Коэффициент линейного расширения бетона – Коэффициент линейного расширения бетона

Содержание

Коэффициент линейного расширения бетона


Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

thermalinfo.ru

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона.

Практическая плотность тяжелого (обычного) бетона составляет 2,3 г/см3 = 2300 кг/м3. (1,8-2,7 г/см3 ).

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Усадка бетона имеет довольно сложную природу, но факт в том, что при твердении бетона на воздухе — при высыхании он будет иметь усадку порядка 0,3 мм на каждый метр линейного размера. Чем больше была доля цемента в растворе, тем выше усадка. При большой толщине бетона он высохнет снаружи, а внутри — еще нет, что приводит к появлению внутренних напряжений и дефектам.

Обратный процесс — набухание сухого бетона под действием влаги характеризует та-же величина 0,3 мм/м. Чем больше была доля цемента в растворе, тем выше набухание.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Температурно усадочный шов в РФ уж никак не может быть менее 1,1 мм на метр линейного размера (0,3 мм — усадка, 0,8 — температурный), в СНИПах — величины выше и они, конечно, обязательны, когда обязательны. Имейте в виду, что температурные колебания более 80 °С почти наверняка вызовут растрескивание бетона с жестким наполнителем из-за разницы в тепловом раширении раствора и наполнителя.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплопроводность пористых бетонов — от 0,35 до 0,7 Вт/(м*°С) = 0,3-0,6 ккал/(ч*м*°С), но при огромном снижении прочности.

Теплоемкость удельная тяжелого и пористых бетонов в сухом состоянии — порядка 1 кДж/(кг*°С) = 0,2 ккал/(кг °С)

Теплоемкость объемная тяжелого бетона — порядка 2,5 кДж/(м3*К) а пористых — зависит от плотности.

Теплоемкость удельная бетонной смеси (незастывшей) сотавляет порядка 1,5 кДж/(кг*°С) = 0,3 ккал/(кг °С), но помните — смесь легче тяжелого бетона и тяжелее пористого.

tehtab.ru

Теплоемкость бетона Коэффициент расширения бетона

При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

Связанные статьи:

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.

betonobeton.ru

Температурный коэффициент линейного расширения

Материал

Коэффициент линейного теплового расширения

10-6 °С-1

10-6 °F-1

ABS (акрилонитрил-бутадиен-стирол) термопласт73.841
ABS — стекло, армированное волокнами30.417
Акриловый материал, прессованный234130
Алмаз1.10.6
Алмаз технический1.20.67
Алюминий22.212.3
Ацеталь106.559.2
Ацеталь , армированный стекловолокном39.422
Ацетат целлюлозы (CA)13072.2
Ацетат бутират целлюлозы (CAB)25.214
Барий20.611.4
Бериллий11.56.4
Бериллиево-медный сплав (Cu 75, Be 25)16.79.3
Бетон14.58.0
Бетонные структуры9.85.5
Бронза18.010.0
Ванадий84.5
Висмут137.3
Вольфрам4.32.4
Гадолиний95
Гафний5.93.3
Германий6.13.4
Гольмий11.26.2
Гранит7.94.4
Графит, чистый7.94.4
Диспрозий9.95.5
Древесина, пихта, ель3.72.1
Древесина дуба, параллельно волокнам4.92.7
Древесина дуба , перпендикулярно волокнам5.43.0
Древесина, сосна52.8
Европий3519.4
Железо, чистое12.06.7
Железо, литое10.45.9
Железо, кованое11.36.3
Золото14.28.2
Известняк84.4
Инвар (сплав железа с никелем)1.50.8
Инконель (сплав)12.67.0
Иридий6.43.6
Иттербий26.314.6
Иттрий10.65.9
Кадмий3016.8
Калий8346.1 — 46.4
Кальций22.312.4
Каменная кладка4.7 — 9.02.6 — 5.0
Каучук, твердый7742.8
Кварц0.77 — 1.40.43 — 0.79
Керамическая плитка (черепица)5.93.3
Кирпич5.53.1
Кобальт126.7
Констанан (сплав)18.810.4
Корунд, спеченный6.53.6
Кремний5.12.8
Лантан12.16.7
Латунь18.710.4
Лед5128.3
Литий4625.6
Литая стальная решетка10.86.0
Лютеций9.95.5
Литой лист из акрилового пластика8145
Магний2514
Марганец2212.3
Медноникелевый сплав 30%16.29
Медь16.69.3
Молибден52.8
Монель-металл (никелево-медный сплав)13.57.5
Мрамор5.5 — 14.13.1 — 7.9
Мыльный камень (стеатит)8.54.7
Мышьяк4.72.6
Натрий7039.1
Нейлон, универсальный7240
Нейлон, Тип 11 (Type 11)10055.6
Нейлон, Тип 12 (Type 12)80.544.7
Нейлон литой , Тип 6 (Type 6)8547.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав8044.4
Неодим9.65.3
Никель13.07.2
Ниобий (Columbium)73.9
Нитрат целлюлозы (CN)10055.6
Окись алюминия5.43.0
Олово23.413.0
Осмий52.8
Палладий11.86.6
Песчаник11.66.5
Платина9.05.0
Плутоний5430.2
Полиалломер91.550.8
Полиамид (PA)11061.1
Поливинилхлорид (PVC)50.428
Поливинилденфторид (PVDF)127.871
Поликарбонат (PC)70.239
Поликарбонат — армированный стекловолокном21.512
Полипропилен — армированный стекловолокном3218
Полистирол (PS)7038.9
Полисульфон (PSO)55.831
Полиуретан (PUR), жесткий57.632
Полифенилен — армированный стекловолокном35.820
Полифенилен (PP), ненасыщенный90.550.3
Полиэстер123.569
Полиэстер, армированный стекловолокном2514
Полиэтилен (PE)200111
Полиэтилен — терефталий (PET)59.433
Празеодимий6.73.7
Припой 50 — 5024.013.4
Прометий116.1
Рений6.73.7
Родий84.5
Рутений9.15.1
Самарий12.77.1
Свинец28.015.1
Свинцово-оловянный сплав11.66.5
Селен3.82.1
Серебро19.510.7
Скандий10.25.7
Слюда31.7
Сплав твердый (Hard alloy) K2063.3
Сплав хастелой (Hastelloy) C11.36.3
Сталь13.07.3
Сталь нержавеющая аустенитная (304)17.39.6
Сталь нержавеющая аустенитная (310)14.48.0
Сталь нержавеющая аустенитная (316)16.08.9
Сталь нержавеющая ферритная (410)9.95.5
Стекло витринное (зеркальное, листовое)9.05.0
Стекло пирекс, пирекс4.02.2
Стекло тугоплавкое5.93.3
Строительный (известковый) раствор7.3 — 13.54.1-7.5
Стронций22.512.5
Сурьма10.45.8
Таллий29.916.6
Тантал6.53.6
Теллур36.920.5
Тербий10.35.7
Титан8.64.8
Торий126.7
Тулий13.37.4
Уран13.97.7
Фарфор3.6-4.52.0-2.5
Фенольно-альдегидный полимер без добавок8044.4
Фторэтилен пропилен (FEP)13575
Хлорированный поливинилхлорид (CPVC)66.637
Хром6.23.4
Цемент10.06.0
Церий5.22.9
Цинк29.716.5
Цирконий5.73.2
Шифер10.45.8
Штукатурка16.49.2
Эбонит76.642.8
Эпоксидная смола , литая резина и незаполненные продукты из них5531
Эрбий12.26.8
Этилен винилацетат (EVA)180100
Этилен и этилакрилат (EEA)205113.9

Эфир виниловый

16 — 228.7 — 12

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Вас также может заинтересовать:

Коэффициент объемного расширения

ТКЛР материалов, используемых в электронике

temperatures.ru

vest-beton.ru

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10

-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник:
В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

thermalinfo.ru

как расчитывается и для чего нужен

 

Вопрос. Здравствуйте! Подскажите пожалуйста, что такое коэффициент расширения бетона? Какое его практическое применение? Спасибо!

Ответ. Добрый день! В строительной практике применяется коэффициент температурного расширения бетона. Его значение определяет отклонение линейных размеров бетонной плиты (бетонного блока) при изменении температуры окружающей среды.

Поэтому данный параметр еще называют – коэффициент линейного расширения бетона. Среднее числовое значение коэффициента линейного расширения, которое используется проектировщиками для расчетов, оговорено в нормативном документе  СНиП 2.06.08-87 «Бетонные и железобетонные конструкции гидротехнических сооружений» и составляет 0,00001 °С-1 (Градус Цельсия в минус первой степени).

Чтобы узнать на сколько увеличится размер бетонного блока необходимо перемножить: величину линейного размера, коэффициент теплового расширения бетона и разницу температуры. Например, бетонный блок длиной 550 мм, при нагреве на 40 градусов Цельсия увеличится на: 550х0,00001х40=0,22 мм.

Практическое применение коэффициента расширения бетона

Долговечность бетонных сооружений испытывающих значительные перепады температуры зависит от коэффициента линейного расширения заполнителя (щебень, гравий, известняк, мраморная крошка и пр.) и разницы между коэффициентами линейного расширения заполнителя и цементного теста.

При этом коэффициент расширения заполнителя определяет коэффициент теплового расширения бетона. Следовательно, для строительства бетонных сооружений работающих в условиях значительного перепада температуры, необходимо подбирать горные породы (заполнитель) обладающие коэффициентом расширения ниже, чем коэффициент расширения цементного камня.

К таким горным породам относится широко применяемый гранит (коэффициент расширения 0,0000074 °С-1), базальт (коэффициент расширения 0,0000065 °С-1)и известняк (коэффициент расширения 0,000008). К не рекомендованным горным породам относятся: калиевые полевые шпаты, кальцит, мрамор и другие горные породы с большим количеством монокристаллов.

Вывод. Так как в частном строительстве в качестве наполнителя, как правило, используется гранитный, гравийный или известняковый щебень вы можете не обращать внимания на коэффициент расширения бетона – долговечность вашего сооружения не зависит от данной характеристики.

 

cementim.ru

Коэффициент теплового расширения бетона

Коэффициент линейного расширения бетона связан с характеристиками теплопроводности и теплоемкости. Он определяет изменение линейного размера материала при воздействии на него высокой или низкой температуры. При строительстве домов с применением бетонирования производят расчеты с учетом удельной теплоемкости.

K = 0,00001 * (ºC)^-1

Коэффициент расширения бетона равен 0,00001*градусы по Цельсию в минус первой степени. Если температура изменяется в пределах от -40ºС до +40ºС, то расширение бетона может достигать 0,8 мм/м. Для снижения риска растрескивания поверхность разделяют температурно-усадочными швами.

Теплоемкость

Под теплоемкостью бетона понимают количество тепла, которое необходимо передать материалу для изменения его температуры на одну единицу. Размер бетона, изменяющийся под воздействием температуры, называют коэффициентом температурного расширения.

Теплопроводность

Теплопроводность – одна из важнейших теплофизических характеристик. Высокая теплопроводность тяжелого бетона является его недостатком. Панели для наружных стен производят из тяжелого материала с включением внутреннего слоя утеплителя.

Раствор и крупный заполнитель в составе материала различаются коэффициентом температурного расширения. При изменении температурного режима они деформируются по-разному. В случае существенных колебаний может возникнуть внутреннее растрескивание бетона из-за разного теплового расширения раствора и крупного заполнителя. Трещины образуются на поверхности заполнителя, в растворе и в слабых зернах заполнителя.

Если подобрать состав правильно, с коэффициентами температурного расширения, близкими по значению, то можно избежать растрескивания. Бетоны с высоким коэффициентом теплового расширения менее устойчивы к температурным изменениям, чем смеси с меньшим значением. При этом данный коэффициент не является характеристикой долговечности материала, который подвергается быстрым и частым изменениям температуры. Быстрое изменение температурного режима может стать причиной разрушения.

 

udarnik.spb.ru

Коэффициент расширения бетона

Определение коэффициента расширения бетона относится к разряду реологических исследований – то есть направления, посвященного деформации и текучести веществ. Коэффициент температурного или теплового расширения является величиной, показывающей изменение объема и линейных параметров изделия при изменении температуры и постоянном давлении. Данное свойство относится ко всем веществам и материалам, имеющим атомно-молекулярную структуру. При их нагревании происходит увеличение расстояния между отдельными атомами и молекулами (для жидкостей и газов) или возрастание диапазона колебаний элементов в кристаллической решетке твердых веществ, следствием чего и является увеличение их объема.

Данный показатель неразрывно связан с такой его характеристикой, как теплопроводность. Последняя определяется как способность изделия передавать тепло, проходящее сквозь его толщу. Теплопроводность непосредственно связана с составом материала. Чем более плотной является его структура, тем выше данный показатель.

Показатели теплопроводности у тяжелых и легких бетонов существенно различаются. Теплопроводность тяжелых бетонов значительно выше, чем ячеистых, что является их существенным недостатком. Поэтому стены из тяжелого бетона нуждаются в дополнительном утеплении. При этом последняя так же зависит от уровня влажности окружающей среды.

Коэффициент расширения бетона составляет 0,00001оС. Это означает, что при увеличении температуры окружающей среды на 50оС бетонная конструкция способна увеличиваться в объеме, и данный показатель будет находиться в пределах 0,5мм/м. Диапазон колебания температур, превышающий 80оС приводит к возрастанию данного показателя. Так же на величину коэффициента линейного напряжения влияет величина фракции заполнителя: чем она выше, тем больше данный показатель. Возрастание объема составляющих частей бетонной конструкции приводит к возникновению сильных внутренних напряжений в материале, вследствие чего плиты начинают растрескиваться и крошиться, что сразу же сказывается на длительности их эксплуатации, уменьшая ее в разы.

Для предотвращения негативных последствий данного явления используют температурные швы, которые представляют собой углубления, проделанные на поверхности материала. Именно они, а не сама плита, при возникновении деформирующих сил принимают основную нагрузку.


Еще статьи из этой рубрики:

    Контроль качества бетона

    Контроль качества бетона является составляющей частью цикла его производства. Контроль реализуется в следующих видах: как проведение предварительных проверок качества исходных материалов, используемых при производстве бетонных изделий; как контроль за технологией …

    Класс и марка бетона

    Качество бетонов, как и любых других строительных материалов, регулируется государственными стандартами. Установленная ими классификация позволяет контролировать качество продукции и легко ориентироваться в ее ассортименте, выбирая необходимый класс в …

    Искусственный камень из бетона

    Бетон в последние десятилетия применяется не только как строительный, но и как декоративный материал. Искусственный камень из бетона, полученный путем применения его дополнительной обработки, позволяет создать имитацию практически …

prorabprorabich.ru

Коэффициент температурного расширения бетона


Коэффициент расширения бетона

Определение коэффициента расширения бетона относится к разряду реологических исследований – то есть направления, посвященного деформации и текучести веществ. Коэффициент температурного или теплового расширения является величиной, показывающей изменение объема и линейных параметров изделия при изменении температуры и постоянном давлении. Данное свойство относится ко всем веществам и материалам, имеющим атомно-молекулярную структуру. При их нагревании происходит увеличение расстояния между отдельными атомами и молекулами (для жидкостей и газов) или возрастание диапазона колебаний элементов в кристаллической решетке твердых веществ, следствием чего и является увеличение их объема.

Данный показатель неразрывно связан с такой его характеристикой, как теплопроводность. Последняя определяется как способность изделия передавать тепло, проходящее сквозь его толщу. Теплопроводность непосредственно связана с составом материала. Чем более плотной является его структура, тем выше данный показатель.

Показатели теплопроводности у тяжелых и легких бетонов существенно различаются. Теплопроводность тяжелых бетонов значительно выше, чем ячеистых, что является их существенным недостатком. Поэтому стены из тяжелого бетона нуждаются в дополнительном утеплении. При этом последняя так же зависит от уровня влажности окружающей среды.

Коэффициент расширения бетона составляет 0,00001оС. Это означает, что при увеличении температуры окружающей среды на 50оС бетонная конструкция способна увеличиваться в объеме, и данный показатель будет находиться в пределах 0,5мм/м. Диапазон колебания температур, превышающий 80оС приводит к возрастанию данного показателя. Так же на величину коэффициента линейного напряжения влияет величина фракции заполнителя: чем она выше, тем больше данный показатель. Возрастание объема составляющих частей бетонной конструкции приводит к возникновению сильных внутренних напряжений в материале, вследствие чего плиты начинают растрескиваться и крошиться, что сразу же сказывается на длительности их эксплуатации, уменьшая ее в разы.

Для предотвращения негативных последствий данного явления используют температурные швы, которые представляют собой углубления, проделанные на поверхности материала. Именно они, а не сама плита, при возникновении деформирующих сил принимают основную нагрузку.

    Контроль качества бетона

    Контроль качества бетона является составляющей частью цикла его производства. Контроль реализуется в следующих видах: как проведение предварительных проверок качества исходных материалов, используемых при производстве бетонных изделий; как контроль за технологией …

    Класс и марка бетона

    Качество бетонов, как и любых других строительных материалов, регулируется государственными стандартами. Установленная ими классификация позволяет контролировать качество продукции и легко ориентироваться в ее ассортименте, выбирая необходимый класс в …

    Искусственный камень из бетона

    Бетон в последние десятилетия применяется не только как строительный, но и как декоративный материал. Искусственный камень из бетона, полученный путем применения его дополнительной обработки, позволяет создать имитацию практически …

prorabprorabich.ru

Усадка и термическое расширение жароупорного бетона

Усадка для жароупорного бетона является важным показателем, так как такой бетон (в отличие от обычных огнеупорных изделий) предварительно не обжигается, а подвергается нагреванию непосредственно в элементах конструкции. Следовательно, вся усадка жароупорного бетона происходит в рабочем состоянии, т. е. уже в процессе эксплуатации теплового агрегата. При нагревании в бетоне возникают напряжения, зависящие от таких факторов, как термическое расширение или усадка составляющих компонентов, температура и скорость нагрева, упруго-пластические свойства и предельные деформации составляющих компонентов, относительное количество в бетоне вещества, претерпевающего усадку при нагревании, зерновой состав и максимальная крупность зерен заполнителя.

Вследствие внутренних напряжений при нагреве жароупорного бетона могут возникать не только упругие, но также пластические и остаточные деформации, а при этом нарушается структура, что сказывается на свойствах жароупорного бетона и в том числе и на усадке.

В температурном интервале от 600 (700) до 800° кривая усадки имеет примерно горизонтальный участок, т. е. усадка не увеличивается с повышением температуры. Очевидно, в этом интервале структура бетона видоизменяется. Действительно, прочность бетона в этом интервале снижается наиболее резко. При температурах выше 800° происходит дальнейшее «разрыхление» структуры бетона и прочность его снижается до минимума примерно при температуре 1000°.

Кажущаяся усадка бетона заметно уменьшается или даже наоборот—бетон как бы увеличивается в объеме. Очевидно, этому соответствует и поведение цементного камня, т. е. наблюдаемое иногда уменьшение усадки при температуре 1000° по сравнению с усадкой при 800°. При температурах 800—1100° линейная усадка жароупорных бетонов на портландцементе составляет от 0,2 до 0,7%.

Рис. 59 Коэффициент линейного термического расширения жароупорного бетона на портландцементе с шамотным заполнителем и его составляющих в зависимости от температуры нагрева: 1—шамот; 2—бетон; 3—портландцемент с 25% тонкомолотого шамота.

Из графика (рис. 59) видно, что коэффициент термического расширения шамота в интервале температур 300—900° колеблется от и 6 10-6 до 8- 10-6. Коэффициент термического расширения жароупорного бетона на портландцементе с шамотным заполнителем соответствует коэффициенту термического расширения шамота и составляет 5- 10-6— 8 — 10-6, что свидетельствует о том, что термическое расширение бетона в большой степени зависит от заполнителя. Коэффициент термического расширения жароупорного бетона на портландцементе с заполнителем из отвального доменного шлака в интервале от 200 до 700° составляет от 8- 10-6 до 11 — 10-6, а для бетона на заполнителе из каширского котельного шлака — 4-10-6—5 — 10-6.

www.stroimt.ru

Коэффициент термического расширения бетона

Page 2

Фото вибропрессованного кирпича, блока, тротуарной плитки, бордюров, бордюрного каменя. Посмотреть все вибропрессованные кирпичи, блоки плитку и др. изделия Фото вибропрессованного блока. Посмотреть все вибропрессованные блоки Фото гиперпрессованного кирпича. Посмотреть все гиперпрессованные кирпичи Фото силикатного кирпича. Посмотреть все силикатные кирпичи Фото керамического кирпича (с обжигом). Посмотреть все керамические кирпичи   

www.vogean.com

Коэффициент теплового линейного расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… / / Коэффициенты теплового линейного расширения, теплового объемного расширения.  / / Коэффициент теплового линейного расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),

а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Материал

Коэффициент линейного теплового расширения

(10-6 м/(мK)) / ( 10-6 м/(мoС))

(10-6 дюйм/(дюйм oF))

ABS (акрилонитрил-бутадиен-стирол) термопласт73.841
ABS — стекло, армированное волокнами30.417
Акриловый материал, прессованный234130
Алмаз1.10.6
Алмаз технический1.20.67
Алюминий22.212.3
Ацеталь106.559.2
Ацеталь , армированный стекловолокном39.422
Ацетат целлюлозы (CA)13072.2
Ацетат бутират целлюлозы (CAB)25.214
Барий20.611.4
Бериллий11.56.4
Бериллиево-медный сплав (Cu 75, Be 25)16.79.3
Бетон14.58.0
Бетонные структуры9.85.5
Бронза18.010.0
Ванадий84.5
Висмут137.3
Вольфрам4.32.4
Гадолиний95
Гафний5.93.3
Германий6.13.4
Гольмий11.26.2
Гранит7.94.4
Графит, чистый7.94.4
Диспрозий9.95.5
Древесина, пихта, ель3.72.1
Древесина дуба, параллельно волокнам4.92.7
Древесина дуба , перпендикулярно волокнам5.43.0
Древесина, сосна52.8
Европий3519.4
Железо, чистое12.06.7
Железо, литое10.45.9
Железо, кованое11.36.3
Золото14.28.2
Известняк84.4
Инвар (сплав железа с никелем)1.50.8
Инконель (сплав)12.67.0
Иридий6.43.6
Иттербий26.314.6
Иттрий10.65.9
Кадмий3016.8
Калий8346.1 — 46.4
Кальций22.312.4
Каменная кладка4.7 — 9.02.6 — 5.0
Каучук, твердый7742.8
Кварц0.77 — 1.40.43 — 0.79
Керамическая плитка (черепица)5.93.3
Кирпич5.53.1
Кобальт126.7
Констанан (сплав)18.810.4
Корунд, спеченный6.53.6
Кремний5.12.8
Лантан12.16.7
Латунь18.710.4
Лед5128.3
Литий4625.6
Литая стальная решетка10.86.0
Лютеций9.95.5
Литой лист из акрилового пластика8145
Магний2514
Марганец2212.3
Медноникелевый сплав 30%16.29
Медь16.69.3
Молибден52.8
Монель-металл (никелево-медный сплав)13.57.5
Мрамор5.5 — 14.13.1 — 7.9
Мыльный камень (стеатит)8.54.7
Мышьяк4.72.6
Натрий7039.1
Нейлон, универсальный7240
Нейлон, Тип 11 (Type 11)10055.6
Нейлон, Тип 12 (Type 12)80.544.7
Нейлон литой , Тип 6 (Type 6)8547.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав8044.4
Неодим9.65.3
Никель13.07.2
Ниобий (Columbium)73.9
Нитрат целлюлозы (CN)10055.6
Окись алюминия5.43.0
Олово23.413.0
Осмий52.8
Палладий11.86.6
Песчаник11.66.5
Платина9.05.0
Плутоний5430.2
Полиалломер91.550.8
Полиамид (PA)11061.1
Поливинилхлорид (PVC)50.428
Поливинилденфторид (PVDF)127.871
Поликарбонат (PC)70.239
Поликарбонат — армированный стекловолокном21.512
Полипропилен — армированный стекловолокном3218
Полистирол (PS)7038.9
Полисульфон (PSO)55.831
Полиуретан (PUR), жесткий57.632
Полифенилен — армированный стекловолокном35.820
Полифенилен (PP), ненасыщенный90.550.3
Полиэстер123.569
Полиэстер, армированный стекловолокном2514
Полиэтилен (PE)200111
Полиэтилен — терефталий (PET)59.433
Празеодимий6.73.7
Припой 50 — 5024.013.4
Прометий116.1
Рений6.73.7
Родий84.5
Рутений9.15.1
Самарий12.77.1
Свинец28.015.1
Свинцово-оловянный сплав11.66.5
Селен3.82.1
Серебро19.510.7
Скандий10.25.7
Слюда31.7
Сплав твердый (Hard alloy) K2063.3
Сплав хастелой (Hastelloy) C11.36.3
Сталь13.07.3
Сталь нержавеющая аустенитная (304)17.39.6
Сталь нержавеющая аустенитная (310)14.48.0
Сталь нержавеющая аустенитная (316)16.08.9
Сталь нержавеющая ферритная (410)9.95.5
Стекло витринное (зеркальное, листовое)9.05.0
Стекло пирекс, пирекс4.02.2
Стекло тугоплавкое5.93.3
Строительный (известковый) раствор7.3 — 13.54.1-7.5
Стронций22.512.5
Сурьма10.45.8
Таллий29.916.6
Тантал6.53.6
Теллур36.920.5
Тербий10.35.7
Титан8.64.8
Торий126.7
Тулий13.37.4
Уран13.97.7
Фарфор3.6-4.52.0-2.5
Фенольно-альдегидный полимер без добавок8044.4
Фторэтилен пропилен (FEP)13575
Хлорированный поливинилхлорид (CPVC)66.637
Хром6.23.4
Цемент10.06.0
Церий5.22.9
Цинк29.716.5
Цирконий5.73.2
Шифер10.45.8
Штукатурка16.49.2
Эбонит76.642.8
Эпоксидная смола , литая резина и незаполненные продукты из них5531
Эрбий12.26.8
Этилен винилацетат (EVA)180100
Этилен и этилакрилат (EEA)205113.9

Эфир виниловый

16 — 228.7 — 12
  • T(oC) = 5/9[T(oF) — 32]
  • 1 дюйм = 25.4 мм
  • 1 фут = 0.3048 м

tehtab.ru

vest-beton.ru

Температурное расширение бетон — Справочник химика 21

    Коэффициент линейного температурного расширения для жаростойких бетонов на глиноземистом цементе и заполнителе из хромита в интервале температур от 20 до 900° С равен [c.43]

    Так как коэффициенты температурного расширения бетона и стали по величине очень близки, то температурные напряжения не нарушают монолитности железобетона. [c.28]

    Температурный коэффициент линейного расширения бетонов [c.188]


    Коэффициент температурного расширения бетона составляет 0,00001. Коэффициент усадки принимается 0,00015 таким образом, на 1 м длины бетонного сооружения усадка составляет 0,15 мм. Необходимо отметить, что быстротвердеющий, белитовый и пуццолановый портландцементы обычно дают большую усадку бетона усадка бетона большая происходит также при использовании мелкозернистых и пористых заполнителей. [c.370]

    Обмуровка трубчатых печей. Обмуровка печи включает слой из фасонного огнеупорно-изоляционного кирпича толщиной до 250 мм и наружный слой тепловой изоляции. Для придания прочности и защиты от атмосферных воздействий обмуровку снаружи закрывают стальным кожухом. Применяют также печи с монолитной обмуровкой из жаропрочного бетона. Обмуровку крепят на специальных подвесках и кронштейнах, которые соединены с каркасом печи (рис. Х1-6). Боковые поверхности кирпича иногда выполняют волнистыми для обеспечения большей герметичности печи. Для возможности теплового расширения кладки устраивают температурные швы, заполненные мягкой, легко деформируемой тепловой изоляцией (например, асбестом). [c.194]

    В жаростойком железобетоне арматуру располагают в местах, где температура не превышает 350° С. При более высоких температурах температурное расширение арматуры больше, чем у бетона, [c.72]

    В строительстве часто необходимо иметь цемент, отличающийся малым тепловыделением. Он предназначается для массивных бетонных конструкций, например, в гидротехнических сооружениях. При твердении цемента с большим экзотермическим эффектом возникает температурное расширение бетона, причем он сильно расширяется во внутренних частях массива и в меньшей степени в наружных частях, которые подвергаются естественному охлаждению воздухом или водой. Скорость и степень охлаждения тоже различны в разных зонах конструкции. Объемные деформации, возникающие при неравномерных расширении и сжатии бетона, вызывают образование трещин и иногда приводят к разрушению сооружений. Для получения цемента, обладающего небольшим тепловыделением, клинкер должен изготовляться с относительно невысоким содержанием трехкальциевого силиката и трехкальциевого алюмината. [c.181]

    Коэффициент линейного температурного расширения бетона на периклазовом цементе при нагревании до 1450° С равен 1,47%. Термостойкость жаростойких бетонов на шамотном заполнителе— 15—25 водяных теплосмен, а на хромитовом — порядка 5. Объемная масса бетонов с хромитовым заполнителем 3200 кг/м , а с шамотным — 1800—2000 кг1м . [c.43]

    В жаростойком железобетоне арматуру располагают в местах с температурой, не превышающей 350° С. При более высоких температурах температурное расширение арматуры больше, чем температурное расширение бетона, сцепление арматуры с бетоном нарушается, арматура корродирует, расширяется и разрушает бетон. [c.174]

    К разрушению бетонного тела приводят и внутренние причины — высокая водопроницаемость, взаимодействие щелочей цемента с кремнеземом заполнителя, изменение объема из-за различия температурного расширения цемента и заполнителя, образование соединений с увеличением объема твердой фазы в условиях, когда структура цементного камня окончательно сформировалась (образование гидроксида кальция или. магния, гидросульфоалюминатов кальция). [c.367]

    Предел прочности, МПа, при. сжатии растяжении изгибе Адгезия к бетону, МПа Коэффициент линейного температурного расширения в пределах температур 40… 100 °С, ГС [c.92]

    В номинальных режимах эксплуатации АЭС рабочие параметры установки сохраняются примерно постоянными (для ВВЭР-440 с учетом данных 1 гл. 2 давление и температура на входе составляют 12,7 МПа и 265 °С, а на выходе — 12,4 МПа и 296 °С). Расход теплоносителя через реактор составляет около 43 000 м /ч, Давление в контуре, стационарные температурные смещения и напряжения от весовых нагрузок определяются с использованием общей расчетной схемы. Весовые нагрузки из-за массивности оборудования АЭУ оказьшаются весьма значительными. Суммарная масса оборудования составляет около 10% от массы бетонных сооружений, заключающих в себя установку. Эта характеристика АЭУ важна для проектирования опор, анализа отклика на сейсмические воздействия и нагрузки, обусловленные аварийными режимами эксплуатации АЭС, Опорные конструкции должны допускать температурные расширения и быть достаточно жесткими, поскольку они строго влияют на собственные колебания всей системы АЭС, даже контролируя их, что также важно для учета влияния землетрясений и аварийных нагрузок. Жесткостные свойства опор, возможные (заложенные в проекте) их особенности рассеяния (диссипации) энергии колебаний учитываются в расчетах введением соответствующих матриц жесткости и демпфирования. [c.90]

    К разрушению бетонного тела приводят и внутренние причины — высокая его водопроницаемость, взаимодействие щелочей цемента с кремнеземом заполнителя, изменение объема из-за различия температурного расширения цемента и заполнителя. Поскольку эти вопросы рассмотрены в главе, посвященной свойствам бетонов, остановимся на внешних причинах коррозии цементного камня и бетона, возникающих в результате физического и химического взаимодействий материала с окружающей средой. [c.368]

    Результаты испытаний образцов бетона с магнезитовым заполнителем показывают постепенное снижение прочности от 100 до 1100°. Снижение прочности в этом интервале температур можно объяснить частичным нарушением структуры образцов, происходящим в результате температурного расширения зерен периклаза (магнезита), обладающего значительным термическим коэффициентом линейного расширения (а р. = 17-10 ). [c.45]

    Коэффициент температурного расширения к-бетона в пределах температур от 20 до 300° равен 0,000008, если Д/ вычислять как разность между длиной нагретого образца и длиной образца после охлаждения его вновь до 20°, и 0,000004, если Д/ относить к первоначальной длине образца. Такая разница объясняется тем, что при нагревании к-бетона до 300° происходит не только тепловое расширение материала, но и другие физико-химические процессы, вероятно связанные с дальнейшей дегидратацией геля ЗЮз и уменьшением первоначального объема материала. [c.110]

    Для температур, не превышающих 500—550°, В. И. Мурашек считает возможным в качестве мелкого заполнителя применять, естественные или искусственные пески, обосновывая это тем,, что при размере зерен до 5 мм их температурное расширение и физическая анизотропность не могут существенно повлиять на снижение прочностп бетона. В. И. Мурашев не рекомендует применять пески из доломита и мергеля, а также из доломитизи-рованного и мергелистого известняков, так как температура диссоциации углекислого магния лежит в пределах 400—500°, а примесь глинистых веществ и магнезии к известняку снижает температуру его диссоциации. Для температур, превышающих 550°, применяют материалы, не содержащие большого количества кристаллического кварца и обладающие малым коэффициентом линейного расширения, достаточной огнеупорностью, термостойкостью, а также прочностью при высокой температуре. К их числу относятся базальт, диабаз, доменные шлаки, бой красного или шамотного кирпича, хродшстый железняк, магнезит и тому подобные материалы. Выбор соответствующего заполнителя зависит от величины рабочей температуры, специфических условий работы элемента конструкции и местных условий. [c.18]

    Недостатком подобной облицовки кроме уже упомянутой относительно низкой границы температур применения и большого температурного расширения, что при сочетании с армированным бетоном очень неблагоприятно, является хрупкость этого материала при низких температурах. [c.133]

    Необходимо, однако, предупредить читателя о то.м, что пленка из пластифицированного поливинилхлорида обладает большим температурным расширением при высоких температурах она размягчается, а при низких — становится хрупкой. Из-за этого, например, ее нельзя рекомендовать для форм, в которых твердение бетона ускоряют с помощью пропаривания. [c.174]

    Фундамент печи, выложенный из кирпича или бетона, делают полым для. вентилирования и возможности осмотра днища кожуха. Кожух печи сваривают из обечаек, изготовленных из листового железа толщиной 12—15 мм, имеющих ребра жесткости. Изнутри кожух печи тщательно футеруют фасонным пришлифованным шамотовым кирпичом с пористостью, не превышающей 16%. Кирпич кладут на специальной замазке, состоящей, например, из тонкоразмолотого полевого шпата, замешанного на калиевом жидком стекле. Между кожухом и футеровкой укладывают асбестовые листы для теплоизоляции и амортизации усилий от температурных расширений кладки. Так как давление газов в печи доходит до 200—250 мм рт. ст., то сочленение футеровки с электродами, фурмами, леткой и другими элементами тщательно уплотняют. [c.100]

    Цемент широко применяют также для изготовления самостоятельного строительного материала — бетона. Последний представляет собой смесь цементного теста с песком и каменной мелочью естественного или искусственного происхождения (гравий, щебень, обломки кирпичей и т п.). Хорошо перемешаннук> бетонную смесь укладывают в формы, где она затвердевает. Очень часто внутри этих форм предварительно устанавливают каркасы из железа, с которым бетон имеет почти одинаковый коэффициент температурного расширения и хорошо сцепляется. Такие сооружения носят название железобетонных. [c.394]

    Также довольно остро стоит вопрос о восприятии температурных деформаций. Термореактивные смолы и бетоны на их основе имеют коэффициент температурного расширения (к. т. р.) значительно (в 2—3 раза) больший, чем у цементного камня и цементных бетонов [порядка (30 20) 10 против (15 10) 10 соответственно]. [c.13]

    Фундаменты для компрессоров малой мощности (до 50 кВт) сооружают из бетона, для компрессоров и двигателей внутреннего сгорания большой мощности — из железобетона. Бетон — искусственный каменный материал, который получается в результате затвердения смеси цемента (вяжущего), щебня, песка (заполнителей) и воды. Железобетон — сочетание бетона и стальной арматуры, монолитно соединенных и работающих в конструкции как единое целое. Совместная работа материалов в железобетоне обеспечивается прочным сцеплением бетона с арматурой, относительной близостью значений температурных коэффициентов линейного расширения обоих материалов. [c.33]

    Кроме перечисленных факторов, на работу уплотнений РВП ТКЗ первых выпусков значительное влияние оказывают температурные деформации каркаса котла, каркаса РВП, железобетонной тумбы и газовых коробов. Это связано с тем, что нижняя опора РВП не связана конструктивно с верхней, направляющей, опорой. В результате этого верхняя часть каркаса РВП, соединенная с каркасом котла, при нагревании расширяется и уводит верхнюю опору относительно нижней, установленной на железобетонной тумбе. Так как бетон и металл имеют различные коэффициенты линейного расширения, то при изменении температуры наружного воздуха ротор и корпус могут несколько смещаться относительно друг друга по высоте. На некоторых котлах ТКЗ верхняя балка РВП, в которой установлены направляющие подшипники, связывает все четыре воздухоподогревателя (котел ТПП-110). Во время работы балка нагревается (до 130—150° С) и в результате ее расширения опоры уходят от оси котла. Патрубки дымовых газов присоединены к общему коробу, который при нагревании расширяется и перекашивает корпус РВП. [c.119]

    ОГНЕСТОЙКОСТЬ — способность материала сохранять физико-меха-нические свойства при воздействии огня в условиях пожара. У одних материалов (доломита, известняка, мрамора) воздействие огня вызывает хим. разложение, другие материалы (алюминий) плавятся, третьи (бетон, гранит, сталь) деформируются. Так, бетон под воздействием высокотемпературного пламени частично теряет прочность от внутренних напряжений, возникающих вследствие различия температурного коэфф. линейного расширения цементного камня и крупного заполнителя. Кроме того, при т-ре выше 500° С начинается разложение гидрата окиси кальция в структуре цементного камня. Одновременно разрыхляются зерна кварца в песке и крупном за- [c.93]

    Под температурными деформациями понимают обратимые деформации, возникающие при нагреве или охлаждении материалов. Эти деформации принята оценивать температурным коэффициентом линейного расширения (ТКР). У большинства полимеров значение ТКР значительно выше [для термопластов (0,5—5) 10 1/°С], чем у бетона и стали (1-10- 1/°С). [c.21]

    Примечание 1. Эмпирические формулы для вычисления температурного коэффициента линейного расширения бетонов в интервале температур от —30″ до 0°С ( ) и от О до +40°С ) я з вискиости от лажностк по объему т (%) и температуры Г °С следующее  [c.189]

    Во избежание подсоса воздуха или потерь газа температурные швы обычно заполняются маловлажной огнеупорной массой с добавкой 25—30% асбеста по объему. При заделке в кладку пода стелюг, балок и т. п. между кладкой и. металлом оставляют температурные швы для свободного расширения металла при нагревании. При укладке жаростойких бетонов температурные швы должны быть предусмотрены проектом. Типовые температурные швы приведены на рис. 60. [c.262]

    Так, например, временное сопротивление на разрыв синтетических волокон типа нейлон, капрон достигает 8000 кГ1см при объемном весе около 1 г/см . Однако низкий модуль упругости (до 50 000 кГ см ), слишком высокий коэффициент температурного расширения (удлинения) а=(8—10) 10- и сравнительно большая ползучесть под нагрузкой не позволяют использовать их в качестве арматуры для бетонных конструкций. [c.90]

    Если пластмассовый трубопровод залит в бетон, то он окажется прочно зафиксированным в бетоне каждым соединительным устройством и каждой фасонной частью, если даже бетон не образует сцепления с пластмассовой поверхностью трубы. Трубопровод будет неподвижен в бетоне и лишен возможности расширения. Трубы же уложенные в свободный или стабилизированный цементом материал Le a не будут иметь такой жесткой фиксации и потому должны рассматриваться как свободно уложенные. В таких трубопроводах температурные расширения гасятся либо в муфтах, либо за счет смещения водоотводящих трубопроводных патрубков. [c.78]

    Аппарат представляет собой кожухотрубный вертикальный одноходовой теплообменник, который имеет две трубные решетки нижнюю толщиной 15 мм и верхнюю толщиной 155 мм. В горячей камере устанавливается распределитель потока. Нижний корпус футерован жаропрочным бетоном. ЗИА соедп-нен циркуляционными трубами с барабаном-паросборником.. Удовлетворительные эксплуатационные характеристики работы и простота обслуживания способствуют широкому распространению аппаратов, несмотря на необходимость применения массивного прочного корпуса (в условиях получения пара высоких, параметров) и ряд конструктивных недостатков. Ввиду того,, что трубные решетки работают при различных температурных перепадах (нижняя 650—450 °С и верхняя 260 °С, температура испарения воды 330°С) возникают трудности в креплении концов труб за счет разницы в величине линейного расширения. Кроме того, возникают осложнения, связанные с газодинамикой потока, который, выходя из центрального штуцера с температурой 800—870 °С, должен быть равномерно распределен по всем трубам. Неравномерность потока пирогаза по охлаждающим трубкам ЗИА вызывает местное переохлаждение пирогаза и как результат — конденсацию компонентов тяжелых смол, их полимеризацию, захват ими частиц кокса и сажи, содержащихся в газе, что способствует забивке труб, расположенных преимущественно по периферии распределительной решетки. [c.122]

    Теплостойкость П. на основе различных связующих следующая (в °С) фурановые смолы — 150—200, эпоксидные — 80—120, полиэфирные — 70—100, фенольные — 120—180. Температурный коэфф. линейного расширения П. в 2—6 раз превышает этот показатель для стали и обычного бетона при повышенци темп-ры от —40- до 60 °С он изменяется от 20-10 °С до 60-10 °С . Теплопроводность П. на основе мономера [c.439]

    Н. А. Житкевич к числу основных причин, вызывающих снижение прочности обычного бетона при его нагревании, относит наличие кварцевого песка. Известно, что переход модификации -кварца в а-кварц при температуре 573° сопровождается значительным скачкообразным изменением объема, что нарушает структуру бетона. Неравномерное расширение кристаллов некоторых минералов по различным осям симметрии также способствует нарушению структуры бетона при нагревании. Кроме того, основными причинами, вызывающими снижение прочности бетона при его нагревании, являются возникновение внутренних напряжений и повреждение структуры вследствие разности температурных деформаций цементного камня и заполнителя. [c.15]

    Температурные деформации. При нагреве до 100° затвердев-пше цементные растворы теряют небольшое количество воды. При этом увеличение объема затвердевшего раствора вследствие теплового расширения его компенсируется уменьшением объема этого раствора, вызванным испарением воды. Структура цементного камня при этом Не нарушается. При дальнейшем повышении температуры объем отвердевшего цементного раствора уменьшается, что связано с нарушением структуры цементного камня. Усадка цементного камня объясняется уплотнением его при высыхании коллоидальных веществ, образовавшихся в процессе твердения цемента. Особенно большое значение приобретают характер и величина относительных деформаций бетонных футеровок при их армировании металлической сеткой и наличие шпилек, стержней или кольцевых перегородок. Козфф1щиент линейного расширения стали Ст.З с повышением температуры от 100 до 500° увеличивается с 11,9-10 до 14,2-10″ , а нержавеющей стали типа 1Х18Н9Т — с 16,6- 10 до 17,9 10 . [c.34]


chem21.info