Свайный фундамент расчет количества свай: Расчет количества свай для фундамента — пример

Содержание

Свайный фундамент. Расчет количества свай

Для расчёта необходимого количества свай для свайного фундамента можно воспользоваться онлайн-калькуляторами, которые предлагает вездесущий интернет.

Но, как ученик в школе, привыкший пользоваться арифметическим калькулятором. Зачастую даже не знает таблицы умножения, так и строитель, использующий онлайн-калькулятор для расчёта количества свай, не будет знать откуда берутся результаты расчёта.

Основная функция любого фундамента – это принятие на себя всех нагрузок от конструкций здания – стен, перегородок, перекрытий потолка, крыши и пола. По сути, фундамент «удерживает» вес всего здания вместе с дополнительными нагрузками, например, весом снега, который накопился на крыше или весом камина, расположенном на втором этаже здания.

Алгоритмы для расчета свайного фундамента

Итак, вначале рассчитаем нагрузку здания на ленточный фундамент, а потом по аналогии перейдём к расчёту свайного фундамента из винтовых свай.

Для примера берём кирпичный дом размером 6 на 6 метров, с внутренней опорной перегородкой, толщина стен – двойной кирпич — 0,4 м.

Длина стен дома будет равна

6*4 = 24 м, длина внутренней перегородки 6 м. Итого — 30 м.

Вес кирпичного дома с дополнительными нагрузками условно возьмём в 120 т (можно и вычислить вес здания, посчитав объём кирпича, раствора, штукатурки, вес потолочного перекрытия и крыши). Толщину фундамента примем такую же как и толщина стен — 0,4 м.

Тогда площадь основания фундамента будет равна: 30*0,4 = 1,2 м2.

Итак, на площадь 1,2 м2 давит здание весом 120 т или 120000 кг. Или 10,0 кг на 1 см2. Толщина фундамента, как правило, больше толщины стен (это видно по характерному выступу цоколя). Если увеличим толщину фундамента по 10 см на внешнюю и внутреннюю сторону стены, то его площадь будет равна 30*0,6 =1,8 м2.2=3,14 * 0,15*0,15 = 0,07м2.

Площадь основания фундамента рассчитаем с учётом коэффициентов по формуле:
S=Кн*М/ Ку*Кг = 1,2*120 000/ 1*6 = 24 000 см2 = 2,4 м2

Количество свай, если не считать сопротивление их стенок о грунт: 2,4/0,07 = 30,4 = 31 свая.
Если увеличим диаметр сваи до 0,5 м, то тогда необходимо будет 2,4/0,197 = 17,9 = 12,18 = 13 свай.

Сколько нужно винтовых свай на баню 6х3?

Бани, как правило, возводят из деревянных срубов, поэтому их вес намного меньше, чем из кирпича. Оставим все коэффициенты такими, как в прошлом расчёте кроме веса бани, примерно определим его в 48 тонн или 48000 кг.

Диаметр сваи – 0,3 м.

Площадь основания фундамента бани:

S=Кн*М/ Ку*Кг = 1.2*48000/1*6 = 9600 см2 =0,96 м2

Площадь сечения сваи: S=πr^2=3,14 * 0,15*0,15 =0,07

Количество свай: 0,96/0,07 = 13,7 =14 свай.2= 3,14*0,25*0,25 =0,197 м2

На одну сваю приходится давления 0,197* 6 =11 820 кг.

Необходимо свай: 160 000/11 820 =13,5 =14 свай.

Расчёт количества свай для каркасного дома, как и любого другого, согласно, приведённых алгоритмов будет аналогично зависеть от веса дома, удельного сопротивления грунта на строительной площадке и диаметра винтовой сваи.

Расчет количества винтовых свай КСАмет

Свайные оголовки КСАмет выпускаются диаметром 20, 25 и 30 см. Поэтому расчёт количества свай будет зависеть, как и в прошлых примерах от веса дома, удельного сопротивления грунта и диаметра используемых свай. Единственное отличие при расчёте в том, что в технических характеристиках этих свай указаны максимальные допустимые нагрузки на сваю. Поэтому расчёт ведётся в соответствии с техническими характеристиками свай КСАмет.

Как уже отмечалось в интернете можно найти калькуляторы онлайн-расчётов количества фундаментных свай. Однако, всё-таки лучше самостоятельно изучить алгоритмы расчётов свайных фундаментов, хотя бы на вышеприведённых примерах.

Расчет количества свай при строительстве свайного фундамента

 

Любая стройка начинается с обустройства фундамента, и неважно – возводится жилой дом или баня. Для того чтобы основание получилось надежным и прослужило, не теряя своего качества и не приводя к порче построек, долгие годы, рассчитано оно должно быть правильно. Если с популярным ленточным фундаментом все достаточно просто, то вот рассчитать количество свай в свайном фундаменте заметно сложнее.


Для тех, кто заказывает проведение всех строительных работ профессионалам, это дело не доставляет трудностей, так как все будет сделано специалистами. Те же, кто планирует провести все работы самостоятельно, должны будут производить все расчеты своими силами. Хорошую помощь в этом деле может оказать онлайн калькулятор расчета свайного фундамента, который очень легко найти в интернете.

Когда используют свайный фундамент?


Перед тем как приступать к расчетам свайного фундамента, самостоятельно или при помощи калькулятора, стоит ознакомиться с областями применения основания такого типа и определиться, нужно ли оно для конкретной постройки, или можно обойтись другим.

 

 

На сегодняшний день свайный фундамент устанавливают в следующих случаях:

 

  • •    на сыпучих, песчаных грунтах;
  • •    на торфяниках и неустойчивых грунтах;
  • •    на грунтах с повышенной влажностью.


С учетом этого на свайном основании возводится достаточно много загородных построек, так как часто земельные участки оказываются малопригодными для капитального строительства. Иногда свайный фундамент является единственным вариантом основания для постройки.

Последствия неправильного подсчета


При самостоятельных работах важно не только верно рассчитать количество свай в свайном фундаменте, но и их длину, и диаметр, а также расстояние между ними. Если на этом этапе будут допущены ошибки, последствия окажутся очень серьезными.

 

Все неточности в расчете приводят к ненадежности основания. Как правило, совершаются следующие ошибки:

 

  • •    малое количество свай – не дает надежной основы для строения, и возможно его быстрое разрушение;
  • •    недостаточная длина свай – приводит к ненадежности фундамента и его проседанию, так как вес строения давит не на прочные слои грунта, а на рыхлую почву непригодную для строительства;
  • •    малый диаметр свай – не придает фундаменту требуемую несущую способность;
  • •    неверный шаг между сваями – делает фундамент неустойчивым и недолговечным

 


Все перечисленные выше случаи рано или поздно приводят к порче сооружения. С учетом этого подходить к расчету требуется с особой тщательностью. Для тех, кто все делает самостоятельно, воспользоваться онлайн калькулятором расчета свайного фундамента просто необходимо.

Особенности расчета


Для произведения правильного расчета количества свай свайного или свайно-винтового фундамента и их технических характеристик требуется знать правила всего процесса. Без этого надеяться на хороший результат не стоит, поскольку даже самая незначительная ошибка приведет к постройке ненадежного основания.


Начинать расчеты стоит с определения оптимального диаметра свай. В зависимости от типа постройки он может изменяться от 57 до 108 миллиметров. Если диаметр их будет определен не верно, то фундамент просто не выдержит стоящего на нем сооружения. Наименьший диаметр свай применяют для совсем легких построек, таких как забор из сетки или штакетника. Они дают достаточно прочное основание, но при этом способны выдерживать лишь малый вес. Цена их наименьшая среди всех свай.

 

 

 

По мере увеличения диаметра возрастает и несущая способность свай. Таким образом, имеющие максимальный диаметр в 108 миллиметров они способны выдерживать постройки из бревна или газобетона, имеющие два этажа. Так, проведя при помощи онлайн калькулятора расчеты свайно-винтового фундамента, можно не сомневаться при выборе диаметра.


Не менее важна и длина свай, которую так же следует определить верно. Для этого определяют плотность грунта и глубину залегания прочных пластов. Как правило, с этой целью требуется проведение пробного бурения. Нельзя забывать и о неровностях на строительной площадке.


Шаг между сваями рассчитывается в зависимости от типа постройки. Так, для деревянных домов он составляет примерно три метра, а для пенобетонных не должен превышать двух метров.

 


Общее количество свай рассчитывают, исходя из того, что они непременно должны располагаться под всеми углами постройки и на стыках как наружных, так и внутренних несущих стен. Кроме этого, между ними устанавливаются сваи с соблюдением оптимального шага.


Используя качественный онлайн калькулятор для свайного фундамента, можно произвести все расчеты максимально точно и быстро и избежать неприятных ошибок, приводящих впоследствии к порче всей постройки. Тем же, кто возводит более сложный свайно-ленточный фундамент, также стоит обратиться к специальному калькулятору для его расчета.


Точные расчеты требуются на всех этапах строительства. Сейчас, когда компьютерные технологии и интернет все чаще приходят на помощь при строительных работах, калькуляторы расчета свайных и свайно-винтовых фундаментов оказывают огромную помощь в сложных для непрофессионала расчетах основания постройки. Пренебрегать ими, конечно же, не следует, ведь намного проще и материально выгоднее не допускать ошибок, чем исправлять их.

 

Сейчас каждый сможет найти для себя максимально удобный калькулятор из множества предлагаемых вариантов. Этот удобный и, как правило, бесплатный помощник для строителя-любителя, без сомнения, будет оценен по достоинству.

как найти нагрузку на основание, пример расчета буронабивной основы и главные схемы размещения, оптимальное расстояние

В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.

Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.

Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.

Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.

Какие параметры нужно рассчитать для правильного выбора свайного фундамента

Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы:

К измеряемым могут быть причислены все свойства грунта на данном участке

:

  • Состав слоев.
  • Уровень залегания грунтовых вод.
  • Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
  • Глубина залегания и состав плотных слоев.

К расчетным параметрам относятся:

  • Величина нагрузки на основание.
  • Несущая способность опоры.
  • Схема расположения стволов.
  • Параметры свай и ростверка.

Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.

Расчет с помощью онлайн-калькулятора

Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.

  1. Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.
  2. Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.
  3. Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.
  4. Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.

Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.

Как найти нагрузку на основание

Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:

  • Стены дома.
  • Перекрытия.
  • Стропильная система и кровля.
  • Наружная обшивка, утеплитель.
  • Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
  • Вес людей и животных.
  • Снеговая и ветровая нагрузка.

Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.

Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.

От каких факторов зависит шаг?

  • Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.
  • Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.
  • Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.
  • Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.
  • На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м.
  • Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.

Пример вычисления необходимого количества опор

Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.

Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.

Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.

Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.

Она определяется практически, методом пробного погружения сваи или бурением скважины.

Пример расчета буронабивной основы

Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.

Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.

После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.

Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.

Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.

Основные схемы размещения

Существует несколько разновидностей схем расположения свай:

  • Свайное поле.
  • Свайный куст.
  • Свайная полоса.

Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.

Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.

Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.

При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.

Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.

Как правильно рассчитать шаг

  1. Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
  2. Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
  3. Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
  4. Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
  5. В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.

Оптимальное расстояние

  • Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.
  • Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.
  • Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.
  • Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.
  • В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.

Поэтому общего оптимального значения расстояния между сваями нет и не может быть.

Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.

Пример нахождения размеров ростверка

Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.

Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.

  1. Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.
  2. Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.
  3. Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.
  4. Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.

Источник: https://expert-dacha.pro/stroitelstvo/fundament/svajnyj-f/raschet-fund.html

Калькулятор стоимости винтовых свай и свайного фундамента

Выполните предварительный расчет фундамента на винтовых сваях онлайн, чтобы оценить приблизительные расходы на его возведение. Это удобно, особенно когда вы выбираете между железобетонным ленточным и свайно-винтовым фундаментом под постройку дома, и при прочих равных цена — один из определяющих факторов.

Как сделать расчет свайного фундамента на онлайн-калькуляторе

Калькулятор винтовых свай автоматически вычисляет сколько материала потребуется для возведения основания дома, забора или хозяйственной постройки определенной площади, считает цену по смете и стоимость монтажных работ при ручном или электромеханическом забуривании.

Порядок действий при расчете ориентировочной стоимости свайного фундамента на сайте следующий:

  • Выберите тип возводимого строения из предложенных.
  • Определитесь с материалом стен на следующем шаге, там же при помощи ползунков установите значения ширины и длины постройки в метрах.
  • Изучите таблицу с калькуляцией и, если цена устраивает, заполните форму предварительной заявки на бесплатный точный просчет проекта вашего фундамента в нашем инженерном отделе.

Почему цена из калькулятора расчета свайного фундамента не окончательная

Программный калькулятор при расчете количества винтовых свай учитывает только основные факторы: периметр и приблизительный вес постройки. В формуле, по которой он считает, не предусмотрена возможность выбрать тип кровли, сложность планировки, указать особенности почвы и рельефа местности. А ведь все перечисленные пункты тоже влияют на сложность проекта фундамента.

Цена, которую вы видите в таблице, не окончательная, особенно если вы пока не уверены в материале стен или точных габаритах постройки, например, только планируете веранду или беседку. Зато стоимость работ с применением электромеханического бура и без него почти всегда совпадает с той, которую указывает в персональном коммерческом предложении менеджер.

Благодаря автоматическому калькулятору расчета типового свайного фундамента на сайте вы получите представление о том, сколько он может стоить, и насколько это выгодно. Если прейскурант оправдал ожидания, то заполните форму обратной связи в конце страницы. Наш представитель позвонит вам в ближайший день в рабочее время, чтобы уточнить технические подробности для составления точной сметы.

Источник: https://helix-pro.ru/calc

Калькулятор для расчета количества винтовых свай Online

При покупке свай винтового типа и монтаже качественного свайно-винтового фундамента, особое значение имеет правильный расчет.

На основе расчета подбирается нужное количество, необходимое для реализации проекта, определяется правильное расстояние между сваями, несущая способность свайного фундамента и размер свайного поля.

Провести подсчет количества свай для фундамента своими силами достаточно сложно – для этого нужно взвесить и проанализировать большое число параметров. Однако, чтобы приблизительно представить себе, сколько свай вам потребуется и какие расходы вы понесете в ходе реализации проекта, можно использовать наш калькулятор.

Как рассчитать количество свай с помощью Online калькулятора?

Использование калькулятора – это отличный вариант для всех тех, кто собирается возводить свайный фундамент.

Подобные программы, не требующие установки на ваш персональный компьютер, получили большую популярность при расчете пластиковых окон и различных строительных материалов. И теперь компания «РУС-СВАЯ» предлагает вам использовать их и для покупки свай.

При этом пользоваться калькулятором очень просто. Перед собой вы видите интерактивную форму с несколькими полями для ввода данных.

Всё что вам нужно, это указать следующие параметры: 

  • Сторона A;
  • Сторона B;
  • Количество углов;
  • Тип строения;
  • Тип грунта;
  • Наличие печки;
  • Планируемая высота пола строения над землей.

Расчет проводится по сложным математическим алгоритмам и результат вы получаете практически мгновенно. После нажатия кнопки подтверждения данных вы увидите не только количество, но также их диаметр и длину свай. Все эти параметры будут иметь большое значение при выборе свай под конкретный тип строения.

Основные достоинства использования калькулятора

Калькулятор позволяет вам получить нужный результат с минимальными затратами времени и сил.

Вот основные достоинства, объясняющие его большую популярность:

  1. Расчеты проводятся с высокой степенью точности. Все вычисления производит машина, так что вы оказываетесь застрахованы от ошибки. Ранее для того, чтобы провести расчет заказчикам приходилось вооружаться ручкой и бумагой. Это отнимало неоправданно много времени и приводило к ошибкам. С появлением удобного онлайн-инструмента всё изменилось.
  2. Высокая скорость расчета. Если сроки поджимают, а приобрести сваи нужно быстро, использование калькулятора станет оптимальным решением. Обратите внимание на то, что программа обрабатывает все введенные данные за считанные секунды.
  3. Большая универсальность использования. Наш калькулятор может работать с большим количеством самых разных параметров. В частности, на выбор пользователя предоставляется несколько вариантов строений и типов грунта – вы обязательно найдете то, что вам нужно. В результате, с использованием такого калькулятора, вы без труда проведете все нужные расчеты.
  4. Отсутствие необходимости долгой установки. Если ранее расчетные программы требовали от вас длительного скачивания и установки на компьютер, с появлением онлайн-калькулятора вы можете проводить расчеты в режиме реального времени. Программа проста и понятна и работает непосредственно с самого сайта.

Что вы получите воспользовавшись калькулятором?

Произвести расчет винтовых свай под фундамент можно своими руками. Но это потребует значительных временных затрат, в то время как наш калькулятор для расчета позволяет вам:

  • Получить точные данные по необходимой закупке винтовых свай.
  • Приобрести оптимальное количество без нехватки и излишков.
  • Рассчитать количество свай под постройку с конкретными параметрами.

Все эти возможности существенно упрощают для вас выбор. Используйте простой и удобный онлайн-калькулятор, чтобы быстро рассчиать проект свайного фундамента.

После того, как все расчеты произведены, мы будем рады видеть вас в числе наших клиентов. Компания «РУС-СВАЯ» предоставляет для своих заказчиков не только прочные винтовые сваи, но и полный набор необходимых услуг по установке. Работать с нами просто и приятно – вы всегда получаете гарантии качества поставляемого товара и индивидуальный подход к каждому покупателю.

Источник: https://screw-piles.ru/page_kalkulyator.html

Калькулятор количества свай

Если вам необходимо рассчитать количество винтовых свай, которые потребуются для строительства фундамента на вашем объекте, вы можете сделать это, не выходя из дома. Вам нужно только знать первичные параметры.

Воспользуйтесь онлайн-калькулятором расчета количества свай на нашем сайте. Помимо необходимого количества, вы сможете узнать также их предварительный диаметр и длину.

Расчет свайного поля онлайн достаточно прост. Для этого не нужно иметь специальное образование и читать литературу. Вам требуется только внести данные в существующие графы.

Расчет количества винтовых свай с помощью калькулятора

  1. Укажите длину сторон вашего строения, выбрав по форме от 3-х до 15-ти метров.
  2. Укажите тип строения – дом, гараж, бытовое сооружение и пр.
  3. Укажите «этажность», если появляются соответствующие графы. Заполняя графы, обратите внимание на то, что дом с мансардой будет считаться полутора этажным строением.
  4. Выбирайте материал вашего строения.
  5. Укажите тип грунта на участке.
  6. Укажите количество углов планируемого дома.
  7. Укажите высоту цокольного этажа из предложенных вариантов.
  8. Отметьте, собираете ли вы устанавливать камин/печку.
  9. Кликнете «Рассчитать».

Через несколько секунд появится результат подсчета необходимого количества свай для вашего объекта.

Рассмотрим пример

Имеется торфяной участок с глубиной торфа 3 метра. Вы решили построить деревянный дом (брус 150х150), площадью 10 на 10 метров. Дом планируется оригинальной формой с девятью углами и мансардой. На высоте 50 см над землей будет расположен пол. Чтобы зимой вам было тепло, было решение установить в доме камин.

После того, как были внесены все данные, калькулятор подсчета количества винтовых свай выдал нам результат – 32 сваи, диаметром 108 мм и длиной в 4,5 метра.

Конечно, данный расчет является предварительным. Он служит ориентиром при планировании бюджета и дальнейшего заказа. Для более точного результата необходим выезд специалиста на объект для детального осмотра участка под планируемую застройку, где будут учтены все факторы.

Самостоятельный расчет на месте

Такой же расчет можно сделать самостоятельно и без использования калькулятора. Полученный таким способом результат в большинстве случаев менее точный. Вам нужно будет определить тип и плотность грунта, проанализировать природный рельеф, определить расстояние, на котором находятся более плотные слои почвы.

Еще одним вариантом, как можно узнать необходимое количество свай – это рассчитать их по плану первого этажа. Здесь вам необходимо посчитать количество углов и стыки внешних стен с несущими перегородками.

В указанных местах и должны располагаться сваи, они должны идти по периметру с шагом не более трех метров.

Если вы планируете установить камин, то, в зависимости от его веса, вам необходимо установить под него от одной до четырех свай.

Проведите расчет на калькуляторе и по плану первого этажа и сравните результаты.

Источник: https://sv-fundament.ru/calc-svayi/

Калькулятор фундамента из винтовых свай, онлайн расчет цены

Калькулятор фундамента из винтовых свай – онлайн расчет – простой способ сориентироваться в ценах на продукцию/на работы по строительству.

Калькулятор фундамента под ключ

Самое главное достоинство онлайн калькулятора в том, что он позволяет выполнить все расчеты самим без помощи специалиста. Сама схема тоже довольно проста.

На большей части страниц нашего сайта в правом верхнем углу есть кнопка «Калькулятор фундамента». Нажав на нее, Вы переходите на отдельную страницу, на которой размещены поля, обязательные для заполнения.

От Вас потребуется указать тип строения (дом, баня, забор, пирс), материал стен (для дома это дерево, каркас или кирпич, для забора – профлист, сетка-рабица), этажность, размер постройки.

Эти данные необходимы для определения нагрузок от сооружения.

Для удобства все поля снабжены выпадающими вкладками, в которых указаны самые частые варианты. Это значительно сокращает время заполнения.

Калькулятор фундамента от компании «ГлавФундамент» также включает два дополнительных поля – грунтовые условия и коррозионная активность грунта. При их заполнении у Вас, вероятно, могут возникнуть вопросы, так как почти все организаций на рынке не запрашивают эту информацию для расчета цены свай/строительно-монтажных работ. Почему мы сделали их обязательными?

Параметры свай, их количество, расстановка в фундаменте могут назначаться только на основании информации о нагрузках от строения и о грунтах.

Если оба эти фактора не будут учтены, возникнет риск просадки (при мощности слоя плотного грунта под сваей менее 1 метра или сезонном намокании некоторых типов грунтов, снижающем их несущую способность) или выпучивания (при действии касательных сил морозного пучения) фундамента.

Вы также не сможете быть уверены, что срок службы конструкции будет таким, как требует ГОСТ 27751-2014 «Межгосударственный стандарт. Надежность строительных конструкций и оснований. Основные положения».

Эффективная работа двухлопастных винтовых свай возможна только при рассчитанном, исходя из данных о грунтах, расстоянии между лопастями. То же касается шага лопастей, угла их наклона (больше информации в статье «Особенности расчета двухлопастных винтовых свай»).

Для включения в работу сваи околосвайного массива грунта ненарушенной структуры должна подбираться рациональная конфигурация лопасти, соответствующая типу грунта (подробнее в статье «Ключевые принципы подбора параметров лопастей»).

Толщина металла и марка стали – это тоже переменные, зависящие от степени коррозионной активности грунтов. Если среда сильноагрессивная, а свая выполнена из стали марки Ст3 с толщиной стенки 4 мм и менее, не стоит рассчитывать, что она прослужит более 15-20 лет.

Таким образом, данные о грунтовых условиях площадки строительства столь же необходимы при проектировании, как данные о нагрузках.

Если Вы не обладаете необходимой информацией, специалисты компании «ГлавФундамент» проведут необходимые исследования – геолого-литологические изыскания, а также измерения коррозионной активности грунтов (подробнее об услугах в статье «Экспресс-геология (геолого-литологические изыскания) и измерения коррозионной активности грунтов»).

Онлайн калькулятор, разработанный нашей компанией, подходит только для объектов малоэтажного строительства.

Фундаменты промышленных и крупных гражданских объектов (трубопроводы, стенды, мачты, вышки, ЛЭП) рассчитываются в системах автоматизированного проектирования (САПР) после проведения полноценных инженерно-геологических изысканий.

Для подтверждения полученных результатов организуются контрольные испытания грунтов при действии вдавливающих, выдергивающих и горизонтальных нагрузок. Это связано с предъявлением повышенных требований к уровню безопасности этих объектов.

Если Вам нужно рассчитать промышленную или крупную гражданскую постройку, перейдите по ссылке и заполните заявку в проектный отдел нашей компании, указав необходимые данные. Если потребуется дополнительная информация, мы Вам перезвоним.

Расчет количества, подбор конструкций и расстановка свай

При определении количества и сочетаний свай в программе «Калькулятор фундамента» учитываются требования нормативных документов, действующих в РФ, а также нормы проектирования, разработанные нашими специалистами по результатам исследований и испытаний, как собственных, так и выполненных зарубежными специалистами.

На фундаментную конструкцию практически любого сооружения (дом, баня) воздействуют сразу несколько типов нагрузок (под ответственными узлами сооружения, под несущими и ненесущими стенами, под лагами пола). Каждый тип нагрузок требует применения конструкции сваи с определенной несущей способностью. Поэтому предложенное решение будет включать не один, а сразу несколько их видов.

Но есть моменты, которые сложно учесть при онлайн расчете. Это, например, характеристики провисания ростверка (расчетная величина). Есть мнение, что во избежание провисания ростверка достаточно придерживаться обобщенных значений допустимых нагрузок. Это некорректно. Пролет между сваями определяется для каждого объекта, с учетом нагрузок на обвязочный материал от каждой стены.

В этой связи расчет, выполненный в калькуляторе фундамента, можно рассматривать только как предварительный. Он помогает Вам сформировать общее представление о цене, но это не решение, гарантирующее безопасность здания.

Калькулятор расчета винтового фундамента

При создании калькулятора расчета винтового фундамента мы ставила перед собой задачу разработать программу, которая будет удобна и одновременно полезна.

Во-первых, мы можете сравнить цены. Плюс – для этого не нужно открывать множество вкладок, вся необходимая информация есть на нашем сайте. Сервис рассчитывает цену сразу в трех категориях («Эконом», «Стандарт», «Премиум»). В итоговую цифру также войдет стоимость строительно-монтажных работ (для этого достаточно поставить галочку в поле «С учетом работ»).

Во-вторых, мы добавили в калькулятор справочную информацию, которая дает понять, чем мы руководствуемся, предлагая Вам именно это решение.

К примеру, ограждения и пирсы принято относить к легким сооружениям, из-за чего часто под них рекомендуют однолопастные сваи. Это кажется правильным, ведь небольшие нагрузки от объектов не требуют строительства конструкции с большой несущей способностью. Но такой подход совершенно не учитывает воздействие на сваи значительных выдергивающих и горизонтальных нагрузок.

Заборы из дерева или профлиста характеризуются большой парусностью. Пирсы и причалы подвержены воздействию течения, схода льда. Возникающее усилие будет постоянно пытаться вырвать сваю из земли. А такой тип воздействия наименее предпочтителен для конструкций с одной лопастью.

Чтобы избежать возможных последствий Вы будете вынуждены выполнить бетонирование основания колонны или обвязку швеллером или профтрубой. Введение же дополнительной лопасти решит эту проблему даже без дополнительного усиления конструкции.

Калькулятор фундамента под дом. Расчет цены

Калькулятор фундамента – удобный инструмент, чтобы предварительно спланировать фундаментную конструкцию под дом, баню или любой другой объект малоэтажного строительства. Он также незаменим, когда Вам нужен примерный расчет цены для понимания возможных расходов.

Но мы не рекомендуем опираться исключительно на данные программы. Все-таки сервис – это только набор алгоритмов, который не может в полной мере учесть особенности объекта и участка, не может заменить опыт инженера-конструктора. А если учесть, что проектный отдел компании «Главфундамент» выполняет расчет бесплатно и за 24 часа, то выбор станет очевиден.

Источник: https://GlavFundament.ru/ceny/calculator/

Калькулятор для расчета свайного фундамента

С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.

Онлайн-калькулятор для расчета монолитного буронабивного ростверкового фундамента поможет рассчитать размеры фундамента, опалубки, диаметр и общую длину арматуры и объём расходуемого бетона. Перед началом проектирования здания с таким фундаментом обязательно проконсультируйтесь у специалистов, насколько оправдан такой выбор.

Расчеты данного калькулятора основываются на нормативах, приведенных в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

Столбчатый и свайный фундамент – разновидности фундаментов, в которых используются столбы или сваи в качестве опор. Они погружаются в грунт на необходимую глубину, а их верхние части соединяются цельной железобетонной конструкцией (ростверком), которая не соприкасается с землёй. При столбчатом и свайном варианте ростверкового фундамента отличается глубина установки опор.

Ростверковая конструкция имеет смысл там, где грунт не пригоден для обычного размещения фундамента (слабый грунт, пучинистый, либо промерзающий на значительную глубину).

Поскольку сваи забиваются при любых климатических условиях, ростверковый фундамент особенно актуален для регионов с низкими температурами и суровым климатом.

Другие преимущества ростверковой технологии – высокая скорость возведения и низкая потребность в земляных работах. Достаточно пробурить отверстия и выполнить установку уже готовых свай.

Многие параметры ростверкового фундамента могут варьироваться. Это форма и материалы свай, способы действия на грунт, способы установки, форма ростверка. Каждый случай ростверкового фундамента должен учитывать расчётные нагрузки, климатические условия, специфику грунта и другие особенности местности и будущего сооружения.

Чтобы уточнить все эти моменты, нужно провести необходимые замеры и расчёты, при необходимости – пригласить специалистов. Экономия на первоначальных расчётах может обернуться серьезными последствиями в будущем. Чтобы этого избежать, в первую очередь рекомендуем внимательно изучить данный калькулятор.

В нем вы сможете определить будущие расходы и на примере стандартной конструкции определиться с составляющими планируемого фундамента.

Заполняя поля калькулятора, сверьтесь с дополнительной информацией, отображающейся при наведении на иконку вопроса .

Внизу страницы вы можете оставить отзыв, задать вопрос разработчикам или предложить идею по улучшению этого калькулятора.

Разъяснение результатов расчетов

Общая длина ростверка

Суммарный периметр фундамента, включая внутренние перегородки.

Площадь подошвы ростверка

Площадь нижней части ростверка, которая нуждается в гидроизоляции.

Площадь внешней боковой поверхности ростверка

Площадь боковых поверхностей наружной стороны фундамента, нуждающаяся в утеплении.

Объем бетона для ростверка и столбов

Общее количество бетона, которое понадобится для заливки фундамента заданных параметров. Фактическая потребность может оказаться выше из-за уплотнений при заливке, а объём фактически доставленного бетона может оказаться меньше заказанного. Поэтому рекомендуем заказывать бетон с 10-процентным запасом.

Вес бетона

Приблизительный вес бетона при средней плотности.

Нагрузка на почву от фундамента в местах основания столбов

При расчете берется во внимание полный вес конструкции.

Минимальный диаметр продольных стержней арматуры

Рассчитывается по нормативам СНиП. Учитывается относительное содержание продольной арматуры в сечении ленты ростверка.

Минимальное количество рядов арматуры ростверка

Для противодействия естественной деформации ленты ростверка под действием сил сжатия и растяжения, необходимо использовать продольные стержни в разных поясах ростверка (вверху и внизу ленты).

Общий вес арматуры

Вес стержней арматуры, вместе взятых.

Величина нахлеста арматуры

Для крепления стержней арматуры внахлёст, используйте данное значение.

Длина продольной арматуры

Общая длина арматуры включая нахлест.

Минимальное количество продольных стержней арматуры для столбов и свай

Необходимое количество продольных стержней арматуры для каждого столба или сваи.

Минимальный диаметр арматуры для столбов и свай

Минимально допустимый диаметр продольных стержней арматуры, обеспечивающих прочность столбов или свай.

Минимальный диаметр поперечной арматуры (хомутов)

Определяется, основываясь на нормативах СНиП.

Максимальный шаг поперечной арматуры (хомутов)

Рассчитывается таким образом, чтобы при заливке бетона арматурный каркас не был смещён или деформирован.

Общий вес хомутов

Суммарный вес хомутов, которые потребуются при строительстве всего фундамента.

Минимальная толщина доски при опорах через каждый метр

Необходимая толщина досок опалубки при заданных параметрах фундамента и заданном шаге опор. Рассчитывается исходя из ГОСТ Р 52086-2003.

Количество досок для опалубки

Число досок стандартной длиной 6 метров, которые потребуются для возведения всей опалубки.

Периметр опалубки

Общая протяженность опалубки с учетом внутренних перегородок.

Объем и примерный вес досок для опалубки

Такой объем досок потребуется для возведения опалубки. Вес досок рассчитывается из среднего значения плотности и влажности хвойных пород дерева.

Источник: https://www.stroitelstvosovety.ru/raschet-stolbchatogo-fundamenta

Калькулятор

Расчет свайно-винтового фундамента в «СвайБур» делают исходя из типа, количества свай, расстояния между ними и расположения опор на схеме наружной и внутренней сторон здания. Примерную стоимость изделий и монтажа вы можете рассчитать самостоятельно через пошаговый калькулятор.

Калькулятор расчета винтовых свай автоматически подсчитывает примерную стоимость фундамента с монтажом или без него. Формула, на основе которой работает расчет, учитывает тип, материал длину сторон постройки, ее площадь, необходимость оголовков и обвязки свай, стоимость забура и закрепления опор.

Мы производим винтовые сваи под фундамент жилых и хозяйственных построек. Винтовые сваи бывают диаметром: 57, 76, 89 и 108 мм. Какая толщина свай нужна, сервис определяет по примерной нагрузке, поэтому важно правильно выбрать в пошаговом калькуляторе тип и длину сторон постройки, по которым подсчитывается вес и площадь строения.

  • СВСН 57 мм подходят для заборов, натяжных оград из сетки.
  • СВСН 76 мм выдерживают заборы из дерева, профлиста, хозпостройки.
  • СВСН 89 мм достаточно прочные для одноэтажных щитовых, каркасных зданий.
  • СВСН 108 мм подойдут под дом из бруса, пеноблоков, каркасную постройку.

Помимо типа свай, калькулятор свайно-винтового фундамента учитывает частоту размещения столбов. Максимально допустимое расстояние между опорами свайного фундамента считают по правилам, которые учитывают тип возводимого объекта и материал строительства.

  • Дома из газо- и пенобетона ставят на фундамент с шагом столбов до 2 м.
  • Дома из бруса, срубы, каркасные постройки ставят на винтовые сваи шагом 2,5–3 м.
  • Хозяйственные конструкции, заборы, ограды возводят на сваях фундаментов шагом до 3,5 м.

Кроме общих параметров, учтенных в калькуляторе расчета стоимости свайного фундамента, на цену конструкции и монтажа влияет тип грунта, перепады высот, количество арматуры для обвязки, бетона — для заполнения и укрепления свай.

Как провести расчет фундамента из винтовых свай

Провести предварительный расчет винтовых свай и стоимости их монтажа можно на странице. Для этого выберите тип строения, на следующем шаге — материал, следом длину сторон постройки, определитесь, нужны ли оголовки и обвязка.

На оголовки опор кладут или жестко фиксируют обвязкой из арматуры ростверк — плиту, двутавр, швеллер, балку из металла или бетона. Задача ростверка — равномерно распределить нагрузку по сваям. Для ленточного связывания опор конструкции столбчатого фундамента подходят готовые блоки или изготовленные на месте из бетона при помощи арматурного каркаса и опалубки.

Рассчитать свайно-винтовой фундамент на сайте можно с приблизительной точностью. Калькулятор не сможет учесть площадь, если постройка не прямоугольная, тип грунта, перепады, которые также сказываются на стоимости столбчатого основания.

Источник: https://www.SvayBur.ru/calculator

Расчет свайного фундамента. Калькулятор онлайн

Расчёт свайного фундамента — это очень важный этап создания проекта будущего дома. Если допустить хотя бы малейшую ошибку срок эксплуатации строения уменьшится на двадцать лет в лучшем случае. При наименее благоприятных обстоятельствах катастрофа может произойти ещё при строительстве.

Если на территории застройки присутствуют неустойчивые грунты, на которых присутствует повышенная влажность, или же какие-либо сложные рельефы, то в таком случае единственно оптимальным выходом будет грамотный расчет свайного фундамента.

Основным преимуществом данной конструкции является предельно высокая надежность закрепления даже в относительно слабых грунтах благодаря тому, что опоры погружаются на достаточно большую глубину.

Такие конструкции отличаются гораздо большей надежностью и долговечностью, а для их реализации требуется не такое большое количество бетона, но при этом вы должны понимать, что процесс их расчета и возведения является достаточно трудоемким.

Причин для проведения расчёта свайного фундамента можно найти более чем достаточно. Во-первых, правильно смоделированная конструкция обладает большой устойчивостью. Во-вторых, вбивание свай обходится значительно дешевле, нежели, возведение ленточной или плиточной конструкции. В-третьих, при малой несущей способности грунта — свайный фундамент единственно возможный вариант.

Если участок обладает малой несущей способностью, то сделав правильный расчёт, свайного фундамента вам не придётся рыть глубоких траншей, чтобы сделать надёжное основание. Для этого используются винтовые сваи. Но формулы расчёта при использовании таких материалов значительно усложняются.

Виды фундаментов с ростверком

Ростверк представляет собой верхнюю часть фундамента, с помощью которой объединяются в одно целое оголовки свай, и именно ростверк представляет собой опору для будущего здания. Объединение ростверка и свай осуществляется при помощи специализированной сварки или же путем стандартной заливки бетоном.

По способу монтажа ростверки могут подразделяться на несколько категорий:

  • Ленточные – объединяются только соседние сваи;
  • Плиточные – связывается каждый отдельный оголовок.

По типу материалов:

  • Из бетона с арматурой. Под несущие стены осуществляется монтаж свай, а на глубину и ширину ростверка прорываются траншеи небольшой глубины;
  • Подвесной бетонный. Является аналогичным предыдущему варианту, однако особенностью такого фундамента является то, что бетонная лента не соприкасается с грунтом, а устройство компенсационного зазора при этом предоставляет возможность предотвратить разрыв опор при возникновении значительного колебания грунта;
  • Железобетонные. Изготовление такого фундамента предусматривает использование двутавра или же широкого металлического швеллера, при этом под несущие стены монтируется швеллер 30, в то время как остальные опоры связываются при помощи швеллера 15-20;
  • Из дерева. Крайне редкий вариант, который в последнее время практически не используется;
  • Комбинированный. Здесь используются не только металлические несущие элементы, но и бетон.

Что собой представляют винтовые сваи

Чтобы провести правильный расчёт свайного фундамента необходимо как можно больше узнать об основном материале. Это позволит максимально точно составить проект, основываясь на характеристиках свайных конструктов, а также их свойствах.

Все сваи сверху объединяются ростверком. Его можно сделать как из деревянных, так и из металлических балок. Также можно взять сплошную железобетонную плиту. Но это сильно прибавит веса основной конструкции.

Свайные конструкты для расчёта фундамента можно изготовить как самостоятельно, так и заказать на заводе. При изготовлении непосредственно на месте строительства их основание лучше всего делать плоским.

Чтобы сделать правильный расчёт свайного фундамента знать только площадь конструкции недостаточно. Необходимо учитывать силу трения, что возникает между боковой поверхностью стержня и землёй.

Раньше винтовые сваи часто применяли военные инженеры при постройке фортификационных сооружений. Это было связано с тем, что они позволяют конструкции выдерживать повышенные нагрузки в экстремальных условиях.

Внимание! Свайные конструкты до сих пор незаменимы при создании мостов и переправ.

Основная часть сваи — это ствол. Его диаметр от 80 до 130 мм. Конец в форме острого конуса. На него приваривается лопасть. Это позволяет максимально быстро и эффективно вворачивать свайные конструкты в грунт.

Некоторые сваи идут без оголовка. В таком случае в конце ствола есть отверстие. В него заводится рычаг, который позволяет вращать сваю с нужной скоростью. Эта особенность даёт возможность при необходимости удлинить ствол. Данная опция крайне необходима, когда работы проводятся на нестабильных грунтах.

К преимуществам свайных конструктов можно причислить:

  1. Безопасную технологию установки, которая позволяет в кратчайшие сроки возвести фундамент дома.
  2. Возможность использования на любых грунтах. Единственным исключением являются скальные породы.
  3. Когда сваи вворачиваются, не образуется ударная нагрузка. Благодаря этой особенности свайные фундаменты можно строить даже в местах плотной застройки, не опасаясь за сохранность ближайших домов.
  4. Как только будут установлены винтовые элементы, сразу же можно монтировать ростверки. Конечно же, эта особенность учитывается в расчётах.
  5. Расчёт свайного фундамента можно делать как для холмистой местности, так и для неровных участков.
  6. Монтаж осуществляется практически в любых погодных условиях. Неважно сколько градусов за окном. Это никак не повлияет на качество фундамента.
  7. Возможность перепланировки. Ни один другой вид фундамента не даёт столько простора для изменений конструкции, как свайный. При необходимости стальной болт можно выкрутить и ввинтить в другое место.

Зная преимущества и особенности свайного фундамента можно провести максимально точные расчёты, усчитав все особенности конструкции.

Рассчитываем расстояние между сваями и глубину их установки

Расчет свайно-винтового фундамента с ростверком включает в себя большое количество моментов, но в первую очередь определяется глубина заложения свай, которая зависит от вида и сложности грунта. В первую очередь, нужно определить нормативную глубину промерзания грунта в вашем регионе проживания, после чего отмерить ниже 20-25 см – это и будет глубина заложения свай.

После того как будут проведены изыскательские работы, нужно будет определить уровень расположения грунтовых вод, а также возможность его колебания в разные сезоны и качественную характеристику грунта на участке. Лучше всего, если проектированием свайного фундамента, а также его обустройством будет заниматься квалифицированный специалист.

Осуществляя расчет количества винтовых свай для фундамента в каждом отдельном случае, следует брать в расчет следующие характеристики:

  • Насколько прочный используется материал и ростверк;
  • Какая присутствует несущая способность у грунта, учитывая также уплотнение в процессе установки опоры;
  • Если присутствуют значительные перепады рельефа, то в таком случае определяется и учитывается также несущая способность основания опоры;
  • Насколько будут усаживаться сваи под воздействием вертикальной нагрузки;
  • Какой вес имеет строение с внутренним содержанием;
  • Какие присутствуют сезонные, динамические и ветровые нагрузки.

Помимо этого, в обязательном порядке нужно учитывать осадку свайного фундамента. Свайный фундамент должен делаться в соответствии с рабочим планом, поэтому лучше всего, если его созданием будет заниматься профессиональный архитектор.

Важно! Расчет, а также последующее проектирование свайного фундамента осуществляется только после того, как будут закончены все изыскательские работы на территории, которые проводит квалифицированный специалист.

Данные для вычислительных формул в данном случае будут выбираться в зависимости от качества почвы и ее типа. Стоит отметить, что расчет свайного фундамента по усадке и деформации обуславливает необходимость в максимально возможной точности выходных показателей.

Как закладывать фундамент на основе расчётов

Чтобы построить правильные расчёты необходимо на месте строительства провести геодезические изыскания. В первую очередь нужно под слабыми грунтами определить глубину залегания слоя, который сможет выдержать вес постройки.

Важно! Необходимо делать расчёт таким образом, чтобы свайные конструкты углублялись в несущий слой не менее чем на половину метра.

Чтобы узнать на какую глубину нужно вкручивать сваи, проводится предварительное бурение. Это позволяет определить, где залегают грунтовые воды. Также нужно учитывать, насколько земля промерзает в зимний период.

Весь процесс строительства условно делится на такие этапы:

  1. Вначале делается разметка и выравнивание. Определяются места, где будут установлены основные сваи. После этого можно монтировать второстепенные элементы. Расстояние между ними должно быть в диапазоне от двух до трёх метров. Стальные болты должны быть под всеми стенами дома.
  2. Завинчивание начинается с угловых свай. В верхнее отверстие стального болта пропускается лом. Чтобы удлинить рычаг на лом надеваются металлические трубы. При вкручивании отклонение от вертикали не может превысить два градуса. Угол наклона в процессе работы контролируется посредством магнитного уровня.
  3. Расчёт свайного фундамента на угловых сваях делается с помощью шлангового уровня. Потом наносятся метки. Они определяют горизонтальную плоскость и нижнюю кромку ростверка.
  4. Вворачиваются оставшиеся сваи.
  5. Глубина вворачивания должна быть такой, чтобы от верха до земли было 20 см.
  6. Ненесущая поверхность обрезается по обозначенным уровням.
  7. Замешивается цементный раствор. Одна часть цемента к четырём частям песка. Им заполняются сваи.

Правильно проведённые расчёты на уровне планирования свайного фундамента позволяют сделать прочное и надёжное строение.

Примеры расчётов

Расчёт прочности одного элемента позволяет определить, сколько, в общем, понадобится свай для фундамента. В качестве константы возьмём расстояние между столбами в два метра. Мало того, согласно современным архитектурным веяниям опоры должны иметь общий ростверк.

Пример один

Диаметр одного металлического болта 30 сантиметров. Расчётная масса здания сто тонн. В формуле расчёта свайного фундамента особую роль играет несущая способность грунта. Возьмём чаще всего встречающийся показатель в четыре килограмма на сантиметр квадратный.

Важно! Нагрузка не должна превышать несущую способность грунта.

  • Показатель силы, которая будет действовать на каждую сваю в фундаменте обозначается как Fсв. Расчёт параметра проходит по следующей формуле:
  • (πd2/4)*R

Уточним значения всех переменных:

  • π — неизменная величина, бесконечное число, которое для простоты математических исчислений принято обозначать как 3,14.
  • d — диаметр металлического болта (30 см).
  • R — радиус

Сведём всё в одну формулу:

Fсв=(πd2/4)·R =707,7·4=2826 кг.

Именно такой вес, в данном грунте сможет выдержать одна свая фундамента. Исходя из этих данных — продолжим расчёт.

Общий вес здания ровно 100 тонн. Эта цифра была взята для простоты исчислений. Перед тем как провести дальнейший расчёт свайного фундамента необходимо привести показатели к одной метрической системе. Переведём тонны в килограммы и получим значение N (количество опор).

N= 100000/2826=35,4.

Конечно же, тридцать пять с половиной опор никто монтировать не будет. Поэтому округляем в большую сторону. Выходит, для того чтобы построить дом массой в сто тонн на грунтах с несущей способностью в 4 кг/м2 нужно не менее 36 опор.

Пример два

Чтобы понять алгоритм расчёта свайного фундамента закрепим материал и немного изменим базовые показатели. Расширим основание до 50 сантиметров. Это позволит увеличить практичность всей конструкции. Остальные показатели оставим без изменений.

Fсв=1962,5·4=7850 кг

Проведём расчёт свайного фундамента и получим 13 опор. Как видите, расширение основания позволяет значительно сэкономить на количестве свай, добившись хороших показателей устойчивости конструкции.

Пример три

Расчет свайного фундамента, пример которого вы увидите далее, может использоваться как для легких дачных домов, таки для массивных коттеджей, просто в первом случае используются стандартные винтовые сваи, в то время как при постройке коттеджей нужно будет использовать массивные буронабивные сваи, которые могут выдерживать достаточно серьезные нагрузки.

Для упрощения в примере расчет свайного фундамента осуществляется по винтовым опорам. Стоит отметить, что для таких свай небольшого размера в процессе проведения расчетов не берется в учет бокового трения, которое определяется при возведении тяжелых зданий, которые оказывают на сваи значительное воздействие.

В данном случае будет рассматриваться детальный расчет общего количества свай, а также шага их установки для одноэтажного дома, размер которого составляет 7х7 м:

  • Изначально определяется общая масса расходных материалов. Предположим, что общий вес крыши, бруса и облицовки будет составлять 27526 кг с учетом снеговой нагрузки;
  • Размер полезной нагрузки составляет 7х7х150=7350;
  • Величина снеговой нагрузки составляет 7х7х180=8820;
  • Таким образом, приблизительная масса нагрузки на фундамент будет составлять 27526+7350+8820=43696 кг;
  • Теперь полученный вес нужно будет умножить на коэффициент надежности 43696х1.1=48065.6 кг;
  • Допустим, предусматривается установка винтовых опор, размер которых составляет 86х250х2500. Для того чтобы рассчитать их количество, нужно будет полученную сумму общей нагрузки распределить на ту нагрузку, которая прилагается на каждую сваю. 48065.6/2000=24.03, округляем полученное количество до 24, и получаем точное число нужного нам количества свай;
  • Для того чтобы установить 24 опоры, нужно будет использовать шаг установки 1.2 метра. Для формирования половых лаг нужно будет использовать еще две дополнительные сваи, которые уже будут располагаться непосредственно внутри дома.

Таким образом, по вышеприведенной технологи вы сможете рассчитать нужное вам количество свай для любого дома вне зависимости от его особенностей.

Итоги

Свайный фундамент — это экономичный и быстрый способ создания базы для постройки. Он позволяет работать при любых погодных условиях, а также даёт возможность возводить строения даже на самых проблемных грунтах.

Расчёт свайного фундамента позволяет заранее определить, сколько необходимо свай для дома определённой массы. При помощи формул, описанных в статье, расчёты можно проводить быстро и точно.

Источник: https://bouw.ru/article/kalykulyator-raschet-svaynogo-fundamenta

Расчёт свайного фундамента — Блог Бауфундамент

Время чтения: 3 минуты

Окончательный расчет стоимости свайно-винтового фундамента зависит от массы факторов. Но чтобы понимать примерную стоимость работ и оборудования, вы можете воспользоваться формой обратной связи, чтобы наши консультанты сориентировали вас по стоимости бауфундаментов.

Также мы предлагаем вашему вниманию статью, в которой разберем на какие факторы важно обращать внимание при самостоятельном расчете стоимости свайного фундамента.

При самостоятельном расчете стоимости свайного фундамента, клиенты часто не учитывают следующее:

  • неправильный расчет объема нагрузок будущей постройки;

  • игнорирование особенностей грунта на участке постройки;

  • игнорирование коррозионной агрессивности грунта на участке постройки;

Есть еще некоторые факторы – например, заказчик не учитывает общее влияние климатических условий на постройку и фундамент, что приводит к неправильному расчет количества винтовых свай и, как следствие, к дополнительным финансовым тратам. Намного выгоднее заранее доверить всю работу профессионалам, чтобы все работы и расчеты были выполнены точно и в срок. 


Какие нагрузки должна выдерживать будущая постройка?

Нагрузки на здание во время и после стройки можно условно разделить на 4 вида:

  • перманентные нагрузки. Это вес сооружения, несущих конструкций и так далее;
  • продолжительные нагрузки. Это временные нагрузки в виде перегородок, оборудования, и прочих объектов;
  • непродолжительные нагрузки. Это нагрузки от людей, животных, от транспорта, а также климатические нагрузки в виде снега, дождя и так далее;

  • особые нагрузки. Это как правило внештатные ситуации: пожар, ураган, взрыв, деформация фундамента, и так далее.

Грунт на участке постройки

Прежде всего, важно определить тип грунта, какова его несущая способность, и какова его коррозионная активность. Самый «правильный» способ получения достоверной информации о грунте – полевые испытания натурной сваей. Но по причине довольно высокой стоимости данная процедура не пользуется большим спросом.
Также можно воспользоваться услугами инженерно-геологических изысканий (ИГИ). В таких отчетах обычно содержится весьма детальная информация о свойствах грунта, о глубине его промерзания, и так далее. Но такое исследование тоже стоит недешево, и поэтому используется очень редко.

Альтернативными способами определить тип и характеристики грунта являются:

  • пробное завинчивание винтовой сваи. Данная процедура не является на 100% исследованием грунта, так как зависит от времени года, от количества влаги в грунте, таким образом данные полученные весной, будут по понятным причинам отличаться от данных о грунте, полученных летом в сухой сезон. Но зато данный метод доступен в цене, и в целом способен дать заказчику общее представление о грунте на участке постройки;
  • экспресс-геология, позволяющая выявить потенциально опасные геологические объекты или процессы, а также определить уровень сложности грунта и потенциальный объем будущих работ.

Очень важно обладать хотя бы базовой информацией о грунте на участке постройки, это даст возможность выбрать оптимальный вид винтовых свай и составить представление о стоимости будущих работ.

Для вашего удобства на нашем сайте имеется калькулятор расчета стоимости, а также возможность заказать обратный звонок, чтобы наши специалисты могли оперативно вам перезвонить и ответить на все интересующие вопросы.

Расчет свайного фундамента. Калькулятор онлайн

Расчёт свайного фундамента — это очень важный этап создания проекта будущего дома. Если допустить хотя бы малейшую ошибку срок эксплуатации строения уменьшится на двадцать лет в лучшем случае. При наименее благоприятных обстоятельствах катастрофа может произойти ещё при строительстве.

Если на территории застройки присутствуют неустойчивые грунты, на которых присутствует повышенная влажность, или же какие-либо сложные рельефы, то в таком случае единственно оптимальным выходом будет грамотный расчет свайного фундамента. Основным преимуществом данной конструкции является предельно высокая надежность закрепления даже в относительно слабых грунтах благодаря тому, что опоры погружаются на достаточно большую глубину. Такие конструкции отличаются гораздо большей надежностью и долговечностью, а для их реализации требуется не такое большое количество бетона, но при этом вы должны понимать, что процесс их расчета и возведения является достаточно трудоемким.

Причин для проведения расчёта свайного фундамента можно найти более чем достаточно. Во-первых, правильно смоделированная конструкция обладает большой устойчивостью. Во-вторых, вбивание свай обходится значительно дешевле, нежели, возведение ленточной или плиточной конструкции. В-третьих, при малой несущей способности грунта — свайный фундамент единственно возможный вариант.

Если участок обладает малой несущей способностью, то сделав правильный расчёт, свайного фундамента вам не придётся рыть глубоких траншей, чтобы сделать надёжное основание. Для этого используются винтовые сваи. Но формулы расчёта при использовании таких материалов значительно усложняются.

Виды фундаментов с ростверком

Ростверк представляет собой верхнюю часть фундамента, с помощью которой объединяются в одно целое оголовки свай, и именно ростверк представляет собой опору для будущего здания. Объединение ростверка и свай осуществляется при помощи специализированной сварки или же путем стандартной заливки бетоном.

По способу монтажа ростверки могут подразделяться на несколько категорий:

  • Ленточные – объединяются только соседние сваи;
  • Плиточные – связывается каждый отдельный оголовок.

По типу материалов:

  • Из бетона с арматурой. Под несущие стены осуществляется монтаж свай, а на глубину и ширину ростверка прорываются траншеи небольшой глубины;
  • Подвесной бетонный. Является аналогичным предыдущему варианту, однако отличительной особенностью такого фундамента является то, что бетонная лента не соприкасается с грунтом, а устройство компенсационного зазора при этом предоставляет возможность предотвратить разрыв опор при возникновении значительного колебания грунта;
  • Железобетонные. Изготовление такого фундамента предусматривает использование двутавра или же широкого металлического швеллера, при этом под несущие стены монтируется швеллер 30, в то время как остальные опоры связываются при помощи швеллера 15-20;
  • Из дерева. Крайне редкий вариант, который в последнее время практически не используется;
  • Комбинированный. Здесь используются не только металлические несущие элементы, но и бетон.

Что собой представляют винтовые сваи

Чтобы провести правильный расчёт свайного фундамента необходимо как можно больше узнать об основном материале. Это позволит максимально точно составить проект, основываясь на характеристиках свайных конструктов, а также их свойствах.

Все сваи сверху объединяются ростверком. Его можно сделать как из деревянных, так и из металлических балок. Также можно взять сплошную железобетонную плиту. Но это сильно прибавит веса основной конструкции.

Свайные конструкты для расчёта фундамента можно изготовить как самостоятельно, так и заказать на заводе. При изготовлении непосредственно на месте строительства их основание лучше всего делать плоским.

Чтобы сделать правильный расчёт свайного фундамента знать только площадь конструкции недостаточно. Необходимо учитывать силу трения, что возникает между боковой поверхностью стержня и землёй.

Раньше винтовые сваи часто применяли военные инженеры при постройке фортификационных сооружений. Это было связано с тем, что они позволяют конструкции выдерживать повышенные нагрузки в экстремальных условиях.

Внимание! Свайные конструкты до сих пор незаменимы при создании мостов и переправ.

Основная часть сваи — это ствол. Его диаметр от 80 до 130 мм. Конец в форме острого конуса. На него приваривается лопасть. Это позволяет максимально быстро и эффективно вворачивать свайные конструкты в грунт.

Некоторые сваи идут без оголовка. В таком случае в конце ствола есть отверстие. В него заводится рычаг, который позволяет вращать сваю с нужной скоростью. Эта особенность даёт возможность при необходимости удлинить ствол. Данная опция крайне необходима, когда работы проводятся на нестабильных грунтах.

К преимуществам свайных конструктов можно причислить:

  1. Безопасную технологию установки, которая позволяет в кратчайшие сроки возвести фундамент дома.
  2. Возможность использования на любых грунтах. Единственным исключением являются скальные породы.
  3. Когда сваи вворачиваются, не образуется ударная нагрузка. Благодаря этой особенности свайные фундаменты можно строить даже в местах плотной застройки, не опасаясь за сохранность ближайших домов.
  4. Как только будут установлены винтовые элементы сразу же можно монтировать ростверки. Конечно же, эта особенность учитывается в расчётах.
  5. Расчёт свайного фундамента можно делать как для холмистой местности, так и для неровных участков.
  6. Монтаж осуществляется практически в любых погодных условиях. Неважно сколько градусов за окном. Это никак не повлияет на качество фундамента.
  7. Возможность перепланировки. Ни один другой вид фундамента не даёт столько простора для изменений конструкции, как свайный. При необходимости стальной болт можно выкрутить и ввинтить в другое место.

Зная преимущества и особенности свайного фундамента можно провести максимально точные расчёты, усчитав все особенности конструкции.

Рассчитываем расстояние между сваями и глубину их установки

Расчет свайно-винтового фундамента с ростверком включает в себя большое количество моментов, но в первую очередь определяется глубина заложения свай, которая зависит от вида и сложности грунта. В первую очередь, нужно определить нормативную глубину промерзания грунта в вашем регионе проживания, после чего отмерить ниже 20-25 см – это и будет глубина заложения свай.

После того, как будут проведены изыскательные работы, нужно будет определить уровень расположения грунтовых вод, а также возможность его колебания в разные сезоны и качественную характеристику грунта на участке. Лучше всего, если проектированием свайного фундамента, а также его обустройством будет заниматься квалифицированный специалист.

Осуществляя расчет количества винтовых свай для фундамента в каждом отдельном случае, следует брать в расчет следующие характеристики:

  • Насколько прочный используется материал и ростверк;
  • Какая присутствует несущая способность у грунта, учитывая также уплотнение в процессе установки опоры;
  • Если присутствуют значительные перепады рельефа, то в таком случае определяется и учитывается также несущая способность основания опоры;
  • Насколько будут усаживаться сваи под воздействием вертикальной нагрузки;
  • Какой вес имеет строение с внутренним содержанием;
  • Какие присутствуют сезонные, динамические и ветровые нагрузки.

Помимо этого, в обязательном порядке нужно учитывать осадку свайного фундамента. Свайный фундамент должен делаться в соответствии с рабочим планом, поэтому лучше всего, если его созданием будет заниматься профессиональный архитектор.

Важно! Расчет, а также последующее проектирование свайного фундамента осуществляется только после того, как будут закончены все изыскательные работы на территории, которые проводит квалифицированный специалист.

Данные для вычислительных формул в данном случае будут выбираться в зависимости от качества почвы и ее типа. Стоит отметить, что расчет свайного фундамента по усадке и деформации обуславливает необходимость в максимально возможной точности выходных показателей.

Как закладывать фундамент на основе расчётов

Чтобы построить правильные расчёты необходимо на месте строительства провести геодезические изыскания. В первую очередь нужно под слабыми грунтами определить глубину залегания слоя, который сможет выдержать вес постройки.

Важно! Необходимо делать расчёт таким образом, чтобы свайные конструкты углублялись в несущий слой не менее чем на половину метра.

Чтобы узнать на какую глубину нужно вкручивать сваи проводится предварительное бурение. Это позволяет определить, где залегают грунтовые воды. Также нужно учитывать, насколько земля промерзает в зимний период.

Весь процесс строительства условно делится на такие этапы:

  1. Вначале делается разметка и выравнивание. Определяются места, где будут установлены основные сваи. После этого можно монтировать второстепенные элементы. Расстояние между ними должно быть в диапазоне от двух до трёх метров. Стальные болты должны быть под всеми стенами дома.
  2. Завинчивание начинается с угловых свай. В верхнее отверстие стального болта пропускается лом. Чтобы удлинить рычаг на лом надеваются металлические трубы. При вкручивании отклонение от вертикали не может превысить два градуса. Угол наклона в процессе работы контролируется посредством магнитного уровня.
  3. Расчёт свайного фундамента на угловых сваях делается с помощью шлангового уровня. Потом наносятся метки. Они определяют горизонтальную плоскость и нижнюю кромку ростверка.
  4. Вворачиваются оставшиеся сваи.
  5. Глубина вворачивания должна быть такой, чтобы от верха до земли было 20 см.
  6. Ненесущая поверхность обрезается по обозначенным уровням.
  7. Замешивается цементный раствор. Одна часть цемента к четырём частям песка. Им заполняются сваи.

Правильно проведённые расчёты на уровне планирования свайного фундамента позволяют сделать прочное и надёжное строение.

Примеры расчётов

Расчёт прочности одного элемента позволяет определить, сколько, в общем, понадобится свай для фундамента. В качестве константы возьмём расстояние между столбами в два метра. Мало того, согласно современным архитектурным веяниям опоры должны иметь общий ростверк.

Пример один

Диаметр одного металлического болта 30 сантиметров. Расчётная масса здания сто тонн. В формуле расчёта свайного фундамента особую роль играет несущая способность грунта. Возьмём чаще всего встречающийся показатель в четыре килограмма на сантиметр квадратный.

Важно! Нагрузка не должна превышать несущую способность грунта.

Показатель силы, которая будет действовать на каждую сваю в фундаменте обозначается как Fсв. Расчёт параметра проходит по следующей формуле:

(πd2/4)*R

Уточним значения всех переменных:

  • π — неизменная величина, бесконечное число, которое для простоты математических исчислений принято обозначать как 3,14.
  • d — диаметр металлического болта (30 см).
  • R — радиус, в данном случае четыре килограмма.

Сведём всё в одну формулу:

Fсв=(πd2/4)·R =707,7·4=2826 кг.

Именно такой вес, в данном грунте сможет выдержать одна свая фундамента. Исходя из этих данных — продолжим расчёт.

Общий вес здания ровно 100 тонн. Эта цифра была взята для простоты исчислений. Перед тем как провести дальнейший расчёт свайного фундамента необходимо привести показатели к одной метрической системе. Переведём тонны в килограммы и получим значение N (количество опор).

N= 100000/2826=35,4.

Конечно же, тридцать пять с половиной опор никто монтировать не будет. Поэтому округляем в большую сторону. Выходит, для того чтобы построить дом массой в сто тонн на грунтах с несущей способностью в 4 кг/м2 нужно не менее 36 опор.

Пример два

Чтобы понять алгоритм расчёта свайного фундамента закрепим материал и немного изменим базовые показатели. Расширим основание до 50 сантиметров. Это позволит увеличить практичность всей конструкции. Остальные показатели оставим без изменений.

Fсв=1962,5·4=7850 кг

Проведём расчёт свайного фундамента и получим 13 опор. Как видите, расширение основания позволяет значительно сэкономить на количестве свай, добившись хороших показателей устойчивости конструкции.

Пример три

Расчет свайного фундамента, пример которого вы увидите далее, может использоваться как для легких дачных домов, таки для массивных коттеджей, просто в первом случае используются стандартные винтовые сваи, в то время как при постройке коттеджей нужно будет использовать массивные буронабивные сваи, которые могут выдерживать достаточно серьезные нагрузки.

Для упрощения в примере расчет свайного фундамента осуществляется по винтовым опорам. Стоит отметить, что для таких свай небольшого размера в процессе проведения расчетов не берется в учет бокового трения, которое определяется при возведении тяжелых зданий, которые оказывают на сваи значительное воздействие.

В данном случае будет рассматриваться детальный расчет общего количества свай, а также шага их установки для одноэтажного дома, размер которого составляет 7х7 м:

  • Изначально определяется общая масса расходных материалов. Предположим, что общий вес крыши, бруса и облицовки будет составлять 27526 кг с учетом снеговой нагрузки;
  • Размер полезной нагрузки составляет 7х7х150=7350;
  • Величина снеговой нагрузки составляет 7х7х180=8820;
  • Таким образом, приблизительная масса нагрузки на фундамент будет составлять 27526+7350+8820=43696 кг;
  • Теперь полученный вес нужно будет умножить на коэффициент надежности 43696х1.1=48065.6 кг;
  • Допустим предусматривается установка винтовых опор, размер которых составляет 86х250х2500. Для того, чтобы рассчитать их количество, нужно будет полученную сумму общей нагрузки распределить на ту нагрузку, которая прилагается на каждую сваю. 48065.6/2000=24.03, округляем полученное количество до 24, и получаем точное число нужного нам количества свай;
  • Для того, чтобы установить 24 опоры, нужно будет использовать шаг установки 1.2 метра. Для формирования половых лаг нужно будет использовать еще две дополнительные сваи, которые уже будут располагаться непосредственно внутри дома.

Таким образом, по вышеприведенной технологи вы сможете рассчитать нужное вам количество свай для любого дома вне зависимости от его особенностей.

На видео ниже вы сможете посмотреть, как осуществляется расчет свайного фундамента специалистами:

Итоги

Свайный фундамент — это экономичный и быстрый способ создания базы для постройки. Он позволяет работать при любых погодных условиях, а также даёт возможность возводить строения даже на самых проблемных грунтах.

Расчёт свайного фундамента позволяет заранее определить, сколько необходимо свай для дома определённой массы. При помощи формул, описанных в статье, расчёты можно проводить быстро и точно.

расчет количества свай и нагрузки

Свайный фундамент – один из самых недорогих и простых, обходится в два раза дешевле ленточного. Подходит для установки на слабой, обводненной, вечномерзлой почве и участках с неровным рельефом. Правильный расчет фундамента на винтовых сваях является залогом надежности и долговечности постройки.

Следуя представленной в данной статье инструкции, можно выполнять расчет количества опор и оптимального расстояния между ними самостоятельно. Если произвести монтаж без учета этих факторов, домостроение даст неравномерную усадку, на фундаменте и стенах будут образовываться трещины.

На что обратить внимание при расчете фундамента

Количество свай зависит от типа почвы

При устройстве свайного фундамента расчет количества свай ведется в зависимости от факторов:

  • тип грунта;
  • уровень расположения подземных вод;
  • масса домостроения с учетом строительных материалов, предметов, мебели, людей, которые будут находиться в доме. Учитываем максимальный слой снега, который может находиться на кровле в зимний период. Расчет нагрузки от бассейна, ванны берем с учетом того, что они будут наполнены водой.

В зависимости от этих факторов подбираем вид опор, их диаметр, определяем глубину заложения, шаг установки. Согласно проекту выполняем чертеж, на котором предусматриваем расположение опор на углах, места пересечения стен под колоннами. Составляем смету расхода материала.

Определение вида грунта

Для определения типа грунта необходимо вырыть скважину

При строительстве крупных объектов общественного и гражданского назначения проводятся геологические и лабораторные исследования грунта на участке строительства. Проводятся испытания специалистами, их услуги стоят достаточно дорого.

При частном строительстве можно самостоятельно определить состав грунта. Нужно при помощи бура в нескольких местах участка выкопать скважины, глубина которых будет на полметра больше, чем длина сваи. Смотрим, какие слои грунта находятся на лопастях бура и присутствуют внутри скважины.

Глубину расположения подземных вод можно узнать у соседей или определить по имеющимся на участке скважинам. Если обнаружен небольшой обводненный участок, пробуем расположить опоры так, чтобы его обойти.

Определение максимальной массы домостроения

Рассчитать нагрузку строительных материалов для каркасного домостроения можно по таблице:

Нагрузка от материалаВеличина нагрузки на квадратный метр
1Фундамент
ширина 13 см, длина 1650 мм27 кг
ширина 13 см, длина 9000 мм124 кг
ширина 10,8 см, длина 1650 мм22 кг
ширина 10,8 см, длина 9000 мм95 кг
ширина 8,9 см, длина 1650 мм14 кг
ширина 8,9 см, длина 9000 мм60 кг
2Кровля из черепицы
битумная 50-70 кг
керамическая80-120 кг
металлическая40-60 кг
3Перегородки
Перекрытие по балкам, выполненное из досок, с использованием утеплительного материала10-150 кг
Утепленные перегородки 80 мм из гипсокартона33,4 кг
Неутепленные перегородки 80 мм из гипсокартона27,2 кг
Утепленные стены 150 мм30-50 кг
Мебель, предметы в доме150 кг

Нагрузка снежного пласта, который может лежать на кровле, рассчитывается в зависимости от региона.
На территории РФ нагрузка определяется по карте

Пересчет коэффициента ведется:

  • при уклоне кровли менее 25 градусов = 1;
  • уклон от 25 до 60 градусов = 0.7;
  • при уклоне более 60 градусов, масса снегового пласта не учитывается.

Полученные показатели умножаем на расчетный коэффициент надежности.

МатериалКоэффициент
1Строительные материалы1.1-1.3
2Мебель, предметы1.2
3Снеговой пласт1.4

Определяем размер свай

Если при бурении скважины обнаружен торфяник или плывущие почвы, то нужно углубиться

Для строительных площадок с устойчивым плотным грунтом подойдут опоры длиной 2,5 м. На участке со сложным рельефом нужно обязательно брать в расчет перепады высоты. На неровных участках применяем сваи разной длины, которая зависит от высоты местности.

При ведении строительства на неустойчивых грунтах длина сваи должна достигать слоя плотной почвы. Находим расположение устойчивого грунта с помощью пробного бурения. Вводим в грунт бур, через небольшие промежутки вынимаем его и смотрим на вид почвы на ноже.

Если обнаружили торфяник, плывун, влажную землю бурим до песчаного или глинистого слоя. После обнаружения на буре комков песка и глины замеряем с помощью опущенного на веревке камня глубину скважины.

Закупать сваи нужно с запасом по длине на полметра, после окончания работ лишнюю высоту можно будет срезать. Устанавливаем опоры ниже уровня промерзания почвы.

Диаметр опор

Выпускаются винтовые сваи диаметром:

  • 57 мм, используются для постройки ограждений из металлической сетки;
  • 76 мм, подойдут для устройства основания бетонных заборов, легких хозяйственных построек, небольших деревянных домиков. Выдерживает нагрузку менее трех тонн.
  • 89 мм, применяются только для построек в один этаж, дачных домов, флигелей, построек хозяйственного назначения. Одна опора выдерживает 3-5 тонн.
  • 108 мм, достаточно для строительства двухэтажных домостроений из легких материалов (пеноблоков, газоблоков, деревянного бруса), каркасных построек. Одна свая выдерживает нагрузку от пяти до семи тонн.

Для строительства оснований многоэтажных зданий винтовые сваи не подходят.

Количество опор

Вычисляем количество используемых винтовых свай в зависимости от массы, размера и конструктивных особенностей домостроения.

Правила расчета:

  1. Расстояние между опорами в каркасном домостроении и деревянных постройках не должно превышать 3 м.
  2. В домах из легких строительных материалов: пеноблоков и газоблоков шаг не превышает 2 м.

Если строительство ведется в климатической зоне с сильными ветрами, расстояние между опорами не должно превышать 2,5 м.

Формула расчета: результат сложения всех нагрузок умножаем на коэффициент надежности. Полученное число делим на несущую способность одной сваи.

Расстояние между опорами

На каждом углу должна быть свая

Зная количество свай, нужно равномерно расставить их периметру постройки. Делаем чертеж дома согласно проекту, делим эскиз постройки на прямоугольники.

Правила размещения:

  • опоры устанавливаем на каждом углу;
  • в местах пересечения несущих стен;
  • если в доме предусмотрены колонны или камин, под ними должны располагаться опоры;
  • распределяем остальные опоры с нормативным шагом для данного вида постройки.

Сваи располагаем на одинаковом расстоянии друг от друга. В местах расположения камина устанавливаем от 2 до 4 свай в зависимости от его веса. В особо нагруженных частях дома под несущими конструкциями иногда требуется установка нескольких свай кустовым расположением.

Расчет основания для каркасного дома

Выполняем расчет нужного количества винтовых свай для каркасного дома (без фронтонов) шириной 6 м, длиной 6 м. Берем в расчет строительный участок без значительных перепадов по высоте. О том, как самостоятельно рассчитать фундамент, смотрите в этом видео:

Используемые строительные материалы приведены в таблице:

кровляЧетырехскатная из металлочерепицы
1стены 150 мм с использованием теплоизоляционного материала
2перегородки из влагостойкого гипсокартонабез использования теплоизоляционного материала
3балочные перекрытиядоска
4длина внутренней стены6000 мм
5длина всех перегородок в доме25000 мм
6высота внешних стен мансарды1500 мм
7высота комнат2700 мм
8наружная высота перегородок 3000 мм
Бурить следует до плотного глинистого слоя

С помощью пробного бурения определяем, что плотный глинистый слой залегает на глубине 3 м.

По карте определяем, что масса пласта снега, который может выпасть на кровлю, составляет 180 кг на квадратный метр.

Для устройства винтового фундамента нужны опоры длиной 3,5 м (закупаем длину 4 м с запасом на полметра), сечением 108 мм.

Расчет свайно-винтового фундамента проводим с учетом установки опор на каждом углу и в центре каждой стены.

Вычисляем общую нагрузку на основание, данные заносим в таблицу:

НагрузкаКоэффициент надежностиРезультат
Фундамент1,059 свай(предположительно)*40 кг (вес опоры)*1,05=378 кг
Стены внешние1,1длина*высоту*вес=4 стены*4,5м*50 кг*1,1=6600 кг
Стены внутренние1,12 стены*3 м*1,1*6 м*50 кг*1,1=1980 кг
Перекрытия1,12 перекрытия на половину этажа и половину мансарды=2*6 м*6 м*150 кг * 1,1 = 11880 кг
Перегородки1,225 м*2,7 м *1,2= 2204 кг
Кровля1,26 м*60 м*1,2=432 кг, делим на косинус угла наклона кровли (45 градусов)=3702 кг
Мебель, предметы1,22 этажа*(150 кг*6м*6 м)*1,2=12960 кг
Снеговой пласт1,4180 кг*36 м*1,4=9072 кг
Итого: 378+6600+1980+11880+2204+3702+12960+9072=48776 кг

Округляем полученное число до 48,8 тонны.

Проводим вычисление количества свай исходя из полученного результата несущей способности одного изделия, которая составляет от 5 до 7 тонн. Берем среднее значение выполнимой нагрузки 6 тонн. Подробнее о вкручивании винтовых свай смотрите в этом видеоуроке:

48.8 тонны делим на шесть тонн, получаем 8,13 опор, округляем всегда в большую сторону, получаем девять опор.

Несущая нагрузка для одной сваи определяется путем умножения площади пяты одной опоры на несущие характеристики почвы. Площадь пяты определяется в зависимости от сечения по таблице, прилагаемой к инструкции на изделие.

Пользуясь инструкциями и формулами, приведенными в этой статье, можно с точностью провести расчет винтовых свай, которые понадобятся для устройства фундамента.

расчет количества свай – важные моменты

Практически любое стационарное сооружение требует устройства надежного основания. Для типового проекта необходима привязка к местности, а для индивидуального – составление полноценной документации на подземную часть здания. Если на участке предполагается возвести свайный фундамент, расчет количества свай и место их расположения можно выполнить самостоятельно. Но это касается лишь легких или подсобных строений. Для капитальных домов следует производить доскональные расчеты, которые помогут сделать профессионалы.

Важные моменты

При самостоятельном проектировании свайно-винтового фундамента необходимо учитывать, что изделия изготавливаются разной длины и диаметра. Они, также, отличаются по количеству и размеру установленных на наконечнике лопастей, которые, в свою очередь, бывают литыми или наваренными. Такое разнообразие связано с вариантами использования опор, зависящими от рельефа местности, грунтовых условий и высоты уровня грунтовых вод.

Наиболее востребованными считаются винтовые сваи диаметром:

  • 57мм – для заборов из сетки-рабицы;
  • 76мм – для легких хозяйственных строений и заборов из профнастила или деревянного частокола;
  • 89мм – для каркасных или щитовых одноэтажных домов, а также кирпичных заборов;
  • 108мм – для домов из пено- и газоблоков, а также бревенчатых строений.

Конечно, это не то правило, которому необходимо следовать безоговорочно, а всего лишь оптимальные варианты, проверенные специалистами в своей работе. В каждом конкретном случае требуются уточнения.

Важным фактором в проектировании свайного фундамента является грамотное определение длины опор. Для этого понадобятся исследования грунта в целях установления глубины залегания плотного слоя, который может стать надежным основанием для винтовых свай. Необходимо понимать, что если их острие «повиснет» в слабом грунте, то со временем строение обязательно просядет.

Для самостоятельного исследования подземных пород рекомендуется воспользоваться садовым буром.

При помощи инструмента выбуривают шурф на самом низком участке будущей застройки до того момента, пока он не упрется в плотный грунтовый слой. Определить границе не трудно – бур станет тяжело проворачиваться. Длину свай принимают с некоторым запасом – трубу всегда бывает легче укоротить, чем нарастить. При окончательном определении длинномерности опорных изделий учитывают глубину промерзания почвы и рельеф местности.

Как узнать количество свай

Чтобы понять, сколько опор потребует свайно винтовой фундамент, расчет количества свай начинают с вычерчивания плана строения. На бумагу его следует наносить с учетом точных размеров по периметру и обязательно – с расположением внутренних несущих стен. Такая схема станет основополагающей в дальнейших расчетах.

В первую очередь на плане крестиками или жирными точками следует отметить все внешние и внутренние углы сооружения, будь то дом, забор или баня. Далее – указать места сопряжения внутренних несущих стен друг с другом и с внешним контуром ограждающих конструкций. Во всех этих местах будут устанавливаться сваи. Также опоры необходимо будет ввинтить в конечных точках выступающих элементов строения, не образующих углов с основным контуром. Это может относиться к крыльцу, террасе, воротам и т.д.

На втором этапе определяется шаг свай:

  • для газобетонных и пенобетонных домов – не более 2 метров;
  • для легких деревянных строений – не более 3 метров;
  • для заборов – не более 3 метров;
  • для парусных построек при большой ветровой нагрузке – не более 2 метров.

Данные размеры являются приблизительными, так как для каждой из свай существует такой показатель, как несущая способность. Здесь существует закономерность – чем больше будет диаметр сваи, тем более существенные нагрузки она сможет принять. Данные параметры указывает производитель в технической документации на винтовые изделия. Конечно же, немаловажную роль в этом случае играет еще и несущая способность грунта.

Итак, для определения количества подземных опор придется определить приблизительный вес строения, полезные и временные нагрузки. Для этого существуют специальные таблицы, предоставляющие данные с учетом материалов, назначения сооружения, его этажности и климатической зоны. Данные чаще всего указываются в расчете на квадратный или погонный метр объекта.

При расчетах нагрузок необходимо брать во внимание коэффициенты запаса.

После вычисления массы, которая будет воздействовать на свайный фундамент, переходят к выяснению, сколько же свай потребуется для возведения надежного фундамента. Для этого суммированную величину нагрузок делят на несущую способность выбранной винтовой опоры. Полученное в результате число свай равномерно распределяют между намеченными ранее на плане точками.

Если расстояние между опорами получается слишком маленьким, то за основу принимают винтовую сваю большего диаметра. И наоборот. Рассмотренный способ расчета свай является приблизительным, поэтому для капитальных строений он не предназначен. Более детальные вычисления производятся с учетом расчетных нагрузок и несущей способности грунта. А это уже находится в компетенции специалистов.

Проект свайного фундамента - Structville

Глубокие фундаменты используются, когда слой грунта под конструкцией не способен выдерживать нагрузку с допустимой осадкой или адекватной защитой от разрушения при сдвиге. Двумя распространенными типами глубоких фундаментов являются фундаменты колодцев (или кессоны) и свайные фундаменты. Сваи представляют собой относительно длинные тонкие элементы, которые забиваются в землю или монтируются на месте. Конструкция свайного фундамента предусматривает обеспечение свай соответствующего типа, размера, глубины и количества, чтобы выдерживать нагрузку надстройки без чрезмерной осадки и нарушения несущей способности.Фундаменты глубокого заложения более дороги и технически сложны, чем фундаменты мелкого заложения.

Свайный фундамент можно использовать в следующих случаях;

  1. Когда верхний слой (слои) почвы сильно сжимается и слишком слаб, чтобы выдерживать нагрузку, передаваемую надстройкой, сваи используются для передачи нагрузки на нижележащую коренную породу или более прочный слой почвы. Когда коренная порода не встречается на разумной глубине ниже поверхности земли, используются сваи для постепенной передачи структурной нагрузки на почву.Сопротивление приложенной структурной нагрузке определяется главным образом сопротивлением трению на границе раздела грунт-сваи.
  2. При воздействии горизонтальных сил свайные фундаменты сопротивляются изгибу, при этом сохраняя вертикальную нагрузку, передаваемую надстройкой. Такая ситуация обычно встречается при проектировании и строительстве заземляющих конструкций и фундаментов высоких сооружений, которые подвергаются сильному ветру и / или землетрясениям.
  3. Во многих случаях грунт на участке предлагаемого сооружения может быть расширяющимся и разрушающимся.Эти почвы могут простираться на большую глубину ниже поверхности земли. Расширяющиеся почвы набухают и сжимаются по мере увеличения и уменьшения содержания влаги, и давление набухания таких почв может быть значительным. При использовании неглубоких фундаментов конструкции могут быть нанесены значительные повреждения.
  4. Фундаменты некоторых сооружений, таких как опоры электропередачи, морские платформы и подвальные маты ниже уровня грунтовых вод, подвергаются подъемным силам. Иногда для этих фундаментов используются сваи, чтобы противостоять подъемной силе.
  5. Опоры мостов и опоры обычно сооружаются над свайным фундаментом, чтобы избежать возможной потери несущей способности, которая может возникнуть у неглубокого фундамента из-за эрозии почвы на поверхности земли
Рисунок 1 : Схематическое изображение свайного фундамента

Классификация свай

Сваи можно классифицировать по разным критериям:

( a ) Функция или действие
( b ) Состав и материал
( c ) Способ установки

Классификация на основе функции или действия

Сваи могут быть классифицированы следующим образом в зависимости от функции или действия:

Концевые опорные сваи
Используются для передачи нагрузки через наконечник сваи на подходящий несущий слой, проходя через мягкий грунт или воду.

Фрикционные сваи
Используются для передачи нагрузок на глубину во фрикционном материале посредством поверхностного трения по поверхности сваи.

Натяжные или подъемные сваи
Подъемные сваи используются для анкеровки конструкций, подверженных подъему из-за гидростатического давления или опрокидывающего момента из-за горизонтальных сил.

Уплотняющие сваи
Уплотняющие сваи используются для уплотнения рыхлых сыпучих грунтов с целью увеличения несущей способности.Поскольку они не обязаны нести какую-либо нагрузку, материал может не быть прочным; Фактически, песок может быть использован для образования кучи. Труба сваи, забиваемая для уплотнения почвы, постепенно вынимается, и ее место засыпается песком, образуя «песчаную кучу».

Анкерные сваи
Эти сваи используются для обеспечения анкеровки против горизонтального натяжения шпунтовых свай или воды.

Отбойные сваи
Используются для защиты прибрежных сооружений от ударов с судов или других плавучих объектов.

Шпунтовые сваи
Шпунтовые сваи обычно используются в качестве переборок или отрезков для уменьшения просачивания и подъема в гидротехнических сооружениях.

Сваи для теста
Используются для противодействия горизонтальным и наклонным силам, особенно в сооружениях на берегу воды.

Сваи с боковой нагрузкой
Используются для поддержки подпорных стен, мостов, дамб и причалов, а также в качестве отбойников при строительстве портов.

Классификация по материалу и составу

Сваи по материалу и составу можно классифицировать следующим образом:

Деревянные сваи
Изготовлены из качественной древесины.Длина может достигать примерно 8 м; сращивание принято для большей длины. Диаметр может быть от 30 до 40 см. Деревянные сваи хорошо работают как в полностью сухом, так и в погруженном состоянии. Чередование влажных и сухих условий может сократить срок службы деревянной сваи; чтобы преодолеть это, используется креозинг. Максимальная расчетная нагрузка составляет около 250 кН.

Стальные сваи
Это обычно H-образные сваи (катаные H-образные), трубные сваи или шпунтовые сваи (катаные профили правильной формы).Они могут нести нагрузки до 1000 кН и более.

Рисунок 2 : Стальные двутавровые сваи

Бетонные сваи
Они могут быть сборными или монолитными. Сборные сваи усилены, чтобы выдерживать нагрузки при транспортировке. Им требуется место для литья и хранения, больше времени на отверждение и тяжелое оборудование для погрузки-разгрузки и вождения. Забивные сваи устанавливаются путем предварительной выемки грунта, что устраняет вибрацию, возникающую при забивке и перемещении.

Рисунок 3 : Сборные железобетонные сваи

Композитные сваи
Они могут быть сделаны из бетона и дерева или из бетона и стали.Они считаются подходящими, когда верхняя часть сваи должна выступать над уровнем грунтовых вод. Нижняя часть может быть из необработанной древесины, а верхняя часть из бетона. В противном случае нижняя часть может быть из стали, а верхняя - из бетона.

Классификация по способу установки

Сваи также могут быть классифицированы по способу установки:

Забивные сваи
Деревянные, стальные или сборные железобетонные сваи можно забивать вертикально или под наклоном.Если они расположены под наклоном, они называются «бьющими» или «сгребающими» сваями. Для забивки свай используются сваебойные молотки и сваебойное оборудование.

Монолитные сваи
Только бетонные сваи можно монтировать. Просверливаются отверстия и заливаются бетоном. Это могут быть сваи с прямым бурением или сваи с недорастворением с использованием одной или нескольких луковиц через определенные промежутки времени. В соответствии с требованиями могут использоваться подкрепления.

Забивные и монолитные сваи
Это комбинация обоих типов.Может использоваться кожух или оболочка. Куча Франки попадает в эту категорию.

Однако наиболее распространенным типом свайного фундамента в Нигерии являются буронабивные сваи с использованием шнека непрерывного действия (CFA).

Проектирование свайного фундамента

Раздел 7 стандарта EN 1997-1: 2004 посвящен инженерно-геологическому проектированию свайных фундаментов. Есть некоторые стандарты проектирования, которые посвящены проектированию и строительству свайных фундаментов. Упомянутый стандарт проектирования является частью Еврокода 3 для расчета конструкции стальных свай:

  • EN 1993-5: Еврокод 3, Часть 5: Проектирование стальных конструкций - Сваи

Другие стандарты, на которые можно ссылаться при выполнении свайных работ:

  • EN 1536: 1999 - Буронабивные сваи
  • EN 12063: 1999 - Стенки из шпунтовых свай
  • EN 12699: 2000 - Вытесняющие сваи
  • EN 14199: 2005 - Микросваи

Подходы к конструкция свайного фундамента

Согласно п.7.4 (1) P EN 1997-1, расчет свай должен основываться на одном из следующих подходов:

  1. Результаты испытаний на статическую нагрузку, которые, как было продемонстрировано с помощью расчетов или иным образом, согласуются с другим соответствующим опытом
  2. Эмпирические или аналитические методы расчетов, достоверность которых была продемонстрирована испытаниями статической нагрузкой в ​​сопоставимых ситуациях
  3. результаты испытаний на динамическую нагрузку, достоверность которых была продемонстрирована испытаниями на статическую нагрузку в сопоставимых ситуациях
  4. Наблюдаемые характеристики сопоставимого свайного фундамента при условии, что этот подход подтверждается результатами исследования площадки и наземных испытаний.

Испытание статической нагрузкой - лучший способ проверки несущей способности свай, однако он не очень привлекателен, поскольку является дорогостоящим и трудоемким. Традиционно инженеры проектируют свайные фундаменты на основе расчетов теоретической механики грунта. Самый распространенный подход - разделить почву на слои и присвоить каждому слою свойства почвы. Наиболее важными параметрами грунта для каждого слоя являются сцепление (C) и угол внутреннего трения (ϕ). Эти два свойства позволят быстро определить коэффициенты несущей способности для оценки несущей способности сваи.

На основании профиля грунта трение вала о сваю из разных слоев суммируется, чтобы получить общее сопротивление трению вала сваи. Сопротивление основания сваи также определяется на основе свойств грунта слоя, на который устанавливается верхушка сваи.

Рисунок 4 : Свая в слоистом грунте

Отсюда предельное сопротивление свае Q u ;

Q u = ∑Q s + Q b —— (1)

Q s = Сопротивление вала = q s A s
Q b = Сопротивление основания = q b A b

Где q s - сопротивление вала агрегата. сваи, а A s - площадь поверхности сваи, для которой применимо q s .A b - это площадь поперечного сечения основания сваи, а q b - сопротивление основания.

Для сваи в несвязном грунте (C = 0)
Q s = q 0 K s tanδA s —— (2)

Для сваи в связном грунте (ϕ = 0)
Q s = αC u A s —— (3)

Где;
q 0 - среднее эффективное давление покрывающих пород по глубине заделки сваи, для которой применимо K s tanδ.
K s - коэффициент бокового давления грунта
δ - угол трения стенки
C u - средняя недренированная прочность глины на сдвиг вдоль вала
α - коэффициент сцепления.

Типичные значения δ и K s приведены в таблице ниже;

С другой стороны, ниже приведены типичные уравнения для определения сопротивления основания одиночной сваи;

Q b = Сопротивление основания = q b A b
Где q b - удельное сопротивление основания сваи, а A b - площадь основания сваи.

Для сваи в несвязном грунте (C = 0)
Q b = q 0 N q A b —— (4)

Для сваи в связном грунте (ϕ = 0)
Q b = c b N c A b —— (5)

Для сваи в грунте c-ϕ;
Q b = (c b N c + q 0 N q ) A b —— (6)

Где N q и N c - коэффициенты несущей способности.

Следовательно, чтобы конструкция считалась приемлемой, приложенная нагрузка ≤ предельной грузоподъемности / запаса прочности. Коэффициент безопасности обычно варьируется от 2,0 до 3,0 и зависит от качества проведенного наземного исследования.

Проектирование свайного фундамента по Еврокоду 7

EN 1997-1: 2004 позволяет определять сопротивление отдельных свай:

  • формулы статической сваи на основе параметров грунта
  • прямые формулы на основе результатов полевых испытаний
  • результаты испытаний статической нагрузкой на сваи
  • результаты динамических испытаний на удар
  • формулы забивки свай
  • и анализ волновых уравнений

Согласно п.7.6.2.1 (1) P, чтобы продемонстрировать, что свайный фундамент будет выдерживать расчетную нагрузку с достаточной защитой от разрушения при сжатии, должно выполняться следующее неравенство для всех случаев нагружения по предельному состоянию и комбинаций нагрузок:

F c, d ≤ R c, d —— (7)

Где F c, d - расчетная осевая нагрузка на сваю, а R c, d - сопротивление сваи сжатию. F c, d должны включать вес самой сваи, а Rc, d должны включать давление грунта на фундамент.Однако этими двумя пунктами можно пренебречь, если они аннулируются приблизительно. Их не нужно отменять, если нисходящее движение является значительным, или когда почва очень легкая, или когда свая выступает над поверхностью земли.

Для свай в группе расчетное сопротивление должно приниматься как меньшее из сопротивления сжатию свай, действующих по отдельности, и сопротивления сжатию свай, действующих как группа (вместимость блока). Согласно пункту 7.6.2.1 (4) сопротивление сжатию группы свай, действующей как блок, можно рассчитать, рассматривая блок как одну сваю большого диаметра.

Формулы статических свай на основе параметров грунта

Методы оценки сопротивления свайному фундаменту на сжатие по результатам испытаний грунта должны быть установлены на основе испытаний свайной нагрузки и сопоставимого опыта. Как правило, сопротивление сваи при сжатии должно быть получено из:

R c, d = R b, d + R s, d —— (8)

Где;
R b, d = R b, k / γ b
R s, d = R s, k / γ s

Значения частных коэффициентов могут быть установлены Национальным приложением.Рекомендуемые значения для устойчивых и переходных ситуаций приведены в таблицах A6, A7 и A8 стандарта EN 1997-1: 2004 для забивных, буронабивных и CFA свай соответственно;

Таблица 1 (Таблица A6): Коэффициенты частичного сопротивления (γ R ) для забивных свай

9048 9048 всего / вместе t
  • 1,6
  • Таблица A7): Коэффициенты частичного сопротивления (γ R ) для буронабивных свай

    Сопротивление Символ R1 R2 R3 R4
    R4 1.0 1,1 1,0 1,3
    Вал (сжатие) γ s 1,0 1,1 1,0 1,3
    1,0 1,1 1,0 1,3
    Вал в напряжении γ s; t 1,25 1,15 1,1
    9048 9048 всего / вместе t Таблица A8): Коэффициенты частичного сопротивления (γ R ) для свай непрерывного шнека (CFA)

    Сопротивление Символ R1 R2 R3 R4
    R4 1.25 1,1 1,0 1,6
    Вал (сжатие) γ s 1,0 1,1 1,0 1,3
    1,15 1,1 1,0 1,5
    Вал на растяжении γ s; t 1,25 1,15 1,1
    9048 9048 в сумме t значения b, k и R s, k должны определяться из;

    R c, k = R b, k + R s, k = (R b, cal + R s, cal ) / ξ = R c, cal / ξ = min [R c, кал (среднее) / ξ 3 ; R c, кал (мин) / ξ 4 ] —— (9)

    , где ξ 3 и ξ 4 - коэффициенты корреляции, которые зависят от количества профилей испытаний, n.Значения коэффициентов корреляции могут быть установлены Национальным приложением. Рекомендуемые значения приведены в таблице A10 стандарта EN 1997-1: 2004. Для конструкций с достаточной жесткостью и прочностью для передачи нагрузок от «слабых» к «сильным» сваям коэффициенты ξ 3 и ξ 4 могут быть разделены на 1,1, при условии, что они никогда не будут меньше 1,0.

    Характеристические значения могут быть получены путем вычисления:
    R b, k = A b q b, k —— (11)
    R s, k = ∑A s, i q s, i, k —— (12)

    , где q b, k и q s, i, k - характерные значения сопротивления основания и трения вала в различных пластах, полученные из значений параметров грунта.

    Для оценки трения вала сваи и концевого подшипника по параметрам грунта можно использовать следующие соотношения;

    Несвязные почвы;
    q s, k = σ v ‘k s tanδ —— (13)
    q b, k = σ v ‘ N q —— (14)

    Связный грунт или слабая порода (аргиллит)
    q s, k = αC u —— (15)
    q b, k = C u N c —— (16 )

    Коэффициент адгезии (α) можно определить по таблице или по результатам испытаний на неограниченное сжатие (UCS).Для свай в глине N c обычно принимается равным 9,0.

    Рисунок 5 : Взаимосвязь между коэффициентом сцепления и недренированным сцеплением грунта

    Обычно рекомендуется, чтобы Cu <40 кПа, α принималось равным 1,0.

    Рисунок 5: Взаимосвязь между коэффициентом сцепления и прочностью грунта на неограниченное сжатие

    Расчет свайного фундамента методом статической свайной нагрузки

    Процедура определения сопротивления сваи сжатию при испытаниях на статическую нагрузку основана на анализе значений сопротивления сжатию R c, m , измеренных при испытаниях на статическую нагрузку на одной или нескольких пробных сваях.Пробные сваи должны быть того же типа, что и сваи фундамента, и должны быть заложены в том же слое.

    Важным требованием, изложенным в Еврокоде 7, является то, что интерпретация результатов испытаний свайной нагрузкой должна учитывать изменчивость грунта на площадке и изменчивость из-за отклонения от обычного метода установки свай. Другими словами, необходимо тщательное изучение результатов исследования грунта и результатов испытаний свайной нагрузки.Результаты испытаний сваи под нагрузкой могут привести, например, к выявлению различных «однородных» частей площадки, каждая из которых имеет свою особую характеристику сопротивления сваи сжатию.

    Чтобы использовать результат испытания на статическую нагрузку для проектирования свайного фундамента, определите характеристическое значение R c, k из измеренного сопротивления заземления R c, m , используя следующее уравнение:

    R c, k = Min {(R c, m ) среднее / ξ 1 ; (R c, м ) мин / ξ 2 } —— (17)

    , где ξ 1 и ξ 2 - коэффициенты корреляции, относящиеся к количеству n протестированных свай, и применяются к среднему (R c, m ) среднему и к наименьшему (R c, m ) мин из R c, m соответственно.Рекомендуемые значения для этих коэффициентов корреляции, приведенные в Приложении А, предназначены в первую очередь для покрытия изменчивости грунтовых условий на площадке. Однако они могут также покрывать некоторую изменчивость из-за эффектов установки свай.

    Расчетное сопротивление сваи сжатию, R c, d получается путем применения частного коэффициента γt к общему характеристическому сопротивлению или частных коэффициентов γs и γb к характеристическому сопротивлению вала и характеристическому базовому сопротивлению, соответственно, в соответствии со следующим уравнения:

    R c, d = R c, k / γ t —— (18)
    или
    R c, d = R b, k / γ b + R s, k / γ s —— (19)

    R c, d для устойчивых и переходных ситуаций может быть получено из результатов испытаний свайной нагрузкой с использованием DA-1 и DA-2 и рекомендуемых значений для частичных Коэффициенты γ t или γ s и γ b приведены в таблицах А.6, A.7 и A.8 стандарта EN 1997-1: 2004.

    Краткое руководство по проектированию свайного фундамента

    Глубокий фундамент, такой как сваи, представляет собой конструктивный элемент, передающий нагрузки от надстройки на коренную породу или более прочный слой почвы. Сваи могут быть стальными, бетонными или деревянными. По стоимости свайный фундамент стоит дороже, чем фундамент мелкого заложения. Несмотря на свою стоимость, сваи часто необходимы для обеспечения безопасности конструкций.

    Рисунок 1: Свайный фундамент

    Когда можно использовать сваи?

    Слабые почвы

    Если верхние слои почвы слишком слабые или сильно сжимаемые, чтобы выдерживать нагрузки, передаваемые надстройкой, используются сваи для передачи этих нагрузок на более прочный слой почвы или на коренную породу.Сваи, которые передают нагрузки в основание, называются сваями с торцевыми опорами. Этот тип сваи зависит исключительно от несущей способности нижележащего материала на вершине сваи. С другой стороны, когда коренная порода слишком глубокая, сваи могут постепенно передавать нагрузки через окружающую почву за счет трения. Этот тип сваи называется сваей трения.

    Горизонтальные силы

    Сваи - более подходящий фундамент для конструкций, подверженных горизонтальным нагрузкам. Сваи могут противостоять горизонтальным воздействиям за счет изгиба, передавая вертикальные силы от надстройки.Это типичная ситуация для проектирования земляных подпорных сооружений и высоких сооружений, подверженных сильному ветру или сейсмическим силам.

    Грунты расширяющиеся или просадочные

    Набухание или усадка грунта может оказать значительное давление на фундамент. Возникает на расширяющихся или просадочных почвах из-за увеличения или уменьшения влажности. Это также может привести к большему ущербу для фундаментов мелкого заложения; в этом случае сваи могут использоваться для расширения фундамента за пределы активной зоны или там, где может произойти набухание и усадка.

    Подъемные силы

    Подъемные силы возникают в результате гидростатического давления, сейсмической активности, опрокидывающих моментов или любых сил, которые могут вызвать отрыв фундамента от земли. Это обычное явление для таких конструкций, как опоры электропередачи, морские платформы и подвалы. В этой ситуации считается, что свайный фундамент выдерживает эти подъемные силы.

    Эрозия почвы

    Эрозия почвы на поверхности земли может вызвать потерю несущей способности почвы.Это может серьезно повредить конструкции с неглубоким фундаментом.

    Как определить длину ворса?

    Исследование почвы играет важную роль в выборе типа сваи и оценке необходимой длины сваи. Оценка длины сваи требует хорошей технической оценки геотехнических данных площадки. В зависимости от механизма передачи нагрузки от конструкции к грунту его можно классифицировать: а) торцевые сваи. (б) фрикционные сваи и (в) уплотняющие сваи.

    Сваи концевые

    Предел несущей способности концевой сваи зависит от несущей способности нижележащего материала на вершине сваи. Необходимую длину сваи этого типа можно легко оценить, определив расположение коренной породы или прочного слоя почвы, если он находится на разумной глубине. В случаях, когда присутствует твердый пласт, а не коренная порода, длина сваи может быть увеличена еще на несколько метров в слой почвы, как показано на Рисунке 2b.

    Сваи фрикционные

    Фрикционные сваи (рис. 2c) используются, когда слой коренной породы или твердый пласт не существует или находится на необоснованной глубине. В этом случае использование торцевых свай становится очень долгим и неэкономичным. Предельная несущая способность фрикционных свай определяется поверхностным трением, возникающим по длине сваи и окружающей почвы. Длина фрикционных свай зависит от прочности грунта на сдвиг, приложенной нагрузки и размера сваи.

    Сваи уплотнительные

    Уплотняющие сваи - это тип свай, которые забиваются в сыпучий грунт для обеспечения надлежащего уплотнения грунта у поверхности земли.Длина уплотняющих свай в основном зависит от относительной плотности до и после уплотнения, а также от необходимой глубины уплотнения. Сваи уплотнения обычно короче других типов свай.

    Рисунок 2: (a) и (b) Концевые опорные сваи, (c) Фрикционные сваи

    Механизм передачи нагрузки для свай

    Рассмотрим нагруженную сваю длиной L и диаметром D, как показано на рисунке 2. Нагрузке Q на сваю должен выдерживать в основном грунт на дне сваи Q p ., и частично за счет поверхностного трения, развиваемого вдоль вала Q s . Как правило, предельная несущая способность (Qu) сваи может быть представлена ​​суммой нагрузки, оказываемой на вершину сваи, и нагрузки, оказываемой за счет поверхностного трения, или как показано в уравнении 1.

    Q u = Q p + Q s (1)

    Q u = Максимальная грузоподъемность

    Q p = Допустимая нагрузка на концевую опору

    Q s = Сопротивление поверхностному трению

    Однако для свай с торцевыми опорами нагрузке Q в основном противостоит грунт под вершиной сваи, и сопротивление поверхностному трению минимально.С другой стороны, нагрузке Q на фрикционные сваи в основном противостоит только поверхностное трение, а не несущая способность конца Q p . Максимальные допустимые нагрузки для концевых опор и фрикционных свай находятся в уравнениях 2 и 3 соответственно.

    Q u Q p (2)

    Q u Q s (3)

    Как проектировать сваи?

    Проектирование и анализ глубоких фундаментов, таких как сваи, в некотором роде является искусством из-за всех неопределенностей, связанных с интерпретацией геотехнических данных.Несмотря на многочисленные теоретические и экспериментальные подходы к анализу поведения и оценке несущей способности свай в различных типах грунтов, тем не менее, нам еще предстоит многое понять в механизме свайного фундамента. К счастью, с развитием структурной инженерии появилось различное программное обеспечение, которое мы можем использовать, чтобы минимизировать эти неопределенности и сократить время расчета.

    Ниже приведены некоторые из процессов, которым мы можем следовать при проектировании свайного фундамента:

    Данные геотехнического отчета

    Как обсуждалось ранее, проектные данные перед фундаментом, такие как тип, длина и размер сваи, предварительно определяются на основе данных геотехнического отчета.Некоторые из критических параметров, которые необходимы для дальнейшего проектирования и анализа свайного фундамента, - это типы грунта, удельный вес, прочность на сдвиг, модуль реакции земляного полотна и данные о грунтовых водах

    Расчет конструкций

    Последние разработки в области проектирования конструкций включают программное обеспечение для проектирования конструкций, которое направлено на повышение наших навыков как инженеров-строителей и создание безопасных проектов, особенно со сложными конструкциями. Существует различное программное обеспечение FEA, которое мы можем использовать для моделирования наших конструкций и создания реакций, поперечных сил и изгибающих моментов опор надстройки.Полученные данные затем следует использовать для проектирования и анализа фундамента.

    Конструкция фундамента

    Подобно программному обеспечению FEA, которое мы использовали для анализа и создания опорных реакций надстройки, существует также множество программ для проектирования фундаментов, которые мы можем использовать для проектирования свайных фундаментов в соответствии с различными проектными нормами. (примечание: для упрощения калькулятора попробуйте наш бесплатный калькулятор бетонного основания).

    Программное обеспечение для проектирования фундаментов свай требует различных входных данных для выполнения проверок проекта.Он включает в себя геометрические данные, профили грунта, свойства материалов для бетона и стальной арматуры, схемы армирования, параметры проектирования, указанные в кодах проектирования, и данные реакции, экспортированные из программного обеспечения для расчета конструкций.

    Рисунок 3: Программное обеспечение для проектирования фундамента Программное обеспечение Foundation

    Некоторые стандартные проверки проекта, которые выполняются при проектировании свайного фундамента:


    Проверка геотехнической способности завершается, когда конечная несущая способность грунта определяется путем деления приложенных вертикальных нагрузок на несущую способность грунта.Коэффициент не должен превышать 1,0. Поперечно нагруженные сваи также проверяются путем оценки значений предельных и допустимых поперечных нагрузок.

    Проверка несущей способности конструкции выполняется путем определения осевой прочности, прочности на сдвиг и изгиб в соответствии с выбранными правилами проектирования. Хотя для свайного фундамента вероятность возникновения геотехнического разрушения выше, чем разрушения конструкции, все же необходимо выполнить эту проверку для принятия мер безопасности.

    Оптимизация

    Инженер-строитель всегда должен отдавать приоритет безопасности при проектировании любых типов конструкций.Однако инженеры могут также оптимизировать свою конструкцию, экспериментируя с различными размерами свай, схемами армирования, что приводит к уменьшению общего количества материалов и общей стоимости конструкции без ущерба для безопасности и при сохранении минимальных стандартов, требуемых кодексом.

    Сводка

    Процесс проектирования свайного фундамента обычно включает в себя хорошую интерпретацию геотехнических данных площадки, моделирование и анализ надстройки с помощью программного обеспечения FEA, создание опорных реакций, проверки конструкции фундамента и оптимизацию для разработки безопасного и экономичного проекта.

    Расчет мощности свайной группы и КПД

    🕑 Время считывания: 1 минута

    Вместимость группы свай - это сумма индивидуальных вместимость свай, но на нее влияет расстояние между сваями. Сваи обычно забиваются группами по регулярной схеме, чтобы выдерживать нагрузки на конструкции. Структурная нагрузка прилагается к крышке сваи, которая распределяет нагрузку на отдельные сваи. Если сваи расположены на достаточном расстоянии друг от друга, то вместимость группы свай является суммой индивидуальных вместимость свай.Однако, если расстояние между сваями слишком близко, зоны напряжения вокруг сваи будут перекрываться, и конечная нагрузка группы будет меньше, чем сумма отдельных грузоподъемностей сваи, особенно в случае фрикционных свай, где эффективность сваи группа намного меньше.

    Вместимость свайной группы Групповое действие свай оценивается, рассматривая сваи как единое целое по периметру группы. При оценке групповой нагрузки учитываются как концевые опоры, так и фрикционные сваи.Концевую несущую сваю оценивают, рассматривая площадь, ограниченную периметром свай, как площадь опоры, расположенную на глубине, соответствующей высоте вершин свай. Компонент трения опоры сваи оценивается с учетом трения, которое может быть мобилизовано по периметру группы свай по длине свай, как показано на рисунке ниже:

    Вместимость свайной группы, Q = q 0 X B2 + 4 x B x L x f (Квадрат) Где Q = предельная вместимость свайной группы q 0 = предельное несущее давление на опору в зоне B2 (B = размер группы свай) L = длина ворса f = сопротивление сдвигу

    КПД группы свай Эффективность свайной группы зависит от следующих факторов:
    1. Шаг свай
    2. Общее количество стопок в ряду и количество рядов в группе, и
    3. Характеристики сваи (материал, диаметр и длина)
    Снижение общей несущей способности группы свай больше в случае свай трения, особенно в глинистых грунтах.В концевых несущих сваях уменьшения группирования не происходит. Группы свай, противостоящие нагрузке за счет совместного действия трения и концевой опоры, снижают только несущую способность трения. Эффективность свайной группы можно рассчитать по следующей формуле:

    Таким образом, эффективность группы свай равна отношению средней нагрузки на сваю в группе, при которой происходит разрушение, к предельной нагрузке сопоставимой одиночной сваи. Эффективность свайной группы также может быть получена с помощью формулы Конверс-Лабарра:

    Где m = количество строк n = количество свай в ряду в градусах d = диаметр конца сваи s = расстояние между сваями.Обычно расстояние от центра к центру между сваями в группе составляет от 2,5 d до 3,5 d, где d - диаметр сваи. Подробнее о свайных фундаментах

    (PDF) АСПЕКТЫ РАСЧЕТА СВАЙНЫХ ФУНДАМЕНТОВ В ЕВРОКОДЕ 7

    Примеры, представленные в этом документе, см. Таблицу 3, столбец 10, для нескольких выбранных методов расчета

    . Для буронабивной сваи большого диаметра надежные значения были получены с помощью метода

    , рекомендованного EN 1997-2: 2007, а также Gwizdała and Stęczniewski, 2007,

    Schmertmann, 1978, De Ruiter & Beringen, 1978, а также Bustamante И Джанеселли, 1982.

    Следует также отметить, что рекомендация надежного метода расчета

    должна быть сделана на основе подробного технико-экономического анализа с учетом элементов

    статистики и результатов испытаний свайной нагрузки.

    Ссылки

    1. Аоки, Н. и Веллосо, Д. А. (1975). Примерный метод оценки несущей способности

    свай. Труды 5-й Панамериканской конференции по механике грунтов и основам

    Engineering, Bueno Aires, Vol.1, 367–376.

    2. Бустаманте, М. Джанеселли Л. (1982). Прогноз несущей способности сваи методом статического проникновения

    CPT. Материалы 2-го Европейского симпозиума по тестированию на проникновение, Амстердам,

    Vol. 2, 493–500.

    3. Койл Н. М. и Кастелло Р. Р. (1981). Новые расчетные соотношения для свай в песке. Журнал отдела геотехнической инженерии

    , ASCE, 107 (GT7), 965 - 986.

    4. ДеРуйтер, Дж. И Беринген, Ф. Л.(1979). Свайные фундаменты для крупных сооружений в Северном море. Марин

    Геотехнология, 3 (3), 267 - 314.

    5. Феллениус Б. (1975). Пробная загрузка свай и новая процедура контрольных испытаний. Журнал отдела геотехнической инженерии

    , ASCE, 101 (GT9), 855 - 869.

    6. Fellenius, B.H. (1980). Анализ результатов типовых испытаний на свайную нагрузку. Ground

    Engineering, сентябрь 19 - 31.

    7. Гвиздала К. (1997). Польские методы проектирования одинарных осевых свай.Расчет аксиально нагруженных свай

    - Европейская практика, Брюссель, 291–306.

    8. Гвиздала К., Стенчневски К. (2007). Определение несущей способности свайных фундаментов

    по результатам испытаний CPT. Материалы 3-го Международного семинара по проектированию грунтов

    Параметры, полученные на месте и лабораторные испытания, Познань, сентябрь 2006 г.

    9. Мейерхоф, Г. Г. (1956). Испытания на проникновение и несущую способность несвязных грунтов. Журнал

    геотехнической инженерии, ASCE, 82 (1), 1-19.

    10. Мейерхоф Г. Г. (1976). Несущая способность и осадка свайных фундаментов. Журнал

    Геотехническая инженерия, ASCE, 102 (3), 197 - 228.

    11. Мейерхоф, Г. Г. (1983). Масштабный эффект предельной вместимости сваи. Journal of Geotechnical

    Engineering, ASCE, 109 (6), 797–806.

    12. Риз, Л. К. и О'Нил, М. В. (1988). Буровые валы; Строительные процедуры и проектирование

    Методы

    , Отчет № FHWA-HI-88-42, Департамент США.транспорта, Вашингтон, округ Колумбия,

    13. Риз. Л. К. и О’Нил, М. В. (1989). Новый метод расчета пробуренного вала из обычного грунта

    и испытания горных пород. Труды Конгресса Foundation Engineering: текущие принципы и практика

    , ASCE, Vol. 2, 1026 - 1039.

    14. Шмертманн, Дж. Х. (1970). Статический конус для расчета статической осадки на песке. Journal of Soil

    Отдел механики и фундаментостроения, ASCE, 96 (SM3), 1011-1042.

    15. Шмертманн, Дж. Х. (1978). Руководство по испытаниям на проникновение конуса, характеристикам и дизайну. США

    Министерство транспорта, FHWA-TS-78-209.

    16. Шмертманн Дж. Х., Хартман Дж. П. и Браун П. Р. (1978). Улучшенный коэффициент влияния деформации

    Диаграммы. Журнал инженерно-геологического отдела, ASCE, 104 (GT8), 1131 - 1135.

    17. Simpson, B. (2007) Предлагаемые изменения коэффициентов корреляции.

    % PDF-1.7 % 1 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > / ProcSet [/ PDF / Text / ImageB / ImageC] >> / Содержание 23 0 R >> эндобдж 5 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 507 507 226 326 401 498 507 715 682 221 303 303 498 498 250 306 252 386 507 507 507 507 507 507 507 507 507 507 268 268 498 498 498 463 894 579 544 533 615 488 459 631 623 252 319 520 420 855 646 662 517 673 543 459 487 642 567 890 519 487 468 307 386 307 498 4925 291 479 423525498305 471525230 239 455230 799 525 527 525 525 349 3 525 452715 433 453 395 314 460 314 498 507 507 507 250 498 418 690 498 498 395 1038 459 339 867 507 468 507 507 250 250 418 418 498 498 905 450 705 391 339 850 507 395 487 226 326 498 507 498 507 498 498 393 834 402 512 498 306 507 394 339 498 336 334 292550 586 252 307 246 422 512 636 671 675 463 579 579 579 579 579 763 533 488 488 488 488 252 252 252 252 625 646 662 662 662 662 662 498 664 642 642 642 642 487 517 527 479 479 479 479 479 479 773 423 498 498 498 498 230 230 230 230 525 525 527 527 527 527 527 498 529 525 525 525 525 453 525 453] эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 507 507 226 326 438 498 507 729 705 233 312 312 498 498 258 306 267430 507 507 507 507 507 507 507 507 507 507 276 276 498 498 498 463 898 606 561 529 630 488 459 637 631267 331 547 423 874 659 676532 686 563473495 653 591 906 551520 478 325 430 325 498 498 300 494 537 418 537 503 316 474537 246 255 480 246 813 537 538 537 537 355 399 347 537 473 745 459 474 397 344 475 344 498 507 507 507 258 498 435 711 498 498 401 1062 473 344 874 507 478 507 507 258 258 435 435 498 498 905 444 720 399 344 843 507 397 520 226 326 498 507 498 507 498 498 415 834 416 539 498 306 507 390 34248 338 336 30 156358 268 303 252435 539 658 691 702463 606 606 606 606 606 606 7 529 488 488 488 488 267 267 267 267 639 659 676 676 676 676 498 681 653 653 653 653 520 532 555 494 494 494 494 494 775 418 503 503 503 503 246 246 246 246 537 537 538 538 538 548 548 538 537 537 537 537 474 537 474] эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 5555 500 500 1000 833 278 333 333 500 570 250 333250 278 500 500 500 500 500 500 500 500 500 500 333 333 570 570 570 500 930 722 667 722 722 667 611 778 778 389 500 778 667 944 722 778 611 778722 556 667 722 722 1000 722 722 667 333 278 333 581 500 333 500 556 444 556 444 333 500 556 278 333 556 278 833 556 500 556 556 444 389 333 556 500 722 500 500 444 394 220 394 520 778 500 778 333 500 500 1000 500 500 333 1000 556 333 1000 778 667 778 778 333 333 500 500 350500 1000333 1000389333722778444722250333500500500500220500333747300500570333747500400549300300333576540250 3333300330500750750750500722722722722722722 1000 722 667 667 667 667 389 389 389 389 722 722 778 778 778 778 778570778722 722 722 722 611 556 500 500 500 500 500 500 722 444 444 444 444 444 278 278 278 278 500 556 500 500 500 500 500 549 500 556 556 556 556 500 556 500] эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 408 500 500 833 778 180 333 333 500 564 250 333250 278 500 500 500 500 500 500 500 500 500 500 278 278 564564 444 921 722 667 667 722 611 556722 722 333 389 722 611 889 722 722 556 722 667 556611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444500 444 333 500 500 278 278 500 278 778 500 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 778 500 778 333 500 444 1000 500 500 333 1000 556 333 889 778 611 778 778 333 333 444 444 350500 1000 333980389333722778444722250 333500500500500200500 333760 276 500 564 333760 500 400 549 300 300 333 576 453250 333 300 310 500 750 750 750750 444722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 722 722 722 722 722 722 564722 722 722 722 722 556 500 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 500 500 500] эндобдж 17 0 объект > эндобдж 18 0 объект > / FontDescriptor 19 0 R / Подтип / CIDFontType2 / Type / Font / W 21 0 R >> эндобдж 19 0 объект >> / FontName / FWPMEB + Wingdings-Regular >> эндобдж 20 0 объект > поток xW} pT? ل | Например! H0, I6c M `m * AEyKP̨ Ղ cqt jIz ޻ Ij􏾳 {ys ݷ

    Под расширенными сваями | Недоработанный свайный фундамент под строительство расширенных свай

    Что такое сваи с недоразвёртыванием?

    Развернутая свая , изначально разработанная для местности, где чернозем может вызвать структурную нестабильность . Часто почвы претерпевают объемные изменения из-за колебаний влажности под поверхностью земли. Черный хлопчатобумажный грунт превосходит усадку s и свойство расширения может вызвать повреждение, которое является очень опасным и критическим для несущей способности фундамента .

    • Тип сваи ( Развернутые сваи ), разработанный C.B.R.I. (Центральный научно-исследовательский институт строительства).
    • Развернутые сваи - это из RCC.
    • Особенностью этого типа сваи является увеличенная часть , дается внизу или в средней точке , которая известна как « с недоработкой» или «луковица».
    • Если в свае одна луковица, она называется с одинарной развёрткой, , если в свае две луковицы , то она называется с двойной развёрткой, и если больше двух луковиц, это называется несколько под рассверленные сваи.

    Это факт, что после введения расширенной сваи для считается самым безопасным и экономичным фундаментом для таких чернохлопчатобумажных или экспансивных грунтов.


    Развернутый Значение

    Reamed - это процедура резки , для которой в процессе резки создается отверстие очень точного размера .


    Определение сваи с недоразвёртыванием

    Это монолитная свая с такой увеличенной луковицей на дне , форма луковицы , полученная путем вырубки или выкапывания всей почвы или других подходящих методов , называется Под расширенной сваей. Часто их называют буронабивными монолитными бетонными сваями .

    Эти типы свай наиболее сконструированы в полевых условиях, построенных для того, чтобы передавать нагрузку от фундамента на грунт за счет сопротивления , создаваемого , поскольку его вершина вдоль вершины или даже в обоих случаях называется несущей сваей . .

    Когда сваи под разверткой оказывает сопротивление в точке или основании сваи, они также работают как «Концевая опорная свая » , и даже если нагрузка переносится в основном трением вдоль ее вершины, эти сваи также работать как Friction Pile . Если она построена только для , чтобы избежать подъема или вытягивания, считается «якорной сваей».

    Код IS для расширенных свай

    IS: 2911 (Часть III) - 1980 - ПРАВИЛА ПРОЕКТИРОВАНИЯ И СТРОИТЕЛЬСТВА СВАЙНЫХ ФУНДАМЕНТОВ

    Подробнее: Типы фундаментов и их применение в строительстве


    Детали фундамента под расширенными сваями
    • Диаметр сваи = от 20 до 50 см
    • Диаметр луковицы = от 2 до 3 диаметров диам.сваи
    • Длина сваи = от 3 до 8 м
    • Расстояние между двумя сваями = от 2 до 4 м
    • Расстояние между двумя луковицами = 1,25–1,5 диаметра луковицы.
    • Грузоподъемность = от 20 до 40 тонн
    • Объем расширенной сваи зависит от диаметра сваи и размера луковиц.
    Сваи под расширенными

    Это буронабивные монолитные бетонные сваи , имеющие одну или несколько выпуклостей , образованных в нижней части путем расширения ствола ствола сваи.

    Расширения помогают в обеспечении прочной опоры или анкерного крепления . Было обнаружено, что такие сваи полезны в расширяющихся почвах , таких как чернохлопчатобумажный грунт , поскольку луковицы обеспечивают фиксацию против подъема из-за давления набухания. Сваи с недорастворением считаются полезными в чернохлопчатобумажной почве .


    Проектирование расширенной сваи

    Бетон, используемый при укладке сваи под развальцовкой , должен иметь значение осадки минимум 100–150 мм для облегчения сброса в бункер.В случае бетонной опалубки используемый бетон должен иметь осадку 150-200 мм с эффективными результатами. Для бетона марок М-20 и М-25 необходимо минимальное содержание цемента 350 или 400 кг / м3.

    В плотных слоях расширяющихся грунтов, минимальная длина сваи под развёртыванием s должна быть на 3,5 м ниже уровня поверхности.

    Диаметр подложки должен быть не менее в 2,5 раза больше диаметра стержня.

    Общее вертикальное расстояние d между нижними сводами должно быть в 1,5 раза больше глубины нижних свёрток для свай диаметром диаметром 300 мм. Для штабелей большего диаметра расстояние может быть уменьшено до , в 1,25 раза превышающего диаметр стержня.

    Максимальный диаметр колбы не должен быть больше двойного диаметра колбы. В случае чернохлопчатобумажных почв эта глубина под рассвернутой луковицей никогда не должна быть ниже 1.75 м над землей.

    Как правило, количество лампочек, используемых в одном , не должно превышать 2.

    Минимальное расстояние между двумя сваями под развёртыванием в группе должно быть в 1,5 раза больше диаметра под развёртки и обычно поддерживается на уровне вдвое больше диаметра под развёрткой.

    В случае группы свай , имеющей расстояние между сваями , равное 2 Du, , размер группы можно считать равным величине несущей способности конкретных свай в категории. В случае группы свай с таким шагом 1,5 Du свай , более безопасная нагрузка, рассчитанная на сваю, действительно должна быть уменьшена на 10% .


    Расчет луковицы под расширенные сваи

    Диаметр луковиц с недорастворением может быть порядка в 2–3 раза больше диаметра стержня. Расстояние между лампами составляет от 1,25 до 1,5 диаметров стержня . Самые верхние луковицы должны находиться на глубине минимум в 2 раза больше диаметра луковицы .

    Расточка под сваи проводится обычным способом. После этого луковицы формируются с помощью расширителя , вращаемого буровой штангой . Ковши используются для удаления вынутого грунта. Затем опускают арматурный каркас и бетонируют сваю. Количество цемента и осадка бетона должны соответствовать рекомендованным буронабивным набивным сваям.


    Повышение несущей способности расширенных свай

    1.Поставив еще лампочки

    2. Увеличивая диам. лампы

    3. За счет увеличения длины сваи

    4. Обеспечивая надлежащие арматура

    Подробнее: Несущая способность почвы и пригодность фундамента


    Строительство расширенных свай

    Ниже приводится метод строительства расширенного свайного фундамента со схемой.

    • Оборудование для свай под развертку разработано C.B.R.I. Рурки.
    • Машина проста в использовании, она легкая и легкая.

    Состоит из трех инструментов

    1. Спиральный шнек

    2. Развертка

    3. Направляющая для растачивания
    • Отверстие или отверстие для под расширенной сваей выполняется с помощью спирального шнека .
    • Спиральный шнек состоит из специального c , выступающего в нижней части , для рытья ствола.
    • Выкопанный грунт вынимается ковшом.
    • Для изготовления луковицы используются специальные фрезы . диам. баллона можно увеличить на , приложив избыточное давление . Шнек устанавливается на треногу после завершения копания . Итак, копание ведется в вертикальном направлении .
    • При достижении достаточной глубины шнек выдвигается. Затем в отверстие вставляется арматура . Выполнено бетонирование . Если сваи больше одной, то балка строится как , которая соединяет сваи и заставляет их действовать как единое целое . Стена возводится на балке.

    Использование недорасвернутых свай

    Сваи с расширенными отверстиями обычно используются для укрепления фундамента в различных типах грунтов, таких как песчаные грунты , глинистые грунты, а также обширные грунты.

    Ниже приведены условия, при которых используются просверленные сваи,

    • контролировать неблагоприятные воздействия сезонных колебаний влажности на обширных почвах, таких как чернохлопковая почва.
    • исследуют грубые пласты в основании
    • достигают достаточного сопротивления для прямых, нисходящих, боковых нагрузок, а также моментов.
    • Перенос фундамента чуть ниже отметки размыва
    • Сваи с расширенными отверстиями больше подходят для заводских зданий, включая фундаменты машин.
    • Эти сваи часто используются в тех случаях, когда трение и шум, производимый конструкцией сваи, сведены к минимуму.

    В случае, если насыпка грунта s выполняется каким-то профессионалом или обычно такой слой толщиной 20 см с оптимальным содержанием влаги, готов справиться. Таким образом, чтобы уравновесить этот дефект, плита класса строится на наборе недорастворенных свай, расположенных на расстоянии около 3 м от центра к центру.

    В этом классе плиты сконструированы как плоская плита и поддерживаются сваями с расширенными отверстиями , где даже верхушка сваи служит опорой колонны ac , как и плоская плита, но их балки не предусмотрены для снизить стоимость.

    Этот метод выполняется действительно хорошо лет. Этот метод уже реализован в и административных зданиях для Сурата и международного аэропорта Амритсар, и , а также в различных общественных зданиях в Индии.

    Применение расширенных свай
    • Как чернозема хлопчатника имеет свойство расширяться при контакте с влагой или водой и сжиматься при высыхании . По этой причине существует вероятность появления трещин в конструкции .
    • По во избежание повреждений , вызванных изменением объема грунта, использовалась недоработанная свая.
    • Иногда, когда грунт фундамента не обладает достаточной несущей способностью , для увеличения несущей способности используются расширенные сваи.
    • Сваи с расширенными отверстиями подходят при высоком уровне воды в песчаных грунтах.
    • Следует использовать.При действии подъемных сил

    Преимущества свай с недоразвёртыванием
    • Эти сваи помогают уменьшить дифференциальную осадку , а также вертикальную осадку.
    • Развернутые сваи в основном используются для грунта, который расширяется и сжимается в ответ на колебания влажности или расширяющуюся структуру грунта .
    • Предоставление нижних расширителей или луковиц дает преимущество в виде увеличения на подшипников и луковиц.
    • По мере того, как количество луковиц увеличивается с с одной до двух, грузоподъемность l недорастворенной сваи увеличивается.
    • Луковицы, поставляемые как , используются для фундамента , так как луковицы с недорастворением до предотвращают подъем и используются в качестве анкеров.
    • Развернутая свая доказала свою экономичность как меньшая глубина свайной трубы, что означает, что меньшее количество бетона используется для замещения выкопанного материала.

    Недостатки расширенных свай

    • Глубина рассверленных свай ограничена и, в зависимости от климатической ситуации , сваи с недоразвёртыванием не подходят для заболоченного грунта , поскольку они изгибаются за счет трения.
    • Высокие машины и оборудование требуют строгого контроля качества и постоянного контроля в процессе производства.
    • В течение длительного периода времени сваи с расширенными отверстиями выполняются с помощью ручного ручного насоса . Во время установки расширенной сваи, Очень важно поддерживать водопроводную линию сваи, поскольку, если они не находятся в водопроводе, весь процесс передачи нагрузки сместится.

    Код для свайного фундамента
    • Индийский стандарт IS с кодом 2911 (часть 3) - 1980 соответствует проекту и конструкции из свай с недорастворением с одной или несколькими луковицами.
    • В соответствии с рекомендацией Кодекса IS , диаметр луковицы недорастворенной сваи будет составлять от в 2–3 раза больше диаметра ствола в зависимости от жизнеспособности конструкции и технических требований к конструкции.
    • Код IS дал интервал от 1,25 до 1,5, умноженный на диаметра лампы для ламп.
    • Горизонтальный угол 45 рекомендуется для всех нижних лампочек. Индийский стандарт IS код 2911 определяет математических выражений для расчета несущей и грузоподъемности.

    Посмотреть видео: Строительство расширенной сваи

    Часто задаваемые вопросы:

    Q.1 Что такое расширенные сваи?

    Буронабивные монолитные сваи из бетона, которые могут иметь одну или несколько выпуклостей, называемых выпуклостями, образованными расширением стволов свай, называются расширенными сваями. Грунт с расширенной структурой, изначально разработанный для местности, где чернохлопковая почва может вызвать структурную нестабильность.

    Q.2 Если в свае с недоразвёртыванием есть только одна луковица, это называется?

    Одинарная свая с недоразвёртыванием - это термин, используемый для сваи с недоразвёртыванием, имеющей только одну выпуклость, где выпуклость - это увеличенная часть, образованная за счет увеличения ствола сваи.Точно так же свая с недоразвёртыванием, имеющая более одной луковицы, называется многослойной сваей с недоразвёртыванием.

    Q.3 Что такое буронабивные сваи?

    Буронабивные сваи - это бетонные набивные сваи, закладываемые в грунт с применением различных технологий и методов бурения. Развернутые сваи иногда называют буронабивными сваями.

    Определение сваи с недоразвёртыванием


    Развернутые сваи представляют собой монолитные бетонные сваи сваи , имеющие одну или несколько бетонных выпуклостей, образованных путем увеличения ствола сваи . Развернутая свая , первоначально разработанная для местности, где чернозем может вызвать структурную нестабильность . Часто почвы претерпевают объемные изменения из-за колебаний влажности под поверхностью земли.

    Код IS для свайного фундамента

    Свайный фундамент IS Коды следующие:
    IS 2911: Часть 1: Раздел 1: 1979 Забивной монолитный бетон сваи .
    IS 2911: Часть 1: Раздел 2: 1979 Буронабивные монолитные сваи .
    IS 2911: Часть 1: Раздел 3: 1979 Забивная железобетонная свая Свая .


    Подробнее:

    Проектирование свайного фундамента | КПД свайных групп

    Расстояние между сваями обычно определяется практическими и экономическими соображениями. В проект свайного фундамента обычно входит:

    1. Определение предельной несущей способности группы Q u (г)
    2. Определение расчетной группы s (g)

    Хорошо известно, что предельная нагрузка группы обычно отличается от суммы предельных нагрузок отдельных свай Q u (s).

    ——— (1)

    Где, E f = Коэффициент эффективности группы

    Q u (г) = предельная несущая способность группы свай

    Q u (s) = Предельная несущая способность одинарной сваи

    Эффективность группы зависит от типа грунта, способа установки, шага, нагрузки на сваю и количества свай в группе.

    Не существует приемлемой «формулы эффективности» для определения несущей способности группы. Есть несколько формул, таких как правило FLED, формула Converse Labare, которые иногда используются инженерами.Эти формулы являются эмпирическими и дают эффективность меньше единицы. Но когда сваи устанавливаются в песках, коэффициент полезного действия может быть больше единицы, как показал Vesic. Существует не так много экспериментальных данных для определения групповой эффективности свай, заделанных в глинистый грунт.

    Есть много уравнений эффективности группы свай. Эти уравнения следует использовать с осторожностью. Во многих случаях они не лучше, чем хорошее предположение. Формула Конверс Лабаре является одной из наиболее широко используемых формул и выражается как:

    ———- (2)

    Где, m = количество строк в группе

    n = количество свай в рядах

    d = диаметр сваи

    s = шаг свай

    Согласно Томлинсону, когда расстояние между сваями в группе в два раза больше диаметра сваи, эффективность составляет около 0.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    [an error occurred while processing the directive]
    Сопротивление Символ R1 R2 R3 R4
    R4 1.1 1,1 1,0 1,45
    Вал (сжатие) γ s 1,0 1,1 1,0 1,3
    γ Всего /
    1,11 1,1 1,0 1,4
    Вал на растяжении γ s; t 1,25 1,15 1,1