Размер силикатного кирпича, вес, теплопроводность и другие параметры
Приступая к возведению постройки, следует знать размер силикатного кирпича (если именно этот вид стройматериалов выбран как основной), а также его прочие качества. Это необходимо, поскольку характеристики силикатного кирпича влияют на тип строения, которое из него может быть возведено.
Силикатный кирпич отличается высоким уровнем звукоизоляции.Потребителю предлагается 2 варианта изделий: пустотелые (обладающие меньшим весом и лучше удерживающие тепло) и полнотелые. Все они различаются по размерам и выпускаются огромным числом производителей в разных вариантах и цветовой гамме. Единственное, что объединяет всех производителей стройматериалов, — ГОСТ, регламентирующий габариты и прочие характеристики и тем самым помогающий покупателям не утонуть в изобилии изделий, которые без ГОСТа могли бы выпускаться по принципу «кто во что горазд».
Технические характеристики
Виды силикатного кирпича.Свойства силикатного кирпича позволяют во многих климатических зонах возводить из него здания любого назначения, начиная от хозяйственных построек и заканчивая промышленными цехами, а жилые помещения строятся не только различной этажности, но и всевозможных конфигураций.
Для достижения оптимального варианта постройки возводят кладками различных типов, с различной толщиной стен и с использованием полнотелых и пустотелых кирпичей различных размеров. Чтобы выбрать оптимальный тип кирпича для каждого случая, нужно учитывать технические характеристики изделия. Только в этом случае срок службы постройки и комфортность ее использования будут максимальными.
Плотность и вес
Размеры силикатного кирпича.Одним из показателей прочности является плотность силикатного кирпича. Эту физическую величину определяют отношением веса элемента к его объему, поэтому чем меньше в материале пустот (пор), тем прочнее и, соответственно, тяжелее будет изделие. Плотность кирпичей лежит в следующих диапазонах, измеряемых в кг/м³:
- силикатный пустотелый — 1135-1577;
- силикатный полнотелый — 1840-1933.
Вес силикатного кирпича напрямую зависит от его плотности, размеров и формы. Одинарный пустотелый блок будет самым легким из всех представителей линейки силикатных изделий, используемых для стеновой кладки.
Изделие | Вес (кг) | |
полнотелый | пустотелый | |
Еврокирпич | 2,1 | — |
Одинарный СК | 3,7 | 3,2 |
Полуторный СК | 5 | 3,9 |
Двойной камень | 7,7 | 5,8 |
Узнать свойства данного стройматериала можно, выяснив, сколько весит силикатный кирпич: чем он тяжелее при одном и том же размере, тем хуже характеристики его теплоизоляции. Пустотелый кирпич может быть 3-, 11- и 14-пустотным, то есть его внутренний объем может быть уменьшен на 15, 25 и 31% соответственно. В связи с этим масса пустотелых изделий также будет отличаться в пределах до 0,5 кг.
Вес одного изделия может колебаться, так как зависит от нескольких показателей, в том числе размера (поскольку для всех сторон разрешены допуски) и плотности, которая, в свою очередь, зависит от исходного материала и специфики технологии изготовления.
Теплопроводность
Теплопроводность напрямую зависит от плотности и измеряется в СИ в сложных единицах Вт/(м×К) или ватт/(метр×кельвин), а обозначается коэффициентами.
Схема кирпича и его частей.Для рассчитанной лабораторной теплопроводности силикатного кирпича коэффициенты составят:
- для полнотелого изделия — 0,7;
- для пустотелого — 0,66.
Для наглядности коэффициент теплопроводности силикатного кирпича можно сравнить с другими материалами. Так, для стекловаты коэффициент составит 0,03-0,04, для стекла — 1, для древесины — 0,15, для воды в нормальных условиях — 0,6.
Морозостойкость
Изделие не подходит для стен, подвергающихся увлажнению, поскольку хорошо впитывает влагу. Именно поэтому из него не рекомендуется делать части здания, открытые сверху (парапеты), поскольку они могут сильно намокнуть от осадков, а потом замерзнуть, что будет способствовать скорейшему разрушению строения.
Виды кладок силикатного кирпича.Морозостойкость силикатного кирпича является одним из показателей его долговечности и измеряется в циклах. Чем больше раз он сможет замерзнуть при температуре -18°С и затем оттаять при +20°С без образования признаков разрушения, тем долговечнее считается и тем выше его морозостойкость, которая в маркировке обозначается буквой F и цифрами 15, 25, 35 и 50. Причем облицовочное изделие выпускают только с морозостойкостью 35 и 50.
Все перечисленные цифры являются показателями количества циклов и мало соотносятся с реальностью, потому что испытания проводятся в жестких условиях лаборатории с резкими перепадами от минуса к плюсу. На деле же природа редко преподносит такие сюрпризы, и долговечность кирпича силикатного выходит гораздо выше прогнозируемой, благодаря чему он используется для возведения построек даже в регионах с суровыми зимами.
Размеры белого кирпича
Широкий выбор изделий, в основе которых лежит силикатный кирпич, позволяет возвести постройку любой конфигурации, отделать ее арками, колоннами, окружить фигурным забором.
Разновидности кирпичей и их особенности.Несмотря на кажущееся разнообразие, в основе параметров силикатных изделий лежат размеры одинарного кирпича, которые определяются соответствующим ГОСТом. В миллиметрах его размеры выражаются следующим соотношением: 250×120×65, где цифрами последовательно представлены длина, ширина и высота (она же толщина) изделия. Именно такая пропорция удобна для возведения стен и хорошо чередуется в продольной и поперечной кладке, чтобы связка между рядами улучшилась.
Пропорционально к этим величинам рассчитываются остальные изделия, которые ГОСТ выражает как коэффициенты, соотносящие их размер с одинарным. Вид кирпича, в обиходе именуемый полуторным (250х120х88 мм), в ГОСТе обозначается коэффициентом 1,4, а двойное изделие считается уже не кирпичом, а камнем (как и все остальные, толщина которых превышает 140 мм).
Для лучшей наглядности и облегченного восприятия размеров силикатного кирпича их можно свести воедино и оформить в виде таблицы, в которой рядом с параметрами обыкновенного одинарного изделия будут располагаться размеры используемых редко и фигурных:
Виды силикатного кирпича | Длина (см) | Ширина (см) | Высота (см) | Примечание |
1/4НФ | 6-6,5 | 12 | 6,5 | Неполноразмерный |
1/2НФ | 12 | 12 | 6,5 | Неполноразмерный |
0,7НФ | 25 | 8,5 | 6,5 | Облицовочный |
3/4НФ | 18 | 12 | 6,5 | Неполноразмерный |
1,3НФ | 28,8 | 13,8 | 6,5 | Модульный, используется редко |
1,4НФ | 25 | 12 | 8,8 | Полуторный |
1НФ | 25 | 12 | 6,5 | Одинарный, основное стандартное изделие |
2НФ | 25 | 12 | 13,8 | Двойной |
Торцевой III-22 | 23 | 11,4 | 65/55 | Клиновидная форма, используется для обустройства сводов и арок |
Торцевой III-23 | 23 | 11,4 | 65/45 |
Но эти параметры, конечно же, не могут выдерживаться с идеальной точностью. Поэтому, когда производится кирпич, размеры могут отклоняться от регламентированных ГОСТом до 2 мм по каждой грани. Покупателю перед приобретением стоит поинтересоваться, какой стандарт лежит в основе производства: если это местное тех. условие, сначала нужно выборочно проверить размеры стройматериалов из партии на соответствие стандартным размерам и соблюдение допусков.
Следование единым размерам позволяет проектировщикам разрабатывать проекты, а строителям воплощать их в жизнь без поездок по заводам и измерений строительных материалов на месте.
Заключение по теме
Несмотря на появляющиеся современные строительные материалы, ни одному пока что не удалось потеснить на рынке силикатный кирпич, свойства и применение которого отлично зарекомендовали себя в суровых российских условиях. Стандартные размеры и разнообразие выпускаемых изделий позволяют воплотить в жизнь любую задумку, а давнее использование не способствует списыванию в архив. Этот ветеран строительных действий до сих пор считается одним из надежных стройматериалов.
Будущим домовладельцам следует при покупке отдавать предпочтение изделиям, выпускающимся в соответствии с ГОСТом, тогда у приобретенного стройматериала будет стандартный размер, его количество будет соответствовать расчетному и при возведении здания не обнаружится проблем.
Сравнительные характеристики теплопроводности стен
Сравнительные характеристики теплопроводности стен
Таблица. Теплопроводность стены в зависимости от материала и ее толщины, (ВТ/м*час*·0С)
Вид материала |
Коэффициент теплопроводности |
Ширина стены |
|||||
|
|
12 см |
18 см |
20 см |
24 см |
30 см |
36 см |
Керамический кирпич |
0,81 |
6,75 |
4,5 |
4,05 |
3,37 |
2,7 |
2,25 |
Силикатный кирпич |
0,9 |
7,5 |
5,0 |
4,5 |
3,75 |
3,0 |
2,5 |
Ячеистый бетон D 600 (газобетон) |
0,14 |
1,16 |
0,77 |
0,7 |
0,58 |
0,46 |
0,38 |
Ячеистый бетон D 500 (газобетон) |
0,12 |
1,0 |
0,66 |
0,6 |
0,5 |
0,4 |
0,33 |
Ячеистый бетон D 400 (газобетон) |
0,1 |
0,8 |
0,55 |
0,5 |
0,41 |
0,33 |
0,27 |
Продолжение таблицы.
Вид материала |
Коэффициент теплопроводности |
Ширина стены |
|||||
|
|
40 см |
48 см |
60 см |
72 см |
84 см |
66 см |
Керамический кирпич |
0,81 |
2,02 |
1,68 |
1,35 |
1,13 |
0,96 |
0,84 |
Силикатный кирпич |
0,9 |
2,25 |
1,87 |
1,5 |
1,25 |
1,07 |
0,93 |
Ячеистый бетон D 600 (газобетон) |
0,14 |
0,35 |
0,29 |
0,23 |
0,19 |
0,16 |
0,14 |
Ячеистый бетон D 500 (газобетон) |
0,12 |
0,3 |
0,25 |
0,2 |
0,16 |
0,14 |
0,12 |
Ячеистый бетон D 400 (газобетон) |
0,1 |
0,25 |
0,2 |
0,16 |
0,13 |
0,12 |
0,1 |
Примечание: чем ниже коэффициент теплопроводности, тем выше теплоизоляция стены, тем больше экономия средств (зимой для обогрева, летом для охлаждения).
Плотность керамического кирпича 1650 кг/м3
Плотность силикатного кирпича 1850 кг/м3
- < Назад
- Вперёд >
Теплопроводность кирпича силикатного: норма параметра
Силикатный кирпичСиликатный кирпич нельзя назвать изделием новым. Однако определенный набор свойств и качеств помогает ему удержаться в списке лидеров по использованию в строительной сфере.
В данной статье мы будем рассматривать одно из свойств, важное для любого стенового материала, которое непосредственным образом влияет на способность будущего здания к сохранению тепла. Итак, теплопроводность кирпича силикатного: что это такое, и каковы ее числовые значения?
Что представляет собой силикатный кирпич
Для начала, давайте разберемся, что собой представляет данный материал.
Силикатный кирпич: состав и основные свойства
Силикатные кирпичи – изделия, изготовленные из смеси песка, извести и воды. Также при производстве используются шлак, зола и иные взаимозаменяемые компоненты.
Состав сырья непосредственно влияет на итоговые характеристики изделий, приуменьшая либо наоборот, преувеличивая их.
Ориентировочный состав силикатного кирпичаОсновные требования к изделиям изложены в следующей технической документации:
- ГОСТ 379-95 Кирпичи и камни силикатные
- ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича
- СНиП 3.03.01-87 Несущие и ограждающие конструкции
Рассмотрим таблицу, отражающую основной набор свойств и качеств изделий. Таблица 1. Характеристики силикатного кирпича:
Наименование свойства | Значение и комментарии |
Морозостойкость | В соответствии с ГОСТ, морозостойкость лицевых изделий должна быть не менее 25. Производители утверждают, что силикатный кирпич способен выдержать до 100 циклов замораживания и оттаивания. |
Прочность и плотность | Кирпич обладает достаточно высокими показателями, которые позволяют использовать его при возведении зданий различной этажности. Числовое значение марки прочности варьируется в пределах от 75 до 300. В зависимости от средней плотности, выделяют кирпичи: плотные, характеризующиеся показателем более 1500 кг/м3 и пористые, обладающие показателем до 1500 кг/м3. |
Водопоглощение | Показатель составляет от 6 до 16%. В сравнении с другими материалами, предназначенными для возведения стен, достаточно неплохой результат. |
Паропроницаемость | 0,11. Данная способность отвечает за установление благоприятного микроклимата внутри помещения. |
Огнестойкость | Кирпич не горит, и не вступает во взаимодействие с огнем. |
Экологичность | Изделия не содержат в своем составе вредных или ядовитых веществ. Они абсолютно безопасны для окружающей среды и человека. |
Ценовая категория | Средняя. Зависит от типа и вида кирпича, региона. |
Виды материала и область применения
Силикатный кирпич имеет несколько классификаций, основанных на тех или иных свойствах и факторах. Рассмотрим их более подробно.
В соответствии с составом компонентов, материал бывает:
- Известково-зольный, содержащий в себе золу в количестве 75-80% и известь, в количестве – 20-25%.
- Известково-шлаковый. Характеризуется наличием в составе легкого шлака вместо песка, совмещенного с известью.
- Известково-песчаный. Наиболее популярный на производстве вариант. Такие изделия содержат песок и известь. Причем первый, в количестве — до 93%.
В соответствии с ГОСТ, стандартным размером кирпича является- 250*120*65, именуют такие изделия — одинарными.
Одинарный кирпичТакже возможен выпуск утолщенного варианта, толщиной в 88 мм. В конструкционном отношении, силикатный кирпич может быть полнотелым и пустотелым. Полнотелые изделия – более тяжелые по массе, более прочные и обладающие большим коэффициентом теплопроводности.
Полнотелый кирпичПустотелые, в свою очередь, могут быть представлены в нескольких вариантах, в зависимости от количества пустот, их формы и доли объема:
- 14-пустотные изделия. Диаметр пустот – 30-32 м, пустотность -28-30%;
- 11-пустотные изделия. Диаметр пустот -27-32 мм, пустотность – 20-25%;
- 3-пустотные изделия. Диаметр пустот – 52 мм, пустотность-15%.
Обратите внимание! ГОСТ допускается выпуск и иных вариантов изделий, при этом обязательно соблюдение всех технических требований к основным показателям, таким как теплопроводность, морозостойкость, прочность.
Наличие пустот влияет на коэффициент теплопроводности, а также на расход раствора при возведении стены.
В соответствии с назначением, силикатный кирпич может быть:
- Рядовой;
- Лицевой.
Первый вид используется при возведении стен и перегородок. Нуждается в последующей отделке. Технической документацией допускается шероховатость поверхности, наличие небольшого процента сколов и отбитостей.
Облицовочный, или лицевой кирпич, отличается особо строгими требованиями к внешнему виду. Поверхность его – гладкая, декоративная, может иметь фактуру. Такой кирпич должен обладать двумя декоративными сторонами — тычковой и ложковой, однако наличие одной – допускается по договоренности с потребителем.
Кирпич силикатный облицовочный фактурныйВ зависимости от цвета, кирпич выделяют:
- Окрашенный;
- Неокрашенный.
Неокрашенные изделия имеют белый либо слегка сероватый оттенок. Окрашенный – колеруются после затвердения, либо на стадии замеса раствора, путем добавления красителей.
В целом, у силикатного кирпича достаточно широкая сфера применения. Его используют при:
- Мало- и многоэтажном строительстве, возведении производственных и жилых зданий, садовых домиков;
- Устройстве вентканалов;
- Возведении перегородок, заборов и многое другое.
Исключается возможность использования материала при строительстве цоколя, более приемлемым вариантом считаются керамические изделия.
Понятие теплопроводности и ее показатель у силикатного кирпича
Поскольку в общих характеристиках мы уже разобрались, пришло время перейти непосредственно к теме статьи. Рассмотрим, что такое коэффициент теплопроводности силикатного кирпича.
Способность силикатного кирпича к сохранению тепла
Теплопроводность – это способность материалов (изделий) к сохранению температуры. Чем он ниже, тем выше эта способность. В будущем, низкий показатель может способствовать экономии на утеплении строения и его отоплении.
В целом, при учете соотношения коэффициента теплопроводности силикатного кирпича и его плотности, показатель достаточно конкурентный, однако, если рассматривать данные свойства по отдельности, то многим материалам он уступает.
Рассмотрим, при помощи каких приемов, можно увеличить способность к сохранению тепла:
- При использовании специализированных добавок можно добиться процентного увеличения воздушных пор по отношению к общей массе, при этом плотность будет уменьшена;
- Возможно формирование в теле изделия искусственно созданных пустот, которые приведут к снижению веса и теплопроводности;
- Возможно также применение теплоизолирующего покрытия лицевой части изделия, а также гидрофобной добавки.
Стоит обратить внимание на то, что чем плотнее кирпич, тем меньше его процент водопоглощения. Последнее также влияет на коэффициент теплопроводности. При эксплуатационной влажности он повышается.
На заметку! В качестве наполнителя, при изготовлении силикатного кирпича иногда применяется керамзитовый песок. Он не только придает изделиям светло кофейный цвет, но и значительно повышает способность к сохранению температуры.
А теперь рассмотрим при помощи таблицы, как изменяется теплопроводность разных марок кирпича силикатного.
Таблица 2. Показатели свойств кирпича в зависимости от прочности:
Наименование показателя | Кирпич силикатный полнотелый М125 | Кирпич силикатный полнотелый М150 | Кирпич силикатный полнотелый М200 |
Прочность на сжатие кг/см2 | 135-145 | 150-185 | 215-2560 |
Морозостойкость | 30-40 | 35-50 | 35-50 |
Теплопроводность | 0,6 | 0,65 | 0,7 |
Водопоглощение | 8,3% | 7,2% | 8-9% |
Масса в сухом виде | 3,7 | 3,7-3,8 | 3,8-4,0 |
Способность будущего здания к сохранению тепла будет увеличиваться при большей толщине стены. Так, например, при ее толщине, равной 20 см, теплопроводность будет составлять 4,5, а при 90 см, она будет уменьшена до 1,4.
Понижают данный коэффициент и при помощи утепления конструкции, но об этом поговорим несколько позже.
Сравнение теплопроводности силикатного кирпича с другими стеновыми материалами
А сейчас давайте сравним теплопроводность силикатного кирпича с другими видами изделий, предназначенных для возведения стен.
Таблица 3.Кирпич силикатный: теплопроводность, плотность, прочность и сравнение этих показателей с другими материалами:
Наименование материала | Плотность кг/м³ | Прочность МПа | Теплопроводность Вт/м·°С |
Силикатный кирпич | 1800-1900 | 7,5-15 | В среднем – 0,7 |
Газоблок | 300-1200 | 1,5-7,5 | 0,09-0,34 |
Пеноблок | 300-1200 | 1,5-5 | 0,08-0,32 |
Керамзитобетон | 400-2000 | 7,5-10 | От 0,14 |
Керамический кирпич | 1550-1900 | 7,5-10 | От 0,45 |
Как видно, соотношение плотности, прочности и теплопроводности материала достаточно хорошее. Ячеистые бетоны, разумеется, в лидерах, однако плотность их значительно ниже.
Кирпич силикатный коэффициент теплопроводности, сравнениеПеречень материалов, пригодных для утепления стен из силикатного кирпича
Как уже говорилось, понизить коэффициент теплопроводности силикатного кирпича и будущей стены можно при помощи технически верно выполненного утепления поверхности.
Рассмотрим, какие материалы можно использовать, и как происходит процесс работ. Утепление стены из силикатного кирпича можно производить при помощи нескольких материалов.
Воспользуемся таблицей. Таблица 4. Стены из силикатного кирпича: утепление при помощи различных материалов.
Наименование материала | Комментарии, преимущества и недостатки |
Минеральная (базальтовая) вата | Достаточно популярный материал, обладает низким коэффициентом теплопроводности. Из плюсов можно выделить:
Основные минусы сводятся к следующему:
|
Пенопласт (пенополистирол) | Достоинства:
Недостатки:
|
Керамзит | Достоинств у керамзита много: это и цена, и экологичность, и высокие шумо- и теплоизоляционные показатели. Его используют для утепления стен, возводимых по технологии колодцевой кладки. |
Пенополиуретан | Такой метод утепления считается достаточно дорогостоящим. Напыление требует наличия специализированного оборудования и без помощи профессионалов, обычно, не обойтись. Теплоизоляционные характеристики – высокие. |
Теплая штукатурка | Это-один из самых лучших вариантов. Такие специализированные составы стоят дорого, однако результат может превзойти все ожидания. Сложность также заключается в нанесении, так как смесь очень быстро схватывается. Материал не подвержен горению и устойчив к влаге. |
Видео в этой статье расскажет подробнее о материалах, пригодных для утепления стен из силикатного кирпича.
Преимущества и недостатки строений, возведенных из силикатного кирпича
Силикатный кирпич и строения, возведенные из него, обладают рядом иных преимуществ. Из них можно выделить:
- Невысокая стоимость изделий;
- Экологичность материала;
- Хорошая геометрия изделий;
- Высокие эстетические качества;
- Показатель прочности, плотности и морозостойкости – достаточно конкурентные;
- Звукоизоляционные характеристики;
- Разнообразие выбора размеров, цветов и производителей;
- Большое количество вариантов отделки как внешней, так и внутренней;
- Широкая сфера применения материала;
- Возможность произвести кладку самостоятельно, для этого понадобится только инструкция.
Что касается теплопроводности, то, скорее, данный показатель можно отнести к плюсам, так как при этом стоит учесть высокую плотность изделий.
Недостатки заключаются в следующем:
- Материал достаточно тяжелый, особенно, в сравнении с ячеистыми бетонами;
- Влагопоглощение;
- В ассортименте продукции отсутствуют декоративные элементы, что не позволяет расширить архитектурные возможности при использовании материала;
- Ограничение применения в строительстве силикатного кирпича помещений, для которых характерна постоянная влажность. Например, это – баня.
В заключение
Теплопроводность силикатного кирпича нельзя отнести к недостаткам, так как соотношение этого показателя с прочностью и плотностью достаточно приемлемо. Выбирая для строительства дома подобные изделия, и соблюдая технологию при возведении, вы сможете получить в результате практичную постройку с высокими теплоизоляционными и эксплуатационными характеристиками.
Удельная теплоемкость кирпича: керамического, силикатного и огнеупорного
Кирпич широко применяется в частном и профессиональном строительстве. Существует много разновидностей этого материала. При выборе стройматериала для возведения или облицовки сооружений важную роль играют его характеристики.
Характеристики, влияющие на качество
Нужно учитывать следующие свойства продукта:
- теплопроводность – это способность передавать тепло, полученное от воздуха внутри помещения, наружу;
- теплоемкость – количество тепла, позволяющее осуществить нагрев одного килограмма стройматериала на один градус по Цельсию;
- плотность – определяется наличием внутренних пор.
Ниже будет приведено описание различных типов изделий.
Виды кирпичей
Керамический
Изготавливают из глины с добавлением определенных веществ. После изготовления подвергают термической обработке в специализированных печах. Показатель удельной теплоемкости составляет 0.7 – 0.9 кДж, а плотность – около 1300–1500 кг/м3.
Сегодня многие производители выпускают керамическую продукцию. Такие изделия отличаются не только размерами, но и своими свойствами. Например, теплопроводность керамического блока гораздо ниже, чем обычного. Это достигается за счет большого количества пустот внутри. В пустотах находится воздух, который плохо проводит тепло.
Свойства керамического кирпича
Силикатный
Силикатный кирпич пользуется высоким спросом в строительстве, популярность обусловлена прочностью, доступностью и низкой стоимостью. Показатель удельной теплоемкости составляет 0.75 – 0.85 кДж, а его плотность – от 1000 до 2200 кг/м3.
Продукт имеет хорошие звукоизоляционные свойства. Стена из силикатного изделия будет изолировать сооружение от проникновения различного рода шума. Его чаще всего используют для возведения перегородок. Продукт широко применяется в качестве промежуточного слоя в кладке, выполняющего роль звукоизолятора.
Схема силикатного кирпича
Облицовочный
Облицовочные блоки широко распространены при отделке наружных стен зданий не только из-за привлекательного внешнего вида. Удельная теплоемкость кирпича – 900 Дж, а значение плотности находится в пределах 2700 кг/м3. Такое значение дает возможность материалу хорошо противостоять проникновению влаги сквозь кладку.
Характеристики облицовочного кирпича
Огнеупорный
Огнеупорные блоки можно разделить на несколько видов:
Виды огнеупорного кирпича
- карборундовые;
- магнезитовые;
- динасовые;
- шамотные.
Огнестойкие изделия применяются для постройки высокотемпературных печей. Их плотность составляет 2700 кг/м3. Теплоемкость каждого из видов зависит от условий изготовления. Так, индекс теплоемкости у карборундового кирпича при температуре 1000о С составляет 780 Дж. Шамотный кирпич при температуре 100о С имеет индекс 840 Дж, а при 1500о С этот параметр повысится до 1.25 кДж.
Влияние температурного режима
На качества большое влияние оказывает температурный режим. Так, при средней плотности материала теплоемкость может отличаться, в зависимости от температуры окружающей среды.
Таблица сравнения теплопроводности бревна с кирпичной кладкой
Из вышеперечисленного следует, что подбирать стройматериал необходимо, исходя из его характеристик и дальнейшей области его применения. Так удастся построить помещение, которое будет отвечать необходимым требованиям.
Видео по теме: Виды кирпича
значение коэффициента, показатели морозостойкости материала, величина теплоемкости в таблице
Плотность клинкерного кирпича
Блоки клинкерные производят из сухой глины красного оттенка. После закаливания при высоких температурных режимах состав приобретает устойчивую плотность — от 1900 до 2100 кг/см3. Износостойкость обусловлена и низкой пористостью — всего 5%, которая достигается спеканием минерального состава, снижающим объемы щелей в кирпичах, уменьшающим вероятность попадания влаги в сырье.
Марки блоков отличаются оттенками и фактурами, которые производятся посредством подбора специальных составов глин, изменения температурных режимов и времени при обжиге. Но показатели уплотненности состава сохраняются на среднем для подвида уровне.
Недостатки — высокие цена и теплопроводность. Поэтому при укладке потребуются затраты на теплоизоляционные работы.
Плотность шамотного кирпича
Уплотненность шамотных кирпичей средняя и варьируется в пределах от 1700 до 1900 кг/см3. Высокая износостойкость достигается за счет небольшой пористости, которая составляет не больше 8%. Материал прочный и не деформируется под воздействием высоких температур, максимальный показатель — +1600°С.
На 70% материал состоит из глины огнеупорной, которая отличается большим весом. При проектировании необходимо учитывать массу строительного материала, чтобы избежать увеличения нагрузки на несущие части здания.
Разновидности шамотного кирпича (арочные, классические, трапециевидные либо клиновидные) имеют похожие показатели плотности. Блоки применяют для укладки печей и каминов, производственных сооружений, промышленных сталеплавильных установок и т.д. Технология изготовления, состав и показатели износостойкости обусловили высокую цену стройматериала.
Используемые виды
теплопроводность кирпичной стены
Актуальность именно такого выбора подтверждается его неоспоримыми преимуществами. Среди них экологичность, морозостойкость, пожароустойчивость — и все это уже не говоря о прочности и долгой службе, которая подразумевается априори
Наряду с этим при возведении объектов важно учитывать теплопроводность кирпичной стены
В настоящее время активно распространены несколько видов. Среди них выделяют следующие:
Подобные блоки могут быть самой различной формы и фактуры. Похожи они только своими геометрическими параметрами. На самом деле различия гораздо глубже:
- В составе керамического лежит глина и различные добавки.
- Силикатный получают из кварцевого песка, извести и воды.
Теплопроводность красного кирпича (керамического типа) имеет настоящее народное признание. И это неспроста: он встречается в самых различных интерпретациях (пусто- и полнотелый, облицовочный и имеющий интересную фактуру), но каждое из них будет уникальным и подойдет для возведения любого типа зданий.
Что такое теплопроводность?
На стадии проектирования любого дома, солидного коттеджа или дачной постройки наряду с архитектурными и конструктивными решениями, закладываются технические и эксплуатационные характеристики строения. Теплотехнические значения постройки напрямую зависят от материалов, из которых она возведена.
В соответствии со СНип 23-01-99, СНиП 23-02-2003, СНип 23 -02-2004 разработаны
технологии обеспечения климатологии, тепловой защиты жилья, а так же правила их проектирования. Созданы таблицы теплопроводности, полезные при определении критериев материалов для создания благоприятного микроклимата в зависимости от их показателей теплопроводности.
Показатели теплопроводности строительных материалов
Под теплопроводностью понимается физический процесс передачи энергии от нагретых частиц к холодным до наступления теплового равновесия, до того как сравняются температуры. Для жилого строения процесс теплопередачи определяется время выравнивания температуры в нутрии его и снаружи. Соответственно, чем длительнее процесс выравнивания температур (зимой – охлаждения, летом – нагревания), тем выше показатель (коэффициент) теплопроводности.
Коэффициент это показатель количества тепла, которое за единицу времени теряется, проходя через поверхность стен. Чем выше, тем больше теряется тепла, чем ниже, тем лучше для жилого дома.
Важно!Задача проектирования в том, чтобы подобрать материалы с наиболее низким коэффициентом теплопроводности для возведения всех строительных конструкций
Коэффициент теплопроводности материалов.
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Материал | Коэфф. тепл. Вт/(м2*К) |
Алебастровые плиты | 0,470 |
Алюминий | 230,0 |
Асбест (шифер) | 0,350 |
Асбест волокнистый | 0,150 |
Асбестоцемент | 1,760 |
Асбоцементные плиты | 0,350 |
Асфальт | 0,720 |
Асфальт в полах | 0,800 |
Бакелит | 0,230 |
Бетон на каменном щебне | 1,300 |
Бетон на песке | 0,700 |
Бетон пористый | 1,400 |
Бетон сплошной | 1,750 |
Бетон термоизоляционный | 0,180 |
Битум | 0,470 |
Бумага | 0,140 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,100 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,350 |
Глинозем | 2,330 |
Гравий (наполнитель) | 0,930 |
Гранит, базальт | 3,500 |
Грунт 10% воды | 1,750 |
Грунт 20% воды | 2,100 |
Грунт песчаный | 1,160 |
Грунт сухой | 0,400 |
Грунт утрамбованный | 1,050 |
Гудрон | 0,300 |
Древесина – доски | 0,150 |
Древесина – фанера | 0,150 |
Древесина твердых пород | 0,200 |
Древесно-стружечная плита ДСП | 0,200 |
Дюралюминий | 160,0 |
Железобетон | 1,700 |
Зола древесная | 0,150 |
Известняк | 1,700 |
Известь-песок раствор | 0,870 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,400 |
Картон строительный многослойный | 0,130 |
Каучук вспененный | 0,030 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,200 |
Кирпич кремнеземный | 0,150 |
Кирпич пустотелый | 0,440 |
Кирпич силикатный | 0,810 |
Кирпич сплошной | 0,670 |
Кирпич шлаковый | 0,580 |
Кремнезистые плиты | 0,070 |
Латунь | 110,0 |
Лед 0°С | 2,210 |
Лед -20°С | 2,440 |
Липа, береза, клен, дуб (15% влажности) | 0,150 |
Медь | 380,0 |
Мипора | 0,085 |
Опилки – засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,190 |
Пенобетон | 0,300 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,040 |
Пенопласт ПХВ-1 | 0,050 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,040 |
Пенополистирол ПС-БС | 0,040 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,060 |
Пеностекло тяжелое | 0,080 |
Пергамин | 0,170 |
Перлит | 0,050 |
Перлито-цементные плиты | 0,080 |
Песок 0% влажности | 0,330 |
Песок 10% влажности | 0,970 |
Песок 20% влажности | 1,330 |
Песчаник обожженный | 1,500 |
Плитка облицовочная | 1,050 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,040 |
Портландцемент раствор | 0,470 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,050 |
Резина | 0,150 |
Рубероид | 0,170 |
Сланец | 2,100 |
Снег | 1,500 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,150 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,230 |
Сталь | 52,0 |
Стекло | 1,150 |
Стекловата | 0,050 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,300 |
Стружки – набивка | 0,120 |
Тефлон | 0,250 |
Толь бумажный | 0,230 |
Цементные плиты | 1,920 |
Цемент-песок раствор | 1,200 |
Чугун | 56,0 |
Шлак гранулированный | 0,150 |
Шлак котельный | 0,290 |
Шлакобетон | 0,600 |
Штукатурка сухая | 0,210 |
Штукатурка цементная | 0,900 |
Эбонит | 0,160 |
Строительство домов из поризованного кирпича и их достоинства
Строительство домов из поризованного кирпича позволяет возвести прочное и надежное строение. Данный материал выдерживает нагрузку, которая равна 150 кг на кв. см. Поэтому из него можно возводить здания в девять этажей. Благодаря такой прочности, поризованный кирпич можно применять в любом типе строительства.
Данный кирпич имеет удобные размеры, которые отличаются от стандартного кирпича. Производят поризованные кирпичи различных размеров. При этом толщина стены из этого материала будет составлять 250 мм. Высока и скорость строительства зданий, ее можно сравнить со скоростью возведения дома из газоблоков. Любая бригада строителей даже без большого опыта имеет возможность поставить коробку строения из поризованного кирпича всего лишь за одну неделю.
Поризованный кирпич имеет небольшую массу. Объемный вес материала менее 800 кг на куб. метр. Этот показатель можно сравнить лишь с газобетоном, который применяют при строительстве малоэтажных зданий. Низкая плотность снижает давление на фундамент, а это дает возможность возвести дом из поризованного кирпича практически на грунте любого вида.
Благодаря низкой теплопроводности кирпича, его называют одним из лучших строительных материалов. Схожая теплопроводность присутствует у газобетона. Стены из поризованного кирпича не нужно дополнительно утеплять. Для соблюдения норм по энергосбережению необходимо возвести стены, толщина которых не менее 40 см.
Здания, возведенные из поризованного кирпича, не боятся неблагоприятных погодных условий и атмосферных осадков. Материал выдерживает точно такое же число заморозки и разморозки, что и простой кирпич. Кроме того поризованный кирпич является инертным материалом по своим биологическим показателям, поэтому он не подвержен образования грибка или плесени. Исключением является только процесс гниения.
Внутри зданий, возведенных из поризованного кирпича, всегда благоприятный микроклимат. Этому способствуют поры, которые присутствуют в строительных блоках. Именно с их помощью регулируется естественная влажность внутри помещения. Дом, для строительства которого использовался поризованный кирпич, можно сопоставить со зданиями, построенными из дерева и газобетона. Такое здание обладает высочайшими санитарно-гигиеническими свойствами.
Устройство стены из поризованного кирпича
Дома из поризованного кирпича отличаются огнестойкостью, поскольку данный строительный материал подобно силикатному и глиняному, не горит и способен выдерживать воздействие открытого огня на протяжении нескольких часов.
Двойной поризованный кирпич, используемый для внутреннего и внешнего оформления здания, не имеет никаких ограничений. Отделочные работы можно осуществлять с применением самых различных материалов. При этом дом из поризованного кирпича можно не красить с внешней стороны, поскольку производят данный материал в большом ассортименте различных цветовых оттенков.
Виды, свойства и применение
По назначению кирпич подразделяется на строительный, специальный и облицовочный. Строительный применяется для кладки стен, облицовочный – для дизайна фасадов и интерьера, а специальный идет на фундаменты, дорожное покрытие, кладку печей и каминов.
Более узкая специализация обусловлена различной структурой изделий.
Полнотелый кирпич
Представляет собой сплошной брусок со случайными пустотами, составляющими менее 13 %.
Полнотелыми бывают кирпичи:
Силикатный, керамический – используются для возведения самонесущих стен, перегородок, колонн, столбов и так далее. Конструкции из полнотелого кирпича надежны, морозоустойчивы, способны нести дополнительные нагрузки. Перегородки обеспечивают хорошую звукоизоляцию при небольшой толщине, сохраняют большое количество тепла.
К тому же материал довольно декоративен и популярен у многих современных дизайнеров. Но высокий коэффициент теплопроводности и водопоглощения вынуждает сооружать наружные стены большой толщины или делать их трехслойными, сочетая с изоляционными материалами и другими видами кирпича.
Шамотный – изготавливается из специальной огнеупорной измельченной глины и порошка шамота путем обжига с повышенным температурным режимом. Применяется для выкладки каминов, печей и других сооружений, где требуется огнеупорность. Специфика применения определила большое разнообразие форм изделия:
- клиновидные и прямые;
- больших средних и малых размеров;
- фасонные с профилями различной сложности;
- специальные, лабораторные и промышленные тигли, трубки и другой инвентарь.
Клинкерный – изготавливается из тугоплавких глин с разнообразными добавками. Обжигается при очень высоких температурах до полного запекания. Различные компоненты и вариативность режима обжига придают кирпичам повышенную прочность, водостойкость и широкую палитру оттенков от зеленоватого, при обжиге с торфом, до бордового с угольными подпалами. Раньше широко применялся для мощения тротуаров, теперь используется в кладке и облицовке фундаментов. Теплопроводность керамического кирпича довольно высока.
Пустотелый кирпич
Материал допускает 45 % пустот от общего объема, а также отличается по форме, структуре и расположению пустот в бруске. Теплопроводность пустотелого кирпича напрямую зависит от количества воздуха в его теле – чем больше воздуха, тем лучше теплоизоляция.
Кирпич с пустотами – брусок с двумя-тремя большими сквозными отверстиями, которые служат скорее облегчению и удешевлению, нежели улучшению теплоизоляции. Применяется наравне с полнотелым аналогом, за исключением фундаментов и других конструкций, требующих повышенной прочности.
Щелевой кирпич – все тело блока пронизано отверстиями различной формы размеров.
- прямоугольными;
- треугольными;
- ромбовидными;
- сквозными и закрытыми с одной стороны;
- вертикальными и горизонтальными.
Довольно хорошая прочность и низкая теплопроводность определяют его востребованность для возведения наружных стен жилых зданий.
Поризованный кирпич – выпускается нескольких размеров. Кроме большого числа отверстий обладает пористой структурой материала, которая образуется при выгорании специальных мелких фракций, добавленных в глину. Обладает лучшим набором качеств для строительства наружных стен. Прочность, низкая теплопроводность и большие габариты сокращают сроки строительства в разы, при этом с соблюдением последних требований СНиП. Теплая керамика характеризуется самыми низкими показателями теплопроводности, но из-за хрупкости пока имеет ограниченное применение.
Облицовочный кирпич – тоже является пустотелым, удачно сочетая художественные и утеплительные свойства.
Таблица показателей теплопроводности строительных материалов
Наименование материала | Коэффициент теплопроводности, Вт/(м*К) |
Блок керамический | 0,17- 0,21 |
Поризованный кирпич | 0,22 |
Керамический щелевой кирпич | 0,34–0,43 |
Силикатный щелевой кирпич | 0,4 |
Керамический кирпич с пустотами | 0,57 |
Керамический полнотелый кирпич | 0,5-0,8 |
Силикатный кирпич с пустотами | 0,66 |
Силикатный кирпич полнотелый | 0,7–0,8 |
Клинкерный кирпич | 0,8–0,9 |
Почти всегда в строительстве дома для разных конструктивных элементов используются несколько видов кирпича с соответствующими характеристиками.
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1
Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов
Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)
Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичей
Таблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесины
Таблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов
Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу
Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины
Таблица проводимости тепла воздушных прослоек
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:
Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.
Технические характеристики утеплителей для бетонных полов
О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.
Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.
При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.
Создание теплого пола требует особых знаний
Важно учитывать высоту и толщину материалов. Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.
Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.
Экономьте время: отборные статьи каждую неделю по почте
Коэффициент теплопроводности
Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.
Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:
- ≤ 0.20 – высокая;
- 0.2 Теплоемкость
Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:
- Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
- Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделия | Удельная теплоемкость, Дж/кг*°С |
Красный полнотелый | 880 |
пустотелый | 840 |
Силикатный полнотелый | 840 |
пустотелый | 750 |
Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:
- Применение теплоизоляции.
- Нанесение штукатурки.
- Использование пустотного кирпича или камня (исключено для фундамента здания).
- Кладочный раствор с оптимальными теплотехническими параметрами.
Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:
Плотность, кг/м³ | Удельная теплоемкость, кДж/кг*°С | Коэффициент теплопроводности, Вт/м*°C |
Обыкновенный г линяный кирпич на различном кладочном растворе
Цементно-песчаный
1800
0.88
0.56
Цементно-перлитовый
1600
0.88
0.47
Цементно-песчаный
1800
0.88
0.7
Пустотный красный различной плотности (кг/м³) на ЦПС
1400
1600
0.88
0.47
1300
1400
0.88
0.41
1000
1200
0.88
0.35
Морозостойкость кирпичной кладки
Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.
Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.
Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.
Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:
- Применение паро- и гидроизоляции.
- Обработка кладки гидрофобными составами.
- Контроль, своевременное исправление дефектов.
- Надежная гидроизоляция фундамента.
Теплопроводность бетона и утепление зданий
Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:
- конструкционные, применяемые для капитальных стен. Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
- теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.
Таблица теплопроводности строительных материалов: коэффициенты
Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:
- пенобетон – 25 см;
- керамзитобетон – 50 см;
- кирпичная кладка – 65 см.
Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:
- поверхности пола;
- капитальных стен;
- кровельной конструкции;
- оконных и дверных проемов.
Теплопроводность кирпичной кладки и стены: коэффициент, сопротивление теплопередаче
Теплопроводность – один из важнейших показателей, характеризующих качество возводимого сооружения. И это неудивительно: ведь от этого коэффициента зависят не только затраты на отопление помещений, но и степень комфортности проживания в доме. Также в строительных расчетах часто фигурирует коэффициент теплосопротивления (сопротивление теплоотдаче), обратный теплопроводности (чем выше первый, тем ниже второй, и наоборот).
Теплопроводность сооружения зависит от показателей используемого вида кирпича, от параметров раствора, типа кладки, применяемых строительных технологий и утепляющих материалов.
Содержание статьи
Коэффициент теплопроводности кирпичей
Данный коэффициент обозначается буквой λ и выражается в W/(m*K).
Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:
- Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
- Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
- Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
- Силикатный, с техническими пустотами λ= 0,66.
- Керамический кирпич пустотелого исполнения λ= 0,57.
- Керамический кирпич щелевого типа λ= 0,4.
- Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
- Керамический поризованный λ= 0,22.
- Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.
Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003.
Теплопроводность кладки
Теплосопротивление кирпичей является важнейшим коэффициентом и в ряде случаев является определяющим параметром при проектировании здания и выбора кладки. Вместе с тем, сопротивление теплоотдачи сооружения зависит не только от показателя λ используемых кирпичей, но и от применяемого строительного раствора.
Наиболее частым является случай, когда теплосопротивление раствора существенно ниже, чем сопротивление кирпича.
Так, коэффициент теплоотдачи раствора на основе цемента и песка равен 0,93 W/(m*K), а цементно-шлакового раствора – 0,64.
Путем суммирования коэффициентов сопротивления теплоотдаче кирпича и раствора разработаны специальные таблицы коэффициента теплопередачи, которые можно посмотреть в ГОСТе 530-2007. Ниже приведена выдержка из таблицы:
Таблица – Теплопроводность кладки
Тип кирпича | Тип раствора | Теплоотдача |
Глиняный | Цементно-песчаный | 0,81 |
Цементно-шлаковый | 0,76 | |
Цементно-перлитовый | 0,7 | |
Силикатный | Цементно-песчаный | 0,87 |
Керамический пустотный 1,4т/м3 | Цементно-песчаный | 0,64 |
Керамический пустотный 1,3т/м3 | 0,58 | |
Керамический пустотный 1,0т/м3 | 0,52 | |
Силикатный, 11-ти пустотный | Цементно-песчаный | 0,81 |
Силикатный, 14-ти пустотный | 0,76 |
Расчет стены
Для того, чтобы использовать коэффициент теплосопротивления кирпичной стенки на практике, необходимо воспользоваться следующей формулой:
r = (толщина кладки, м)/(теплоотдача, W/(m * K)),
где r – сопротивление теплоотдаче кирпичной стены. При расчетах также необходимо учитывать степень влажности помещения и климатический регион.
Уменьшение коэффициента теплоотдачи стены
В ряде случаев коэффициент λ оставляет желать много лучшего. К тому же нарушение технологии строительства может привести к изменению теплоотдачи в большую сторону. Если применять жидкий раствор при возведении стены из щелевого кирпича, то связующий материал проникнет в пустоты и отрицательно скажется на показателях теплосбережения (сопротивление теплопередаче уменьшится).
Что делать, чтобы увеличить сопротивление теплоотдаче?
Методы уменьшения теплопередачи стены:
- Применение более энергосберегающих материалов (кирпичей с большей степенью пустотности).
- При строительстве из щелевого кирпича применять густой раствор.
- Прокладывание во внутреннем слое теплоизолирующих материалов. На рынке представлен огромный выбор теплоизоляции. Из наиболее популярных можно назвать стекло- и минераловатные материалы, пенополистирол, керамзит и другие. При применении утеплителей необходимо обеспечить пароизоляцию стены, чтобы избежать разрушения материалов.
- Оштукатуривание поверхности.
Похожие статьи
Коэффициенты теплопроводности строительных материалов
Теплопроводность материала зависит от его плотности, влажности и добавок. Таким образом, у строительных материалов разных производителей будут отличаться физические свойства. Поэтому для точности следует брать значения коэффициентов теплопроводности материала из документации производителя.
Для того, чтобы произвести расчет теплопотерь частного дома, чтобы определить необходимую мощность отопления, достаточно взять данные, которые приведены в таблице ниже. В ней приведены коэффициенты теплопроводности λ (Вт/(м*К)), взятые для средней зоны влажности по СНиП 2-3-79.
ВсеБетоныРастворыГипсокартон и гипсовые плитыКирпичная кладка и облицовкаДерево и материалы на его основеУтеплителиЗасыпкиДругое Фильтр по группе материалов
Материал | Плотность, кг/куб.м | Теплопроводность, Вт/(м*K) |
---|---|---|
Железобетон | 2500 | 2.04 |
Бетон на гравии или щебне | 2400 | 1,86 |
Туфобетон | 1800 | 0.99 |
* | 1600 | 0.81 |
* | 1400 | 0.58 |
* | 1200 | 0.47 |
Пемзобетон | 1600 | 0.68 |
* | 1400 | 0.54 |
* | 1200 | 0.43 |
* | 1000 | 0.34 |
* | 800 | 0.26 |
Бетон на вулканическом шлаке | 1600 | 0.70 |
* | 1400 | 0.58 |
* | 1200 | 0.47 |
* | 1000 | 0.35 |
* | 800 | 0.29 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 1800 | 0.92 |
* | 1600 | 0.79 |
* | 1400 | 0.65 |
* | 1200 | 0.52 |
* | 1000 | 0.41 |
* | 800 | 0.31 |
* | 600 | 0.26 |
* | 500 | 0.23 |
Керамзитобетон на кварцевом песке с поризацией | 1200 | 0.58 |
* | 1000 | 0.47 |
* | 800 | 0.35 |
Керамзитобетон на перлитовом песке | 1000 | 0.41 |
* | 800 | 0.35 |
Шунгизитобетон | 1400 | 0.64 |
* | 1200 | 0.50 |
* | 1000 | 0.38 |
Перлитобетон | 1200 | 0.50 |
* | 1000 | 0.38 |
* | 800 | 0.33 |
* | 600 | 0.23 |
Шлакопемзобетон (термозитобетон) | 1800 | 0.76 |
* | 1600 | 0.63 |
* | 1400 | 0.52 |
* | 1200 | 0.44 |
* | 1000 | 0.37 |
Шлакопемзопенобетон и шлакопемзогазобетон | 1600 | 0.70 |
* | 1400 | 0.58 |
* | 1200 | 0.47 |
* | 1000 | 0.41 |
* | 800 | 0.35 |
Бетон на доменных гранулированных шлаках | 1800 | 0.81 |
* | 1600 | 0.64 |
* | 1400 | 0.58 |
* | 1200 | 0.52 |
Аглопоритобетон и бетоны на топливных (котельных) шлаках | 1800 | 0.93 |
* | 1600 | 0.78 |
* | 1400 | 0.65 |
* | 1200 | 0.54 |
* | 1000 | 0.44 |
Бетон на зольном гравии | 1400 | 0.58 |
* | 1200 | 0.47 |
* | 1000 | 0.35 |
Вермикулитобетон | 800 | 0.26 |
* | 600 | 0.17 |
* | 400 | 0.13 |
* | 300 | 0.11 |
Газобетон, пенобетон, газосиликат, пеносиликат | 1000 | 0.47 |
* | 800 | 0.37 |
* | 600 | 0.26 |
* | 400 | 0.15 |
* | 300 | 0.13 |
Газозолобенон и пенозолобетон | 1200 | 0.58 |
* | 1000 | 0.50 |
* | 800 | 0.41 |
Цементно-песчаный раствор | 1800 | 0.93 |
Сложный (песок, известь, цемент) раствор | 1700 | 0.87 |
Известково-песчаный раствор | 1600 | 0.81 |
Цементно-шлаковый раствор | 1400 | 0.64 |
* | 1200 | 0.58 |
Цементно-перлитовый раствор | 1000 | 0.30 |
* | 800 | 0.26 |
Гипсо-перлитовый раствор | 600 | 0.23 |
Поризованный гипсо-перлитовый раствор | 500 | 0.19 |
* | 400 | 0.15 |
Плиты из гипса | 1200 | 0.47 |
* | 1000 | 0.35 |
Листы гипсовые обшивочные (сухая штукатурка) | 800 | 0.21 |
Кладка из глиняного кирпича на цементно-песчаном растворе | 1800 | 0.81 |
Кладка из глиняного кирпича на цементно-шлаковом растворе | 1700 | 0.76 |
Кладка из глиняного кирпича на цементно-перлитовом растворе | 1600 | 0.70 |
Кладка из силикатного кирпича на цементно-песчаном растворе | 1800 | 0.87 |
Кладка из трепельного кирпича на цементно-песчаном растворе | 1200 | 0.52 |
* | 1000 | 0.47 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.70 |
Кладка из керамического пустотного кирпича плотностью 1400 кг/куб.м.на цементно-песчаном растворе | 1600 | 0.64 |
Кладка из керамического пустотного кирпича плотностью 1300 кг/куб.м.на цементно-песчаном растворе | 1400 | 0.58 |
Кладка из керамического пустотного кирпича плотностью 1000 кг/куб.м.на цементно-песчаном растворе | 1200 | 0.52 |
Кладка из силикатного одиннадцатипустотного кирпича на цементно-песчаном растворе | 1500 | 0.81 |
Кладка из силикатного четырнадцатипустотного кирпича на цементно-песчаном растворе | 1400 | 0.76 |
Облицовка гранитом, гнейсом, базальтом | 2800 | 3.49 |
Облицовка мрамором | 2800 | 2.91 |
Облицовка известняком | 2000 | 1.28 |
* | 1800 | 1.05 |
* | 1600 | 0.81 |
* | 1400 | 0.58 |
Облицовка туфом | 2000 | 1.05 |
* | 1800 | 0.81 |
* | 1600 | 0.64 |
* | 1400 | 0.52 |
* | 1200 | 0.41 |
* | 1000 | 0.29 |
Сосна, ель поперек волокон | 500 | 0.18 |
Сосна, ель вдоль волокон | 500 | 0.35 |
Дуб поперек волокон | 700 | 0.23 |
Дуб вдоль волокон | 700 | 0.41 |
Фанера клееная | 500 | 0.18 |
Картон облицовочный | 1000 | 0.23 |
Картон строительный многослойный | 650 | 0.18 |
ДВП и ДСП | 1000 | 0.29 |
* | 800 | 0.23 |
* | 600 | 0.16 |
* | 400 | 0.13 |
* | 200 | 0.08 |
Плиты фибролитовые и арболитовые на портландцементе | 800 | 0.30 |
* | 600 | 0.23 |
* | 400 | 0.16 |
* | 300 | 0.14 |
Плиты камышитовые | 300 | 0.14 |
* | 200 | 0.09 |
Плиты торфяные теплоизоляционные | 300 | 0.08 |
* | 200 | 0.064 |
Пакля | 150 | 0.07 |
Маты минераловатные прошивные и на синтетическом связующем | 125 | 0.07 |
* | 75 | 0.064 |
* | 50 | 0.06 |
Плиты минераловатные на синтетическом и битумном связующих | 350 | 0.11 |
* | 300 | 0.09 |
* | 200 | 0.08 |
* | 100 | 0.07 |
* | 50 | 0.06 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем | 200 | 0.076 |
Плиты минераловатные полужесткие на крахмальном связующем | 200 | 0.08 |
* | 125 | 0.064 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 50 | 0.064 |
Маты из стекловолокна прошивные | 150 | 0.07 |
Пенополистирол | 150 | 0.06 |
* | 100 | 0.052 |
* | 40 | 0.05 |
Пенопласт ПХВ-1 и ПВ-1 | 125 | 0.064 |
* | 100 и меньше | 0.052 |
Пенополиуретан | 80 | 0.05 |
* | 60 | 0.041 |
* | 40 | 0.04 |
Плиты из резольно-фенолформальдегидного пенопласта | 100 | 0.076 |
* | 75 | 0.07 |
* | 50 | 0.064 |
* | 40 | 0.06 |
Перлитопластбетон | 200 | 0.06 |
* | 100 | 0.05 |
Перлитофосфогелевые изделия | 300 | 0.12 |
* | 200 | 0.09 |
Засыпка гравия керамзитового | 800 | 0.23 |
* | 600 | 0.20 |
* | 400 | 0.14 |
* | 300 | 0.13 |
* | 200 | 0.12 |
Засыпка гравия шунгизитового | 800 | 0.23 |
* | 600 | 0.20 |
* | 400 | 0.14 |
Засыпка щебня из доменного шлака, шлаковой пемзы и аглопорита | 800 | 0.26 |
* | 600 | 0.21 |
* | 400 | 0.16 |
Засыпка щебня и песка из перлита вспученного | 600 | 0.12 |
* | 400 | 0.09 |
* | 200 | 0.08 |
Засыпка вермикулита вспученного | 200 | 0.11 |
* | 100 | 0.08 |
Засыпка песка | 1600 | 0.58 |
Пеностекло или газостекло | 400 | 0.14 |
* | 300 | 0.12 |
* | 200 | 0.09 |
Листы асбестоцементные плоские | 1800 | 0.52 |
* | 1600 | 0.41 |
Битумы нефтяные | 1400 | 0.27 |
* | 1200 | 0.22 |
* | 1000 | 0.17 |
Изделия из вспученного перлита на битумном связующем | 400 | 0.13 |
* | 300 | 0.099 |
Рубероид | 600 | 0.17 |
Линолеум поливинилхлоридный многослойный | 1800 | 0.38 |
* | 1600 | 0.33 |
Линолеум поливинилхлоридный на тканевой подоснове | 1800 | 0.35 |
* | 1600 | 0.29 |
* | 1400 | 0.23 |
Сталь стержневая арматурная | 7850 | 58 |
Чугун | 7200 | 50 |
Алюминий | 2600 | 221 |
Медь | 8500 | 407 |
Стекло оконное | 2500 | 0.76 |
Об анизотропии теплопроводности в керамическом кирпиче
Основные моменты
- •
Исследована анизотропия теплопроводности в кладочном кирпиче.
- •
Были исследованы два типа красного обожженного кирпича и один тип силикатного кирпича.
- •
Использовались методы SEM, DSC, лазерной вспышки и ИК-термографии.
- •
Анизотропия теплопроводности связана с микроструктурой.
- •
Термоанизотропия красного кирпича была больше, чем у силикатного кирпича.
Реферат
В данном исследовании представлены результаты исследования анизотропии теплопроводности кирпичной кладки. В литературе было представлено немного результатов по анизотропным термическим свойствам. Большинство из них были ориентированы на измерение теплопроводности только по толщине образца или дополнительно в одном направлении. В этой работе теплопроводность трех типов кирпичей была определена косвенным методом, который включал измерения температуропроводности, удельной теплоемкости и плотности.Температуропроводность керамических кирпичей была измерена с использованием импульсного метода, в то время как дифференциальная сканирующая калориметрия применялась для измерения удельной теплоемкости. Кажущиеся плотности определялись геометрически. Измерения, проведенные в трех направлениях, перпендикулярных основным плоскостям кирпича, показали, что коэффициент температуропроводности кирпичей является анизотропным. Исследования были повторены на нескольких кирпичах от разных местных производителей. Различия в значениях теплопроводности, определенных для образцов, вырезанных в разных направлениях, составили до 36%.Связь между основными направлениями тензора температуропроводности и микроструктурой материала также была исследована с помощью сканирующей электронной микроскопии и инфракрасной термографии. Было обнаружено, что силикатные кирпичи более изотропны, чем обожженные красные кирпичи. Исследование подтвердило более ранние сообщения о связи микроструктурного выравнивания с анизотропией теплопроводности. Обнаружена интересная разница в степени анизотропии на двух разных глубинах. Точно рассчитанный тензор теплопроводности может иметь значение при моделировании явлений переноса тепла и влаги в строительных материалах.
Ключевые слова
Строительный материал
Обожженный красный кирпич
Силикатный кирпич
Анизотропия
Теплопроводность
Рекомендуемые статьиЦитирующие статьи (0)
© 2020 Авторы. Опубликовано Elsevier Ltd.
Рекомендуемые статьи
Цитирующие статьи
Коэффициент теплопроводности изоляционного кирпича, полученного из опилок и глин
В этой статье представлен экспериментальный результат по влиянию размера частиц смеси шариковой глины, каолина и др. и опилки на температуропроводность керамического кирпича.Смесь сухих порошков шаровой глины, каолина с одинаковым размером частиц и опилок с разными размерами частиц была смешана в разных пропорциях и затем уплотнена до высокого давления перед обжигом до 950 ° C. Затем определялась температуропроводность косвенным методом, включающим измерение теплопроводности, плотности и удельной теплоемкости. Исследование показывает, что коэффициент температуропроводности увеличивается с уменьшением размера частиц каолина и шаровой глины, но уменьшается с увеличением размера частиц опилок.
1. Введение
В недавнем исследовании Манукаджи [1] температуропроводность очень важна во всех задачах неравновесной теплопроводности в твердых объектах. Скорость изменения температуры во времени зависит от численного значения коэффициента температуропроводности. Физическое значение температуропроводности связано с диффузией тепла в среду при изменении температуры со временем. Неравновесная теплопередача важна из-за большого количества проблем нагрева и охлаждения, возникающих в промышленности [2].В металлургических процессах необходимо прогнозировать скорости охлаждения и нагрева для проводников различной геометрии, чтобы прогнозировать время, необходимое для достижения определенных температур. Материалам с высокой тепловой массой потребуется больше времени, чтобы тепло переместилось от горячей поверхности кирпича к холодной стороне, а также потребуется много времени для выделения тепла после удаления источника тепла [3, 4]. В статье Арамида [5] указывается, что при обжиге образцов кирпича, изготовленных из опилок, примесь опилок выгорает при температуре 450–550 ° C [6], оставляя поры (воздушные пустоты) в кирпиче, что препятствует тепловому потоку. .
Одной из проблем, с которыми сталкивается строительная промышленность Уганды, является высокое потребление электроэнергии из-за плохих систем вентиляции и кондиционирования воздуха. В основном это связано с отсутствием в зданиях методов теплоизоляции [7, 8]. Тем не менее, в Уганде не производятся классифицированные теплоизоляторы. Страна зависит от импортных изоляционных материалов, которые очень дороги и труднодоступны для местной промышленности, и тем не менее в разных частях страны имеются обширные месторождения полезных ископаемых, которые могут обеспечить потенциальное сырье для производства различных керамических изделий, таких как теплоизоляция. кирпичи.Таким образом, в данной статье представлены результаты экспериментального исследования влияния размера частиц на температуропроводность глиняных кирпичей состава, показанного в таблице 1, которые были изготовлены из комбинации каолина, шаровой глины и древесных опилок с различными частицами. размеры.
|
2.Методики экспериментов
2.1. Обработка материалов
Сырьем, используемым в этом исследовании, были каолин, шариковая глина и опилки твердых пород древесины. Опилки получали из красного дерева. Твердая древесина была предпочтительнее, потому что при включении в глиняные кирпичи она образует однородные поры, имеет высокую теплотворную способность и не вызывает вздутие живота [9]. Каолин собирали в Мутаке на юго-западе Уганды, а глину в виде шариков собирали в Нтаво (Муконо), в 25 км к востоку от столицы Кампалы.Шариковую глину и каолин отдельно замачивали в воде на семь дней, чтобы дать им полностью раствориться, чтобы отделить коллоиды от тяжелых частиц, таких как камни, песок и корни. Затем глину сушили и измельчали до порошка в шаровой мельнице. Порошки просеивали через испытательные сита, склеенные вместе на механическом встряхивателе сит для испытаний. Диапазон размеров частиц 0–45 мкм м, 45–53 мкм м, 53–63 мкм м, 63–90 мкм м, 90–125 мкм м и 125–154 мкм По каолину и шаровой глине отдельно добыто м.Точно так же порошки опилок с диапазоном размеров частиц 0–125 мкм мкм, 125–154 мкм мкм, 154–180 мкм мкм, 180–355 мкм мкм и 355–425 мкм мкм. также подготовлен.
Исследование проводилось с использованием двух наборов серийных составов. В первой части составы партий A 1 –A 5 имели композиции каолина и шаровой глины с одинаковыми диапазонами размеров частиц, которые были смешаны с равными массами опилок трех разных диапазонов размера частиц в соотношении 9: 7: 4 по весу, как показано в таблице 1.Смесь этих порошков сначала сушили на солнце, а затем прессовали до давления 50 МПа в прямоугольные образцы с размерами 10,51 см × 5,25 см × 1,98 см. Образцы для испытаний обжигали в электропечи до 950 ° C в два этапа. На первом этапе их сушили при скорости нагрева 2,33 ° C мин. -1, до 110 ° C, и эту температуру поддерживали в течение четырех часов, чтобы удалить любую воду из образца. На втором этапе образцы обжигались со скоростью 6 ° C мин. -1 до 950 ° C.При этой температуре время выдержки составляло один час перед выключением печи, чтобы дать образцам возможность естественным образом остыть до комнатной температуры.
Во второй части исследования составы серий B 1 –B 5 имели каждый из диапазонов размеров частиц 0–125 мкм мкм, 125–154 мкм мкм, 154–180 мкм м, 180–355 мкм м и 355–425 мкм мкм опилок, смешанных с каолином и шаровой глиной с теми же диапазонами размеров частиц в соотношении 4: 9: 7, как показано в (Таблица 1), перед их уплотнением при давлении 50 МПа в прямоугольные образцы размером 10.51 см × 5,25 см × 1,98 см. Процесс обжига был аналогичен процессу обжига первой партии. Каждый из составов образцов имел общую массу 200 г (90 г каолина, 70 г шариковой глины и 40 г опилок).
2.2. Определение коэффициента температуропроводности
Коэффициент температуропроводности был определен из измеренных значений удельной теплоемкости, теплопроводности и плотности с использованием следующего уравнения, полученного из закона теплопроводности через твердое тело Фурье: где — коэффициент температуропроводности, — теплопроводность, — плотность, — удельная теплоемкость [10].
Теплопроводность измерялась быстрым измерителем теплопроводности (QTM-500) с сенсорным датчиком (PD-11), в котором для исследования теплопроводности образцов используется переходный метод (нестационарное состояние) [11, 12]. Удельную теплоемкость определяли методом смесей [13], а плотность определяли путем измерения размеров и массы образца. Измерения теплопроводности, плотности и удельной теплоемкости проводились при комнатной температуре.
2.3. Химический состав
Химический состав обожженных образцов был определен с помощью рентгенофлуоресцентного (XRF) спектрометра, модель X ‘Unique ll [14], чтобы установить химический состав основных соединений, которые влияют на термические свойства изоляционный глиняный кирпич Таблица 2.
|
3. Результаты и обсуждения
3.1. Влияние размера частиц на коэффициент температуропроводности
Коэффициент температуропроводности определяли косвенным методом, включающим измерение теплопроводности, удельной теплоемкости и плотности обожженных образцов [2, 10].Влияние размера частиц на теплопроводность, плотность, удельную теплоемкость и температуропроводность обсуждается ниже.
3.1.1. Влияние размера частиц на теплопроводность
Результаты (рис. 1) показывают, что теплопроводность увеличивается с уменьшением размера частиц каолина и шариковой глины при фиксированном размере частиц опилок. Это связано с тем, что более крупные частицы создают большие поры из-за плохого заполнения пустот, содержащих воздух после обжига, по сравнению с мелкими частицами [15, 16].Теплопроводность керамического материала зависит от путей теплопроводности, на которые влияют микроструктура, гранулометрический состав и количество воздушного пространства или пустот, создаваемых во время обжига тела [17]. Рисунок 2 показывает, что теплопроводность уменьшается, когда размер частиц опилок, включенных в глиняную смесь, увеличивается. Это связано с тем, что размер частиц горючих органических отходов определяет количество воздушных пространств, которые создаются в изоляционном глиняном кирпиче [18–20].Кроме того, теплопроводность снижается еще больше, когда размер частиц смеси каолина и шаровой глины увеличивается из-за меньшего контакта между частицами [21]. Сцепление частиц глины зависит от гранулометрического состава и диапазона размеров мелких и крупных частиц, а также от того, состоит ли тело из моноразмерных частиц или из частиц нескольких размеров.
3.1.2. Влияние размера частиц на плотность
Плотность образцов увеличивается с уменьшением размера частиц смеси каолина и шаровой глины при фиксированном размере частиц опилок (рис. 3).Меньшие размеры частиц имеют больше точек контакта, что обеспечивает большую когезию и смазку каолина шариковыми глинами. Множественные размеры частиц в керамическом теле увеличивают упаковку частиц и создают тело с высокой плотностью, поскольку более мелкие зерна проникают в межчастичные пустоты более крупных частиц и, таким образом, увеличивают плотность упаковки. Это исследование также показывает, что наблюдается дальнейшее снижение плотности с увеличением размера частиц опилок при фиксированном размере частиц каолина и шаровой глины [20].
На рисунке 4 плотность образцов уменьшается с увеличением размера частиц опилок при фиксированном размере частиц каолина и шариковой глины.Маленькие поры, которые создаются мелкими частицами опилок, имеют тенденцию закрываться во время уплотнения в результате образования межкристаллитных контактных областей, в то время как большие поры остаются в матрице глины во время обжига и созревания [18]. Это объясняется достаточной длиной опилок, которая улучшает сцепление на границе раздела опилки-глина, чтобы противодействовать деформации и усадке глины во время сушки и обжига [9].
3.1.3. Изменение удельной теплоемкости в зависимости от размера частиц
Удельная теплоемкость для образцов от A 1 до A 5 обычно ниже, чем у образцов от B 1 до B 5 (рисунки 5 и 6).Это означает, что более низкий коэффициент температуропроводности может быть достигнут за счет использования опилок большего размера [9]. Удельная теплоемкость увеличивается с увеличением размера частиц используемых глиняных материалов (Рисунок 5) и увеличением размера частиц добавленных опилок (Рисунок 6).
3.1.4. Коэффициент температуропроводности
Коэффициент температуропроводности увеличивается по мере уменьшения размера частиц смеси каолина и шаровой глины при фиксированном размере частиц добавленных опилок (Рисунок 7).Основное влияние размера частиц на коэффициент температуропроводности твердого материала связано с количеством твердого тела и воздушного пространства, которое тепло должно проходить поперек при прохождении через материал. Это объясняется большим размером частиц, что приводит к высоким уровням пористости из-за плохого заполнения пустот между частицами большого размера по сравнению с мелкими частицами, создавая, таким образом, большие воздушные пространства [21]. Большая доля воздуха дает низкое значение коэффициента температуропроводности из-за его низкой теплопроводности.Уменьшение размера частиц увеличивает содержание частиц на единицу объема, что уменьшает среднее расстояние между частицами глинистой матрицы. Это приводит к плотной упаковке частиц, что приводит к уплотнению глиняных кирпичей, что увеличивает температуропроводность [16, 20]. Следовательно, мелкозернистый материал с закрытой текстурой (малый размер частиц) имеет гораздо больший коэффициент температуропроводности, чем материал с более крупной открытой текстурой (крупный размер частиц). Небольшие размеры частиц увеличивают низкое тепловое сопротивление, поскольку точки контакта для теплопроводности очень плотно упакованы.Большой размер зерна каолина и шаровой глины позволяет получить кирпичи, которые более пористые и, следовательно, более устойчивы к резким перепадам температуры по образцу [1, 22]. Низкие значения температуропроводности подходят для минимизации теплопроводности. Наблюдается (рис. 7), что увеличение размера частиц добавленных опилок дополнительно снижает температуропроводность.
Температуропроводность уменьшается с увеличением размера частиц опилок при фиксированном размере частиц комбинации каолина и шаровой глины (рис. 8).Это связано с тем, что частицы опилок выгорают при температуре 450-550 ° C [6], оставляя поры или пустоты в образцах. Во время сушки и обжига происходит уплотнение, и небольшие поры, создаваемые мелкими частицами опилок, имеют тенденцию закрываться глинистыми минералами в результате образования межкристаллитных контактных областей, в то время как большие поры сохраняются в глинистой матрице [18].
Включение опилок в керамическое тело, которое удаляется на этапе обжига, оставляет поры, размер которых зависит от размеров органических частиц.Более мелкие опилки образуют более мелкие поры, большинство из которых может быть устранено во время уплотнения, в то время как частицы большого размера образуют большие поры. Опилки большого размера улучшают сцепление на границе раздела опилки-глина, что препятствует деформации и усадке глины. Это обеспечивает высокую пористость, низкую плотность, низкую теплопроводность и низкую скорость изменения температуры по образцу. Следовательно, коэффициент температуропроводности уменьшается с увеличением размера частиц опилок. Как правило, значения температуропроводности от B 1 до B 5 ниже, чем у A 1 до A 5 .Это результат мультипликативной пористости, создаваемой добавлением глины и опилок.
3.2. Химический состав
Процентный состав SiO 2 составляет 68,0%, а процентный состав Al 2 O 3 составляет 22,0%. Согласно отчету Бюро энергоэффективности [23] о шамотных огнеупорах, шамотные огнеупоры низкой плотности состоят из силикатов алюминия с различным содержанием кремнезема от 67 до 77% и содержанием Al 2 O 3 от 23 до 33%.Химический состав глинозема в разработанных образцах может быть улучшен либо за счет обогащения сырья (каолин и шарообразная глина), либо за счет увеличения процентного состава каолина в образцах. Образцы глины содержат менее 9,0% флюсовых компонентов (K 2 O, Na 2 O и CaO).
3.3. Значение
Физическое значение низких значений температуропроводности связано с низкой скоростью изменения температуры в материале в процессе нагрева.Таким образом, образцы имеют низкие значения коэффициента температуропроводности и подходят для использования в качестве теплоизоляторов. Подходящим теплоизолятором является образец, содержащий комбинацию каолина и шариковой глины с размером частиц 125–154 мкм мкм с опилками с размером частиц 355–425 мкм мкм. Эта комбинация характеризовалась наименьшим значением температуропроводности 1,16 × 10 −7 м 2 с −1 и может быть легко подготовлена для промышленного производства теплоизоляционного кирпича.
4. Выводы
Результаты исследования показывают, что все проанализированные образцы являются хорошими теплоизоляторами, а на коэффициент температуропроводности напрямую влияет размер частиц комбинации минералов каолина и шаровой глины, а также размер частиц опилок. добавление. Таким образом, из проведенного общего экспериментального анализа было обнаружено следующее: (1) Коэффициент температуропроводности увеличивается с уменьшением размера частиц смеси каолина и шаровой глины при фиксированном размере частиц добавленных опилок.Добавление опилок с частицами большего размера снижает коэффициент температуропроводности даже при очень малых размерах частиц каолина и шариковой глины. (2) Коэффициент температуропроводности уменьшается с увеличением размера частиц добавленных опилок до фиксированного размера частиц каолина и шариковой глины. Включение каолина и шариковой глины с гораздо большим размером частиц дополнительно снижает коэффициент температуропроводности из-за мультипликативного эффекта более высокой пористости, создаваемой опилками и глинистыми минералами. (3) Образцы содержат подходящие композиции кремнезема и глинозема, которые подходят для легкие жаропрочные теплоизоляционные кирпичи.(4) Таким образом, образцы имеют низкие значения коэффициента температуропроводности и подходят для использования в качестве теплоизоляторов.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.
Благодарности
Авторы хотели бы поблагодарить сотрудников Университета Кямбого за их руководство и поддержку в ходе исследования. Также выражаем благодарность руководству и персоналу Института промышленных исследований Уганды, UIRI (Департамент керамики), за предоставленные лаборатории и оборудование для использования в исследованиях, а также Департаменту физики Университета Макерере.Авторы особенно хотели бы выразить признательность за финансовую поддержку, которую они получили от г-жи Наньямы Кристин, доктора Майеку Роберта и его жены г-жи Кейт Майеку.
Особенности и результаты оценки теплопроводности строительных материалов и изделий активным методом термического неразрушающего контроля
E3S Web of Conferences 220 , 01053 (2020)Особенности и результаты оценки теплопроводности строительных материалов и изделий активным методом термического неразрушающего контроля
Денис Карпов 1 * , Михаил Павлов 1 , Лилия Мухаметова 2 и Антон А.Михин 3
1 Вологодский государственный университет, ул. Ленина, 15, Вологда, 160000, Россия
2 Казанский государственный энергетический университет, ул. Красносельская, 51, 420066, Казань, Россия
3 Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
* Автор для переписки: [email protected]
Аннотация
Термоконтроль (пассивный и активный) — это метод неразрушающего контроля.Во время пассивного термоконтроля тест-объект характеризуется температурным полем, формирующимся в процессе его работы. При активном терморегулировании тестируемый объект дополнительно термостимулируется. Эта техника широко применяется в различных сферах строительства, энергетики, машиностроения, транспорта. В статье предлагается вариант активной термической неразрушающей оценки коэффициента теплопроводности строительных материалов и изделий на примере фрагмента строительной конструкции из силикатного кирпича.Испытуемый объект подвергается термической стимуляции внешним источником тепловой энергии до достижения установившегося теплового режима. Проведена термография поверхностей испытуемых объектов. Рассчитываются средние интегральные температуры поверхностей или отдельных участков объекта контроля. Определяется коэффициент теплопроводности объекта контроля, который используется для расчета его термического сопротивления (сопротивления теплопередаче). После этого рассчитывается коэффициент теплоотдачи.Метод реализован в лабораторных условиях. Его можно использовать в естественных и эксплуатационных условиях для точного и быстрого определения основных теплофизических свойств строительных материалов и изделий.
Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License 4.0, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.
Механические и термические свойства блокировочных кирпичей с использованием отработанного полиэтилентерефталата
Прочность на сжатие
По завершении 48-часового отверждения кубики размером 50 мм × 50 мм × 50 мм были подвергнуты испытанию на прочность на сжатие в соответствии с BS1881 : Часть 116: 1983 для определения сопротивления нагрузки.В таблице 3 показаны результаты испытаний на прочность при сжатии для 12 смесей.
Таблица 3 Результаты испытаний прочности на сжатиеВ таблице 3 самая высокая прочность на сжатие принадлежит опыту 3, имеющему отношение ПЭТ / ПУ 60/40, что на 84,54% меньше, чем у контрольного образца. Наименьшую прочность на сжатие показывает запуск 1, в котором соотношение ПЭТ / ПУ составляет 20/80.
По сравнению с исследованием, проведенным Sayanthan et al. (2013b), прочность куба на сжатие, полученная для блокирования легких цементных блоков, составила 4.9 Н / мм 2 , который требуется для возведения стен высотой до 5 этажей с обозначением раствора. Основываясь на результатах текущего исследования, наивысшее полученное значение прочности на сжатие составило 5,3, что соответствует требованиям к ненесущей кирпичной стене в соответствии с ASTM, где минимально допустимая прочность составляет 4,14 МПа (ASTM 2011).
Однако другие конструкции смеси не превзошли эталонное значение 4,9 Н / мм 2 . Поскольку в опыте 1 присутствовал избыток полиуретанового связующего, это делало образец более эластичным, что приводило к большей гибкости.Образец оставался в пределе упругости даже после приложения критической нагрузки. В отличие от этих образцов, испытания 3 и 4 успешно перешли из упругой области в пластическую до точки разрушения и показали оптимальный результат. Другая возможная причина снижения прочности на сжатие — увеличенные объемы воздухововлечения из-за большего количества полиуретана (ПУ).
В таблице 4 показано значение Скорректированного R-квадрата 0,9981 и Прогнозируемое значение R-Squared 0,9970.Это указывает на приемлемую разницу 0,0011, которая меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 114,2233, то это положительный результат. Соответствующее значение точности можно в дальнейшем использовать для навигации по дизайну.
Таблица 4 Ключевые результаты ANOVA (сжатие)Таким образом, уравнение в терминах фактических факторов может быть получено как:
$$ Сжатие \, прочность = 5,08 + 0,4670A + 1,39 \ влево (A \ вправо) \ влево (B \ вправо). $$
(1)
Уравнение 1 показывает модель, разработанную RSM, и может использоваться для надежных прогнозов модели для получения нескольких значений прочности на сжатие для получения удовлетворительных результатов.Где A — полиэтилентерефталат, а B — полиуретан.
На основании трехмерного графика поверхности отклика на рис. 6 делается вывод, что наивысшая прочность на сжатие 5,05 МПа может быть достигнута при использовании ПЭТ / ПУ с соотношением 60/40. Это можно наблюдать в красноватой зоне на контурном графике.
Рис. 6Трехмерный график поверхности (прочность на сжатие)
Прочность на разрыв
По завершении 48-часового отверждения форма для собачьей кости размерами 500 мм × 100 мм × 25 мм была подвергнута испытанию на прочность на разрыв. согласно ASTM D638 (Стандарт 2014a).Мера силы, необходимой для удлинения образца до предела разрушения, рассчитана и обсуждается в таблице 5.
Таблица 5 Результат испытания на прочность на разрывИз таблицы 5 можно заметить, что самый высокий предел прочности был зарегистрирован для контрольного образца. 1,28 МПа. Принимая во внимание, что для смесей оптимальным составом смесей была партия 3 с соотношением ПЭТ / ПУ 60/40, так как она имеет наивысший предел прочности на разрыв. Это связано с прочной связью, образованной между порошком полиэтилентерефталата и полиуретановым связующим.Для всех образцов было предусмотрено общее время отверждения 3 дня, чтобы гарантировать получение влажных смесей; Эксперименты 1 и 2 были полностью высушены и готовы к испытаниям, однако общие результаты, полученные в отношении прочности на разрыв, были неудовлетворительными.
Что касается бетона, прочность на растяжение повышается за счет введения в бетон арматурных стержней. Это дополнительно улучшает сцепление в бетонной матрице и ее общие характеристики (Pillai et al. 1999). Прочность на разрыв неармированного бетона находится в диапазоне 2.2–4,2 МПа. Напротив, результаты, полученные в результате эксперимента, находятся в диапазоне 0,4–1,3 МПа.
Значения прочности на разрыв были намного ниже для испытаний 1 и 2 из-за того, что смесь была влажной. В природе и ПЭТ, и ПУ обладают эластичными свойствами. Совпадение обоих материалов, смешанных во влажной пропорции, привело к тому, что образцы для опыта 1 и опыта 2 стали более эластичными и губчатыми, что значительно снизило индивидуальную прочность и сделало их хрупкими. Однако для прогонов 3 и 4 потребовалось больше времени, чтобы достичь точки разрыва от предела упругости.Таким образом, можно сделать вывод, что материал образца был пластичным по своей природе. В заключение, общие характеристики блокирующего кирпича как элемента растяжения неудовлетворительны и, следовательно, не подходят для использования в качестве элемента растяжения в конструкции.
В таблице 6 показано значение Скорректированного R-квадрата 0,9960 и Прогнозируемое значение R-Squared 0,9934. Это указывает на приемлемую разницу 0,0026, которая меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 64,5141, то это положительный результат.{2} Б $$
(2)
Уравнение 2 показывает модель, разработанную RSM, и может использоваться для надежных прогнозов модели для получения нескольких значений прочности на разрыв для получения удовлетворительных результатов. Где A — полиэтилентерефталат, а B — полиуретан.
На основе трехмерного графика поверхности отклика на рис. 7 делается вывод, что наивысший предел прочности на разрыв 1,3 МПа может быть достигнут при использовании ПЭТ / ПУ с соотношением 60/40. Это можно наблюдать в красноватой зоне на контурном графике. .
Рис. 7Трехмерный график поверхности (прочность на разрыв)
Ударная вязкость
Образцы для испытания на ударную вязкость были отправлены на испытания для определения ударной вязкости блокирующих кирпичей, содержащих ПЭТ и ПУ. Это испытание было проведено на ударной машине по Изоду в соответствии со стандартом ASTM D256 (Стандарт, A 2002), как показано в Таблице 7.
Таблица 7 Результаты ударной вязкостиИз Таблицы 7 можно заметить, что наибольшая ударная вязкость была 43,08 Дж / м для контрольного образца.В то время как в смесях самая высокая ударная вязкость была у опыта 3 с отношением ПЭТ / ПУ 60/40. Самая низкая зарегистрированная ударная вязкость была для опыта 1 с отношением ПЭТ / ПУ 80/20. Два наиболее распространенных метода оценки ударной вязкости материала — это испытание на удар по Изоду и Шарпи. Однако испытание на удар по Изоду больше подходит для использования с пластиковыми материалами, тогда как испытание на удар по Шарпи полезно для испытания обычных металлов. Энергия, необходимая для разрушения образца для испытаний, получается, когда образец ударяется по центру маятниковым грузом.
Полученные результаты были превосходными, так как он выдерживает высокие удары. Пластик — прочный материал, в котором более высокий процент ПЭТ увеличивает прочность, но, следовательно, снижает ударную вязкость. Этот сценарий может быть связан с образцами для прогона 3. Пластик имеет плохие ударные свойства, но он значительно улучшился благодаря добавлению полиуретанового связующего; эластомер, который способствует увеличению молекулярной массы и улучшает ударную вязкость. Высокая молекулярная масса и узкое молекулярно-массовое распределение улучшают ударную вязкость.
Однако мокрые смеси прогонов 1 и 2 дали неудовлетворительные результаты. Это связано с тем, что оба материала были смешаны во влажной пропорции, что привело к тому, что образцы стали более эластичными и губчатыми, что значительно снизило индивидуальную прочность самого материала и сделало его хрупким.
Кроме того, ударная вязкость снижается в опыте 4 после добавления ПЭТ в смесь. Это связано с тем, что сухая смесь имеет недостаточное сцепление между полиэтилентерефталатом (ПЭТ) и полиуретановым связующим.Адекватное соединение между двумя материалами имеет важное значение для удовлетворительной работы блокирующего кирпича. (Abu-Isa et al. 1996) Ударная вязкость увеличилась после смешивания гранул полиэтилентерефталата с полиэфиром в смеси, где полученная ударная нагрузка составила 70/30 ПЭТ / сополиэфир 20,5 Дж / м. По сравнению с этим исследованием ударная вязкость, полученная для этого проекта, увеличилась на 23,3 Дж / м при соотношении 60/40 ПЭТ / ПУ. Таким образом, можно сделать вывод, что ударная вязкость достаточна для использования в качестве строительного материала.
В таблице 8 показано значение Скорректированного R-квадрата 0,9921 и Прогнозируемое значение R-Squared 0,9852. Это указывает на приемлемую разницу в 0,0069, что меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 51,7616, то это положительный результат. Соответствующее значение точности можно в дальнейшем использовать для навигации по дизайну.
Таблица 8 Ключевые результаты дисперсионного анализа (ANOVA)Таким образом, уравнение в терминах фактических факторов может быть получено как:
$$ Удар \, сила = 22.16 + 0.7550A + 1.86AB $$
(3)
Уравнение 3 показывает модель, разработанную RSM, и может использоваться для надежных прогнозов модели для получения нескольких значений ударной вязкости для получения удовлетворительных результатов. Где A — полиэтилентерефталат, а B — полиуретан.
На основании трехмерного графика поверхности отклика на рис. 8 делается вывод, что наивысшая прочность на сжатие около 23,3 МПа может быть достигнута при использовании ПЭТ / ПУ с соотношением 60/40.Это можно наблюдать в красноватой зоне на контурном графике.
Рис. 8Трехмерный график поверхности отклика (ударная вязкость)
Теплопроводность
Испытательные образцы теплопроводности были отправлены на тестирование для получения значений, показанных в таблице 9, включая ПЭТ и ПУ. Испытание на теплопроводность предназначено для измерения теплоизоляционной способности. Этот тест проводился измерителем теплопроводности в соответствии со стандартом ASTM C177 (Стандарт 2010).
Из таблицы 9 можно заметить, что теплопроводность уменьшается по мере увеличения процентного содержания ПЭТ.Теплопроводность ПЭТ после бытового использования составляет 0,19 Вт / м ° C, а литературное значение для первичного ПЭТ составляет 0,0375 Вт / м ° C, оба при 25 ° C. Согласно результатам, полученным в ходе эксперимента, теплопроводность находится в диапазоне 0,15–0,3 Вт / м К. По сравнению с другими отходами, такими как использование резиновой крошки в бетонных панелях, резиновая крошка имеет теплопроводность в диапазон 0,303–0,476 Вт / м · К, что выше результатов, полученных для ПЭТ и ПУ (Sukontasukkul 2009).
Таблица 9 Результаты по теплопроводностиБолее высокая теплопроводность означает, что материал может передавать больше тепла в единицу времени.Кроме того (Sukontasukkul 2009) теплопроводность обратно пропорциональна плотности материала. Поскольку пластиковый блокирующий кирпич имеет более низкую плотность, ожидается, что он будет иметь более низкую теплопроводность, значение k. Когда этот экспериментальный результат сравнивается с обычным бетоном, среднее значение k составило 0,531 Вт / м · К, что все еще выше, чем у пластикового блокирующего кирпича.
Поскольку теплопроводность полиэтилентерефталата и полиуретанового связующего в качестве исходного материала низкая, значение k обоих материалов, сформованных вместе, уменьшилось.Следовательно, скорость теплопередачи прямо пропорциональна значению k. Температурный градиент вдоль образца высок, и согласно закону термодинамики Фурье, температурный градиент обратно пропорционален теплопроводности. Поскольку теплопроводность меньше, очевидно, что скорость теплопередачи по материалу уменьшится.
В заключение, терморегулирование является одним из важных аспектов в зданиях. Базовые знания о теплопередаче и распределении температуры с помощью строительных материалов можно использовать для анализа использования энергии и теплового комфорта в зданиях.Хорошая теплоизоляция обеспечивает тепловой комфорт без излишнего кондиционирования воздуха, что является одним из основных требований здания. Таким образом, этот пластиковый блокировочный кирпич можно отнести к категории хороших теплоизоляторов.
В таблице 10 показано значение Скорректированного R-квадрата 0,9883 и Прогнозируемое значение R-Squared 0,9820. Это указывает на приемлемую разницу в 0,0063, что меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 47,1109, то это положительный результат. Соответствующее значение точности можно в дальнейшем использовать для навигации по дизайну.
Таблица 10 Ключевые результаты ANOVA (термический)Таким образом, уравнение в терминах фактических факторов может быть получено как:
$$ Thermal \, проводимость = 0,1806 — 0,0310A — 0,0051AB $$
(4)
Вышеупомянутое уравнение. 4 показана модель, разработанная RSM, которую можно использовать для надежных прогнозов модели для получения нескольких значений теплопроводности с целью получения удовлетворительных результатов. Где A — полиэтилентерефталат, а B — полиуретан.
На основании проверки, проведенной RSM, было замечено, что все модели оказались значимыми и имеют 4% отличия от исходного значения, основанного на модели.
На основе трехмерного графика поверхности отклика на рис. 9 делается вывод, что самая низкая теплопроводность около 0,155 МПа может быть достигнута при использовании ПЭТ / ПУ с соотношением 80/20. Это можно наблюдать в синей зоне на контурном графике.
Рис. 9Трехмерный график поверхности отклика (теплопроводность)
Проверка с помощью RSM
Схемы проверочного микса были получены с помощью метода оптимизации с несколькими откликами.В таблице 11 показано процентное отличие полученных результатов от модели.
Таблица 11 Разница в процентах с модельюИз таблицы 11 видно, что все модели доказали свою значимость и имеют менее 4% отличия от исходного значения, основанного на модели.
Институт натурального камня — Какой натуральный камень лучше всего подходит для обогреваемых поверхностей
Тепло всегда течет из более теплых мест в более холодные.Передача тепловой энергии через твердый материал называется теплопроводностью. Есть определенные области применения, в которых теплопередача или теплопроводность природного камня становится важным фактором при выборе наилучшего материала и дизайна. Камень, обрамляющий камин или варочную панель, между источником тепла и легковоспламеняющимся материалом, является примером, в котором перед выбором необходимо тщательно определить проводимость камня. Другим распространенным применением является система обогреваемого покрытия, где теплопроводность камня становится фактором, определяющим системные требования для эффективного таяния снега и льда с поверхности дорожного покрытия.В этом бюллетене представлены измеренные значения теплопроводности (значение k) и термического сопротивления (значение R) для наиболее распространенных типов природного камня, используемых в строительстве из обычных типов камня.
Тип материала | k-значение (Теплопроводность) (Вт / мК) | R-значение Эквивалент (R) 3 (Час • фут 2 • ºF / британская тепловая единица) |
Гранит (высокое качество) 1 | 1.73 | 0,083 |
Гранит (низкое значение) 1 | 3,98 | 0,038 |
Гранит (Barre) 2 | 2,79 | 0,052 |
Известняк (высокая ценность) 1 | 1,26 | 0,114 |
Известняк (низкая стоимость) 1 | 1.33 | 0,108 |
Известняк (Салем) 2 | 2,15 | 0,067 |
Мрамор (высокая стоимость) 1 | 2,07 | 0,070 |
Мрамор (низкая стоимость) 1 | 2,94 | 0,049 |
Мрамор (Halston) 1 | 2.80 | 0,051 |
Песчаник (высокая ценность) 1 | 1,83 | 0,079 |
Песчаник (низкая стоимость — Береа) 2 | 2,90 | 0,050 |
Кварцит (Sioux) 1 | 5,38 | 0,027 |
1 .. Холман, Дж. П. Теплопередача.7-е изд., Нью-Йорк: McGraw-Hill, 1900. (Приложение A.3)
2. Введение в теплопередачу. 2-е изд. Нью-Йорк: John Wiley & Sons, Inc., 1990. (Приложение A)
3. Термическое сопротивление или R-значение зависит от толщины материала. Эти значения были рассчитаны для образца размерного камня толщиной 1 дюйм.
В центральном столбце приведенной выше таблицы приведены значения теплопроводности природных камней. Значение k является мерой скорости теплопередачи через твердый материал.Если материал имеет значение k, равное 1,00, это означает, что 1 квадратный метр материала толщиной 1 метр будет передавать тепло со скоростью 1 ватт на каждый градус Кельвина разницы температур между противоположными поверхностями. Высокое значение указывает на то, что материал более проводящий, а низкое значение означает, что он более изолирующий. В правом столбце приведенной выше таблицы указан эквивалент R-значения (R) камня толщиной 1 дюйм, измеренный в часах на квадратные футы на градусы Фаренгейта на британские тепловые единицы. Высокое значение — это наивысший результат теста, полученный в диапазоне образцов, а низкое значение — это самый низкий достигнутый результат теста.Это общепринятый метод измерения изоляционных свойств изделий.
Институт натурального камня благодарит компанию SGS US Testing, члена Института натурального камня, Талса, Оклахома, за руководство и консультации.
Этот технический бюллетень содержит общие рекомендации. Американский институт мрамора и его компании-члены не несут ответственности за любое использование или неправильное использование, которое приводит к ущербу любого рода, включая потерю прав, материалов и телесные повреждения, предположительно вызванные прямо или косвенно информацией, содержащейся в этом документе.
Изоляционный огнеупорный кирпич — производство, свойства, классификация, литература
Сырье на основе Al2O3, SiO2 и CaO. CaO обычно используется для изготовления анортитовых огнеупорных кирпичей. Сырье — глина, каолин, кианит, муллит, (светлый) шамот, силлиманит или андалузит. Глинозем, гидрат глинозема и корунд в виде корунда с полыми сферами также используются для изготовления огнеупорных кирпичей с высокой температурой классификации.Теплопроводность определяется общей пористостью, а также формой пор и распределением пор по размерам. Пористость возникает из-за выгорания материалов и воды. Выгорающие материалы, например, Опилки, пузыри стирола, кокс или целлюлоза.
Формовка и обжиг изоляционного огнеупорного кирпича
Сырье и продукты выгорания могут быть смешаны в сухом виде и / или смешаны с водой. Количество воды зависит от процесса формования. Кирпичи формуются методом литья, строповки, экструзии или сухого прессования.Для процесса литья используются большие формы и отливаются блоки / бункеры. Литьевые компаунды обрабатываются сразу после смешивания. Связывающее воду сырье извлекает воду из суспензии и способствует закреплению зеленого тела. Процесс можно ускорить, добавив гипс или цемент. Соответственно, сушка зеленых брикетов из-за высокого содержания воды занимает много времени. Таким образом можно производить легкие кирпичи с высокой пористостью. Кроме того, можно добавить пену или пенообразователь для увеличения количества пор.Мыло или сапонины используются в качестве пены, в то время как порошки металлов или карбидов используются в качестве вспенивающих агентов в технологических процессах.
Процесс строповки — это непрерывный процесс, при котором массы сбрасываются в большие формы или на конвейерную ленту. Таким образом можно производить изоляционные огнеупорные кирпичи средней плотности.
Масса, используемая в процессе экструзии, после смешивания подвергается измельчению. Водоапсорбирующее сырье может насыщаться водой до достижения однородной влажности в смеси.Затем массы экструдируются через мундштук, разрезаются по размеру и сушатся.
Сухое прессование обычно выполняется одноосным. Метод прессования подходит для производства кирпича с высокой плотностью.
Процесс формования и агенты пористости создают типичные структуры изоляционных огнеупорных кирпичей.
Обжиг огнеупорного кирпича производится в челночных или туннельных печах. Температура обжига соответствует указанной классификационной температуре. Огнеупорный кирпич дает усадку как при сушке, так и при обжиге.После обжига их необходимо разрезать и отшлифовать до окончательного размера.
Свойства алюмосиликатных огнеупорных кирпичей зависят от химического состава, порообразователей / плотности и температуры обжига. Более высокое содержание Al 2 O 3 и более высокая температура обжига огнеупорных кирпичей приводят к более высокой температуре классификации. Классификационная температура — это температура, при которой фасонный огнеупорный материал может дать усадку максимум на 2% после 24 часов обжига.Верхняя температура нанесения материалов обычно примерно на 100 К ниже температуры классификации.
Теплопроводность конечного продукта зависит от химического состава, плотности и пористой структуры. Изоляционные огнеупорные кирпичи с низкой плотностью и мелкопористой структурой обладают низкой теплопроводностью. Структура и плотность пор во многом определяются производственным процессом. Мелкие выгорающие материалы и высокое содержание воды в процессе приводят к более тонкой структуре огнеупорного кирпича.Это можно поддержать с помощью пены / вспенивающего агента. Однако плотность не может снижаться бесконечно. Зеленое тело должно иметь достаточную структуру, чтобы сушить и сжигать его без трещин. На диаграмме показаны типичные значения теплопроводности различных групп IFB.
Однако низкая плотность идет впереди с низкой прочностью изоляционного огнеупорного кирпича. Прочность на сжатие в холодном состоянии указывается как характеристическое значение. «Горячие» свойства материала должны быть достаточно хорошими, чтобы выдерживать стены и арки при желаемой температуре нанесения.Прочность на изгиб при горячем изгибе или ползучесть под нагрузкой являются характерными значениями для использования при высоких температурах.
Термостойкость ограничивает скорость нагрева и охлаждения. Это особенно важно для периодически эксплуатируемых печей, а также для действующих печных дверок.
Измерение этих свойств стандартизировано серией стандартов DIN EN 993 1-18, которые в значительной степени основаны на соответствующих стандартах ISO.
Существуют различные варианты классификации изоляционного огнеупорного кирпича.Наиболее распространены ASTM C155 и ISO 2245 / EN 1094-2. Обе системы основаны на так называемой температуре классификации и объемной плотности материала.
ASTM C155
Огнеупорные кирпичи подразделяются на разные группы в соответствии с ASTM C155. Группировка обусловлена температурой классификации и плотностью изоляционных огнеупорных кирпичей. Огнеупорные кирпичи определенного класса не могут превышать заданную плотность и не могут превышать усадку 2% после обжига в течение 24 часов.Температура испытания на 30 К ниже этой классификационной температуры.
Группа | Усадка <2% через 24 часа при | Максимальная плотность | ||
° F | ° С | фунт / фут² | кг / м³ | |
Группа 16 | 1550 | 845 | 34 | 545 |
Группа 20 | 1950 | 1065 | 40 | 641 |
Группа 23 | 2250 | 1230 | 48 | 769 |
Группа 26 | 2550 | 1400 | 54 | 865 |
Группа 28 | 2750 | 1510 | 60 | 961 |
Группа 30 | 2950 | 1620 | 68 | 1089 |
Группа 32 | 3150 | 1730 | 95 | 1522 |
Группа 33 | 3250 | 1790 | 95 | 1522 |
Пример: Изоляционный огнеупорный кирпич «IFB 23» не должен превышать плотность 769 кг / м³ (48 фунтов / фут²) и должен иметь усадку менее 2% после 24 часов обжига при 1230 ° C (2250 ° C). F) отнести к группе 23.
ISO 2245 и EN 1094-2
Классификация согласно ISO 2245 и EN 1094-2 также основана на классификации температуры (CT) и плотности. Усадка не должна превышать 2% после 24 часов обжига при классификационной температуре.
Группа | Усадка <2% через 24 часа при | Максимальная плотность |
° С | кг / м³ | |
Группа 75 | 750 | 0,4 |
Группа 80 | 800 | 0,5 |
Группа 85 | 850 | 0,55 |
Группа 90 | 900 | 0,6 |
Группа 95 | 950 | 0,65 |
Группа 100 | 1000 | 0,65 |
Группа 105 | 1050 | 0,65 |
Группа 110 | 1100 | 0,7 |
Группа 115 | 1150 | 0,7 |
Группа 120 | 1200 | 0,7 |
Группа 125 | 1250 | 0,75 |
Группа 130 | 1300 | 0,8 |
Группа 135 | 1350 | 0,85 |
Группа 140 | 1400 | 0,9 |
Группа 150 | 1500 | 0,95 |
Группа 160 | 1600 | 1,15 |
Группа 170 | 1700 | 1,35 |
Группа 180 | 1800 | 1,6 |
Пример: Огнеупорный кирпич «IFB 110» не должен превышать плотность 700 кг / м³ и должен дать усадку менее 2% после 24 часов обжига при 1100 ° C, чтобы его можно было отнести к группе 110.
Существуют также другие обозначения, в которых первое указание относится к классификационной температуре, а второе — к плотности изоляционного огнеупорного кирпича. Огнеупорный кирпич «IFB 110-12» имеет классификационную температуру 1100 ° C и насыпную плотность 1200 кг / м³.
Существуют различные стандартные формы для изоляции огнеупорных кирпичей в зависимости от области применения.
Квадратные формы
Прямоугольные форматы (стандартные квадраты / прямые) называются форматом NF или N и используются для прямых стен.Существуют также бондеры (B), двойные прямые (D) и щупальца / стретчеры (L) для правильной укладки кладки:
Обозначение | Марка | размеры в мм | Объем | ||
л | б | ч | дм³ | ||
Квадраты стандартные | 1 | 230 | 114 | 64 | 1,68 |
2 | 250 | 124 | 64 | 1,98 | |
3 | 300 | 150 | 64 | 2,88 | |
1-76 | 230 | 114 | 76 | 1,99 | |
2-76 | 250 | 124 | 76 | 2,36 | |
3-76 | 300 | 150 | 76 | 3,42 | |
Бондеры | 1 В | 230 | 172 | 64 | 2,53 |
2 Б | 250 | 187 | 64 | 2,99 | |
3 Б | 300 | 225 | 64 | 4,32 | |
1 Б-76 | 230 | 172 | 76 | 3,01 | |
2 Б-76 | 250 | 187 | 76 | 3,55 | |
3 Б-76 | 300 | 225 | 76 | 5,13 | |
Двойные прямые | 1 Д | 230 | 230 | 64 | 3,39 |
2 Д | 250 | 250 | 64 | 4,00 | |
3 Д | 300 | 300 | 64 | 5,76 | |
1 Д-76 | 230 | 230 | 76 | 4,02 | |
2 Д-76 | 250 | 250 | 76 | 4,75 | |
3 Д-76 | 300 | 300 | 76 | 6,84 | |
Дракончики | 1 л | 345 | 114 | 64 | 2,52 |
2 л | 375 | 124 | 64 | 2,98 | |
3 л | 450 | 150 | 64 | 4,32 | |
1 л-76 | 345 | 114 | 76 | 2,99 | |
2 л-76 | 375 | 124 | 76 | 3,53 | |
3 л-76 | 450 | 150 | 76 | 5,13 |
Скачать прямые в формате PDF
Арочный кирпич
Боковые арки (H), шпонки (Q), торцевые арки (G), двойные торцевые арки (GG) и соединители торцевых арок (GB) используются для арок и круглых стен.Радиус в таблице рассчитан для швов 2 мм.
Обозначение | Марка | Размеры в мм | Объем | ||||
а | б | ч | л | r 1) | дм³ | ||
Боковые дуги | 1 ч 6 | 67 | 61 | 114 | 230 | 1197 | 1,68 |
1 ч 10 | 69 | 59 | 114 | 230 | 695 | 1,68 | |
1 ч 16 | 72 | 56 | 114 | 230 | 413 | 1,68 | |
1 ч 24 | 76 | 52 | 114 | 230 | 257 | 1,68 | |
1 ч 6-76 | 79 | 73 | 114 | 230 | 1425 | 1,99 | |
1 ч 10-76 | 81 | 71 | 114 | 230 | 832 | 1,99 | |
1 ч 16-76 | 84 | 68 | 114 | 230 | 499 | 1,99 | |
1 ч 24-76 | 88 | 64 | 114 | 230 | 314 | 1,99 | |
2 ч 6 | 67 | 61 | 124 | 250 | 1302 | 1,98 | |
2 ч 10 | 69 | 59 | 124 | 250 | 756 | 1,98 | |
2 ч 16 | 72 | 56 | 124 | 250 | 450 | 1,98 | |
2 ч 24 | 76 | 52 | 124 | 250 | 279 | 1,98 | |
Ключи | 1 квартал 10 | 119 | 109 | 230 | 64 | 2553 | 1,68 |
1 квартал 14 | 121 | 107 | 230 | 64 | 1791 | 1,68 | |
1 кв. 28 | 128 | 100 | 230 | 64 | 838 | 1,68 | |
1 квартал 50 | 139 | 89 | 230 | 64 | 419 | 1,68 | |
1 квартал 10-76 | 119 | 109 | 230 | 76 | 2553 | 1,99 | |
1 квартал 14-76 | 121 | 107 | 230 | 76 | 1791 | 1,99 | |
1 кв. 28-76 | 128 | 100 | 230 | 76 | 838 | 1,99 | |
1 квартал 50-76 | 139 | 89 | 230 | 76 | 419 | 1,99 | |
2 кв. 10 | 129 | 119 | 250 | 64 | 3025 | 1,98 | |
2 кв. 14 | 131 | 117 | 250 | 64 | 2125 | 1,98 | |
2 кв. 28 | 138 | 110 | 250 | 64 | 1000 | 1,98 | |
2 кв. 50 | 149 | 99 | 250 | 64 | 505 | 1,98 | |
1) Радиус с шарниром 2 мм |
Скачать боковые дуги и ключи в формате PDF
Обозначение | Марка | Размеры в мм | Объем | ||||
а | б | ч | л | r 1) | дм³ | ||
Концевые дуги | 1 г 4 | 66 | 62 | 230 | 114 | 3680 | 1,68 |
1 г 10 | 69 | 59 | 230 | 114 | 1403 | 1,68 | |
1 г 16 | 72 | 56 | 230 | 114 | 834 | 1,68 | |
1 г 24 | 76 | 52 | 230 | 114 | 518 | 1,68 | |
1 Г 4-76 | 78 | 74 | 230 | 114 | 4370 | 1,99 | |
1 Г 10-76 | 81 | 71 | 230 | 114 | 1679 | 1,99 | |
1 Г 16-76 | 84 | 68 | 230 | 114 | 1006 | 1,99 | |
1 Г 24-76 | 88 | 64 | 230 | 114 | 633 | 1,99 | |
2 г 4 | 66 | 62 | 250 | 124 | 4000 | 1,98 | |
2 г 10 | 69 | 59 | 250 | 124 | 1525 | 1,98 | |
2 г 16 | 72 | 56 | 250 | 124 | 906 | 1,98 | |
2 г 24 | 76 | 52 | 250 | 124 | 563 | 1,98 | |
Кирпич двойной арки | 1 ГГ 4 | 66 | 62 | 230 | 230 | 3680 | 3,39 |
1 ГГ 10 | 69 | 59 | 230 | 230 | 1403 | 3,39 | |
1 ГГ 16 | 72 | 56 | 230 | 230 | 834 | 3,39 | |
1 ГГ 24 | 76 | 52 | 230 | 230 | 518 | 3,39 | |
1 ГГ 4-76 | 78 | 74 | 230 | 230 | 4370 | 4,02 | |
1 ГГ 10-76 | 81 | 71 | 230 | 230 | 1679 | 4,02 | |
1 ГГ 16-76 | 84 | 68 | 230 | 230 | 1006 | 4,02 | |
1 ГГ 24-76 | 88 | 64 | 230 | 230 | 633 | 4,02 | |
2 ГГ 4 | 66 | 62 | 250 | 250 | 4000 | 4,00 | |
2 г 10 | 69 | 59 | 250 | 250 | 1525 | 4,00 | |
2 ГГ 16 | 72 | 56 | 250 | 250 | 906 | 4,00 | |
2 ГГ 24 | 76 | 52 | 250 | 250 | 563 | 4,00 | |
Устройство для склеивания торцевой дуги | 1 ГБ 4 | 66 | 62 | 230 | 172 | 3680 | 2,53 |
1 ГБ 10 | 69 | 59 | 230 | 172 | 1403 | 2,53 | |
1 ГБ 16 | 72 | 56 | 230 | 172 | 834 | 2,53 | |
1 ГБ 24 | 76 | 52 | 230 | 172 | 518 | 2,53 | |
1 ГБ 4-76 | 78 | 74 | 230 | 172 | 4370 | 3,01 | |
1 ГБ 10-76 | 81 | 71 | 230 | 172 | 1679 | 3,01 | |
1 ГБ 16-76 | 84 | 68 | 230 | 172 | 1006 | 3,01 | |
1 ГБ 24-76 | 88 | 64 | 230 | 172 | 633 | 3,01 | |
2 ГБ 4 | 66 | 62 | 250 | 187 | 4000 | 2,99 | |
2 ГБ 10 | 69 | 59 | 250 | 187 | 1525 | 2,99 | |
2 ГБ 16 | 72 | 56 | 250 | 187 | 906 | 2,99 | |
2 ГБ 24 | 76 | 52 | 250 | 187 | 563 | 2,99 | |
1) Радиус с шарниром 2 мм |
Скачать арочный кирпич в формате PDF
Книг:
[amazon_link asins = ‘3802731638,3802731654,3802731689,3802731662,380273159X, 370
Здоровье и безопасность:
TRGS 559 «Mineralischer Staub»: https: // www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-559.html
Стандарты на огнеупорный кирпич:
ISO 2245: https://www.iso.org/standard/38367.html
ASTM C155: https://www.astm.org/Standards/C155.htm
EN 993-1: https://www.beuth.de/de/norm/din-en-993-1/2525981
EN 1094-2: https://www.beuth.de/de/norm/din-en-1094-2/8541498
JIS R2611: https://infostore.saiglobal.com/en-gb/Standards/JIS-R-2611-2001-799588/
кирпичей из карбида кремния | AMERICAN ELEMENTS ®
РАЗДЕЛ 1.ИДЕНТИФИКАЦИЯ
Название продукта: Кирпич из карбида кремния
Номер продукта: Все применимые коды продуктов American Elements, например SI-C-02-BRCK , SI-C-03-BRCK , SI-C-04-BRCK , SI-C-05-BRCK
Номер CAS: 409-21-2
Соответствующие установленные области применения вещества: Научные исследования и разработки
Информация о поставщике:
American Elements
10884 Weyburn Ave.
Лос-Анджелес, Калифорния
Тел .: +1 310-208-0551
Факс: +1 310-208-0351
Телефон экстренной связи:
Внутренний номер, Северная Америка: +1 800-424-9300
Международный: +1 703-527-3887
РАЗДЕЛ 2.ИДЕНТИФИКАЦИЯ ОПАСНОСТИ
Классификация вещества или смеси
Классификация в соответствии с Регламентом (ЕС) № 1272/2008
GHS08 Опасность для здоровья
Carc. 2 ч451 Предположительно вызывает рак.
GHS07
Skin Irrit. 2 h415 Вызывает раздражение кожи.
Eye Irrit. 2A h419 Вызывает серьезное раздражение глаз.
STOT SE 3 h435 Может вызывать раздражение дыхательных путей.
Классификация в соответствии с Директивой 67/548 / EEC или Директивой 1999/45 / EC
Xn; Вредно для здоровья
R40: Канцерогенное действие ограничено.
Xi; Раздражающий
R36 / 37/38: Раздражает глаза, дыхательную систему и кожу.
Информация об особых опасностях для человека и окружающей среды: N / A
Опасности, не классифицированные иным образом
Данные отсутствуют
Элементы маркировки
Маркировка в соответствии с Постановлением (ЕС) № 1272/2008
Вещество классифицируется и маркируется в соответствии с постановлением CLP.
Пиктограммы опасности
GHS07 GHS08
Сигнальное слово: Осторожно
Краткая характеристика опасности
h415 Вызывает раздражение кожи.
h419 Вызывает серьезное раздражение глаз.
h451 Предположительно вызывает рак.
h435 Может вызывать раздражение дыхательных путей.
Меры предосторожности
P261 — Избегайте вдыхания пыли / дыма / газа / тумана / паров / аэрозолей.
P280 — Пользоваться защитными перчатками / защитной одеждой / средствами защиты глаз / лица.
P281 — При необходимости используйте средства индивидуальной защиты.
P305 + P351 + P338 ПРИ ПОПАДАНИИ В ГЛАЗА: осторожно промыть глаза водой в течение нескольких минут. Снимите контактные линзы, если они есть, и это легко сделать. Продолжайте полоскание.
P405 — Хранить под замком.
P501 — Утилизируйте содержимое / контейнер в соответствии с местными / региональными / национальными / международными правилами.
Классификация WHMIS
D2B — Токсичный материал, вызывающий другие токсические эффекты
Система классификации
Рейтинги HMIS (шкала 0-4)
(Система идентификации опасных материалов)
ЗДОРОВЬЕ
ОГОНЬ
РЕАКТИВНОСТЬ
1
1
1
Здоровье (острые эффекты) = 1
Воспламеняемость = 1
Физическая опасность = 1
Другие опасности
Результаты оценки PBT и vPvB
PBT: N / A
vPvB: N / A
РАЗДЕЛ 3.СОСТАВ / ИНФОРМАЦИЯ ОБ ИНГРЕДИЕНТАХ
Вещества
Номер CAS / Название вещества:
409-21-2 Карбид кремния
Идентификационный номер (а):
Номер ЕС: 206-991-8
РАЗДЕЛ 4. ПЕРВАЯ ПОМОЩЬ
Описание мер первой помощи
При вдыхании:
Обеспечить пациента свежим воздухом. Если не дышит, сделайте искусственное дыхание. Держите пациента в тепле.
Немедленно обратитесь за медицинской помощью.
При попадании на кожу:
Немедленно промыть водой с мылом; тщательно промыть.
Немедленно обратитесь за медицинской помощью.
При попадании в глаза:
Промыть открытый глаз под проточной водой в течение нескольких минут. Проконсультируйтесь с врачом.
При проглатывании:
Обратитесь за медицинской помощью.
Информация для врача
Наиболее важные симптомы и воздействия, как острые, так и замедленные
Данные отсутствуют
Указание на необходимость немедленной медицинской помощи и специального лечения
Данные отсутствуют
РАЗДЕЛ 5. МЕРЫ ПОЖАРОТУШЕНИЯ
Средства пожаротушения
Подходящие средства пожаротушения
Двуокись углерода, порошок для тушения или водяная струя мелкого разбрызгивания.Для тушения больших пожаров используйте водную струю или спиртоустойчивую пену.
Особые опасности, исходящие от вещества или смеси
При попадании этого продукта в огонь могут образоваться следующие вещества:
Оксид углерода и диоксид углерода
Оксид кремния
Рекомендации для пожарных
Защитное снаряжение:
Надеть автономный респиратор.
Надеть полностью защитный непромокаемый костюм.
РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ
Меры личной безопасности, защитное снаряжение и порядок действий в чрезвычайной ситуации
Используйте средства индивидуальной защиты.Не подпускайте незащищенных людей.
Обеспечьте соответствующую вентиляцию.
Меры по защите окружающей среды:
Не допускайте попадания материала в окружающую среду без официального разрешения.
Не допускайте попадания продукта в канализацию, канализацию или другие водоемы.
Не позволяйте материалу проникать в землю или почву.
Методы и материалы для локализации и очистки:
Утилизируйте зараженный материал как отходы в соответствии с разделом 13.
Обеспечьте соответствующую вентиляцию.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы
См. Раздел 7 для получения информации о безопасном обращении.
См. Раздел 8 для получения информации о средствах индивидуальной защиты.
Информацию об утилизации см. В Разделе 13.
РАЗДЕЛ 7. ОБРАЩЕНИЕ И ХРАНЕНИЕ
Обращение
Меры предосторожности для безопасного обращения
Хранить контейнер плотно закрытым.
Хранить в сухом прохладном месте в плотно закрытой таре.
Обеспечьте хорошую вентиляцию на рабочем месте.
Информация о защите от взрывов и пожаров:
Сведения отсутствуют
Условия безопасного хранения с учетом несовместимости
Требования, предъявляемые к складским помещениям и таре:
Особых требований нет.
Информация о хранении в одном общем хранилище:
Хранить вдали от окислителей.
Дополнительная информация об условиях хранения:
Держать емкость плотно закрытой.
Хранить в прохладных, сухих условиях в хорошо закрытых емкостях.
Специальное конечное применение
Данные отсутствуют
РАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ / ЛИЧНАЯ ЗАЩИТА
Дополнительная информация о конструкции технических систем: не менее 100 футов в минуту.
Контрольные параметры
Компоненты с предельными значениями, требующие контроля на рабочем месте:
409-21-2 Карбид кремния (100,0%)
PEL (США) Долговременное значение: 15 * 5 ** мг / м 3
волокнистый пыль: * общая пыль ** вдыхаемая фракция
REL (США) Долгосрочное значение: 10 * 5 ** мг / м 3
* общая пыль ** вдыхаемая фракция
TLV (США) Долгосрочное значение: 10 * 3 ** мг / м 3
волокнистая пыль: 0,1 ф / куб. неволокнистые: * инг., ** соотв.
EL (Канада) Долгосрочное значение: 10 * 3 ** мг / м 3
* вдыхаемый, ** вдыхаемый
EV (Канада) Долгосрочное значение: 10 * 3 ** мг / м 3 , 0.1f / cc *** ppm
неволокнистый: * дюйм, ** соотв .; *** волокнистый, соотв.
Дополнительная информация: Нет данных
Средства контроля за опасным воздействием
Средства индивидуальной защиты
Соблюдайте стандартные правила защиты и гигиены при обращении с химическими веществами.
Хранить вдали от продуктов питания, напитков и кормов.
Немедленно снимите всю грязную и загрязненную одежду.
Мыть руки перед перерывами и по окончании работы.
Избегать контакта с глазами и кожей.
Поддерживайте эргономичную рабочую среду.
Дыхательное оборудование:
При высоких концентрациях используйте подходящий респиратор.
Рекомендуемое фильтрующее устройство для краткосрочного использования:
Используйте респиратор с картриджами типа P100 (США) или P3 (EN 143) в качестве резервного средства технического контроля. Следует провести оценку рисков, чтобы определить, подходят ли респираторы для очистки воздуха. Используйте только оборудование, проверенное и одобренное соответствующими государственными стандартами.
Защита рук: Непроницаемые перчатки
Осмотрите перчатки перед использованием.
Пригодность перчаток должна определяться как материалом, так и качеством, последнее из которых может варьироваться в зависимости от производителя.
Материал перчаток: нитриловый каучук, NBR
Время проникновения материала перчаток (в минутах): 480
Толщина перчаток: 0,11 мм
Защита глаз: защитные очки
Защита тела: защитная рабочая одежда
РАЗДЕЛ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Информация об основных физических и химических свойствах
Внешний вид:
Форма: Различные формы (порошок / хлопья / кристаллы / шарики и т. Д.)
Цвет: от серого до черного
Запах: без запаха
Порог запаха: данные отсутствуют.
pH: нет данных
Точка плавления / интервал плавления: 2700 ° C (4892 ° F)
Точка кипения / интервал кипения: данные отсутствуют
Температура сублимации / начало: данные отсутствуют
Воспламеняемость (твердое тело, газ): нет данных доступный.
Температура возгорания: данные отсутствуют
Температура разложения: данные отсутствуют
Самовоспламенение: данные отсутствуют.
Взрывоопасность: данные отсутствуют.
Пределы взрываемости:
Нижний: данные отсутствуют
Верхние: данные отсутствуют
Давление пара: нет
Плотность при 20 ° C (68 ° F): 3,16 г / см 3 (26,37 фунта / галлон)
относительная плотность: Нет данных.
Плотность пара: НЕТ
Скорость испарения: НЕТ
Растворимость в воде (H 2 O): Нерастворимый
Коэффициент распределения (н-октанол / вода): данные отсутствуют.
Вязкость:
Динамическая: Нет
Кинематическая: Нет
Другая информация: Нет данных
РАЗДЕЛ 10.СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ
Реакционная способность: Данные отсутствуют
Химическая стабильность: Стабилен при рекомендуемых условиях хранения.
Термическое разложение / условия, которых следует избегать:
Разложение не происходит при использовании и хранении в соответствии со спецификациями.
Возможность опасных реакций: Реагирует с сильными окислителями
Условия, которых следует избегать: Данные отсутствуют
Несовместимые материалы: Окислители
Опасные продукты разложения:
Окись углерода и двуокись углерода
Оксид кремния
РАЗДЕЛ 11.ТОКСИКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ
Информация о токсикологическом воздействии
Острая токсичность: Реестр токсических эффектов химических веществ (RTECS) содержит данные об острой токсичности для этого вещества.
Значения LD / LC50, имеющие отношение к классификации: Нет данных
Раздражение или разъедание кожи: Вызывает раздражение кожи.
Раздражение или коррозия глаз: Вызывает серьезное повреждение глаз.
Сенсибилизация: Неизвестно о сенсибилизирующем воздействии.
Мутагенность зародышевых клеток: Эффекты неизвестны.
Канцерогенность: Предположительно вызывает рак.
ACGIH A2: Предполагаемый канцероген для человека: Агент канцерогенен для экспериментальных животных при уровнях доз, путём (-ах) введения, в месте (ах), гистологического типа (ов) или механизма (ов), который считается относящимся к воздействию на рабочих . Доступные эпидемиологические исследования противоречивы или недостаточны для подтверждения повышенного риска рака у людей, подвергшихся воздействию.
Реестр токсических эффектов химических веществ (RTECS) содержит данные о онкогенных, канцерогенных и / или опухолевых заболеваниях этого вещества.
Репродуктивная токсичность: Эффекты неизвестны.
Специфическая системная токсичность на органы-мишени — многократное воздействие: Эффекты неизвестны.
Специфическая системная токсичность, поражающая отдельные органы-мишени — однократное воздействие: Может вызывать раздражение дыхательных путей.
Опасность при вдыхании: Эффекты неизвестны.
От подострой до хронической токсичности:
Реестр токсических эффектов химических веществ (RTECS) содержит данные о токсичности при множественных дозах этого вещества.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не изучена.
Канцерогенные категории
OSHA-Ca (Управление по охране труда)
Вещество не указано.
РАЗДЕЛ 12. ЭКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ
Токсичность
Водная токсичность: данные отсутствуют
Стойкость и разлагаемость: данные отсутствуют
Потенциал биоаккумуляции: данные отсутствуют
Подвижность в почве: данные отсутствуют
Дополнительная экологическая информация:
Не допускать выпуск материала в окружающую среду без официального разрешения.
Не допускайте попадания неразбавленного продукта или больших количеств в грунтовые воды, водоемы или канализационные системы.
Избегать попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT: N / A
vPvB: N / A
Другие побочные эффекты: Нет данных
РАЗДЕЛ 13. УТИЛИЗАЦИЯ
Методы обработки отходов
Рекомендация
Для обеспечения надлежащей утилизации см. Официальные правила .
Неочищенная тара:
Рекомендация:
Утилизация должна производиться в соответствии с официальными предписаниями.
РАЗДЕЛ 14. ТРАНСПОРТНАЯ ИНФОРМАЦИЯ
Номер ООН
DOT, ADN, IMDG, IATA
N / A
Собственное транспортное наименование ООН
DOT, ADN, IMDG, IATA
N / A
Класс (ы) опасности при транспортировке
DOT, ADR, ADN, IMDG, IATA
Class
N / A
Группа упаковки
DOT, IMDG, IATA
N / A
Опасность для окружающей среды:
N / A
Особые меры предосторожности для пользователя
N / A
Транспортировка навалом в соответствии с в соответствии с Приложением II MARPOL73 / 78 и Кодексом IBC
N / A
Транспортировка / Дополнительная информация:
DOT
Морской загрязнитель (DOT):
№
РАЗДЕЛ 15.НОРМАТИВНАЯ ИНФОРМАЦИЯ.
Все компоненты этого продукта занесены в Канадский список веществ, предназначенных для домашнего использования (DSL).
SARA Раздел 313 (списки конкретных токсичных химикатов)
Вещество не указано.
Предложение 65 штата Калифорния
Предложение 65 — Химические вещества, вызывающие рак
Вещество не указано в списке.
Предложение 65 — Токсичность для развития
Вещество не указано.
Предложение 65 — Токсичность для развития, женщины
Вещество не указано.
Предложение 65 — Токсичность для развития, мужчины
Вещество не указано.
Информация об ограничении использования:
Для использования только технически квалифицированными специалистами.
Другие постановления, ограничения и запретительные постановления
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (EC) № 1907/2006.
Вещества нет в списке.
Должны соблюдаться условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) для производства, размещения на рынке и использования.
Вещества нет в списке.
Приложение XIV Правил REACH (требуется разрешение на использование): Вещество не указано.
REACH — Предварительно зарегистрированные вещества: Вещество указано в списке.
Оценка химической безопасности: Оценка химической безопасности не проводилась.