Преднапряженный железобетон – Предварительно напряженные железобетонные конструкции: использование

Содержание

Предварительно напряженные железобетонные конструкции: использование

Железобетонные конструкции — основа современного строительства. Однако они имеют существенные изъяны, связанные, в первую очередь, с недостаточной нагрузочной способностью и образованием трещин в камне при эксплуатационных нагрузках. Усовершенствование технологии изготовления изделий из бетона и стальной арматуры привело к созданию преднапряженного железобетона, который обладает рядом преимуществ.

Определение

Предварительно напряженные железобетонные конструкции — строительные изделия, бетон которых на этапе создания принудительно получает начальную расчетную напряженность сжатия. Она создается за счет предварительного формирования напряжения растяжения в рабочей высокопрочной арматуре и обжатия ею бетона на тех участках, которым предстоит испытывать растяжение (прогиб) при эксплуатации. Сжимаясь, арматура не проскальзывает, так как сцеплена с материалом или удерживается анкерным закреплением арматуры на торцах изделий. Таким образом, напряжение растяжения, которое приобретает железобетонный состав с помощью армирования, уравновешивает напряженность заблаговременного обжатия камня.

Вернуться к оглавлению

Преимущества

Предварительно напряженный железобетон долгосрочно отодвигает время начала формирования расколов в изделиях, работающих на прогиб, сокращает глубину их раскрывания. Вместе с тем изделия приобретают повышенную жесткость, не снижая прочности.

Предварительно напряженным железобетонным балкам свойственно хорошо работать на сжатие и прогиб, имея одинаковую прочность по длине, что позволяет увеличивать ширину перекрываемых пролетов. В таких конструкциях уменьшаются размеры поперечного сечения, следовательно, сокращаются объем и вес комплектующих элементов (на 20 – 30%), а также расход цемента. Более рациональное использование свойств стали позволяет сокращать расход арматуры (стержневой и проволочной) до 50%, особенно из высокопрочных марок (A-IV и выше), имеющих значительный предел прочности. Химическая нейтральность бетона к стали способствует предохранению арматуры от коррозии. Вместе с тем повышенная трещиностойкость предохраняет напряженную арматуру от ржавления в сооружениях, которые находятся под постоянным давлением воды, иных жидкостей, газов.

Методы возведения зданий, используемые в строительстве каркаса, базируются на технологии предварительного напряжения конструкций из железобетона в процессе строительства.

Напряженная арматура, обжимающая бетон сборочных единиц, обеспечивает практичную их стыковку путем значительного сокращения расходования металла на стыках. Сборные и сборно-монолитные изделия из железобетонных напряженных конструкций могут состоять из стыкуемых частей с одинаковым поперечным сечением, которые по краям выполняются из ненапряженных облегченных (тяжелых) бетонов, а нагружаемый фрагмент — преднапряженный железобетон. Такая продукция имеет повышенную выносливость, компенсируя повторяющиеся динамические воздействия.

Данное свойство позволяет демпфировать изменения напряжений в бетоне и арматуре, вызываемые колебаниями внешних нагрузок. Повышенная сейсмическая стойкость зданий повышается за счет большой конструкционной устойчивости напряженного железобетона, обжимающего отдельные их фрагменты. Конструкция в предварительно напряженном виде обеспечивает большую безопасность, так как ее разрушению предшествует запредельный прогиб, сигнализирующий об исчерпании конструкцией прочности.

Вернуться к оглавлению

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Вернуться к оглавлению

Материалы для конструкций

Железобетон — многокомпонентный материал, основными составляющими которого являются бетон и стальная арматура. Параметры их качества определяются особыми требованиями при проектировании к элементам конструкций на месте применения.

Вернуться к оглавлению

Бетон

Формы для заливки бетона с прутьями для передачи предварительного напряжения.

Предварительное напряжение в железобетоне обеспечивается применением тяжелых составов средней плотности от 2200 до 2500 кг/м3, которые имеют классы по прочности на осевое растяжение выше Bt0,8, по прочности от В20 и больше, марки по водонепроницаемости от W2 и выше, по морозостойкости от F50. Требования к продукции гарантируют бетону нормативную прочность не ниже установленной с вероятностью 0,95 (в 95% случаев). Смесь должна набрать возраст не меньше 28 суток до получения материалом предварительных напряжений. На ранних стадиях эксплуатации бетонный камень способен частично утерять напряженное качество за счет общего снижения напряженности стали (до 16%). Коэффициент надежности материала на растяжение и сжатие в предельных состояниях установлен для эксплуатационной пригодности не ниже 1,0.

Вернуться к оглавлению

Арматура

Стальная начинка должна оставаться напряженной в железобетонном изделии на всем интервале эксплуатации, выдерживая без вытяжения длительно приложенные нагрузки. В преднапряженных изделиях из железобетона используется высокопрочная сталь с незначительной текучестью, соответствующей параметрам ползучести бетона.

С целью компенсирования эксплуатационной потери некоторой величины преднапряжения при изготовлении ее значение устанавливают чуть выше, чем предусмотрено строительными требованиями для конструкционного элемента. В продукции применяют горячекатаную упрочненную, холоднодеформированную арматуру, арматурную проволоку (пучки, пакеты, пряди), канаты, сварные каркасы и пр. Поперечное сечение арматуры может быть гладким, периодическим, а укладка проволоки и канатов серповидной и кольцевой.

Сталь должна гарантированно соответствовать установленному классу относительно прочности по преднапряженному растяжению (текучесть металла должна находиться в пределах 0,2% относительного удлинения) с вероятностью от 0,95 и выше. Арматуре необходимо быть пластичной, хладостойкой, свариваемой и пр. Надежное сцепление с бетонной смесью обеспечивается формированием арматурой сложных пространственных поверхностей.

Вернуться к оглавлению

Области использования конструкций

Предварительно напряженный бетон позволяет сократить до 50% расхода арматурной стали.

Преднапряженные изделия используются, когда применение обычного железобетона нецелесообразно (перерасход материалов, рост веса и стоимости, невозможность обеспечить несущую прочность и пр.). Сферами их использования являются гражданское, промышленное, специальное и гидротехническое строительство. Объекты — каркасы и мосты с широкими пролетами, напорные трубопроводы, плотины, водонепроницаемые емкости и пр.

А также из них создают подпорные стены, ограждающие панели, лестничные марши, подкрановые балки, фундаменты, колонны, столбы ЛЭП, каркасы тоннелей, междуэтажные перекрытия и пр. Такая продукция незаменима и при возведении построек в условиях взрыво- и сейсмоопасности. Особенно эффективна она при формировании сборно-монолитных конструкций, когда отдельные преднапряженные сборные элементы соединяются в проектном положении арматурой так, что работают как одно целое.

Вернуться к оглавлению

Вывод

Преднапряженные изделия из железобетона имеют много достоинств. Их недостатки могут быть нивелированы качеством проектирования, производства и монтирования, способствующим длительной эксплуатации.

kladembeton.ru

Предварительно напряженный железобетон – в чем его плюсы и минусы?

Для многих строительных объектов сегодня используется предварительно напряженный железобетон. В чем его отличие от типичного ЖБИ? Дело в том, что главный недостаток железобетонных блоков заключается в малой прочности при растяжении. И как следствие, появление трещин и других дефектов. Напряженный железобетон позволяет исключить их появление и способствует экономии металла и бетона при его изготовлении. О других преимуществах и недостатках расскажем ниже.

Что из себя представляет предварительно напряженный железобетон? ↑

Производство предварительно напряженной арматуры продемонстрировано на видео

Современные железобетонные изделия, используемые для возведения различных зданий, имеют некоторые минусы, которые в дальнейшем сказываются на эксплуатационных свойствах конструкции. Во-первых, значительный вес и объем блоков. Масса в среднем равна 2400 кг/м3. В дальнейшем это сильно отражается на конструкциях, имеющих изгиб (ригелях, балках). Под действием тяжести возникает большое напряжение на растяжение. И потому растянутую часть приходится дополнительно укреплять и размещать там больше арматуры. А это еще больше увеличивает общую массу конструкции.

Во-вторых, недостатком считают малую прочность бетона при растяжении. Хоть он и не разрушается, но на поверхности появляются некоторые трещины. Они ухудшают эстетический вид строения и разрушают верхний слой, который защищает от коррозии арматуру. Постепенно эти трещины становятся больше и заметнее. Сущность технологии предварительного напряжения заключена в том, что предварительно натягивают арматуру и затем осуществляют бетонирование. После полного затвердевания бетона напряжение убирают. Таким образом, перед строительством объектов, железобетон уже подвергнут необходимому напряжению на сжатие.

Каковы преимущества напряженного железобетона? ↑

На видео — резка бетона

Итак, как уже было сказано, железобетон напряженный готовится в предварительно натянутой арматуре. Устанавливается железобетон в строительные конструкции в уже напряженном на сжатие состоянии. С одной стороны он имеет ряд плюсов, с другой стороны имеются и некоторые минусы. Среди основных преимуществ выделяют следующие:

  • Является более экономичным материалом. В среднем на 40-60% сокращается расход стали, которая используется для производства арматуры. Также на изготовление уходит меньше цемента. Уменьшается сечение, следовательно становится меньше вес и объем.
  • Преднапряженный железобетон имеет прекрасную стойкость к трещинообразованию и дальнейшему их расширению. Как следствие, предохраняет металлическую арматуру от появления коррозии. В особенности это важно для сооружений, находящихся в постоянном взаимодействии с водой (труб, резервуаров, плотин).
  • Может использоваться для специальных строений, в которых нельзя или нежелательно применять типичные ЖБИ. В том числе благодаря тому, что уменьшается масса и объем, железобетон напряженный легче и проще использовать для стыков сборных частей конструкции. Это могут быть: балки кровельные и подкрановые, плиты для покрытий в помещениях промышленного назначения.
  • Расширяется сфера применения материала. Его можно использовать не только для сборных, но и для монолитно-сборных сооружений. В этом случае его применяют только в тех участках, где наблюдается напряжение конструкции. В остальных же частях используется типичный легкий пенобетон, тяжелый бетон или монолитный железобетон.
  • С течением времени увеличивается сейсмостойкость напряженно-армированых конструкций. Объясняется это тем, что в процессе изготовления используются более легкие материалы для сечения.

Недостатки преднапряженного железобетона ↑

Помимо достоинств железобетон преднапряженный имеет и свои недостатки. Самым главным минусом можно считать высокую трудоемкость и сложность изготовления. Дело в том, что в процессе производства требуются тщательные расчеты. Важно также предусматривать способ транспортировки, хранения и монтажа конструкции. Если не подумать об этом заранее и не подготовить тщательный проект изготовления, то могут появиться нежелательные растягивающие или сжимающие напряжения. Они в дальнейшем приведут к аварийной ситуации. К примеру, при неравномерном обжатии в торцах конструкции могут появиться трещины, которые значительно снизят несущую способность. К прочим недостаткам относят:

  • Из-за повышенной звуко- и теплопроводности необходимо дополнительно использовать изолирующие материалы для всей конструкции.
  • Имеют более низкую огнестойкость, чем типичные ЖБИ. Хотя также отличается несгораемостью.
  • Вес напряженных ЖБИ гораздо меньше массы обычных железобетонных изделий, но выше массы деревянных и металлических конструкций.

Выбирать напряженные железобетонные изделия стоит строго исходя из проекта, так как это обеспечит конструкцию должной безопасностью, надежность и долговечностью.

mastter.ru

О предварительно напряженном железобетоне

Категория: Арматурные работы

О предварительно напряженном железобетоне

Железобетонные конструкции, применяемые в современном строительстве, отличаются некоторыми недостатками. Одним из них является большой собственный вес железобетона, равный 2500 кг/м3 (в том числе 100 кг/м3 составляет в среднем арматура). Особенно серьезно это отражается на горизонтальных конструкциях, работающих на изгиб, — плитах, балках, ригелях и др. Под действием нагрузки здесь появляется напряжение на растяжение. Поэтому в растянутой зоне сечения железобетонной конструкции приходится размещать большое количество арматуры, что увеличивает площадь сечения и вес конструкции.

Другим недостатком железобетонных конструкций является неполное использование свойств арматурной стали, в частности ее прочности на растяжение. При полном использовании прочности арматурных стержней бетон дает трещины в зоне растяжения конструкций, хотя напряжение в арматуре не превышает предела текучести. Это недопустимо при эксплуатации сооружений.

Упомянутые недостатки в значительной степени устраняются в предварительно напряженных железобетонных конструкциях.

Сущность предварительного напряжения (рис. 1) заключается в следующем. Рабочую арматуру конструкции перед бетонированием натягивают и в натянутом состоянии производят бетонирование. После того как бетон схватится, затвердеет и приобретет необходимую прочность, натягивающее усилие снимают. При этом арматурная сталь стремится опять сж‘аться (сократиться по длине) и часть сжимающих усилий передает окружающему бетону.

Таким образом, бетон в изготовленной предварительно напряженной конструкции еще до установки ее в сооружение и передачи на нее различных эксплуатационных нагрузок уже подвергнут напряжению на сжатие, или, как говорят, в конструкции искусственно создано внутреннее напряженное состояние, характеризующееся сжатием бетона и растяжением арматуры.

Прежде чем бетон в предварительно напряженной конструкции, воспринимая расчетную (эксплуатационную) нагрузку, начнет работать на растяжение, в нем должно быть сначала погашено предварительно созданное сжатие.

Наличие предварительного напряжения позволяет увеличивать нагрузку на конструкцию по сравнению с конструкцией, армированной обычным способом, или при прежней величине нагрузки уменьшать размеры конструкции, т. е. экономить бетон и сталь.

Впервые идея предварительного напряжения (обжатия) элементов, работающих на растяжение, была предложена в 1861 г. русским ученым, академиком А. В. Гадолиным для стволов пушек.

Преимущества предварительно напряженных железобетонных конструкций перед обычными заключаются в следующем.

1. Способность бетона хорошо работать на сжатие полностью используется во всем сечении. Это позволяет уменьшить сечения, а следовательно, объем и вес предварительно напряженных элементов на 20—30% и сократить расход материалов, в частности цемента.

2. Благодаря лучшему использованию свойств арматурной стали в предварительно напряженных конструкциях по сравнению с обычными сокращается расход арматуры. Экономия арматуры, особенно эффективная и нужная при применении сталей с высоким пределом прочности, достигает 40%.

3. Конструкции с предварительно напряженной арматурой (напряженно-армированные) отличаются высокой трещиностойкостью, что предохраняет арматуру от ржавления. Это имеет большое значение для сооружений, находящихся под постоянным давлением воды или каких-либо других жидкостей и газа (трубы, плотины, резервуары и т. п.).

4. Вследствие уменьшения объема и веса напряженно-армированных железобетонных элементов облегчается применение сборных конструкций.

Примерами наиболее распространенных сборных предварительно напряженных конструкций являются плиты для покрытий промышленных зданий, подкрановые балки, кровельные балки и др.

Использование предварительного напряжения эффективно не только в сборных, но и в монолитных и в сборно-монолитных железобетонных конструкциях. Сборно-монолитные конструкции состоят из сборных предварительно напряженных элементов, воспринимающих усилия совместно с бетоном и арматурой, дополнительно укладываемыми после установки сборных элементов в проектное положение.

При возведении сборно-монолитных конструкций отдельные сборные элементы соединяют таким образом, что в дальнейшем при эксплуатации они работают как одно целое. Это делают следующим образом.

При изготовлении сборных элементов будущей сборно-монолитной конструкции у них оставляют выпуски арматуры. Во время монтажа этих элементов в швы между ними укладывают и приваривают к выпускам дополнительные арматурные стержни так, чтобы арматура соседних элементов составляла одно целое. Затем армированные швы (или стыки) заполняют бетоном, или, как говорят, замоноличивают. После затвердения бетона в стыках и швах получается конструкция, называемая сборно-монолитной.

Этот метод часто используют в конструкциях многоэтажных зданий (рис. 1) и в пространственных конструкциях с криволинейными очертаниями — сводах и куполах.

Рис. 1. Стык арматуры сборных прогонов и плит многоэтажного промышленного здания с закладкой в колонны трехрядных арматурных коротышей:
1 — стык коротыша с выпусками арматуры прогонов, 2 — арматурный коротыш, 3 —арматура, закладываемая в швы между сборными плитами

Примером уникального монолитного железобетонного сооружения, впервые в мировой практике осуществленного советскими строителями, является Останкинская телевизионная башня (рис. 2, а) в Москве.

Общая высота башни 525 м. Нижний ярус до отметки 17,5 м представляет собой десять отдельных железобетонных опор. Выше этой отметки до отметки 63 м отдельные опоры объединены в железобетонный конус со сплошной стенкой. От отметки 63 до отметки 385 поднимается железобетонный ствол башни диаметром соответственно 18 и 8,2 м со стенками толщиной от 40 до 35 см (рис. 2, б). Стенки ствола армированы двойной сеткой из стали 35ГС периодического профиля с интенсивностью армирования до 230 кг/м3.

Между армированными сетками устанавливают специальные рамки (рис. 2, в). Взаимное положение металлических щитов внутренней и наружной опалубки и арматурных сеток, а следовательно, толщина защитного сдоя бетона фиксировались болтами 9 с надетыми на них пластмассовыми трубками (рис. 2, в).

Рис. 2. Останкинская телевизионная башня в Москве:
а — общий вид, б — разрез ствола башни, в — деталь установки опалубки и арматуры в стенке ствола башии; г — опоры, 1 — конусная часть башни, 3 — железобетонный ствол, 4 — служебные помещения, 5 — ресторан, 6 — стальная антенна, 7 — щиты внутренней опалубки, 8 — щиты наружной опалубки, 9 — болт, 10 — арматурные сетки, 11 — рамка, 12 — пластмассовая трубка ствола башни

В качестве напрягаемой арматуры нижней части и ствола башни применены канаты диаметром 38 мм, расположенные в восемь ярусов от фундамента до отметки 385. Длина канатов, проходящих в каналах внутри стенок, колеблется от 154 до 344 м. Натяжение канатов выполнялось с помощью гидродомкратов; усилие натяжения достигало 69 тс. Всего в конструкции башни уложено 1040 т арматурной стали.

Рис. 3. Сечения проволочных арматурных пучков:
а — незакрепленных по концам, б — закрепленных по концам, в — многорядных, г — из групп проволок; 1 — напрягаемые проволоки пучка, 2 — вязальная проволока, 3 — спираль, 4 — короткие проволоки, 5 — центральная проволока, 6 — трубка, 7 — раствор, 8 — группа проволок, 9 — дополнительные проволоки

В качестве напрягаемой арматуры для предварительно напряжен ных конструкций целесообразно применять арматурную сталь с более высокими механическими характеристиками; этим достигается наибольшая экономия арматуры, уменьшение сечения и веса конструкции.

Поэтому преднапряженные конструкции армируют, как правило, высокопрочной арматурной сталью и изделиями из нее следующих видов: – горячекатаная сталь периодического профиля класса А-Шв, упрочненная вытяжкой; – горячекатаная сталь периодического профиля классов Ат-V и. Ат-VI, термически упрочненная; – горячекатаная сталь периодического профиля классов А-IV и A-V; – высокопрочная арматурная проволока, гладкая и периодического профиля классов B-II и Вр-П; проволочные пряди; проволочные канаты; пучки (рис. 3) и пакеты из высокопрочной проволоки. Для предварительно напряженных конструкций очень важно обеспечение надежного сцепления поверхности арматуры с окружающим бетоном.

Этим объясняется применение в качестве напрягаемой арматуры прядей и канатов со сложной формой поверхности.

Семипроволочные пряди вырабатывают из проволок диаметром 1,5—5 мм. Многопрядные канаты изготовляют из проволок диаметром 1—3 мм. Пучок состоит из проволок, расположенных по окружности, в количестве от 8 до 48. Для сохранения взаимного расположения проволок внутри пучка через 1—1,5 м устанавливают отрезки проволочных спиралей. В этих же местах снаружи пучок стягивают вязальной проволокой (рис. 3, а, в, г). Пучки, закрепленные по концам (рис. 3, б), состоят из 8—24 проволок. В местах установки коротких проволок 4 по длине пучка остаются щели, через которые середина пучка заполняется раствором. Многорядные пучки из групп проволок диаметром до 8 мм (рис. 3, в) применяют в инженерных сооружениях, например мостах. Пакет представляет собой группу проволок или прядей, расположенных в несколько рядов по горизонтали и вертикали по правильной геометрической сетке.

Натяжение арматуры при армировании предварительно напряженных конструкций выполняют двумя способами — до или после бетонирования.

Натяжение на формы или упоры. При армировании по этому способу арматурные стержни натягивают перед укладкой бетонной смеси. Усилия натяжения, достигающие по величине иногда нескольких десятков тонн, воспринимаются мощной конструкцией стальной формы, в которой изготовляют изделие, или специальными упорами стенда, поэтому этот способ называют стендовым. Бетонируют конструкцию при натянутой арматуре. Когда после отвердения бетона натяжные приспособления снимают, сжатие бетона достигается за счет сцепления между стремящимися сжаться арматурными стержнями и окружающим их затвердевшим бетоном.

Уменьшение длины при сжатии показано в условном масштабе, гак как на глаз оно бывает незаметно.

При данном способе контроль натяжения (а следовательно, и напряжения) арматуры осуществляется до обжатия бетона.

Натяжение арматуры на бетон. В данном случае усилие натяжения арматуры воспринимается не формой, а затвердевшим бетоном. Этим способом пользуются главным образом для армирования конструкций, собираемых из отдельных блоков. Способ натяжения на бетон позволяет собирать крупноразмерные конструкции (длиной до 30 м и более) у места их установки из отдельных, легко перевозимых частей меньшего размера. Натяжение арматуры контролируют в процессе обжатия бетона. Обжатие можно производить только после накопления затвердевшим бетоном прочности, достаточной для восприятия усилий, создаваемых натяжными устройствами.

Применяют различные способы натяжения арматуры: механический — с помощью специальных домкратов; электротермический, при котором используют свойство стального прутка удлиняться при нагревании, и электротермомеха- нический, представляющий собой сочетание двух первых.

Различают способы укладки напрягаемой арматуры: линейный, при котором укладывают отдельные стержни, проволочные пучки или пакеты точно отмеренной длины, и способ непрерывной укладки (навивки) арматуры прямо из бухты на штыри вращающегося поддона или с помощью перемещающейся навивочной машины.

Арматурные работы — О предварительно напряженном железобетоне

gardenweb.ru

Предварительно напряженный железобетон в конструкциях мостов

Предварительно напряженный железобетон в конструкциях мостов

В железобетоне без предварительного напряжения при правильном проектировании и изготовлении конструкций можно предотвратить раскрытие трещин до предела, опасного с точки зрения коррозии арматуры и бетона, если применять арматуру из стали класса A–I – А–III. Целесообразное использование арматуры более высокой прочности в железобетоне без предварительного напряжения невозможно из–за возникновения уже при эксплуатационной нагрузке трещин недопустимого раскрытия, несмотря на повышение сцепления арматуры с бетоном путем применения стержней периодического профиля.

Для получения экономичной конструкции без трещин или с трещинами ограниченного раскрытия при использовании высокопрочной арматуры применяют предварительно напряженный железобетон.

Идея предварительно напряженного железобетона заключается в том, что при изготовлении в конструкции создают наиболее рациональное напряженное состояние. Применяют в основном два способа создания предварительного напряжения в конструкции: натяжение арматуры на бетон и натяжение арматуры на упоры.

Для изгибаемых элементов наиболее целесообразно создавать в сечении неравномерно распределенные предварительные напряжения так, чтобы максимальные сжимающие напряжения были в наиболее растянутых от внешних сил частях конструкции. Для этого напрягаемую арматуру располагают эксцентрично. От действия усилия преднапряжения в сечении возникает внецентренное сжатие, причем, кроме сжимающего усилия, в сечении действует изгибающий момент, обратный по знаку моменту от внешней нагрузки. При изготовлении элемент получает изгиб, обратный прогибу от внешней нагрузки, для чего предварительно напрягаемую арматуру располагают в сечении у наиболее растянутого волокна. Таким образом, преднапряженная арматура выполняет две функции: при эксплуатации сооружения создает сжимающие напряжения в бетоне, препятствуя появлению трещин, а при нагрузках, близких к разрушающим, когда растянутая зона бетона пересечена трещинами, воспринимает растягивающие усилия, как и арматура в ненапрягаемых элементах.

Предварительное напряжение создают для исключения или уменьшения не только основных растягивающих напряжений в сечениях, перпендикулярных к оси элемента, но и главных растягивающих напряжений, особенно при применении наряду с продольной арматурой также поперечной или наклонной преднапряженной арматуры. Предварительное напряжение препятствует и появлению местных растягивающих напряжений.

В бетоне может быть создано одноосное, двухосное или трехосное напряженное состояние. Размеры поперечного сечения сжатых элементов можно существенно уменьшить, если применить поперечное обжатие в двух направлениях, например, навивкой на бетонный сердечник спирали из высокопрочной проволоки под напряжением (косвенное напряженное армирование). В плите сборных пролетных строений можно создавать горизонтальное поперечное преднапряжение, одновременно объединяя балки в единую конструкцию.

Напряженное состояние элемента можно регулировать в широких пределах, создавая искусственные поля напряжений, благоприятные для конструкции, целесообразно назначая величину, направление и точки приложения усилий преднапряжения.

Таким образом, предварительно напряженный железобетон целесообразно применять в изгибаемых,  растянутых и внецентренно растянутых элементах, а также во внецентренно сжатых элементах с большим эксцентриситетом сжимающей силы. В сжатых элементах предварительное напряжение можно создавать в косвенной арматуре.

Предварительно напряженные конструкции мостов имеют преимущества в сравнении с конструкциями из железобетона без предварительного напряжения. К ним относится прежде всего экономия металла (его требуется в 1,5–2,5 раза меньше), достигаемая в основном за счет применения высокопрочной арматуры. Наряду с экономией металла уменьшается расход бетона за счет снижения главных растягивающих напряжений. В результате в ряде случаев уменьшается вес частей сооружения и облегчаются перевозка и монтаж сборных конструкций.

Предварительно напряженная арматура позволяет применять обжатые стыки в сборных конструкциях, что дает экономию металла, идущего на закладные части, и повышает качество стыков. Только при использовании преднапряженной арматуры становится возможным применение таких прогрессивных способов сооружения железобетонных мостов, как навесное бетонирование  и навесная сборка, обеспечивающих резкое снижение трудоемкости и сокращение сроков строительства. Однако в балочных конструкциях, проектируемых с исключением растяжения в бетоне под эксплуатационной нагрузкой, требуется увеличение размеров нижнего пояса для восприятия сил преднапряжения. Следует помнить, что высокие предварительные напряжения в бетоне может вызвать появление в нем трещин, направленных вдоль усилия обжатия. Поэтому предварительное напряжение следует применять осторожно, не перенапрягая без необходимости бетон.

Представляется целесообразным в ряде случаев не требовать исключения расчетных растягивающих напряжений в бетоне. Предварительное напряжение может быть задано таким, чтобы обеспечить отсутствие трещин, опасных в отношении коррозии арматуры (неполное обжатие бетона).

Технология изготовления преднапряженных мостовых конструкций сложнее, чем конструкций без предварительного напряжения, так как требует специальных обустройств для натяжения арматуры и квалифицированного обслуживающего персонала. Этот недостаток компенсируют развитием производственной базы для изготовления элементов мостовых конструкций с предварительным напряжением, созданием высокопроизводительного оборудования и совершенствованием технологии изготовления конструкций и монтажа преднапряженных железобетонных мостов.

vse-lekcii.ru

Преднапряженные конструкции в каркасном строительстве



Преднапряжение железобетона

Современные методы карксного строительства используют технологию предварительного напряжения железобетонных конструкций. Преднапряженные конструкции — железобетонные конструкции, напряжение в которых искусственно создаётся во время изготовления, путём натяжения части или всей рабочей арматуры (обжатия части, или всего бетона).

Обжатие бетона в преднапряженных конструкциях на заданную величину осуществляется посредством натяжения арматурных элементов, стремящихся после их фиксации и отпуска натяжных устройств возвратиться в первоначальное состояние. При этом, проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, или без сцепления арматуры с бетоном – специальной искусственной анкеровкой торцов арматуры в бетоне.

Трещиностойкость преднапряженных конструкций в 2 – 3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона.

Преднапряженный бетон позволяет в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

 

Преимущества технологии преднапряжения железобетона


Преднапряженные конструкции оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно, или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.

Предварительное напряжение, увеличивающее жесткость и сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные преднапряженные конструкции и здания безопасны в эксплуатации и более надежны, особенно в сейсмических зонах. С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается. Это объясняется тем, что благодаря применению более прочных и легких материалов сечения преднапряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а, следовательно, более гибкими и легкими.

В большинстве развитых зарубежных стран из предварительно напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий.

Мировой опыт использования технологии преднапряжения

 



Телебашня в Торонто

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

 


Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

 



Платформа «Тролл»

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

 



Мост «Нормандия»

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Технология преднапряжения монолитного железобетона в России


В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2. В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США.

Позднее в России появились линии «Партек» (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий.

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях.

«Энерпром» начинает развивать это направление и предлагает ряд оборудования собственной разработки для реализации такой технологии.

www.enerprom.ru

Предварительно-напряженные железобетонные конструкции



Значительное распространение в настоящее время получают так называемые предварительно-напряженные железобетонные конструкции. В этих конструкциях арматура, натянутая до начала работы элемента под нагрузкой, стремится сжаться и передает при этом часть сжимающих усилий окружающему бетону. Поэтому прежде чем бетон в предварительно-напряженной конструкции, воспринимая расчетную нагрузку, начнет работать на растяжение, в нем должно быть погашено предварительно созданное сжатие. Таким образом, наличие предварительного напряжения позволяет увеличить нагрузку на конструкцию, по сравнению с конструкцией, армированной обычным способом, или при прежней величине нагрузки уменьшить размеры конструкции, т. е. достичь экономии бетона и стали. Следует отметить, что впервые идея предварительного напряжения (обжатия) элементов, работающих на растяжение, была предложена в 1861 г. русским ученым-артиллеристом, акад. А. В. Гадолиным.

Преимущества предварительно-напряженных железобетонных конструкций перед обычными следующие:

1. При работе на изгиб под нагрузкой в элементах конструкций из обычного железобетона, например в балках (см. рис. 32), прочность бетона используется не в полной степени, так как в зоне растяжения он почти не работает, а передача усилий осуществляется одной арматурой.

В балке с предварительно-напряженной арматурой способность бетона хорошо работать на сжатие используется во всем сечении. Это позволяет уменьшать сечения,  а следовательно, объем и вес предварительно-напряженных элементов и сократить расход материалов, в частности цемента.

2. Благодаря лучшему использованию свойств арматурной стали в предварительно-напряженных конструкциях по сравнению с обычными сокращается расход арматуры. Это сокращение особенно эффективно при применении для арматуры сталей с высоким пределом прочности.

3. Конструкции с предварительно-напряженной арматурой (напряженно-армированные) обладают повышенной трещино-устойчивостью, что, помимо предохранения арматуры от ржавления, важно для сооружений, находящихся под постоянным давлением воды или каких-либо других жидкостей и газа (трубы, плотины, резервуары и т. п.).

4. Вследствие уменьшения объема и веса напряженно-армированных железобетонных элементов облегчается применение сборных конструкций и увеличивается величина пролетов, которые целесообразно ими перекрывать.

В качестве арматуры предварительно-напряженных железобетонных конструкций наиболее часто применяют проволоку диаметром 3—5 мм, но может быть применена и круглая арматура других диаметров, а также стержни периодического профиля.

www.stroitelstvo-new.ru

Предварительно напряженный железобетон — Бетонные работы — Полезная информация

Внимание! Предложения по снабжению отправлять на [email protected]

В обычной железобетонной балке арматура, расположенная в нижней зоне, воспринимает растягивающие усилия и таким образом вместе с верхней зоной бетона, воспринимающей сжимающие усилия, оказывает сопротивление изгибу балки, вызываемому приложенной нагрузкой. Когда арматура испытывает растяжение, вместе с ней его испытывают и связанные с ней слои бетона. А так как бетон обладает малой прочностью на растяжение, то в нижней части балки, еще до достижения предельной нагрузки, возникают тонкие трещины. После снятия нагрузки происходит лишь частичное восстановление первоначального состояния бетона; можно сказать, что раз появившиеся трещины не исчезают. Эти трещины не только портят внешний вид бетона, но и нарушают его наружный слой, защищающий арматуру от коррозии. При превышении рабочей нагрузки, но до такой степени, что напряжения в арматуре еще не достигают предела текучести, остаточная деформация бетона и постепенное расширение трещин станут все более заметными, хотя конструкция все еще будет в состоянии выдерживать рабочие нагрузки.

Если арматурный стержень предварительно напряжен (т. е. напряжен до того, как будет приложена рабочая нагрузка), то в общем случае весь элемент будет в состоянии сжатия. В одной из наиболее ранних конструкций бетонных предварительно напряженных балок предварительное сжатие балки осуществлялось путем подпирания домкратами обоих ее концов с использованием прочных анкеров, расположенных у обоих торцовых концов балки. В настоящее время, хотя принцип предварительного напряжения не изменился, практически сжатие бетона осуществляется при помощи натянутых проволок, сцепленных с бетоном по всей длине балки или же закрепленных между упорными плитами, заделанными в противоположные ее концы. Когда к такой предварительно напряженной железобетонной балке приложена нагрузка, силы, которые раньше вызывали растяжение и растрескивание бетона в нижней части балки, теперь только уменьшают сжатие, созданное напряженной арматурой. В то же время сжатие верхней части балки под нагрузкой складывается со сжатием, созданным предварительным напряжением. Эффективность этого принципа заключается в том, что потенциальную прочность на сжатие высококачественного бетона можно использовать полностью, а его низкая прочность на растяжение не имеет никакого Значения. Кроме того, сильно увеличивается сопротивляемость бетона перерезывающим силам, поэтому необходимость установки хомутов, воспринимающих усилия сдвига, в предварительно напряженных железобетонных конструкциях почти исключается. ‘Принцип предварительного напряжения позволяет применять более легкие конструкции, что имеет особое значение при сооружении мостов, перекрытий с большим пролетом и подобных конструкций, в которых собственный вес сооружения составляет значительную часть от общей нагрузки, на которую оно рассчитано.

Обычно предварительно напряженный железобетонный элемент проектируется таким образом, чтобы при полной рабочей нагрузке в бетоне не возникало растягивающих напряжений. Однако если этот элемент будет перегружен, то при условии, что напряжения в арматуре не достигли предела текучести, он имеет способность к почти полному восстановлению после снятия нагрузки. Возникшие при перегрузке трещины в бетоне практически полностью исчезают.

Арматура

Стальная арматура для предварительно напряженного железобетона должна обладать способностью выдерживать высокие растягивающие напряжения без явления ползучести, т. е. без вытягивания под длительно приложенной нагрузкой. Любое ощутимое вытягивание стали под нагрузкой уменьшит величину предварительного напряжения, и в результате этого балка будет вести себя, как балка с обычной арматурой. В таком состоянии она будет значительно слабее и не сможет выдерживать нагрузок, на которые была первоначально рассчитана. Обычная мягкая сталь не отвечает требованиям предварительно напряженного железобетона, поэтому для него используется специальная высокопрочная проволока, которая в противоположность мягкой стали имеет незначительную текучесть. При постоянном напряжении ползучесть ее близка к ползучести бетона. Потеря напряжения вследствие ползучести стали относительно невелика. Иногда для предварительно напряженного железобетона применяются арматурные стержни из специальной стали, сходные по размерам с арматурой для обычного железобетона.

Стоимость подготовки комплекта арматуры, установки ее и натяжения на месте приблизительно в 3—4 раза превышает стоимость материала (арматуры), поступившего на площадку.

Качество бетона

Для того чтобы максимально использовать ‘преимущества предварительного напряжения, необходимо применять высокопрочный бетон прочностью в возрасте 28 дней порядка 420 кг/см2 и более. Приготовление такого бетона требует особого контроля, с тем чтобы снизить до минимума отклонения в его прочности.

Из сведений о проектировании смесей следует, что для получения достаточной прочности необходимо применять жирные жесткие бетонные смеси. Укладка обычно производится с применением вибраторов.

В случае применения методов предварительного напряжения следует иметь в виду два свойства бетона, описанные в главе 2, а именно: усадку при потере влаги, которая может продолжаться довольно долго, и ползучесть под нагрузкой. Эти свойства обусловливают сокращение бетонной конструкции, в результате чего со временем ослабевает эффект предварительного напряжения арматурных проволок или стержней. Для того чтобы компенсировать эту потерю предварительного напряжения, необходимо создать напряжение в арматуре несколько выше величины, предусмотренной проектом.

Потеря предварительного напряжения особенно велика в раннем возрасте бетона, со временем темп падения напряжения постепенно уменьшается, По результатам испытаний, проводившихся в течение более двух лет, установлено, что общая потеря напряжения арматуры составляет около 16%.

Предварительное натяжение

Метод предварительного натяжения состоит в том, что сначала производится натяжение установленной на месте арматуры, обычно из специальной высокопрочной проволоки, а затем вокруг нее укладывается бетон. Натяжение проволоки поддерживается до тех пор, пока бетон не наберет достаточную прочность. После этого проволока отрезается от анкерных устройств, а ее натяжение благодаря сцеплению с бетоном передается последнему. В результате этого бетон подвергается сжимающим напряжениям.

Предварительное натяжение редко применимо при изготовлении монолитных конструкций на строительной площадке, оно пригодно в основном при производстве элементов сборного железобетона заводским способом (от небольших балок перекрытий и бетонных железнодорожных шпал до полых свай длиной до 30 м и выше). В заводских условиях наиболее пригодным является метод предварительного натяжения, известный под названием системы длинных линий. По этому методу проволока арматуры натягивается между двумя анкерными плитами, расположенными на противоположных концах стенда. По всей длине стенда, устанавливаются формы для бетонируемых деталей. Поперечные стенки ставятся на таких расстояниях, которые соответствуют необходимой длине отдельных балок. Проволока пропускается через эти поперечные стенки, причем между стенками двух смежных балок оставляют небольшие промежутки.

Часто стенд изготовляется из стали, в нем устраиваются трубопроводы горячего воздуха, предназначенные для подогрева бетона и ускорения его твердения с тем, чтобы как можно раньше обрезать проволоку и установить новую партию деталей.

При изготовлении отдельных деталей методом предварительного натяжения усилие от растянутых арматурных проволок воспринимается самой опалубкой.

Применение индивидуальных форм для изготовления отдельных деталей имеет два преимущества. Во-первых, есть большая возможность изменения размеров изготовляемых деталей. Во-вторых, в результате потери напряжения арматурой при штучном изготовлении может испортиться только одна деталь, тогда как при стендовом изготовлении партии деталей нарушение натяжения арматуры приводит к порче всей партии. Может случиться ослабление одной или нескольких проволок и неодинаковое напряжение, причем это трудно обнаружить в предварительно напряженных элементах. В таких случаях приходится делать выборочную проверку изготовленных деталей.

Последующее натяжение

В отличие от способа предварительного, до бетонирования, натяжения арматуры, при способе последующего натяжения 9на ограждается от сцепления с бетоном с помощью оболочек той, или иной формы или же вставляется в бетон после его приготовления в специально оставленные отверстия. Проволока или стержни арматуры натягиваются непосредственно на упоры, установленные в концах конструкции, сразу же после того, как бетон достаточно затвердеет. Для анкеровки (закрепления) арматуры после ее натяжения с помощью гидравлического домкрата применяют различные патентованные способы, каждый из которых основан на закреплении арматуры тем или иным клинообразным устройством. Следует заметить, что предварительное напряжение бетона в значительной степени зависит от эффективности таких анкерных устройств, несмотря на то, что сразу же после полного натяжения арматуры производится заливка цементным раствором отверстий, через которые она проходит. С одного конца этого отверстия раствор нагнетается до тех пор, пока не начнет выходить из противоположного. Однако были случаи, когда внезапное ослабление закрепленной проволоки приводило к нарушению сцепления между бетоном и арматурой, созданного цементным раствором, и, следовательно, к повреждению деталей.

При последующем натяжении арматуры приложенная сила постепенно увеличивается до проектной нагрузки, а затем снижается почти до нуля. После этого проволоки маркируются, и натяжение снова увеличивается, пока не будет достигнуто требуемое удлинение, для чего может потребоваться усилие, большее проектного. Натяжение проволок до определенного удлинения, а не до определенного напряжения на домкрате, производится в связи с тем, что внутри конструкции всегда имеется потеря напряжения вследствие трения проволоки.

Преимущество последующего натяжения арматуры по сравнению с предварительным состоит в том, что при этом методе реакция от натяжения проволок воспринимается бетоном и поэтому нет потерь напряжения, обусловленных упругими деформациями, как это имеет место при предварительном натяжении. Кроме того, поскольку бетон затвердел, в нем произошла некоторая усадка, хотя потери напряжения от ползучести бетона и стали еще остаются.

О заливке арматуры цементным раствором при методе последующего натяжения уже говорилось. После заливки раствора необходимо заделать впадины на торцах конструкции в местах крепления арматуры. Эти места могут быть причиной ослабления напряжения в том случае, если влага найдет доступ к концам проволок. Для предотвращения такой возможности следует принять особые меры, так как обычная заплата из цементного раствора в этом случае мало пригодна; при коррозии проволоки она легко отделяется.

Размещено: 25.03.2010

www.skshans.ru