Исследование теплопроводности полусухой цементной стяжки
Перейти к содержимому Меню- БЛОГ +Переключатель меню
- О компании ВЕРИ САМАРА
- Социальная активность
- Статьи и Публикации на различные темы
- Полезная информация
- Специальные предложения
- OUTSOURCE
- ВЫПОЛНЕНО НАМИПереключатель меню
- Выполненные объекты по штукатурке стен в Самаре
- Выполненные объекты по полусухой стяжке пола
- Выполненные объекты по нанесению полимочевины
- Штукатурка
стенПереключатель меню- Калькулятор штукатурки стен
- Расценки на штукатурку стен
- Преимущество штукатурки
- Технологическая карта по штукатурке стен
- Нормы и правила штукатурка
- Экономический эффект
- Полезная информация штукатуркаПереключатель меню
- Технологические правила нанесения гипсовой штукатурки в неотапливаемых помещениях
- Полусухая
стяжкаПереключатель меню- Калькулятор полусухой стяжки пола
- Расценки на полусухую стяжку
- Преимущества технологии
- Технологическая карта
- Нормы и правила стяжка пола
stroy.it
5. Теплотехнический расчёт покрытия
Требуется определить сопротивление теплопередачи и толщину теплоизоляционного слоя совмещенного покрытия производственного здания для климатической зоны города Борисова. Конструктивное решение покрытия представлено на рисунке
1 – железобетон, δ=25мм; 2 — полиэтиленовая пленка, δ=0,16мм;
3 – полистиролбетон; 4 – цементно-песчаный раствор, δ=30мм;
5 – гидроизол (4 слоя), δ=6мм;
Рис. — Покрытие производственного здания
Несущая конструкция – железобетонная ребристая плита покрытия плотностью 2500 кг/м3, толщина полки – 25 мм, отношение высоты рёбер к расстоянию между гранями следующих рёбер – 0,3.
Пароизоляционный слой – полиэтиленовая плёнка толщиной 0,16 мм.
Теплоизоляционный слой – плиты полистиролбетонные теплоизоляционные плотностью 260 кг/м3.
Стяжка – из цементно-песчаного раствора толщиной 30 мм, плотностью 1800 кг/м3.
Гидроизоляционное покрытие – из 4 слоёв гидроизола общей толщиной 6 мм, плотностью 600 кг/м3.
Расчетная температура внутреннего воздуха tв=17 0С, относительная влажность 55%.
Влажностный режим помещения согластно таблице 3 [1] – нормальный, условия эксплуатации ограждения – “Б”.
Расчетное значение коэффициентов теплопроводности λ и теплоусвоения S материалов определяем по таблице А1 [1] для условия эксплуатации ограждения – “Б”:
-железобетон =2,04 Вт/м20С
=19,7 Вт/м20С
-полистиролбетон =0,10 Вт/м20С
=1,56 Вт/м20С
-цементно-песчаный раствор =0,93 Вт/м20С
=11,09 Вт/м20С
-гидроизол =0,17 Вт/м20С
=3,53 Вт/м20С
Нормативное сопротивление для совмещенных покрытий согласно таблице 10 [1], равно 3,0 м2 0С/Вт.
Определяем термическое сопротивление каждого отдельного слоя конструкции по формуле (1):
, (1)
где — толщина слоя, м;
— коэффициент теплопроводности материала однослойной или теплоизоля-
ционного слоя многослойной ограждающей конструкции в условиях экс-
плуатации, принимаемый по таблице А1 [1], Вт/м×°С .
— плиты покрытия:
м2×°С/Вт.
— цементно-песчаной стяжки:
м2×°С/Вт.
— гидроизоляционного ковра:
м2×°С/Вт.
Термическое сопротивление утеплителя определяем по формуле(2):, (2)
где -коэффициент теплоотдачи внутренней поверхности ограждающей
конструкции, принимаемый по таблице 1 [1], Вт/м2×°С;
— коэффициент теплоотдачи наружной поверхности ограждающей кон-
струкции
для зимних условий, принимаемый по
таблице 2 [1], Вт/м
м2×°С/Вт.
Термическими сопротивлениями пароизоляционного слоя и защитного слоя пренебрегаем из-за незначительной величины.
Определяем тепловую инерцию покрытия по формуле (3):
, (3)
где– термические сопротивления отдельных слоёв конструкции;
–расчётные коэффициенты теплоусвоения материала слоёв
конструкции в условиях эксплуатации согласно таблице 3,
принимаемые по таблице А1.
=0,012´19,7+5,763´1,56+0,032´11,09+0,035´3,53=9,71>7.
Согласно таблице 7 [1] для ограждающих конструкций с тепловой инерцией свыше 7,0 за расчетную зимнюю температуру наружного воздуха следует принимать среднюю температуру наиболее холодной пятидневки с обеспеченностью 0.92, которая в соответствие с таблицей 6 [1] для г. Могилёвской области равна = –25°С.
Определяем расчётное сопротивление теплопередаче по формуле(4):
, (4)
где – коэффициент, учитывающий положение наружной поверхности
ограждающей конструкции по отношению к наружному воздуху по
таблице 4 [1], = 1;
–расчетный перепад, между температурой внутреннего воздуха
и температурой внутренней поверхности ограждающей конст-
рукции принимаемый по таблице 8 [1], =4°С.
–расчётная температура внутреннего воздуха, принимаемая по
таблице 5 [1], °С;
–расчётная температура наружного воздуха, принимаемая по
таблице 6 [1] в зависимости от полученной величины тепловой
инерции, определённой по формуле (3), °С.
м2×°С/Вт.
Экономически целесообразное сопротивление теплопередачеданной конструкции покрытия определяется по формуле (5):
Толщина теплоизоляционного слоя из полистиролбетона равняется :
Принимаем толщину утеплителя 580 мм.
studfiles.net
Полная таблица теплопроводности различных строительных материалов. Цементно песчаная стяжка теплопроводность
Плотность цементно песчаной стяжки — Всё о напольных покрытиях
Параметры стяжки для пола
Для создания качественного и прочного основания под любое финишное напольное покрытие необходимо выяснить несущую способность всей конструкции.
Вес стяжки достаточно велик, и потому она оказывает большое давление на основу сооружения.
В тех случаях, когда для выполнения работ используется не готовая смесь, приобретенная в строительных магазинах, а состав, приготовленный самостоятельно, следует сделать точные расчеты с учетом особенностей используемых материалов.
Выбор материалов и приготовление смеси
ЦПС или цементно-песчаная стяжка является необходимым и довольно простым способом выравнивания поверхностей. Для ее создания требуется песок, цемент и вода. Количество каждого из составляющих зависит от их особенностей.
Так, например, если взят цемент марки М150, то песка понадобится в три раза больше. Если для приготовления смеси используется цемент марки М500, то песок берут в соответствии с пропорцией 1:5.
Для мешка в 50 кг возьмите 150 кг песка
Оптимальным признано использование цемента марки М 150, потому для данного материала весом 50 кг понадобится 150 кг песка. Что касается количества воды, то это зависит от влажности песка.
Приготовить качественный раствор можно, взяв:
- 1 мешок (50 кг) цемента;
- 15 десятилитровых ведер (150 кг) сухого песка;
- 27 литров воды.
Введение в состав влажного песка позволит сократить объем воды до 25 литров.
От веса цементно-песчаной стяжки зависит давление, которое она окажет на основание конструкции. Соответственно, прежде чем приступить к выполнению работ, необходимо уточнить толщину заливаемого слоя.
Стяжка должна быть толщиной не менее 30 мм
Минимальная толщина стяжки составляет 0,3 см. В противном случае после застывания раствора поверхность покроется трещинами. Превышение максимальной толщины равной 0,5-1
pilorama-chita.ru
Утепление пола — Доктор Лом. Первая помощь при ремонте
Таблица 1. Сравнительная таблица наиболее распространенных вариантов.
Материал | Плотность, кг/м3 | Толщина, см | Нагрузка на перекрытие, кг/м2 | Тепло-проводность, Вт/м·К | Ориентиро- вочная цена, $/м3 (тонну) |
1. Стяжка из цементно-песчаного раствора | 1500-1800 | не менее 5 | 75-90 | 0.9 | 60-110 |
а) Гранулированный шлак | 600-1200 | 30-60 | 0.15-0.2 | (8-15) | |
b) Керамзит | 450-700 | по расчету | 22-35 | 0.07-0.12 | 40-70 |
c) Вспученный перлит | 45-200 | по расчету | 2.2-10 | 0.06-0.11 | 50-80 |
d) Вспученный вермикулит | 75-200 | по расчету | 4-10 | 0.045-0.056 | 150-200 |
2.1. Теплоизоляционная стяжка из цементно-вермикулитного раствора (готовая сухая смесь Вермиизол) | 600-700 | по расчету | 30-35 | 0.19-0.25 | (800-1000) |
2.2. Теплоизоляционная стяжка из цементно-перлитного раствора (готовая сухая смесь Перлитка) | 600-700 | по расчету | 30-35 | 0.15-0.19 | (800-1000) |
2.3. Теплоизоляционная стяжка из цемента и пеностекла (готовая сухая смесь Ivsil Termolite) | 350-400 | по расчету | 18-20 | 0.1-0.12 | (1500-1800) |
2.4. Теплоизоляционная стяжка цементно-пенополистирольного раствора (сухая смесь Кнауф Убо) | 600-700 | по расчету | 30-35 | (450-550) | |
3.1. Сухая стяжка из гипсоволокнистых листов (ГВЛ) | 1000-1300 | не менее 2 | 20-26 | 0.22-0.36 | 250-300 |
3.2. Сухая стяжка из мягких древесно-волокнистых плит (ДВП) | 100-400 | не менее 2 | 2-8 | 0.05-0.09 | 180-250 |
4.1. Слой пола из досок | 500-600 | 2.8 — 3.5 | 12.5 | 0.1-0.15 | 450-700 |
4.2. Слой пола из фанеры | 600-900 | не менее 1.4 | 8.4-12.6 | 0.15-0.24 | 400-600 |
4.3. Слой пола из ДСП | 550-750 | 1.6, 1.8 | 8.8-13.5 | 0.2-0.3 | 200-250 |
4.4. Слой пола из OSB | 600-700 | не менее 1.6 | 9.6-11.2 | 0.13-0.2 | 400-500 |
e) Пенополистирол (пенопласт) | 10-50 | 2, 3, 4, 5, 10 | 0.5-2.5 | 0.035-0.042 | 40-60 |
f) Стекловата | 10-12 | 5, 10 | 0.5-0.6 | 0.038-0.047 | 15-40 |
g) Базальтовая вата | 20-60 | 5, 10 | 1-3 | 0.04-0.06 | 60-100 |
Примечания:
1 — Теплоизоляционные стяжки как правило нуждаются в дополнительном выравнивании обычной стяжкой или наливными «самовыравнивающимися» полами.
2 — Плотность насыпных теплоизоляционных материалов зависит от размера зерен — фракций, чем мельче зерна, тем больше плотность и тем больше коэффициент теплопроводности. Кроме того, практически для всех теплоизоляционных материалов (кроме пенопласта) коэффициент теплопроводности зависит от влажности, чем выше влажность материала — тем больше коэффициент теплопроводности. Чем меньше коэффициент теплопроводности, тем лучше теплоизоляционные свойства материала.
3 — Если толщину теплоизоляции следует определять по расчету, то нагрузка на перекрытие указана для толщины слоя 5 см, чтобы можно было сравнить показатели.
А теперь более подробно рассмотрим представленные варианты, вариант с подогревом полов не рассматривается, так как дополнительные расходы на подогрев пола будут постоянными (в холодное время года) и это не позволяет корректно сравнивать представленные варианты.
1. Стяжка из цементно-песчаного раствора по слою утеплителя.
Обычная стяжка из цементно-песчаного раствора по слою утеплителя является одновременно и выравнивающим и укрепляющим слоем, поэтому толщина такой стяжки принимается не менее 5 см из технологических соображений — чтобы стяжка не растрескивалась. Слой насыпной теплоизоляции можно делать не только из гранулированного шлака, керамзита, вспученного вермикулита и перлита, но и из других материалов, однако приведенные в таблице материалы являются наиболее распространенными. Особенности выполнения цементно-песчаной стяжки изложены отдельно.
2. Теплоизоляционные стяжки.
Теплоизоляционные стяжки можно выполнять, используя не только готовые сухие смеси, а смешивать цемент, воду и теплоизоляционный наполнитель самому. В этом случае можно использовать в качестве наполнителя и керамзит. Однако в этом случае теплопроводность полученной стяжки будет очень сильно зависеть от пропорций цемента и теплоизоляционного наполнителя, чем больше наполнителя, тем ниже прочность стяжки, чем больше цемента, тем выше теплопроводность стяжки. Кроме того, из-за относительно больших размеров заполнителя теплоизоляционные стяжки обладают низкой выравнивающей способностью, чем крупнее наполнитель, тем ниже теплопроводность и тем тяжелее выровнять поверхность такой стяжки, поэтому под напольные покрытия из плитки ПВХ, линолеума, ковролина, а иногда и ламината или паркетной доски требуется дополнительно выравнивать теплоизолирующую стяжку. Правила выполнения теплоизоляционной стяжки практически такие же как и для обычной стяжки.
3. Сухие стяжки.
Так называемые сухие стяжки можно делать только по ровному основанию, т.е. укладывать гипсоволокнистые листы или ДВП сразу на пустотные плиты перекрытия, установленные с перепадами по высоте, с торчащими монтажными петлями — нельзя. Сначала нужно выровнять обычной стяжкой основание пола. Еще один недостаток сухих стяжек — низкая водостойкость. Насыщение гипсоволокнистых или ДВП плит водой приводит не только к повышению теплопроводности, но и к постепенному разрушению теплоизоляционных материалов.
4. Деревянные полы с теплоизоляцией.
Для утепления деревянных полов можно использовать не только рулонные или листовые теплоизоляционные материалы (e, f, g), но так же насыпную теплоизоляцию (a-d) и теплоизоляционные стяжки (2). Теоретически прокладывать теплоизоляцию между лагами вовсе не обязательно, так как воздух — это и есть один из лучших теплоизоляторов, входящий в состав всех приведенных в таблице 1 теплоизоляционных материалов и чем воздуха в теплоизоляционном материале больше, тем теплоизоляционные свойства материала лучше. Однако сам по себе воздух как теплоизоляционный материал обладает существенными недостатками, главный из которых — подвижность. Например, если в строительных конструкциях будут щели, то воздух будет работать не как теплоизоляция, а как теплоноситель.
При теплотехническом расчете деревянных полов следует учитывать, что теплоизоляционный слой будет не сплошным, а будет состоять из полос, разделенных лагами. Т.е. нужно отдельно рассчитывать теплопотери на лаге и на полосе теплоизоляции или для упрощения и так запутанных расчетов ввести поправочный коэффициент, учитывающий расстояние между лагами, ширину лаг и материал теплоизоляции, например при ширине лаг 10 см и расстоянии между осями лаг 100 см, можно увеличить коэффициент теплопроводности пенопласта на 1.05-1.1, а ширине лаг 10 см и расстоянии между осями лаг 50 см, можно увеличить коэффициент теплопроводности пенопласта на 1.25-1.3. При использовании насыпной теплоизоляции или теплоизоляционной стяжки никакие коэффициенты не нужны, так как коэффициенты теплопроводности материалов насыпной теплоизоляции близки к коэффициенту теплоизоляции древесины.
При утеплении полов над продуваемыми неотапливаемыми подвалами теплоизоляция выполняется как правило несколькими слоями, т.е. плита перекрытия теплоизолируется и сверху и снизу.
Пример теплотехнического расчета.
Толщина слоя теплоизоляции должна определяться по теплотехническому расчету, а чтобы этот самый теплотехнический расчет произвести, нужно знать значения температур над полом и под перекрытием, материал напольного покрытия, количество поступающего от отопления тепла, а также материал и толщину перекрытия. Так как эти данные для разных регионов и разных вариантов устройства перекрытия могут значительно отличаться, то для примера приведу приблизительный (без подробных объяснений) расчет сопротивления теплопередаче.
Дано: многоэтажный дом со стандартными пустотными плитами перекрытия толщиной 220 мм. Плита перекрытия над неотапливаемым продуваемым подвалом утеплена слоем насыпной теплоизоляции из гранулированного шлака толщиной 10 см. По насыпной теплоизоляции сделана выравнивающая стяжка толщиной 6 см на которую уложен линолеум толщиной 5 мм. Регион — Москва. По проекту перекрытие должно быть утеплено снизу пенополистиролом, но строители «забыли» сделать утепление (не часто, но такое бывает).
Требуется: определить толщину слоя теплоизоляции из пенополистирола, который нужно наклеить на потолок подвала.
Решение: по СНиП 23-01-99 «Строительная климатология» средняя температура наиболее холодной пятидневки для Москвы -28°С, температура воздуха в помещении +20°С. Градусо-сутки отопительного периода ГСОП = (20 + -(-3.1)) · 214 = 4943
Требуемое сопротивление теплопередаче по энергосбережению R0тр =0.9 · 4.1 = 3.69 м2·°С/Вт
где 0.9 — коэффициент согласно табл. 3 СНиП II-3-79*, 4.1 — сопротивление теплопередаче согласно табл. 1б* СНиП II-3-79*.
Примечание: 1. Если застеклить все проемы в подвале и хорошо подогнать дверь, то расчетный коэффициент будет не 0.9 а 0.75, а это почти 20% снижение теплопотерь через перекрытие.
2. По старым нормам требуемое сопротивление теплопередаче по энергосбережению для перекрытий жилых помещений над подвалом выходило 1.44, по нормам, принятым на переходный период — 2.16. Это означает с одной стороны, что и отопление в домах, построенных в советский период, рассчитано на такие теплопотери, а с другой стороны, что абсолютное большинство перекрытий над подвалами таких домов по новым нормам нуждается в утеплении. В данном примере мы будем рассчитывать толщину теплоизоляции по нормам, принятым на переходный период.
Требуемое сопротивление теплопередаче по санитарно-гигиеническим нормам Rсгтр = 0.9(20 +28)/(3 · 8.7) = 1.379 = 1.655 м2·°С/Вт
Расчет следует производить по требуемому сопротивлению теплопередаче по энергосбережению = 2.16.
R0 = 1/aн + ∑(Δi/λi) + 1/aв
где aн = 23 Вт/(м2·°С) — коэффициент теплоотдачи наружной поверхности ограждающей конструкции, принимаемый по табл. 6* СНиП ll-3-79*;
aв= 8.7 Вт/(м2·°С) — коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый по табл. 4* СНиП ll-3-79*;
Δi — толщина слоя строительной конструкции, м;
λi — коэффициент теплопроводности для данного слоя.
Расчетное сопротивление перекрытия R = 1/23 + 0.005/0.17 + 0.06/0.9 + 0.1/0.2 + 0.127 + 1/8.7 = 0.8815 м2·°С/Вт до требуемого значения не хватает 2.16 — 0.8815 = 1.275 м2·°С/Вт, следовательно толщина пенополистирола должна составлять не менее 1.275 · 0.038 = 0.048 м или 5 см. Если рассчитывать по новым нормам, то для дополнительного утепления потребуется слой пенопласта толщиной около 2.81 · 0.038 = 0.107 м или 11 см.
Вот в принципе и все, осталось только выбрать наиболее оптимальный вариант утепления полов.
doctorlom.com
Цементная стяжка на основе керамзита для прочного утепления пола
Если вам необходим теплый пол с хорошей звукоизоляцией, но при этом он постоянно подвергается высоким нагрузкам (например, офисное помещение), то цементная стяжка на основе керамзита – это оптимальное решение.
Главное отличие керамзитовой цементной стяжки от обычной цементно-песчаной в том, что вместо кварцевого песка, имеющего большую насыпную плотность (1600 кг/м³) и высокую теплопроводность (0,93 Вт/м·°С) используется керамзитовый с насыпной плотностью 400-450 кг/м³ и теплопроводностью 0,1 Вт/м·°С. Это значит, что такая стяжка будет в несколько раз теплее и легче.
Свойства цементной стяжки на основе керамзита:
Легкость — средняя плотность 720 кг/м³.
Низкая теплопроводность — коэффициент теплопроводности 0,18 Вт/м·°С.
Высокая прочность – М35.
Отличная морозостойкость – F 50.
Высокая шумоизоляция.
Экологическая чистота.
Области применения цементной стяжки на основе керамзита:
1) Для выравнивания и улучшения тепло- и звукоизоляционных свойств пола.
2) При ремонте ветхих зданий с ограниченной несущей способностью, требующих сниженной нагрузки на фундамент и несущие конструкции.
3) В качестве основания под укладку керамической и каменной плитки по деревянным полам.
4) Для устройства отмостки и дорожек.
Рекомендации по применению
Процесс применения включает три этапа:
1. Подготовка поверхности основания.
Перед нанесением раствора с поверхности основания необходимо удалить все элементы старого покрытия, а также пыль, масляные пятна и другие вещества, ослабляющие прочность сцепления смеси с основой. На сухое, подготовленное основание за 6 часов нанести грунтовку для повышения растекаемости раствора, уменьшения обезвоживания и появления пузырьков воздуха на поверхности. Сильно впитывающие поверхности следует грунтовать 2 раза. По периметру планируемой заливки стяжки следует проложить краевую ленту, соразмерную толщине выравнивающего слоя.
2. Приготовление раствора.
Для приготовления раствора потребуется 3 части керамзита и 1 часть цемента (например, 200 кг керамзита, 150 кг керамзитового песка и 50 кг цемента).
В сухую смесь нужно добавить воды из расчета 3 л на 10 л сухой смеси и перемешать до образования однородной массы. Смешивание производят в бетономешалке или ручным миксером. Раствор необходимо выдержать 5 минут и затем повторно перемешать. После этого он готов к применению и сохраняет свои свойства в течение 50 минут.
Для улучшения пластических свойств допускается введение в смесь эмульсии ПВА (0,01 часть от массы цемента). Другие традиционные пластификаторы не эффективны.
Внимание! Не допускайте передозировки воды, т.к. излишек воды ослабляет прочность выровненной поверхности и замедляет процесс высыхания. Следует использовать чистые емкости и чистую воду.
3. Установка маяков.
На стене с помощью лазерного уровня отмечаем фломастером уровень стяжки. Если пол ровный и толщина стяжки везде равная, то маяки можно закрепить непосредственно на основание. Если же пол имеет перепады, маяки необходимо зафиксировать с помощью цементного или гипсового раствора по уже отбитому уровню. Т.е. там, где уровень пола опускается, маяк нужно приподнять и закрепить с помощью раствора так, чтобы он соответствовал уровню, отмеченному на стенах. Для высыхания раствора потребуется несколько часов, после чего можно приступить к дальнейшим работам.
Рекомендуемое расстояние между маяками – 1,5 м.
4. Нанесение раствора.
Приготовленный раствор выкладывается на основание слоем от 40 до 100 мм и распределяется по поверхности при помощи ракли или правила. Для удаления воздушных пузырьков поверхность свежеуложенного раствора можно прокатать игольчатым валиком. Через 24 часа в стяжке рекомендуется прорезать деформационные швы.
Уложенный раствор следует защищать от слишком быстрого высыхания и от воздействия прямых солнечных лучей, особенно при укладке и в течение первых 2 дней. Температура основания должна быть не ниже +5 и не выше +30°С. Ходить по покрытию рекомендуется не ранее, чем через 12 часов после завершения всех работ. Напольное покрытие можно укладывать через 20-30 дней (в зависимости от толщины слоя и условий высыхания).
При укладке линолеума, ковролина, ламината, паркета или пробковых покрытий поверхность рекомендуется дополнительно выровнять финишным составом.
Расход сухой смеси составляет 40 кг/м² (при толщине слоя 40 мм).
Устройство стяжки пола на основе керамзита это:
1) Увеличение теплоизоляционных свойств пола.
2) Дополнительная звукоизоляция для более комфортного проживания.
3) Прочное, ровное основание с высокими эксплуатационными характеристиками.
4) Сниженная нагрузка на фундамент.
keramzit.com
Цементно песчаной стяжки теплопроводность — Все про стройку
Содержание статьи:
Вступление
Если вы решили сделать полусухую стяжку пола, то эта инструкция по устройству полусухой стяжки пола с фиброволокном (фибра) вам поможет.
Толщина стяжки, ее прочность и материал указываются в проекте и зависят от вида чернового пола, конструкции перекрытий и будущего назначения помещения. Основной нормативный документ СНиП 3.04.01-87 «Изоляционные и отделочные покрытия», СНиП 2.03.13-88 «Полы», МДС 31-6.2000 «Рекомендации по устройству полов». Нормативные документы регламентируют последовательность операций по приготовлению и устройству цементно-песчаных жестких полусухих растворов с добавлением полипропиленового синтетического фиброволокна.
Инструкция по устройству полусухой стяжки пола с фиброволокном (фибра) — основные положения
Полусухая стяжка пола это монолитный или собранный слой прочного материала в многослойной конструкции перекрытия здания.
Полусухая стяжка предназначена
- для воспрятия, распределения и передачи нагрузки на пол;
- для выравнивания нижних слоев пола или придания полу уклона;
- для настила финишного отделочного покрытия.
Устройство стяжки производится при температуре не ниже 5°C. Температура меряется на уровне пола и в нижнем слое. На все время производства работ температура не должна меняться до приобретения стяжкой 50% проектной прочности.
Полусухая стяжка из полусухого жесткого раствора должна выполняться за один раз на всю проектную толщину.
Для предотвращения деформации стяжки вдоль всех стен, колон и других независимых конструкций делаются изоляционные швы из демпферных лент. Демпферная лента делается из вспененного полиэтилена, изолона, изокома. Ширина демпферной ленты должна быть не меньше толщины стяжки.
Устройство стяжки из жесткого полусухого раствора делается в два этапа: подготовительные работы и технические операции по устройству стяжки.
Подготовительные работы по устройств
vse-pro-stroyku.sqicolombia.net
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из п |
rinnipool.ru