Что лучше газосиликат или керамзитобетон: Керамзитобетонные блоки или газосиликатные: что лучше?

Что лучше — газосиликат или керамзитобетон?

В настоящее время нам зачастую приходится сталкиваться с проблемой огромного разнообразия выбора строительных материалов, что способствует созданию определенного рода трудностей. С одной стороны, это хорошо – ведь при наличии выбора можно найти именно то, что подходит вам.

Но с другой стороны, при изобилии рекламы и противоречивости информации в разных источниках, несложно растеряться и сделать ошибку, которая обойдется достаточно дорого.Выбирая материалы для строительства дома, мы думаем о нескольких факторах – надежность, безопасность, цена, эксплуатационные характеристики. В чем-то материалы будут иметь схожие свойства, в чем-то отличаться. В качестве ключевого достоинства легких бетонов выступают теплозащитные характеристики, значительно влияющие на снижение затрат за отопление, что как никогда актуально в условиях тотальной экономии энергоносителей и наших суровых зим. Содержание статьи:Каким лучше материалом воспользоваться: газосиликатом или керамзитобетоном?

Керамзитобетон и газосиликат, хоть и являются относительно новыми строительными материалами в нашей стране, но уже заслуженно завоевали лидирующие места по продажам, ведь они обладают рядом качеств, выгодно отличающих их от шлакоблока или кирпича, например. Но какой из них лучше? Перед осуществлением выбора между ними, следует четко определиться с характеристиками, которыми они обладают.Оба этих продукта входят в число разновидностей легких бетонов, при этом применяются они в аналогичных сферах.

Однако стоит учитывать свойственную керамзитобетону высокую плотность и хорошие показатели конструктивной прочности. Но, он все же, по собственным теплоизоляционным качествам уступает газосиликату, поэтому на территории северных регионов страны предпочитают пользоваться для возведения зданий газосиликатом.Выгода от использования газосиликата Кладка керамзитобетонных блоков производится исключительно на раствор.

Применение же клеевого раствора целесообразно при укладке именно газосиликатных блоков.

Его толщина должна достигать 2-3 мм. Степень тепловой защиты газосиликата высокая, благодаря чему, и стоимость квадратного метра кладки данного материала ниже цены на керамзитобетон – этому способствует уменьшение толщины стен. Кроме этого, отпадает потребность в осуществлении отделочных работ, и если вы вынуждены считаться с ограниченным бюджетом, то лучше воспользоваться газосиликатом.Кроме всего прочего, в процессе строительства с применением тонкошовной кладки, лучше всего применять именно данный материал.

Однако при использовании цементного раствора, предпочтение отдаётся обычно керамзитобетону. С целью достижения одинаковой степени теплопроводности, керамзитобетонную стену необходимо делать толще выполненной из газобетонных блоков стены приблизительно в два раза.Характеристики керамзитобетона Продукт этот представлен в форме легкой смеси, в составе которой содержится керамзит, бетон и песок.

Керамзитобетон обладает неплохими несущими и теплозвукоизоляционными качествами.

Однако в зависимости от доли содержания керамзита может обладать худшей по сравнению с ячестым бетоном теплопроводностью. Кроме того данный строительный продукт обладает следующими свойствами:Потребность в большом количестве раствора для кладки; Высокая скорость монтажа и возможность использовать более дешевую рабочую силу.Неплохие теплоизоляционные качества при соблюдении технологииСпособность пропускать воздух, что положительно сказывается на микроклимате внутри помещения; Прочность конструкций и неплохие несущие качестваОтсутствие потребности в дополнительном уходе.Керамзитобетонные блоки с каждым годом превращаются во всё менее востребованную продукцию. Все больше людей доверяют новым технологиям строительства и по достоинству оценивают эксплуатационные характеристики газобетона.

Даже кирпич по сравнению с керамзитобетонными блоками укрепляет свои позиции. Ведь их стоимость ниже, кладка осуществляется легче, а проведение всех работы происходит значительно быстрее. Конечно, приобретать материал желательно у проверенных производителей, что станет гарантией обеспечения высококачественного товара.Преимущества газосиликатных блоков Газосиликат обладает своими достоинствами:Низкая теплопроводность, способствующая существенной экономии на толщине стен; Снижение показателя теплопроводности, если кладка выполняется посредством использования тонкого слоя клея; Легкая обработка, соответственно, кладка не вызывает сложностей; Отсутствие потребности в выполнении штукатурки при проведении внутренней отделки; Прочность стыковки блоков между собой; «Размерный ряд» данных блоков позволяет удовлетворить любые задумки и не переплачивать там, где нет необходимости устанавливать толстые стены.Для холодных регионов Если заниматься строительством в местности, где холодная погода стоит большую часть года, тогда лучше всего предпочесть керамзитобетон.

Плюсы применения керамзитобетона:хорошие показатели прочности; надежность стен; самостоятельное строительство обходится значительно дешевле; малый вес блоков; пожаробезопасность. ВыводыОднозначный ответ относительно выбора наиболее оптимального варианта материала отсутствует. Следуя вышеописанным характеристикам, можно отметить наличие преимуществ и недостатков использования обоих продуктов. Но оба они, как нельзя лучше пригодны для работы в самостоятельном порядке, поэтому и приобрели они такую большую популярность.

В любом случае, перед покупкой требуется оценить ряд параметров – климатические условия, величину бюджета, пожелания по внутренней и внешней отделке дома, проект дома, вес крыши и так далее. Если даже после полученной информации вы сомневаетесь в выборе, то лучше всего обратиться за консультацией к профессионалам-строителям и производителям данных продуктов. Не забывайте проверять сертификаты качества и санитарно-гигиенические заключения на товар перед приобретением стройматериалов.15.12.2016

О том, что лучше, газобетон или керамзитоблок, следует узнать еще до того, как будет заложен фундамент из этих строительных материалов. Иначе после его возведения менять конструкцию будет уже поздно.

Выбор любого строительного материала осуществляется с учетом его веса, плотности и прочих характеристик.

Содержание

  • 1 Различия в способах производства материалов
  • 2 Отличительные качества газо- и керамзитобетона
  • 3 Какой строительный материал дороже
  • 4 Что учесть при выборе материала
  • 5 Плюсы и минусы газобетона
  • 6 Достоинства и недостатки керамзитоблоков
  • 7 Огромное разнообразие строительных материалов порождает много вопросов, касающихся сравнения разных изделий по техническим и эксплуатационным характеристикам. Ведь много разных по названиям стройматериалов выполняют одни и те же функции. К примеру, керамзитобетонные блоки и газосиликатные – что лучше? Чтобы ответить на поставленный вопрос, надо разобраться в составе блоков и способе их изготовления.
  • 8 Керамзитобетонные блоки
  • 9 Газосиликатные блоки
  • 10 Сравнительный анализ
  • 11 Конечно, нельзя судить по размерам, что лучше – газосиликат или керамзитобетон. Но, учитывая, что скорость строительства играет важную роль в современности, необходимо обозначить, что по этому параметру газосиликатные блоки превосходят конкурента. И последний критерий – цена. В связи со сложной технологией производства газосиликата блоки из него стоят дороже керамзитобетонных.
  • 12 Что говорят специалисты

Различия в способах производства материалов

Чтобы выбрать наиболее подходящий строительный материал, необходимо заранее ознакомиться со всеми его особенностями. Газобетон отличается по своим свойствам от керамзитобетона. Из этих материалов зачастую возводятся стены, несущие и внутренние перегородки домов.

Керамзитоблок применяется в строительстве в качестве монолитного материала.

На рынке предлагается пустотелый и полнотелый керамзитобетон. К использованию газобетона в монолитных конструкциях прибегают редко. Выпускаемые газоблоки могут быть разными по размеру.

Состав и технология производства этих материалов сильно отличаются, но оба они относятся к классу ячеистых бетонов. Газобетон является пористым материалом, содержащим огромное количество пузырьков воздуха. Сырье, используемое для его производства, отличается от материалов, из которых изготавливается керамзитобетон.

Газоблоки производятся из следующих видов материалов:

    песок;цемент;известь;алюминиевая пудра.

Процесс появления воздушных пузырьков, связанный с газообразованием, предполагает использование алюминиевой пудры. В результате производимый строительный материал отличается пористостью. Газобетон, как и керамзитобетон, выпускается под определенной маркой.

Производство керамзитобетона осуществляется из следующих видов материалов:

    песок;цемент;керамзит;вода.

В процессе изготовления вся смесь перемешивается, а в качестве связующего звена используется именно вода.

Керамзит может иметь разную фракцию. Технология изготовления керамзитобетона не требует использования специального оборудования. В отличие от газоблоков керамзитобетон можно изготавливать в домашних условиях.

Отличительные качества газо- и керамзитобетона

Основными различиями в свойствах газобетона и керамзитобетона являются те, что обусловлены способом их изготовления:

Прочность возводимых конструкций. Керамзитобетон является более прочным, чем газоблок, поскольку в нем содержится наполнитель в виде керамзита. Это придает особую прочность возводимым из него конструкциям.

В качестве наполнителя в газобетоне предусмотрены воздушные пузырьки, делающие структуру материала пористой.Проведение отделочных работ. Керамзитобетон более приятен при дальнейшей обработке, после возведения стен из него. Идеальным является оштукатуривание таких конструкций с применением песчано-цементной смеси.

Гладкая структура газобетона может вызвать проблемы с оштукатуриванием такой поверхности, но благодаря точным размерам материала, достаточно будет нанесения шпаклевки или штукатурки тонким слоем.Процесс кладки блоков. Укладывать керамзитобетонные изделия следует исключительно на раствор из песка и цемента, шов в кладке должен составлять 10-15 мм. Кладка газобетонных блоков выполняется с помощью клея для ячеистого бетона, а размер шва равен 2 мм, что позволяет сохранять тепло, уходящее через мостики холода.

Эти материалы фактически не отличаются по свойству впитывания воды, имеют отличную способность к водопоглощению. Газобетон обладает структурой, которая способна к водопоглощению в наибольшей степени, поэтому требуется дополнительная защита от осадков.

В некоторых случаях люди пренебрежительно относятся к строительству фундаментов из газобетона, пытаясь сэкономить на этом материале. Они связывают такие возможности с легким весом газобетонных блоков. Вместе с тем и из более хрупких материалов можно выстроить прочную опору.

Какой строительный материал дороже

По причине сложности используемой технологии изготовления блоков из газобетона их стоимость является более высокой, чем керамзитобетона. Размеры газоблоков более крупные, что в значительной степени ускоряет кладку стен из него. Строительство упрощается за счет более ровной геометрической формы изделий.

Технологические пустоты керамзитобетонных блоков придают хрупкость этому материалу.

Разрушить его можно всего лишь несильным ударом по блоку, но в процессе кладки они являются достаточно прочными. Это обеспечивает их способность выдерживать большие весовые нагрузки. Изделия из газобетона более высоких марок могут иметь похожие показатели, что приводит к значительному удорожанию блоков.

Устанавливаемая производителем цена на газобетон ниже, чем на блоки из керамзитобетона, но этот вопрос является спорным. Если сравнить полную стоимость, то необходимо учесть все дополнительные расходы. Для этого проводится их полный анализ.

К примеру, оптимальная толщина несущей стены из керамзитобетона может составлять 20 см, а для газобетонных стен этого не всегда бывает достаточно.

В результате стоимость используемого материала может оказаться более высокой, чем керамзита. Повышенная марка газобетона стоит дороже, но зато она позволяет исключить осыпание стен и появление в них трещин. Они чаще всего появляются на более хрупком газобетоне.

Что учесть при выборе материала

Думая, что выбрать: газобетон или керамзитоблоки, следует учесть, что стены из первого материала будут отличаться сыпучестью.

На них очень сложно закреплять предметы, обладающие значительным весом. В них с легкостью вбиваются гвозди, но они там не держатся. Керамзитобетонная стена не предполагает появления таких проблем.

В плане необходимости утепления стен газобетон не имеет каких-либо преимуществ перед керамзитобетоном.

Стены из этих материалов в любом случае нуждаются в утеплении. Они могут иметь одинаковую толщину, но газобетон будет удерживать тепло в доме лучше. Это и есть отличительная особенность, из-за которой разрабатывались газобетонные блоки.

В определенных случаях для керамзита не требуется армопояс, монтируемый поверх стен.

Если стены сделаны из газобетона, то армировать их нужно в обязательном порядке. Выбирая, что лучше, газоблок или керамзитоблок, не следует ориентироваться только на теплоизоляционные качества этих материалов. Хоть газобетон теплее, но его прочность меньше, а в определенных случаях он стоит дороже.

Применение газобетона может предполагать возникновение определенных проблем, связанных с отделкой стен из этого типа материала. Сравним расходование газобетона по уровню издержек на его применение с керамзитоблоками. Его высокая стоимость обусловлена необходимостью армирования, кладкой стен, наибольшей толщины, обустройством теплоизоляции, выбором более дорогостоящих и качественных марок.

Специалисты рекомендуют приобретать эти материалы из-за того, что они являются экологически чистыми. Они производятся при точном соблюдении технологии. Сооружения из них не могут быть опасными для здоровья людей.

Плюсы и минусы газобетона

Блоки, выполненные из газобетона, имеют малый вес и эргономичную форму. Строительный процесс из этого материала в значительной степени упрощается благодаря этим характеристикам. Вес здания, выстроенного из такого материала, является небольшим, поэтому дополнительное укрепление основания дома не требуется.

Процесс возведения газобетонных зданий не требует привлечения мощной техники. Осуществлять погрузочно-разгрузочные работы или транспортировку материалов не обязательно. Поскольку при строительстве домов из газоблоков применяется специальный клей для ячеистых бетонов и сам экологичный материал, то все виды выполняемых работ должны быть чистыми.

Если сравнивать газобетонные блоки с кирпичными изделиями, то их вес в 3 раза меньше. Выбирая керамзитоблоки или газобетон по весу, следует учитывать, что первые в 1,5 раза тяжелее, чем последние. Выбирая между этими бетонами, необходимо помнить, что газобетон обладает более высокими теплоизоляционными характеристиками.

Для газобетонных блоков характерна простота предварительной обработки.

Их можно с легкостью отрезать и отшлифовать. Это преимущество в значительной степени позволяет упростить проведение монтажных работ. Стенам, изготовленным из газобетона, не требуется дополнительная отделка.

Представленный строительный материал не является токсичным. Он не выделяет вредных веществ, способных нанести ущерб здоровью человека.

Вместе с тем значительным недостатком этой разновидности материала является высокая степень хрупкости. Стены из этого материала с течением времени способны давать трещины и усадку. Для монтажа на такие поверхности тяжелых предметов необходимо использовать специальные виды креплений.

Газобетон подвергается гидроизоляции в обязательном порядке, поскольку он способен чрезмерно поглощать влагу.

Керамзитобетонные блоки в значительной степени могут превосходить газобетонные аналоги по прочности. Строительство стен из газоблоков требует специального укрепления их железобетонным поясом. Если этого заранее не сделать, то здание с большой вероятностью подвергнется усадке.

Достоинства и недостатки керамзитоблоков

Выбирая, что лучше, газобетон или керамзитобетон, следует разобраться с тем, какой из материалов является более экономичным.

При высоких показателях морозоустойчивости керамзитобетон обладает минимальной ценой. Блоки обладают превосходной шумоизоляцией. Керамзитобетон не способен давать трещин и усадки, поэтому он применяется для возведения стен и перегородок домов, включая несущие конструкции.

Карамзитобетонные блоки не могут загораться или пропускать пар либо влагу. Стены из этого материала хорошо выдерживают тяжелый вес предметов, которые на них закреплены. Если в поверхность таких стен забить дюбель либо гвоздь, то держаться они будут без каких-либо приспособлений.

Недостатком керамзитобетонных и газобетонных блоков является наличие определенной степени хрупкости. Перед возведением теплого строения потребуется выложить толстые стены либо купить дорогие материалы для теплоизоляции. Это потребует произвести достаточно высокие расходы на строительство.

Для стен из керамзитобетона требуется проведение дополнительной отделки. Если провести его сравнение в этом плане с газобетоном, то он является более сложным в обработке материалом. Для резки керамзитобетона лучше выбирать устройство, имеющее алмазный круг.

Гезобетон в сравнении с керамзитоблоком является более паропроницаемым материалом. Последний материал способен оказывать большие нагрузки на фундамент дома. Вместе с тем производить транспортировку, выгрузку и разгрузку керамзитобетона дорого.

Огромное разнообразие строительных материалов порождает много вопросов, касающихся сравнения разных изделий по техническим и эксплуатационным характеристикам.

Ведь много разных по названиям стройматериалов выполняют одни и те же функции. К примеру, керамзитобетонные блоки и газосиликатные – что лучше? Чтобы ответить на поставленный вопрос, надо разобраться в составе блоков и способе их изготовления.

Керамзитобетонные блоки

Керамзитобетон – это разновидность бетонного раствора, в котором щебень, как наполнитель, заменен керамзитом. Других отличий от обычного бетона в нем нет. Единственное надо отметить, что керамзитобетонные блоки весят меньше, чем бетонные, и теплопроводность у них намного ниже.

Само производство основано на простом смешивании компонентов внутри барабана бетономешалки, где ингредиентами выступают цемент (одна часть), песок (2-3 части), керамзит (3-6 частей) и вода. При этом последовательность закладки следующая:

    цемент и вода, которые перемешиваются до образования однородной массы;затем в полученную смесь порционно добавляются песок и керамзит.

В зависимости от рецептуры раствора меняется и плотность керамзитобетона, соответственно изменяются и его технические характеристики.

ХарактеристикиПлотность, кг/м³Прочность, кг/см²Теплопроводность, Вт/м КМорозостойкость, кол-во цикловУсадка, % мм/мВодопоглощение, %Показатели700-150035-1500,15-0,4550-200030-50

Исходя из достаточно серьезных прочностных характеристик, блоки из керамзитобетона используются для сооружения фундаментных конструкций. Естественно из них возводят стены (несущие и перегородки).

Газосиликатные блоки

Выбирая газосиликат или керамзитобетон, надо сравнить оба материала, поэтому переходим к разбору первого.

Сами блоки изготавливаются из газосиликатной смеси, в состав которой входят известь и песок (кварцевый или полевошпатовый). Оба ингредиента вносятся в смесь в измельченном состоянии, и по технологии производства их измельчают обычно вместе. Цемент в этот материал не добавляется, если такая необходимость появляется, то в очень небольшом количестве.

<span class=”mce_SELRES_start”></span>

Сам процесс производства основан на химической реакции между известью и алюминиевой пудрой.

Для производства газосиликата используется специальное оборудование в виде емкости, куда засыпают сырьевую смесь и алюминиевую пудру, а затем добавляют воду. При смешивании и соединении с водой происходит реакция с выделением большого количества газа, который и образует внутри смеси мелкие пустоты (1-3 мм). Именно поэтому газосиликат относится к разряду ячеистых бетонов.

Чтобы ответит на вопрос, что лучше: газосиликатные блоки или керамзитобетонные, нужно рассмотреть характеристики первых.

ХарактеристикиПлотность, кг/м³Прочность, кг/см²Теплопроводность, Вт/м КМорозостойкость, кол-во цикловУсадка %мм/мВлагопоглощение, %Показатели200-70015-1000,1-0,2815-1000,750

Обладая не самой высокой прочность, из газосиликатных блоков сооружают стены (несущие и перегородки) в домах высотою не более семи этажей.

Сравнительный анализ

Итак, какие блоки лучше: газосиликатные или керамзитобетонные. По характеристикам, указанным в таблицах, можно сделать заключение, что по прочности керамзитобетон лучше.

Дом из таких блоков получается прочным и надежным. К тому же блочный материал из керамзитобетона обладает отличной адгезией, поэтому любые отделочные и выравнивающие материалы легко на него укладываются. В этом плане газосиликат уступает оппоненту, потому что его блоки имеют гладкие и ровные поверхности.

Следующее сравнение касается способа укладки. Для скрепления керамзитовых блоков между собой используется обычный кладочный раствор на основе цемента и песка. При этом толщина шва составляет 10-15 мм.

Газосиликатные изделия укладываются друг на друга с использованием специального клеевого состава, который наносится шпателем толщиною не более 2 мм. Суть сравнения заключается в том, что кладочные швы обычно выступают в качестве мостиков холода. И чем они по толщине меньше, тем лучше.

Далее необходимо сравнить два материала по показателю водопоглощения.

Разница между обоими не существенная, но необходимо отметить, что пористая структура газосиликата быстрее впитывает воду и в большем количестве. Поэтому рекомендуется стены, сооруженные из газосиликатных блоков, обязательно закрывать защитными растворами или плитами. Особенно это касается внешних стен и перегородок во влажных помещениях.

<span class=”mce_SELRES_start”></span>

Очередной сравнительный показатель – плотность.

У газосиликата он намного меньше, поэтому блоки из него, учитывая одинаковые размеры с керамзитовыми, будут иметь меньший удельный вес. А значит, с ними легче работать. Именно небольшая плотность и пористая структура дают возможность легко обрабатывать изделия из газосиликата.

Их можно разрезать даже пилой, или подравнивать места реза рубанком. В этом плане керамзитобетон – более сложный материал. Он прочнее, непористый, отрезать его можно болгаркой с отрезным диском (алмазным или по камню).

Теперь, что касается размеров.

Керамзитобетонные блоки выпускаются по ГОСТу, поэтому у них есть точные размерные показатели – 390х190х188 мм. Кроме них выпускают блоки уменьшенной длины: 290х190х188 мм, а также блоки для утепления стен и полов с уменьшенной высотой – 94 мм. Сами блоки могут быть полнотелыми, пустотелыми и облицовочными (с гладкой поверхностью).

Газосиликатные блоки также производятся по государственным стандартам, но у них более широкий типоразмерный ряд, где максимальная длина блока – 625 мм, ширина – 500 и высота (толщина) – 500 мм. То есть, по своим размерам они превосходят керамзитобетонные изделия, что позволяет сооружать стены большей толщины, и при этом занимать большее пространство, что сокращает сроки выполнения работ. Есть еще один момент, касающийся разнообразия предлагаемых блочных изделий.

В категории этого материала есть блоки для несущих стен и отдельно для перегородок. У последних длина, как у обычных блоков, толщина или 100, или 150 мм, а высота 250 мм. При этом все изделия являются полнотелыми.

Конечно, нельзя судить по размерам, что лучше – газосиликат или керамзитобетон. Но, учитывая, что скорость строительства играет важную роль в современности, необходимо обозначить, что по этому параметру газосиликатные блоки превосходят конкурента.

И последний критерий – цена. В связи со сложной технологией производства газосиликата блоки из него стоят дороже керамзитобетонных.

Что говорят специалисты

Если сравнивать газосиликатные и керамзитобетонные блоки (ТермоКомфорт), то специалисты той самой компании ТермоКомфорт отмечают, что известь, находящаяся в составе первых, негативно сказывается на любых металлических изделиях. Здесь имеется в виду саморезы, дюбели и другие крепежные детали. Хотя выход из положения есть – использовать оцинкованные или нержавеющие крепежи.

Источники:

  • bikton.ru
  • kamedom.ru
  • betonov.com

Газосиликат или керамзитобетон: что лучше?

21 января 2014

8634

Оглавление: [скрыть]

  • Отличие газосиликата от керамзитобетона
  • Преимущества и недостатки этих материалов
  • Полезные советы по выбору

Выбор строительных материалов сегодня большой, однако это создает определенного рода трудности.

Основным достоинством легких бетонов являются высокие теплозащитные свойства, что позволяет значительно снизить энергетические затраты на отопление зданий.

Например, что лучше выбрать: газосиликат или керамзитобетон?

Именно эти материалы являются одними из самых лучших в сфере строительства, потому что они обладают совершенно уникальными качествами. Прежде чем выбрать один из этих материалов, следует четко выяснить, какими характеристиками они обладают. Сразу надо отметить, что оба этих материала относятся к ячеистым бетонам, и сфера применения у них схожая. Однако следует понимать, что керамзитобетон обладает более высокой средней плотностью и конструктивной прочностью, тем не менее он значительно уступает газосиликату по своим теплоизоляционным свойствам, поэтому газосиликат более предпочтителен в северных регионах страны.

Керамзитобетонные блоки можно класть исключительно на раствор, а газосиликатные блоки укладываются на клеевой раствор, толщина которого должна быть 2-3 мм. Теплозащитные качества газосиликата очень высокие, благодаря этому квадратный м кладки из такого материала стоит дешевле, чем из керамзитобетона за счет уменьшения толщины стен. А еще нет необходимости произовдить отделочные работы, поэтому, если финансы имеют большое значение, то лучше использовать газосиликат. Если речь идет о строительстве, где применяется тонкошовная кладка, то лучше использовать газосиликат, если используется цементный раствор, то лучше отдавать предпочтение керамзитобетону. Для того чтобы добиться одинаковой теплопроводности, стена из керамзитобетона должна в два раза превышать толщину стены из газобетонных блоков.

Отличие газосиликата от керамзитобетона

Виды керамзитобетонных блоков, используемых для возведения наружнуых стен и межкомнатных перегородок.

Если нужно построить наружную стену и межкомнатную перегородку, то лучше использовать керамзитобетон, при монолитном строении для заполнения каркаса такие блоки тоже очень хорошо подходят. Для малоэтажного строительства лучше использовать газосиликат. Есть распространенное мнение о том, что в такой материал входит известь, которая вредна. На самом деле такая известь совершенно безвредна для здоровья, так как она проходит термическую обработку и находится в связанном состоянии в виде силикатов кальция.

Керамзитобетон представляет собой легкую смесь, которая состоит из бетона, песка и керамзита. Такой материал отличается повышенной влагоустойчивостью, которой удается достигнуть за счет того, что в него добавляется специальный клей. Следует отметить и отличные теплозвукоизоляционные качества. На фоне других строительных материалов керамзитобетон обладает многими преимуществами. Так, при использовании этого материала уходит небольшое количество раствора, а скорость монтажа при этом очень высокая. Нужно принимать во внимание отличные теплоизоляционные качества, поэтому он широко применяется в самых разных климатических условиях. Он отлично пропускает воздух, и это позволяет эффективно регулировать влажность воздуха в помещении. Примечательно и то, что конструкции, построенные из керамзитобетона, отличаются большой долговечностью, а еще они не нуждаются в дополнительном уходе.

Надо отметить, что эти строительные материалы становятся с каждым годом более востребованными, чем кирпич, что совершенно неудивительно: стоят они дешевле, кладка осуществляется легче, все работы происходят быстрее. Следует по возможности приобретать материал у проверенных фирм, так как это является гарантией того, что товар предлагается высокого качества.

Вернуться к оглавлению

Преимущества и недостатки этих материалов

 

Однако следует учитывать, что если строительство проводится в той местности, где большую часть года стоит холодная погода, то лучше отдавать предпочтение керамзитобетону. Если говорить кратко, то преимущества керамзитобетона следующие:

Газосиликатные блоки обладают рядом преимуществ, среди которых простота кладки и состыковки, низкая теплопроводность.

  • большая прочность;
  • крепление в стенах более надежное;
  • если изготавливать такой материал самостоятельно, то производство обойдется значительно дешевле;
  • низкий вес блоков, что значительно упрощает укладку;
  • пожаробезопасность.

Есть и недостатки: если сравнивать с кладкой газосиликата, то керамзитобетон проигрывает, кроме того, он плохо пилится. Стандартная ширина таких блоков составляет 40 см, а если нужно больше, то приходится чередовать керамзибетон с перегородочным блоком. При кладке лучше использовать клей, который не дает видимого шва.

Газосиликат обладает следующими преимуществами:

  • теплопроводность ниже, поэтому можно существенно сэкономить на толщине стен;
  • теплопроводность стен снижается, если делать кладку на тонком слое клея;
  • кладка не вызывает трудностей потому, что обработка легкая;
  • можно не делать штукатурку, если проводится внутренняя отделка;
  • блоки стыкуются между собой прочно, они могут быть самых разных размеров.

Вернуться к оглавлению

Полезные советы по выбору

Из недостатков следует отметить то, что газосиликат быстро впитывает влагу, а еще он не такой прочный, как керамзитобетон. Таким образом, дать однозначный ответ, какой материал лучше, не представляется возможным, так как у каждого из них есть свои преимущества и недостатки. Тем не менее следует отметить, что в любом случае нужно выбирать материалы только хорошие, высокого качества, и тогда можно не сомневаться в том, что строительные работы будут сделаны на самом высоком уровне. При этом и тот, и другой материал как нельзя лучше подходят для того, чтобы работать с ними своими руками, возможно именно поэтому они пользуются такой большой популярностью.

Надо отметить, что керамзитобетон стоит недорого, а технические свойства его отличные. Тем не менее ни в коем случае нельзя оставлять такую кладку на морозе незащищенной, так как это может очень быстро привести к ее разрушению. Основой этого материала является керамзит, который делается из легкоплавкой глины или сланца. Таким образом керамзито-бетонные блоки могут прослужить очень долго, что и обеспечивает большую популярность, чего не наблюдается при покупке иных строительных материалов. В свою очередь тем, кто ценит скорость в строительных работах, можно посоветовать остановить свой выбор на таком материале, как газосиликат. Надо отметить, что при его применении на строительство стены уходит времени в 3 раза меньше, чем если использовать кирпич. И это качество ценит все более количество людей.

Модификация легких бетонных заполнителей наночастицами кремнезема — обзор

1. Аренас С., Луна-Галиано Ю., Лейва С., Вилчес Л.Ф., Арройо Ф., Вильегас Р., Фернандес-Перейра С. Разработка мухи Золосодержащие геополимерные бетоны с отходами строительства и сноса как заполнители акустических барьеров. Констр. Строить. Матер. 2017; 134:433–442. doi: 10.1016/j.conbuildmat.2016.12.119. [CrossRef] [Google Scholar]

2. Ван В., Лу С., Юань Г., Чжан Ю. Влияние насыщения пор водой на механические свойства зольного бетона. Констр. Строить. Матер. 2017; 130:54–63. doi: 10.1016/j.conbuildmat.2016.11.031. [Перекрестная ссылка] [Академия Google]

3. Нат П., Саркер П.К. Прочность на изгиб и модуль упругости отверждаемого в условиях окружающей среды смешанного геополимерного бетона с низким содержанием кальция и летучей золы. Констр. Строить. Матер. 2017; 130:22–31. doi: 10.1016/j.conbuildmat.2016.11.034. [CrossRef] [Google Scholar]

4. Каяли О. Легкие заполнители летучей золы в бетоне с высокими эксплуатационными характеристиками. Констр. Строить. Матер. 2008; 22: 2393–2399. doi: 10.1016/j.conbuildmat.2007.09.001. [CrossRef] [Google Scholar]

5. Чандра С., Бернтссон Л. Бетон из легких заполнителей. Эльзевир Наука; Амстердам, Нидерланды: 2003 г. (Серия строительных материалов). [Академия Google]

6. Зариф М.А.М.Е. Докторская диссертация. Технический университет Берлина, Факультет VI — Planen Bauen Umwelt; Берлин, Германия: 2010. Концептуальное и конструктивное проектирование зданий из легкого и сверхлегкого бетона. [CrossRef] [Google Scholar]

7. Варгас П., Марин Н.А., Тобон Дж.И. Характеристики и анализ микроструктуры легкого бетона с нанокремнеземом при воздействии сульфатов. Доп. Гражданский англ. 2018;2018:1–11. doi: 10.1155/2018/2715474. [Перекрестная ссылка] [Академия Google]

8. Европейский комитет по стандартизации. EN 206:2013+A1:2016 Бетон — Спецификация, характеристики, производство и соответствие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2016. с. 102. [Google Scholar]

9. Акерс Д.Дж., Грубер Р.Д., Рамме Б.В., Бойл М.Дж., Грыгар Дж.Г., Роу С.К., Бремнер Т.В., Ключовски Э.С., Шитц С.Р., Бург Р.Г. Руководство по конструкционному бетону с легким заполнителем. Американский институт бетона; Фармингтон-Хиллз, Мичиган, США: 2003 г. ACI 213R-03. [Академия Google]

10. Арслан Х., Байкал Г. Использование летучей золы в качестве инженерных заполнителей окатышей. Окружающая среда. геол. 2006; 50: 761–770. doi: 10.1007/s00254-006-0248-7. [CrossRef] [Google Scholar]

11. Россетти В.А. Структурные свойства легкого заполнителя бетона – текущее состояние и будущие потребности; Труды Concrete 95 – К лучшим бетонным конструкциям; Брисбен, Австралия. 4–7 сентября 1995 г .; Брисбен, Австралия: Бетонный институт Австралии; 1995. С. 187–193. [Академия Google]

12. Каяли О., Хак М.Н. Статус конструкционного легкого бетона в Австралии на заре нового тысячелетия. Конкр. Ауст. 25. 2000: 22–25. [Google Scholar]

13. Mays G.C., Barnes R.A. Эксплуатационные характеристики конструкций из легкого заполнителя из бетона. Структура англ. 1991; 69: 351–361. [Google Scholar]

14. Демирбога Р., Орунг И., Гюль Р. Влияние вспученного перлитового заполнителя и минеральных добавок на прочность на сжатие бетонов низкой плотности. Цем. Конкр. Рез. 2001; 31: 1627–1632. дои: 10.1016/S0008-8846(01)00615-9. [CrossRef] [Google Scholar]

15. Феррара Л., Кортези Л., Лигабуэ О. Международный портал рефератов по бетону. Том 305. Американский институт бетона; Фармингтон-Хиллз, Мичиган, США: 2015 г. Внутреннее отверждение бетона предварительно насыщенным LWA: предварительное исследование; С. 12.1–12.12. [Google Scholar]

16. Бентур А., Игараши С., Ковлер К. Предотвращение автогенной усадки в высокопрочном бетоне путем внутреннего твердения с использованием мокрых легких заполнителей. Цем. Конкр. Рез. 2001; 31: 1587–159.1. doi: 10.1016/S0008-8846(01)00608-1. [CrossRef] [Google Scholar]

17. Сенаратне С., Джераче Д., Мирза О., Там В.В.И., Канг В.-Х. Затраты и преимущества объединения переработанного заполнителя со стальными волокнами в качестве устойчивого конструкционного материала. Дж. Чистый. Произв. 2016;112:2318–2327. doi: 10.1016/j.jclepro.2015.10.041. [CrossRef] [Google Scholar]

18. Судзуки М. , Седдик Меддах М., Сато Р. Использование пористых керамических отходов для внутреннего твердения высокопрочного бетона. Цем. Конкр. Рез. 2009 г.;39:373–381. doi: 10.1016/j.cemconres.2009.01.007. [CrossRef] [Google Scholar]

19. Du H. Свойства сверхлегких цементных композитов с нанокремнеземом. Констр. Строить. Матер. 2019;199:696–704. doi: 10.1016/j.conbuildmat.2018.11.225. [CrossRef] [Google Scholar]

20. Кайяли О.А. Изучение заполнителей, используемых для бетона в Кувейте. Протокол транспортных исследований; Вашингтон, округ Колумбия, США: 1984. [Google Scholar]

21. Хофф Г.К. Второй международный симпозиум «Высокопрочный бетон». АКИ; Беркли, Калифорния, США: 1990. Высокопрочный легкий бетонный заполнитель — текущее состояние и будущие потребности; стр. 121–130. Специальное издание ACI. [Google Scholar]

22. Wang X.F., Huang Y.J., Wu G.Y., Fang C., Li D.W., Han N.X., Xing F. Влияние Nano-SiO 2 на прочность, усадку и чувствительность к растрескиванию легкого заполнителя бетона. Констр. Строить. Матер. 2018; 175:115–125. doi: 10.1016/j.conbuildmat.2018.04.113. [CrossRef] [Google Scholar]

23. Афзали Наниз О., Мазлум М. Влияние коллоидного нанокремнезема на свойства свежего и затвердевшего самоуплотняющегося легкого бетона. Дж. Билд. англ. 2018;20:400–410. doi: 10.1016/j.jobe.2018.08.014. [Перекрестная ссылка] [Академия Google]

24. Бенц Д.П. Влияние внутреннего отверждения с использованием легких заполнителей на просачивание межфазной переходной зоны и проникновение хлоридов в строительные растворы. Цем. Конкр. Композиции 2009; 31: 285–289. doi: 10.1016/j.cemconcomp.2009.03.001. [CrossRef] [Google Scholar]

25. Zhang M.-H., Gjørv O.E. Микроструктура межфазной зоны между легким заполнителем и цементным тестом. Цем. Конкр. Рез. 1990;20:610–618. doi: 10.1016/0008-8846(90)

-5. [CrossRef] [Google Scholar]

26. Zhang J., Zhang G., Sun X., Pan W., Huang P., Li Z., Zhang B., Zhou X. Анализ динамических характеристик сжатия простого бетона и легкий заполнитель бетон. Кейс Стад. Констр. Матер. 2021;15:e00557. doi: 10.1016/j.cscm.2021.e00557. [Перекрестная ссылка] [Академия Google]

27. Yu Q.L.L., Spiesz P., Brouwers H.J.H.J.H. Сверхлегкий бетон: концептуальный проект и оценка эффективности. Цем. Конкр. Композиции 2015;61:18–28. doi: 10.1016/j.cemconcomp.2015.04.012. [CrossRef] [Google Scholar]

28. Хюскен Г., доктор философии. Тезис. Технический университет Эйндховена; Эйндховен, Нидерланды: 2010. Многофункциональный подход к проектированию устойчивого бетона: с применением к изделиям из бетонной массы. [CrossRef] [Google Scholar]

29. Кашинская М., Хоффманн М., Скибицкий С., Зелинский А., Техман М., Ольчик Н., Вроблевски Т. Оценка пригодности для 3D-печати высокоэффективных бетонов. Веб-конференция MATEC. 2018;163:01002. doi: 10.1051/matecconf/201816301002. [Перекрестная ссылка] [Академия Google]

30. Кашинская М., Скибицкий С. Влияние экологически чистых минеральных добавок на прочность на сжатие в раннем возрасте и температурное развитие высокопрочного бетона. ИОП конф. сер. Земная среда. науч. 2017;95:042060. doi: 10.1088/1755-1315/95/4/042060. [CrossRef] [Google Scholar]

31. Элахи А., Башир П.А.М., Нанукуттан С.В., Хан К.Ю.З. Механические и прочностные свойства высокопрочных бетонов, содержащих дополнительные вяжущие материалы. Констр. Строить. Матер. 2010;24:292–299. doi: 10.1016/j.conbuildmat.2009.08.045. [CrossRef] [Google Scholar]

32. Ахари Р.С., Эрдем Т.К., Рамьяр К. Свойства проницаемости самоуплотняющегося бетона, содержащего различные дополнительные вяжущие материалы. Констр. Строить. Матер. 2015;79:326–336. doi: 10.1016/j.conbuildmat.2015.01.053. [CrossRef] [Google Scholar]

33. Скибицкий С. Оптимизация стоимости строительства с использованием бетонных плит на основе метода зрелости. ИОП конф. сер. Матер. науч. англ. 2017;245:022061. дои: 10.1088/1757-899Х/245/2/022061. [CrossRef] [Google Scholar]

34. Мазлум М., Рамезанианпур А.А., Брукс Дж.Дж. Влияние кремнеземных паров на механические свойства высокопрочного бетона. Цем. Конкр. Композиции 2004; 26: 347–357. doi: 10.1016/S0958-9465(03)00017-9. [CrossRef] [Google Scholar]

35. Akçaözoğlu S., Atiş C.D. Влияние добавок гранулированного доменного шлака и золы-уноса на прочностные характеристики облегченных растворов, содержащих заполнители из отходов ПЭТФ. Констр. Строить. Матер. 2011; 25:4052–4058. doi: 10.1016/j.conbuildmat.2011.04.042. [Перекрестная ссылка] [Академия Google]

36. Сиддик Р., Клаус Дж. Влияние метакаолина на свойства раствора и бетона: обзор. заявл. Глина наук. 2009; 43: 392–400. doi: 10.1016/j.clay.2008.11.007. [CrossRef] [Google Scholar]

37. Ланган Б.В., Венг К., Уорд М.А. Влияние кремнеземного дыма и летучей золы на теплоту гидратации портландцемента. Цем. Конкр. Рез. 2002; 32: 1045–1051. doi: 10.1016/S0008-8846(02)00742-1. [CrossRef] [Google Scholar]

38. Хедр С.А., Абу-Зейд М.Н. Характеристики силикатного бетона. Дж. Матер. Гражданский англ. 1994;6:357–375. doi: 10.1061/(ASCE)0899-1561(1994)6:3(357). [CrossRef] [Google Scholar]

39. Jianyong L., Pei T. Влияние шлака и паров кремнезема на механические свойства высокопрочного бетона. Цем. Конкр. Рез. 1997; 27: 833–837. doi: 10.1016/S0008-8846(97)00076-8. [CrossRef] [Google Scholar]

40. Атмака А., Юмруташ Р. Влияние колосникового охладителя клинкера на удельное энергопотребление и выбросы вращающейся печи в цементной промышленности. Междунар. Дж. Эксергия. 2015;18:367. doi: 10.1504/IJEX.2015.072897. [CrossRef] [Google Scholar]

41. Атмака А., Юмруташ Р. Анализ параметров, влияющих на энергопотребление вращающейся печи в цементной промышленности. заявл. Терм. англ. 2014;66:435–444. doi: 10.1016/j.applthermaleng.2014.02.038. [CrossRef] [Google Scholar]

42. Хассан К.Э., Кабрера Дж.Г., Малиехе Р.С. Влияние минеральных добавок на свойства высокопрочных бетонов. Цем. Конкр. Композиции 2000; 22: 267–271. doi: 10.1016/S0958-9465(00)00031-7. [Перекрестная ссылка] [Академия Google]

43. Мехта П.К. Долговечность высокопрочного бетона. Спец. Опубл. 1990; 122:19–28. [Google Scholar]

44. Невилл А.М., Невилл А.М. Свойства бетона. Пирсон; Лондон, Великобритания: 2011. [Google Scholar]

45. Бамфорт П.Б. Взаимосвязь между коэффициентами проницаемости бетона, полученного с использованием жидкости и газа. Маг. Конкр. Рез. 1987; 39:3–11. doi: 10.1680/macr.1987.39.138.3. [CrossRef] [Google Scholar]

46. Yan J.-B., Wang J.-Y., Liew J.Y.R., Qian X. Применение сверхлегкого цементного композита в плоских плитах и ​​двухслойных композитных конструкциях. Констр. Строить. Матер. 2016;111:774–793. doi: 10.1016/j.conbuildmat.2016.02.122. [CrossRef] [Google Scholar]

47. Yan J.-B., Wang J.-Y., Liew J.Y.R., Qian X., Zhang W. Армированные сверхлегкие цементные композитные плоские плиты: эксперименты и анализ. Матер. Дес. 2016;95:148–158. doi: 10.1016/j.matdes.2016.01.097. [CrossRef] [Google Scholar]

48. Yan J.-B., Liew J.R., Zhang M.-H., Wang J. Предельная прочность многослойных балок из стали, бетона и стали со сверхлегким цементным композитом, часть 1: Экспериментально-аналитическое исследование. Стальные композиты. Структура 2014;17:907–927. doi: 10.12989/scs.2014.17.6.907. [CrossRef] [Google Scholar]

49. Yan J.-B., Wang J.-Y., Liew J.Y.R., Qian X., Zong L. Предел прочности многослойной плиты сталь-бетон-сталь под действием сосредоточенных нагрузок. океан инж. 2016; 118:41–57. doi: 10.1016/j.oceaneng.2016.03.062. [CrossRef] [Google Scholar]

50. Wang J., Xiao Z., Zhu C., Feng C., Liu J. Эксперимент по характеристике сцепления легких заполнителей и композитных балок из обычного бетона. Кейс Стад. Констр. Матер. 2021;15:e00565. doi: 10.1016/j.cscm.2021.e00565. [Перекрестная ссылка] [Академия Google]

51. Ханиф А., Лу З., Сун М., Партасарати П., Ли З. Зеленый легкий ферроцемент, содержащий волокнистую растворную матрицу на основе летучей золы из ценосферы. Дж. Чистый. Произв. 2017; 159: 326–335. doi: 10.1016/j.jclepro.2017.05.079. [CrossRef] [Google Scholar]

52. Hanif A., Parthasarathy P., Lu Z., Sun M., Li Z. Армированные волокном цементные композиты, включающие стеклянные ценосферы — механические свойства и микроструктура. Констр. Строить. Матер. 2017; 154: 529–538. doi: 10.1016/j.conbuildmat.2017.07.235. [Перекрестная ссылка] [Академия Google]

53. Ханиф А., Усман М., Лу З., Ченг Ю., Ли З. Усталостное поведение при изгибе тонколаминированных цементных композитов, содержащих ценосферные наполнители. Матер. Дес. 2018;140:267–277. doi: 10.1016/j.matdes.2017.12.003. [CrossRef] [Google Scholar]

54. Hanif A., Parthasarathy P., Ma H., Fan T., Li Z. Улучшение свойств цементных паст, модифицированных ценосферой летучей золы, с использованием нанокремнезема. Цем. Конкр. Композиции 2017;81:35–48. doi: 10.1016/j.cemconcomp.2017.04.008. [Перекрестная ссылка] [Академия Google]

55. Hanif A., Lu Z., Diao S., Zeng X., Li Z. Исследование свойств армированных волокном композитов на основе цемента, содержащих наполнители Cenosphere. Констр. Строить. Матер. 2017; 140:139–149. doi: 10.1016/j.conbuildmat.2017.02.093. [CrossRef] [Google Scholar]

56. Ньяме Б.К. Проницаемость обычных и облегченных минометов. Маг. Конкр. Рез. 1985; 37: 44–48. doi: 10.1680/macr.1985.37.130.44. [CrossRef] [Google Scholar]

57. Аль-Хайат Х., Хак Н. Прочность и долговечность легкого и нормального бетона. Дж. Матер. Гражданский англ. 1999;11:231–235. doi: 10.1061/(ASCE)0899-1561(1999)11:3(231). [CrossRef] [Google Scholar]

58. Лаудон А.Г. Тепловые свойства легких бетонов. Междунар. Дж. Сем. Композиции Свет. Конкр. 1979; 1: 71–85. doi: 10.1016/0262-5075(79)

-7. [CrossRef] [Google Scholar]

59. Zhang M.H., Gjvorv O.E. Механические свойства высокопрочного легкого бетона. АКИ Матер. Дж. 1991; 88: 240–247. дои: 10.14359/1839. [CrossRef] [Google Scholar]

60. Демирбоа Р., Гюль Р. Теплопроводность и прочность на сжатие вспененного перлитобетона с минеральными добавками. Энергетическая сборка. 2003; 35: 1155–1159.. doi: 10.1016/j.enbuild.2003.09.002. [CrossRef] [Google Scholar]

61. Liu X., Chia K.S., Zhang M.-H. Разработка легких бетонов с высокой устойчивостью к проникновению воды и хлорид-ионов. Цем. Конкр. Композиции 2010; 32: 757–766. doi: 10.1016/j.cemconcomp.2010.08.005. [CrossRef] [Google Scholar]

62. Линг И.Х., Тео Д.К.Л. Свойства кирпичей из легкого бетона EPS RHA в различных условиях твердения. Констр. Строить. Матер. 2011;25:3648–3655. doi: 10.1016/j.conbuildmat.2011.03.061. [Перекрестная ссылка] [Академия Google]

63. Акчаозоглу С., Акчаозоглу К., Атиш К.Д. Теплопроводность, прочность на сжатие и скорость ультразвуковой волны цементного композита, содержащего отходы легкого заполнителя ПЭТ (WPLA) Compos. Часть Б англ. 2013;45:721–726. doi: 10.1016/j.compositesb.2012.09.012. [CrossRef] [Google Scholar]

64. Ли Х., Сяо Х., Юань Дж., Оу Дж. Микроструктура цементного раствора с наночастицами. Композиции Часть Б англ. 2004; 35: 185–189. doi: 10.1016/S1359-8368(03)00052-0. [Перекрестная ссылка] [Академия Google]

65. Назари А., Риахи С. Микроструктурное, термическое, физическое и механическое поведение самоуплотняющегося бетона, содержащего SiO 2 Наночастицы. Матер. науч. англ. А. 2010;527:7663–7672. doi: 10.1016/j.msea.2010.08.095. [CrossRef] [Google Scholar]

66. Халу А., Мобини М.Х., Хоссейни П. Влияние различных типов частиц нано-SiO 2 на свойства высокопрочного бетона. Констр. Строить. Матер. 2016; 113:188–201. doi: 10.1016/j.conbuildmat.2016.03.041. [Перекрестная ссылка] [Академия Google]

67. Читра С., Сентил Кумар С.Р.Р., Чиннараджу К. Влияние коллоидного нанокремнезема на удобоукладываемость, механические свойства и износостойкость высокоэффективного бетона с медным шлаком в качестве мелкозернистого заполнителя. Констр. Строить. Матер. 2016; 113:794–804. doi: 10.1016/j.conbuildmat.2016.03.119. [CrossRef] [Google Scholar]

68. Ghafari E., Ghahari S.A., Feng Y., Severgnini F., Lu N. Влияние наночастиц оксида цинка и Al-оксида цинка на реологические свойства цементного теста. Композиции Часть Б англ. 2016; 105: 160–166. doi: 10.1016/j.compositesb.2016.08.040. [Перекрестная ссылка] [Академия Google]

69. Бахадори Х., Хоссейни П. Снижение потребления цемента с помощью наночастиц диоксида кремния (исследование свойств бетона) J. Civ. англ. Управление 2012; 18:416–425. doi: 10.3846/13923730.2012.698912. [CrossRef] [Google Scholar]

70. Hosseinpourpia R., Varshoee A., Soltani M., Hosseini P., Ziaei Tabari H. Производство отходов композитов на основе биофиброцемента, армированных частицами Nano-SiO 2 как заменитель асбестоцементных композитов. Констр. Строить. Матер. 2012;31:105–111. doi: 10.1016/j.conbuildmat.2011.12.102. [Перекрестная ссылка] [Академия Google]

71. Кешаварз М., Ахмад Н. Характеристика и модификация наночастиц мезопористого кремнезема, приготовленных Sol-Gel. Дж. Наночастицы. 2013;2013:1–4. дои: 10.1155/2013/102823. [CrossRef] [Google Scholar]

72. Абд Эльрахман М., Чанг С.-Ю., Сикора П., Ручинска Т., Стефан Д. Влияние нанокремнезема на механические свойства, сорбционную способность и микроструктуру легкого бетона. Материалы. 2019;12:3078. doi: 10.3390/ma12193078. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

73. Zhang P., Xie N., Cheng X., Feng L., Hou P., Wu Y. Модификация низкодозированного нанокремнезема на легком заполнителе бетона. наноматер. нанотехнологии. 2018; 8:1–8. doi: 10.1177/1847980418761283. [CrossRef] [Google Scholar]

74. Санчес Ф., Соболев К. Нанотехнологии в бетоне. Обзор. Констр. Строить. Матер. 2010;24:2060–2071. doi: 10.1016/j.conbuildmat.2010.03.014. [CrossRef] [Google Scholar]

75. Сикора П., Цендровски К., Абд Эльрахман М., Чанг С.-Ю., Мийовска Э., Стефан Д. Влияние морской воды на гидратацию, микроструктуру и развитие прочности портландцементных паст, содержащих коллоидный кремнезем. заявл. Наноски. 2020;10:2627–2638. doi: 10.1007/s13204-019-00993-8. [CrossRef] [Google Scholar]

76. Тобон Дж.И., Рестрепо О.Дж., Пайя Дж. Сравнительный анализ характеристик портландцемента, смешанного с нанокремнеземом и диоксидом кремния. Дина. 2010;77:37–46. [Google Scholar]

77. Мендоса О., Сьерра Г., Тобон Дж.И. Влияние процесса реагломерации дисперсий многослойных углеродных нанотрубок на раннюю активность нанокремнезема в цементных композитах. Констр. Строить. Матер. 2014; 54: 550–557. doi: 10.1016/j.conbuildmat.2013.12.084. [Перекрестная ссылка] [Академия Google]

78. Лю С., Ду Х., Чжан М.-Х. Модель для оценки характеристик долговечности как обычного, так и легкого бетона. Констр. Строить. Матер. 2015; 80: 255–261. doi: 10.1016/j.conbuildmat.2014.11.033. [CrossRef] [Google Scholar]

79. Танылдизи Х. Исследование микроструктуры и прочностных свойств легкого раствора, содержащего минеральные добавки, подвергающегося сульфатному воздействию. Измерение. 2016;77:143–154. doi: 10.1016/j.measurement.2015.09.002. [Перекрестная ссылка] [Академия Google]

80. Гюнейси Э., Гесоглу М., Азез О.А.А., Оз Х.О.О. Влияние нанокремнезема на удобоукладываемость самоуплотняющихся бетонов с необработанными и поверхностно обработанными легкими заполнителями. Констр. Строить. Матер. 2016; 115:371–380. doi: 10.1016/j.conbuildmat.2016.04.055. [CrossRef] [Google Scholar]

81. Наджи Гиви А., Абдул Рашид С., Азиз Ф.Н.А., Саллех М.А.М. Экспериментальное исследование влияния размера наночастиц SiO 2 на механические свойства бинарного бетона. Композиции Часть Б англ. 2010;41:673–677. doi: 10.1016/j.compositesb.2010.08.003. [Перекрестная ссылка] [Академия Google]

82. Ю. Р., Спиш П., Брауэрс Х.Дж.Х. Влияние нанокремнезема на гидратацию и развитие микроструктуры сверхвысококачественного бетона (UHPC) с низким содержанием вяжущего. Констр. Строить. Матер. 2014;65:140–150. doi: 10.1016/j.conbuildmat.2014.04.063. [CrossRef] [Google Scholar]

83. Чжан М.-Х., Ислам Дж., Питампаран С. Использование нанокремнезема для увеличения ранней прочности и сокращения времени схватывания бетонов с большим количеством шлака. Цем. Конкр. Композиции 2012; 34: 650–662. doi: 10.1016/j.cemconcomp.2012.02.005. [Перекрестная ссылка] [Академия Google]

84. Zhang R., Cheng X., Hou P., Ye Z. Влияние Nano-TiO 2 на свойства материалов на основе цемента: гидратация и усадка при высыхании. Констр. Строить. Матер. 2015;81:35–41. doi: 10.1016/j.conbuildmat.2015.02.003. [CrossRef] [Google Scholar]

85. Хоу П., Ван К., Цянь Дж., Кавасима С., Конг Д., Шах С.П. Влияние коллоидного NanoSiO 2 на гидратацию летучей золы. Цем. Конкр. Композиции 2012;34:1095–1103. doi: 10.1016/j.cemconcomp.2012.06.013. [Перекрестная ссылка] [Академия Google]

86. Кавасима С., Хоу П., Корр Д.Дж., Шах С.П. Модификация материалов на основе цемента с помощью наночастиц. Цем. Конкр. Композиции 2013;36:8–15. doi: 10.1016/j.cemconcomp.2012.06.012. [CrossRef] [Google Scholar]

87. Quercia G., Spiesz P., Hüsken G., Brouwers H.J.H. Модификация SCC с использованием аморфного нанокремнезема. Цем. Конкр. Композиции 2014;45:69–81. doi: 10.1016/j.cemconcomp.2013.09.001. [CrossRef] [Google Scholar]

88. Hou P., Qian J., Cheng X., Shah S. P. Влияние пуццолановой реакционной способности NanoSiO 2 на материалы на основе цемента. Цем. Конкр. Композиции 2015;55:250–258. doi: 10.1016/j.cemconcomp.2014.090,014. [CrossRef] [Google Scholar]

89. Liu R., Xiao H., Li H., Sun L., Pi Z., Waqar G.Q., Du T., Yu L. Влияние Nano-SiO 2 на свойства, связанные с проницаемостью композитов на основе цемента с различным соотношением вода/цемент. Дж. Матер. науч. 2018;53:4974–4986. doi: 10.1007/s10853-017-1906-8. [CrossRef] [Google Scholar]

90. Qing Y., Zenan Z., Deyu K., Rongshen C. Влияние добавки Nano-SiO 2 на свойства затвердевшего цементного теста по сравнению с кремнеземным дымом. Констр. Строить. Матер. 2007;21:539–545. doi: 10.1016/j.conbuildmat.2005.09.001. [CrossRef] [Google Scholar]

91. Li G. Свойства высокообъемного бетона с летучей золой, содержащего Nano-SiO 2 . Цем. Конкр. Рез. 2004; 34:1043–1049. doi: 10.1016/j.cemconres.2003.11.013. [CrossRef] [Google Scholar]

92. Гюнейси Э., Атеви Ю.Р., Хасан М.Ф. Свежие и реологические свойства самоуплотняющегося бетона, армированного стекловолокном, с добавками нанокремнезема и летучей золы. Констр. Строить. Матер. 2019;211:349–362. doi: 10.1016/j.conbuildmat.2019.03.087. [CrossRef] [Google Scholar]

93. Martins R.M., Bombard A.J.F. Реология свежего цементного теста с добавками суперпластификатора и нанокремнезема, изученная методом поверхности отклика. Матер. Структура 2012;45:905–921. doi: 10.1617/s11527-011-9807-9. [CrossRef] [Google Scholar]

94. Скрипкюнас Г., Карпова Е., Бендорайтене Ю., Бараускас И. Реологические свойства и текучесть материалов на основе цемента, модифицированных углеродными нанотрубками и пластифицирующими добавками. Жидкости. 2020;5:169. doi: 10.3390/fluids5040169. [CrossRef] [Google Scholar]

95. Du H., Du S., Liu X. Влияние нанокремнезема на механические и транспортные свойства легкого бетона. Констр. Строить. Матер. 2015;82:114–122. doi: 10.1016/j.conbuildmat. 2015.02.026. [CrossRef] [Google Scholar]

96. Атмака Н., Аббас М.Л., Атмака А. Влияние нанокремнезема на газопроницаемость, долговечность и механические свойства высокопрочного легкого бетона. Констр. Строить. Матер. 2017; 147:17–26. doi: 10.1016/j.conbuildmat.2017.04.156. [Перекрестная ссылка] [Академия Google]

97. Джалал М., Мансури Э., Шарифипур М., Пуладхан А.Р. Механические, реологические, прочностные и микроструктурные свойства высокоэффективного самоуплотняющегося бетона, содержащего SiO 2 Микро- и наночастицы. Матер. Дес. 2012; 34: 389–400. doi: 10.1016/j.matdes.2011.08.037. [CrossRef] [Google Scholar]

98. Brouwers HJH, Radix HJ Самоуплотняющийся бетон: теоретическое и экспериментальное исследование. Цем. Конкр. Рез. 2005;35:2116–2136. doi: 10.1016/j.cemconres.2005.06.002. [Перекрестная ссылка] [Академия Google]

99. Голод M. Ph.D. Тезис. Технический университет Эйндховена; Эйндховен, Нидерланды: 2010 г. Комплексная концепция проектирования экологически чистого самоуплотняющегося бетона. [Google Scholar]

100. Ban C.C., Khalaf M.A., Ramli M., Ahmed N.M., Abunahel B.M., Dawood E.T., Ameri F. Влияние суспензии нано-кремнезема на инженерные, рентгеновские и γ-лучевые характеристики затухания Сталешлаковый высокопрочный тяжеловесный бетон. нанотехнологии. 2020; 9:1245–1264. doi: 10.1515/ntrev-2020-0098. [Перекрестная ссылка] [Академия Google]

101. Наджигиви А., Халу А., Ираджизад А., Абдул Рашид С. Исследование влияния использования различных типов SiO 2 Наночастиц на механические свойства бинарного бетона. Композиции Часть Б англ. 2013; 54:52–58. doi: 10.1016/j.compositesb.2013.04.035. [CrossRef] [Google Scholar]

102. Бернал Дж., Рейес Э., Массана Дж., Леон Н., Санчес Э. Свежее и механическое поведение самоуплотняющегося бетона с добавками нанокремнезема, диоксида кремния и Тройные смеси. Констр. Строить. Матер. 2018;160:196–210. doi: 10.1016/j.conbuildmat.2017.11.048. [CrossRef] [Google Scholar]

103. Бушич Р., Беншич М., Миличевич И. , Струкар К. Модели прогнозирования механических свойств самоуплотняющегося бетона с переработанным каучуком и диоксидом кремния. Материалы. 2020;13:1821. doi: 10.3390/ma13081821. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

104. Сикора П., Лутенс Д., Лиард М., Стефан Д. Влияние морской воды и наносиликата на характеристики смешанных цементов и композитов. заявл. Наноски. 2020;10:5009–5026. doi: 10.1007/s13204-020-01328-8. [CrossRef] [Google Scholar]

105. Ghafari E., Costa H., Júlio E., Portugal A., Duraes L. Влияние добавки Nanosilica на текучесть, прочность и транспортные свойства сверхвысококачественного бетона. Матер. Дес. 2014;59:1–9. doi: 10.1016/j.matdes.2014.02.051. [CrossRef] [Google Scholar]

106. Van den Heede P., Gruyaert E., De Belie N. Транспортные свойства высокообъемного зольного бетона: капиллярная водосорбция, водопоглощение в условиях вакуума и газопроницаемость. Цем. Конкр. Композиции 2010;32:749–756. doi: 10.1016/j.cemconcomp. 2010.08.006. [CrossRef] [Google Scholar]

107. Li L.G., Huang Z.H., Zhu J., Kwan A.K.H., Chen H.Y. Синергетические эффекты микрокремнезема и нанокремнезема на прочность и микроструктуру строительного раствора. Констр. Строить. Матер. 2017; 140: 229–238. doi: 10.1016/j.conbuildmat.2017.02.115. [CrossRef] [Google Scholar]

108. Нили М., Эхсани А. Исследование влияния цементного теста и переходной зоны на развитие прочности бетона, содержащего нанокремнезем и кремнеземистый дым. Матер. Дес. 2015;75:174–183. doi: 10.1016/j.matdes.2015.03.024. [Перекрестная ссылка] [Академия Google]

109. Федорович К., Кашиньска М., Зелински А., Хоффманн М. Влияние методов отверждения на развитие усадки в бетоне, напечатанном на 3D-принтере. Материалы. 2020;13:2590. doi: 10.3390/ma13112590. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

110. Радлинская А., Кашинская М., Зелинский А., Е Х. Раннее растрескивание самоуплотняющегося бетона с легкими и нормальными заполнителями. Дж. Матер. Гражданский англ. 2018;30:04018242. doi: 10.1061/(ASCE)MT.1943-5533.0002407. [Перекрестная ссылка] [Академия Google]

111. Сикора П., Ручинска Т., Стефан Д., Чанг С.-Ю., Абд Эльрахман М. Оценка влияния нанокремнезема на свойства материала легкого и сверхлегкого бетона с использованием подходов на основе изображений. Констр. Строить. Матер. 2020;264:120241. doi: 10.1016/j.conbuildmat.2020.120241. [CrossRef] [Google Scholar]

112. Сикора П. Микроструктурные и термические характеристики цементных растворов, модифицированных наночастицами кремнезема, после воздействия высоких температур. Часть I. Нанотехнологии. Констр. наук. Интернет Дж. 2020; 12: 108–115. doi: 10.15828/20758545-2020-12-2-108-115. [Перекрестная ссылка] [Академия Google]

113. Муса М., Али А., Мохаммад К. Влияние кремнеземного дыма и полимера на основе полиэпоксида на удельное электрическое сопротивление, механические свойства и ультразвуковой отклик МРЛ. Доп. Конкр. Констр. 2017;5:587–611. doi: 10.12989/ACC.2017.5.6.587. [CrossRef] [Google Scholar]

114. Садеги Ник А., Лотфи Омран О. Оценка прочности на сжатие самоуплотняющегося бетона с волокнами, состоящими из нано-SiO 2 , с использованием скорости ультразвукового импульса. Констр. Строить. Матер. 2013; 44: 654–662. doi: 10.1016/j.conbuildmat.2013.03.082. [Перекрестная ссылка] [Академия Google]

115. Хорнякова М., Ленер П. Взаимосвязь поверхностного и объемного удельного сопротивления в случае механически поврежденного армированного фиброй красного керамического заполнителя из отходов бетона. Материалы. 2020;13:5501. doi: 10.3390/ma13235501. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

116. Hornbostel K., Larsen C.K., Geiker M.R. Связь между удельным сопротивлением бетона и скоростью коррозии — обзор литературы. Цем. Конкр. Композиции 2013;39:60–72. doi: 10.1016/j.cemconcomp.2013.03.019. [Перекрестная ссылка] [Академия Google]

117. Чжан П., Ша Д., Ли К., Чжао С. , Линг Ю. Влияние частиц нанокремнезема на ударопрочность и долговечность бетона, содержащего летучую золу угля. Наноматериалы. 2021;11:1296. doi: 10.3390/nano11051296. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

118. Бехфарния К., Салеми Н. Влияние нанокремнезема и наноглинозема на морозостойкость обычного бетона. Констр. Строить. Матер. 2013; 48: 580–584. doi: 10.1016/j.conbuildmat.2013.07.088. [Перекрестная ссылка] [Академия Google]

Производство строительных материалов. Применение АВС-100…

Производство строительных материалов. Применение ABC-100 …
  1. Панировочные сухари
  2. Компании
  3. org/ListItem»> GlobeCore ПК
  4. Статьи
  5. Производство строительных материалов. Применение ABC-100 …

0

Делиться Поделиться с Facebook Поделиться в Твиттере Поделиться с LinkedIn

Производство керамзита

В процессе производства керамзита глинистое сырье гомогенизируется и измельчается в растворосмесителях и вальцах. Но эти оборудования не обеспечивают качественного дезинтеграции. В результате получаем керамзит низкого качества.

Недостаточная дезинтеграция и гомогенизация сырья приводят к тому, что даже 3% карбонатных включений в легкоплавком керамзите могут привести его в негодность. Полученный таким образом керамзит теряет прочность или разрушается при хранении по причине гидратации СаО.

Перешлифованная глина с содержанием свободного SiO 2 до 10-30% также не пригодна для производства керамзита. Все эти проблемы можно успешно решить с помощью Vortex Layer Machine – ABC-100 PC производства GlobeCore. При использовании установки АВС-100 для измельчения и гомогенизации шихтового материала получаем керамзит общетехнического и специального назначения. В этом случае мы также уменьшаем объемный вес и увеличиваем долговечность.

Таблица 1

Результаты измельчения и гомогенизации шихтового материала для производства керамзита с использованием АВС-100

ПОЛНАЯ СТАТЬЯ НА НАШЕМ САЙТЕ WWW. FUELCLEANING.GLOBECORE.COM

Шликерная обработка CaS0 4 с содержанием свободного SiO 2 до 40% приводит к снижению объемной массы керамзита в 2 раза и повышению его прочности. Соотношение прочности и плотности керамзита почти в два раза выше у керамзита, изготовленного из шихтового материала агрегата АВС-100. Причиной резкого повышения свойств керамзита, очевидно, является активация высококремнеземистого песка, вызванная образованием активного центра или другими словами образованием свободных радикалов, которые образуются по причине разрыва связи Si-O.

Активация SiO 2 приводит к активному участию керамзита в силикатировании и стеклообразовании. После обжига керамзита в его гранулах отсутствуют крупные частицы SiO 2 , являющиеся концентратором напряжений. Наличие SiO 2 в составе стекла повышает его прочность и термостойкость.

Хорошие результаты дает сухая обработка сырья вихревым слоем. Например, из монотермита (гидрослюдистой глины) был получен легкий огнеупорный заполнитель, объемный вес которого в 2 раза ниже, но прочность в 2 раза выше, чем у контрольного образца (опыт 3, табл. 1). Положительный результат получен при сухой обработке многокомпонентной шихты (зольностью 50 %) вихревым слоем.

 

Приведенные примеры показывают, что применение АВС-100 (интенсификатор технологического процесса) весьма перспективно для получения керамзитобетона высокой прочности и термостойкости из перешлифованных и переуглероженных материалов, шихтовых материалов, содержащих до 50% отходы производства, например, угольная зола.

Производство ячеистого бетона

Ячеистый бетон изготавливается в результате отверждения предварительно выдутой смеси вяжущего, воды, кремнистого компонента с использованием газификатора компонентов. Наиболее часто в качестве пенообразователя используют алюминиевую пудру. Алюминиевый порошок реагирует с водным раствором гидроксида кальция и выделяет водород.

Действительно, качество ячеистого бетона высокое, когда уменьшается размер пор и повышается однородность пористости.

Для обеспечения наилучшего качества ячеистого бетона необходимо распределить алюминиевую пудру по ее массе и увеличить степень дисперсности. Кроме того, одним из технологических факторов, определяющих ячеистую структуру бетона, является содержание активного СаО в смеси.

Обычно подготовка газификатора сводится к частичному снятию парафиновой пленки с поверхности алюминиевых частиц путем смешивания этой пленки с водой и ПАВ, после чего необходимо ввести суспензию в раствор.

Из-за низкой эффективности перемешивающих устройств парафиновая пленка практически не удаляется.

Кроме того, происходит коагуляция частиц алюминия, что приводит к локальной концентрации газа в изделиях, появлению пустот и трещин. Из-за дефицита газовыделения при газосиликатном производстве необходимо вводить в смесь до 25 % извести.

Необходимость дополнительного введения в смесь извести обусловлена ​​требованием получения прочности бетона, позволяющей сохранить его в пузырчатом состоянии к концу газовыделения при гидратационном цементировании.

Применение установки АВС-100 для приготовления суспензии алюминиевой пудры в производстве газосиликата позволяет избежать коагуляции частиц алюминия, повышает их активность, газовыделение и однородность смеси. В таблице 2 приведены некоторые сравнительные данные физико-химических свойств газосиликата, полученного с использованием алюминиевой суспензии, полученной разными способами.

 Таблица 2

Сравнительные данные физико-химических свойств газосиликата, полученного с использованием алюминиевой суспензии, полученной разными способами

Из таблицы видно, что использование обработанной АВС-100 алюминиевой суспензии позволяет получить газосиликат, имеющий прочность на 10-30 % и показатель качества на 20-60 % выше по сравнению с контрольным образцом (табл. 2, эксперимент 1).

Применение АВС дает возможность снизить на 10 % расход газификатора и на 2 % расход извести. При этом отсутствует утяжеление газификатора. Наоборот, объемный вес газосиликата уменьшается, но увеличивается его прочность. Очевидно, что качество выдуваемого бетона может быть повышено обработкой на установке АВС-100 в вихревом поле песчано-известковой смеси или в песчано-цементной смеси с целью активации SiO 9 . 0045 2 как и в производстве керамзитобетона.

Производство силикатного кирпича

Сырьем для производства силикатного кирпича являются высококремнистый песок (92-95% сухой смеси) и известь (5-8%). Структурные возможности кирпича напрямую зависят от степени активации SiO , 2 и , равномерности смешения компонентов.

В связи с этим применение АВС для обработки сухих смесей за счет смешивания и активации компонентов представляет большой интерес. Нами исследованы способы активации песчано-известковой смеси проливом материала через вихревой слой установки АВС-100.

Интересно отметить, что при такой кратковременной обработке смеси (частицы смеси находятся в вихревом поле на долю секунды) измельчения песка и извести не наблюдается. Степень активации можно определить по изменению механических свойств полученного силикатного кирпича.

Стол 3

Условия обработки смеси

 по ABC

Сопротивление сжатию

σ ?* 10 -5 , Р?

Без обработки

91,2

Разовый пролив через пласт

239,5

Двойной пролив через слой

324,5

Тройной пролив через пласт

328,1

Как видно из таблицы кратковременной обработкой смеси можно увеличить долговечность силикатного кирпича в 3,5 раза.