Сопротивление бетона сжатию таблица – Расчетные сопротивления и модули упругости для различных строительных материалов

Содержание

Сопротивление бетона

Сопротивление бетона на сжатие и растяжение

СП 63.13330.2012

6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rbи осевому растяжению Rbtопределяют по формулам:

Значения коэффициента надежности по бетону при сжатии γbпринимают равными:

для расчета по предельным состояниям первой группы:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

1,5 — для ячеистого бетона;

для расчета по предельным состояниям второй группы: 1,0.

Значения коэффициента надежности по бетону при растяжении γbtпринимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 — для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser(с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы — в таблицах 6.8, 6.9, второй группы — в таблице 6.7.

 

Таблица 6.7

ВидБетонНормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,serи Rbt,ser, МПа, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15
В20
В25В30В35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность) Rb,n, Rb,serТяжелый, мелкозернистый и напрягающий2,73,55,57,59,5111518,52225,529323639,54350576471
Легкий1,92,73,55,57,59,5111518,52225,529
Ячеистый1,41,92,43,34,66,99,010,511,5
Растяжение осевое Rbt,n и Rbt,serТяжелый, мелкозернистый и напрягающий0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80
Легкий0,290,390,550,700,851,001,101,351,551,751,952,10
Ячеистый0,220,26 0,310,410,550,630,891,001,05
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать как для легкого бетона с умножением на коэффициент 0,7.

4 Для напрягающего бетона значения Rbt,n, R

bt,serследует принимать с умножением на коэффициент 1,2.

Таблица 6.8

ВидБетонРасчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25в30B35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность)Тяжелый, мелкозернистый и напрягающий2,12,84,56,07,58,511,514,517,019,522,025,027,5 30,033,037,041,044,047,5
Легкий1,52,12,84,56,07,58,511,514,517,019,522,0
Ячеистый0,951,31,62,23,14,66,07,07,7
Растяжение осевоеТяжелый, мелкозернистый и напрягающий0,260,370,480,560,660,750,901,051,151,301,401,501,601,70
1,80
1,902,102,152,20
Легкий0,200,260,370,480,560,660,750,901,051,151,301,40
Ячеистый0,090,120,140,180,240,280,390,440,46
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbtследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbtследует принимать как для легкого бетона с умножением на коэффициент 0.7.

4 Для напрягающего бетона значения Rbtследует принимать с умножением на коэффициент 1,2.

5 Для тяжелых бетонов классов В70 — В100 расчетные значения сопротивления осевому сжатию Rbи осевому растяжению Rbtприняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В — класс бетона по прочности на сжатие.

Таблица 6.9

Вид сопротивленияБетонРасчетные значения сопротивления бетона для предельных состояний первой группы
Rbt
, МПа, при классе бетона по прочности на осевое растяжение
Вt 0,8Вt 1,2Вt 1,6Вt 2,0Вt 2,4Вt 2,8Вt 3,2
Растяжение осевое RbtТяжелый, мелкозернистый, напрягающий и легкий0,620,931,251,551,852,152,45

 

saitinpro.ru

определение значений по таблицам, нормативные характеристики материала

Для обеспечения прочности и долговечности конструкций из бетона на стадии проектирования производятся расчёты, учитывающие основные характеристики материала. К ним относятся морозоустойчивость, водонепроницаемость, прочностные характеристики. Расчётное сопротивление бетона определяется в зависимости от нормативного сопротивления для этого класса материала.

Расчетные значения

Прочность является определяющей характеристикой бетона. От неё зависят эксплуатационные качества возводимых сооружений, их долговечность и надёжность. Проверка прочности производится в лабораторных условиях по образцам. При проверке прочности на сжатие проверяется марка бетона. Цифровое значение марки является пределом прочности на сжатие, выраженным в Мегапаскалях.

При проектировании бетонных сооружений производят расчёты по двум группам предельных состояний. Первая группа — это полная непригодность к эксплуатации, включая разрушение. Вторая группа — это непригодность, которая определяется появлением трещин и недопустимых деформаций.

В зависимости от группы предельных состояний выбираются коэффициенты надёжности, которые вводятся, чтобы снизить допустимые нагрузки на конструкцию.

Расчётные сопротивления бетона сжатию в таблицах 1 и 2 вычисляются путём деления величин нормативного сопротивления бетона на коэффициенты надёжности. В формулы для определения прочности вводят коэффициенты, зависящие от характера нагрузок, условий эксплуатации и учитывающие характер разрушений этого типа строений. Расчётные сопротивления бетона осевому сжатию Rb, Rb, ser и осевому растяжению Rbt, Rbt, ser приводятся в таблицах 1 и 2. Характеристики предельных состояний первой группы приводятся в таблице 2, а второй группы — в таблице 1.

Таблица 1.

Таблица 2.

Характеристики материала

Информация о характеристиках материала необходима при строительстве объектов. Недостаточная прочность может привести к образованию трещин и досрочному выходу сооружения из строя. Прочностные характеристики материала определяются в испытаниях по образцам в лабораторных условиях. Способы исследования бывают разрушающие и неразрушающие.

Для разрушения используются образцы, изготовленные из пробы испытуемой бетонной смеси или полученные бурением поверхности бетонной конструкции. Образцы сжимаются прессом. Нагрузка увеличивается постепенно до того момента, пока образец полностью не разрушится. По величине критической нагрузки и рассчитываются значения прочности материала. Для этого величину нагрузки делят на площадь поперечного сечения испытуемого объекта и умножают на масштабный коэффициент.

Неразрушающие методы проводятся прямо на бетонной поверхности, для них не требуются образцы. Исследование проводится следующими методами:

  1. частичное разрушение;
  2. ударный метод;
  3. ультразвуковое исследование.

Это способы местного воздействия, не наносящие большого вреда бетонной конструкции. Но они имеют меньшую точность, чем разрушающие методики. При сдаче здания в эксплуатацию обязательным является исследование методом разрушения проб.

Факторы прочности

Скорость химических процессов, протекающих в водных растворах, оказывает большое влияние на характеристики бетона. Причинами, способствующими увеличению прочности, можно считать следующие:

  1. Главным фактором является активность цемента. Чем он активнее, тем прочнее получится материал. Точным считается метод определения активности в лабораторных условиях. Существуют различные экспресс-технологии, способные дать ответ на вопрос о возможности использования материала. Для частного и неответственного строительства можно составить представление о качестве цемента путём осмотра. Хороший материал должен быть серо-зеленоватого цвета и хорошо сыпаться. Если присутствуют небольшие комки, то их легко раздавить пальцами. Если же есть большие твёрдые комья, то можно сделать вывод, что цемент потерял активность и не может быть использован в строительстве.
  2. Большое значение имеет также процентное соотношение цемента в растворе. Чем выше процент цемента, тем лучше будут прочностные характеристики бетона. Очень важным является соотношение воды и цемента в смеси. Бетон способен связывать только 15−20% воды, входящей в его состав. Это значительно меньше, чем количество воды, присутствующее в растворе. Из-за этого образуются поры, и прочность материала уменьшается.
  3. Применение в качестве наполнителей крупнофракционного материала хорошо сказывается на свойствах бетона.
  4. Время застывания тоже играет важную роль. Стопроцентные показатели предела прочности бетон приобретает только через 28 суток. Испытания бетонных образцов проводятся на третьи сутки, когда материал достигает 30% от своих максимальных прочностных характеристик.
  5. Условия внешней среды тоже влияют на процесс отвердевания бетона. Наилучшие условия отвердевания создаются при температуре 15−20 °C и высокой влажности. Увеличение прочности продолжается до тех пор, пока материал полностью не высохнет или не замёрзнет.

Долговечность и надёжность конструкций из бетона во многом зависит от качества проектирования. Необходимо учитывать все характеристики материалов, подбирать наиболее пригодные в существующих условиях и учитывать особенности работы материалов с разными видами нагрузок.

Материал хорошо работает на сжатие, а расчётное сопротивление растяжению у бетона на порядок хуже. Поэтому нужно избегать внецентренных нагрузок и изгибающих моментов.

tvoidvor.com

Кубиковая прочность бетона таблица. Нормативные и расчётные сопротивления бетона

Материал Модуль упругости
Е
, МПа
Чугун белый, серый(1,15…1,60) . 10 5
» ковкий1,55 . 10 5
Сталь углеродистая(2,0…2,1) . 10 5
» легированная(2,1…2,2) . 10 5
Медь прокатная1,1 . 10 5
» холоднотянутая1,3 . 10 3
» литая0,84 . 10 5
Бронза фосфористая катанная1,15 . 10 5
Бронза марганцевая катанная1,1 . 10 5
Бронза алюминиевая литая1,05 . 10 5
Латунь холоднотянутая(0,91…0,99) . 10 5
Латунь корабельная катанная1,0 . 10 5
Алюминий катанный0,69 . 10 5
Проволока алюминиевая тянутая0,7 . 10 5
Дюралюминий катанный0,71 . 10 5
Цинк катанный0,84 . 10 5
Свинец0,17 . 10 5
Лед0,1 . 10 5
Стекло0,56 . 10 5
Гранит0,49 . 10 5
Известь0,42 . 10 5
Мрамор0,56 . 10 5
Песчаник0,18 . 10 5
Каменная кладка из гранита(0,09…0,1) . 10 5
» из кирпича(0,027…0,030) . 10 5
Бетон (см. таблицу 2)
Древесина вдоль волокон(0,1…0,12) . 10 5
» поперек волокон(0,005…0,01) . 10 5
Каучук0,00008 . 10 5
Текстолит(0,06…0,1) . 10 5
Гетинакс(0,1…0,17) . 10 5
Бакелит(2…3) . 10 3
Целлулоид(14,3…27,5) . 10 2

Примечание : 1. Для определения модуля упругости в кгс/см 2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины , каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)


Примечания : 1. Над чертой указаны значения в МПа, под чертой — в кгс/см 2 .

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Е b принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Е b принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)


Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)


Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)


Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)


Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивле

kupildoma.ru

Нормативные и расчётные сопротивления бетона. Расчетное и нормативное сопротивление бетона

Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.

Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?

Специалисты получают показатели сопротивления строительного материала, разделяя нормативные сопротивления на коэффициенты. При определении прочности деталей конструкций к расчетному сопротивлению некоторых бетонных растворов иногда уменьшают либо увеличивают за счет умножения на определенные коэффициенты, учитывающие ряд факторов: многократные нагрузки, длительность воздействия нагрузок, способ изготовления изделия, его размеры и пр.

Как производить расчеты?

Каким образом нужно производить расчеты прочности конструкции, например, на ее сжатие? С этой целью строители используют специальные расчетные показатели. Для обеспечения достаточной устойчивости бетонных изделий при проведении расчетов, пользуются параметрами прочности стройматериала, которые чаще всего ниже параметров самих конструкций. Такие значения именуют расчетными. Они зависят непосредственно от нормативных (фактических) значений.

Нормативные показатели


Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.

Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.

Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители опред

kupildoma.ru

Расчетное сопротивление бетона: особенности сопротивляемости

Как известно, бетон является весьма неоднородным материалом, в результате его показатели прочности могут существенно отличаться даже в пределах нескольких опытных образцов, изготовленных из одной смеси. Но, как в таком случае рассчитать прочность бетонной конструкции, к примеру, на сжатие? Для этого используют расчетные значения, в данном случае это будет расчетное сопротивление бетона сжатию.

Далее мы рассмотрим, что такое расчетные характеристики и как их узнать, а также ознакомимся с некоторыми другими параметрами данного материала.

Неоднородная бетонная поверхность

Как получить расчетное сопротивление

Для обеспечения достаточной надежности бетонных конструкций, при выполнении расчетов, используют такие значения прочности бетонного материала, которые в большинстве случаев ниже фактических показателей в конструкциях. Эти значения называют расчетными, соответственно, они напрямую зависят от фактических или по-другому – нормативных значений.

Нормативные характеристики

Еще совсем недавно (до 1984 г) единственной характеристикой прочности бетона была его марка (М). Этот параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с появлением СНиП 2.03.01 были также введены классы по прочности на сжатие.

По сути, класс является нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 или гарантированной доверительной вероятностью 95%, и риском 5 процентов. Надо сказать, что в данном случае брать среднюю крепость рискованно, так как имеется 50 процентов вероятности того, что в опасном сечении конструкции она окажется ниже средней.

В то же время брать за основу минимальный показатель слишком накладно, так как это приведет к существенному неоправданному увеличению сечения конструкции.

На фото — бетонная конструкция

Таким образом, основным параметром прочности в нашем случае является класс. Но, помимо осевого сжатия, важной характеристикой является еще и осевое растяжение. Устойчивость к осевому растяжению (если этот параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Совет!
Чем выше класс материала, тем выше его цена .
Поэтому нецелесообразно возводить конструкции с необоснованным запасом прочности.

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, выполняют расчет с определенным запасом прочности. Чтобы получить этот запас, удельное сопротивление бетона делят на определенный коэффициент, и таким образом данный показатель при расчетах уменьшают.

Определение фактического коэффициента прочности

Расчетное сопротивления бетона растяжению или сжатию можно вычислить по следующей формуле — R= Rn /g, где g – является коэффициентом надежности по прочности. Обычно данное значение составляет 1,3. Однако, чем менее однородный массив, тем этот коэффициент больше.

Правда, выполнять расчет не обязательно, так как получить нужные значения позволяет таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Алмазная резка бетонной поверхности

Совет!
В результате высокой прочности бетонных изделий, их механическая обработка вызывает определенные сложности.
Чтобы упростить эту процедуру, используют электроинструмент с алмазными насадками.
В частности, строителями зачастую выполняется резка железобетона алмазными кругами, или же алмазное бурение отверстий в бетоне, а также алмазная шлифовка бетонных поверхностей.

Определение электрического сопротивления опытного образца

Прочие характеристики

Помимо вышерассмотренных параметров, при выполнении некоторых расчетов, требуются и другие характеристики бетона.

Далее мы рассмотрим некоторые из них:

  • Удельное электрическое сопротивление бетона (p)- является сопротивлением прохождению электрического тока через бетонный кубик размером 1х1х1 см. На данный параметр жидкой фазы влияет содержание щелочей в цементе и соотношение жидкости. В зависимости от этого, значение может меняться в пределах от 4 до 20 Ом.
    Определение этой характеристики может потребоваться при организации своими руками обогрева раствора электродами. Чем выше это значение тем, соответственно, масса нагревается сильней.
  • Водопроницаемость – данный параметр обозначает наибольшее давление воды, которому может противостоять материал, т.е. при которых вода не может просочиться сквозь бетонный образец. По водонепроницаемости существуют марки W2-W20, цифры марки при этом говорят о давлении в кгс/см2, при котором структура способна противостоять воде.
  • Воздухонепроницаемость – данная характеристика зависит от плотности структуры. Сопротивление бетона прониканию воздуха по ГОСТу 12730.5-84 может составлять 3,1-130,2 с/см3, в зависимости от его марки по водопроницаемости.
  • Морозостойкость – способность переносить многократные циклы замерзания и оттаивания без потери основных свойств. Существуют марки с градацией от F50 до F1000, где цифры обозначают количество циклов замерзания/оттаивания, которые способен выдержать материал. На практике, среднестатистическая морозостойкость в обычном строительстве находится в пределах F100-F200.
  • Теплопроводность – является одним из важнейших параметров ограждающих конструкций, который зависит от плотности структуры. Чем больше ее пористость, тем меньше теплопроводность, так как воздух, заполняющий поры, является отличным теплоизолятором. При плотности при плотности 1200 кг/м3, теплопроводность материала составляет 0,52 Вт/(м-°С).
    Поэтому в качестве теплоизоляционных материалов используют легкие газо- или пенобетонные блоки, которые имеют пористую структуру.

Определение водо- и воздухопроницаемости материала

Вывод

Расчетное сопротивление является крайне важным параметром при проектировании ответственных несущих конструкций. Инструкция по расчету этих значений довольно простая и сводится к занижению нормативных характеристик, путем их деления на соответствующие коэффициенты.

Из видео в этой статье можно получить дополнительную информацию по данной теме.

masterabetona.ru

2.2.4. Нормативные и расчетные сопротивления бетона

Как уже было отмечено выше, прочностные характеристики бетона обладают изменчивостью. Для оценки изменчивости используются методы теории вероятностей. Если принять изменчивость бетона подчиняющейся закону Гаусса (рис.2.4.), можно найти прочность Rn, которая будет обеспечена с заданной надежностью:

(2.39)

где — граница области отклонения прочности от среднего значения.

Рис. 2.4. Кривая распределения прочности

При к = 1 вероятность отклонения от среднего значения составляет 84%, при к = 2 — 97% и при к = 3 — 99,9%. Таким образом, при отклонении от среднего значения прочности бетона на 3, вероятность появления случайной величины (прочность бетона) меньше Rn = Rm , составляет одну тысячную процента.

Для практических расчетов класс бетона В или нормативное сопротивление бетонных кубов сжатию контролируется с обеспеченностью 95%, что соответствует значению к = 1,64. В этом случае класс бетона

или

(2.40)

где коэффициент вариации прочности бетона;

— среднеквадратичное отклонение, Rm — среднее значение временного сопротивления бетона сжатию.

Коэффициент вариации бетона — величина переменная. Его нормативное значение приближенно принято нормами, равным 0,135. Таким образом гарантированная прочность заданного нормами класса бетона

(2.41)

Нормативным сопротивлением бетона осевому сжатию является его призменная прочность с обеспеченностью 95%. С такой же обеспеченностью принимается и нормативное сопротивление бетона осевому растяжению. Значения иопределяются по нормативному сопротивлению кубиковой прочности по формулам

;

(2.42)

где k = 0,8 для бетонов класса В35 и ниже, k = 0,7 для бетонов класса В40 и выше.

Расчетные сопротивления бетона для предельных состояний первой группы Rb и определяют делением нормативных значений на коэффициенты надежности бетона при сжатии или при растяжении .

Для тяжелого бетона ; .

Расчетные сопротивления бетона для предельных состояний второй группы и определяются при коэффициентах надежности ,

т.е. принимаются равными нормативным сопротивлениям за исключением случаев расчета по образованию трещин.

При расчете элементов конструкций расчетные сопротивления бетона в необходимых случаях умножаются на коэффициенты условий работы , учитывающие следующие факторы: длительность действия нагрузки, условия изготовления, характер работы конструкции, способы изготовления и т.п.

2.2.5. Нормативные и расчетные сопротивления арматуры

Нормативные сопротивления арматуры принимают равными наименьшему контролируемому значению с обеспеченностью 95%: для стержневой арматуры, высокопрочной проволоки и канатов -физическому или условному пределу текучести; для обыкновенной арматурной проволоки — условному пределу текучести

.

Расчетные сопротивления арматуры определяются по формуле

(2.44)

где — коэффициент надежности по арматуре = 1,05 — 1,2 при расчете по предельным состояниям первой группы и =1 – второй группы.

Расчетные сопротивления арматуры сжатию принимаются равными соответствующим расчетным сопротивлениям растяжению , но не более 400 МПа.

Если при расчете конструкций учитывается длительность действия нагрузки (), то допускается принимать: Rsc=450 МПа для арматуры классов

AIV, Ат-IVC; Rsc=500Mna для арматуры классов AV, Ат-V, AVI, AtVI,

В-П, BpII, K-7, К-19. При этом должны соблюдаться специальные конструктивные требования по установке поперечной арматуры. При отсутствии сцепления арматуры с бетоном Rsc =0.

При расчете конструкций расчетные сопротивления Rs, Rsw, Rscследует умножить на коэффициенты условий работы , учитывающие возможность неполного использования ее прочностных свойств.

studfiles.net

Что такое расчетное сопротивление бетона и как его рассчитать

Как известно, бетон является весьма неоднородным материалом, в результате его показатели прочности могут существенно отличаться даже в пределах нескольких опытных образцов, изготовленных из одной смеси. Но, как в таком случае рассчитать прочность бетонной конструкции, к примеру, на сжатие? Для этого используют расчетные значения, в данном случае это будет расчетное сопротивление бетона сжатию.

Далее мы рассмотрим, что такое расчетные характеристики и как их узнать, а также ознакомимся с некоторыми другими параметрами данного материала.

Неоднородная бетонная поверхность

Как получить расчетное сопротивление

Для обеспечения достаточной надежности бетонных конструкций, при выполнении расчетов, используют такие значения прочности бетонного материала, которые в большинстве случаев ниже фактических показателей в конструкциях. Эти значения называют расчетными, соответственно, они напрямую зависят от фактических или по-другому – нормативных значений.

Нормативные характеристики

Еще совсем недавно (до 1984 г) единственной характеристикой прочности бетона была его марка (М). Этот параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с появлением СНиП 2.03.01 были также введены классы по прочности на сжатие.

По сути, класс является нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 или гарантированной доверительной вероятностью 95%, и риском 5 процентов. Надо сказать, что в данном случае брать среднюю крепость рискованно, так как имеется 50 процентов вероятности того, что в опасном сечении конструкции она окажется ниже средней.

В то же время брать за основу минимальный показатель слишком накладно, так как это приведет к существенному неоправданному увеличению сечения конструкции.

На фото — бетонная конструкция

Таким образом, основным параметром прочности в нашем случае является класс. Но, помимо осевого сжатия, важной характеристикой является еще и осевое растяжение. Устойчивость к осевому растяжению (если этот параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Совет!
Чем выше класс материала, тем выше его цена .
Поэтому нецелесообразно возводить конструкции с необоснованным запасом прочности.

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, выполняют расчет с определенным запасом прочности. Чтобы получить этот запас, удельное сопротивление бетона делят на определенный коэффициент, и таким образом данный показатель при расчетах уменьшают.

Определение фактического коэффициента прочности

Расчетное сопротивления бетона растяжению или сжатию можно вычислить по следующей формуле — R= Rn /g, где g – является коэффициентом надежности по прочности. Обычно данное значение составляет 1,3. Однако, чем менее однородный массив, тем этот коэффициент больше.

Правда, выполнять расчет не обязательно, так как получить нужные значения позволяет таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Алмазная резка бетонной поверхности

Совет!
В результате высокой прочности бетонных изделий, их механическая обработка вызывает определенные сложности.
Чтобы упростить эту процедуру, используют электроинструмент с алмазными насадками.
В частности, строителями зачастую выполняется резка железобетона алмазными кругами, или же алмазное бурение отверстий в бетоне, а также алмазная шлифовка бетонных поверхностей.

Определение электрического сопротивления опытного образца

Прочие характеристики

Помимо вышерассмотренных параметров, при выполнении некоторых расчетов, требуются и другие характеристики бетона.

Далее мы рассмотрим некоторые из них:

  • Удельное электрическое сопротивление бетона (p)- является сопротивлением прохождению электрического тока через бетонный кубик размером 1х1х1 см. На данный параметр жидкой фазы влияет содержание щелочей в цементе и соотношение жидкости. В зависимости от этого, значение может меняться в пределах от 4 до 20 Ом.
    Определение этой характеристики может потребоваться при организации своими руками обогрева раствора электродами. Чем выше это значение тем, соответственно, масса нагревается сильней.
  • Водопроницаемость – данный параметр обозначает наибольшее давление воды, которому может противостоять материал, т.е. при которых вода не может просочиться сквозь бетонный образец. По водонепроницаемости существуют марки W2-W20, цифры марки при этом говорят о давлении в кгс/см2, при котором структура способна противостоять воде.
  • Воздухонепроницаемость – данная характеристика зависит от плотности структуры. Сопротивление бетона прониканию воздуха по ГОСТу 12730.5-84 может составлять 3,1-130,2 с/см3, в зависимости от его марки по водопроницаемости.
  • Морозостойкость – способность переносить многократные циклы замерзания и оттаивания без потери основных свойств. Существуют марки с градацией от F50 до F1000, где цифры обозначают количество циклов замерзания/оттаивания, которые способен выдержать материал. На практике, среднестатистическая морозостойкость в обычном строительстве находится в пределах F100-F200.
  • Теплопроводность – является одним из важнейших параметров ограждающих конструкций, который зависит от плотности структуры. Чем больше ее пористость, тем меньше теплопроводность, так как воздух, заполняющий поры, является отличным теплоизолятором. При плотности при плотности 1200 кг/м3, теплопроводность материала составляет 0,52 Вт/(м-°С).
    Поэтому в качестве теплоизоляционных материалов используют легкие газо- или пенобетонные блоки, которые имеют пористую структуру.

Определение водо- и воздухопроницаемости материала

Вывод

Расчетное сопротивление является крайне важным параметром при проектировании ответственных несущих конструкций. Инструкция по расчету этих значений довольно простая и сводится к занижению нормативных характеристик, путем их деления на соответствующие коэффициенты.

Из видео в этой статье можно получить дополнительную информацию по данной теме.

rusbetonplus.ru