Расчет онлайн балок на прочность – Расчет балок на прочность он-лайн. Расчет балки на изгиб. Расчет балки. Шаг 1. Количество узлов.

Расчет балок на прочность.

Расчет по допускаемым напряжениям
на прочность при изгибе.

– при
симметричном сечении

Проверка прочности по предельным состояниям.

– максимальный изгибающий момент от
расчетных нагрузок.

Ррн×n

n
– коэффициент перегрузки.

– нормативная нагрузка.

Рр
– расчетная нагрузка.

– коэффициент условия работы.

Если материал работает неодинаково на
растяжение и сжатие, то прочность
проверяется по формулам:

где Rp
и Rсж
– расчетное
сопротивление на растяжение и сжатие

Расчет по несущей способности и учетом пластической деформации.

В предыдущих методах расчета прочность
проверяется по максимальны напряжениям
в верхних и нижних волокнах балки. При
этом средние волокна оказываются
недогруженными.

Оказывается, если нагрузку
увеличивать дальше, то в крайних волокнах
напряжение дойдет до предела текучести
σт( в пластичных
материалах), и до предела прочности σnч( в хрупких материалах).
При дальнейшем увеличении нагрузки
хрупкие материалы разрушатся, а в
пластичных материалах напряжения в
крайних волокнах далее не возрастают,
а растут во внутренних волокнах. (см.
рис.)

Несущая способность балки
исчерпывается, когда по всему сечению
напряжения достигнут σт.

W
пл=
S1+S2

W
пл
– пластический момент сопротивления

— статический момент растянутой и
сжатой зон относительно нейтральной
оси.

Мпред
= σт
× W
пл

где
– коэффициент надежности по материалу.

где R
— расчетное сопротивление.

— проверка
прочности.

Для прямоугольного сечения:

W пл=S1+S2=bh2
/4

W
пл=bh2
/4 — для прямоугольного
сечения.

W
=bh2
/6 – обычный момент
сопротивления.

W
пл=1,5W

Примечание: для прокатных
профилей (швеллер и двутавр) пластический
момент Wnл=(1.1÷1,17)×W

Касательные
напряжения при изгибе балки прямоугольного
сечения. Формула Журав
cкого.

Так как момент в сечении 2
больше момента в сечении 1, то напряжение
σ21=>N2>N1.

В этом случае элемент abcd
должен переместиться влево. Этому
перемещению препятствуют касательные
напряжения τ
на площадке cd.

— уравнение равновесия,
после преобразования которого получается
формула для определения τ:

— Формула Журавского

где Q
— поперечная сила,

Sотс
— статический момент
отсеченной части относительно
нейтральной оси,

J-момент
инерции всего сечения относительно
нейтральной оси, b
— ширина балки на уровне y.

Распределение
касательных напряжений в балках
прямоугольного, круглого и двутаврового
сечений.

1.
Прямоугольное сечение
:

— формула для сечения
на расстоянии у0
от нейтральной
оси.

2.Круглое сечение.


формула для сечения на расстоянииу0
от нейтральной
оси.

— формула для сечения
под углом α.

3. Двутавровое сечение.

Для стенки двутавра

касательные напряжения

вычисляют по формуле:

Для полки: условно вертикальные
касательные напряжения определяют
по формуле:

В
полках двутавров возникают касательные
напряжения, направленные горизонтально:

На рисунке
показан общий характер распределения
τ
в сечении двутавра.

Главные напряжения при изгибе.
Проверка прочности балок.

Выделим из балки участок,
на который действует максимально
поперечная сила Qmaxи изгибающий момент
Mmax.

Наиболее опасными точками
являются сечение A
и точка Б.

Прочность проверяется по напряжениям
в этих точках.

На практике обычно
ограничиваются проверкой сечения A:

сж]

Примечание: при расчете
по предельным состояниям вместо
сж]
и [σ
р]
в формулы
ставятся
Rcж
и
Rp

расчетные сопротивления материала при
сжатии и растяжении.

Если же балка короткая, то
проверяют точку Б:

где
Rсрез
– расчетное
сопротивление материала на срез.

В точке D
на элемент действует нормальные и
касательные напряжения, поэтому в
некоторых случаях их совместное действие
вызывает опасность для прочности. В
этом случае элемент D
проверяют на прочность используя главные
напряжения.

В нашем случае: ,
следовательно:

Используя σ
1
и
σ2
по теории прочности проверяют элемент
D.

По теории наибольших
касательных напряжений имеем: σ
1

σ2≤R

Примечание: точку D
следует брать по длине балки там, где
одновременно действуют большие M
и Q.

По высоте балки выбираем
такое место, где одновременно действуют
значения σ
и
τ.

Из эпюр
видно:

1. В балках прямоугольного
и круглого сечения отсутствуют точки,
в которых одновременно действуют большие
σ
и τ.
Поэтому в таких балках проверка точки
D
не делается.

2. В балках двутаврового
сечения на границе пересечения полки
со стенкой (т. А) одновременно действуют
большие σ
и τ.
Поэтому они проверяются на прочность
в этой точке.

Примечание:

  1. В прокатных двутаврах и
    швеллерах в зоне пересечения полки со
    стенкой сделаны плавные переходы
    (закругления). Стенка и полка подобраны
    так, что точка A
    оказывается в благоприятных условиях
    работы и проверка прочности не требуется.

  2. В составных (сварных)
    двутавровых балках проверка точки А
    необходима.

studfiles.net

Расчет на прочность | ПроСопромат.ру

Задача 1

В некотором сечении балки прямоугольного сечения 20×30см М=28 кНм, Q=19 кН.

Требуется:

а) определить нормальное и касательное напряжения в заданной точке К, отстоящей от нейтральной оси на расстоянии 11 см,

б) проверить прочность деревянной балки, если [σ]=10 МПа, [τ]=3 МПа.

Решение

а) Для определения σ(К), τ(К) и maxσ,maxτ потребуется знать величины осевого момента инерции всего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсечённой части  и статического момента половины сечения Smax:

Тогда:

б) Проверка прочности:

по условию прочности нормальных напряжений:

по условию прочности касательных напряжений:

Задача 2

В некотором сечении балки М=10кНм, Q=40кН. Поперечное сечение – треугольное. Найти нормальное и касательное напряжения в точке, отстоящей от нейтральной оси на расстоянии 15 см.

где 

Тогда

где:

Тогда

Задача 3

Подобрать сечение деревянной балки в двух вариантах: круглое и прямоугольное (при h/b=2), если [σ]=10 МПа, [τ]=3 МПа, и сравнить их по расходу материала.

Задаёмся направлениями опорных реакций А и В и составляем уравнения статики:

(1)          ∑М(В) = F·8 – М А·6 + (q·6)·3 =0,

откуда 

(2)          ∑М(А) = F·2 – М + В·6 — (q·6)·3 =0,

откуда 

Iучасток   

М(С) = М(z1) +F·z1=0,

ММ(z1) = —F·z1= — 30 ·z1 —

– уравнение прямой.

При z1 = 0:      М = 0,

z1 = 2:      М =- 60 кНм.

у= — F — Q(z1) = 0,

Q(z1) = — F = -30 кН – постоянная функция.

II участок     

откуда

— уравнение параболы.

При z2=0:     М = 0,

z2=3м:  М = 30 · 3 – 5 · 32 = 90 — 45 = 45кНм,

z2=6м:  М = 30 · 6 – 5 · 62 = 180 — 180 = 0.

у= Q(z2) — q·z2 + B= 0,

Q(z2) = q·z2 — B= 10·z2 – 30 – уравнение прямой,

при  z2 = 0:     Q = -30,

        z2 = 6м:     Q = 10·6 – 30 = 30.

Определение аналитического максимума изгибающего момента второго участка:

из условиянаходим :

И тогда

Заметим, что скачок в эп.М расположен там, где приложен сосредоточенный момент М = 60кНм и равен этому моменту, а скачок в эп.Q – под сосредоточенной силой А = 60 кН.

Подбор сечения балок производится из условия прочности по нормальным напряжениям, куда следует подставлять наибольший по абсолютной величине изгибающий момент из эпюры М.

В данном случае максимальный момент по модулю М = 60кНм

откуда: :

а) сечение круглой формы d=?

б) сечение прямоугольной формы при h/b = 2:

тогда

Размеры сечения, определенные из условия прочности по нормальным напряжениям, должны удовлетворять также условию прочности по касательным напряжениям:

Для простых форм сечений известны компактные выражения наибольшего касательного напряжения:

для круглого сечения 

для прямоугольного сечения 

Воспользуемся этими формулами. Тогда

— для балки круглого сечения при :

— для балки прямоугольного сечения

Чтобы выяснить, какое сечение требует меньшего расхода материала, достаточно сравнить величины площадей поперечных сечений:

Апрямоугольного = 865,3см2 < Акруглого = 1218,6см2, следовательно, балка прямоугольного сечения в этом смысле выгоднее, чем круглого.

 

Задача 4

Подобрать двутавровое сечение стальной балки, если [σ]=160МПа, [τ]=80МПа. 

Задаёмся направлениями опорных реакций А и В и составляем два уравнения статики для их определения:

(1)              ∑М(А) = – М1 F  ·2 — (q·8)·4 + М2 + В·6 =0,

откуда 

(2)      ∑М(В) = – М1А · 6 + F · 4 + (q·8)·2 + М2 =0,

откуда 

Проверка:

у = АFq · 8 + В = 104 – 80 – 20 · 8 +136 = 240 – 240 ≡ 0.

М(С) = М(z1) — М1=0,

М(z1) = М1= 40 кНм – постоянная функция.   

у= — Q(z1) = 0,

Q(z1) = 0.

II участок 

парабола.

Приz2=0:       М = 40 кНм,

z2=1м:    М = 40 + 104 – 10=134кНм,

z2=2м:    М = 40+ 104 · 2 – 10 · 22 = 208 кНм.

у=А q·z2 — Q(z2) = 0,

Q(z2) =Аq·z2 = 104 –  20·z2  – уравнение прямой,

при  z2 = 0:       Q = 104кН,

        z2 = 6м:    Q = 104 – 40 = 64кН.

III участок

— парабола.

Приz3=0:       М = 24+40=-16 кНм,

z3=2м:    М = 24 + 136·2 — 10 (2+2)2 = 24 + 272 – 160 = 136кНм,

z3=4м:    М = 24 + 136·4 – 10 (2+4)2 = 24 + 544 – 360 = 208 кНм.

у=В q(2+z3 ) + Q(z3) = 0,

Q(z3) =- В + q(2+z3 ) = -136 + 20 (2+z3 )   – уравнение прямой,

при  z3 = 0:        Q = -136 + 40 = — 94кН,

        z3 = 4м:     Q = — 136 + 20 (2+4) = — 136 + 120 = — 16кН.

IV участок

парабола.

z4=0:       М = 0кНм,

z4=1м:    М = – 10кНм,

z4=2м:    М = — 40кНм.

у=- q·z4 + Q(z4) = 0,

Q(z4) =q·z4 = 20·z4  – уравнение прямой.

Приz4 = 0:       Q = 0,

        z4 = 2м:     Q = 40кН.

Проверяем скачки в эпюрах:

а) В эпюре М скачок на правой опоре величиной 24кНм (от 16 до 40) равен сосредоточенному моменту М2=24, приложенному в этом месте.

б) В эпюре Q три скачка:

первый из них на левой опоре соответствует сосредоточенной реакции А=104кН,

второй – под силой F=80кН и равен ей (64+16=80кН),

третий – на правой опоре и соответствует правой опорной реакции 136кН (94+40=136 кН)

Наконец, проектируем двутавровое сечение.

Подбор его размеров производится из условия прочности по нормальным напряжениям :

 

В сортаменте двутавровых профилей профиля с точно таким моментом сопротивления Wх нет. Есть № 40а с Wх=1190 см3 и № 45а с Wх=1430 см3

Попробуем  меньший из них. Если принять двутавр № 40а, у которого Wх=1190 см3 , то наибольшее напряжение в опасном сечении будет:

и перенапряжение составитчто превышает рекомендуемую величину отклонения, равную 5%.

Поэтому приходится принимать ближайший больший размер двутавра, а именно №45а, у которого Wх=1430 см3. В этом случае балка будет работать с недонапряжением:

что меньше [σ]=160МПа на  

Итак, принимается двутавр №45а, у которого: Wх=1430 см3, Iх=32240см4, Iх: Sх=38,6см, d=11,5мм.

Далее необходима проверка прочности по касательным напряжениям с помощью условия прочности :

 

Это условие прочности выполняется, даже с избыточным запасом.

 

Задача 5

Подобрать сечение балки, рассмотрев шесть вариантов форм и три вида материалов (древесина, чугун, сталь).

Решение 

1.Определение опорных реакций 

М(А) = F · 2 + М1 М2q·6·7 + В · 8 =0,∑М(В) = F · 10 + М1М2А · 8 + q·6·1 =0,Проверка:

у = – 20 – 40 ·6 +50+210 = — 260 + 260 ≡ 0.

2.Построение эпюр изгибающих моментов и поперечных сил.

I участок

М(С) = М(z1) + F·z1=0,

М(z1) = — F·z1= -20·z1.

При z1=0:     М = 0,

        z1=2м:  М = – 40кНм,

у= — FQ(z1) = 0,

Q(z1) = — 20кН.

II участок

        z2=0:      М = — 20 – 40 = -60 кНм,

z2=4м:   М = 200 — 20 – 120 = 200 — 140 = 60кНм.

у=- F + А Q(z2) = 0,

Q =- F + А= -20+50=30кН.

III участок

парабола.

Приz3=0:      М = — 20·4= — 80 кНм,

z3=2м:   М = 210·2 — 20·(2+2)2 = 420 – 320 = 100кНм,

z3=4м:   М = 210·4 – 20 · (2+4)2 = 840 – 720 = 120кНм.

у= Q(z3) + В q·(2+z3) = 0,

Q(z3) = — В + q·(2+z3) = — 210 + 40·(2+z3) – уравнение прямой.

Приz3 = 0:       Q = -130кН,

        z3 = 4м:     Q = 30кН.

Q(z0) = — 210 + 40·(2+z0) = 0,

— 210 + 80 + 40·z0 = 0,

40·z0 = 130,

z0 =3,25м,

IV участок

парабола.

Приz4=0:      М = 0 кНм,

z4=1м:   М = – 20кНм,

z4=2м:   М = — 80кНм.

у=- q·z4 + Q(z4) = 0,

Q(z4) =q·z4 = 40·z4  – уравнение прямой,

        z4 = 0:        Q = 0,

        z4 = 2м:     Q = 80кН.

3. Подбор сечений (опасное сечение по σ: |maxМ|=131,25кНм,

опасное сечение по τ: |maxQ|=130кН).

Вариант 1. Деревянное прямоугольное ([σ]=15МПа, [τ]=3МПа)

Принимаем: В=0,24м,

                         Н=0,48м.

Проверяем по τ:

Вариант 2. Деревянное круглое

Принимаем d=0,45м,

Проверяем по τ:

Вариант 3. Чугун : ([σР]=30МПа, [σс]=120МПа, [τ]=15МПа)

Принимаем b=0,19м, тогда h=0,38м, d=0,076м.

Проверка по τ:

b(у)= b — d= 0,19 — 0,076 = 0,114м

Вариант 4. Сталь, двутавр : ([σ]=160МПа, [τ]=80МПа).

по сортаменту Wх=953см3. Это №40: Ix=19062см4, Sх=545см3, d=0,83см.

Проверка по τ:

Вариант 5. Сталь, круглая труба

Принимаем D=0,22м   →  d = 0,6·D =0,132м.

Проверка по τ:

Вариант 6. Сталь, прямоугольная труба  

b1= b — 2t = b — 2·0,1b = 0,8b,

h1= h — 2= 0,8h,

Принимаем b=0,13м, h=0,26м.

Проверка по τ:

Кстати: какое из сечений стальной балки выгодней по расходу материала?

Двутавр —  А = 72,6см2 = 72,6·10-4 = 0,00726м2,

круглая труба

прямоугольная труба — 

Самый лёгкий: двутавр → самый выгодный с точки зрения изгиба.

 

prosopromat.ru

Расчёт балок на прочность при изгибе

Задача 1

В некотором сечении балки прямоугольного сечения 20×30см М=28 кНм, Q=19 кН.

Требуется:

а) определить нормальное и касательное напряжения в заданной точке К, отстоящей от нейтральной оси на расстоянии 11 см,

б) проверить прочность деревянной балки, если [σ]=10 МПа, [τ]=3 МПа.

Решение

а) Для определения σ(К), τ(К) и maxσ,maxτ потребуется знать величины осевого момента инерции всего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсечённой части  и статического момента половины сечения Smax:

Тогда:

б) Проверка прочности:

по условию прочности нормальных напряжений:

по условию прочности касательных напряжений:

Задача 2

В некотором сечении балки М=10кНм, Q=40кН. Поперечное сечение – треугольное. Найти нормальное и касательное напряжения в точке, отстоящей от нейтральной оси на расстоянии 15 см.

где 

Тогда

где:

Тогда

Задача 3

Подобрать сечение деревянной балки в двух вариантах: круглое и прямоугольное (при h/b=2), если [σ]=10 МПа, [τ]=3 МПа, и сравнить их по расходу материала.

Задаёмся направлениями опорных реакций А и В и составляем уравнения статики:

(1)          ∑М(В) = F·8 – М А·6 + (q·6)·3 =0,

откуда 

(2)          ∑М(А) = F·2 – М + В·6 — (q·6)·3 =0,

откуда 

Iучасток   

М(С) = М(z1) +F·z1=0,

ММ(z1) = —F·z1= — 30 ·z1 —

– уравнение прямой.

При z1 = 0:      М = 0,

z1 = 2:      М =- 60 кНм.

у= — F — Q(z1) = 0,

Q(z1) = — F = -30 кН – постоянная функция.

II участок     

откуда

— уравнение параболы.

При z2=0:     М = 0,

z2=3м:  М = 30 · 3 – 5 · 32 = 90 — 45 = 45кНм,

z2=6м:  М = 30 · 6 – 5 · 62 = 180 — 180 = 0.

у= Q(z2) — q·z2 + B= 0,

Q(z2) = q·z2 — B= 10·z2 – 30 – уравнение прямой,

при  z2 = 0:     Q = -30,

        z2 = 6м:     Q = 10·6 – 30 = 30.

Определение аналитического максимума изгибающего момента второго участка:

из условиянаходим :

И тогда

Заметим, что скачок в эп.М расположен там, где приложен сосредоточенный момент М = 60кНм и равен этому моменту, а скачок в эп.Q – под сосредоточенной силой А = 60 кН.

Подбор сечения балок производится из условия прочности по нормальным напряжениям, куда следует подставлять наибольший по абсолютной величине изгибающий момент из эпюры М.

В данном случае максимальный момент по модулю М = 60кНм

откуда: :

а) сечение круглой формы d=?

б) сечение прямоугольной формы при h/b = 2:

тогда

Размеры сечения, определенные из условия прочности по нормальным напряжениям, должны удовлетворять также условию прочности по касательным напряжениям:

Для простых форм сечений известны компактные выражения наибольшего касательного напряжения:

для круглого сечения 

для прямоугольного сечения 

Воспользуемся этими формулами. Тогда

— для балки круглого сечения при :

— для балки прямоугольного сечения

Чтобы выяснить, какое сечение требует меньшего расхода материала, достаточно сравнить величины площадей поперечных сечений:

Апрямоугольного = 865,3см2 < Акруглого = 1218,6см2, следовательно, балка прямоугольного сечения в этом смысле выгоднее, чем круглого.

 

Задача 4

Подобрать двутавровое сечение стальной балки, если [σ]=160МПа, [τ]=80МПа. 

Задаёмся направлениями опорных реакций А и В и составляем два уравнения статики для их определения:

(1)              ∑М(А) = – М1 F  ·2 — (q·8)·4 + М2 + В·6 =0,

откуда 

(2)      ∑М(В) = – М1А · 6 + F · 4 + (q·8)·2 + М2 =0,

откуда 

Проверка:

у = АFq · 8 + В = 104 – 80 – 20 · 8 +136 = 240 – 240 ≡ 0.

М(С) = М(z1) — М1=0,

М(z1) = М1= 40 кНм – постоянная функция.   

у= — Q(z1) = 0,

Q(z1) = 0.

II участок 

парабола.

Приz2=0:       М = 40 кНм,

z2=1м:    М = 40 + 104 – 10=134кНм,

z2=2м:    М = 40+ 104 · 2 – 10 · 22 = 208 кНм.

у=А q·z2 — Q(z2) = 0,

Q(z2) =Аq·z2 = 104 –  20·z2  – уравнение прямой,

при  z2 = 0:       Q = 104кН,

        z2 = 6м:    Q = 104 – 40 = 64кН.

III участок

— парабола.

Приz3=0:       М = 24+40=-16 кНм,

z3=2м:    М = 24 + 136·2 — 10 (2+2)2 = 24 + 272 – 160 = 136кНм,

z3=4м:    М = 24 + 136·4 – 10 (2+4)2 = 24 + 544 – 360 = 208 кНм.

у=В q(2+z3 ) + Q(z3) = 0,

Q(z3) =- В + q(2+z3 ) = -136 + 20 (2+z3 )   – уравнение прямой,

при  z3 = 0:        Q = -136 + 40 = — 94кН,

        z3 = 4м:     Q = — 136 + 20 (2+4) = — 136 + 120 = — 16кН.

IV участок

парабола.

z4=0:       М = 0кНм,

z4=1м:    М = – 10кНм,

z4=2м:    М = — 40кНм.

у=- q·z4 + Q(z4) = 0,

Q(z4) =q·z4 = 20·z4  – уравнение прямой.

Приz4 = 0:       Q = 0,

        z4 = 2м:     Q = 40кН.

Проверяем скачки в эпюрах:

а) В эпюре М скачок на правой опоре величиной 24кНм (от 16 до 40) равен сосредоточенному моменту М2=24, приложенному в этом месте.

б) В эпюре Q три скачка:

первый из них на левой опоре соответствует сосредоточенной реакции А=104кН,

второй – под силой F=80кН и равен ей (64+16=80кН),

третий – на правой опоре и соответствует правой опорной реакции 136кН (94+40=136 кН)

Наконец, проектируем двутавровое сечение.

Подбор его размеров производится из условия прочности по нормальным напряжениям :

 

В сортаменте двутавровых профилей профиля с точно таким моментом сопротивления Wх нет. Есть № 40а с Wх=1190 см3 и № 45а с Wх=1430 см3

Попробуем  меньший из них. Если принять двутавр № 40а, у которого Wх=1190 см3 , то наибольшее напряжение в опасном сечении будет:

и перенапряжение составитчто превышает рекомендуемую величину отклонения, равную 5%.

Поэтому приходится принимать ближайший больший размер двутавра, а именно №45а, у которого Wх=1430 см3. В этом случае балка будет работать с недонапряжением:

что меньше [σ]=160МПа на  

Итак, принимается двутавр №45а, у которого: Wх=1430 см3, Iх=32240см4, Iх: Sх=38,6см, d=11,5мм.

Далее необходима проверка прочности по касательным напряжениям с помощью условия прочности :

 

Это условие прочности выполняется, даже с избыточным запасом.

 

Задача 5

Подобрать сечение балки, рассмотрев шесть вариантов форм и три вида материалов (древесина, чугун, сталь).

Решение 

1.Определение опорных реакций 

М(А) = F · 2 + М1 М2q·6·7 + В · 8 =0,∑М(В) = F · 10 + М1М2А · 8 + q·6·1 =0,Проверка:

у = – 20 – 40 ·6 +50+210 = — 260 + 260 ≡ 0.

2.Построение эпюр изгибающих моментов и поперечных сил.

I участок

М(С) = М(z1) + F·z1=0,

М(z1) = — F·z1= -20·z1.

При z1=0:     М = 0,

        z1=2м:  М = – 40кНм,

у= — FQ(z1) = 0,

Q(z1) = — 20кН.

II участок

        z2=0:      М = — 20 – 40 = -60 кНм,

z2=4м:   М = 200 — 20 – 120 = 200 — 140 = 60кНм.

у=- F + А Q(z2) = 0,

Q =- F + А= -20+50=30кН.

III участок

парабола.

Приz3=0:      М = — 20·4= — 80 кНм,

z3=2м:   М = 210·2 — 20·(2+2)2 = 420 – 320 = 100кНм,

z3=4м:   М = 210·4 – 20 · (2+4)2 = 840 – 720 = 120кНм.

у= Q(z3) + В q·(2+z3) = 0,

Q(z3) = — В + q·(2+z3) = — 210 + 40·(2+z3) – уравнение прямой.

Приz3 = 0:       Q = -130кН,

        z3 = 4м:     Q = 30кН.

Q(z0) = — 210 + 40·(2+z0) = 0,

— 210 + 80 + 40·z0 = 0,

40·z0 = 130,

z0 =3,25м,

IV участок

парабола.

Приz4=0:      М = 0 кНм,

z4=1м:   М = – 20кНм,

z4=2м:   М = — 80кНм.

у=- q·z4 + Q(z4) = 0,

Q(z4) =q·z4 = 40·z4  – уравнение прямой,

        z4 = 0:        Q = 0,

        z4 = 2м:     Q = 80кН.

3. Подбор сечений (опасное сечение по σ: |maxМ|=131,25кНм,

опасное сечение по τ: |maxQ|=130кН).

Вариант 1. Деревянное прямоугольное ([σ]=15МПа, [τ]=3МПа)

Принимаем: В=0,24м,

                         Н=0,48м.

Проверяем по τ:

Вариант 2. Деревянное круглое

Принимаем d=0,45м,

Проверяем по τ:

Вариант 3. Чугун : ([σР]=30МПа, [σс]=120МПа, [τ]=15МПа)

Принимаем b=0,19м, тогда h=0,38м, d=0,076м.

Проверка по τ:

b(у)= b — d= 0,19 — 0,076 = 0,114м

Вариант 4. Сталь, двутавр : ([σ]=160МПа, [τ]=80МПа).

по сортаменту Wх=953см3. Это №40: Ix=19062см4, Sх=545см3, d=0,83см.

Проверка по τ:

Вариант 5. Сталь, круглая труба

Принимаем D=0,22м   →  d = 0,6·D =0,132м.

Проверка по τ:

Вариант 6. Сталь, прямоугольная труба  

b1= b — 2t = b — 2·0,1b = 0,8b,

h1= h — 2= 0,8h,

Принимаем b=0,13м, h=0,26м.

Проверка по τ:

Кстати: какое из сечений стальной балки выгодней по расходу материала?

Двутавр —  А = 72,6см2 = 72,6·10-4 = 0,00726м2,

круглая труба

прямоугольная труба — 

Самый лёгкий: двутавр → самый выгодный с точки зрения изгиба.

 

prosopromat.ru