Морозостойкие добавки в раствор: Противоморозная добавка в бетон: описание и свойства

Содержание

Противоморозная добавка в бетон: описание и свойства

Возведение сборных бетонных и железобетонных конструкций, а также строительство монолитных конструкций не перестает наращивать свои темпы, но зачастую мастерам приходится столкнуться со спешкой, обусловленной приближающимся окончанием строительного сезона. Это объясняется эксплуатационными характеристиками цементного раствора, одной из которых является наличие жидкой фазы, способствующей непрерывному процессу гидратации и созревания состава. Если температура опускается ниже 5 градусов, происходит торможение фазы созревания бетона, а в случае достижения отрицательных значений он прекращается, что обусловлено кристаллизацией воды, входящей в состав цементного раствора.  Это приводит к разрушению структуры бетона, который становится непригодным к использованию. Несмотря на это, большинство мастеров, имеющих опыт работ в сфере монолитного строительства, сталкиваются с необходимостью продолжения цикла бетонных работ в зимнее время, в связи с чем, перед ними встает вопрос: «Как продлить жидкую фазу бетона, а, следовательно, и его жизнедеятельность. Для решения этой проблемы специалисты предлагают использовать противоморозные добавки в бетон, технические характеристики и основные разновидности которых будут рассмотрены в настоящей статье.

Содержание

  1. Противоморозные добавки в бетон: основные разновидности
  2. Преимущества и недостатки противоморозных добавок в раствор бетона
  3. Рекомендации по применению противоморозных добавок в бетон
  4. Дозировка и расход противоморозной добавки в бетон
  5. Противоморозная добавка в бетон своими руками
  6. Меры предосторожности при работе с противоморозными добавками

 

Противоморозные добавки в бетон: основные разновидности

Противоморозные добавки в бетон представляют собой химическое вещество в виде сухой смеси или раствора, которые, посредством вовлечения в процесс кристаллизации бетона максимального количества воды, ускоряют процесс гидратации бетонной смеси, способствуя затвердеванию бетона в условиях отрицательных температур. Однако основное предназначение противоморозной добавки заключается в поддержании жидкого состояния бетонного раствора и последующем ускорении его гидратации, существенно замедляющейся при отрицательных температурах.

Важно! Используя противоморозные добавки в бетон, важно помнить о том, что прочность бетона с противоморозными добавками в условиях отрицательных температур не превышает 30 % от максимально возможной проектной прочности, остальные 70 % прочности бетон набирает в процессе оттаивания. В связи с этим, конструкции, бетонирование которых происходило в зимний период времени, не должны подвергаться высоким нагрузкам.

В соответствии с химической основой различают следующие виды противоморозных добавок в бетон:

  • Антифриз;
  • Сульфаты;
  • Противоморозные добавки-ускорители.

Рассмотрим более подробно характеристики каждой представленной разновидности.

  • Антифриз представляет собой противоморозную добавку в бетон, способствующую уменьшению температуры кристаллизации жидкости, входящей в состав раствора, а также увеличивает или незначительно уменьшает скорость схватывания раствора. При этом он не оказывает никакого влияния на скорость формирования структур.
  • Добавки в бетон на основе сульфатов являются еще одним популярным противоморозным компонентом, обеспечивающим максимальную скорость образования плотного раствора. Характерной особенностью противоморозных добавок на основе сульфатов является активное выделение тепла, начинающееся после их добавления в раствор и сопровождающееся взаимодействием бетонного раствора с продуктами гидратации. В связи с тем, что добавки на основе сульфатов характеризуются прочным связыванием с труднорастворимыми соединениями, их нельзя использовать с целью понижения температуры замерзания рабочей смеси.
  • В основе действия противоморозных добавок-ускорителей лежит повышение степени растворимости силикатных компонентов цемента, которые, вступая в реакцию с продуктами его гидратации, образуют двойные и основные соли, снижающие температуру замерзания жидкостного компонента бетонного раствора.

Важно! Современные комплексные противоморозные добавки для бетона не только регулируют кинетику набора его прочности, но и корректирует его реологические свойства. Понижая температуру кристаллизации жидкостного компонента раствора, они сокращают сроки его первичного схватывания, оказывая влияние на затвердевания цементного камня и повышая его марочную прочность.

Существует несколько разновидностей добавок-ускорителей, каждая из которых обладает определенным набором химических и эксплуатационных свойств. Рассмотрим их более подробно.

Поташ  или карбонат кальция, представляющий собой кристаллическое вещество, является сильным противоморозным компонентом, существенно ускоряющим процесс схватывания и последующего затвердевания бетона. Как и любая противоморозная добавка, карбонат кальция снижает прочность бетонной конструкции, и чтобы максимально снизить это негативное влияние на постройку, специалисты рекомендуют сочетать поташ с тетраборатом натрия или сульфидно-дрожжевой бражкой, концентрация которых не должна превышать 30 %. В связи с тем, что карбонат кальция является потенциально опасным веществом, в процессе его эксплуатации необходимо соблюдать определенные меры безопасности;

Тетраборат натрия, также называемый бурой или сульфатно-дрожжевой бражкой, представляет собой смесь солей натрия, кальция, аммония или лигносульфоновых кислот. Специалисты рекомендуют добавлять данное вещество в качестве примеси при использовании карбоната кальция, что позволяет предотвратить потерю прочностных характеристик бетонных конструкций после их оттаивания. В противном случае можно наблюдать не только появления трещин в конструкциях, но и снижение их водонепроницаемости и морозостойкости. Таким образом, использование в качестве противоморозной добавки поташа без добавления тетрабората натрия снизит прочностные характеристики конструкции на 20-30 %;

Нитрит натрия – кристаллический порошок, используемый в качестве противоморозной добавки к бетонному раствору. Учитывая, что нитрит натрия представляет собой пожароопасное ядовитое вещество, в процессе его эксплуатации важно соблюдать предельно-допустимую концентрацию вещества, которая определяется опытным путем и обычно не выходит за пределы 0,1 – 0,42 л/кг цементного раствора, при условии, что температура окружающей среды составит от 0 до -25 градусов. На предприятии в процессе работы с нитритом натрия предельно-допустимая концентрация вещества на рабочем месте не должна превышать 0,005 мг/л. В соответствии с требования научно-исследовательского института бетона и железобетона, тара, которая использовалась для транспортировки, хранения и изготовления нитрита натрия, должна быть снабжена отметкой «ЯД». Запрещается совместное использование нитрита натрия и лигносульфоновых кислот, так как их взаимодействие сопровождается образованием отравляющих газов;

Формиат натрия – белый кристаллический порошок, также выполняющий функцию противоморозного ускорителя. В большинстве случаев используется совместно с лигносульфонатом нафталина для повышения водоредуцирующих и пластифицирующих характеристик. Формиат натрия является противоморозной добавкой в бетон, расход которой не превышает 2-6 % от общей массы цемента.

Важно! Кроме вышеперечисленных веществ, в качестве противоморозных добавок в условиях отрицательных температур могут использоваться формиат натрия на спирту, хлорид кальция,  аммиачную воду и мочевину.

Преимущества и недостатки противоморозных добавок в раствор бетона

Преимущества противоморозных добавок в бетон

  • Используя противоморозные добавки в бетон, вы сможете осуществлять бетонные работы на строительной площадке даже в зимний период времени;
  • В связи с тем, что противоморозные добавки повышают степень сцепления компонентов раствора, они значительно увеличивают прочность монолита;
  • Благодаря высокой прочности изделий, изготавливаемых с использованием противоморозных добавок в бетон, их можно использовать в промышленных целях;
  • Оказывают положительное влияние на долговечность смеси, продлевая срок эксплуатации здания;
  • Повышает пластифицирующие и стабилизирующие характеристики цементной смеси – использование бетона, обладающего повышенной пластичностью, позволяет изготавливать конструкции, которые не растрескаются после застывания рабочего состава;
  • Повышает морозостойкость бетонной смеси. Данный показатель особенно важен для бетона, предназначенного для возведения ответственных конструкций, например, опор мостов. В большинстве случаев он находится в прямой зависимости от плотности бетона. Более плотные марки бетона характеризуются большим количеством возможных циклов заморозки и оттаивания;
  • В отличие от альтернативных методов повышения морозостойкости бетона, использование противоморозных добавок характеризуется относительно низкой стоимостью;
  • Используя противоморозные добавки, вы значительно снизите риск усадочных деформаций бетонной монолитной конструкции;
  • Повышение влагонепроницаемости бетонных конструкций за счет заполнения пор пластифицирующими веществами, препятствующими проникновению воды;
  • Ускорение процесса застывания бетонного раствора – основной момент, благодаря которому раствор может «не бояться» холода;
  • Отдав предпочтение противоморозной добавке в бетон, вы надежно защитите используемую арматуру от коррозионных процессов, которые имеют места из-за воды, входящей в состав бетонного раствора.

Недостатки противоморозных добавок в бетон

  • Стремление увеличить надежность прочностных характеристик бетона, необходимо увеличивать расход цемента;
  • Отдельные компоненты, входящие в состав присадок, являются ядовитыми;
  • В некоторых случаях снижается заявленная мощность бетона;
  • В случае использования противоморозных добавок в бетон, снижается скорость набора прочностных характеристик бетонной конструкции.

Рекомендации по применению противоморозных добавок в бетон

Специалисты советуют вводить противоморозную добавку в раствор бетона вместе с водой. Важно отметить, что желательно это делать с последней третью жидкости. Не рекомендуется добавлять присадки в сухую смесь. Добавив в раствор противоморозную присадку, выждете определенный промежуток времени, в течение которого произойдет равномерное распределение компонентов.

Проводя монтажные мероприятия в условиях отрицательных температур, следуйте предписаниям, представленным ниже:

  • Если вы работаете в условиях снегопада, позаботьтесь об организации соответствующих укрытий;
  • Температура раствора, вышедшего из смесителя, не должна выходить за пределы рекомендуемого диапазона от +15 до +25 градусов;
  • Для приготовления рабочей смеси специалисты рекомендуют использовать подогретую воду;
  • Что касается обогрева заполнителей, его рекомендуется производить перед непосредственным использованием.

Важно! Специалисты в строительной сфере рекомендуют обратить внимание на СНИП 3.03.01, в соответствии с которыми, для достижения необходимых прочностных характеристик раствора бетона, нужно соблюдать требования по уходу за бетоном в зимнее время. В процессе выполнения этих мероприятий к моменту достижения температуры, на которую был выполнен расчет дозировки присадки, не рекомендуется достигать прочности конструкции, превышающей 20 % от заявленной проектной прочности.

Дозировка и расход противоморозной добавки в бетон

Дозировка противоморозной добавки в бетон, расход которой является крайне вариабельным параметром, подбирается с учетом каждой конкретной ситуации посредством проведения испытаний в условиях производства и лаборатории.

Расход противоморозной добавки зависит от следующих факторов:

  • Температура окружающей среды, в условиях которой будут производиться монтажные мероприятия;
  • Заявленная марочная прочность используемого цемента;
  • Химико-минералогический и вещественный состав цемента используемого в процессе работ, а также его предполагаемая скорость набора прочности;
  • Температура раствора, которой он достигнет на выходе из смесителя;
  • Условия ухода за бетонными конструкциями.

Важно! В случае длительного использования или хранения раствора, в который вносились присадки, необходимо проверять его гомогенизацию, периодически перемешивая. Расчет необходимого количества противоморозной добавки производится с учетом погрешности 2 %.

Противоморозная добавка в бетон своими руками

Если теплые деньки уже прошли, но вы неожиданно столкнулись с необходимостью заливки монолитной конструкции, вам не обойтись без использования противоморозной добавки в бетон. Наиболее предпочтительным вариантом, в данном случае, станет приобретение противоморозной добавки в специализированном магазине, что объясняется их относительной дешевизной, небольшим расходом и способностью существенно повышать свойства бетонного раствора при условии минимальных негативных последствий. Если предполагаемый фронт работ небольшой, а выполнение монтажных мероприятий вы планируете осуществить при температуре не ниже -10 градусов, данный вариант является наиболее оптимальным.

Однако если у вас нет возможности приобрести готовую противоморозную добавку в бетон, вы можете без проблем ее изготовить самостоятельно, так как единственным материалом, которой вам потребуется в процессе работ, это хлориды (соли). Хлористые соли снижают температуру замерзания раствора, сокращают сроки его первичного схватывания и уменьшают расход цемента. Однако специалисты уверены, что противоморозная добавка на основе хлоридов, изготовленная самостоятельно, может использоваться только для неармированных конструкций, что обусловлено коррозионными процессами, развивающимися под действием хлоридов.

Преимущества противоморозной добавки на основе хлоридов
  • Низкая стоимость;
  • Отсутствие влияния на скорость застывания бетона, благодаря чему, приготовление раствора можно осуществлять заранее;
  • Отсутствие влияние на структуру цементного раствора;
  • Увеличение подвижности частиц, благодаря которой, вы сможете придать цементному раствору желаемую форму.

Недостатки противоморозной добавки на основе хлоридов
  • Высокий уровень коррозийной активности, вследствие чего, противоморозная добавка на основе хлоридов не может использоваться для изготовления конструкций, в структуре которых присутствует металл и арматура. Последние окислятся под воздействием хлоридов и отслоятся от бетонной конструкции, нарушив ее целостность.

Как влияет температура окружающей среды на расход хлоридов?
  • Расчет доли хлоридов в готовом растворе производится по следующей схеме:
  • Если монтажные мероприятия осуществляются при среднесуточной температуре ни ниже – 5 градусов, оптимальная доля хлоридов в готовом растворе не должна превышать 2 %;
  • Если работы проводятся в условиях более низких температур (-6 до -15 градусов), оптимальная доля хлоридов должна составлять 4 % от общей массы раствора.

Важно! В этом случае схема набора ожидаемой прочности конструкции при высыхании в условиях отрицательных температур будет выглядеть следующим образом:

Для первого варианта, где концентрация соли составляет 2 %:

  • 30 % по истечении недельного срока;
  • 80 % по прошествии месяца;
  • 100 %-ой прочности конструкция достигнет только через 3 месяца.

Для второго варианта (концентрация соли составляет 4 %) эти цифры будут составлять 15%, 35%, 50% соответственно.

Важно! Несмотря на то, что соль является самостоятельной противоморозной добавкой, специалисты рекомендуют ее использовать совместно с хлоридом кальция, массовая доля которого при использовании в условиях температуры до – 5 градусов составляет 0,5 % от массы раствора, и 2 %  — в случае использования при температуре от -6 до -15 градусов.

Меры предосторожности при работе с противоморозными добавками

  • В процессе работы с противоморозными добавками необходимо использовать защитные перчатки;
  • В случае попадания на открытые участки кожи, промойте ее водой с мылом. Исключите попадание противоморозной добавки в глаза, если этого не удалось избежать, промойте глаза большим количеством воды и незамедлительно обратитесь к врачу.
  • Утилизация добавки осуществляется в соответствии с местными правилами, что объясняется присутствием в составе противоморозных добавок вредных компонентов. Вследствие этого запрещается выливать смесь в почву, водоемы или канализацию.

Противоморозные добавки в бетон — виды и температурные режимы

Независимо от того, для каких целей готовится строительная смесь, для заливки фундамента, стяжки или кирпичной кладки, в раствор всегда добавляется определенное количество воды. При пониженных температурах жидкость начинает замерзать, что негативно сказывается на прочностных характеристиках раствора. Чтобы бетон успел набрать прочность до того, как вода в нем замерзнет, в замес добавляют специальные жидкие компоненты – пластификаторы. Противоморозная добавка в бетон улучшает диспергирование (рассыпчатость) твердых составляющих раствора, благодаря чему он преобразуется в суспензию устойчивую к замерзанию. Помимо этого некоторые типы подобных присадок ускоряют застывание бетонной массы.

Сегодня существует огромное количество морозостойких добавок для бетона от разных производителей способных сохранять качества строительной смеси даже в условиях сильного мороза (до -35 градусов).

Типы противоморозных добавок для бетона

Все противоморозные добавки в раствор для кладки бетона бывают трех видов:

  • Антифризы. Такие противоморозные добавки в бетоне снижают температуру кристаллизации воды и незначительно ускоряют время схватывания раствора.
  • Сульфаты. Добавки на основе сульфатов позволяют максимально ускорить застывание бетонной массы. Помимо этого присадки этого типа активно выделяют тепло, благодаря чему все компоненты раствора быстрее смешиваются и превращаются в однородную субстанцию, что, в свою очередь, понижает температуру замерзания состава.
  • Антиморозные добавки-ускорители в бетон. Компоненты этого типа повышают скорость растворения силикатных составляющих в цементе, которые вступают в реакцию с продуктами гидратации раствора, благодаря чему образуются основные и двойные соли, провоцирующие снижение температуры промерзания смеси.

Большинство комплексных антиморозных добавок, попадая в раствор, выполняют сразу несколько функций: понижают температуру кристаллизации жидкостных компонентов смеси и осуществляют регулировку набора прочности. Современные морозостойкие добавки бывают разных типов в зависимости от их химических и эксплуатационных характеристик. Исходя из этого, выделяют следующие основные компоненты присадок.

Карбонат кальция

Карбонат кальция (или как его еще называют поташ) – это противоморозный кристаллический компонент, значительно ускоряющий застывание бетонной массы.

Поташ рекомендуется использовать только вместе с тетраборатом натрия (который также называют сульфидно-дрожжевая бражка или бура), так как карбонат кальция в чистом виде приведет к снижению прочности бетона.

Важно! Концентрация тетрабората натрия и бражки должна быть не более 30%.

Также стоит учитывать, что поташ – это довольно опасное вещество, которое можно применять только с соблюдением мер безопасности.

Тетраборат натрия

Бура также может использоваться в качестве самостоятельной добавки для бетона противоморозного типа. Эта присадка является смесью кальция, аммония и солей натрия.

Примесь из тетрабората натрия сохраняет целостную структуру бетонной конструкции после ее отмерзания. Кроме этого бура исключает появление трещин в монолите, снижает водопроницаемость бетона и повышает его прочность на 20-30%.

Нитрит натрия

В антиморозные добавки часто добавляют кристаллический порошок – нитрит натрия. Этот компонент также позволяет заливать бетон при пониженных температурах. Однако стоит учитывать, что нитрит натрия является пожароопасным и очень ядовитым веществом, которое необходимо использовать крайне осторожно. Концентрация НН не может превышать 0,42 л/кг, а его добавление в раствор допускается при температурном диапазоне от 0 до -25 градусов.

Важно! Этот химикат ни в коем случае нельзя смешивать с лигносульфоновыми кислотами, так как такая смесь образует опасный отравляющий газ.

Также стоит учитывать, что применение противоморозных добавок в бетоне с добавлением нитрита натрия допускается только при использовании специальной тары с маркировкой «яд».

Формиат натрия или кальция

Еще один компонент, являющийся противоморозным ускорителем – формиат натрия или кальция, используется вместе с лигносульфонатом нафталина. Это вещество повышает водоредуцирующие и пластифицирующие характеристики портландцементного раствора.

Расход формиата кальция, как противоморозной добавки не должен превышать 2-6% от общего объема смеси.

Аммиачная вода

Аммиачная вода получается путем растворения в воде аммиачного газа. При этом образуется качественная добавка, которая не только наделяет бетонный раствор противоморозными свойствами, но и не вызывает коррозии армирующей сетки. Присадка этого типа также не влияет на сцепление армокаркаса и бетонного раствора. Однако, в отличие от аналогов аммиачная вода не ускоряет процесс затвердевания бетона, а наоборот замедляет его. Благодаря этому свойству укладывать бетон можно без лишней спешки.

Концентрация этого компонента зависит от температуры воздуха:

  • при температуре до -10 °С рекомендуется использовать 5% раствор аммиачной воды;
  • от -10 до -20 °С – 10%;
  • от -20 до -35 °С – 15%;
  • ниже -35 °С – 20%.

В продаже можно встретить множество готовых добавок, рассмотрим самые лучшие из них.

Специализированные антиморозные добавки

Для повышения морозостойкости бетона используются следующие присадки:

НазваниеДействиеТемпературный режимДозировка раствора
Асол – КИнгибитор коррозии и модификатордо -10 °С(при плюсовых температурах схватывание смеси занимает от 5 до 30 минут)2-6%
Гидробетон С-ЗМ-15Противоморозная присадка, пластификатордо -15 °С34-36%
ГидрозимАнтифриз (не вызывает коррозии металлических элементов)до -15 °С50%
Лигнопан – 4Противоморозная присадка, пластификатордо -15 °Сдо -10 °Сдо -5 °С4%3%2%
Победит – АнтиморозПротивоморозная, ускоритель (для сухой смеси)до -15 °С2-8%
БитумастПротивоморозная, ускорительдо -15 °Сдо -10 °Сдо -5 °С2%1,5%1%
BetonsanУскоритель, модификатордо -10 °С1-2%
Cementol BПротивоморознаядо -5 °С0,2-0,8%

Благодаря такому разнообразию всевозможных компонентов можно получить портландцемент с минеральными добавками, который останется прочным независимо от того, какое на улице время года.

Также стоит рассмотреть плюсы и минусы таких добавок.

Преимущества и недостатки противоморозных присадок для бетона

Помимо уже описанных положительных свойств присадок, можно выделить:

  • возможность использования бетона с противоморозными добавками в промышленных целях;
  • увеличение срока эксплуатации бетонной конструкции;
  • улучшение пластичности бетона;
  • снижение риска усадки монолитной бетонной конструкции;
  • повышение влагоустойчивости конструкции.

Однако, не стоит сильно «увлекаться» такими присадками, так как они обладают определенными недостатками. При использовании добавок:

  • расход портландцемента значительно увеличивается;
  • вы рискуете получить ожоги и другие повреждения, из-за того, что большая часть добавок ядовиты и токсичны;

Также, существует мнение, что некоторые компоненты присадок могут снизить скорость набора прочности монолитной конструкции. Отчасти эта теория верна, так как первые несколько дней бетонный раствор действительно может прочнеть чуть медленнее, однако после 28 суток упрочнение, наоборот, происходит быстрее.

Кроме этого некоторые вещества способствуют образованию коррозии на железных прутках армирующего каркаса. Если вы используете арматуру, то стоит отказаться от присадок с хлоридами. Такие вещества, как нитрит натрия или аммиачная вода, напротив, предотвращают появление ржавчины.

В процессе затвердевания бетонного раствора добавки могут перемещаться по смеси и скапливаться в одном месте (чаще всего на ребрах бетонных конструкций). В процессе того, как эти «очаги» кристаллизуются, наблюдаются многократные перепады температуры в отдельных участках бетонного монолита. Поэтому использовать поташ и нитрат кальция рекомендуется очень осторожно.

Также стоит учитывать, что добавки, образующие двойные соли не подходят для эксплуатации бетонных конструкций в агрессивной водной среде.

В заключении

Применение специальных добавок в зимний период, безусловно, поможет сохранить прочностные характеристики бетона, однако добавлять такие компоненты необходимо в разумных приделах. Если есть возможность, то лучше использовать специальные провода для прогрева бетонной смеси.

Добавка в раствор противоморозная: описание и свойства

Дата: 1 января 2019

Просмотров: 4421

Коментариев: 0

Производя строительство, ремонтируя здания в зимнее время, строители сталкиваются с серьезными проблемами, связанными с отрицательной температурой. Она затрудняет твердение бетонного массива. Это связано с повышенной концентрацией содержащейся воды, начинающей замерзать при -3 градусах Цельсия. На ранней стадии затвердевания бетона замерзшая вода расширяется, разрушает массив, нарушает целостность, снижает прочность, что сказывается на долговечности.

При необходимости зимой выполнить бетонирование в цементный раствор вводятся специальные противоморозные добавки, обеспечивающие необходимое время гидратации. Их введение повышает однородность смеси, прочностные характеристики, затрудняет растрескивание, сокращает продолжительность твердения.

Противоморозные добавки в раствор содержат соляную кислоту, натриевый и кальциевый хлорид, другие компоненты. Они повышают пластичность состава, положительно влияют на морозостойкость, ускоряют процесс твердения, качество монолита. Рассмотрим назначение применяемых добавок, влияние на цементную смесь, специфику применения.

Как правило, при значительном понижении температуры окружающей среды строители начинают испытывать дополнительные трудности в ходе работы с бетоном и всевозможными растворами

Область применения

Противоморозные добавки в раствор бетона используются при выполнении работ в зимний период года. Естественно, зима затрудняет производство строительных мероприятий, вносит ряд серьезных ограничений на производство работ, связанных с бетонированием.

Профессиональные строители нашли выход из создавшейся ситуации и вводят морозостойкие добавки в состав цементных смесей, позволяющие производить строительство, ремонт при снижении температуры до минус 25 градусов Цельсия. Сфера использования достаточно широка:

  • строительство монолитных конструкций из бетона;
  • изготовление железобетонных изделий, сборной бетонной продукции на заводах ЖБИ;
  • возведение сооружений с применением стальной арматуры;
  • формирование элементов и отдельных частей сборных строительных конструкций;
  • герметизация стыков монолитно-сборных объектов;
  • выполнение стяжки;
  • выполнение штукатурки поверхности;
  • подготовка смесей для кладки с улучшенными технологическими характеристиками;
  • приготовление сухих строительных составов для фиксации облицовочных элементов;
  • изготовление вспененных блоков, изделий на основе шлаков, обладающих требуемыми эксплуатационными характеристиками.

Пластификаторы позволяют зимой выполнять спектр работ, начиная с традиционной кладки кирпичных или блочных стен, и заканчивая возведением монолитных бетонных конструкций с использованием технологи несъемной опалубки.

Используя противоморозные добавки в бетон, вы сможете осуществлять бетонные работы на строительной площадке даже в зимний период времени

Влияние добавок

Вводимая в бетонную смесь, согласно рекомендациям предприятия-изготовителя, противоморозная добавка положительно влияет на эксплуатационные характеристики:

  • Повышает устойчивость цементного раствора к влиянию отрицательных температур.
  • Сохраняет целостность бетонного монолита при многочисленных циклах глубокого замерзания с последующим оттаиванием.
  • Увеличивает стойкость бетона к проницаемости массива водой.
  • Значительно повышает прочностные характеристики после твердения.
  • Существенно сокращает время схватывания, твердения при отрицательных температурах.
  • Замедляет коррозионные процессы, связанные с повышенной концентрацией хлоридов.

Противоморозные добавки в раствор готовят самостоятельно, используя предлагаемые на строительном рынке пластификаторы, или заказывают специально подготовленные для работы при отрицательных температурах составы.

Обеспечение повышенных эксплуатационных свойств цементного состава связано со следующими особенностями вводимых компонентов, которые:

  • уменьшают температурный порог замерзания воды;
  • увеличивают пластичность раствора, уменьшая объем воды, необходимой для затворения;
  • повышают плотность бетона, который после укладки сохраняет физические свойства, успевает затвердеть;
  • обеспечивают однородность цементной смеси;
  • улучшают коэффициент сцепления бетона со стальной арматурой.

Добавка в раствор может сочетаться со специальными пластификаторами, которые влияют на повышение отдельных характеристик смеси. Возможность совместного применения регламентирована производителями противоморозных ингредиентов. Использование специальных растворов обеспечивает возможность снижения температуры замерзания воды в бетонном растворе с 0 °С до -25 °С.

Специфика использования

Добавки в раствор обеспечивают необходимый эффект при условии соблюдения процентной концентрации. При несоблюдении рецептуры, введении добавок с отклонениями от рекомендаций изготовителей процесс гидратации приостановится, произойдет замораживание цемента.

При возрастании температуры на 4-5 градусов Цельсия процесс гидратации возобновится, но структура бетонного массива изменится, что отразится на прочностных характеристиках.

Благодаря высокой прочности изделий, изготавливаемых с использованием противоморозных добавок в бетон, их можно использовать в промышленных целях

Введенные в необходимых количествах противоморозные добавки улучшают водонепроницаемость, увеличивают плотность, замедляют коррозионные процессы, а также повышают прочность массива.

Важной особенностью применения противоморозных ингредиентов является соблюдение требования техники безопасности. Используемые при отрицательных температурах натриевый нитрат, поташ – ядовитые и опасные для здоровья человека компоненты. Недопустимо их попадание на кожный покров, а также на слизистую оболочку.

Применяя морозостойкие добавки в бетонной смеси, используйте специальные комбинезоны, перчатки для защиты рук, очки. Обеспечивайте хранение веществ в закрытых помещениях.

Экономическая целесообразность применения

Введение в цементный раствор морозостойких ингредиентов экономически выгодно, достаточно просто с технологической точки зрения.

Предотвратить замерзание смеси для формирования прочной структуры можно следующими способами:

  • Осуществить обогрев бетонной массы с помощью воздушных пушек до момента набора эксплуатационной прочности, что является достаточно энергоемкой процедурой и технологически проблематично.
  • Произвести нагрев с помощью строительных фенов, нагнетающих поток горячего воздуха под предварительно нагретую поверхность бетонного массива.
  • Использовать сварочные аппараты, нагревающие находящуюся в растворе стальную проволоку. Процесс требует соблюдения специальных требований техники безопасности, не отличается экономичностью.
  • Применить морозостойкие компоненты комплексного действия, позволяющие с минимальными финансовыми затратами обеспечить технологический режим твердения бетона и достижение им эксплуатационной прочности.

Противоморозная добавка обеспечивает в два раза больше экономии денежных средств по сравнению с прогревом паром и в полтора раза экономнее, чем электрообогрев. Введение в цементный раствор специальных присадок обеспечивает сокращение сроков ввода в эксплуатацию бетонных конструкций.

Разновидности вводимых ингредиентов

Специальные морозостойкие компоненты, вводимые в бетонный раствор, снижают порог замерзания воды, не позволяют ей заледенеть.

Используя противоморозные добавки, вы значительно снизите риск усадочных деформаций бетонной монолитной конструкции

В качестве противоморозных добавок используют:

  • натриевый нитрит, который, также, называют азотистокислым натрием. Он используется при выполнении строительных мероприятий при снижении температурного режима до -15 градусов Цельсия;
  • углекислый калий, который известен как поташ, применяемый во время бетонирования при температуре до — 30°С. Введение компонентов не вызывает коррозионных процессов на арматуре и появления солей на поверхности затвердевшего бетона;
  • хлорсодержащие натриевые и кальциевые составы, обеспечивающие возможность зимнего бетонирования, но ускоряющие коррозионное разрушение стальных элементов арматуры.

При подготовке морозостойкого состава учитывайте рекомендации производителя, температуру окружающей среды, концентрацию добавок, соответствующую доли цемента.

Например, при изменении температуры воздуха с -5°С до -15°С расход поташа, вводимого в цементный состав, увеличивается с 5% до 10%, а нитрата натрия – с 4% до 8%. Согласно виду противоморозных добавок, их концентрация в цементной смеси изменяется от 2% до 10%.

Наряду со специальными добавками для обеспечения противоморозных характеристик вводят пластификаторы. Их введение способствует увеличению пластичности раствора, характеризующегося уменьшенной концентрацией воды. Концентрация пластифицирующих веществ изменяется в зависимости от вида выполняемых работ:

  • При выполнении кирпичной или блочной кладки концентрация составляет 5-10% от массы цемента.
  • Для бетонирования концентрация пластификаторов возрастает до 10-15%, что позволяет бетону превратиться в монолит до того, как замерзнет содержащаяся влага.

Пластификаторы значительно повышают текучесть и не применяются для выполнения штукатурных работ, при которых они могут раньше стечь с поверхности стен, чем успеют схватиться. Комплексное применение различных ускорителей твердения значительно повышает качество бетона, эксплуатационные характеристики.

Использование готовых составов

Применение готовых сухих смесей с противоморозными ингредиентами широко используется при выполнении строительных работ в зимнее время. Произведенные по промышленной технологии готовые составы применяются для следующих работ:

  • выполнения кладки с помощью тяжелых смесей, а также цементных составов (с введением извести) объемным весом более 1,5 т/м3;
  • производства отделочных мероприятий с применением цементно-известковых смесей плотностью менее 1,5 т/м3.

Использование предварительно подготовленных промышленным образом противоморозных составов намного удобнее, чем самостоятельный замес специального назначения. При этом отпадает необходимость учитывать совместимость ингредиентов и подбирать рецептуру. Однако готовые составы отличаются высокой ценой, повышающей сметную стоимость строительства в зимний период.

Подготовка к использованию готового противоморозного состава в бытовых условиях требует разведения смеси теплой водой, тщательного перемешивания с использованием специально одетой на дрель насадки.

Заключение

Понимая актуальность выполнения строительных мероприятий в зимнее время, целесообразно использовать морозостойкие добавки в бетонные растворы, обеспечивающие возможность выполнения работ при значительном снижении температуры. Квалифицированный подход к выбору противоморозных компонентов, соблюдение рецептуры позволят не только значительно ускорить строительные работы, но и обеспечить сокращение сроков мероприятий, повысить качество бетонных конструкций.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках — 12 лет, из них 8 лет — за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

ПЛИТОНИТ АнтиМороз — противоморозная добавка для цементно-песчаных растворов

Ленинградская область

Санкт-Петербург

Бокситогорск

Васкелово

Волосово

Волхов

Всеволожск

Выборг

Выра

Вырица

Гатчина

Грузино

Дранишники

Заполье

Зеленогорск

Кингисепп

Кириши

Кировск

Колпино

Колтуши

Коммунар

Лодейное поле

Ломоносов

Лосево

Луга

Мичуринское

Мурино

Ново-Токсово

Отрадное

Павлово

Песочный

Пикалево

Приозерск

Псков

Романовка

Ропша

Рощино

Сестрорецк

Сиверский

Сланцы

Сосново

Сосновый Бор

Тихвин

Токсово

Тосно

Ульяновка

Черемыкино

Москва и Московская область

Алтуфьево

Видное

Владимир

Дмитров

Дубино

Дубна

Егорьевск

Зеленоград

Иваново

Истра

Климовск

Клин

Коломна

Кострома

Красногорск

Кубинка

Лосино-Петровский

Люберцы

Меличкино

Можайск

Мытищи

Ногинск

Одинцово

Орехово-Зуево

п. Соболиха

Павловский Посад

пгт. Белоозерский

Подольск

Пушкино

Раменское

Сергиев Посад

Серпухов

Сокольники

Старая Купавна

Тарасовка

Химки

Хотьково

Шолохово

Шуя

Щелково

Электросталь

Юдино

Ям

Ярославль

Алтайский край

Барнаул

Амурская область

Благовещенск

Архангельская область

Архангельск

Новодвинск

Северодвинск

Брянская область

Брянск

Волгоградская область

Волгоград

Волжский

Вологодская область

Белозерск

Великий Устюг

Вологда

Воронеж

п. Кадуй

п. Шексна

Тотьма

Череповец

Воронежская область

Воронеж

Забайкальский край

Чита

Ивановская область

Иваново

Шуя

Иркутская область

Ангарск

Иркутск

Шелехов

Кабардино-Балкаарская Республика

Баксан

Нальчик

Калининградская область

Калининград

Калужская область

Кемеровская область

Кемерово

Новокузнецк

Кировская область

Киров

Кирово-Чепецк

Костромская область

Кострома

Краснодарский край

Адлер

Адыгея

Краснодар

Курганинск

Сочи

Красноярский край

Красноярск

Курганская область

Курган

Шадринск

Курская область

Курск

Мурманская область

Апатиты

Кандалакша

Мурманск

Нижегородская область

Нижний Новгород

Новгородская область

Боровичи

Великий Новгород

Старая Русса

Новосибирская область

Новосибирск

Омская область

Омск

Оренбургская область

Бузулук

Новотроицк

Оренбург

Орск

Пензенская область

Пенза

Пермский край

Пермь

Приморский край

Артем

Владивосток

Находка

Псковская область

Великие Луки

Псков

Республика Башкортостан

Бирск

Красноусольский

Кумертау

Нефтекамск

Октябрьский

Салават

Стерлитамак

Уфа

Республика Беларусь

Минск

Республика Бурятия

Улан-Удэ

Республика Дагестан

Махачкала

Республика Казахстан

Астана

Республика Карелия

Костомукша

Петрозаводск

Сегежа

Сортавала

Республика Коми

Сыктывкар

Республика Крым

Севастополь

Симферополь

Республика Мордовия

Саранск

Республика Татарстан

Казань

Набережные Челны

Республика Чувашия

Чебоксары

Ростовская область

Аксай

Батайск

г. Каменск-Шахтинский

Новочеркасск

Ростов-на-Дону

Рязанская область

Рязань

Самарская область

Кинель

п. Волжский (Царевщина)

п. Стройкерамика

Похвистнево

Самара

Тольятти

Ульяновск

Саратовская область

Саратов

Сахалинская область

Южно-Сахалинск

Свердловская область

Екатеринбург

Нижний Тагил

Ставропольский край

Михайловск

Невинномысск

Ставрополь

Тверская область

Тверь

Тульская область

Тула

Тюменская область

Тобольск

Тюмень

Ялуторовск

Ульяновская область

Ульяновск

Хабаровский край

Хабаровск

Ханты-Мансийский АО (Югра)

Сургут

Челябинская область

Челябинск

Читинская область

Чита

Ярославская область

Ярославль

Противоморозная добавка, добавки в бетон для морозостойкости

Определение зимней добавки в бетон
Разновидности и типы противоморозных добавок
Добавки в бетон для морозостойкости: достоинства и недостатки
Условия и диапазоны использования зимних добавок в бетон

Определение зимней добавки в бетон

Противоморозная добавка – жидкий или порошкообразный состав, который добавляют в бетон, готовящийся к заливке при отрицательной температуре. Без противоморозных добавок вода (обязательный компонент смеси) на холоде превращается в кристаллики льда. Процесс гидратации бетона нарушается, он быстро твердеет, не успев «схватиться», и готовая конструкция получается очень непрочной, хрупкой.

Разновидности, типы

Противоморозные добавки в бетон классифицируют на три типа в зависимости от принципа действия:

  1. Антифризы. Понижают температуру замерзания воды в растворе, позволяя процессу гидратации цемента идти по обычному механизму.
  2. Сульфаты. Увеличивают скорость застывания бетона. Химические реагенты выделяют избыточное тепло, создавая условия для ускоренной гидратации цемента.
  3. Комплексные добавки. Делают цементное молочко более растворимым и одновременно понижают температуру кристаллизации воды за счет новых соединений, возникающих при химической реакции с водой.

На практике часто используются несколько добавок одновременно, чтобы добиться максимального эффекта.

Добавки в бетон для морозостойкости: достоинства и недостатки

Добавки в бетон для улучшения степени морозостойкости позволяют добиться важных преимуществ перед обычным раствором:

  • Работы по заливке бетона для строительства монолитных конструкций можно вести при температуре до -50 градусов.
  • Повышение пластичности смеси.
  • Снижение рисков усадки монолита.
  • Улучшение влагостойкости конечной конструкции.

Если отложить строительные работы до теплого времени года нельзя, то придется смириться с некоторыми недостатками использования противозамерзающих добавок, а именно:

  • Более высокий расход портландцемента.
  • Снижение скорости набора прочности бетонной конструкции.
  • Риск коррозии арматуры при использовании добавок с хлоридами.

Условия и диапазоны использования ПМД

Противоморозные добавки в готовую бетонную смесь лучше добавлять во время изготовления раствора, чтобы избежать застывания бетона в спецтехнике во время доставки.

Использование тех или иных популярных противозамерзающих добавок в бетон имеет свои особенности:

  • Поташ без тетрабората натрия снижает прочность готовой конструкции почти на треть.
  • Нитрит натрия взрывоопасен и токсичен, требует особой осторожности. Применяется, если не холоднее 25 градусов.
  • Аммиачная вода вызывает коррозию арматуры, поэтому в железобетонных изделиях использоваться не должна.

Для прочих составных элементов смесей рекомендации по применению даются производителем.

Учитывая климат нашего региона, необходимо использовать противоморозные добавки в бетон в Уфе для бетонирования в зимнее время. Количество и состав ПМД, а, следовательно, стоимость зимнего бетона зависит от температуры, при которой планируется проводить работы.

Бетон с противоморозными добавками в Уфе можно заказать через Зининский завод бетона. Наши специалисты готовы предоставить смеси с оптимальным набором противозамерзающих компонентов для зимнего строительства по лучшим ценам. Узнайте особенности и условия сотрудничества у специалистов завода по контактным телефонам.

Добавка в бетон морозостойкая (для морозостойкости)

Морозостойкие добавки в бетон – это специальные составы, которые тем или иным образом способны сделать бетон пригодным для работы при минусовой температуре без потери основных технических характеристик. Современные производители предлагают множество противоморозных добавок, которые выполняют определенные функции и тем или иным способом решают проблему невозможности заливать обычный бетон при температуре ниже +5 градусов.

Бетон является универсальным строительным материалом, который сегодня используется в самых разных сферах. Заливка разнообразных конструкций и выполнение элементов, строительство зданий и других объектов – все эти работы осуществляются круглогодично, поэтому возможность использовать раствор при минусовых температурах очень важна.

Обычный раствор при температуре ниже +5 градусов перестает схватываться и застывать, а даже если реакция и проходит, то с повреждением внутренних кристаллических связей и существенным ухудшением свойств материала. Так, залитый на морозе бетон может покрываться трещинами, сколами, менять форму, крошиться и деформироваться.

Оптимальные условия для правильного схватывания и застывания бетонного раствора – это температура в районе +20 градусов и высокая влажность. Если же есть необходимость осуществлять работы с бетонной смесью в мороз, важно использовать специальные присадки. Особенности применения составов указываются в инструкции, работы проводятся по правилам, указанным в ГОСТах и СНиПах.

Преимущества применения

Любая добавка в бетон морозостойкая призвана дать возможность замешивать и заливать смесь при минусе без риска замирания процесса схватывания/застывания и ухудшения характеристик монолита.

Основные достоинства противоморозных присадок:
  • Повышение уровня пластичности готового раствора – с ним легче работать.
  • Отсутствие риска коррозии арматуры в железобетонной конструкции за счет ингибиторов коррозии, которые есть в добавках.
  • Жидкость в бетонном растворе замерзает при значительно более низких температурах в сравнении с бетоном без присадок.
  • Значительное повышение водонепроницаемости.
  • Набор прочности при морозе происходит активнее.
  • При условии верного подбора добавок они способны улучшать адгезию компонентов в растворе, что положительно сказывается на качестве смеси.
  • Продление срока эксплуатации благодаря уплотнению бетона.
  • Застывший бетон в конструкции более морозостойкий в сравнении с обычным монолитом.
  • Уменьшение процента усадки в процессе застывания при полном сохранении целостности всей конструкции.

Работы с бетоном можно выполнять круглый год, не останавливая производство на 6 месяцев, когда существенно понижается температура окружающей среды. Из недостатков добавления присадок в цемент стоит отметить такие: чрезвычайная важность верного применения добавки (точные пропорции при добавлении, особенности работы) и возможность при несоблюдении технологии ухудшить характеристики бетона, некоторые добавки являются ядовитыми и пожароопасными.

Также стоит помнить о том, что при отрицательных температурах даже при условии введения противоморозных добавок бетон твердеет медленнее (кроме случаев применения ускорителей), а для достижения положенной прочности в работах в зимний период нужно брать больше цемента (что существенно повышает стоимость ремонтно-строительных работ).

Где используют

Любая добавка в бетон для морозостойкости – это настоящая находка для современного строительства. Присадки используются в самых разных ситуациях там, где нужно выполнить работы при низких температурах не в ущерб качеству.

Где применяют противоморозные добавки для бетона:
  • При заливке монолитных железобетонных конструкций, частей зданий.
  • В преднапряженном железобетоне.
  • С нерасчетной арматурой, где слой раствора должен быть больше 50 сантиметров.
  • В легких типах бетонов.
  • Для замешивания штукатурных смесей.
  • При заливке дорожек и разных поверхностей частного домостроения.
  • При выполнении важных конструкций и сооружений – мосты, плотины, дамбы, платформы добывания газа, нефти и т.д.

Независимо от сферы применения, до начала работ с бетоном обязательно проводят испытания для определения уровня прочности, скорости схватывания, особенностей окисляющего воздействия на бетонную смесь, наличие «солей» и т.д.

Присадки в бетон добавляют самые разные – все зависит от материала, условий проведения работ и будущей эксплуатации. Все виды присадок вводятся в раствор с водой, в соответствии с инструкцией. Потом смесь тщательно перемешивают, выжидают определенное время и используют.

СП 70.13330.2012 указывает, что для приобретения составом необходимого уровня прочности нужно, чтобы до момента достижения температурой состава отметки, указанной на присадке, смесь набрала минимум 20% запланированной прочности.

Обычно расход добавок на кубический метр раствора зависит не столько от вещества, сколько от среднесуточной температуры окружающей среды. Так, при температуре до -5 рекомендуют добавить не больше 2% присадки от веса раствора, при -10 градусов можно 3%, при -15 – максимум 4%. Если морозы очень сильные, рассчитывают в индивидуальном порядке.

Для улучшения результатов рекомендуют придерживаться таких правил: температура заливаемого раствора должна быть от +15 до +25 градусов, присадки растворяют в подогретой воде, предварительно прогревают также щебень и песок, но не цемент.

Виды добавок

Качественные присадки для работы при отрицательных температурах позволяют работать с бетоном на морозе до -35 градусов. Видов присадок множество – это могут быть ускорители, пластификаторы, регуляторы подвижности, модификаторы, комплексные вещества. Их можно приобрести в готовом виде или сделать самостоятельно. Второй вариант более рискованный, так как точных рецептов и свойств разных веществ с эффектом антифриза точно не известно.

Многие мастера используют обычную соль (хлорид натрия) – она понижает температуру замерзания жидкости, понижает время критичного затвердевания раствора. Для приготовления такой добавки соль растворяют в воде, вводят в смесь. Для -5 градусов концентрация составляет 2% от массы раствора, -15 – 4%. Минус данного решения – коррозионная активность в отношении металла, поэтому железобетонные конструкции заливать такой смесью нельзя.

Пластификаторы

В качестве пластификаторов используют органические полиакрилаты, сульфат меламиновой смолы или нафталина. Данные присадки обладают пластифицирующим действием на смесь, большого расхода воды не предполагают. Монолит становится более водонепроницаемым, прочным, концентрированным (плотным).

Смесь с добавкой намного проще укладывается, заливается равномерно, существенно экономя воду и энергозатраты. Благодаря введению в состав пластификаторов удается смесь качественно укладывать в формы, исключать вероятность образования пустот. Микрочастицы смеси эффективнее удерживают влагу.

Упрочняющие

Такие добавки для бетона называют еще ускорителями твердения – в группу входят нитрат и хлорид кальция, сульфат железа и алюминия. Присадки работают, уменьшая время твердения смеси. В момент схватывания бетон теряет пластичность, а в процессе затвердевания становится прочным.

Воздействие добавок происходит в первые 3 дня застывания бетона – добавка наиболее эффективна именно в этот период. Также удается повысить прочность бетона по классу.

Регуляторы подвижности

Это специальные вещества, которые дают возможность продлить период работы с готовым уже раствором. Делятся на 2 типа: добавки, которые вводятся в минимальных объемах и регулируют характеристики (0.1-2%) и тонкомолотые лигатуры (5-20%) для сокращения расхода цемента и без изменения свойств.

Особенности применения регуляторов подвижности:
  • Самые эффективные – химические пластификаторы и суперпластификаторы.
  • Присадки повышают подвижность растворов, понижают водопотребность.
  • Лигатуры одного и того же класса могут по-разному влиять на раствор.
  • Лучшими считаются суперпластификаторы, которые: повышают строительно-технологические свойства смеси, увеличивают подвижность раствора, понижают расход цемента.

Морозоустойчивые

Данные присадки позволяют осуществлять работы при отрицательных температурах без изменения технологии и ухудшения характеристик бетонного раствора.

Главные виды морозоустойчивых добавок:
  • НК – нитрат кальция, оказывает влияние на скорость затвердевания раствора.
  • П – поташ, карбонат кальция, который способен ускорить твердение раствора при -30 градусах.
  • М – мочевина.
  • ХК – сочетание соляной кислоты, кальция, которое окисляет металл, поэтому не применяется в железобетоне.
  • М НК – сочетание мочевины и нитрата кальция.
  • НН, ННК – нитрат натрия и нитрит нитрат кальция, которые ускоряют процесс твердения, обладают антикоррозийным воздействием, но ядовиты (требуют применения средств индивидуальной защиты).

Коррозионностойкие

Данные модификаторы используют там, где нужно защитить железобетонные конструкции от окисления, что существенно продлевает срок их службы, препятствует разрушениям и негативному воздействию внешних факторов.

Комплексные

Есть добавки, которые оказывают сразу несколько эффектов на бетонную смесь – могут одновременно положительно влиять на арматуру и защищать ее, улучшать эксплуатационные свойства бетона, повышать прочностные характеристики железобетонной конструкции.

Советы по выбору

При выборе присадок в бетон учитывают обстоятельства эксплуатации будущей конструкции, условия заливки, используемый метод работ, марку и состав цемента, температуру окружающей среды, качество присадки и т.д. Чаще всего выбирают такие вещества, как: хлористый натрий для быстрого затвердевания, нитрит натрия, поташ для портландцемента.

Обычно присадку выбирают по действию и потребностям – после тщательного изучения свойств конкретной добавки выбирают ту, что отвечает условиям и требованиям. В особых случаях обращаются к специалистам.

Особенности выбора вещества:
  • В конструкциях с ненапрягаемой арматурой сечением больше 5 миллиметров можно применять любые добавки, кроме тех, что вызывают коррозию.
  • Если сечение арматуры меньше 5 миллиметров, нельзя применять ХК, НН и ХК.
  • Когда есть выпуск арматуры и закладные элементы, а сталь без защиты, подойдут НКМ, П, НН, НК, СН. При условии наличия у стали комбинированного покрытия запрещено использовать ХК и НН.
  • При условии эксплуатации с постоянным погружением бетонной конструкции используют все типы добавок.
  • СН, НК, НКМ, НН подходят для условий переменного влияния на конструкцию агрессивных вод.
  • Для конструкции, эксплуатируемой в агрессивной газовой среде постоянно, не применяют ХК.

Противоморозные добавки в бетон позволяют проводить работы в любых условиях без ущерба качеству и прочности монолита. При условии верного выбора присадки и соблюдения технологии удается добиться высоких результатов.

Противоморозные добавки в бетон и раствор

Компания «БалтМонолитСтрой» обладает значительным опытом по применению  добавок в бетон и раствор, производства Master Builders Solutions. Мы сотрудничаем со многими производителями товарного бетона на территории СЗФО. Квалифицированные специалисты-технологи нашей Компании готовы предложить Клиентам технические консультации, помощь в выборе добавок и подборе состава бетона. По всем вопросам, касающимся применения продукции, обращайтесь, пожалуйста, в офис нашей Компании +7 (812) 309-71-79.

Введение противоморозных добавок — технологически наиболее простой, удобный и экономически выгодный способ зимнего бетонирования. Они нашли широкое применение при строительных работах  в условиях температуры наружного воздуха и грунта ниже +5°С и минимальной суточной температуре ниже 0 вплоть до -30°С.

Роль таких добавок заключается, в основном, в активизации процесса гидратации цемента, вызывающей ускоренное образование гелей. При растворении добавки для зимнего бетонирования происходит не простое распределение ее частиц (молекул или ионов) по всему объему воды, а их химическое взаимодействие с молекулами воды. В результате реакции образуются сольваты (соединения частиц растворенной добавки) с молекулами воды, что приводит к понижению температуры замерзания воды.

Добавки для зимнего бетонирования по своему назначению можно разделить на 2 группы:

  • непосредственно противоморозные добавки
  • и комплексные добавки с пластифицирующим эффектом.

Новой редакция ГОСТ 24211-2008 также предусматривает разделение противоморозных добавок на добавки для «холодного» и «теплого» бетона и раствора. 

Подробнее о продукции

Специалистами бренда Master Builders Solutions разработаны эффективные  решения для бетонированием в зимних условиях. Например, MasterPozzolith 501 HE – противоморозная «монодобавка», обеспечивающая сохранение свойств бетонной смеси при температурах окружающего воздуха до -30 0С.

Комплексные модификаторы противоморозного действия – MasterRheobuild 181 A и MasterGlenium 150, обеспечивают бетонной смеси лучшую удобоукладываемость при сниженном содержании воды и , одновременно, предотвращают замерзание бетонной смеси при температурах окружающего воздуха до -25 0С.

Добавки производителя Master Builders Solutions позволяют снизить температуру замерзания воды в бетоне, произвести укладку бетонной смеси при отрицательной температуре вплоть до — 30 0 С, предотвратить разрушения внутренней структуры бетона, а также, за счет сбалансированного соотношения компонентов, обеспечить в установленные сроки необходимую прочность бетона. Более того, применение специальных добавок Master Builders Solutions позволяет существенно снизить материальные и энергетические затраты и гарантированно получать бетоны с уплотненной структурой и с заданными проектными свойствами.

Добавки в бетон для холодной погоды

Бетон лучше всего твердеет при температуре выше 50 ° С. ° F. Когда температура окружающей среды недостаточно высока, необходимо предпринять дополнительные меры для обеспечения полной прочности бетона. Часто используются добавки в бетон, ускоряющие гидратацию.

Холодная погода и бетон

Американский институт бетона определяет бетон для холодной погоды как «период, когда средняя дневная температура окружающей среды ниже 40 ° F (5 ° C) более 3 дней подряд.”

При понижении температуры экзотермические реакции, гидратирующие цемент и превращающие его в твердый, прочный бетон, значительно замедляются. Это может означать длительные задержки в проектах, поскольку вы ждете, пока бетон застынет. Кроме того, когда цемент замерзает, он расширяется и создает опасное давление на смесь. Это может значительно ослабить окончательно затвердевший бетон. При укладке бетона в холодную погоду важно принять необходимые меры, чтобы ускорить время отверждения и предотвратить вредное воздействие замерзания.Добавки могут быть эффективным решением.

Что такое добавки?

Добавки — это специальные ингредиенты, добавляемые в бетон помимо цемента, воды и заполнителя. Они используются для изменения и улучшения свойств бетона. Эти добавки часто используются для обеспечения качества бетона в неидеальных условиях (например, в холодную погоду)

Большинство добавок выпускаются в жидкой форме, готовой к употреблению, и добавляются в бетон на заводе или на стройплощадке. Некоторые добавки, такие как пигменты, расширительные агенты и вспомогательные средства для перекачивания, используются только в очень малых количествах.Эти добавки обычно дозируются вручную из заранее отмеренных емкостей.

Эффективность добавки зависит от нескольких различных факторов, таких как: тип и количество цемента, содержание воды, время перемешивания, осадка, температура бетона и температура окружающей среды.

Добавки в бетон для холодной погоды

Следующие добавки помогают бетону быстро затвердеть и достичь необходимой прочности в холодную погоду:

    • Ускорители — Добавки хлорида кальция являются наиболее распространенным типом ускорителей и используются для ускорения процесса отверждения за счет увеличения скорости гидратации цемента.Количество добавляемой в цементную смесь будет зависеть от условий окружающей среды. Нехлоридные ускорители используются в ситуациях, когда добавление хлорида кальция запрещено.
    • Воздухововлекающие агенты — Воздухововлекающий состав повышает устойчивость бетона к повреждениям от замерзания и оттаивания. Воздухововлекающие агенты создают в цементной смеси миллионы крошечных пузырьков. Эти пузыри помогают бороться с дополнительным давлением, создаваемым отрицательными температурами в цементном тесте; они создают дополнительный объем, чтобы приспособиться к расширяющейся природе льда.
    • Суперпластификаторы — Это высокотехнологичные восстановители воды. Суперпластификаторы могут снизить влажность бетонной смеси на 10-30%. Поскольку эта добавка позволяет цементу сохранять удобоукладываемость, это отличный вариант, когда все же предпочтительнее легко укладываемый бетон. Эффект, однако, длится всего около 45 минут, поэтому проекты должны быть запланированы соответствующим образом.

    Прочие меры предосторожности при работе с бетоном в холодную погоду

    Помимо добавления добавок для холодной погоды, вот еще несколько вещей, которые вы можете сделать, чтобы помочь сохранить прочность бетона при укладке цемента при низких температурах:

    • Разморозьте землю. Используйте обогреватели или одеяла с подогревом, чтобы оттаять поверхности, на которые будет заливаться бетон.Заливка бетона на мерзлую землю быстро охладит бетон до температуры ниже идеальной. Использование нагревателя для подготовки поверхностей предотвратит слишком быстрое охлаждение или замерзание и поможет поддерживать необходимые реакции.
    • Используйте горячую воду в цементной смеси. Как правило, вы должны стремиться к тому, чтобы температура бетонной смеси была 65 ° F или выше в зимние месяцы. Горячая вода поможет вам достичь этой температуры.
    • Используйте дополнительный цемент — Добавление дополнительного цемента в вашу смесь (обычно дополнительные 100 фунтов на кубический ярд) приведет к более быстрой гидратации вашего бетона.
    • Используйте цемент типа III — цементные смеси типа II дают высокую начальную прочность и быстрее гидратируются.
    • Удаление стекающей воды — используйте скребок или пылесос для удаления стекающей воды, которая с трудом испаряется в холодную погоду.
    • Используйте бетонные покрытия, чтобы удерживать цемент отверждения. Теплоизоляция и обогреваемое бетонное покрытие сохранит цемент при идеальных температурах по мере его отверждения. Это предотвратит любые задержки из-за длительного времени отверждения и проблем с прочностью затвердевшего бетона.

Влияние антифриза на свежий бетон, подвергшийся циклам замерзания и оттаивания

Понимание характеристик бетона в морской среде имеет большое значение для предотвращения коррозии хлорид-иона в морских зданиях. В этом исследовании были проверены прочность на одноосное сжатие (UCS), концентрация хлорид-ионов (CIC), микроструктура и структура пор добавочных бетонов для изучения механических свойств и микроскопических характеристик в условиях однократной морской коррозии, однократного замораживания-оттаивания и сопряженная морская коррозия и условия замерзания-оттаивания.Результаты показывают, что бетон, смешанный как с летучей золой, так и с минеральным порошком, имеет лучшую UCS, стойкость к проникновению хлорид-ионов и сопротивление замерзанию-оттаиванию, чем бетон с единственной летучей золой или минеральным порошком. В условиях морской коррозии и сопряженной коррозии и среды замораживания-оттаивания UCS бетона как с летучей золой, так и с минеральным порошком сначала увеличивается, а затем уменьшается с увеличением времени коррозии. Это происходит потому, что поры наполнителя заполнены крупными кристаллическими солями, образующимися в результате реакции хлорид-ионов и бетона; затем цементация цемента увеличивается при ранней коррозии; Между тем увеличение количества кристаллической соли в последующем процессе коррозии приводит к росту микротрещин и образованию макротрещин в образцах бетона.Кроме того, введен ударный коэффициент прочности композита при замораживании-оттаивании-коррозии для описания влияния комбинированной коррозии и замораживания-оттаивания на механические свойства бетона. Результаты показывают, что коррозия является доминирующим фактором после 0, 30 и 60 циклов замораживания-оттаивания, в то время как замораживание-оттаивание является доминирующим фактором после 90 циклов замораживания-оттаивания. 1. Введение В настоящее время бетон является наиболее широко используемым строительным материалом благодаря его низкой цене, простоте производства, высокой прочности на сжатие и долговечности [1–3].Помимо различных строительных проектов, бетон также применяется в судостроении, машиностроении, морских разработках и геотермальной инженерии [4, 5]. С развитием современной инженерии и усложнением инженерных конструкций обычный бетон не может полностью удовлетворить потребности современной архитектуры [6–12]. Например, на долговечность бетонных конструкций на морских пляжах всегда влияет множество факторов окружающей среды (например, влажность, замерзание-оттаивание и коррозия хлорид-ионами) [13], в то время как бетонные конструкции в глубоком подземном строительстве могут подвергаться воздействию сложных факторов на месте стрессовая и сульфатная коррозия [14], а бетонные конструкции в холодных зонах (например,г., северо-восток и северо-запад Китая) страдают от замораживания-оттаивания [15]. В целом, хлорид-ионная коррозия и среда замерзания-оттаивания являются наиболее распространенными и важными факторами в этих опасных средах. В отчете [16] указано, что Китай ежегодно теряет от 180 до 360 миллиардов юаней (от 26 до 52 миллиардов долларов США) в гражданском строительстве из-за морской коррозии, большая часть которой вызвана коррозией хлорид-ионами [17]. В последние годы большое внимание уделяется исследованиям коррозионной стойкости бетона.Были предложены различные методы повышения долговечности бетона в условиях морской коррозии, такие как изменение соотношения вода-вяжущее [18] и водоцементного отношения [19], испытание различных типов цемента [20] и добавление добавки. (например, летучая зола и минеральный порошок) [21]. Кроме того, механизм переноса хлорид-иона в бетоне [22] и жизненный цикл бетона в морской коррозионной среде также широко исследовались [23]. Повреждение от замерзания-оттаивания также является важным фактором, влияющим на долговечность бетона [24, 25].Исследования показали, что более 50% крупных бетонных конструкций в той или иной степени повреждаются в результате замерзания-оттаивания, особенно на северо-востоке Китая [26]. Например, поврежденная поверхность плотины ГЭС Юньфэн на северо-востоке Китая достигает 10 000 м² в течение 10 лет после завершения строительства из-за замерзания и оттаивания. Эксперименты с бетоном показали, что прочность бетона снижается с увеличением циклов замерзания-оттаивания [27, 28]. Таким образом, методы устойчивости бетона к замерзанию-оттаиванию были изучены учеными, и результаты показали, что добавление летучей золы и минерального порошка в бетон может противостоять замораживанию-оттаиванию [29, 30].Бетонные конструкции в портах на севере Китая обычно подвергаются одновременному воздействию морской коррозии и замораживания-оттаивания. Однако механизм разрушения бетонной добавки под воздействием морской коррозии и замораживания-оттаивания до конца не изучен. В этой статье, основанной на климате и условиях морской воды в море Ляньюньган (один из крупнейших незамерзающих портов на севере Китая), макроскопические механические свойства и микроструктура добавочного бетона систематически исследуются в трех условиях, а именно: единственное морское коррозия, однократное замораживание-оттаивание и связанная морская коррозия и замораживание-оттаивание.2. Материалы Портландцемент (42,5), используемый в этом эксперименте, является коммерчески доступным продуктом от China United Cement Co., Китай. Летучая зола и минеральный порошок поставляются компанией China United Zhuben Concrete Jiangsu CO., Китай. Крупный заполнитель состоит из камней размером 5–20 мм, а мелкий заполнитель — это средний речной песок. В этом исследовании образцы бетона с добавками с различным соотношением воды и связующего вещества, содержанием летучей золы (F) и минерального порошка (G) были приготовлены как 100 мм × 100 мм × 100 мм для испытания на одноосное сжатие и 100 мм × 100 мм × 300 мм для испытания на относительный динамический модуль упругости, как показано в таблице 1.Видно, что рецептура бетона включает следующее: (1) Бетон без каких-либо добавок (C3-0) (2) Бетон с 20% –50% летучей золы (C3-1, C3-2, C3-3 ) (3) Бетон, содержащий 50% минерального порошка (C3-5) (4) Бетон, содержащий 15% летучей золы и 35% минерального порошка (C3-7). Нет. Минеральные добавки Пропорция смеси бетона Соотношение вода-связующее Вода (кг) Категория Содержание Цемент (кг) Летучая зола (кг) Минеральный порошок (кг) Песок (кг) C3-0 — — 453 — — 1852 г. 0,32 145 C3-1 F 20% 362 91 — 1852 г. 0,32 145 C3-2 F 35% 294 159 — 1852 г. 0.32 145 C3-3 F 50% 226 226 — 1852 г. 0,32 145 C3-5 грамм 50% 226 — 226 1852 г. 0,32 145 C3-7 F + G (15 + 35)% 226 68 158 1852 г. 0,32 145

Отходы ильменитового шлама как добавка для морозостойкости устойчивого бетона

Материалы (Базель). 2020 июл; 13 (13): 2904.

Поступила 22 мая 2020 г .; Принято 24 июня 2020 г.

Лицензиат MDPI, Базель, Швейцария. Эта статья представляет собой статью в открытом доступе, распространяемую в соответствии с условиями лицензии Creative Commons Attribution (CC BY) (http: // creativecommons.org / licenses / by / 4.0 /). Эту статью цитировали в других статьях в PMC.

Abstract

Устойчивое развитие ведет к производству строительных материалов, более безопасных для окружающей среды. Один из способов добиться устойчивости материалов — это добавление промышленных отходов и побочных продуктов, особенно в бетон. Однако добавление отходов в бетон часто снижает его долговечность, и необходимо уменьшить степень агрессивности окружающей среды, в которой используется бетон.Изготовить экологичный бетон, который также устойчив в более агрессивных средах, довольно сложно. В данной статье представлены результаты испытаний, проведенных на бетоне, содержащем отходы ильменитового шлама производства диоксида титана, который подвергался морозной агрессии с применением противообледенительных солей и без них. Результаты показали, что можно изготавливать устойчивый и морозостойкий бетон. После 200 циклов замораживания – оттаивания прочность испытанных бетонов на сжатие снизилась менее чем на 4%.Бетоны обладают высокой устойчивостью к образованию накипи, и после 112 циклов замораживания-оттаивания в воде с противообледенительной солью полученная масса составила менее 0,02 кг / м. 2 . Также было проанализировано распределение воздушных пустот. Результаты соответствовали требованиям, предъявляемым к бетону по морозостойкости, и были аналогичны результатам, полученным для эталонного бетона с летучей золой. Исследование микроструктуры с помощью сканирующей электронной микроскопии (SEM) не показало никаких потенциальных рисков, которые могли бы повлиять на долговечность бетона.Частицы отходов были тщательно смешаны в связующем, и некоторые из его компонентов, по-видимому, являются активной частью цементной матрицы. Длительные испытания на усадку (360 дней) не показали каких-либо чрезмерных значений, которые отличались бы от эталонного бетона с летучей золой. Представленные результаты показали, что экологически чистый бетон, содержащий отходы ильменитового шлама производства диоксида титана, также может быть устойчивым к морозной агрессии.

Ключевые слова: ильменитовый шлам, отходы, бетон, диоксид титана, морозостойкость

1.Введение

В соответствии с седьмым пунктом Основных требований к строительным работам CPR-EU 305/2011, опубликованным в марте 2011 года, Европейский Союз объявляет «устойчивое использование природных источников» приоритетом [1,2]. В соответствии с этим постановлением, поощряя развитие, количество природных ресурсов, используемых в производстве строительных материалов, должно уменьшаться, поскольку количество используемых побочных продуктов и промышленных отходов должно увеличиваться. Второй аспект устойчивого развития — более эффективное использование природных источников за счет производства более качественных материалов с использованием того же количества компонентов, только улучшая их качество; например, повышение реакционной способности связующего путем измельчения его до более мелких частиц [3,4].Третий способ сделать строительные материалы более экологичными — это использование вторичных строительных материалов после сноса [5]. Другой аспект заключается в том, что строительные материалы и целые конструкции будут более устойчивыми, если время использования будет увеличено более чем на типичные 50 лет, что является сроком службы большинства бетонных конструкций [6].

Добавление промышленных отходов или побочных продуктов может снизить долговечность бетона. Во многих случаях это действительно так, и новый материал приходится использовать для менее агрессивных сред.Таким образом, по крайней мере, некоторые части отходов повышаются, чтобы использовать менее естественные источники [7]. Если возможно и безопасно использовать промышленные отходы в качестве добавки к бетону, предназначенному для более агрессивных сред, было бы проще использовать их в больших количествах. Одним из наиболее агрессивных явлений для бетона в умеренном климате является морозостойкость. Бетон, предназначенный для таких сред, должен содержать большее количество цемента, что делает их еще менее экологически чистыми материалами.Вот почему важно также использовать отходы в этих типах бетонов.

Мировое производство диоксида титана в 2019 году оценивается в 7,2 млн тонн [8]. TiO 2 в основном производится двумя способами — сульфатным и хлоридным. Около 45% мирового производства приходится на сульфатный метод, при котором образуются различные количества различных побочных продуктов и отходов. Каждая тонна TiO 2 , произведенная этим методом, дает около 2,3 тонны FeSO 4 · 7H 2 O, 1.5 тонн FeSO 4 ∙ H 2 O, 0,7 тонны красного гипса и 0,35 тонны отходов ильменитового шлама [9,10,11]. Сульфат железа — это побочный продукт, который в основном используется в качестве восстановителя хрома (VI) при производстве цементного клинкера и в качестве флокулянта на очистных сооружениях. Красный гипс используется при производстве гипсовых штукатурок [10,11,12]. Имеется всего несколько публикаций о потенциальных способах повышения ценности отходов ильменитового шлама [13,14,15,16], но даже когда они были успешными, они не могли использовать большие количества, учитывая, что мировое производство этих отходов оценивается на 1.1 миллион тонн ежегодно [8,17,18].

Эта статья направлена ​​на подтверждение теории о том, что отходы, такие как ильменитовый шлам, могут быть использованы в качестве добавки для бетона, устойчивого к коррозии при замораживании-оттаивании. Это потенциально повысит ценность этих промышленных отходов и сделает бетон более экологичным и, следовательно, более экологичным. Поскольку отходы ильменитового шлама содержат некоторое количество невыщелоченного TiO 2 , бетон, содержащий эти отходы, может также иметь фотокаталитический эффект, помогающий снизить уровень NOx в воздухе [19,20].Отходы, вероятно, также содержат некоторое количество наночастиц кремнезема, которые могут повлиять на реологию цементного теста [21,22]. Есть два основных способа сделать бетон устойчивым к морозам. Оба они требуют относительно большого количества цемента (более 320 кг / м 3 ) и низкого водоцементного отношения, но один из способов, предпочитаемых стандартом EN 206 [23], также требует подачи воздуха в бетонную смесь. Воздушные пустоты предотвращают повреждение структуры затвердевшего бетона увеличивающимся объемом замерзающей воды [24,25,26,27,28].Другой способ улучшить устойчивость бетона к морозным воздействиям — это сделать его структуру более уплотненной, что предотвращает проникновение воды в бетон и его повреждение в результате замерзания. Это может быть сделано с использованием еще большего количества цемента (более 380 кг / м 3 ) и низкого водоцементного отношения (0,30 или даже меньше) и без использования каких-либо веществ, попадающих в воздух. Этот способ защиты бетона от воздействия мороза является более дорогостоящим и довольно сложным, как показывают результаты испытаний, проведенных Portland Cement Association [29] и другими [30], поскольку этот тип бетона имеет высокую автогенную усадку и может иметь раннюю усадку. склонность к растрескиванию при возрастной усадке [31].Этот вид морозостойкого бетона используется при производстве сборных бетонных элементов в виде блоков тротуарной плитки и плит, которые изготавливаются по технологии вибропрессования [32,33,34].

В данной статье представлен новый способ повышения ценности отходов ильменитового шлама в качестве добавки к морозостойкому бетону. Предыдущие статьи [21,35] показали, что отходы ильменитового раствора могут быть полезным материалом в качестве добавки для типичных недорогих бетонов с низким классом сжатия и изготовленных из обычных материалов.В этой статье представлены результаты испытаний, проведенных на более высоких классах прочности на сжатие, которые устойчивы в более экстремальных условиях, включая морозостойкость с помощью противообледенительных солей.

В статье представлены результаты следующих испытаний:

  • Свойства свежих бетонных смесей

  • Прочность на сжатие и изгиб

  • усадка

  • морозостойкость

  • масштабирование

  • анализ воздушных пустот

  • исследование структуры с помощью сканирующей электронной микроскопии (SEM)

В качестве эталонного бетона была приготовлена ​​та же бетонная смесь но вместо RMUD было добавлено такое же количество летучей золы (FA) класса A согласно стандарту EN 450-1 [36].

Бетонная конструкция в зависимости от ее типа может быть возведена с армированием или без него, что влияет на свойства используемого бетона. Существуют также различные типы армирования, и перед использованием новых отходов в железобетоне необходимо провести соответствующие испытания [37,38]. Данная статья посвящена лабораторным испытаниям бетонов без армирования.

2. Материалы и методы

Ильменитовый шлам — отходы производства диоксида титана серным способом.Сырье, состоящее в основном из ильменита и ильменитового шлака, выщелачивается с использованием концентрированной серной кислоты. Часть сырья солюбилизируется и после фильтрации перерабатывается. Остаются нерастворимые части, которые называются отходами ильменитового шлама. Эти отходы, классифицируемые как опасные в соответствии с европейской классификацией [38], полезны в качестве добавки к бетону в основном из-за высокого содержания остаточной серной кислоты (около 14%). В результате эти отходы дополнительно промываются водой и фильтруются на заводе.После таких модификаций отходы содержат менее 1% остаточной серной кислоты, которая дополнительно нейтрализуется с помощью оксида кальция в лаборатории. Нейтрализацию проводят до тех пор, пока pH не станет слабокислым (около 4–5), чтобы избежать инициации пуколановой реакции, как показано в [39]. Затем нейтрализующий материал сушат в печи при 105 ° C до постоянной массы. Затем его просеивают через сито 0,50 мм. Приготовленный таким образом материал называется РМУД (промытый шлам). Результаты предыдущих испытаний показали, что тяжелые металлы, присутствующие в отходах, иммобилизуются в цементном вяжущем на удовлетворительном уровне [40].Кроме того, концентрация радиоактивных нуклидов, как предполагают некоторые авторы [9,13], находится на безопасном низком уровне.

2.1. RMUD, летучая зола и цемент

и представляют содержание основных компонентов, полученных в результате испытаний XRF (рентгеновской флуоресценции), а также характеристики RMUD, летучей золы (FA) и портландцемента. В качестве цемента для испытаний использовался портландцемент CEM I 42.5R в соответствии со стандартом EN 197-1 [41].

Таблица 1

Концентрация (%) основных компонентов в RMUD, FA и цементе [42].

9023 9023 9023 8,5351 9023 8,5 3,82
Элемент SiO 2 TiO 2 Fe 2 O 3 MgO Al 2 O Na 3 CaO3 CaO O MnO K 2 O P 2 O 5 SO 3 Cl
RMUD 35,07 33,0565 7,26 5,53 3,09 1,10 0,53 0,26 0,01 0,98
FA
51,5351
1,37 0,10 2,73 0,31 0,48 0,02
Цемент 20,06 3,38 0.89 4,13 64,41 0,24 0,56 2,97 0,07

Таблица 2

9000 FA2 Физико-механические характеристики цемента, [39]

Характеристика Значение
Цемент
Потери при прокаливании (%) 4,74
Нерастворимый остаток (%) 0.89
Плотность (г / см 3 ) 3,05
Соответствующая поверхность (см 2 / г) 4060
Прочность на сжатие (МПа) в соотв. согласно EN 196-1 [43]:
−2 дня 29,2
−28 дней 54,2
Прочность на изгиб (МПа) в соотв. согласно EN 196-1 [43]:
−2 дня 5,4
−28 дней 7.9
RMUD
Потери при воспламенении (%) 2,70
Соответствующая поверхность (см 2 / г) 8,390
Плотность (г / см 3 ) 3,1351 FA
Потери при возгорании (%) 1,43
Соответствующая поверхность (см 2 / г) 4020
Пуццолановая активность (%) в соотв.согласно EN 450-1 [36]:
−28 дней 77,4
−90 дней 93,3
Плотность (г / см 3 ) 2,20

2.2. Бетон

Для приготовления морозостойкого бетона параметры границ были взяты из стандарта EN 206 [23]. Согласно этому документу, бетон, устойчивый к циклам замораживания-оттаивания в воде с противообледенительными солями, должен удовлетворять требованиям агрессивных сред XF4 и XD3, где XF — это воздействие замораживания / оттаивания с или без противообледенительных агентов, и XD коррозия, вызванная другими хлоридами, кроме морской воды.Граничные параметры для выполнения данных классов экспозиций:

  • минимальное содержание цемента в бетонной смеси: 340 кг / м 3

  • минимальный класс прочности: C 35/45

  • максимальное водоцементное соотношение (в / ц): 0,45

  • минимальное содержание поступающего воздуха: 4,0%

  • морозостойкие заполнители

В качестве заполнителя амфиболитовая крупа выполняющие требования к морозостойким заполнителям.показывает кривую просеивания заполнителя, используемого в бетонах. Границы кривых (зеленые) рекомендуются в соответствии с польским стандартом PN-B-06265 [44].

Кривые просеивания смесей заполнителей для бетонов.

Согласно предыдущим тестам и процессам оптимизации [45], содержание RMUD в бетоне должно составлять 10,8% от массы вяжущего. В качестве эталонного бетона использовалась та же смесь, но вместо RMUD была добавлена ​​летучая зола (FA). Авторы выбрали эталонный бетон с летучей золой вместо бетона с только портландцементом в качестве связующего, поскольку предыдущие испытания показали [21,40], что RMUD имеет такой же уровень пуццолановой активности, что и летучая зола.

Состав бетонных смесей представлен в.

Таблица 3

Состав исследуемых бетонов.

Составляющая Количество (кг / м 3 )
Портландцемент CEM I 42.5R 350
RMUD или FA 42 (10,8% 1 900 bm)
Заполнитель 0/2 (промытый горный песок) 478
Заполнитель 2/8 (дробленый амфиболит) 511
Заполнитель 8/16 9023 амфиб Вода 176 (ш / ш = 0.45)
Воздухововлекающая добавка 1,37 (0,35% bm) 1
Пластифицирующая добавка 0,67 (0,17% bm) 1

900 кг / м 900 3 цемента было недостаточно или соотношение вода / вяжущее было слишком высоким для выполнения требований класса прочности стандарта EN 206 [23] для обоих бетонов. Повышение прочности бетона на сжатие может быть достигнуто за счет увеличения количества цемента или уменьшения водоцементного отношения в бетоне и добавления большего количества пластифицирующей добавки.В этих испытаниях прочность на сжатие была увеличена за счет добавления дополнительных 10 кг / м 3 цемента (до 350 кг / м 3 ).

2.3. Свойства свежей смеси

После смешивания бетонов свойства свежих смесей были проверены следующим образом:

  • консистенция методом потери осадки в соответствии с EN 12350-2 [46]

  • плотность свежей смеси согласно EN 12350-6 [47]

  • содержание воздуха методом давления согласно EN 12350-7 [48]

2.4. Прочность на сжатие и изгиб

Смешанные бетоны помещали в кубические и призматические формы размером 100 мм с размерами 100 × 100 × 500 мм в соответствии с EN 12350-1 [49]. На следующий день после извлечения из формы образцы выдерживали в воде при температуре 20 ± 2 ° C в соответствии с EN 12390-2 [50] до дня испытания. Испытания на сжатие и изгиб были выполнены после 28 и 90 дней отверждения в соответствии с результатами предыдущих испытаний, которые показали, что RMUD является пуццолановым реактивным материалом, прочность композита которого увеличивается даже после 28 дней отверждения [35,40].

Прочность на сжатие была испытана в соответствии с EN 12390-3 [51], а испытание на прочность при изгибе было выполнено в соответствии с EN 12390-5 [52]. При испытаниях нагрузка прикладывалась к двум точкам образцов.

2,5. Усадка

Чтобы проверить стабильность бетона с течением времени в случае, если в вяжущем возникли какие-либо реакции расширения, было проведено испытание на усадку с использованием метода Амслера в соответствии с польским стандартом PN-B-06714-23 [53], который аналогичен новый европейский стандарт EN 12390-16 [54].Три призматических образца размером 100 × 100 × 500 мм, изготовленные из испытуемого бетона, были измерены после извлечения из формы до 360-го дня. Во время испытания образцы были отверждены при постоянной температуре (20 ± 2 ° C) и влажности (65 ± 5%), чтобы избежать влияния окружающей среды на усадку.

2.6. Морозостойкость

Испытания на замораживание – оттаивание проводились в соответствии с польским стандартом PN-B-06265 [44]. Было приготовлено двенадцать образцов кубической формы 100 мм. После отверждения в течение 90 дней в воде при температуре 20 ± 2 ° C шесть из них были взяты на циклы замораживания-оттаивания, а остальные оставлены в воде в качестве контрольных образцов.Всего было выполнено 200 циклов замораживания – оттаивания. Каждый цикл включал стадию замораживания до температуры -18 ± 2 ° C в течение не менее четырех часов и стадию оттаивания при температуре 18 ± 2 ° C в течение двух-четырех часов. После завершения циклов образцы были исследованы на предмет повреждений на их поверхности. Затем испытание прочности на сжатие было выполнено для всех 12 образцов бетона (включая контрольные образцы) для каждого типа бетона. Согласно PN-B-06265 [44], морозостойкий бетон в строительстве с расчетным сроком службы 100 лет при переменных уровнях воды или контакте с антиобледенительными солями должен пройти испытания после 200 циклов замораживания-оттаивания.

2.7. Накипь

Испытания на устойчивость к замораживанию-оттаиванию с помощью противообледенительных солей (образование накипи) проводили в соответствии с PKN-CEN / TS 12390-9 [55]. Четыре образца бетона кубической формы 150 мм были выдержаны в воде при 20 ± 2 ° C в течение 21 дня. По истечении этого времени от середины каждого отрезка перпендикулярно поверхности затирания отрезали по 50 мм. Нарезанные ломтики снова помещали в воду до 90-го дня отверждения. На 90-й день образцы готовили, как показано на. На открытую бетонную поверхность заливали воду с 3% NaCl и помещали датчик температуры (уровень воды контролировался на протяжении всего испытания).Образцы помещали в морозильную машину на 112 циклов. Каждый цикл включал стадию замораживания до температуры -20 ° C в течение двух часов и стадию оттаивания при температуре до 20 ° C. Один полный цикл длился 24 часа. После 7, 14, 28, 42, 56 и 112 циклов образцы были извлечены, и покрытый окалиной материал был собран с их поверхности. Затем образцы снова помещали в морозильную машину с новой порцией раствора NaCl. Собранный материал с отложениями промывали водой, фильтровали, сушили в печи и взвешивали.

Образец бетона, подготовленный для циклов замораживания – оттаивания.

2,8. Характеристики воздушных пустот

Соответствующая структура пор в бетоне является одним из основных аспектов морозостойкости бетонов [56,57]. Испытания на распределение пор по воздуху проводились в соответствии с EN 480-11 [58]. Эти испытания требуются стандартом EN 934-2 [59] для воздухововлекающих добавок. Два образца бетона кубической формы 150 мм после извлечения из формы выдерживались в воде в течение 14 дней. Затем из середины каждой нарезали по 10 мм ломтик перпендикулярно поверхности затирания с размером поверхности 100 × 150 мм.Поверхность каждого среза полировалась и контрастировалась после сушки. показывает, как выглядел образец, подготовленный для тестирования.

Образец бетона, подготовленный для испытаний на распределение пор по воздуху.

Каждый образец сканировали пять раз с помощью автоматической системы анализа воздушных пустот Rapid Air 457.

2.9. Сканирующая микроскопия

Наблюдения за структурой были выполнены с использованием сканирующего электронного микроскопа (SEM) производства Zeiss, модель Sigma 500 VP (Carl Zeiss Microscopy GmbH, Кельн, Германия).Были получены изображения вторичных электронов (SE) и электронов, рассеянных обратно (BSE). Фазовый состав и отображение были проанализированы с использованием модели детектора EDS Oxford Ultim Max 40 (Oxford Instruments, High Wycombe, UK).

Образцы бетона для исследования под микроскопом были приготовлены из бетона 90-дневной давности. Сначала из кубических образцов размером 100 мм вырезали меньшие куски (20 мм × 20 мм × 5 мм). Затем их сушили в печи при температуре 40 ° C и помещали в эпоксидную смолу под вакуумом для лучшего заполнения воздушных пустот.Завершающим этапом подготовки образцов была полировка их поверхности. Образцы подвергали испарению золота перед исследованием их под микроскопом. Наблюдения за конструкцией были изучены только для бетона RMUD.

3. Результаты и обсуждение

3.1. Свойства Fresh Mix

представляет свойства бетонных свежих смесей. В оба бетона было добавлено одинаковое количество пластифицирующей добавки для достижения необходимой консистенции для формования образцов (класс консистенции S2 – S3 в соотв.согласно EN 206). Содержание воздуха в обоих бетонах превышало 4%, что соответствует пограничным требованиям.

Таблица 4

Свойства бетонной смеси.

Свойство РМУД Бетон FA Бетон
Потери при оседании (мм) 110 ± 10 (S3) 1 80 ± 10 (S2) 9023 1 (класс консистенции по EN 206)
Плотность бетонной смеси (кг / м 3 ) 2,340 ± 20 2390 ± 20
Содержание воздуха (%) 5.4 ± 0,5 4,8 ± 0,5

3,2. Прочность на сжатие и изгиб

представляет результаты испытаний на сжатие и изгиб бетона, содержащего RMUD, и бетона, содержащего FA. Оба образца бетона достигли проектного класса прочности (C35 / 45) после 90 дней отверждения. Класс прочности был рассчитан в соответствии с EN 206, согласно первоначальным производственным испытаниям [23].

Таблица 5

Прочность бетонов на сжатие.

FA 28 дней
Бетон Средняя прочность на сжатие (МПа) Стандартное отклонение (МПа) (коэффициент вариации) Класс прочности на сжатие В соотв. согласно EN 206
РМУД 28 дней 36,2 ± 2,0 2,1 (0,06) C25 / 30
РМУД 90 дней 51,2 ± 2,0 1,7 (0,03) C35 / 45
C35 / 45
35.7 ± 2,0 2,3 (0,06) C25 / 30
FA 90 дней 49,5 ± 2,0 0,7 (0,01) C35 / 45
Средняя прочность на изгиб (МПа)
РМУД 28 дней 6,6 ± 0,3 0,2 (0,03)
РМУД 90 дней 7,0 ± 0,3 0,16 9023 — 9023 9023 9023 9023
FA 28 дней 6.3 ± 0,3 0,3 (0,04)
FA 90 дней 6,9 ± 0,3 0,4 (0,06)

Результаты показывают, что значения обоих значений прочности на сжатие увеличиваются между на 28-й и 90-й день выдержки примерно на 40% для обоих испытанных образцов бетона. Прочность на изгиб увеличилась примерно до 6% и 9% для бетона RMUD и FA соответственно. Относительно высокое увеличение прочности на сжатие, связанное с прочностью на изгиб, может быть вызвано эффектом уплотнения микроструктуры бетонов пуццолановыми продуктами реакции, что увеличивает прочность на сжатие, но меньше влияет на когезионное связывание.Если бы цемент (CEM I) был единственным активным компонентом в бетоне, прочность на сжатие оставалась бы почти постоянной после 28-го дня [60,61]. Это наблюдение доказывает, что RMUD, как и летучая зола, является активным материалом и играет роль в повышении прочности бетона. Эта теория также была доказана в предыдущих тестах [35,40].

3.3. Усадка

представляют результаты испытаний на усадку. Через 120 дней оба бетона практически перестали давать усадку, включая погрешности проведенного испытания (± 0.03 мм / м). Никакого расширения образцов не наблюдалось. Достигнутое значение около 0,5 мм / м и почти одинаковое для обоих типов бетонов характерно для бетонов, содержащих такое количество цемента [35,62].

Результаты испытаний на усадку.

3.4. Морозостойкость

После завершения циклов замораживания образцы бетона были взвешены, и их поверхности были исследованы на наличие трещин или других повреждений. Шесть образцов из каждого бетона, подготовленного для циклов замораживания, были взвешены до и после завершения циклов замораживания.Все 12 образцов для каждого типа бетона (шесть из которых прошли циклы замораживания и шесть эталонов) были испытаны на прочность при сжатии. Результаты испытаний на замораживание – оттаивание представлены в.

Таблица 6

Результаты испытаний на замораживание – оттаивание (200 циклов).

— бетон —
Образцы Средняя прочность на сжатие (МПа) Стандартное отклонение (коэффициент вариации) Средняя прочность на сжатие (МПа) Стандартное отклонение (коэффициент вариации)
FA бетон
Контрольные образцы 56.8 0,96 (0,02) 59,6 1,59 (0,03)
Образцы после циклов замораживания – оттаивания 54,7 1,19 (0,02) 56,5 1,91 (0,03)
Потеря прочности на сжатие после 200 циклов замораживания – оттаивания (%)
3,7 5,2
Потеря массы после 200 циклов замораживания – оттаивания (%)
0.1 0,03 (0,37) 0,1 0,04 (0,38)

Согласно польскому стандарту PN-B-06265 требования к морозостойкости бетона следующие [44]:

  • отсутствие видимых повреждений на поверхности любого исследуемого образца

  • изменение массы любого образца после циклов замораживания не может превышать 5,0% от начальной массы

  • средняя потеря сжатия прочность образцов после замораживания не может быть выше 20% по сравнению со средним значением эталонных образцов

Результаты испытаний на морозостойкость, представленные в, показали, что оба испытанных бетона соответствуют указанным выше требованиям и устойчивы к замерзанию. –Теплые среды.После 200 циклов замораживания-оттаивания на поверхности образца не было ни трещин, ни каких-либо других видимых повреждений. Потеря прочности на сжатие испытанного бетона была очень низкой — 3,7% и 5,2% для бетона RMUD и FA соответственно. Изменение массы обоих бетонов составило 0,1%, что является очень хорошим результатом. Это показывает, что материал должен быть долговечным в условиях мороза в течение его расчетного срока службы не менее 100 лет, как и эталонный бетон.

3.5. Накипь

Результаты морозостойкости с антиобледенительными солями (накипь) представлены в.

Масштабирование испытанного бетона.

После 112 циклов замораживания-оттаивания масса окалины из обоих типов испытанных бетонов составила менее 0,02 кг / м. 2 , что является очень низким значением по сравнению с требованиями, приведенными в EN 1338 [32] , согласно которому в верхнем слое бетонных блоков мощения не должно быть более 1,0 кг / м. 2 окалины после 56 циклов замораживания – оттаивания. Зарегистрированные значения доказывают, что испытанный бетон, содержащий RMUD, также долговечен в условиях замораживания-оттаивания с антиобледенительными агентами, такими как NaCl, и не уступает эталонному бетону, содержащему летучую золу.

3.6. Характеристики воздушных пустот

, представляет собой пример изображений, собранных и проанализированных программным обеспечением автоматической системы анализа воздушных пустот. Результаты представлены в.

Сканирующая линия автоматической системы анализа воздушных пустот.

Таблица 7

Результаты испытания на распределение пор по воздуху.

Характеристики Среднее значение Стандартное отклонение (коэффициент вариации) Среднее значение Стандартное отклонение (коэффициент вариации)
РМУД Бетон FA Бетон
Коэффициент расстояния l (мкм) 152.9 9,1 (0,1) 151,7 15,0 (0,1)
Содержание воздуха (%) 2,77 0,33 (0,12) 3,51 0,65 (0,18)
Микросодержание воздуха A 300 (%) 1,19 0,14 (0,11) 1,64 0,42 (0,26)

Значения содержания воздуха, полученные в этом испытании, ниже, чем значения, полученные при испытаниях свежей смеси.Это вызвано тем, что при анализе воздушных пустот не учитываются очень большие поры (от нескольких миллиметров и выше), что не увеличивает морозостойкость бетона. Наиболее важными воздушными пустотами, влияющими на морозостойкость бетона, являются пустоты диаметром от 300 мкм. Общее содержание воздуха в этих порах (A 300 ) более 1% является подходящим значением для морозостойких бетонов. Основным результатом испытания характеристик воздушных пустот является значение коэффициента зазора, который связан с максимальным расстоянием любой точки в цементном тесте от периферии воздушной полости.Это показывает распределение воздушных пустот в цементной матрице. Согласно требованиям к воздухововлекающим добавкам, приведенным в EN 934-2 [59], коэффициент зазора не должен превышать 200 мкм, а в соответствии с ASTM C 457 [63] — 230 мкм. Значения, полученные в результате испытаний, представлены в. Оба протестированных типа бетонов удовлетворяют обоим этим требованиям. Согласно вышеизложенному, оба испытанных бетона должны быть морозостойкими.

3,7. Сканирующая микроскопия

В образце бетона РМУД были обнаружены выщелоченные зерна ильменита и рутила.Кроме того, наблюдались частицы почти непрореагировавших плагиоклазов и пироксенов, поверхность которых была выщелочена щелочами из цемента. Некоторые из кремнеземистых частиц сильно прореагировали. Также наблюдалась кремнистая стекловидная фаза со следовыми количествами магния, алюминия, натрия, кальция и титана. В качестве реликтов клинкера в основном наблюдались фазы CA и C 4 AF. Ионы магния, которые могли образовывать расширяющиеся фазы, образующие зерна ортопироксена, не влияют на долговечность цементной матрицы.Никаких нежелательных реакций, которые могли бы повлиять на долговечность бетона, замечено не было.

представляет изображение выщелоченного зерна ильменита и зерна клинкера, полученное с помощью SEM / BSE (идентифицированного с помощью EDS-анализа). Область между клинкером и зерном ильменита исследовали на предмет миграции ионов между зерном ильменита и фазой CSH, окружающей зерно клинкера.

представляет площадь фазы CSH между клинкером и зерном ильменита. Картирование EDS показывает диффузию ионов титана и железа из зерна ильменита в фазу CSH и ионов кальция в обратном направлении — из фазы CSH в зерно ильменита.Это показывает, что выщелоченные зерна ильменита из RMUD являются реактивными в цементной матрице и являются активной частью вяжущего в бетоне.

Миграция ионов между фазой C-S-H и ильменитом.

4. Выводы

В результате анализа результатов проведенных испытаний и сравнения их с результатами эталонного бетона были сделаны следующие выводы:

  • Отходы РМУД — активная составляющая, повышающая прочность бетона на сжатие. между 28-м и 90-м днем ​​отверждения на 40%, как и летучая зола в эталонном бетоне.

  • В течение 360 дней измерения усадки бетона не было отмечено никаких измерений, которые могли бы указывать на то, что имеют место какие-либо реакции сильного расширения или увеличения усадки. Зарегистрированные значения были практически такими же, как и для эталонного бетона FA, который является многообещающим с точки зрения долговечности бетона.

  • Исследование микроструктуры бетона не выявило каких-либо участков, которые могли бы указывать на реакции, которые могли бы повлиять на долговечность бетона.Большинство частиц RMUD в виде частично выщелоченных зерен ильменита и диоксида кремния были хорошо связаны в цементной матрице. Ионы магния, присутствующие в RMUD, входят в состав ортопироксенов и не должны влиять на долговечность цементных композитов.

  • Испытанный бетон РМУД обладал высокой устойчивостью к замерзанию-оттаиванию в воде, а также в воде с антиобледенительными солями. Параметры распределения воздушных пустот также были удовлетворительными, что позволяет прогнозировать, что бетон, содержащий RMUD, может быть долговечным в условиях мороза в течение прогнозируемого периода в 100 лет.Результаты испытаний на морозостойкость оказались на уровне эталонного бетона FA. Это подтверждает гипотезу данной статьи, а именно, что устойчивый бетон, содержащий отходы ильменитового раствора, также может быть морозоустойчивым.

Вклад авторов

Концептуализация, F.C. и К.К .; Расследование, F.C. и К.К .; Методология, F.C. и К.К .; Управление проектом, F.C .; Resources, F.C .; Письмо — подготовка оригинального черновика, F.C .; Визуализация, F.C .; Написание — просмотр и редактирование, F.C .; Надзор, F.C. Все авторы прочитали и согласились с опубликованной версией рукописи.

Финансирование

Это исследование не получало внешнего финансирования.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Ссылки

1. Регламент Европейской комиссии (ЕС) № 305/2011 Европейского парламента и Совета. Выключенный. J. Eur. Союз. 2011; 88: 5–43. [Google Scholar] 2. Михаловский Б., Марцинек М., Томашевска Ю., Черник С., Пясецки М., Герило Р., Михалак Ю. Влияние типа штукатурки на экологические характеристики композитной системы внешней теплоизоляции на основе пенополистирола. Здания. 2020; 10:47. DOI: 10.3390 / Buildings10030047. [CrossRef] [Google Scholar] 3. Янкович А., Валерий В., Дэвис Э. Оптимизация помола цемента. Шахтер. Англ. 2004; 17: 1075–1081. DOI: 10.1016 / j.mineng.2004.06.031. [CrossRef] [Google Scholar] 4. Дворкин Л., Житковский В., Сонеби М., Марчук В., Степасюк Ю. Улучшение бетона и раствора с использованием модифицированных золошлаковых цементов.CRC Press Taylor & Francis Group; Бока-Ратон, Флорида, США: 2020 г. [Google Scholar] 5. Струбл Л., Годфри Дж. Насколько устойчив бетон? Международный семинар по устойчивому развитию и бетонным технологиям; Пекин, Китай: 20–21 мая 2014 г. [Google Scholar] 6. Чарнецки Л., ван Гемерт Д. Инновации в области инженерии строительных материалов против устойчивого развития. Бык. Pol. Акад. Sci. Tech. Sci. 2017; 65: 765–771. DOI: 10.1515 / bpasts-2017-0083. [CrossRef] [Google Scholar] 7. Чарнецки Л. Станет ли переработанный пластик движущей силой в технологии производства бетона? Дж.Zhejiang Univ. 2019; 20: 384–388. DOI: 10.1631 / jzus.A19BR003. [CrossRef] [Google Scholar] 9. Боливар Ю.П., Гаскес М.Дж., Перес-Морено С.М., Тенорио Р.Г., Вака Ф. Повышение ценности отходов НОРМ производства диоксида титана с помощью коммерческих продуктов; Материалы 4-го семинара EAN NORM по транспортировке NORM, измерений и стратегий NORM, строительных материалов; Хасселт, Бельгия. 29 ноября — 1 декабря 2010 г. [Google Scholar] 10. Гаскес М.Дж., Боливар Ю.П., Вака Ф., Лосано Р.Л., Барнето А.Г. Превращение двух промышленных отходов титановой промышленности в огнестойкие строительные материалы; Материалы 3-й Международной конференции CEMEPE и SECOTOX; Остров Скиатос, Греция.19–21 июня 2011 г. [Google Scholar] 11. Гаскес М.Дж., Мантеро Дж., Боливар Дж. П., Гарсия-Тенорио Р., Галан Ф. Характеристика и оценка отходов НОРМ; применение в промышленности по производству TiO2; Материалы 1-й испанской национальной конференции по достижениям в переработке материалов и экоэнергетике; Мадрид, Испания. 12–13 ноября 2009 г. [Google Scholar] 12. Вондруска М., Беднарик В., Сильд М. Стабилизация / отверждение отработанного сульфата железа при производстве диоксида титана продуктами сгорания в псевдоожиженном слое.Waste Manag. 2001; 21: 11–16. DOI: 10.1016 / S0956-053X (00) 00075-1. [PubMed] [CrossRef] [Google Scholar] 13. Гарсиа-Диас И., Гаскес М.Дж., Боливар Ю.П., Лопес Ф.А. Характеристика и оценка стандартных отходов строительных материалов. Manag. Опасность. Отходы. 2016; 13: 13–37. [Google Scholar] 14. Контрерас М., Гаскес М.Дж., Гарсиа-Диас И., Альгуасил Ф.Дж., Лопес Ф.А., Боливар Ю.П. Повышение ценности отработанного ильменитового раствора при производстве серно-полимерного цемента. J. Environ. Manag. 2013; 128: 625–630. DOI: 10.1016 / j.jenvman.2013.06.015. [PubMed] [CrossRef] [Google Scholar] 15. Контрерас М., Мартин М., Газкес М., Ромеро М., Боливар Дж. Производство керамических тел с использованием грязевых отходов производства пигментов TiO2. Key Eng. Матер. 2015; 663: 75–85. DOI: 10.4028 / www.scientific.net / KEM.663.75. [CrossRef] [Google Scholar] 16. Льянес М.К., Гонсалес М.Дж.Г., Морено С.П., Рая Дж. П. Б. Восстановление ильменитового раствора в качестве добавки к коммерческим портландцементам. Environ. Sci. Загрязнение. Res. 2018; 25: 24695–24703. DOI: 10.1007 / s11356-018-2498-9.[PubMed] [CrossRef] [Google Scholar] 17. Саху К.К., Алекс Т.К., Мишра Д., Агравал А. Обзор производства диоксида титана пигментного качества из богатого диоксидом титана шлака. Waste Manag. Res. 2006; 24: 74–79. DOI: 10.1177 / 0734242X06061016. [PubMed] [CrossRef] [Google Scholar] 18. Миддлмас С., Фанг З.З., Фан П. Новый метод производства пигмента на основе диоксида титана. Гидрометаллургия. 2013; 131: 107–113. DOI: 10.1016 / j.hydromet.2012.11.002. [CrossRef] [Google Scholar] 19. Сюй М., Бао Ю., Ву К., Ся Т., Клак Х.Л., Ши Х., Ли В. Влияние методов включения TiO 2 на снижение выбросов NOx в инженерных цементных композитах. Констр. Строить. Матер. 2019; 221: 375–383. DOI: 10.1016 / j.conbuildmat.2019.06.053. [CrossRef] [Google Scholar] 20. Сюй М., Клак Х., Ся Т., Бао Ю., Ву К., Ши Х., Ли В. Влияние TiO 2 и летучей золы на фотокаталитическое снижение выбросов NOx в технических цементных композитах. Констр. Строить. Матер. 2020; 236: 117559. DOI: 10.1016 / j.conbuildmat.2019.117559. [CrossRef] [Google Scholar] 21.Бобрович Ю., Чилински Ф. Сравнение пуццолановой активности отходов ильменитовых ГРМ с другими пуццоланами, используемыми в качестве добавки для производства бетона. J. Therm. Анальный. Калорим. 2020 DOI: 10.1007 / s10973-020-09740-6. [CrossRef] [Google Scholar] 22. Хаят К.Х., Мэн В., Валлурупалли К., Тенг Л. Реологические свойства сверхвысокопроизводительного бетона — обзор. Джем. Concr. Res. 2019; 124: 105828. DOI: 10.1016 / j.cemconres.2019.105828. [CrossRef] [Google Scholar] 23. CEN. EN 206 + A1: 2016-12 Бетон — Технические характеристики, характеристики, производство и соответствие.Европейский комитет по стандартизации; Брюссель, Бельгия: 2016 г. [Google Scholar] 24. Уилберн Ф. Справочник по термическому анализу строительных материалов. Термохим. Acta. 2003; 406: 249. DOI: 10.1016 / S0040-6031 (03) 00230-2. [CrossRef] [Google Scholar] 25. Чжоу Ю. Исследование морозостойкости бетонных материалов дорожного строительства; Материалы Международной конференции по образованию, менеджменту, компьютеру и обществу 2016 г .; Шэньян, Китай. 1–3 января 2016 г. [Google Scholar] 26. Голубь М., Маршан Дж., Пло Р. Морозостойкий бетон. Констр. Строить. Матер. 1996. 10: 339–348. DOI: 10.1016 / 0950-0618 (95) 00067-4. [CrossRef] [Google Scholar] 27. Чарнецкий Л. Исследование морозостойкости бетонных материалов дорожного строительства. Бык. Pol. Акад. Sci. Tech. Sci. 2016; 65: 1328–1331. [Google Scholar] 28. Чжоу М., Лю З., Чен Х. Морозостойкость и прочность бетона, приготовленного из измельченного песка с различными характеристиками. Adv. Матер. Sci. Англ. 2016; 2016: 2580542. DOI: 10.1155 / 2016/2580542.[CrossRef] [Google Scholar] 29. Пинто Р.С.А., Ховер К.С. Бюллетень исследований и разработок. PCA; Скоки, Иллинойс, США: 2001. Морозостойкость высокопрочного бетона. [Google Scholar] 30. Глиницкий М.А., Яскульски Р., Домбровски М. Принципы проектирования и испытания внутренней морозостойкости бетона для дорожных конструкций: критический обзор. Дороги Мосты. 2016; 15: 21–43. [Google Scholar] 31. Чарнецкий Л. Морозостойкость бетона в мостовых сооружениях. Строить. Technol. Archit. 2015; 69: 66–69. (На польском языке) [Google Scholar] 32.CEN. EN 1338: 2003 / AC: 2006 Бетонные блоки для мощения — Требования и метод испытаний. Европейский комитет по стандартизации; Брюссель, Бельгия: 2006. [Google Scholar] 33. CEN. EN 1339: 2003 Бетонные флаги для мощения — Требования и методы испытаний. Европейский комитет по стандартизации; Брюссель, Бельгия: 2003. [Google Scholar] 34. CEN. EN 1340: 2003 / AC: 2006 Бетонные бордюры — Требования и методы испытаний. Европейский комитет по стандартизации; Брюссель, Бельгия: 2006. [Google Scholar] 36. CEN. EN 450-1: 2012 Зола-унос для бетона — Часть.1: Определение, технические характеристики и критерии соответствия. Европейский комитет по стандартизации; Брюссель, Бельгия: 2012 г. [Google Scholar] 37. Форабоски П. Кладка не ограничивается только одним структурным материалом: взаимосвязанная кладка против связной. J. Build. Англ. 2019; 26: 100831. DOI: 10.1016 / j.jobe.2019.100831. [CrossRef] [Google Scholar] 38. Форабоски П. Прогнозирующая многомасштабная модель замедленного отсоединения бетонных элементов с адгезионным внешним армированием. Compos. Мех.Comput. Прил. 2012; 3: 307–329. DOI: 10.1615 / CompMechComputApplIntJ.v3.i4.20. [CrossRef] [Google Scholar] 39. Вальстрём М., Лайне-Юлийоки Дж., Вик О., Оберендер А., Хьельмар О. Классификация опасных отходов. Норден; Копенгаген, Дания: 2016 г. [Google Scholar] 40. Бобрович Ю., Хилински Ф. Влияние отходов ильменитового шлама на процесс гидратации портландцемента. J. Therm. Анальный. Калорим. 2016; 126: 493–498. DOI: 10.1007 / s10973-016-5598-0. [CrossRef] [Google Scholar] 41. Хилински Ф., Жуковски П.Обращение с опасными отходами производства диоксида титана как заменителя цемента в цементных композитах. Матер. Бутон. 2016; 530: 18–20. (На польском языке) [Google Scholar] 42. CEN. EN 197-1: 2012 Цемент — Часть. 1: Состав, спецификации и критерии соответствия для обычных цементов. Европейский комитет по стандартизации; Брюссель, Бельгия: 2012 г. [Google Scholar] 43. CEN. EN 196-1: 2016-07 Методы испытаний цемента — Часть. 1: Определение силы. Европейский комитет по стандартизации; Брюссель, Бельгия: 2016.[Google Scholar] 44. PN-B-06265: 2018-10 / Ap1: 2019-05 Бетон — Технические характеристики, характеристики, производство и соответствие — Национальное приложение к PN-EN 206 + A1: 2016-12. Польский комитет по стандартизации; Варшава, Польша: 2019. (на польском языке) [Google Scholar] 45. Chyliński F., ukowski P. Zastosowanie modelu materiałowego do optymalizacji składu zaprawy Cementowej z dodatkiem odpadu z produkcji bieli tytanowej. Przegląd Bud. 2017; 10: 1–13. [Google Scholar] 46. CEN. EN 12350-2: 2011 — Испытание свежего бетона — Часть. 2: Тест на спад.Европейский комитет по стандартизации; Брюссель, Бельгия: 2011 г. [Google Scholar] 47. CEN. EN 12350-6: 2019-08 — Испытание свежего бетона — Часть. 6: Плотность. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019. [Google Scholar] 48. CEN. EN 12350-7: 2019-08 Испытание свежего бетона — Часть. 7: Содержание воздуха — методы давления. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 49. CEN. EN 12350-1: 2019-07 — Испытание свежего бетона — Часть. 1: Отбор проб. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019.[Google Scholar] 50. CEN. EN 12390-2: 2019-07 — Испытание затвердевшего бетона — Часть. 2: Изготовление и отверждение образцов для испытаний на прочность. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 51. CEN. EN 12390-3: 2019-07 — Испытание затвердевшего бетона — Часть. 3: Прочность на сжатие образцов для испытаний. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 52. CEN. EN 12390-5: 2019-08 — Испытание затвердевшего бетона — Часть. 5: Прочность на изгиб образцов для испытаний.Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 53. PN-B-06714-23: 1984 Минерал. Агрегаты — Тестирование — Определение изменений объема методом Амслера. Польский комитет по стандартизации; Варшава, Польша: 1984. (на польском языке) [Google Scholar] 54. CEN. EN 12390-16: 2020-03 Испытания затвердевшего бетона — Часть. 16: Определение усадки бетона. Европейский комитет по стандартизации; Брюссель, Бельгия: 2020 г. [Google Scholar] 55. CEN. PKN-CEN / TS 12390-9: 2017-07 Испытания затвердевшего бетона — Часть.9: Сопротивление замораживанию-оттаиванию с помощью противообледенительных солей — масштабирование. Европейский комитет по стандартизации; Брюссель, Бельгия: 2017. [Google Scholar] 56. Грубеша И.Н., Маркович Б., Врацевич М., Тункевич М., Сенти И., Куковец А. Структура пор как ответ на сопротивление замораживанию / оттаиванию строительных растворов. Материалы. 2019; 12: 3196. DOI: 10.3390 / ma12193196. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 57. Ван Ю., Уэда Т., Гонг Ф., Чжан Д., Ван З. Экспериментальное исследование электрических характеристик для оценки повреждения заморозками портландцементного раствора.Материалы. 2020; 13: 1258. DOI: 10.3390 / ma13051258. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 58. CEN. EN 480-11: 2006 Добавки для бетона, строительного раствора и раствора — испытание. Методы — Часть. 11: Определение характеристик воздушных пустот в затвердевшем бетоне. Европейский комитет по стандартизации; Брюссель, Бельгия: 2006. [Google Scholar] 59. CEN. PN-EN 934-2 + A1: 2012 Добавки для бетона, строительного раствора и раствора — Часть. 2: Добавки в бетон — определения, требования, соответствие, маркировка и маркировка.Европейский комитет по стандартизации; Брюссель, Бельгия: 2012 г. [Google Scholar] 60. Голашевский Ю., Поникевский Т., Циган Т. Влияние типа суперпальстикаторов на удобоукладываемость и прочность на сжатие. Int. J. Adv. Англ. Technol. 2010; 17: 37–44. [Google Scholar] 61. Голашевский Ю., Поникевский Т., Циган Г. Влияние температуры на удобоукладываемость и прочность на сжатие обычного бетона с содержанием летучей золы с высоким содержанием кальция. Пер. VŠB Tech. Univ. Ostrava Civ. Англ. Сер. 2017; 17: 37–44. DOI: 10.1515 / tvsb-2017-0005.[CrossRef] [Google Scholar] 63. ASTM. ASTM C457-98 Стандартный тест. Метод микроскопического определения параметров системы воздух-пустота в затвердевшем бетоне. Американское общество испытаний и материалов; Вашингтон, округ Колумбия, США: 1998. [Google Scholar]

Оценка долговечности морозостойкого бетона, модифицированного добавками

[1] А.М. Невилл, Свойства бетона, Польский цемент, Краков, 2012 г. (на польском языке).

[2] Дж.Малолепши, Избранные вопросы, связанные с прочностью бетона, Бетон на пороге нового тысячелетия, Краков, 2000 г. (на польском языке).

[3] Дж.Райчик, З. Респондек, Исследование бетонного композита с участием отходов очистных сооружений, Advanced Materials Research Vol. 875-877 (2014), стр 110-114.

DOI: 10.4028 / www.scientific.net / amr.875-877.110

[4] Дж.Райчик, Б. Ланжер, Свойства бетонных композитов с модифицированным натриевым бентонитом в разработке материалов, Advanced Materials Research Vol. 583 (2012), стр. 154-157.

DOI: 10.4028 / www.scientific.net / amr.583.154

[5] Дж.Райчик, Й. Халбиняк, Б. Ланжер, Технология бетонных композитов в лаборатории и на практике, Издательство Ченстоховского технологического университета, Ченстохова, 2012 г. (на польском языке).

[6] Дж.Райчик, Дж. Халбиняк, Влияние микрокремнезема и воздухововлекающих добавок на особенности бетонных композитов, в: Дж. Райчик, А. Пабиан (ред.), Труды 4-й Международной конференции по современным проблемам архитектуры и строительства. Устойчивая строительная индустрия будущего. 24-27 сентября 2012 г., Издательство Ченстоховского технологического университета, Ченстохова, 2012 г., стр. 332-336.

[7] Дж.Халбиняк, Переходный слой агрегации — цементный раствор в бетонных композитах, в: М. Райчик, Й. Райчик, С. А. Евтюков (ред.), Повышение эффективности промышленных и строительных процессов, Издательство Ченстоховского технологического университета, Ченстохова, 2004, (на польском языке), стр.78-131.

[8] Дж.Конкол, Т. Новак, Влияние добавления экстра-PT бентонита на свойства бетона, Научные журналы Жешувского технологического университета, Гражданская и экологическая инженерия 57 (2010) 293-300, (на польском языке).

[9] М.Мрозик, Факты и мифы о бентоните, Современное гражданское строительство, www. nbi. com. пл, 2005, (на польском языке).

[10] Гражданское строительство, технологии, архитектура, добавки в бетон, польский цемент, специальный выпуск, Краков, 2003 г. (на польском языке).

[11] З. Ямрой, Бетон и его технологии, Польское научное издательство PWN, Варшава, 2005 г. (на польском языке).

[12] J. Halbiniak, A. Pietrzak, Газобетон, Дорожное строительство, Научно-технический журнал Ассоциации дорожных инженеров и техников, 2007 г. (на польском языке).

[13] Халбиняк Дж. Оптимизация расхода цемент-вода в газобетонных смесях // М.Райчик (ред.), Повышение эффективности производственных и строительных процессов, Издательство Ченстоховского технологического университета, Ченстохова, 2010 г., (на польском языке), стр. 76-87.

[14] PN-EN 12350-2 Испытания бетонных смесей.Часть 2: Испытание на консистентность с использованием метода осадки бетона (на польском языке).

[15] PN-EN 12350-7 Испытания бетонных смесей.Часть 7: Тест на содержание воздуха. Методы давления (на польском языке).

[16] PN-EN 206-1 Бетон.Требования, свойства, производство и совместимость (на польском языке).

[17] PN-88 / B-06250 Стандартный бетон (на польском языке).

[18] PN-EN480-11 Добавки для бетона, строительного раствора и цементного раствора.Методы исследования. Маркировка характеристик пор в затвердевшем бетоне (на польском языке).

Семь обязательных к использованию бетонных добавок (добавок)

Добавки добавляются в бетонную смесь непосредственно перед или во время замеса бетона. Добавки в бетон могут улучшить качество бетона, управляемость, ускорение или замедление времени схватывания, а также другие свойства, которые можно изменить для получения конкретных результатов.Многие, если не сказать все, бетонные смеси сегодня содержат одну или несколько добавок к бетону, которые помогут снизить затраты в процессе заливки при одновременном повышении производительности. Стоимость этих добавок будет варьироваться в зависимости от количества и типа используемой добавки. Все это прибавится к стоимости кубического ярда / метр бетона.

Добавки для бетона: замедляющие схватывание

Замедляющие схватывание добавки в бетон используются для замедления химической реакции, которая происходит, когда бетон начинает процесс схватывания.Эти типы добавок к бетону обычно используются для уменьшения воздействия высоких температур, которые могут привести к более быстрому начальному схватыванию бетона. Добавки, замедляющие схватывание, используются при строительстве бетонных покрытий, что дает больше времени для отделки бетонных покрытий, снижает дополнительные затраты на размещение нового бетонного завода на стройплощадке и помогает устранить холодные швы в бетоне. Замедлители схватывания также можно использовать для сопротивления растрескиванию из-за деформации формы, которая может возникнуть, когда горизонтальные плиты укладываются секциями.Большинство замедлителей схватывания также действуют как водоэмульсоры и могут уносить некоторое количество воздуха в бетон.

Добавки для бетона: воздухововлекающие

Бетон с воздухововлекающими добавками может увеличить морозостойкость бетона. Этот тип добавки позволяет получить более обрабатываемый бетон, чем бетон без улавливания, при этом уменьшая просачивание и расслоение свежего бетона. Повышенная устойчивость бетона к сильным морозам или циклам замораживания / оттаивания. Другие преимущества этой смеси:

  • Высокая устойчивость к циклам смачивания и высыхания
  • Высокая технологичность
  • Высокая прочность

Унесенные пузырьки воздуха действуют как физический буфер против растрескивания, вызванного напряжениями из-за увеличения объема воды при отрицательных температурах.Добавки воздухововлекающие совместимы практически со всеми добавками к бетону. Обычно на каждый процент увлеченного воздуха прочность на сжатие снижается примерно на пять процентов.

Водоредуцирующие добавки для бетона

Водоцементные добавки — это химические продукты, которые при добавлении в бетон могут создавать желаемую осадку при более низком водоцементном соотношении, чем это обычно предусмотрено. Водоредуцирующие добавки используются для достижения определенной прочности бетона при более низком содержании цемента.Более низкое содержание цемента приводит к снижению выбросов CO2 и снижению энергопотребления на объем произведенного бетона. С этим типом добавки улучшаются свойства бетона и , что помогает укладывать бетон в сложных условиях. Редукторы воды использовались в основном в настилах мостов, бетонных перекрытиях с низкой оседанием и при ямочном ремонте бетона. Последние достижения в технологии добавок привели к разработке среднечастотных восстановителей воды.

Добавки для бетона: ускорение

Ускоряющие добавки в бетон используются для увеличения скорости набора прочности бетона или сокращения времени схватывания бетона.Хлорид кальция можно назвать наиболее распространенным компонентом ускорителя; однако это может способствовать коррозионной активности стальной арматуры. Тем не менее, конкретные передовые методы, такие как надлежащее уплотнение, адекватное покрытие и правильный дизайн бетонной смеси, могут предотвратить эти проблемы с коррозией. Ускоряющие добавки особенно полезны для изменения свойств бетона в холодную погоду.

Добавки для бетона: уменьшение усадки

Добавки к бетону, уменьшающие усадку, добавляются в бетон при первоначальном перемешивании.Этот тип добавки может уменьшить преждевременную и длительную усадку при высыхании. Добавки, уменьшающие усадку, можно использовать в ситуациях, когда растрескивание при усадке может привести к проблемам с долговечностью или когда большое количество усадочных швов нежелательно по экономическим или техническим причинам. Добавки, уменьшающие усадку, в некоторых случаях могут снизить развитие прочности как в раннем, так и в более позднем возрасте.

Добавки для бетона: суперпластификаторы

Основная цель использования суперпластификаторов — производство текучего бетона с высокой осадкой в ​​диапазоне от семи до девяти дюймов для использования в сильно армированных конструкциях и в местах, где адекватное уплотнение за счет вибрации не может быть легко достигнуто.Еще одно важное применение — производство высокопрочного бетона при плотности воды от 0,3 до 0,4. Было обнаружено, что для большинства типов цемента суперпластификатор улучшает удобоукладываемость бетона. Одной из проблем, связанных с использованием в бетоне водоредуктора с высоким диапазоном действия, является потеря осадки. Бетон с высокой удобоукладываемостью, содержащий суперпластификатор, может быть изготовлен с высоким сопротивлением замораживанию-оттаиванию, но содержание воздуха должно быть увеличено по сравнению с бетоном без суперпластификатора.

Добавки для бетона: ингибирующие коррозию

Добавки, ингибирующие коррозию, относятся к категории специальных добавок и используются для замедления коррозии арматурной стали в бетоне.Ингибиторы коррозии могут значительно снизить затраты на техническое обслуживание железобетонных конструкций в течение типичного срока службы 30-40 лет. Другие специальные добавки включают добавки, уменьшающие усадку, и ингибиторы щелочно-кремнеземной активности. Добавки, ингибирующие коррозию, мало влияют на прочность в более позднем возрасте, но могут ускорить развитие прочности на раннем этапе. Ингибиторы коррозии на основе нитрита кальция действительно ускоряют время схватывания бетона в диапазоне температур отверждения, если только они не содержат замедлитель схватывания, чтобы компенсировать эффект ускорения.

Стойкость к замораживанию-оттаиванию

Когда вода замерзает, она расширяется примерно на 9 процентов. Когда вода во влажном бетоне замерзает, она создает давление в порах бетона. Если создаваемое давление превышает предел прочности бетона на разрыв, полость расширится и разорвется. Накопительный эффект последовательных циклов замораживания-оттаивания и разрушение пасты и заполнителя может в конечном итоге вызвать расширение и растрескивание, образование окалины и крошение бетона.

Противогололедные химикаты для тротуаров включают хлорид натрия, хлорид кальция, хлорид магния и хлорид калия.Эти химические вещества снижают температуру замерзания осадков, выпадающих на тротуары. Недавняя тенденция привела к появлению широкого спектра смесей этих материалов для улучшения характеристик при одновременном снижении затрат, а передовая практика показывает, что обильная дозировка раствора более четырех процентов имеет тенденцию к снижению вероятности образования накипи на поверхностях дорожного покрытия. Высокая концентрация антиобледенителя сокращает количество циклов замораживания и оттаивания дорожного покрытия за счет значительного снижения температуры замерзания.

Антиобледенители для специальных применений, таких как тротуары в аэропортах, требуют нехлоридных материалов для предотвращения повреждения самолетов. Список антиобледенителей, используемых для этих целей, включает мочевину, ацетат калия, пропиленгликоль и этиленгликоли.

Поскольку образование накипи на покрытиях всех типов вызвано физическим воздействием солей, использование высокопрочного (4000 фунтов на квадратный дюйм или более), воздухововлекающего бетона с низкой проницаемостью имеет решающее значение для обеспечения хорошей долговечности в этих применениях.

Таблица 11-5 15-го издания «Проектирование и контроль бетонных смесей» дает прекрасное руководство по эффективным температурам и включает влияние на бетон, практические пределы температуры, химическую форму и коррозию металлов.

Щелкните здесь, чтобы ознакомиться с примером использования проводящего бетона для борьбы с обледенением настила моста.

D-Cracking — Растрескивание бетонного покрытия, вызванное разложением заполнителя в бетоне в результате замерзания-оттаивания, называется D-растрескиванием. D-образные трещины представляют собой близко расположенные трещины, параллельные поперечным и продольным швам, которые впоследствии многократно расширяются от швов к центру панели дорожного покрытия. D-растрескивание является функцией основных свойств определенных типов частиц заполнителя и окружающей среды, в которой находится дорожное покрытие.

Из-за естественного накопления воды под дорожным покрытием в слое основания и основания, заполнитель может со временем стать насыщенным. Затем при циклах замораживания и оттаивания в насыщенном заполнителе в нижней части плиты начинается растрескивание бетона и продолжается вверх, пока не достигнет изнашиваемой поверхности. Эту проблему можно уменьшить либо путем выбора агрегатов, которые лучше работают в циклах замораживания-оттаивания, либо, если необходимо использовать маргинальные агрегаты, путем уменьшения максимального размера частиц.Также может оказаться полезным установка эффективных дренажных систем для отвода свободной воды из-под тротуара.

Поперечное сечение воздухововлекающего (справа) и невововлекающего бетона. Воздушные пустоты большого размера — это захват воздуха. Маленькие пузырьки точечного размера (увлеченный воздух), равномерно распределенные в пасте, представляют собой полезные воздушные пустоты. Обратите внимание на сравнение с обычным выводом.

Воздухововлечение — Степень воздействия замораживания-оттаивания варьируется в зависимости от региона США.Местные погодные записи могут помочь определить серьезность воздействия. Устойчивость бетона к замерзанию и оттаиванию во влажном состоянии значительно повышается за счет использования специально втянутого воздуха. Крошечные пустоты с увлеченным воздухом действуют как пустые камеры в пасте для замерзания и миграции воды, что снижает давление в порах и предотвращает повреждение бетона. Бетон с низкой проницаемостью (то есть с низким водоцементным соотношением и адекватным отверждением) лучше выдерживает циклы замораживания-оттаивания.В редких случаях может произойти скопление воздушных пустот, что приведет к потере прочности на сжатие. Подробнее о кластеризации воздушных пустот.

Типичный пример покрытой окалиной бетонной поверхности

Предотвращение образования окалины в бетоне

Накипь определяется как общая потеря поверхностного раствора или раствора, окружающего крупные частицы заполнителя на поверхности бетона. Эта проблема обычно вызвана расширением воды из-за циклов замораживания и оттаивания и использования химикатов для борьбы с обледенением; однако бетон надлежащего качества, изготовленный, обработанный и затвердевший, не должен подвергаться такому типу разрушения.Существует четкая цепочка ответственности за производство устойчивого к образованию накипи бетона.

Крупным планом вид на ледяные вмятины в замороженном свежем бетоне. Образования кристаллов льда возникают в виде замерзания незатвердевшего бетона.


Замерзание.
Бетон очень мало прочности при низких температурах. Соответственно, свежеуложенный бетон необходимо защищать от замерзания до тех пор, пока степень насыщения бетона не будет достаточно снижена за счет гидратации цемента.Время, за которое достигается это уменьшение, примерно соответствует времени, необходимому для достижения бетоном прочности на сжатие 500 фунтов на квадратный дюйм. Бетон, который будет подвергаться воздействию антиобледенителя, должен достичь прочности 4000 фунтов на квадратный дюйм перед повторными циклами замораживания и оттаивания.

Оптимизация использования летучей золы в бетоне Холодная погода и зимние условия могут быть сложными, если бетон содержит летучую золу. Зольный бетон, особенно при использовании на более высоких уровнях, обычно имеет увеличенное время схватывания и медленный набор прочности, что приводит к низкой прочности в раннем возрасте и задержкам в темпах строительства.Кроме того, бетон, содержащий летучую золу, часто считается более восприимчивым к образованию накипи на поверхности при воздействии химикатов для борьбы с обледенением, чем бетон из портландцемента. Поэтому важно знать, как отрегулировать количество летучей золы, чтобы минимизировать недостатки и при этом максимизировать преимущества.

Архитектор многоэтажного дома в Бэйвью оптимизировал количество летучей золы на основе требований спецификации бетона, графика строительства и температуры.Он ограничил количество летучей золы в плитах на уклоне, уложенном в зимние месяцы, до 20 процентов. Если невозможно обеспечить адекватное отверждение или если бетон подвергается замерзанию и оттаиванию в присутствии антиобледенительных солей, количество летучей золы всегда должно быть менее 25 процентов. Подробнее об оптимизации использования летучей золы в бетоне.

Публикации

Различные бетоны требуют разной степени прочности в зависимости от окружающей среды и желаемых свойств. Руководство Specifer по долговечному бетону, EB221, предназначено для предоставления достаточной информации, чтобы позволить практикующему специалисту выбрать материалы и параметры конструкции для получения прочного бетона в различных средах.

Оптимизация использования летучей золы в бетоне обсуждает вопросы, связанные с использованием летучей золы в бетоне от низкого до очень высокого уровня, и дает рекомендации по использованию летучей золы без ущерба для строительного процесса или качества готового продукта. Тематические исследования были выбраны в качестве примеров некоторых из наиболее требовательных применений зольного бетона для снижения ASR, устойчивости к хлоридам и экологичного строительства.

Добавки для бетонирования в холодную погоду

Холодная погода ставит перед бетонщиком новые задачи.Холодная погода может увеличить время схватывания бетона, замедлить его застывание и замедлить рост его прочности.

Также интересно отметить, что бетон для холодной погоды имеет превосходные свойства по сравнению с бетоном, укладываемым в жаркую погоду. Если бетон не замерзает и должным образом отверждается, он достигает более высокого предела прочности, более прочен и менее подвержен термическому растрескиванию. Бетон в пластичном состоянии замерзает, когда температура смеси ниже -2 градусов по Цельсию, и бетон остается нераспределенным достаточно долго, чтобы образовались кристаллы льда.Как только лед образовался, гидратация прекращается, и развитие силы серьезно ухудшается. Свежий бетон, замороженный в течение первых 24 часов, может потерять 50% своей потенциальной 28-дневной прочности. Ряд этих проблем можно решить путем добавления в бетон добавок.

Ускорители

Ускоряющие добавки могут помочь компенсировать воздействие низких температур за счет увеличения скорости гидратации цемента. Это способствует быстрому схватыванию бетона и развитию его начальной прочности.

Мощность дозы ускорителя зависит от температуры окружающей среды на рабочем месте.

Воздухововлекающие агенты

Увлеченный воздух значительно улучшает устойчивость бетона к замораживанию / оттаиванию и повреждениям. Добавление воздухововлекающего агента вызывает попадание миллионов очень маленьких пузырьков воздуха в бетонную матрицу. Этот «увлеченный» воздух остается в бетоне, где более крупный, естественно «захваченный» воздух будет попадать на бетонную поверхность во время обычных операций по укладке.Поскольку лед занимает гораздо больший объем, чем его исходная жидкость, он оказывает большое давление внутри бетона, что может повредить цементное тесто. Повторяющиеся циклы замораживания и оттаивания в конечном итоге приведут к ухудшению качества, так как будет предоставлено дополнительное пространство для распределения давления. Воздухововлечение также увеличивает удобоукладываемость и общую долговечность бетона.

Суперпластификаторы

Суперпластификаторы — это высокодисперсные восстановители воды. Это может привести к снижению содержания воды в данной бетонной смеси на 10–30%, но при этом сохраняются характеристики удобоукладываемости обычной смеси с осадкой.Это важный фактор в холодную погоду, поскольку при уменьшении водоцементного отношения бетонной смеси полученный бетон будет иметь повышенные характеристики прочности и долговечности. Суперпластификаторы обычно используются, когда требуется бетон с низкой оседанием, но по-прежнему требуется хороший, легко укладываемый бетон. Действие суперпластификатора ограничено примерно 45 минутами с момента смешивания, поэтому следует соблюдать осторожность при планировании нагрузок.

HE200 Добавка для повышения прочности в раннем возрасте

Sikament HE200 — это новая технологическая добавка, которая обеспечивает эффективное суперпластифицирующее действие на свежий бетон и быстро ускоряет развитие его прочности в раннем возрасте без какого-либо отрицательного воздействия на конечную прочность.HE200 идеален при более низких температурах, когда необходимо ускоренное развитие прочности.

Персонал Allied Concrete будет рад помочь вам с любыми проблемами или вопросами.

Для получения дополнительной информации или помощи, пожалуйста, звоните. Ваш звонок будет автоматически соединен с ближайшим к нам заводом. (Звонки с мобильных телефонов будут направляться в Окленд, Веллингтон или Крайстчерч.