выше процент содержания углерода в сплаве, тем ниже его показатели прочности. Кроме углерода в состав сплавов входят и другие компоненты (марганец, фосфор, сера, кремний), но преимущественную часть все-таки занимает железо.

Железо – это металл, который характеризуется важной особенностью, которая определяет его широкую сферу применения. Это аллотропичность, способность к превращениям в твердом состоянии. Такой показатель можно проследить при изменении температур. При температуре до 910 °С структура железа имеет кристаллическую решетку центрированого куба (так называемое «альфа-железо»). При повышении температуры решетка преобразуется в куб с центрироваными гранями, и такое железо имеет название «гамма-железо». При показателях температуры превышающих 1400 °С кристаллическая решетка принимает свою первоначальную конфигурацию и носит название «дельта-железо». При обычной температуре альфа-железо сохраняет магнитные свойства, которые теряются при достижении 768 °С. Немагнитное железо, существующее в период нагрева от 768 °С до 910 °С, называется «бета-железо». Таким образом, основными формами являются альфа- и гамма-железо, которые отличаются способностью к растворению углерода. Гамма-железо имеет свойство растворять большее количество углерода, что является важным показателем при термообработке стали.

Основными составляющими любого железоуглеродистого сплава являются феррит и цементит. Это собственно и есть железо, содержание которого в сплаве колеблется от 93 до 99%, но с незначительным добавлением углерода. Содержание углерода в феррите совсем мало, а цементит имеет в своем составе 6% углерода. Существует также и такое понятие как перлит. Это смесь феррита с цементитом, которая образуется при температуре 723 °С.

Структура железа, которая появляется при достижении температуры 910 °С, т.е. когда мы говорим о дельта-железе, называется аустенитом. Это та структура, в которой может быть растворено наибольшее количество углерода.

Если мы говорим о белом чугуне, то целесообразно вспомнить и такую составляющую как ледебурит. Это смесь цементита и аустенита, которая содержит 4,3% углерода.

Таким образом, можно говорить о характеристиках стали и чугуна в зависимости от их структурных составляющих. Например, если сталь содержит цементит, она является в разы более хрупкой, чем та, которая имеет в своей структуре феррит. Сплавы, имеющие аустенит отличаются еще менее высокой прочностью.

Кроме этого на физические свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей. Как уже говорилось выше, сталь и чугун неизбежно имеют в своем составе серу, фосфор, марганец и кремний. Обычная сталь содержит до 0,05% серы, до 0,05% фосфора, до 0,8% марганца и до 0,4% кремния. Примеси фосфора и кремния в структуре стали не образуют отдельных зерен, а растворяются в феррите. Сера же в железе не растворяется, но при этом в структуре стали образует сульфиды железа и марганца. Эти химические соединения, а также оксиды металла называют неметаллическими включениями.

Разобравшись, какие же примеси существуют в составе железоуглеродистых сплавов, рассмотрим их непосредственное влияние на свойства металла.

Углерод, как самый важный компонент, оказывает наиболее серьезное влияние. Чем больше процент содержания углерода, тем выше хрупкость, но ниже показатели удлинения и сужения. Предел прочности и упругости стали определяется содержанием углерода до 0,9%. Дальнейшее увеличение углерода в составе провоцирует появление цементита в его структуре, а значит и повышение хрупкости.

Наличие марганца и кремния в составе сплавов обычной стали практически не оказывает никакого воздействия. Но вот сера и фосфор определенным образом могут навредить. Повышенный процент содержания серы реализуется в появлении так называемой красноломкости стали. Это значит,  что при достижении 900-1200 °С в металле начинают образовываться трещины. Большое содержание фосфора вызывает обратный процесс, называемый хладноломкостью. Сталь становится хрупкой, особенно на морозе. Но иногда сера и фосфор оказывают и положительное влияние на свойства стали. Например, в некоторой степени облегчают обрабатываемость на станках.

В зависимости от содержания углерода и других примесей различают углеродистые и легированые стали. Легироваными называются те, в которых содержатся искусственно добавленные металлы (хром, никель и др.). Углеродистые же стали в своем составе, кроме постоянных примесей, о которых говорилось выше, ничего не содержат.

Черные металлы – железо и его сплавы

Черные металлы – железо и его сплавы, которые отличаются от остальных металлов, называемых цветными. К черным металлам относятся чугуны и стали, представляющие собой сплавы железа с углеродом, в состав которых входят еще и кремний, марганец, сера и другие элементы.

Чугун – железоуглеродистый сплав, в котором содержание углерода превышает 2%. В состав его также входят кремний, марганец, фосфор и сера. Чугун выплавляется в доменных печах из железных руд. Исходными материалами для его получения, кроме руды, служат топливо и флюсы.

Сталь – сплав железа с углеродом, содержащий углерода не более 2%. По сравнению с чугуном сталь обладает значительно более высокими физико-механическими свойствами. Она отличается высокой прочностью, хорошо обрабатывается резанием, ее можно ковать, прокатывать, закаливать. Кроме того, сталь в расплавленном состоянии жидкотекуча, из нее изготовляют различные отливки. Сталь получают из передельного чугуна его переплавкой и удалением избытка углерода, кремния, марганца и других примесей и выплавляют в мартенах, электропечах и конверторах.

Железо и его сплавы важнейшие конструкционные материалы в технике и промышленном производстве. Из сплавов железа с углеродом, называемых сталями, изготавливаются почти все конструкции в машиностроении и тяжелой промышленности. Легковые, грузовые автомобили, станки, железные дороги, корпуса и силовые установки судов – все это делается в основном из стали. Масштаб производства стали является одной из основных характеристик общего технико-экономического уровня развития государства. На долю стали приходится около 95% всей металлической продукции.

Черные металлы являются неотъемлемой частью большинства габаритных рекламных носителей. Они находят свое применение при закладке фундамента, на основе которого монтируются рекламные щиты или другие средства наружной рекламы. В этом случае обязательно используется арматура различных сечений. Используются в качестве каркаса рекламных носителей, тут может применяться металлический уголок разных профилей, балки, швеллера, трубы небольших диаметров. Так же может использоваться в виде основного (или даже единственного) материала из которого изготавливается наружная реклама.

Металл, выступая в качестве строительного материала, обладает большим количеством достоинств. Среди основных можно выделить его надежность, долговечность и легкость. Конструкции, выполненные из этого материала, имеют сравнительно небольшой вес, но при этом соединения характеризуются повышенной прочностью.

Главный недостаток металла – это его подверженность коррозии, при взаимодействии с влагой или агрессивными газами. Длительное нахождение в неблагоприятных условиях может привести к разрушению конструкции.

Вместо черных металлов так же могут использоваться более легкие и менее подверженные коррозии материалы: нержавеющая сталь, алюминий, алюминиевые композитные панели.

Чугун — обзор

Классификация специальных высоколегированных чугунов

Без графита

Эти чугуны могут иметь структуру зерен карбидов, мартенсита, бейнитов и аустенитов. Они могут быть связаны с некоторыми структурами графита и перлита. Часто можно найти детали этих чугунов, указанных как одна из марок, описанных в ASTM A 532. Таблица 1-7-1 описывает образец типичных марок ASTM только для информации; более точную и полную информацию следует получить из самого последнего выпуска спецификации ASTM.

Таблица 1-7-1. Чугун с графитовым подшипником

Ферритный 5% Si-чугун Термостойкий
Высокий (15%) кремниевый чугун Устойчивый к коррозии, как указано в ASTM A 518, Сорт 1, 2 и 3.
Аустенитный 18% Ni (Ni-Resist)
18% Ni, 5% Si
Устойчивость к коррозии и термостойкость, как указано в ASTM A 439
Heat and Corrosion Устойчивый ASTM A 439
Игольчатый Высокопрочный Износостойкий
1.

Перлитный чугун: износостойкий чугун

2.

Мартенситный белый чугун (Ni-Hard): износостойкий

3.

Высокохромистое железо (11% –28% Cr) : износостойкость, коррозионная и жаропрочная

Чугуны с высоким содержанием кремния

В то время как стандартные ковкие чугуны содержат от 1,8% до 2,8% кремния, модифицированные ковкие чугуны обычно содержат 3,5% кремния. Чугун с высоким содержанием кремния содержит кремний в пределах 14.От 20% до 14,75%.

Кремниевый чугун обладает отличной устойчивостью к коррозии, особенно в среде с серной кислотой (H 2 SO 4 ), во всех концентрациях до 100% до температуры кипения при атмосферном давлении.

Скорость коррозии обычно снижается до очень низкого уровня, обычно менее 5 м / год (0,13 мм / год). Однако, если в окружающей среде содержится горячая кислота в диапазоне от 5% до 55% H 2 SO 4 , то скорость коррозии может возрасти до 20 м / г (0.51 мм / год).

Выше 100% H 2 SO 4 кремниевый чугун быстро разрушается свободным SO 3 . Однако основным ограничением кремниевого чугуна является его подверженность термическим и механическим ударам. Они обладают плохими механическими свойствами, такими как низкая термическая и механическая стойкость к ударам, их трудно отливать, и их практически невозможно обрабатывать.

Обычно содержание кремния в основном легирующем элементе составляет от 12% до 18%. Как указывалось ранее, наличие кремния выше 14.2% придает материалу характерные свойства коррозионной стойкости. Чугуны с высоким содержанием кремния представляют собой наиболее часто задаваемые коррозионно-стойкие сплавы по умеренной цене.

Хром и молибден также добавляются в сочетании с кремнием для обеспечения превосходной коррозионной стойкости в определенных средах.

В высококремнистых коррозионно-стойких марках с содержанием кремния более 14,2% они демонстрируют превосходную коррозионную стойкость к H 2 SO 4 , HNO 3 , HCl, CH 3 COOH и большинству минеральных и органические кислоты и едкие вещества.Эти чугуны с содержанием кремния 14,2% или выше имеют очень высокую стойкость к кипению 30% раствора H 2 SO 4 . Эти коррозионно-стойкие марки с высоким содержанием кремния также демонстрируют хорошую стойкость к окислительным и восстановительным средам, и на них меньше всего влияют концентрация кислоты или температура.

Исключениями из этой устойчивости к широкому спектру кислых сред являются среды, содержащие плавиковую кислоту, фторидные соли, сернистую кислоту (H 2 SO 3 ), сульфитные соединения и сильные щелочи и чередующиеся кислотно-щелочные растворы.

Другие чугуны с высоким содержанием кремния с высоким содержанием кремния от 12% до 18% становятся очень стойкими к коррозионным кислотам. Чугуны с высоким содержанием кремния с содержанием кремния 16,5% устойчивы к кипячению H 2 SO 4 и азотной кислоте практически во всех концентрациях.

Содержание кремния менее 3,5% увеличивает скорость роста серого чугуна, способствуя графитизации. Однако содержание кремния от 4% до 8% значительно снижает как окисление (образование накипи), так и рост. Кремний увеличивает стойкость чугуна к образованию накипи за счет образования легкого поверхностного оксида, непроницаемого для окислительной атмосферы.Кремний также повышает температуру превращения феррита в аустенит примерно до 1652 ° F (900 ° C), что помогает контролировать свойства расширения и сжатия до 1652 ° F (900 ° C) из-за фазового превращения.

Некоторые из этих марок существенно различаются степенью легирования хрома и марганца.

Чугуны с высоким содержанием хрома (Ni-Hard)

Это, по сути, белые чугуны, легированные хромом от 12% до 18% и широко известные в промышленности как Ni-Hard .Хром придает стойкость к истиранию и предотвращает окисление. Чугуны с высоким содержанием хрома устойчивы к окисляющим кислотам. Они особенно устойчивы к азотной кислоте (HNO 3 ) и полезны для работы со слабыми кислотами в окислительных условиях в нескольких растворах органических кислот и с растворами солей.

Когда содержание хрома превышает 20%, чугуны с высоким содержанием хрома проявляют хорошую стойкость к окисляющим кислотам, особенно к HNO 3 . Чугуны с высоким содержанием хрома устойчивы к восстановительным кислотам.Они используются в солевых растворах, органических кислотах, а также в морской и других кислых промышленных средах. Эти материалы демонстрируют отличную стойкость к истиранию, а с соответствующими легирующими добавками они также могут противостоять сочетанию абразивного износа и жидкостей, включая некоторые разбавленные растворы кислоты.

Механические свойства чугунов с высоким содержанием хрома лучше, чем у чугунов с высоким содержанием кремния. Чугуны с высоким содержанием хрома поддаются термообработке при надлежащем регулировании содержания углерода и хрома.Однако механическая обработка этих сплавов очень трудна.

Хром добавляют в жаропрочные чугуны, поскольку он способствует стабилизации карбидов и образует защитный оксид на поверхности металла. Даже небольшие добавки хрома (0,5–2,0%) уменьшают рост серого чугуна, подвергнутого циклическому нагреванию при 1470 ° F (800 ° C). После продолжительной высокотемпературной службы перлитная матрица из литого 0,8% Cr, жаропрочного чугуна превращается в феррит, а его цементит имеет сфероидизированную структуру.Высокое содержание хрома от 15% до 35% обеспечивает отличную стойкость к окислению и росту при температурах до 1800 ° F (980 ° C). Однако эти высокохромистые чугуны имеют структуру белого железа. Несмотря на то, что они обладают хорошими прочностными характеристиками, их обрабатываемость ограничена. Типичные химические требования для отливок из различных марок и классов сплавов, имеющихся на рынке, приведены в Таблице 1-7-2.

Таблица 1-7-2. Типичный химический состав отливок из сплавов

Класс Тип Обозначение C Mn Si Ni Cr Mo Cu P S
I A Ni-Cr-Hc 2.8-3,6 2,0 макс 0,8 макс 3,3-5,0 1,4-4,0 1,0 макс 0,3 макс 0,15 макс
I B Ni-Cr- Lc 2,4-3,0 2,0 макс. 0,8 макс 3,3-5,0 1,4-4,0 1,0 макс 0,3 макс 0,15 макс
I C Ni -Cr-ГБ 2,5-3.7 2,0 макс. 0,8 макс. 4,0 макс. 1,0-2,5 1,0 макс. 0,3 макс. 0,15 макс.
I D Ni-HiCr 2,5- 3,6 2,0 макс. 2,0 макс. 4,5-7,0 7,0-11,0 1,5 макс. 0,10 макс. 0,15 макс.
II A 12% Cr 2,0 -3,3 2.0 макс 1,5 макс 2,5 макс 11,0-14,0 3,0 макс 1,2 макс 0,10 макс 0,06 макс
II B 15% Cr-Mo 2,0- 3,3 2,0 макс. 1,5 макс 2,5 макс 14,0-18,0 3,0 макс 1,2 макс 0,10 макс 0,06 макс
II D 20% Cr-Mo 2.0-3,3 2,0 максимум 1,0-2,2 2,5 максимум 18,0-23,0 3,0 максимум 1,2 максимум 0,10 максимум 0,06 максимум
III A 25% Cr 2,0-3,3 2,0 макс. 1,5 макс 2,5 макс 23,0-30,0 3,0 макс 1,2 макс 0,10 макс 0,06 макс
Высоконикелевый чугун (Ni -Resist)

Эти материалы содержат большое количество никеля и меди и устойчивы к таким кислотам, как концентрированная H 2 SO 4 и фосфорная кислота (H 3 PO 4 ) при слегка повышенных температурах; соляная кислота (HCl) при комнатной температуре; и такие органические кислоты, как уксусная кислота, олеиновая кислота и стеариновая кислота.Когда содержание аустенита в никеле превышает 18%, чугуны в основном невосприимчивы к щелочам или щелочам, хотя возможно коррозионное растрескивание под напряжением.

Чугуны с высоким содержанием никеля широко используются и обычно известны как чугуны с никелевым резистором. Серые аустенитные чугуны содержат от 14% до 30% никеля и устойчивы к слабокислой кислотной среде. Они также устойчивы к H 2 SO 4 при комнатной температуре. По сравнению с нелегированным чугуном высоконикелевый чугун наиболее устойчив к щелочам.

Никельрезист особенно полезен для работы при высоких температурах. Из-за своей аустенитной матрицы и чешуйчатого графита чугуны с высоким содержанием никеля являются самыми прочными из всех чугунов. Чешуйчатый графит также придает им отличную обрабатываемость и хорошие литейные свойства, хотя это снижает их прочность на разрыв. В отличие от этого высоконикелевый ковкий чугун обладает более высокой прочностью и пластичностью, потому что он содержит шаровидный графит.

Аустенитные чугуны с содержанием никеля от 18% и более до 7% меди и 1.От 75% до 4% углерода используется там, где требуется устойчивость к нагреванию и коррозии. Чугуны из никелевого резиста обладают хорошей устойчивостью к высокотемпературному образованию накипи и росту до 1500 ° F (815 ° C) для большинства окислительных сред. Однако в серосодержащих атмосферах содержание никеля в этих сплавах ограничивает их использование до температур ниже 932 ° F (500 ° C).

Чугуны из аустенитного никеля обладают значительно большей ударной вязкостью и ударопрочностью, чем другие жаропрочные чугуны из сплавов кремния и хрома.Чугуны с высоким содержанием никеля с микроструктурой шаровидного графита значительно прочнее и имеют более высокую пластичность, чем чугуны из никелевого сплава с чешуйчатым графитом.

Аустенитный серый чугун

Отливки из аустенитного серого чугуна в основном используются из-за их устойчивости к нагреванию, коррозии и износу. Аустенитный серый чугун характеризуется равномерно распределенными чешуйками графита и некоторым количеством карбида. Они отличаются наличием достаточного количества сплава для образования аустенитной структуры.

Эти отливки производятся путем плавки в различных типах литейных печей, которые могут включать в себя любое из следующего:

Купольная печь

Воздушные печи

Электродуговая или индукционные печи

Тигельные печи

Литейные методы включают испытания и химический анализ, чтобы установить, что следующие элементы находятся в отливке в указанных пределах.

Углерод

Кремний

Марганец

Никель

Медь

Хром

Сера

Молибден

Механические свойства, включая твердость, также проверяются и подтверждаются на соответствие указанным значениям.Другой контроль качества включает проверку магнитной проницаемости отливок. Эти отливки не обязательно являются немагнитными, если не указаны особые требования.

В эту группу входят несколько типов и марок обсадных труб; лучший способ узнать о них — обратиться к самым последним спецификациям ASTM. В списке, приведенном ниже и в таблице 1-7-3, указаны некоторые типы, марки и их свойства.

Таблица 1-7-3. Типичные механические свойства аустенитного серого чугуна

Тип отливки Тип Предел прочности (мин) тыс. Фунтов на кв. Дюйм Твердость (мин) (BHN)
Ni-Resist 1 25131
Ni-Resist 1B 30 149
Ni-Resist 2 25 118
Ni-Resist 2B 30 171
Ni-Resist 3 25 118

Тип 1

Тип 1b

Тип 2

Тип 2b

Тип 3

Тип 4

Тип 5

Тип 6

Отливки из аустенитного высокопрочного чугуна используются в основном из-за их устойчивости к нагреванию, коррозии и износу, а также для других специальных целей.Отливки производятся с использованием процесса плавления в любой из печей, включая вагранку, воздушные печи, электрические печи или тигельные печи.

Аустенитный высокопрочный чугун, также известный как аустенитное шаровидное железо или аустенитное шаровидное железо, характеризуется тем, что его графит по существу имеет сфероидальную форму и практически не содержит чешуйчатого графита. Он содержит некоторое количество карбидов и достаточное количество сплава для образования аустенитной структуры.

Отливки из чугуна проверяются на магнитную проницаемость.Образцы отливок анализируются на соответствие заданному требуемому химическому составу по следующим элементам.

Углерод

Кремний

Марганец

Фосфор

Никель

07 Хром

Механическое испытание проводится для подтверждения того, что чугун соответствует требуемым значениям прочности на разрыв, предел текучести, удлинения и твердости.В таблице 1-7-4 показаны типичные значения прочности на разрыв и твердость аустенитного ковкого чугуна. Твердость часто указывается в числах Бринелля.

Таблица 1-7-4. Аустенитный ковкий чугун

Спецификация Тип Предел прочности (мин) тыс. Фунтов на кв. Дюйм Твердость (мин) (BHN)
Ni-Resist D-2 58 139 — 202
Ni-Resist D-3 55 139-202
Ni-Resist D-3A 55131 — 193

Белый чугун — обзор

4.3.4 Износостойкие материалы чугуна

Из-за абразивной, коррозионной деформации очень часто используется белый чугун. Этот материал, также обозначенный как охлажденное литье или твердое литье, очень устойчив к износу. Исключительная особенность этого материала заключается в том, что содержание углерода химически связано в виде карбида. Поверхность излома белая или серебристая, в отличие от серого чугуна. В зависимости от нормы и степени легирования существуют различные виды твердого литья. В зависимости от структуры по нелегированным или низколегированным сортам возникают карбид хрома, карбид молибдена, карбид ниобия или карбид ванадия.Твердость карбидов достигает от 800 по Виккерсу (HV) для цементита, от 1 600 HV для карбида хрома до 2 800 HV для карбида ванадия (см. Таблицу 13).

Таблица 13. Значения твердости чугуна по Виккерсу (HV)

Материал Твердость по Виккерсу [HV]
Цементит 800 HV
Карбид хрома 1600 HV
Карбид ванадия 2 800 HV
Чугун 210 HV

Твердое литье, в котором никель и хром в качестве легирующих компонентов содержатся пропорционально 2: 1, называется торговое название «Ni hard» (напр.грамм. Ni-жесткий 1 или Ni-жесткий 4). Качество можно варьировать, изменяя содержание углерода [38]. Хотя содержание хрома частично очень высокое (> 20%), твердое литье не очень устойчиво к коррозии. Причина в том, что основная доля хрома связана с карбидами и другими легирующими элементами. , таких как никель или молибден, недостаточно высоки. Тем не менее, коррозионная стойкость сильно зависит от химического состава перекачиваемой жидкости.

Такие материалы можно наносить в сильно абразивных средах, таких как смеси песка и воды.Однако, поскольку затраты на легирование относительно высоки, это применение будет подходить в основном для очень специальных решений. Кроме того, для деталей, изготовленных из твердого литья, требуются специальные инструменты для литья.

Последующая обработка (обрезка, нарезание резьбы) отливок возможна только с помощью специальных инструментов.

Например, согласование мощности насоса путем изменения диаметра рабочего колеса путем подгонки затруднено.

Чугун

Чугун

Чугуны обычно содержат 2-4 мас.% Углерода с высокой концентрацией кремния и большей концентрацией примесей, чем стали.Углеродный эквивалент (CE) чугуна помогает отличить серый чугун, который остывает до микроструктуры, содержащей графит, и белый чугун, где углерод присутствует в основном в виде цементита. Углеродный эквивалент определяется как:

Высокая скорость охлаждения и низкий углеродный эквивалент благоприятствуют образованию белого чугуна, тогда как низкая скорость охлаждения или высокий углеродный эквивалент способствует образованию серого чугуна.

Во время затвердевания большая часть углерода выпадает в осадок в виде графита или цементита.Когда затвердевание только что завершено, осажденная фаза погружается в матрицу аустенита, которая имеет равновесную концентрацию углерода около 2 мас.%. При дальнейшем охлаждении концентрация углерода в аустените уменьшается по мере того, как из твердого раствора выделяется больше цементита или графита. В случае обычного чугуна аустенит затем разлагается на перлит при эвтектоидной температуре. Однако в серых чугунах, если скорость охлаждения за счет температуры эвтектоида достаточно мала, то получается полностью ферритная матрица с отложением избыточного углерода на уже существующем графите.

Белый чугун твердый и хрупкий; их нелегко обработать.

Фазовая диаграмма железо-углерод, показывающая эвтектические и эвтектоидные реакции. Воспроизведено с разрешения Jud Ready из Технологического института Джорджии. Объединенное студенческое отделение ASM / TMS.

Серый чугун более мягкий с микроструктурой графита в матрице из преобразованного аустенита и цементита. Чешуйки графита, которые представляют собой трехмерные розетки, имеют низкую плотность и, следовательно, компенсируют сжатие при замерзании, что дает хорошие отливки без пористости.

Чешуйки графита обладают хорошими демпфирующими характеристиками и хорошей обрабатываемостью (потому что графит действует как стружколом и смазывает режущие инструменты. В приложениях, связанных с износом, графит полезен, потому что он помогает удерживать смазку. Однако чешуйки графита также являются концентраторами напряжений, что приводит к плохой ударной вязкости. Рекомендуемое прилагаемое напряжение растяжения составляет лишь четверть его фактического предела прочности на растяжение.

Известно, что сера в чугунах способствует образованию чешуек графита.Графит может быть вызван осаждением сфероидальной формы путем удаления серы из расплава с использованием небольшого количества карбида кальция. За этим следует небольшое количество магния или церия, которые отравляют предпочтительные направления роста и, следовательно, приводят к изотропному росту, что приводит к образованию сфероидов графита. Обработка кальцием необходима перед добавлением магния, поскольку последний также имеет сродство как к сере, так и к кислороду, тогда как его сфероидизирующая способность зависит от его присутствия в растворе в жидком железе.Магний часто добавляют в виде сплава с железом и кремнием (Fe-Si-Mg), а не в виде чистого магния.

Однако магний имеет тенденцию способствовать осаждению цементита, поэтому также добавляют кремний (в форме ферросилиния), чтобы обеспечить осаждение углерода в виде графита. Ферросиликон известен как модификатор .

Чугун с шаровидным графитом обладает превосходной вязкостью и широко используется, например, в коленчатых валах.

Последний прорыв в производстве чугунов заключается в том, что матрица чугуна с шаровидным графитом представляет собой не перлит, а бейнит.Это приводит к значительному повышению прочности и прочности. Бейнит получают путем изотермического превращения аустенита при температурах ниже той, при которой образуется перлит.

Вы можете щелкнуть изображения, чтобы увеличить их. Также можно загружать изображения с очень высоким разрешением (6 Мбайт каждое), а также кристаллические структуры феррита, цементита, графита и аустенита.

Чугун серый, Fe-3.2C — 2,5Si мас.%, Содержащий чешуйки графита в перлитной матрице. Пятнистые белые области представляют собой фосфидную эвтектику. Травка: Nital 2% Серый чугун, Fe-3,2C-2,5Si мас.%, Содержащий чешуйки графита в перлитной матрице. Можно разрешить пластинчатую структуру перлита, которая состоит из чередующихся слоев цементита и феррита. Пятнистые белые области представляют собой фосфидную эвтектику. Травка: Nital 2%

Химический состав чугуна аналогичен химическому составу серого чугуна, но с 0.05 мас.% Магния. Все образцы протравлены с использованием 2% нитала.

Иллюстрация пластичности чугуна с шаровидным графитом. Фотография воспроизведена из журнала Physical Metallurgy of Engineering Materials Э. Р. Петти с разрешения Института материалов. Чугун с шаровидным графитом, Fe-3,2C-2,5Si-0,05Mg мас.%, Содержащий узелки графита в перлитной матрице.Один из конкреций окружен ферритом просто потому, что область вокруг конкреции обезуглерожена в виде углеродных отложений на графите. Травка: Nital 2%

Чугун с шаровидным графитом обычно имеет перлитную матрицу. Однако отжиг вызывает осаждение углерода в перлите на имеющийся графит или образование дополнительных мелких частиц графита, оставляя после себя ферритную матрицу.Это придает утюгу еще большую пластичность. Все образцы протравлены с использованием 2% нитала.

Графитовые конкреции в ферритной матрице. Графитовые конкреции в ферритной матрице. Также виден углерод, отложившийся во время отпуска. Травка: Nital 2%

Химический состав чугуна — Fe-3.52C-2,51Si-0,49Mn-0,15Mo-0,31Cu мас.%. Все образцы протравлены с использованием 2% нитала. Цветные микрофотографии получают путем первого травления 2% ниталем с последующей термообработкой металлографического образца на открытом воздухе при 270 o ° C в течение 3 часов. Это окисляет образец и дает интерференционные цвета, зависящие от фазы.

Ковкий чугун в литом состоянии. Конкреции графита, перлита (темные островки) и феррита (светлый фон).Травка: Nital 2% Ковкий чугун в литом состоянии. Конкреции графита, перлита (темные островки) и феррита (светлый фон). Травка: Nital 2%
Аустенизация 950C, аустенизация 350C в течение 64 мин. Аустенитизировано при 950 ° C, аустенизировано при 350 ° C в течение 64 мин.

На следующих изображениях представлены автомобильные компоненты из закаленного высокопрочного чугуна, предоставленные Институтом инженеров по литью металлов.Чтобы избежать деформации, коленчатый вал спортивного автомобиля TVR подвергается грубой механической обработке после литья, термообработке для получения бейнитной микроструктуры, а затем соответствующей механической обработке. Сообщается, что он обладает отличными усталостными свойствами; его демпфирующие характеристики из-за графита снижают шум двигателя.

Рычаг подвески Ford Mustang был изготовлен из закаленного высокопрочного чугуна с целью снижения веса, шума и стоимости. Он был разработан с использованием моделирования методом конечных элементов для оптимизации прочности и жесткости.Были рассмотрены алюминиевые сплавы, но от них отказались, поскольку в этом случае компонент занимал бы гораздо больше места из-за их меньшей прочности.

Рычаг подвески грузового прицепа изначально был изготовлен из сварной стали для использования при транспортировке по суровой австралийской глубинке. Они вышли из строя в сварных швах и были связаны с деформациями, которые привели к ускоренному износу шин. Подвеска, изготовленная из литого высокопрочного чугуна с шаровидным графитом, оказалась намного более прочной.


TVR Tuscan Speed ​​6, высокопроизводительный спортивный автомобиль с закаленным коленчатым валом из ковкого чугуна.

Коленчатый вал из закаленного высокопрочного чугуна для спортивного автомобиля TVR.

Рычаг подвески из высокопрочного чугуна для Ford Mustang Cobra

Рычаг подвески прицепа грузовика, изготовленный из закаленного высокопрочного чугуна, Steele and Lincoln Foundry.


Чугун

Blackheart получают путем нагревания белого чугуна при температуре 900-950 o C в течение многих дней перед медленным охлаждением.Это приводит к микроструктуре, содержащей нерегулярные, хотя и равноосные узелки графита в ферритной матрице. Термин «черное сердце» происходит от того факта, что поверхность излома имеет серый или черный цвет из-за присутствия графита на поверхности. Целью термической обработки является повышение пластичности чугуна. Однако этот процесс в настоящее время устарел, поскольку сфероидальный графит может быть получен непосредственно при отливке путем модифицирования магнием или церием. Все образцы протравлены с использованием 2% нитала.

Чугун Blackheart. Чугун Blackheart. Травка: Nital 2%

Этот чугун используется в случаях, когда желательна очень высокая износостойкость. Например, при сильном дроблении горных пород и полезных ископаемых. Он содержит комбинацию очень прочных карбидообразующих легирующих элементов.Следовательно, его химический состав составляет Fe-2,6C-17Cr-2Mo-2Ni мас.%.

Все образцы травятся с использованием реактива Виллелы, который представляет собой смесь пикриновой кислоты, соляной кислоты и этанола. Материал, из которого были получены эти микрофотографии, был любезно предоставлен доктором Арнольдо Бедолла-Хакуинде из Мексики. Подробная информация о чугуне опубликована в International Journal of Cast Metals Research, 13 (2001) 343-361.

Белая фаза представляет собой богатый хромом карбид, известный как M 7 C 3 .Матрица состоит из дендритов аустенита, некоторые из которых могли преобразоваться в мартенсит. Также могут быть относительно небольшие количества карбидов других сплавов. Белая фаза представляет собой богатый хромом карбид, известный как M 7 C 3 . Матрица состоит из дендритов аустенита, некоторые из которых могли преобразоваться в мартенсит. Также могут быть относительно небольшие количества карбидов других сплавов.

Процесс литья никогда не бывает идеальным, особенно при работе с крупными деталями.Вместо того, чтобы списывать дефектные отливки, их часто можно отремонтировать сваркой. Естественно, очень высокая концентрация углерода в типичных чугунах вызывает трудности из-за введения хрупкого мартенсита в зону термического влияния сварного шва. Поэтому необходимо предварительно нагреть до температуры около 450 ° C с последующим медленным охлаждением после сварки, чтобы избежать растрескивания.

Материалы, используемые в качестве наполнителей во время сварки, обычно содержат большие концентрации никеля, поэтому получаемый аустенитный металл сварного шва нечувствителен к улавливанию углерода из чугуна.Отложения мягкие и могут быть обработаны для придания необходимой формы и отделки. Конечно, никель стоит дорого, поэтому при крупном ремонте сварной зазор сначала покрывается («смазывается маслом») богатым никелем наполнителем, а затем оставшийся зазор заполняется менее дорогим присадочным металлом из мягкой стали.

Первый в мире железный мост 1779 года. Вся конструкция сделана из чугуна. Фотографии любезно предоставлены Ёкота Томоюки и его семьей.

жетон полпенни Коулбрукдейла, 1792

На фотографиях ниже изображен жетон в полпенни, отчеканенный в 1792 году, на одной стороне которого изображен корабль, проходящий под первым в мире железным мостом. Железная руда и уголь транспортировались по каналу, но металлургический завод в Кетли находился на 22 м выше этого канала. Таким образом, была построена «наклонная плоскость» (2-е изображение), чтобы лодки можно было поднимать через люльку и шлюз в верхнюю часть канала, ведущего к металлургическому заводу.

Токен предоставлен Майклом Куком.



III

Чугун «прочный на ощупь» и имеет привлекательный внешний вид. Есть много обычных применений чугуна.

Следующие фотографии были любезно предоставлены Беном Деннисом-Смитером, Фрэнком Кларком и Мохамедом Шерифом.

Следующие фотографии были любезно предоставлены Джимом Чарльзом.


Древние украшения из чугуна

Древние украшения из чугуна

Образцы деталей из чугуна и окружающей среды

Фотографии любезно предоставлены Мэтью Питом

Чугун, Буэнос-Айрес, Аргентина


Puerot Madero, Буэнос-Айрес, Аргентина

Puerot Madero, Буэнос-Айрес, Аргентина.Массивные чугунные причалы украшают берег, сделанные на литейном заводе в Кардиффе, Уэльс, Великобритания.

Puerot Madero, Буэнос-Айрес, Аргентина. Массивные чугунные причалы украшают берег, сделанные на литейном заводе в Кардиффе, Уэльс, Великобритания.

Puerot Madero, Буэнос-Айрес, Аргентина

Мост женщины (Пуэнте-де-ла-Мухер), Буэнос-Айрес, Аргентина

Чугунные ворота дворца Гуэля работы Гауди в Барселоне

Следующие фотографии любезно предоставлены Франсиской Кабальеро и Карлосом Капдевилой Монтес.

Рецензия на книгу о чугунных изделиях, содержащих редкие земли.

Графитизация

Металлография чугунов.



Чугун | Металлургия для чайников

Чугун получают из передельного чугуна, и хотя он обычно относится к серому чугуну, он также определяет большую группу сплавов на основе железа, которые затвердевают с эвтектикой.Цвет изломанной поверхности может использоваться для идентификации сплава. Белый чугун назван в честь его белой поверхности при разрушении из-за примесей карбидов, которые позволяют трещинам проходить сквозь них. Серый чугун назван в честь его серой изломанной поверхности, которая возникает из-за того, что чешуйки графита отклоняют проходящую трещину и инициируют бесчисленные новые трещины по мере разрушения материала.

Автозапчасти из чугуна

Углерод (C) и кремний (Si) являются основными легирующими элементами, количество которых варьируется от 2.От 1 до 4 мас.% И от 1 до 3 мас.% Соответственно. Сплавы железа с меньшим содержанием углерода известны как сталь.

Хотя технически это делает эти базовые сплавы тройными сплавами Fe-C-Si, принцип затвердевания чугуна понятен из бинарной фазовой диаграммы железо-углерод. Поскольку состав большинства чугунов находится в районе эвтектической точки системы железо-углерод, температуры плавления тесно коррелируют, обычно в диапазоне от 1150 до 1200 ° C (от 2102 до 2192 ° F), что составляет около 300 ° C (572 ° F). F) ниже точки плавления чистого железа.

Фазовая диаграмма Сталь и чугун

Чугун имеет тенденцию к хрупкости, за исключением ковкого чугуна. Обладая относительно низкой температурой плавления, хорошей текучестью, литейными качествами, отличной обрабатываемостью, устойчивостью к деформации и износостойкостью, чугуны стали конструкционным материалом с широким спектром применения и используются в трубах, машинах и деталях автомобильной промышленности, таких как цилиндры. головки (снижение использования), блоки цилиндров и коробки передач (снижение использования).Он устойчив к разрушению и разрушению в результате окисления (ржавчины).

Чугунные украшения

Чугун получают путем переплавки передельного чугуна, часто вместе с значительным количеством железного лома и стального лома, и принятия различных мер по удалению нежелательных примесей, таких как фосфор и сера. В зависимости от области применения содержание углерода и кремния снижается до желаемых уровней, которые могут составлять от 2 до 3,5% и от 1 до 3% соответственно. Затем в расплав добавляются другие элементы, прежде чем окончательная форма будет получена путем литья.[необходима цитата] Железо иногда плавят в доменных печах особого типа, известных как вагранки, но чаще плавят в электрических индукционных печах. [необходима цитата] После завершения плавления расплавленное железо выливают в печь для выдержки или ковш.

Чугун Art

Свойства чугуна изменяются за счет добавления различных легирующих элементов или легирующих добавок. После углерода кремний является наиболее важным легирующим агентом, поскольку он вытесняет углерод из раствора. Вместо этого углерод образует графит, который делает чугун более мягким, уменьшает усадку, снижает прочность и плотность.Сера при добавлении образует сульфид железа, который предотвращает образование графита и увеличивает твердость.

Проблема с серой заключается в том, что она делает расплавленный чугун вялым, что приводит к краткосрочным дефектам. Чтобы противодействовать воздействию серы, добавляют марганец, потому что они превращаются в сульфид марганца, а не в сульфид железа. Сульфид марганца легче расплава, поэтому он имеет тенденцию всплывать из расплава в шлак. Количество марганца, необходимое для нейтрализации серы, равно 1.7 × содержание серы + 0,3%. Если добавить больше этого количества марганца, то образуется карбид марганца, который увеличивает твердость и охлаждение, за исключением серого чугуна, где до 1% марганца увеличивает прочность и плотность.

Фазовая диаграмма железа и углерода

Никель является одним из наиболее распространенных легирующих добавок, поскольку он улучшает структуру перлита и графита, улучшает ударную вязкость и выравнивает разницу в твердости между толщиной сечения. Хром добавляется в ковш в небольших количествах для уменьшения содержания свободного графита, получения холода и потому, что он является мощным стабилизатором карбида; никель часто добавляют вместе.Можно добавить небольшое количество олова вместо 0,5% хрома. Медь добавляется в ковш или в печь в количестве от 0,5 до 2,5% для уменьшения холода, очистки графита и увеличения текучести.

Кухонный гарнитур из чугуна

Молибден добавлен в количестве от 0,3 до 1% для увеличения охлаждения и улучшения структуры графита и перлита; его часто добавляют в сочетании с никелем, медью и хромом для образования высокопрочных чугунов. Титан добавляется как дегазатор и раскислитель, но он также увеличивает текучесть.От 0,15 до 0,5% ванадия добавляют в чугун для стабилизации цементита, увеличения твердости и повышения устойчивости к износу и нагреванию. Цирконий от 0,1 до 0,3% способствует образованию графита, раскислению и увеличению текучести. В расплавы ковкого чугуна добавляют висмут в диапазоне от 0,002 до 0,01%, чтобы увеличить количество кремния, которое можно добавить. В белое железо бор добавлен, чтобы помочь в производстве ковкого чугуна, он также снижает эффект огрубления висмута.

Машинный блок из чугуна

Серый чугун

Серый чугун характеризуется своей графитовой микроструктурой, из-за которой изломы материала приобретают серый цвет.Это наиболее часто используемый чугун и наиболее широко используемый литой материал в зависимости от веса.

Микроструктура серого чугуна

Большинство чугунов имеют химический состав от 2,5 до 4,0% углерода, от 1 до 3% кремния, а остальное — железо. Серый чугун имеет меньшую прочность на растяжение и ударопрочность, чем сталь, но его прочность на сжатие сопоставима с низко- и среднеуглеродистой сталью.

Белый чугун

При более низком содержании кремния и более быстром охлаждении углерод в белом чугуне выделяется из расплава в виде цементита метастабильной фазы, Fe3C, а не графита.Цементит, который выделяется из расплава, образует относительно большие частицы, обычно в эвтектической смеси, где другой фазой является аустенит (который при охлаждении может превратиться в мартенсит).

Белый чугун — это нелегированный чугун с низким содержанием углерода и кремния, так что структура представляет собой твердый хрупкий карбид железа без свободного графита. Белый чугун широко используется при абразивном износе, связанном с дроблением, шлифованием, фрезерованием и обработкой абразивных материалов

Эти эвтектические карбиды слишком велики, чтобы обеспечить дисперсионное твердение (как в некоторых сталях, где выделения цементита могут препятствовать пластической деформации, препятствуя перемещению дислокаций через ферритную матрицу).

Скорее, они увеличивают объемную твердость чугуна просто за счет своей собственной очень высокой твердости и значительной объемной доли, так что объемную твердость можно аппроксимировать правилом смесей. В любом случае они предлагают твердость за счет прочности. Поскольку карбид составляет значительную часть материала, белый чугун с полным основанием можно отнести к кермету.

Микроструктура белого чугуна

Белый чугун слишком хрупкий для использования во многих конструктивных элементах, но с хорошей твердостью и стойкостью к истиранию и относительно низкой стоимостью он находит применение в таких областях применения, как износостойкие поверхности (крыльчатка и спиральная камера) шламовых насосов, гильзы корпуса и подъемные штанги в шаровые мельницы и мельницы автогенного помола, шары и кольца в измельчителях угля, а также зубья ковша экскаватора (хотя для этого применения более распространена литая среднеуглеродистая мартенситная сталь).

Ковкий чугун

Ковкий чугун представляет собой отливку из белого чугуна, которую затем подвергают термообработке при температуре около 900 ° C (1650 ° F). В этом случае графит отделяется намного медленнее, так что поверхностное натяжение успевает превратить его в сфероидальные частицы, а не хлопья. Из-за их более низкого соотношения сторон сфероиды относительно короткие и далеко друг от друга, и имеют меньшее поперечное сечение по сравнению с распространяющейся трещиной или фононом.

Микроструктура ковкого чугуна
Деталь фитинга из ковкого чугуна

У них также есть тупые границы, в отличие от чешуек, что снижает проблемы концентрации напряжений, с которыми сталкивается серый чугун.В целом ковкий чугун по своим свойствам больше похож на низкоуглеродистую сталь. Существует предел того, насколько большая деталь может быть отлита из ковкого чугуна, поскольку она сделана из белого чугуна.

Детали из высокопрочного чугуна

Ковкий чугун

Более поздняя разработка — чугун с шаровидным графитом или ковкий чугун. Крошечные количества магния или церия, добавленные к этим сплавам, замедляют рост выделений графита за счет связывания с краями графитовых плоскостей.

Микроструктура чугуна с шаровидным графитом

Наряду с тщательным контролем других элементов и времени, это позволяет углю отделяться в виде сфероидальных частиц по мере затвердевания материала.Свойства аналогичны ковкому чугуну, но можно отливать детали с большим сечением.

Вам нужны ссылки на книги о чугуне? здесь…

Возможно вам понравится

Случайные сообщения

  • Как производится алюминий
    Производство алюминия осуществляется в два этапа: процесс Байера по переработке бокситовой руды для получения оксида алюминия …
  • Глоссарий по металлургии
    Активность: функция химического потенциала системы.Сплав: Металлическое вещество, состоящее из двух или более …
  • Композиционных материалов
    Композиционные материалы образуются путем объединения двух или более материалов, которые имеют совершенно разные свойства. Различные ма …
  • Биоматериалы
    Биоматериал — это любое вещество, поверхность или конструкция, которые взаимодействуют с биологическими системами. Разработка биоматериалов …
  • Ковкий чугун с закалкой (ADI)
    Ковкий чугун с закалкой, или ADI, представляет собой тип ковкого чугуна с повышенной прочностью и прочностью на разрыв…

Чугунные компании | Поставщики чугуна

Чугун — MES Inc.

Существует два преобладающих типа чугуна: серый и белый чугун. Первый имеет графитовую структуру, прогиб которой обеспечивает одноименный цвет на поверхностях излома. Однако белое железо имеет небольшие белые отложения цементита, а не полностью бледное. Основные различия между ними заключаются в содержании силикона и времени охлаждения, которые оказывают значительное влияние на физическое и механическое поведение сплава.

Белый чугун имеет низкое содержание углерода и быстро охлаждается для получения хрупкой литой детали с хорошей твердостью и стойкостью к истиранию. Они используются в ряде приложений, подверженных износу, таких как шламовые насосы, футеровки, мельницы и пульверизаторы. С другой стороны, отливки из серого чугуна производятся путем медленного охлаждения сплавов высокоуглеродистого железа и являются менее хрупкими, что позволяет использовать их в качестве коленчатых валов, опорных балок, блоков цилиндров и т. Д.

В дополнение к этим двум типам чугунолитейные заводы и инженеры-металлурги продолжают разрабатывать более ковкий и ковкий чугун, который демонстрирует полезные характеристики чугуна, но со значительным снижением хрупкости из-за сфероидной, а не чешуйчатой ​​внутренней структуры.Эти специализированные сплавы становятся все более распространенными в промышленном мире.

Хотя чистое железо содержится только в метеоритах, этот элемент является одним из самых распространенных на Земле, составляя 5% коры и 35% общей массы. При горных работах этот элемент извлекается из железной руды и оксидов, таких как магнетит, гематит, лимонит, гетит и сидерит, которые содержат большое количество железа. Эти оксиды плавятся для производства так называемого передельного чугуна, основного материала для чугуна.

Формы нагреваются в специальной доменной печи, известной как вагранка. В расплавленную смесь добавляют лом чугуна и стали для получения чугуна. В расплавленном состоянии этот металл заливается в отливку, где он охлаждается с контролируемой скоростью, прежде чем законченная или почти готовая деталь будет выброшена или извлечена. Некоторые из наиболее популярных сегодня методов литья чугуна — это литье под давлением, центробежное литье и литье в песчаные формы.

Литье под давлением используется для изготовления сложных деталей с высокой производительностью, центробежное литье позволяет создавать цилиндрические детали, а при литье в песчаные формы используются расходные синтетические или натуральные песчаные формы для создания грубых деталей.В результате этих процессов получаются легко обрабатываемые детали из чугуна с высокой прочностью на сжатие, низкими температурами плавления, хорошей теплопроводностью и рассеиванием энергии, износостойкостью и текучестью.

Сварка чугуна: основные процедуры

Чугун — это сплав железа, углерода и кремния, в котором количество углерода обычно составляет более 1,7% и менее 4,5%.

Общая свариваемость чугуна низкая и зависит от типа материала, сложности, толщины, сложности отливки и потребности в обрабатываемости.

Ковкий и ковкий чугун имеют хорошую свариваемость, в то время как серый чугун и белый чугун свариваются только для небольших приспособлений.

Серый чугун — наиболее широко используемый вид чугуна. Серый чугун имеет множество составов, но обычно он представляет собой перлит с множеством рассредоточенных чешуек графита.

Существуют также чугуны из сплавов, которые содержат небольшое количество хрома, никеля, молибдена, меди или других элементов, добавленных для придания им особых свойств.

Другой легированный чугун — это аустенитный чугун, модифицированный добавками никеля и других элементов для снижения температуры превращения, так что структура становится аустенитной при комнатной или нормальной температуре. Аустенитные чугуны обладают высокой степенью коррозионной стойкости.

В белом чугуне почти весь углерод находится в комбинированном виде. Это обеспечивает более высокую твердость чугуна, что используется для обеспечения устойчивости к истиранию.

Ковкий чугун получают путем специальной термообработки белого чугуна с отжигом для изменения структуры углерода в чугуне.Структура меняется на перлитную или ферритную, что увеличивает ее пластичность.

Чугун с шаровидным графитом и высокопрочный чугун изготавливаются путем добавления магния или алюминия, которые либо связывают углерод в комбинированном состоянии, либо придают свободному углероду сферическую или узловую форму, а не обычную чешуйчатую форму в сером чугуне. Эта структура обеспечивает большую пластичность или пластичность отливки.

Основным фактором, усложняющим сварку чугуна, является его недостаточная пластичность.Если чугуны нагружены за пределы их пределов текучести, они скорее ломаются, чем деформируются в какой-либо значительной степени. Поэтому следует выбирать присадочный металл и конфигурацию деталей таким образом, чтобы минимизировать сварочные напряжения.

MMA, порошковая дуга, MIG, TIG и газовая сварка обычно используются со сварочными материалами на основе никеля для получения высококачественных сварных швов, но чугунные и стальные электроды также могут обеспечить удовлетворительные сварные швы в некоторых сплавах.

Свариваемость по типу чугуна

Приложения

Эти типы металлов широко используются в:

  • сельхозтехника
  • на станках в качестве оснований, кронштейнов и крышек
  • для трубопроводной арматуры
  • труба чугунная
  • блоки, головки, коллекторы автомобильные
  • комплекты для воды
  • ремонт дефектов с целью модернизации или восстановления отливки перед обслуживанием

Редко используется в конструкционных работах, за исключением элементов сжатия.Он широко используется в строительной технике для противовесов и в других областях, где требуется вес.

Характеристики

Чугун Предел прочности при растяжении (МПа) Прочность на сжатие (МПа) Твердость (HB) Относительное удлинение (%) Прочность (j)
Белый 200–410 НЕТ 321–500 Очень низкий Очень низкий
Ковкий 276–724 1350 — 3600 (перлитный и мартенситный) 110 — 156 (феррит)
149 — 321 (перлитный и мартенситный)
1–10 4-12 Дж при 20 ° C
серый 152–431 572–1293 156–302 <0.6 Очень низкий
Дуктильный 345–827 359–920 143–302 2–20 16-27 при 20 ° C

Серый (серый) или чешуйчатый графит

Если графит существует в виде разветвленных взаимосвязанных чешуек; этот тип чугуна относительно дешев и имеет плохие механические свойства.

Серый чугун обычно можно сваривать GMAW (SMA), MIG (GMA) или FCAW, если используются специальные расходные материалы и процедуры.

Серый чугун имеет низкую пластичность и поэтому не будет расширяться или растягиваться в значительной степени перед разрушением или растрескиванием. Из-за этой характеристики при сварке чугуна методом кислородно-ацетиленовой сварки необходим предварительный нагрев. Однако его можно сваривать дуговым методом без предварительного нагрева, если тепло сварки тщательно контролируется.

Это может быть достигнуто путем сварки только коротких участков стыка за один раз и охлаждения этих участков.Благодаря этой процедуре тепло сварки ограничивается небольшой площадью и исключается опасность растрескивания отливки.

Крупные отливки со сложным сечением, такие как моторные блоки, можно сваривать без разборки или предварительного нагрева. Обычно желательны специальные электроды, предназначенные для этой цели. Ковкий чугун, такой как ковкий чугун, высокопрочный чугун и чугун с шаровидным графитом, можно успешно сваривать. Для достижения наилучших результатов эти типы чугунов следует сваривать в отожженном состоянии.

Графит с шаровидным графитом или шаровидный графит (высокопрочный чугун)

Если графит существует в виде графита в сфероидальной форме, а механические свойства приближаются к свойствам стали. Чугун с шаровидным графитом, как правило, легче сваривать, чем серый чугун, но все же требуются специальные расходные материалы и процедуры.

Гибкий CI

Если графит существует в виде конкреций или розеток, полученных термической обработкой. Ковкий чугун имеет две основные формы: ковкий чугун черного цвета, который имеет свариваемость, подобную чугуну с шаровидным графитом, и ковкий чугун белого цвета, который легко сваривается с ферритными расходными материалами при условии, что приняты меры для ограничения провара.

Белый

Твердый, хрупкий чугун, не содержащий свободного графита. Белый утюг обычно считается несваркой.

Аустенитный

Если графит может существовать в виде чешуек или узлов, что обеспечивает хорошую коррозионную и термостойкость. Многие марки аустенитного чугуна можно сваривать с использованием специальных расходных материалов и специальных процедур.

CI с высоким содержанием кремния и алюминия

Если графит существует в основном в виде хлопьев, и материал имеет хорошую коррозионную стойкость.Этот сплав можно сваривать с помощью специальных расходных материалов и специальных процедур.

Наконечники для сварки чугуна

Большинство проблем связано с высоким содержанием углерода. Это приводит к проблемам с растрескиванием и проблемами терморегулирования. Чугуны содержат от 2 до 4% углерода.

Сварку палкой можно использовать для ремонта отливок с несколькими типами сварных швов, которые являются машинными:

  • никель 55 мягкий сварной шов
  • никель 99 мягкий сварной шов
  • HTS-528 Пруток для пайки (самый прочный пруток для соединения чугуна с удобством встроенного флюса)

Никель — это сплав цветных металлов, который не впитывает углерод, что делает его хорошим выбором для ремонта.

  • Предварительно нагрейте отливку во избежание растрескивания. Контролируйте предварительный нагрев с помощью височной палочки. Когда он плавится, это означает, что вы можете приваривать отливку. Предварительный нагрев отливки перед ремонтом сварного шва может быть очень полезным для контроля скорости охлаждения после сварки. Это особенно важно при ремонте изделий сложной формы, поскольку материалы различной толщины по-разному реагируют на тепло от сварочной ванны, что может привести к термическим напряжениям и деформации.
  • Очистите все соединения, которые будут ремонтироваться или сваривать, включая жир и грязь.Используйте шлифовальные или чистящие растворители.
  • Если после ремонта возникла проблема с пористостью, отшлифуйте поверхность до прочного металла.
  • При ремонте дефектов отливки, таких как выбоины или трещины, все дефектные участки следует удалить путем холодного долбления, строжки или шлифовки. При строжке покрытым электродом или воздушно-угольной дугой вокруг области строжки образуется зона термического влияния. Перед строжкой отливку следует предварительно нагреть до 300 ° C, чтобы снизить риск растрескивания в этой области.Канавку также следует слегка отшлифовать, чтобы удалить затвердевший материал перед нанесением ремонта, поскольку графит в этой области может растворяться во время строжки, повышая его чувствительность к растрескиванию при последующей сварке. При удалении трещин или линейных дефектов концы трещин следует затупить сверлением перед строжкой, чтобы предотвратить дальнейшее распространение во время подготовки к ремонту. Истинные концы трещины, которые могут быть очень тонкими, перед сверлением следует определить с помощью метода проникающего красителя или магнитных частиц.

В видео используется положительный сигнал постоянного тока. Используйте соответствующее защитное снаряжение и избегайте воздействия дыма.

Ремонт сваркой чугуна Рекомендуется предварительный нагрев

Преимущества чугуна

Преимущества чугуна как сварочного металла:

  • Более текучая, чем сталь (лучшая литье)
  • Более низкая температура плавления, чем у стали
  • Недорогой материал
  • Формование можно отливать в песчаные формы
  • Желательные свойства, такие как:
    — Амортизирующая способность
    — Теплопроводность
    — Пластичность
    — Твердость
    — Прочность

Рекомендации по проектированию

Плохая по сравнению с улучшенной конструкцией сварного шва чугуна

Модификации конструкции соединения, снижающие риск образования трещин при сварке чугуна.

Сварка чугуна

Сварка используется для восстановления новых чугунных отливок, ремонта отливок, вышедших из строя, а также для соединения отливок друг с другом или со стальными деталями в производственных процессах.

В таблице ниже показаны сварочные процессы, которые можно использовать для сварки литого, ковкого и чугуна с шаровидным графитом.

Выбор процесса сварки и присадочных материалов зависит от желаемых свойств сварного шва и ожидаемого срока службы.Например, при использовании процесса дуговой сварки экранированным металлом можно использовать различные типы присадочного металла. Присадочный металл будет влиять на соответствие цвета сварного шва по сравнению с основным материалом.

Соответствие цвета может быть определяющим фактором, особенно при утилизации или ремонте отливок, когда разница в цвете недопустима

Независимо от того, какой из сварочных процессов выбран, необходимо выполнить определенные подготовительные действия.

Важно определить точный тип свариваемого чугуна, будь то чугун серый, ковкий или пластичный.

Если точная информация неизвестна, лучше всего предположить, что это серый чугун с низкой пластичностью или без нее.

Как правило, не рекомендуется сваривать отливки из ремонтного серого чугуна, которые при нормальной эксплуатации подвергаются нагреву и охлаждению, особенно когда нагрев и охлаждение меняются в диапазоне температур, превышающих 400 ° F (204 ° C).

Если в качестве присадочного материала не используется чугун, металл сварного шва и основной металл могут иметь разные коэффициенты расширения и сжатия.Это будет способствовать возникновению внутренних напряжений, которые не может выдержать серый чугун.

Ремонт этих типов отливок может быть произведен, но надежность и срок службы при таком ремонте невозможно спрогнозировать с точностью.

Подготовка к сварке чугуна

При подготовке отливки к сварке необходимо удалить все поверхностные материалы, чтобы полностью очистить отливку в области сварного шва. Это означает удаление краски, смазки, масла и других посторонних материалов из зоны сварки.

Желательно нагреть зону сварного шва в течение короткого времени, чтобы удалить захваченный газ из зоны сварного шва основного металла. Кожа или поверхность с высоким содержанием кремния также должны быть удалены рядом с областью сварного шва как на лицевой, так и на корневой стороне. Края стыка должны быть вырезаны или отшлифованы, чтобы получился угол 60 ° или фаска.

Там, где есть канавки, следует использовать V-образную канавку под углом 60–90 °. V должен выступать примерно на 3,2 мм от дна трещины.На каждом конце трещины следует просверлить небольшое отверстие, чтобы она не расширилась.

Всегда следует использовать сварные швы с полным проплавлением, поскольку не полностью устраненные трещины или дефекты могут быстро появиться снова в условиях эксплуатации.

Предварительный нагрев желателен для сварки чугунов любым сварочным процессом. Его можно уменьшить при использовании очень пластичного присадочного металла. Предварительный нагрев уменьшит температурный градиент между сварным швом и остальной частью чугуна.

Температура предварительного нагрева должна зависеть от процесса сварки, типа присадочного металла, массы и сложности отливки.Предварительный нагрев можно произвести любым из обычных методов.

Горелка горелки обычно используется для относительно небольших отливок весом 30,0 фунтов (13,6 кг) или меньше. Более крупные детали могут быть предварительно нагреты в печи, и в некоторых случаях временные печи строятся вокруг детали, а не в печи.

Таким образом, детали могут поддерживаться при высокой температуре промежуточного прохода во временной печи во время сварки. Предварительный нагрев должен быть общим, так как он помогает улучшить пластичность материала и распределяет усадочные напряжения по большой площади, чтобы избежать критических напряжений в какой-либо одной точке.

Предварительный нагрев помогает смягчить область, прилегающую к сварному шву; способствует дегазации отливки, что, в свою очередь, снижает возможность образования пористости наплавленного металла шва; и это увеличивает скорость сварки.

Медленное охлаждение или последующий нагрев улучшает обрабатываемость зоны термического влияния в чугуне, прилегающей к сварному шву. Последующее охлаждение должно быть как можно медленнее. Это можно сделать, накрыв отливку изоляционным материалом, чтобы не допустить проникновения воздуха или ветров.

Электроды

Чугун можно сваривать стальным электродом с покрытием, но этот метод следует использовать только в крайних случаях.

При использовании стального электрода необходимо учитывать усадку металла сварного шва, углерод, улавливаемый из чугуна металлом сварного шва, и твердость металла сварного шва, вызванную быстрым охлаждением. При переходе из расплавленного в твердое состояние сталь дает усадку больше, чем чугун.

При использовании стального электрода эта неравномерная усадка вызывает деформации стыка после сварки.Когда на стык наносится большое количество присадочного металла, чугун может треснуть сразу за линией плавления, если не будут приняты профилактические меры.

Чтобы преодолеть эти трудности, подготовленное соединение следует сварить, наплавив металл шва в виде коротких валиков длиной от 0,75 до 1,0 дюйма (от 19,0 до 25,4 мм). Они выполняются периодически, а в некоторых случаях — с помощью процедуры обратного шага и пропуска.

Во избежание образования твердых участков дугу следует зажигать в V, а не по поверхности основного металла.Каждый короткий отрезок металла сварного шва, нанесенный на соединение, следует слегка зачистить в горячем состоянии с помощью небольшого ударно-ударного молотка и дать ему остыть перед нанесением дополнительного металла сварного шва. Упрочнение приводит к ковке металла и уменьшению деформации при охлаждении.

Используемые электроды должны быть диаметром 1/8 дюйма (3,2 мм) для предотвращения чрезмерного нагрева при сварке. Сварку следует производить с обратной полярностью. Плетение электрода должно быть сведено к минимуму. Перед добавлением дополнительного металла каждый наплавленный металл следует тщательно очистить.

Электроды из чугуна необходимо использовать там, где требуется последующая обработка сварного шва.

Электроды из нержавеющей стали используются, когда обработка сварного шва не требуется.

Процедура выполнения сварных швов этими электродами такая же, как и для сварки электродами из низкоуглеродистой стали. Электроды из нержавеющей стали обеспечивают отличное сплавление присадочного металла и основного металла.

Следует проявлять особую осторожность, чтобы избежать растрескивания сварного шва, сужается примерно на 50 процентов больше, чем из-за того, что нержавеющая сталь расширяется, а низкоуглеродистая сталь расширяется при одинаковых изменениях температуры.

Дуговая сварка чугуна

Процесс дуговой сварки в экранированном металле можно использовать для сварки чугуна.

Можно использовать четыре типа присадочных металлов:

  1. Электроды с чугунным покрытием
  2. Покрытые электроды из сплава на основе меди
  3. Электроды из сплава на основе никеля с покрытием
  4. м Электроды с покрытием из низкоуглеродистой стали

Существуют причины для использования каждого из различных типов электродов, которые включают обрабатываемость наплавки, соответствие цвета наплавке, прочность наплавки и пластичность окончательного сварного шва.

При дуговой сварке чугунными электродами (ECI) предварительно нагрейте до 250–800 ° F (от 121 до 425 ° C), в зависимости от размера и сложности отливки и необходимости обработки наплавки и прилегающих участков.

Чем выше степень нагрева, тем легче будет обработать наплавленный металл.

В общем, лучше использовать электроды небольшого размера и относительно низкую настройку тока. Следует использовать дугу средней длины и, по возможности, выполнять сварку в горизонтальном положении.

Следует использовать процедуру сварки с перебоями или с пропуском сварки, а упрочнение поможет снизить напряжения и свести к минимуму деформацию.

Рекомендуется медленное охлаждение после сварки.

Эти электроды обеспечивают превосходное соответствие цвета серого чугуна. Прочность сварного шва будет равна прочности основного металла.

Есть два типа электродов на основе меди:

  1. Медно-оловянный сплав
  2. Медь алюминиевая

Медно-цинковые сплавы нельзя использовать для электрода для дуговой сварки из-за низкой температуры кипения цинка.Цинк улетучивается в дуге и вызывает пористость металла сварного шва.

При использовании электродов с медной основой рекомендуется предварительный нагрев от 250 до 400 ° F (от 121 до 204 ° C). Следует использовать электроды малого диаметра и слабый ток. Дуга должна быть направлена ​​против наплавленного металла или лужи, чтобы избежать проникновения и смешивания основного металла с металлом сварного шва. После сварки рекомендуется медленное охлаждение. Электроды на медной основе не обеспечивают хорошего соответствия цвета.

Существует три типа никелевых электродов, используемых для сварки чугуна.Эти электроды можно использовать без предварительного нагрева; однако рекомендуется нагревание до 100 ° F (38 ° C).

Эти электроды можно использовать во всех положениях; однако рекомендуется горизонтальное положение. Сварочный шлак следует удалять между проходами.

Отложения никеля и никелевого железа чрезвычайно пластичны и не станут хрупкими из-за улавливания углерода. Твердость зоны термического влияния можно минимизировать за счет уменьшения проникновения в основной металл чугуна.

Упомянутая выше техника, игра дуги на лужу, а не на основной металл, поможет минимизировать разбавление.Медленное охлаждение и, при необходимости, последующий нагрев улучшают обрабатываемость зоны термического влияния. Электроды на никелевой основе не обеспечивают близкого соответствия цвета.

Медно-никелевые электроды двух марок. Любой из этих электродов можно использовать так же, как никелевый или железоникелевый электрод, примерно с той же технологией и результатами. Отложения этих электродов не обеспечивают совпадение цвета.

Электроды из низкоуглеродистой стали не рекомендуются для сварки чугуна, если требуется механическая обработка наплавки.Отложения из мягкой стали собирают достаточно углерода для образования высокоуглеродистых отложений, которые невозможно обработать механической обработкой. Кроме того, наплавка из мягкой стали будет иметь пониженный уровень пластичности в результате повышенного содержания углерода.

Этот тип электрода следует использовать только для небольшого ремонта и не должен использоваться, когда требуется механическая обработка. Для небольших ремонтных работ возможен минимальный предварительный нагрев.

Рекомендуются малые электроды при слабом токе, чтобы минимизировать разбавление и избежать концентрации усадочных напряжений.

Следует использовать короткие сварные швы в произвольной последовательности, и сварной шов следует как можно быстрее после сварки. Наплавленный электрод из мягкой стали обеспечивает хорошее соответствие цвета.

Углеродно-дуговая сварка чугуна

Отливки из чугуна можно сваривать с помощью угольной дуги, чугунного прутка и сварочного флюса для чугуна. Шов следует предварительно нагреть, перемещая угольные электроды по поверхности. Это предотвращает слишком быстрое охлаждение после сварки.

Расплавленная лужа металла может обрабатываться углеродным электродом так, чтобы перемещать любой образующийся шлак или оксиды на поверхность.Сварные швы, выполненные с помощью угольной дуги, охлаждаются медленнее и не такие твердые, как сварные с использованием металлической дуги и чугунного электрода. Сварные швы поддаются механической обработке.

Газовая сварка чугуна с кислородным топливом

Процесс кислородно-топливного газа часто используется для сварки чугуна. Можно использовать большую часть топливных газов. Пламя должно быть нейтральным или слегка уменьшающимся. Следует использовать флюс.

Доступны два типа присадочных материалов:

  • прутки чугунные
  • прутки медно-цинковые

Сварные швы, выполненные подходящим чугунным электродом, будут иметь такую ​​же прочность, как и основной металл.Все эти сварочные покрытия обеспечивают хорошее соответствие цветов. Следует использовать оптимальную процедуру сварки в отношении подготовки стыка, предварительного нагрева и последующего нагрева.

Медно-цинковые прутки используются для сварки пайкой. Есть две классификации:

  • марганцевая бронза
  • бронза слабодымящая

Наплавленная бронза имеет относительно высокую пластичность, но не обеспечивает совпадение цветов.

Пайка и пайка Сварка чугуна

Пайка используется для соединения чугуна с чугуном и сталью.

В этих случаях конструкция соединения должна выбираться для пайки так, чтобы капиллярное притяжение заставляло присадочный металл течь между плотно прилегающими деталями. Обычно используется факельный метод. Кроме того, в качестве источников тепла можно использовать угольную дугу, двойную угольную дугу, газо-вольфрамовую дугу и плазменную дугу.

Обычно используются два металлических сплава припоя; оба являются сплавами меди и цинка.

Для соединения чугуна также можно использовать пайку. При сварке пайкой присадочный металл не втягивается в соединение за счет капиллярного притяжения.Иногда это называют сваркой бронзы. Следует использовать наполнитель с жидкостью выше 850 ° F (454 ° C). Сварка пайкой не обеспечивает совпадения цвета.

Сварка пайкой также может выполняться дуговой сваркой в ​​защитном металлическом корпусе или газовой дугой.

Высокотемпературный предварительный нагрев обычно не требуется для сварки пайкой, если только деталь не является очень тяжелой или сложной по геометрии. Наплавленный бронзовый металл шва имеет чрезвычайно высокую пластичность, которая компенсирует недостаточную пластичность чугуна.Тепла дуги достаточно, чтобы довести поверхность чугуна до температуры, при которой сплав присадочного металла на основе меди будет сцепляться с чугуном.

Поскольку перемешивание материалов незначительное или отсутствует, зона, прилегающая к сварному шву в основном металле, не затвердевает заметно. После завершения сварки сварной шов и прилегающий участок можно обработать.

Как правило, для большинства применений достаточно предварительного нагрева до 200 ° F (93 ° C). Скорость охлаждения не очень важна, и термообработка для снятия напряжения обычно не требуется.

Этот тип сварки обычно используется для ремонтной сварки автомобильных деталей, деталей сельскохозяйственных орудий и даже блоков и головок автомобильных двигателей. Его можно использовать только в том случае, если отсутствие соответствия цветов не вызывает возражений.

Газовая дуговая сварка чугуна

Процесс газовой дуговой сварки металла может использоваться для сварки ковкого чугуна и углеродистой стали. Можно использовать несколько типов электродных проволок, в том числе:

  • Мягкая сталь с использованием 75% аргона + 25% CO2 для защиты.
  • Никель-медь с использованием 100% аргона для защиты.
  • Кремниевая бронза с использованием 50% аргона + 50% гелия для защиты.

Во всех случаях следует использовать электродную проволоку малого диаметра при слабом токе. При использовании электродной проволоки из мягкой стали образуется смесь защитного газа аргон-CO2 для минимизации проникновения.

В случае присадочного металла на основе никеля и присадочного металла на основе меди наплавленный присадочный металл является чрезвычайно пластичным. Низкоуглеродистая сталь обеспечивает хорошее соответствие цвета.Обычно требуется более интенсивный предварительный нагрев, чтобы снизить остаточные напряжения и склонность к растрескиванию.

Порошковая сварка чугуна

Этот процесс недавно использовался для сварки чугунов. Более успешным применением была порошковая проволока на никелевой основе.

Эта электродная проволока обычно работает с защитным газом CO2, но когда более низкие механические свойства не являются нежелательными, ее можно использовать без внешнего защитного газа. Можно использовать минимальные температуры предварительного нагрева.

Метод должен минимизировать проникновение в основной металл чугуна. Дополнительный нагрев обычно не требуется. Подбор цвета не получается.

Другие процессы

Для чугуна можно использовать другие способы сварки.

  • Сварка термитом — применялась для ремонта определенных типов деталей станков из чугуна.
  • Пайка — может использоваться для соединения чугуна, а иногда используется для ремонта небольших дефектов в небольших отливках.
  • Сварка оплавлением — также может использоваться для сварки чугуна.

Методы сварки

Шпилька

Метод шпильки для ремонта чугуна

Трещины в крупных отливках иногда ремонтируются шпильками.

В этом процессе трещина удаляется шлифовкой V-образной канавки.

Отверстия просверливаются и нарезаются под углом с каждой стороны канавки, и в эти отверстия ввинчиваются шпильки на расстояние, равное диаметру шпилек, причем верхние концы выступают примерно на 1/4 дюйма.(6,4 мм) над поверхностью чугуна.

Шпильки следует герметично приварить на месте одной или двумя буртиками вокруг каждой шпильки, а затем связать вместе металлическими швами.

Сварные швы следует выполнять короткими отрезками, каждый отрезок подвергается упрочнению в горячем состоянии, чтобы предотвратить высокие напряжения или растрескивание при охлаждении. Перед нанесением дополнительного металла каждому валику необходимо дать остыть и тщательно очистить.

Если метод крепления шипов не может быть применен, края соединения должны быть выколоты или обработаны инструментом с круглым концом для образования U-образной канавки, в которую должен быть наплавлен металл сварного шва.

Совместное изменение конструкции

Предпочтительно использовать сварной шов с полным проплавлением, а не с частичным проплавлением. Сварные швы различной толщины могут привести к неравномерному напряжению сжатия и неравномерному расширению во время цикла сварки.

Изменение конструкции сварки для размещения сварных швов в области с постоянной толщиной может быть полезным. Еще один совет — использовать подкладной угловой сварной шов для поддержки напряженных участков.

Обработка торцевых канавок

Чугунная канавка Обработка торцевых канавок

Иногда предпочтительным методом является строжка или шлифовка канавок на поверхности подготовленной сварной канавки с последующим использованием сварного валика для заполнения канавок перед заполнением всего стыка (см. Иллюстрацию ниже).

Этот подход снижает риск образования трещин за счет отклонения пути трещины. Бусины, которые контактируют с отливкой, осаждаются первыми, когда зона термического влияния напряжения и линия плавления находятся на низком уровне.

Прокаливание (молотковое)

Упрочнение или ударный удар с помощью 13-19-миллиметрового молотка с шариковым упором, приложенного к деформируемому сварному шву, приведя его в состояние сжимающего напряжения, можно противодействовать растягивающим напряжениям, вызванным термическим сжатием, тем самым снижая риск образования трещин внутри и вокруг сварного шва. сварка.

При ручном воздействии молотком он наносит умеренный удар перпендикулярно поверхности шва.

Для этого процесса требуется шов из пластичного металла. Никелевые наполнители используются, особенно при работе с серым чугуном. Упрочнение выполняется при более высоких температурах, пока металл мягкий.

Для дополнительного чтения

Чугун и сварка

Чугун. Факты для детей

Информацию о посуде см. Чугунная посуда.

Чугун — это группа железоуглеродистых сплавов с содержанием углерода более 2%.Компоненты сплава влияют на его цвет при разрушении: белый чугун имеет примеси карбидов, которые позволяют трещинам проходить сквозь них. Серый чугун имеет чешуйки графита, которые отклоняют проходящую трещину и вызывают бесчисленное количество новых трещин по мере разрушения материала.

Углерод (C) и кремний (Si) являются основными легирующими элементами, их количество составляет 2,1–4 мас.% И 1–3 мас.% Соответственно. Сплавы железа с меньшим содержанием углерода известны как сталь. Хотя это технически делает эти базовые сплавы тройными сплавами Fe – C – Si, принцип затвердевания чугуна понятен из бинарной фазовой диаграммы железо – углерод.Поскольку состав большинства чугунов находится в районе эвтектической точки системы железо-углерод, температуры плавления тесно коррелируют, обычно в диапазоне от 1150 до 1200 ° C (от 2100 до 2190 ° F), что составляет около 300 ° C (572 ° F). F) ниже точки плавления чистого железа.

Чугун имеет тенденцию к хрупкости, за исключением ковкого чугуна. Обладая относительно низкой температурой плавления, хорошей текучестью, литейными качествами, отличной обрабатываемостью, устойчивостью к деформации и износостойкостью, чугуны стали конструкционным материалом с широким спектром применения и используются в трубах, машинах и деталях автомобильной промышленности, таких как цилиндры. головки (снижение использования), блоки цилиндров и коробки передач (снижение использования).Он устойчив к разрушению и ослаблению в результате окисления (ржавчины).

Самые ранние чугунные артефакты относятся к V веку до нашей эры и были обнаружены археологами на территории нынешнего Цзянсу в Китае. Чугун использовался в древнем Китае для ведения войны, сельского хозяйства и архитектуры. В 15 веке чугун стал использоваться для артиллерии в Бургундии, Франции и Англии во время Реформации. Первый чугунный мост был построен в 1770-х годах Авраамом Дарби III и известен как Железный мост.Чугун также используется при строительстве зданий.

Серый чугун очень хорошо проводит тепло. Из-за этого его часто используют для изготовления посуды.

История

Чугунный артефакт V века до нашей эры, найденный в Цзянсу, Китай. Чугунный дренажный, сливной и вентиляционный трубопровод Чугунная пластина на рояле

Самые ранние чугунные артефакты относятся к V веку до нашей эры и были обнаружены археологами на территории современного уезда Лухэ провинции Цзянсу в Китае.Это основано на анализе микроструктуры артефакта. Поскольку чугун сравнительно хрупкий, он не подходит для целей, где требуется острый край или гибкость. Он прочен при сжатии, но не при растяжении. Чугун был изобретен в Китае в V веке до нашей эры, его разливали в формы для изготовления лемехов и горшков, а также оружия и пагод. Хотя сталь была более желанной, чугун был дешевле и, таким образом, чаще использовался для изготовления орудий в древнем Китае, в то время как кованое железо или сталь использовались для изготовления оружия.

На западе, где он не был доступен до 15 века, его самые ранние применения включали пушку и дробь. Генрих VIII инициировал отливку пушек в Англии. Вскоре английские металлурги, использующие доменные печи, разработали технику производства чугунных пушек, которые, будучи тяжелее обычных бронзовых пушек, были намного дешевле и позволяли Англии лучше вооружать свой флот. Технология чугуна была перенесена из Китая. Аль-Казвини в 13 веке и другие путешественники впоследствии заметили железную промышленность в горах Альбурз к югу от Каспийского моря.Это близко к шелковому пути, так что использование технологий, полученных из Китая, возможно. Мастера чугуна Weald продолжали производить чугун до 1760-х годов, и вооружение было одним из основных применений чугуна после Реставрации.

Чугунные котлы изготавливались на многих английских доменных печах того времени. В 1707 году Авраам Дарби запатентовал метод изготовления кастрюль (и чайников) тоньше и, следовательно, дешевле, чем могли бы его конкуренты. Это означало, что его печи Coalbrookdale стали доминирующими поставщиками котлов, и в 1720-х и 1730-х годах к ним присоединилось небольшое количество других доменных печей, работающих на коксе.

Развитие паровой машины Томасом Ньюкоменом обеспечило дальнейший рынок чугуна, поскольку чугун был значительно дешевле латуни, из которой первоначально были сделаны цилиндры двигателя. Джон Уилкинсон был великим сторонником чугуна, который, среди прочего, отливал цилиндры для многих улучшенных паровых двигателей Джеймса Ватта до основания литейного завода в Сохо в 1795 году.

Мосты чугунные

См. Также: Железный мост

Использование чугуна в конструкционных целях началось в конце 1770-х годов, когда Авраам Дарби III построил Железный мост, хотя короткие балки уже использовались, например, в доменных печах в Коулбрукдейле.Затем последовали и другие изобретения, в том числе одно запатентованное Томасом Пейном. Чугунные мосты стали обычным явлением по мере того, как промышленная революция набирала обороты. Томас Телфорд использовал материал для своего моста вверх по течению в Билдвас, а затем для акведука через канал в Лонгдон-он-Терн на канале Шрусбери.

За ним последовали Акведук Чирк и Акведук Понцисилльте, которые до сих пор используются после недавних реставраций. Мосты с чугунными балками широко использовались ранними железными дорогами, такими как мост Уотер-стрит на Манчестерской конечной станции Ливерпульской и Манчестерской железных дорог.Проблемы возникли, когда в мае 1847 года, менее чем через год после открытия, обрушился новый мост, через который проходила железная дорога Честера и Холихеда через реку Ди в Честере. Катастрофа моста Ди была вызвана чрезмерной нагрузкой в ​​центре балки проезжающим поездом, и многие подобные мосты пришлось сносить и восстанавливать, часто из кованого железа. Мост был спроектирован ошибочно: его связывали ремнями из кованого железа, которые, как ошибочно считали, усиливали конструкцию. Центры балок были изогнуты, нижняя кромка находится в напряжении, где чугун, как и кладка, очень непрочен.

Лучше всего использовать чугун для строительства мостов, используя арки, чтобы весь материал находился в сжатом состоянии. Чугун, как и кладка, очень прочен на сжатие. Кованое железо, как и большинство других видов железа, а также большинство металлов в целом, обладает прочностью при растяжении, а также прочностью и устойчивостью к растрескиванию. Отношения между кованым и чугунным железом для структурных целей можно рассматривать как аналог отношения между деревом и камнем.

Тем не менее, чугун продолжал использоваться в несоответствующих конструктивных целях, пока катастрофа на железнодорожном мосту Тей в 1879 году не поставила под сомнение использование этого материала.