Поляризованная керамика – Поризованный керамический блок, недостатки построенных домов

Содержание

Поризованный керамический блок, недостатки построенных домов

Популярной разновидностью строительных материалов сегодня является поризованный керамический блок. Если вы задумались о создании коттеджа или дачного домика, рассмотреть этот вариант вам необходимо непременно.

Сырье и особенности производства

Керамические поризованные блоки выполняются из краской глины. Т.е. того же экологичного сырья, которое используется для выпуска стандартного керамического кирпича. Однако в первом случае пластичную глину обогащают мелкими древесными опилками. Это позволяет существенно снизить вес материала, т.к. в конечном итоге в его структуре присутствуют щелевые пустоты.

После формования, сырые блоки отправляются в печь для обжига. Под воздействием высоких температур, дерево сгорает, вместо опилок образуются пустоты, а глина становится высокопрочным камнем.

Внешние характеристики

Любой поризованный камень – это правильный параллелепипед. Боковые поверхности, которые при кладке должны образовывать вертикальные швы, оснащаются замочками и выемками соответствующих друг другу форм.

Благодаря этой особенности, поризованный блок можно использовать без цементного раствора. Процесс кладки проходит быстро, число мостиков холода значительно сокращается.

Для улучшения сцепления соседствующих рядок кладки и повышения теплоизоляционных характеристик, в материале предусмотрены технологические пустоты (воздушные камеры), идущие сверху-вниз.

Если речь идет про крупноформатный керамический кирпич, то производители могут «оборудовать» его дополнительными прямоугольными отверстиями, делающими захват и кладку блоков гораздо удобнее.

Габаритные размеры

Высота одного ряда кладки – 218 мм., 186 мм., или 140 мм. Ширина блоков составляет 250 мм. или 180 мм. В продольном направлении поризованный керамический кирпич может иметь следующие габариты:

  • 250 мм. и 380 мм;
  • 510 мм. и 396 мм.

Поризованные керамические блоки используются не только при строительстве дома. Но и, в случае с более мелкими (узкими) кладочными единицами, для обустройства внутренних самонесущих конструкций.

Преимущества и недостатки

Перед тем, как заказывать керамоблоки, следует узнать их плюсы и минусы.

Плюсы +

Если внимательно изучить отзывы специалистов и потребителей, то в числе ПОЛОЖИТЕЛЬНЫХ ХАРАКТЕРИСТИК следует выделить:

  • Невысокую степень теплопроводности (максимум 0,22 Вт/м˚С). Иными словами, если вы проживаете в регионе с умеренным климатом, то возводя дом со стенами толщиной в 45 см, о дополнительном утеплении можете не беспокоиться;
  • Благодаря высокой паропроницаемости блоков из керамики, в доме всегда будет царить комфортный микроклимат. Материал обеспечит естественное регулирование уровня влажности воздуха;
  • Масса материала сопоставима с весом древесины. Благодаря такой легкости, необходимости в обустройстве дорогостоящего и мощного основания под коттедж не возникает. Фундамент может быть легким и недорогим;
  • М-15 и более степень прочности на сжатие. За счет этого фактора, керамические блоки могут быть использованы для кладки стен в здании высотой до 3 этажей;
  • Поризованная структура и технологические пустоты являются значительным препятствием для распространения звука. Поэтому строительная продукция применяется как при кладке внешних стен, так и для создания самонесущих простенков между комнатами и помещениями;
  • Технология предусматривает кладку с использованием специального клея. Благодаря наличию системы паз-гребень, промазывать вертикальные швы не нужно;
  • Технологические выемки крупноформатных кирпичей ускоряют процесс монтажа. По сравнению с традиционным «конкурентом», керамический блок позволяет проводить работу в 5 раз быстрее;
  • Стены из керамики будут соответствовать нормам противопожарной безопасности, т.к. материал не поддерживает горение.

Минусы –

Керамический поризованный кирпич можно было бы назвать идеальным стройматериалом, если бы не ряд недостатков:

  • При доставке материала на стройплощадку и работе с ним необходимо быть крайне внимательным. Так как из-за тонких стенок и щелевой структуры блоки довольно хрупкие;
  • Поризованные кирпичи с легкостью впитывают влагу. Поэтому их необходимо защищать от грунтовых вод (гидроизолировать первый ряд клаки), и климатических воздействий при хранении и укладке;
  • Многие выпускающие фирмы заявляют о том, что прочность их материалов составляет от М50 и более. Однако на деле эта цифра может быть значительно завышенной. Для того, чтобы не совершить ошибку, следует доставить блоки в специальные строительные лаборатории, где удостоверят их качество и принадлежность к той или иной марке. Еще один разумный вариант – использование керамических кирпичей, произведенных известными и рекомендованными производителями, дорожащими своей репутацией;
  • При использовании в сухом климате, керамические блоки теряют свои первоначальные эксплуатационные качества. Из-за излишней усушки материал становится более хрупким, поэтому фиксировать крепежные элементы в стенах непросто;
  • Подверженность обветриванию. При сильных ветрах толщина стен будет постепенно уменьшаться, так как потоки воздуха станут сдувать с поверхности частицы керамики.

Многие специалисты заявляют о том, что лучшей альтернативой керамическим поризованным блокам являются пористые бетоны. Последние предлагаются по более доступной стоимости, и при этом имеют лучшие характеристики размера, массы и изоляции.

Особенности работы с поризованной керамикой

Поризованные блоки керамики – специфичный материал, поэтому для работы с ними требуется определенный опыт. Мы рекомендуем вам обращаться за помощью к квалифицированным каменщикам, готовым предложить официальные гарантии на высокое качество своих услуг.

Теплая керамика не укладывается на стандартные цементные растворы. Т.к. цемент способен протекать в щели структуры и снижать ее энергосберегающие свойства. Заранее запаситесь фирменным клеем, обеспечивающим устранение «мостиков холода» и необходимую прочность кладки.

Способ создания стен из поризованного кирпича – использование стеклотканевой сетки, укладывающейся через каждые два ряда материала, и перевязка вертикальных швов. При условии монтажа междуэтажных перекрытий из тяжеловесных ЖБ панелей, верхние ряды кладки промазываются раствором (минимум 2 см. толщина слоя). После этого в растворе утапливается стальная кладочная сетка. Таким образом, материал будет надежно защищен от точечного продавливания.

Керамоблоки требовательны и при кладке, и в процессе дальнейшего крепления антресолей, полочек, отопительных радиаторов, труб и прочих конструкций. Тонкие стены не подходят для использования обычных крепежей. Вам необходимы будут «инъекционные» дюбеля или длинные анкерные крепления.

Стоит ли использовать теплую керамику для создания стен?

Однозначного ответа на этот вопрос нет даже у специалистов. Назвать керамические кирпичи с пористой структурой идеальным решением при строительстве жилых домов и коттеджей нельзя. Но если вам необходимы материалы для возведения одно- или двухэтажных складских или хозяйственных сооружений, то этот выбор будет оправданным.

Если вы все-таки решите выбрать теплую керамику для создания жилого коттеджа, включите в бюджет строительства дополнительные затраты, которые потребуются на наружную отделку стен.

osnovam.ru

Недостатки поризованного керамического блока

Керамические блоки или поризованная керамика – строительный материал, который представляет собой пустотелые блоки с микропористой структурой, предназначенные для создания кладок, обладающих улучшенной теплоизоляцией. Керамические блоки производят на вакуумных прессах посредством пластического формования.

Купить керамические блоки у официального дилера ведущих производителей керамических блоков, таких как Wienerberger, ЛСР, Гжель и Braer. Доставка осуществляем по Москве, Московской области и в любой регион России.

Состав блоков и технология их изготовления

В процессе изготовления керамических блоков, которые также могут называться теплой керамикой, используются следующие компоненты:

  • суглинки, глины, аргиллиты;
  • лессы и кремнеземистые породы, такие как диатомит, трепел;
  • отходы промышленного производства, такие как шлак, золы, углеотходы;
  • органические и минеральные добавки;
  • вода.

 Технологию производства керамических блоков можно разделить на следующие этапы:

  • дробление исходных составляющих;
  • увлажнение сырья водой и тщательное перемешивание массы;
  • формование блоков из заранее подготовленной массы;
  • сушка отформованных блоков;
  • обжиг предварительно высушенных блоков.

 В результате неукоснительного соблюдения всех стадий технологического процесса на его выходе получаются керамические блоки полностью соответствующие требованиям ГОСТ 530-2007 «Кирпич и камень керамические».

 Разновидности и классификация керамических блоков

 Габаритные размеры керамических блоков могут иметь следующие величины:

  •  длина 250, 380, 398, 510 мм;
  • ширина 180, 250, 255 мм;
  • толщина 140, 188, 219 мм.

Каждая разновидность изделия имеет собственное обозначение, которое зависит от сравнения его объема с объемом, так называемого, кирпича нормального формата, который принят в качестве единицы измерения. В качестве единицы измерения принимают одинарный кирпич, имеющий габариты 250х120х65 мм или 1НФ. Самый крупный керамический блок имеет обозначение 14,3 НФ, при этом, его габаритные размеры составляют 510х250х219 мм. Иными словами, данная величина указывает количество стандартных кирпичей, которые могли бы уместиться в объеме данного блока. Необходимо заметить, что некоторые производители имеют право разрабатывать и применять собственные ТУ, в результате чего на рынок поставляются изделия, имеющие другие габаритные размеры, отличные от требований, установленных ГОСТом.

Вес одного керамического блока, в зависимости от его габаритных размеров, может составлять от 8 до 30 кг.

Функциональное предназначение

По своему функциональному предназначению керамические блоки подразделяются на лицевые и рядовые. Независимо от их функции, блоки должны соответствовать всем эксплуатационным характеристикам кладки. Кроме этого, лицевые блоки должны обеспечивать декоративную функцию. Они могут иметь естественный вид или быть окрашенными с лицевой стороны. Лицевая поверхность может быть гладкой или рельефной.

Форма и структура керамических блоков

Как правило, керамические блоки производятся в форме, напоминающей параллелепипед, их боковые стороны имеют пазы и гребни, наличие которых придает кладке необходимую жесткость. Все блоки выпускаются исключительно пустотелыми. Технологические пустоты сквозные, они могут иметь различную геометрию. Количество пустот равномерно распределено по всему объему изделия. В пустотах могут присутствовать отверстия квадратной или прямоугольной формы, созданные для обеспечения удобства захвата в ходе сборки строительной конструкции.

Помимо пустот в ходе процесса формования и последующего обжига создаются микропоры. Микропоры возникают в месте выгорания органических добавок, в результате чего изделие становится поризованным.

Характеристики керамических блоков

При проектировании здания, в зависимости от его конструкции и необходимости утепления стен, задаются характеристики, которыми должны обладать керамические блоки. Как правило, к категории общих характеристик керамических блоков относят следующие показатели:

  1. Низкая степень теплопроводности, обеспечиваемая наличием в теле блока пор и пустот. При этом, все пустоты блока имеют замкнутый объем.
  2. Тепловая инертность. Стена, выполненная из блоков, расположенных в один слой, не должна требовать утеплителя, она должна поддерживать естественный тепловой и воздушный баланс в помещении.
  3. Простота укладки. Так как керамические блоки обладают значительными собственными габаритами, их укладка должна производиться в высоком темпе.
  4. Продолжительность эксплуатации. Долговечность керамического блока составляет 50 лет и более. Для сравнения, средняя продолжительность эксплуатации традиционного кирпича лежит в пределах от 25 до 50 лет.
  5. Крупный формат. Благодаря этой характеристике процесс возведения строений значительно упрощается и ускоряется. Укладка одного керамического блока занимает такое же количество времени, которое требуется для укладки 15 традиционных кирпичей. Как правило, габаритные размеры лицевых и рядовых керамических блоков не отличаются друг от друга. Разница может возникнуть только при использовании продукции от разных производителей.
  6. Незначительный собственный вес. Керамические блоки, благодаря собственному относительно небольшому весу не способны утяжелить конструкцию и создать дополнительную нагрузку для фундамента строения.
  7. Экономичность. Для укладки керамических блоков требуется гораздо меньшее количество традиционного раствора, в сравнении с кирпичной кладкой. Более того, пазогребневый стык не требует совершенно никакого заполнения, в результате чего возникает дополнительная экономия.
  8. Превосходная звукоизоляция. Благодаря наличию технологических пустот в теле керамического блока, материал обладает высокими звукоизолирующими качествами.
  9. Пожарная безопасность. Керамические блоки не горят и не поддерживают горение. При воздействии на блок открытого огня, он никогда не станет выделять в окружающее пространство вредные вещества.
  10. Высокие экологические характеристики. Так как в ходе производства керамических блоков используются исключительно природные компоненты, изделие не представляет опасности для жизни и здоровья людей.

Недостатки керамических блоков

Как известно, каждая медаль имеет две стороны – лицевую и обратную. К сожалению, такой, казалось бы, исключительно позитивный материал, как керамический блок кроме множества полезных характеристик обладает и ярко выраженными недостатками. Ниже перечислены основные из существующих недостатков:

  • Высокая стоимость материала. Так цену теплого керамического блока, обладающего эксплуатационной плотностью 750 кг/м3 можно назвать не просто высокой, ее можно смело назвать «заоблачной». Использование более дешевых керамических блоков с эксплуатационной плотностью 900 кг/м3 или 830 кг/м3 при строительстве коттеджей в условиях средней полосы России, для обеспечения приемлемых условий сохранения тепла, потребует стен здания толщиной от 70 см до 1 метра. Учитывая стоимость материала, загородный коттедж, выстроенный из этих керамических блоков, можно будет без преувеличения назвать «золотым».
  • Снижение теплоизоляционных характеристик стен дома. Дело в том, что сам по себе отдельно взятый керамический блок обладает низкой теплопроводностью, однако для его стыковки с другими блоками, высота которых может отличаться друг от друга в пределах 4 мм (согласно требований ГОСТа), в составе стены требуется достаточно толстый слой песчано-цементного раствора, что резко снижает теплосберегающие характеристики строения, а также увеличивает материалоемкость строительства.
  • Неточное примыкание в соединении паз-гребень. Практически каждая продающая компания пытается убедить своих потенциальных клиентов в максимальной точности соединения паз-гребень в ряду соседних керамических блоков в кладке. Давайте разберемся реально это или нет. Требования ГОСТа регламентируют расхождения в длине блока от 4 до 10 мм, допустимые расхождения в его ширине могут составлять 3-5 мм. Подобные расхождения всегда будут иметь место. Ни один застройщик не сможет подобрать размеры блоков идеально, поэтому если он не желает жить в доме с наличием сквозняков, ему придется заполнять вертикальные швы. А это дополнительные расходы строительных материалов, времени и, в конечном итоге, удорожание процесса строительства.
  • Условная технологичность керамических блоков. Несмотря на заверения производителей керамические блоки можно назвать технологичным строительным материалом только с большой натяжкой. Их очень тяжело сверлить, проблематично штробить, различные доборные элементы можно вырезать исключительно с использованием сабельных, маятниковых или электрических пил. А как известно, подобный инструмент не позволяет добиться желаемой точности.
  • Хрупкость керамических блоков. В виду того что керамические блоки обладают щелевой структурой, каждый отдельно взятый элемент очень хрупок, поэтому чтобы вам не пришлось строить дом из обломков, при погрузке и разгрузке материала необходимо проявлять осторожность.
  • Спорная экологическая безопасность. Производители, а вслед за ними и продавцы керамических блоков уверяют своих покупателей, что керамические блоки созданы на основе природных материалов, а потому не содержат и не могут содержать в себе вредных добавок. Такое утверждение не может быть истинным на все 100%, так как экологическая безопасность конечного продукта, т.е. керамического блока всецело зависит от места расположения глиняного карьера и точного соблюдения требований технологического процесса при изготовлении.

Инстаграм

superarch.ru

Недостатки поризованных керамических блоков, все плюсы и минусы

Рекламируя свою продукцию, изготовители часто слишком идеализируют изделия собственного производства. Но идеальных по всем параметрам строительных материалов не существует. Имея хорошие показатели по одним качествам, они могут значительно уступать старым материалам по другим. В отличие от производителей, вездесущие «знатоки» наоборот подчеркивают только плохие технические характеристики. Рассмотрим поближе те недостатки поризованных керамических блоков, которые им приписывают необоснованно и те преимущества, которые у них есть на самом деле. У этого стенового материала большинство «недостатков» надуманы и при ближайшем рассмотрении доводы скептиков рассыпаются без следа.

Керамические блоки плюсы и минусы

  • Главным недостатком поризованных материалов называют водонасыщаемость, утверждая, что стены дома, построенного на сыром участке, всегда будут влажными, так же как и воздух в помещении. Но при строительстве на сырых участках первым условием для того, чтобы здание было долговечным, является осушение и хороший дренаж. Избыточная влажность вредна для любого материала: дерево загнивает, кирпич и бетон покрываются участками плесени. Через поры в блоках избыточная влага наоборот быстрее переходит в окружающую среду, происходит естественный воздухообмен и риск образования плесени исключен.
  • Вторым недостатком называют большую теплопроводность, которая на самом деле меньше, чем у кирпича и дерева. Для керамики она равна 0,15 Вт/м*С°, у красного кирпича 0,65 Вт/м*С°, и силикатного 0,74 Вт/м*С°. То есть мы видим, что на самом деле через керамический блок из помещения может уйти в четыре раза меньше тепла, чем через кирпичную кладку. Если учесть еще и тот факт, что толщина раствора в горизонтальных швах при кладке из поризованных блоков минимальна, то и через мостики холода потери тепла также минимальны.
  • Третьим минусом называют малую прочность. Опять проведем сравнение. По прочности поризованный керамический блок для внешних стен соответствует марке бетона М100, а у некоторых изделий М150. У обычного кирпича до М100 у газосиликата М30.
  • Следующий минус, блоки трудны для обработки. Для резки блоков действительно потребуется пила типа «аллигатор», но и кирпич обычной ножовкой тоже не разрезать.

Как видим, почти все недостатки поризованных керамических блоков оказываются вымышленными. Из плюсов, которые неоспоримы дополнительно можно выделить:

  • Экологичность и огнестойкость
  • Хорошая воздухо и паро проницаемость
  • Отличные звукоизоляционные свойства
  • Уменьшение общих затрат на строительство за счет быстрой укладки, меньшего количества кладочного раствора, возможности устройства легкого фундамента.

www.dom-gbi.ru

Керамический блок: отзывы. Крупноформатные керамические блоки. Керамические блоки

В современном строительстве используется большое количество материалов, причем с каждым годом они становятся более совершенными и инновационными. Например, все чаще стал применяться керамический блок. Отзывы говорят, что это легкий материал, с которым удобно обращаться. Какими бывают блоки и из чего они состоят? Попробуем разобраться.

Глина – основа основ

В строительной сфере под керамикой понимают материалы, изделия, которые получают посредством формования и обжига глин. Благодаря такой обработке материал получается прочным, долговечным, при этом декоративные особенности керамики нельзя не заметить. Керамический блок, отзывы о котором привлекают многих покупателей, может быть плотным и пористым. Для первой разновидности характерно водопоглощение в 6%, а для второго – до 20%.

Как выбрать?

Выбирать керамические блоки следует в зависимости от производителя, размера, а также конструкции стены будущего дома. Например, сегодня все чаще для строительства используются крупноформатные керамические блоки. Правда, решив строить из такого материала, нужно тщательно изучить размерную сетку и учесть все эти детали в проекте. Кроме того, перед проектированием важно рассчитать достаточную толщину наружных и несущих стен. Например, если конструкция будет многослойной или планируется обустройство вентилируемого фасада, толщина керамических блоков должна выбираться в зависимости от того, какой прочности будет конструкция.

Представленные сегодня на рынке блоки имеют предел прочности на сжатие 100 кг/см2. То есть при возведении коттеджа или малоэтажном строительстве вполне достаточно и блоков минимальной толщины. Если стена будет в один слой с учетом последующей облицовки (например, штукатуркой или кирпичом), следует выбирать блоки соответственно теплотехническому расчету.

Цена: так ли важна?

Строительство из керамических блоков – решение выгодное, но не всегда следует ориентироваться только на экономичность. Ведь от цены товара зависит его качество, а в случае возведения жилых объектов оно играет огромную роль. Как правило, самые дешевые керамические блоки предлагают новые компании, которые хотят как можно быстрее стать популярными. Соответственно, продукция выпускается ими быстро, технологический процесс упрощен, а значит, и должного контроля над процессом производства не будет.

В среднем ценовом сегменте в основном представлены розничные и оптовые торговцы, которые хотят получить торговую надбавку. Они продают материалы по более высоким ценам, надеясь попасть на неосведомленного покупателя. В идеале покупать следует материалы известных марок, которые относятся к элитному классу.

Комплектность: второй секрет успеха

Сегодня многие производители предлагают купить комплексные решения для тех, кто покупает керамические блоки. То есть кроме основного материала им предлагается приобрести и специальные элементы и дополнительные составляющие, например, блоки для кладки углов, доборные блоки и так далее. Для создания перегородок и внутренних стен в доме можно выбирать блоки, отличающиеся стойкостью к акустическим изменениям.

Дата изготовления

Покупателям нужно быть внимательными, покупая керамические блоки. Характеристика их как отличного стенового материала зависит от того, насколько правильно они создавались и хранились. В идеале в заводских условиях блоки должны укладываться на деревянные поддоны, упаковываться в пленку и в таком виде доставляться на объект. Если длительно хранить материал под открытым небом, внутрь него может попасть влага, которая заполнит стенки соседних пустот. Обязательно нужно следить и за внешним видом блоков: на них не должно быть намокания, повреждений, сколов и трещин.

Особенности наружной отделки стен из керамического блока

Поризованный керамический блок часто используется как стеновой материал, при этом фасадная отделка на нем может выполняться любая. Например, традиционным решением будет отделка лицевым кирпичом, при этом в таких случаях будут использованы и закладные элементы, связывающие стену и фасадную кладку. Самым бюджетным решением может стать использование штукатурки, правда, в этом случае важно правильно рассчитать толщину стены, чтобы достичь хороших показателей теплотехники. Альтернативой обычной штукатурке может стать утепляющая штукатурка, чтобы улучшить теплотехнические параметры стены. В качестве утеплителя могут выступать такие материалы, как минеральная вата или пенополистирол.

Поризованный керамический блок, выбранный для возведения стены, позволяет монтировать и вентилируемый фасад. При этом будут решены сразу два вопроса: с одной стороны, дом будет иметь привлекательный внешний вид, а с другой — будут соблюдаться нормативные показатели теплоизоляции. Если использовать легкие утеплители, то можно выбирать не крупногабаритные блоки, а разновидности с меньшей толщиной. Это позволит не только сэкономить на тратах, но и снять лишнюю нагрузку с фундамента.

С другой стороны, стоит помнить, что пустоты в керамических блоках, а также небольшая толщина стенок, например, 10 мм, требуют минимальной механической обработки. Соответственно, при монтаже облицовочного материала следует использовать только те инструменты и крепежные элементы, которые не приведут к разрушению стены.

Внутренняя отделка

Как материал, удобный в дополнительной отделке, керамический блок отзывы также получил положительные. Примечательно, что поверхность керамической кладки мало чем отличается от привычной кирпичной поверхности, соответственно, и дополнительная облицовка будет мало чем отличаться. То есть можно смело выбирать те отделочные материалы, которые кажутся вам наиболее подходящими для вашего дома. Однако специалисты все большее предпочтение отдают сухой штукатурке, которая представляет собой быстромонтируемые конструкции, созданные на основе листов гипсокартона. Главная особенность таких систем – отличное качество поверхности, высокая скорость выполнения работ и отсутствие грязной работы. Правда, если стены из керамических боков будут отделываться на профильной системе, придется потрудиться, поскольку перегородки между пустотами в блоках отличаются тонкостью и хрупкостью.

Технические характеристики керамических блоков

Стоит отметить, что окончательные характеристики зависят от того, какой будет конструкция дома и какой толщины будет стена (в два-три слоя с утеплителем или один слой из блоков). Вариантов на самом деле существует множество, поскольку керамический блок размеры имеет различные. Мы пройдемся по особенностям однослойной стены, которая минимально отделана. Итак, с технической стороны керамические блоки обладают следующими особенностями:

  1. Теплопроводностью: она достигается за счет рациональных пустот и пор в камне. Поры отличаются оплавленной поверхностью и замкнутым объемом.
  2. Тепловой инертностью, благодаря чему возможно возведение однослойной стены без применения утеплителя, при этом стены будут отвечать требованиям нормативов. Примечательно, что однослойные стены отличаются простотой возведения, стойкостью к повреждениям, долговечностью и экономичностью.
  3. Благодаря тепловой инертности блока и возможностям керамики как строительного материала стены аккумулируют тепло, обеспечивая тепловой и воздушный баланс в помещении.
  4. Керамические блоки отличаются прочностью на сжатие.
  5. Крупноформатность блоков позволяет существенно упростить строительный процесс: один керамический блок может заменить сразу 15 кирпичей обычного формата. При этом стены не получаются тяжелыми, возводятся быстро, а нагрузка на фундамент не увеличивается.
  6. Экономичностью строительства: раствор для керамических блоков крупного габарита готовится привычным образом, при этом требуется его намного меньше. Такие показатели достигаются и за счет пазогребневого стыка, который не заполняется раствором вообще.
  7. На шероховатую поверхность керамического блока легко и быстро наносится штукатурка, которая также расходуется экономно.
  8. Естественным кондиционированием. Стеновые конструкции отличаются определенным влажностным режимом, благодаря чему в помещении создается благоприятный климат.
  9. Экологичностью. Керамика – экологически чистый продукт, а его капиллярная структура позволяет достичь оптимального влагообмена в помещении, за счет чего стены дышат.
  10. Звукоизоляцией: ячейки в керамических блоках образуют ряд камер, благодаря которым улучшаются звукоизоляционные характеристики.

Продукция от Porotherm: в чем особенности?

Керамические блоки Porotherm уже давно завоевали популярность как качественный современный строительный материал. Примечательно, что производится он в соответствии с древними традициями, в которые грамотно вписаны инновационные решения. Данные блоки имеют класс прочности М100, М150, что позволяет применять их для возведения несущих конструкций в многоэтажном строительстве. К отличительным особенностям керамических блоков данной марки можно отнести:

  • высокую энергоэффективность;
  • сохранение тепла в помещении;
  • уменьшение числа растворных швов;
  • наличие пазогребенного соединения;
  • быстроту и простоту сборки;
  • хорошую паропроницаемость.

Особенность домов из блоков Porotherm

Как строительный материал данный керамический блок отзывы получил самые положительные. Сегодня многие стремятся построить свой дом из новых материалов, применяя современные технологии. И керамический блок открывает для этого широкие возможности. Во-первых, дом, построенный из крупноформатных керамических блоков, будет «дышать», а значит, в помещении будет достигаться оптимальный влажностный и температурный баланс. Во-вторых, материал стоек к гниению и старению, а значит, дом будет долговечным. В-третьих, керамический блок размеры имеет разные, а потому есть возможность сделать стены необходимой толщины. Например, для возведения несущих внешних и внутренних стен можно использовать блоки размером 380х250х219. При монтаже несущих однослойных стен без дополнительного утепления можно применять материал размерами 510х250х219.

Экологичность и экономичность превыше всего

И все же каждый, кто строит частный дом, стремится, чтобы он был дешевым и при этом экологически безопасным. Теплый керамический блок отвечает обоим требованиям, ведь создается он на основе глины, к которой добавляются опилки. Формовка и дальнейший обжиг ведутся при температуре 1000 градусов, поэтому опилки сгорают, а на их месте образуются поры. Особенность теплой поризованной керамики в том, что она показывает высокие теплоизоляционные свойства. При толщине наружной стены примерно 380-510 мм можно не задумываться о дополнительном утеплении дома.

Выбирая инновационные технологии и материалы, обратите внимание на крупноформатные керамические блоки. Они идеально подходят для возведения частных домов и при этом отвечают всем требованиям современного строительного процесса.

fb.ru

Пьезокерамические материалы – Пьезокерамические материалы – Пьезокерамические элементы PI Ceramic – Продукция – Евротек Дженерал

Сегнетожёсткие пьезоматериалы (PIC-181, PIC-184, PIC-300) отличаются устойчивостью к высоким электрическим и механическим воздействиям, низкими диэлектрическими потерями, что позволяет их использовать для создания мощных ультразвуковых устройств, пьезодвигателей.

Бессвинцовые материалы (PIC-700, PIC-050) отличаются высокой температурой Кюри (>500 °С), что позволяет использовать их длительное время на резонансной моде, а также обладают высокой линейностью, что позволяет создавать актуаторы с высокой повторяемостью позиционирования. Основным недостатком данных материалов является низкое значение пьезомодуля, ограничивающее ход актуаторов до нескольких микрон.

Область применения

PIC-181

PIC-184

PIC-300

PIC-700

PIC-050

Ультразвуковые пьезодвигатели

х

Гидроакустика (гидролокаторы, эхолоты)

х

х

Приложения, где требуется устойчивость к воздействию высоких температур (до 300 °С)

х

Ультразвуковые ванны/диспергаторы/сварка/сверление/склеивание

х

Ультразвуковые пьезопреобразователи в диапазоне более 1 МГц

х

Актуаторы, обладающие высокой линейностью (низким уровнем гистерезиса), высокочастотное позиционирование, температурная стабильность

х

Технология производства пьезокерамических элементов

Процесс изготовления пьезокерамики можно разделить на несколько этапов.

Прессование

Основными компонентами исходного сырья являются оксиды титана, циркония и свинца. Выпускаются также пьезокерамические материалы на основе титаната висмута и титаната бария. Перед стадией прессования полученный из исходных веществ порошок подвергают обжигу, измельчению и сушке методом распыления. Сами прессовки изготавливаются методом гидравлического прессования (рис.1).

Рис.1 Процесс прессования

Прессовки могут иметь различные формы: диск, пластина, стержень или цилиндр. Широкий выбор пресс-матриц позволяет изготавливать пьезоэлементы различных размеров: до 80 мм в диаметре и до 50 мм в высоту. До стадии спекания прессовки могут быть подвержены механической обработке.

Спекание

Спекание осуществляется при температурах до 1300 °С, при этом прессовка уменьшается в объёме приблизительно на 30 %. В результате получается твёрдая пьезокерамика с высокой плотностью и поликристаллической структурой (рис.2).

Рис.2 Прессовки после спекания

Механическая обработка

При необходимости возможно осуществлять обработку прессовок после спекания. Пьезодиски и пьезопластины могут иметь толщину от 0.2 мм, существует возможность сверления отверстий с диаметром от 0.3 мм. Почти любые контуры поверхностей пьезоэлементов могут быть изготовлены с точностью до 0.1 мм. Ультразвуковая обработка используется в случаях производства тонкостенных пьезотрубок с толщиной стенок порядка 0.5 мм. На рис.3 показана механическая обработка прессовок после стадии спекания. Вначале их располагают в виде плотной упаковки и склеивают для надёжной фиксации, затем проводят алмазную резку, после чего подвергают шлифованию, что позволяет обеспечить соответствие формы и размеров требуемому диапазону допусков. Геометрические размеры и свойства материала в конечном счёте определяют функциональные параметры, такие как резонансная частота, ёмкость, жёсткость.

Рис. 3 Процесс обработки прессовок

Нанесение электродов на пьезоэлементы

Наибольшее распространение получил способ вжигания серебра или сплава серебра с палладием, который состоит в следующем: на обезжиренную поверхность заготовки наносят слой серебряной пасты (смесь окиси серебра и связки), затем заготовки просушивают и производят вжигание при температуре порядка 800 °С. Типичная толщина получаемой плёнки составляет от 5 мкм до 10 мкм.

Рис.4 Процесс нанесения электродов методом трафаретной печати

Тонкоплёночные электроды наносят методом осаждения из газовой фазы (рис.5), при этом толщина плёнки составляет 1 мкм. Стандартными материалами для напыления являются золото, медь, сплав меди с никелем. Данный метод широко применяется для нанесения электродов на стенки пьезотрубок.

Рис.5 Процесс нанесения электродов методом конденсации из газовой фазы

Поляризация

Направление поляризации каждого домена в поликристаллической структуре распределяется случайным образом. Таким образом, в макроскопическом масштабе пьезоэлектрического эффекта не наблюдается, поэтому проводят процесс поляризации (рис.6) для выравнивания доменов.

Для поляризации к электродам подводится электрическое напряжение. Напряжённость поля составляет величину порядка 3000 В/мм. С целью уменьшения напряженности поля в ходе процесса поляризации пьезоэлемент нагревают до температур, близких к точке Кюри (т. к. при этом домены обладают большей подвижностью), а затем медленно охлаждают в присутствии поля. 

Рис.6 Процесс поляризации пьезоэлементов

  Заключительная проверка пьезокерамических элементов

Перед отгрузкой пьезоэлементов на склад осуществляется перечень процедур контроля по стандарту ISO 2859, включающие:

  • Тестирование физических свойств, таких как резонансная частота, сопротивление, ёмкость, коэффициенты электромеханической связи и тангенс угла диэлектрических потерь.
  • Визуальное инспектирование пьезоэлементов по стандарту MIL-STD-1376, в частности проверка качества поверхности электродов, пор внутри пьезокерамики, сколов по краям, царапин и т.п

www.eurotek-general.ru

Пьезоэлемент

Пьезоэлемент — электромеханический преобразователь, изготавливаемый из пьезоэлектрических материалов, определенной формы и ориентации относительно кристаллографических осей, с помощью которого механическая энергия преобразуется в электрическую (прямой пьезоэффект), а электрическая в механическую (обратный пьезоэффект).

Конструктивно пьезоэлемент представляет из себя пьезокерамику с нанесенными электродами. Пьезоэлементы могут быть разнообразной формы: в виде дисков, колец, трубок, пластин, сфер и др. Для вибраторов и генераторов пьезоэлементы объединяют в пьезостек, чтобы достичь лучших характеристик.

Сменить цвет

Колебания пьезоэлемента
Диаметр: 10 мм
Толщина: 1 мм
Материал: ЦТС-26
Напряжение: 5В
Частота возбуждения: 1МГц
Масштаб колебаний: 30000:1

Посмотреть колебания

Остановить колебания

Рисунок — Колебание свободного пьезоэлемента под действием напряжения (обратный пьезоэффект)

Пьезоэлектрические вещества (пьезоэлектрики), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина. Они заметили, что если оказывать механическое давление на кристалл в определенном направлении, на противоположных сторонах кристалла возникают электрические заряды пропорциональные давлению и противоположной полярности. Позже они открыли подобный эффект у кварца и других кристаллов. В 1880 году Пьеру Кюри был только 21 год [9].

Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.


Рисунок 1 – Элементарная ячейка цирконата титоната свинца (ЦТС) при температуре выше точки Кюри (слева) и при температуре ниже точки Кюри (справа)

Здесь можно кратко пояснить пьезоэлектрический эффект на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также точкой Кюри, является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (рисунок 1, для ВаТiO3 вместо Pb — Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.


Рисунок 2 – Неупорядоченная поляризация (слева) и упорядоченная поляризация доменов при наложениии сильного электрического поля (справа)

Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.

Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать расчет парметров пьезоэлектрического преобразователя

Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности [2].

Связь между приложенной силой и результирующим ответом пьезоэлемента зависит от: пьезоэлектрических свойств пьезокерамики, размера и форм образца, направления электрического и механического возбуждения.

По своей природе пьезоэлектрические материалы являются анизотропными кристаллами. Рисунок 3 показывает различные направления и оси ориентации пьезоэлектрического материала. Оси 1, 2 и 3 являются соответственными аналогами осей X, Y, Z классической ортогональной системы координат, в то время как оси 4, 5, и 6 определяют оси вращения. Направление оси 3 является направлением поляризации [1]. Это направление устанавливается во время производства посредством высокого постоянного напряжения, которое создается между электродами.


Рисунок 3 – Направление и ориентация осей пьезоэлектрического материала

Пьезоэлемент характеризуется следующими свойствами:

а) Относительные диэлектрические постоянные

Относительная диэлектрическая постоянная является отношением диэлектрической проницаемости материала (в этом случае и ) к диэлектрической проницаемости вакуума ()

и , (1)

где = 8,85· 10-12, Ф/м

Верхний индекс показывает граничные условия действующие на материал в процессе определения значения относительной диэлектрической постоянной. В частности индекс T (в этом случае) говорит о том, что диэлектрическая постоянная измеряется на свободном (не зажатом) образце [3]. А индекс S показывает, что измерения происходят при постоянной деформации пьезокерамики (в зажатом состоянии). Первый нижний индекс показывает направление диэлектрического смещения, а второй – электрического поля [1]. Формула расчета относительной диэлектрической постоянной следующая:

, (2)

  • где — диэлектрическая проницаемость (одна из двух или ), Ф/м
  • t – расстояние между электродами, м,
  • S – площадь электрода, м2,
  • C – емкость, Ф

б) Резонансная частота

Собственная частота пластины по толщине вычисляется по следующей формуле

, (3)

где с – скорость звука в материале, м/с [2]

Нажимайте сюда для просмотра колебаний пьезоэлемента!

Частота возбуждения f=25кГц
Масштаб колебаний 200000:1

Частота возбуждения f=73,6кГц
Масштаб колебаний 10000:1

Частота возбуждения f=280кГц
Масштаб колебаний 10000:1

Рисунок 4 — Амлитудно-частотная характеристика пьезоэлемента. Виды колебаний на разных частотах

в) Коэффициенты электромеханической связи

Коэффициенты электромеханической связи kp, k33, k15, kt и k31 описывают способность пьезоэлемента превращать энергию из электрической в механическую и наоборот. Квадрат коэффициента электромеханической связи определяется как отношение накопленной преобразованной энергии одного вида (механической или электрической) к входной энергии второго вида (электрической или механической). Индекс показывает относительные направления электрических и механических величин и вид колебаний. Они могут быть связанны с модой колебаний простого преобразователя определенной формы. kp означает взаимосвязь электрической и механической энергии в тонком круглом диске, поляризованном по толщине и колеблющемся в радиальном направлении – планарная мода (рисунок 5а). k31 относится к длинному тонкому бруску с электродами на длинной поверхности. Вид колебаний – растяжение сжатие по длине (рисунок 5б). kt связан с тонким диском или пластиной и определяет растяжения сжатия по толщине (рисунок 5в). k33 соответствует длинному тонкому бруску с электродами на его концах и поляризованному по длине. Вид колебаний – растяжения сжатия по длине (рисунок 5г). k15 описывает энергию преобразованную в сдвиговые колебания по толщине (рисунок 5д) [4].

Этот коэффициент может быть вычислен через резонансную и антирезонансную частоту по формуле.

, (4)

  • где – резонансная частота, Гц,
  • – антирезонансная частота, Гц [5]

Чтобы измерить эти частоты обычно используется анализатор импеданса, с помощью которого можно получить зависимость сопротивления от частоты пьезокерамики (рисунок 6).

По своей природе, резонансная частота возникает, когда система имеет очень маленькое сопротивление, в то время как антирезонанс происходит, когда система имеет очень большое сопротивление. На рисунке 6 частота которая имеет минимальное сопротивление считается резонансной (), а частота с максимальным сопротивлением – антирезонансной ().

Рисунок 5 – Виды колебаний образцов пьезокерамики разной формы


Рисунок 6 – Зависимость сопротивления от частоты у пьезокерамики [6]

г) Упругие константы

Упругие свойства пьезоэлектрических материалов характеризуются упругими податливостями () или упругими жесткостями (). Упругая податливость определяет величину деформации возникающей под воздействием приложенного механического напряжения. Ввиду того, что под воздействием механического напряжения керамика порождает электрический ответ, который противодействует результирующей деформации, эффективный модуль Юнга при коротком замыкании электродов меньше чем при холостом ходе. В дополнение, жесткость различна в разных направлениях, поэтому для точного определения величины указывается электрические и механические условия. Верхний индекс E говорит о том, что замеры происходят при постоянном электрическом поле (короткое замыкание). В то время как, индекс D указывает на граничное условие – постоянное электрическое смещение (индукция), т.е. замеры происходят при холостом ходе. Первая нижняя цифра показывает направление деформации, вторая направление механического напряжения [4].

д) Пьезоэлектрические постоянные

Пьезоэлектрический модуль d – отношение механической деформации к приложенному электрическому полю (Кл/Н) [2]

, (5)

  • где – изменение толщины пластины, м,
  • – приложенное напряжение, В

Полезно помнить, что большие значения dij приводят к большим механическим смещениям, что обычно добивается при проектировании ультразвуковых преобразователей. d33 применяют, когда сила направлена в направлении оси поляризации (рисунок 5г). d31 используют, когда сила прикладывается под прямым углом к оси поляризации, при этом заряд возникает на электродах, так же как и в предыдущем случае (рисунок 5б). d15 показывает, что заряд накапливается на электродах, которые находятся под прямым углом к изначальным поляризующим электродам и что получаемые механические колебания являются сдвиговыми (рисунок 5д).

Пьезоэлектрическая константа давления gij – отношение полученного напряжения к приложенному давлению.

, (6)

  • где – приложенное давление, Па,
  • – полученное напряжение, В

Индекс “33” показывает, что электрическое поле и механическое напряжение направлены по оси поляризации. Индекс “31” означает, что давление прикладывается под прямым углом к оси поляризации, при этом напряжение снимается с тех же самых электродов, что и в случае “33”. Индекс “15” подразумевает, что приложенное напряжение является сдвиговым и результирующее электрическое поле перпендикулярно к оси поляризации. Высокое значение gij ведет к большим выходным напряжениям, что является желательным для сенсоров.

е) Коэффициент Пуассона

Коэффициент Пуассона – это отношение относительного поперечного сжатия к соответствующему относительному продольному удлинению [7]

, (7)

ж) Температурные коэффициенты

Температурный коэффициент показывает изменение различных свойств материала (резонансная частота, емкость, размеры) при изменение температуры [6]

, (8)

, (9)

, (10)

з) Скорость старения

Скорость старения это показатель изменения резонансной частоты и емкости со временем. Чтобы вычислить эту скорость, после поляризации электроды преобразователя соединяются вместе, и образец нагревается определенный период времени. Производятся замеры резонансной частоты и емкости каждые 2n (1,2,4 и 8) дня. Скорость старения вычисляется по следующей формуле [1]:

, (11)

  • где AR – скорость старения для резонансной частоты или емкости,
  • t1, t2 – число дней после поляризации,
  • , – резонансная частота или емкость через t1 и t2 дней после поляризации

и) Механическая добротность

Добротность – количественная характеристика резонансных свойств колебательных систем, указывающая во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду вынужденных колебаний на частоте много ниже резонансной при одинаковой амплитуде возбуждающей силы [8]. Добротность равна отношению собственной частоты резонансной системы к ширине частотной полосы, на границах которой энергия системы при вынужденных колебаниях вдвое меньше энергии на резонансной частоте [6].

, (12)

  • где – механическая добротность,
  • – резонансная частота, Гц,
  • – антирезонансная частота, Гц,
  • – сопротивление при резонансе, Ом,
  • С – емкость, Ф

Изделия, основанные на пьезоэлектрическом резонансе, требуют высокой механической добротности.

к) Температура Кюри

Температура Кюри – это температура при превышение которой пьезоэлектрический материал теряет свои свойства [2].

л) Плотность

, (13)
  • где – плотность, кг/м3,
  • m – масса, кг,
  • V – объем, м3.

Большинство составов пьезокерамики основано на химических соединениях с формулой АВО3 (напр., BaTiO3, РbТiO3) с кристаллической структурой типа перовскита и различных твёрдых растворов на их основе (например, системы BaTiO3 — CaTiO3, BaTiO3 — CaTiO3 — CoCO3, NaNbO3 — KNbO3). Особенно широко используются в качестве пьезоэлектрических материалов составы системы РbТiO3 — PbZrO3 (т. н. система PZT, или ЦТС). Практический интерес представляет также ряд соединений с формулой АВ2О6, напр. PbNb2O6, имеющих весьма высокую Кюри точку (~570 °С), что позволяет создавать пьезоэлементы для работы при высоких температурах.


Рисунок 7 – Порошок для изготовления пьезоэлемента

Процесс изготовления пьезокерамики разделяется на несколько этапов. При осуществлении синтеза заданного сегнетоэлектрического соединения исходное сырье (окислы или соли, например, двуокись титана и окись бария) измельчается и смешивается в количествах, соответствующих стехиометрическому составу соединения, а затем подвергается термической обработке при температурах 900 – 1300 °С, в процессе которой происходит химический синтез. Используется также так называемый метод осаждения из водных растворов, при котором температура синтеза благодаря идеальному перемешиванию компонентов снижается до 750 – 1000 °С. Из порошкообразного синтезированного материала прессованием (а также литьём под давлением) получаются заготовки необходимой конфигурации и размеров для будущих пьезоэлементов, которые затем подвергаются обжигу по строго определенному температурному режиму, в большой степени определяющему свойства пьезокерамики. Механическая обработка детали после обжига обеспечивает ей точно заданную форму и размеры. На деталь наносятся электроды из серебра, никеля, платины и др., причем наибольшее распространение получил метод вжигания серебра. Для поляризации керамики к электродам подводится электрическое напряжение (напряжённость поля Е составляет от 0,5 до 3 кВ/мм в зависимости от химического состава и метода поляризации). С целью уменьшения напряженности поля Е при поляризации образец нагревают до температур, близких к точке Кюри (т. к. при этом домены обладают большей подвижностью), а затем медленно охлаждают в присутствии поля. Пьезокерамике свойственно т. н. старение, т. е. изменение её параметров (диэлектрической проницаемости, пьезомодулей) со временем, особенно заметное в первые несколько суток после изготовления и поляризации образцов, которое обусловлено изменением как механических напряжений на границах между зёрнами, так и величины остаточной поляризации [8].

Пьезоэлектрические материалы нашли применение в широком ряде областей, таких как медицинские инструменты, контроль промышленных процессов, системах производства полупроводников, бытовых электрических приборах, системах контроля связи, различных измерительных приборах и в других областях. Коммерческие системы, которые используют пьезоэлектрические материалы – помпы, швейные машины, датчики (давления, обледенения, угловых скоростей и т.д.), оптические инструменты, лазерные принтеры, моторы для автофокусировки камер и многие другие. При этом область применения данных материалов постоянно растет. Применение пьезоэлемента обычно сводится к четырем категориям: сенсоры, генераторы, силовые приводы, и преобразователи.

В генераторах, пьезоэлектрические материалы могут генерировать напряжение, которого достаточно для возникновения искры между электродами, и таким образом могут быть использованы как электроды для воспламенения топлива, для газовых плит и для сварочного оборудования. Альтернативно, электрическая энергия, генерируемая пьезоэлектрическими элементами, может накапливаться. Такие генераторы являются превосходными твердыми аккумуляторными батареями для электронных схем.

В сенсорах, пьезоэлектрические материалы преобразуют физические параметры, такие как ускорение, давление и вибрации в электрический сигнал.

В силовых приводах, пьезоэлектрические материалы преобразуют электрический сигнал в точно контролируемое физическое смещение, четко устанавливая точность механических инструментов, линз и зеркал.

В преобразователях, пьезоэлектрические преобразователи могут, как генерировать ультразвуковой сигнал из электрической энергии, так и конвертировать приходящие механические колебания в электрические. Пьезоэлектрические приборы проектируются для измерения расстояний, скорости потока, и уровня жидкости. Преобразователи так же используются, чтобы генерировать ультразвуковые вибрации для очистки, сверления, сварки, размельчения керамики и для медицинской диагностики [1].

    Библиографический список

  • Ranier Clement Tjiptoprodjo. On a Finite Element Approach to Modeling of Piezoelectric Element Driven Compliant Mechanisms.- Saskatchewan, Canada.: University of Saskatchewan Saskatoon, April 2005
  • Й.Крауткремер, Г.Крауткремер. Справочник. Ультразвуковой контроль материалов.-Москва.: Металлургия, 1991.
  • David H. Johnson. Simulation of an ultrasonic piezoelectric transducer for NASA/JPL Mars rover.- PA, USA.: Cybersonic, Inc. of Erie, 2003.
  • www.piezo.com
  • ОСТ 11 0444-87 «Материалы пьезокерамические»
  • Tokin. Multilayer Piezoelectic Actuators. User’s Manual, Tokin Corporate Publisher.: 1996.
  • Д.В.Сивухин. Общий курс физики. Т.I. Механика.- Москва.:1979.
  • Голямина И.П. Ультразвук.-Москва.: из-во «Советская энциклопедия», 1979
  • Jan Tichy, Jiry Erhart, Erwin Kittinger, Jana Privratska. Fundamentals of Piezoelectric Sensorics.- Heidelberg, Dordrecht, London, New York.: Springer, 2010

engineering-solutions.ru

5. Пьезоэлектрики. Характеристика пьезоэлектриков

В твердых телах механическое напряжение Т в соответствии с законом Гука вызывает упругую деформацию S:

T = YS, (5.1)

где Y – модуль упругости.

В пьезоэлектриках оно вызывает, кроме того, ропорциональную электрическую поляризацию:

P=dT, (5.2)

где d – коэффициент пропорциональности, называемый пьезомодулем, Кл/Н.

Таким образом, кристаллические вещества, в которых при сжатии или растяжении в определенных направлениях возникает электрическая поляризация даже в отсутствии внешнего электрического поля, называется пьезоэлектриками, а сам эффект — пьезоэффектом или пьезоэлектричеством.

Существует и обратный пьезоэффект, вызывающий появление механической деформации под действием прикладываемого электрического поля:

S=dE. (5.3)

Обратный пьезоэффект необходимо отличать от электрострикции — деформации, возникающей вследствие смещения зарядов в диэлектрике любой природы. В этом случае, в отличии от пьезоэффекта. Наблюдается квадратичная зависимость деформации от поля и знак деформации не зависит от электрической полярности (большинство диэлектриков растягиваются в направлении приложенного поля).

Для электрострикции не существует аналога прямого пьезоэффекта — при действии механических напряжений поляризация не происходит.

Впервые пьезоэффект был обнаружен в 1880г. Ж. и П. Кюри на кристалле кварца. Если на грани пластинки кварца наложить металлические обкладки и продеформировать пластинку, то при разомкнутых обкладках между ними возникнет разность потенциалов. В случае замкнутых обкладок на них при деформации появляются заряды, равные по величине (но противоположные по знаку) поляризационным зарядам, возникающим на поверхности пластинки, и в цепи. Соединяющей обкладки, течет ток. При подключении к обкладкам внешней ЭДС кристалл деформируется.

Необходимое условие пьезоэффекта — отсутствие центра инверсии ионного кристалла. В этом случае при деформационных смещениях составляющих кристалл заряженных частиц возникает электрический момент (поляризация). При наличии центра инверсии смещения положительных и отрицательных зарядов компенсируют друг друга и макроскопическая поляризация не наблюдается. Единственным исключением являются кубические кристаллы с точечной группой симметрии 432, в которых компенсация смещений положительных и отрицательных частиц так же наблюдается. Несмотря на отсутствие центра симметрии. Кроме того, пьезоэлектриками могут быть лишь вещества с высоким удельным сопротивлением (т.е. диэлектрики), поскольку в проводящих средах пьезоэлектрическая поляризация быстро компенсируется свободными носителями заряда. Таким образом, из общего числа 32 кристаллографических классов, или точечных групп, к которым принадлежат все кристаллы, 20 классов (из 21), не имеющих центра симметрии, допускают существование пьезоэлектрического эффекта. Однако лишь малая часть кристаллов этих групп обладает достаточно большим пьезоэффектом: кварц, сегнетова соль, титанат бария — стронция и др.

Количественной характеристикой пьезоэффекта является совокупность пьезоконстант (пьезомодулей) — коэффициентов пропорциональности в отношениях между электрическими (Е и Р) и механическими (Т, U) параметрами. Связь между ними носит линейный характер[1].

Механизм пьезоэффекта можно пояснить на примере кристалла кварца

б-SiO2. Особенностью пьезоэффекта в кварце является то,что он в соответствии с его симметрией не обладает пьезоэлектрическими свойствами в направлении осиZ(оси с).Поэтому используют пьезоэлектрические срезы кварца (X и Y — срезы), перпендикулярные кристаллографическим осям X и Y.

Пластины X – среза используется для возбуждения продольного, а пластины Y – среза — поперечного пьезоэффектов. При сжатии вдоль оси X1 (рис. 2.1) ионы Si+ и Оперемещаются в глубь ячейки кристалла (содержащей три молекулы SiО2), в результате чего на плоскостях А и В появляются заряды. При растяжении в этих плоскостях возникают заряды противоположного знака.

Рис. 5.1 Схема гексагональной структуры кварца в виде проекции ионов Si+

(О ) и О (0) на плоскость, перпендикулярную оси 3-го порядка

а — недеформированное состояние; б, в — соответственно сжатие и растяжение вдоль оси X1.

Одно из самых ценных свойств кварца — способность мало изменять и хорошо воспроизводить свои характеристики в широком интервале температур. Стабильность характеристик кварца обеспечивает его широкое применение, и в первую очередь в кварцевых генераторах (для стабилизации их частоты ), в высокочастотных электромеханических преобразователях, пьезоэлектрических фильтрах и др.

Известно более 1 тыс. веществ, обладающих пьезоэлектрическими свойствами, в том числе все сегнетоэлектрики, у которых величина пьезоэффекта более чем на порядок выше, чем в кварце [1].

Пьезоэлектрики используются для изготовления различных электромеханических преобразователей.Под действием механической нагрузки наблюдается не только электрическая поляризация, но и изменение оптических свойств материалов — пьезооптический эффект (появление двойного лучепреломления в изотропных материалах и его изменение — в анизотропных). На данном эффекте основан поляризационно — оптический метод исследования механических напряжений[2].

ОБЛАСТЬ ПРИМЕНЕНИЯ ПЬЕЗОЭЛЕКТРИКОВ:

Пьезоэлектрики широко используются в современной технике как датчики давления, пьезоэлектрические детонаторы, источники звука огромной мощности, миниатюрные трансформаторы, кварцевые резонаторы для высокостабильных генераторов частоты, пьезокерамические фильтры, ультразвуковые линии задержки и др. Наиболее широкое применение в этих целях кроме кристаллического кварца получила поляризованная пьезокерамика, изготовленная из поликристаллических сегнетоэлектриков, например, из цирконата-титаната свинца[1].

Чаще всего современный человек встречается с ними в зажигалках, где искра образуется от удара в пьезопластинку, а также при медицинской диагностике с помощью УЗИ, в которой используются пьезоэлектрические источник и датчик ультразвука. Передовой областью использования пьезоэлектриков является сканирующая зондовая микроскопия (СЗМ). Из них изготавливаются сканирующие элементы зондовых микроскопов, осуществляющие перемещение зонда в плоскости образца с точностью до 0.01 Å. Наибольшее распространение в ней имеют трубчатые пьезоэлементы. Они позволяют получать достаточно большие перемещения объектов при сравнительно небольших управляющих напряжениях. Они представляют собой полые тонкостенные цилиндры, изготовленные из пьезоэлектрических материалов. Соединение трех таких трубок в единый узел позволяет организовать перемещение зонда в трех ортогональных направлениях, такой сканирующий элемент называется триподом

Сравнительно новой областью применения пьезоэлектриков являются пьезоэлектрические двигатели. В таких двигателях отсутствуют какие-либо обмотки и магнитные поля, поэтому они находят применение в радиотехнических устройствах, лентопротяжных и других приводах магнитофонов, в робототехнике. В пьезодвигателях основным элементом являются поляризованные керамические пластинки, колебания которых преобразуются во вращательное движение ротора. В настоящее время уровень разработки пьезокерамических, сверхтвердых и износостойких материалов ограничивает применение пьезодвигателей мощностью до 10 Вт, однако их характеристики указывают на перспективность применения в современных электронных устройствах, системах автоматизации и в бытовой технике[1].

В конце 60-х — начале 70-х годов были открыты высокоэффективные полимерные пьезоэлектрики на основе, в частности, поливинилиденфторида (ПВДФ), конкурентноспособные с пьезокерамикой. Пьезопленка из ПВДФ и композитов на ее основе находит применение в бесконтактных переключателях в клавиатуре калькуляторов, ЭВМ, телефонных номеронабирателях, электрических печатающих машинках. Широко применяются также композиционные полимерные пьезоэлектрики, получаемые смешением полимеров с пьезоактивным наполнителем, обычно пьезокерамикой.

Стабильность пьезосвойств ПВДФ и керамики ЦТС сравнима. Основные параметры композитов с ЦТС снижаются на 1% в год в течение 10 лет, у ПВДФ — на 4% за 10 лет[1].

Пьезоэлектрические свойства проявляются у поляризованных керамических сегнетоэлектриков. После поляризации в постоянном электрическом поле сегнетоэлектрик ведет себя как монокристалл. Первый пьезопреобразователь на основе титаната бария появился в 1947 г. До сих пор пьезокерамика остается незаменимой для ряда преобразователей звукового и ультразвукового диапазонов. Разработка технологии сегнетокерамики и изучение ее свойств относится к специальным разделам материаловедения.

Первое сообщение об использовании пленочных преобразователей ультразвукового диапазона появилось в 1965 г. Благодаря применению пьезоэлектрических пленок при изготовлении линии задержки на объемных волнах, рабочую частоту удалось повысить до 18 ГГц. Другим этапом пленочных устройств стали высокоэффективные акустооптические приборы на объемных акустических волнах (ОАВ), а с 1970 г. стали выпускаться преобразователи на поверхностных акустических волнах (ПАВ) на пьезоэлектрических подложках. Промышленное применение находят пленки ZnS, CdS, ZnSe, CdSe. На основе AlN создают приборы гигагерцевого диапазона с высокой скоростью[2].

Представляют интерес для изучения и пьезоэлектрические свойства пленок с низкой скоростью звука типа Bi12GeO28, Bi12SiO20. Заметной пьезоактивностью обладают пленки LiNbO3, Li1-xNaxNbO3, BeO, LaN, GaAs, LiO3 и др. Для массового выпуска телевизионных фильтров применяются монокристаллы ниобата лития, керамика PZT и тонкие пленки оксида цинка.

Промышленность многих стран, включая нашу, в настоящее время выпускает промышленные полимерные пьезоматериалы в основном на основе поливинилиденфторида, в виде металлизированных пленок толщиной от 5 мкм до 1..2 мм. На основе поливинилиденфторида разработаны высокоэффективные пьезоэлектрики конкурентноспособные с пьезокерамикой. Поливинилиденфторид и сополимеры винилиденфторида с другими мономерами обладают сегнетоэлектрическими свойствами – способностью к переполяризации, гистерезисными зависимостями поляризации от напряженности поля и температурой Кюри [1].

Из высокоэффективных пьезоэлектрических стеклообразных полимеров можно назвать сополимер винилиденцианида с винилиденацетатом.

Ø военная техника; транспорт, спортивные товары и товары для отдыха.

studfiles.net