Сопротивление сжатию бетона – Расчетные сопротивления и модули упругости для различных строительных материалов

Содержание

Сопротивление бетона


Расчетное и нормативное сопротивление бетона

Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.

Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?

Что такое расчетное сопротивление?

Специалисты получают показатели сопротивления строительного материала, разделяя нормативные сопротивления на коэффициенты. При определении прочности деталей конструкций к расчетному сопротивлению некоторых бетонных растворов иногда уменьшают либо увеличивают за счет умножения на определенные коэффициенты, учитывающие ряд факторов: многократные нагрузки, длительность воздействия нагрузок, способ изготовления изделия, его размеры и пр.

Как производить расчеты?

Каким образом нужно производить расчеты прочности конструкции, например, на ее сжатие? С этой целью строители используют специальные расчетные показатели. Для обеспечения достаточной устойчивости бетонных изделий при проведении расчетов, пользуются параметрами прочности стройматериала, которые чаще всего ниже параметров самих конструкций. Такие значения именуют расчетными. Они зависят непосредственно от нормативных (фактических) значений.

Нормативные показатели

Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.

Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.

Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.

Характеристики расчетного значения

Чтобы сделать надежные и долговечные конструкции, рассчитывают значения с запасом. Для получения этого значения строители прибегают к удельным сопротивлениям изделий: они разделяют их на коэффициент. Сопротивление стройматериала растяжению либо сжатию вычисляют при помощи формулы, которая выглядит следующим образом: R = Rn /g (g – коэффициент прочности). Чаще всего этот параметр равняется одному. От однородности материала зависит величина коэффициента. При этом выполнять соответствующие расчеты необязательно, поскольку получить необходимые параметры можно при помощи таблицы.

Другие характеристики

Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:

  1. Определение удельного электрического сопротивления бетонного раствора может понадобиться, если вы решили самостоятельно осуществить обогрев смеси при помощи электродов. И чем больше показатель, тем сильнее будет нагреваться цементный раствор.
  2. Влагопроницаемость смесей позволяет определить самое сильное давление жидкости, которому способен противостоять стройматериал. Иными словами, это значение показывает, может ли влага проникнуть сквозь бетон. Водонепроницаемыми марками считаются с W2 по W20. При этом цифры указывают на давление воды, которое способна выдержать конструкция.
  3. Воздухонепроницаемость бетонного состава будет зависеть от прочности изделия. Согласно государственному стандарту, сопротивление бетона проникновению воздуха составляет 3-130 с/см3.
  4. Морозоустойчивость позволяет конструкциям из бетона выдерживать многократное замерзание, оттаивание с сохранением свойств. На рынке строительных материалов представлены марки F50-F1000 (цифры означают число циклов, которые выдерживает строительный материал). Как показывает практика, в среднем морозостойкость изделий равна показателю F200.
  5. Теплопроводимость – важная характеристика изделий, от которой будет зависеть плотность строения. Материалы, содержащие больше пор, обладают меньшей теплопроводностью, поскольку воздух, который их заполняет, является прекрасным теплоизолятором. Лучше всего теплоизоляцию обеспечивают газоблоки или пеноблоки, в структуре которых есть множество пор.

Заключение

Прочность изделий способна отличаться в зависимости от компонентов, входящих в состав материала и их пропорций. Также это объясняется тем, что стройматериал представляет собой неоднородную смесь. Вне зависимости от способа перемешивания бетонного раствора, невозможно равномерно распределить компоненты. Поэтому при проведении работ необходимо учитывать расчетн

vest-beton.ru

Расчетное сопротивление бетона


Что такое расчетное сопротивление бетона и как его рассчитать

Как известно, бетон является весьма неоднородным материалом, в результате его показатели прочности могут существенно отличаться даже в пределах нескольких опытных образцов, изготовленных из одной смеси. Но, как в таком случае рассчитать прочность бетонной конструкции, к примеру, на сжатие? Для этого используют расчетные значения, в данном случае это будет расчетное сопротивление бетона сжатию.

Далее мы рассмотрим, что такое расчетные характеристики и как их узнать, а также ознакомимся с некоторыми другими параметрами данного материала.

Неоднородная бетонная поверхность

Как получить расчетное сопротивление

Для обеспечения достаточной надежности бетонных конструкций, при выполнении расчетов, используют такие значения прочности бетонного материала, которые в большинстве случаев ниже фактических показателей в конструкциях. Эти значения называют расчетными, соответственно, они напрямую зависят от фактических или по-другому – нормативных значений.

Нормативные характеристики

Еще совсем недавно (до 1984 г) единственной характеристикой прочности бетона была его марка (М). Этот параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с появлением СНиП 2.03.01 были также введены классы по прочности на сжатие.

По сути, класс является нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 или гарантированной доверительной вероятностью 95%, и риском 5 процентов. Надо сказать, что в данном случае брать среднюю крепость рискованно, так как имеется 50 процентов вероятности того, что в опасном сечении конструкции она окажется ниже средней.

В то же время брать за основу минимальный показатель слишком накладно, так как это приведет к существенному неоправданному увеличению сечения конструкции.

На фото — бетонная конструкция

Таким образом, основным параметром прочности в нашем случае является класс. Но, помимо осевого сжатия, важной характеристикой является еще и осевое растяжение. Устойчивость к осевому растяжению (если этот параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Совет! Чем выше класс материала, тем выше его цена .

Поэтому нецелесообразно возводить конструкции с необоснованным запасом прочности.

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, выполняют расчет с определенным запасом прочности. Чтобы получить этот запас, удельное сопротивление бетона делят на определенный коэффициент, и таким образом данный показатель при расчетах уменьшают.

Определение фактического коэффициента прочности

Расчетное сопротивления бетона растяжению или сжатию можно вычислить по следующей формуле — R= Rn /g, где g – является коэффициентом надежности по прочности. Обычно данное значение составляет 1,3. Однако, чем менее однородный массив, тем этот коэффициент больше.

Правда, выполнять расчет не обязательно, так как получить нужные значения позволяет таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Алмазная резка бетонной поверхности

Совет! В результате высокой прочности бетонных изделий, их механическая обработка вызывает определенные сложности. Чтобы упростить эту процедуру, используют электроинструмент с алмазными насадками.

В частности, строителями зачастую выполняется резка железобетона алмазными кругами, или же алмазное бурение отверстий в бетоне, а также алмазная шлифовка бетонных поверхностей.

Определение электрического сопротивления опытного образца

Прочие характеристики

Помимо вышерассмотренных параметров, при выполнении некоторых расчетов, требуются и другие характеристики бетона.

Далее мы рассмотрим некоторые из них:

  • Удельное электрическое сопротивление бетона (p)- является сопротивлением прохождению электрического тока через бетонный кубик размером 1х1х1 см. На данный параметр жидкой фазы влияет содержание щелочей в цементе и соотношение жидкости. В зависимости от этого, значение может меняться в пределах от 4 до 20 Ом. Определение этой характеристики может потребоваться при организации своими руками обогрева раствора электродами. Чем выше это значение тем, соответственно, масса нагревается сильней.
  • Водопроницаемость – данный параметр обозначает наибольшее давление воды, которому может противостоять материал, т.е. при которых вода не может просочиться сквозь бетонный образец. По водонепроницаемости существуют марки W2-W20, цифры марки при этом говорят о давлении в кгс/см2, при котором структура способна противостоять воде.
  • Воздухонепроницаемость – данная характеристика зависит от плотности структуры. Сопротивление бетона прониканию воздуха по ГОСТу 12730.5-84 может составлять 3,1-130,2 с/см3, в зависимости от его марки по водопроницаемости.
  • Морозостойкость – способность переносить многократные циклы замерзания и оттаивания без потери основных свойств. Существуют марки с градацией от F50 до F1000, где цифры обозначают количество циклов замерзания/оттаивания, которые способен выдержать материал. На практике, среднестатистическая морозостойкость в обычном строительстве находится в пределах F100-F200.
  • Теплопроводность – является одним из важнейших п

vest-beton.ru

6. Что такое усадка бетона?

Это свойство бетона самопроизвольно уменьшаться в объеме (укорачиваться во всех направлениях) в процессе твердения и набора прочности в воздушной среде. Усадке подвергается не весь бетон, а только цементный камень. Уменьшаясь в объеме, он сжимает встречающиеся препятствия (крупный заполнитель, арматуру), от которых, в свою очередь, получает реакции противодействия. Следовательно, в препятствии возникают сжимающие, а в цементном камне растягивающие напряжения. Последние приводят к появлению усадочных трещин. Чем меньше защитный слой бетона и чем больше диаметр арматуры, тем больше вероятность образования усадочных трещин на поверхности бетона (вот, кстати, еще одна причина, почему толщина защитного слоя зависит от диаметра арматуры). Если в обычной арматуре усадка вызывает сжимающие напряжения, то в преднапряженной приводит к уменьшению (потерям) растягивающих напряжений.

7. Почему различают призменную и кубиковую прочность бетона при сжатии?

Призменная прочность Rbнаиболее точно соответствует реальной прочности бетона в конструкциях, ее определяют испытанием стандартных призм размерами 150150600 мм. Однако изготовление призм требует вчетверо больше расхода бетона, чем изготовление кубов, а их испытание – дело очень трудоемкое (много времени отнимает центрирование призмы на прессе) и требующее дополнительных приборов. Поэтому в строительной практике призмы заменены кубами размерами 150150150 мм, хотя их прочностьR на 33…37 % выше, чемRb(вызвано это, главным образом, влиянием сил трения между плитами пресса и опорными гранями куба).RbиRсвязаны между собой эмпирической зависимостью:Rb = (0,77– 0,001R)R.

8.Как можно увеличить сопротивление бетона сЖатию?

Разрушение бетонных призм происходит вследствие поперечных деформаций, вызывающих продольные трещины (рис. 7,а). Если призму стянуть поперечными хомутами, то поперечные деформации уменьшатся, продольные трещины появятся позже, разрушение произойдет при более высокой нагрузке – сработает эффект обоймы. Роль внешних хомутов с успехом может выполнить и поперечная (косвенная) арматура в виде сеток или спиралей. Растягиваясь под влиянием поперечных деформаций бетона, арматура сопротивляется и сама воздействует на бетон в виде сжимающих сосредоточенных сил поперечного направления (рис. 7,б).

Рис.7 Рис.8

9. В чем различие между марками и классами бетона по прочности на сжатие?

Марка М– это средняя кубиковая прочность бетонаRв кг/см2; в про­екти­ровании железобетонных конструкций с 1986 г. не применяется, но в строительной практике по-прежнему имеет хождение. КлассВ– это кубиковая прочность в МПа с обеспеченностью (доверительной вероятностью) 0,95. Как и любой другой материал, бетон обладает неоднородной прочностью – отRminдоRmax. Если изменчивость прочности представить в виде кривой нормального распределения (рис. 8), гдеn – число испытаний, то маркаМбудет соответствовать ее вершине, а классВчисленно соответствует 0,0764М(при коэффициенте вариации 0,135). Например,В30примерно соответствуетМ400.

10. Что такое “мягкая” и “твердая” арматурная сталь?

“Мягкая” арматура (классы А-I, A-II, A-III) на диаграмме растяжения (рис. 9,а) имеет три главных участка: упругие деформации (здесь действует закон Гука), площадку текучести при напряжениях pl(предел текучести) и упруго-пластические деформации (криволинейный участок). При проектировании конструкций используют первый и второй участки. Текучесть стали в той или иной степени учитывают в расчетах нормальных сечений на изгиб (при слабом армировании, при многорядном расположении арматуры и т.д.), в расчетах статически неопределимых конструкций по методу предельного равновесия и в других случаях. Третий участок в расчетах не участвует – деформации там столь велики, что в реальных условиях они соответствуют уже разрушению конструкций.

“Твердая”, или высокопрочная арматура (классы А-IV, Ат-IVи выше, B-II, Bp-II, K-7, K-19) не имеет физического предела текучести (рис. 9,б), она деформируется упруго до предела пропорциональности, а далее диаграмма постепенно искривляется. В качестве границы безопасной работы принят условный предел текучести02, при котором остаточные, т.е. пластические удлинения составляют 0,2 %. У “твердых” сталей прочность выше, чем у “мягких”, но зато меньше удлинения при разрыве, т.е. у них хуже пластические свойства, они более хрупкие. “Мягкая” и “твердая” сталь – понятия, разумеется, условные и в официальных документах отсутствуют, но они очень удобны в обиходе, потому их широко используют в научно-технической литературе.

studfiles.net

Нормативные и расчетные характеристики бетона и арматуры

12 мая 2016 г.

Основными показателями прочности и деформативности бето­на являются нормативные значения их прочностных и деформаци­онных характеристик. 

Основными прочностными характеристиками бетона являются нормативные значения:

  • сопротивления бетона осевому сжатию Rb,n;
  • сопротивления бетона осевому растяжению Rbt,n.

Нормативное значение сопротивления бетона осевому сжатию (призменная прочность) следует устанавливать в зависимости от нормативного значения прочности образцов-кубов (нормативная кубиковая прочность) для соответствующего вида бетона и контро­лируемого на производстве. 

Нормативное значение сопротивления бетона осевому растяже­нию при назначении класса бетона по прочности на сжатие следует устанавливать в зависимости от нормативного значения прочности на сжатие образцов-кубов для соответствующего вида бетона и кон­тролируемого на производстве. 

Соотношение между нормативными значениями призменной и кубиковой прочностями бетона на сжатие, а также соотношение между нормативными значениями прочности бетона на растяжение и прочности бетона на сжатие для соответствующего вида бетона следует устанавливать на основе стандартных испытаний. 

При назначении класса бетона по прочности на осевое растяже­ние нормативное значение сопротивления бетона осевому растяже­нию принимают равным числовой характеристике класса бетона по прочности на осевое растяжение, контролируемой на производстве. 

Основными деформационными характеристиками бетона явля­ются нормативные значения: 

  • предельных относительных деформаций бетона при осевом сжатии и растяжении εbo,n и εbto,n ;
  • начального модуля упругости бетона Еb,n.
  • Кроме того, устанавливают следующие деформационные харак­теристики:
  • начальный коэффициент поперечной деформации бетона v;
  • модуль сдвига бетона G;
  • коэффициент температурной деформации бетона αbt;
  • относительные деформации ползучести бетона εсг (или соот­ветствующие им характеристику ползучести φb,cr меру ползу­чести Cb,cr;
  • относительные деформации усадки бетона εshr.

Нормативные значения деформационных характеристик бето­на следует устанавливать в зависимости от вида бетона, класса бе­тона по прочности на сжатие, марки бетона по средней плотности, а также в зависимости от технологических параметров бетона, если они известны (состава и характеристики бетонной смеси, способов твердения бетона и других параметров). 

В качестве обобщенной характеристики механических свойств бетона при одноосном напряженном состоянии следует принимать нормативную диаграмму состояния (деформирования) бетона, уста­навливающую связь между напряжениями σb,n (σbt,n) и продольны­ми относительными деформациями εb,n (εbt,n) сжатого (растянуто­го) бетона при кратковременном действии однократно приложен­ной нагрузки (согласно стандартным испытаниям) вплоть до их нормативных значений.  

Основными расчетными прочностными характеристиками бе­тона, используемыми в расчете, являются расчетные значения со­противления бетона:

  • осевому сжатию Rb;
  • осевому растяжению Rbt.

Расчетные значения прочностных характеристик бетона следу­ет определять делением нормативных значений сопротивления бе­тона осевому сжатию и растяжению на соответствующие коэффи­циенты надежности по бетону при сжатии и растяжении. 

Значения коэффициентов надежности следует принимать в за­висимости от вида бетона, расчетной характеристики бетона, рас­сматриваемого предельного состояния, но не менее: 

  • для коэффициента надежности по бетону при сжатии:
  1. 1.3  — для предельных состояний первой группы;
  2. 1.0  — для предельных состояний второй группы;
  • для коэффициента надежности по бетону при растяжении:
  1. 1,5 — для предельных состояний первой группы при назначе­нии класса бетона по прочности на сжатие;
  2. 1.3  — то же, при назначении класса бетона по прочности на осевое растяжение;
  3. 1.0  — для предельных состояний второй группы.

Расчетные значения основных деформационных характеристик бетона для предельных состояний первой и второй групп следует принимать равными их нормативным значениям. 

Влияние характера нагрузки, окружающей среды, напряженно­го состояния бетона, конструктивных особенностей элемента и дру­гих факторов, не отражаемых непосредственно в расчетах, следует учитывать в расчетных прочностных и деформационных характе­ристиках бетона коэффициентами условий работы бетона γbi.

Расчетные диаграммы состояния (деформирования) бетона сле­дует определять путем замены нормативных значений параметров диаграмм на их соответствующие расчетные значения. 

Значения прочностных характеристик бетона при плоском (двухосном) или объемном (трехосном) напряженном состоянии следует определять с учетом вида и класса бетона из критерия, выражающего связь между предельными значениями напряже­ний, действующих в двух или трех взаимно перпендикулярных направлениях. 

Деформации бетона следует определять с учетом плоского или объемного напряженных состояний. 

Характеристики бетона — матрицы в дисперсно-армированных конструкциях следует принимать как для бетонных и железобетон­ных конструкций. 

Характеристики фибробетона в фибробетонных конструкциях следует устанавливать в зависимости от характеристик бетона, от­носительного содержания, формы, размеров и расположения фибр в бетоне, ее сцепления с бетоном и физико-механических свойств, а также в зависимости от размеров элемента или конструкции. 

Основными показателями прочности и деформативности арма­туры являются нормативные значения их прочностных и деформа­ционных характеристик. 

Основной прочностной характеристикой арматуры при растя­жении (сжатии) является нормативное значение сопротивления Rs,n, равное значению физического предела текучести или условного, соответствующего остаточному удлинению (укорочению), равному 0,2%. Кроме того, нормативные значения сопротивления арматуры при сжатии ограничивают значениями, отвечающими деформаци­ям, равным предельным относительным деформациям укорочения бетона, окружающего рассматриваемую сжатую арматуру.  

Основными деформационными характеристиками арматуры являются нормативные значения: 

  • относительных деформаций удлинения арматуры εs0,n при до­стижении напряжениями нормативных значений Rs,n;
  • модуля упругости арматуры Es,n.

Для арматуры с физическим пределом текучести нормативные значения относительной деформации удлинения арматуры εs0,n опре­деляют как упругие относительные деформации при нормативных значениях сопротивления арматуры и ее модуля упругости. 

Для арматуры с условным пределом текучести нормативные значения относительной деформации удлинения арматуры εs0,n опре­деляют как сумму остаточного удлинения арматуры, равного 0,2%, и упругих относительных деформаций при напряжении, равном условному пределу текучести. 

Для сжатой арматуры нормативные значения относительной деформации укорочения принимают такими же, как при растяже­нии, за исключением специально оговоренных случаев, но не более предельных относительных деформаций укорочения бетона. 

Нормативные значения модуля упругости арматуры при сжа­тии и растяжении принимают одинаковыми и устанавливают для соответствующих видов и классов арматуры.

В качестве обобщенной характеристики механических свойств арматуры следует принимать нормативную диаграмму состояния (деформирования) арматуры, устанавливающую связь между напря­жениями σs,n и относительными деформациями εs,n арматуры при кратковременном действии однократно приложенной нагрузки (со­гласно стандартным испытаниям) вплоть до достижения их уста­новленных нормативных значений.

Диаграммы состояния арматуры при растяжении и сжатии при­нимают одинаковыми, за исключением случаев, когда рассматрива­ется работа арматуры, в которой ранее были неупругие деформа­ции противоположного знака. 

Характер диаграммы состояния арматуры устанавливают в за­висимости от вида арматуры. 

Расчетные значения сопротивления арматуры Rs определяют делением нормативных значений сопротивления арматуры на ко­эффициент надежности по арматуре. 

Значения коэффициента надежности следует принимать в зави­симости от класса арматуры и рассматриваемого предельного со­стояния, но не менее: 

  • при расчете по предельным состояниям первой группы — 1,1;
  • при расчете по предельным состояниям второй группы — 1,0.

Расчетные значения модуля упругости арматуры Es принимают равными их нормативным значениям.

Влияние характера нагрузки, окружающей среды, напряженно­го состояния арматуры, технологических факторов и других усло­вий работы, не отражаемых непосредственно в расчетах, следует учитывать в расчетных прочностных и деформационных характе­ристиках арматуры коэффициентами условий работы арматуры γsi.  

Расчетные диаграммы состояния арматуры следует определять путем замены нормативных значений параметров диаграмм на их соответствующие расчетные значения.

ros-pipe.ru

Нормативные и расчетные сопротивления бетона — Мегаобучалка

Нормативные сопротивления бетона – это сопротивление осевому сжатию бетонных призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn, которые определяются в зависимости от класса бетона по прочности (при обеспеченности 0,95).

Расчетные сопротивления бетона получают путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по материалу:

— расчетное сопротивление бетона осевому сжатию, где — коэффициент надежности по бетону при сжатии, зависящий от вида бетона.

— расчетное сопротивление бетона осевому растяжению, где — коэффициент надежности по бетону при растяжении, зависящий от вида бетона.

 

При расчете элементов конструкций расчетные сопротивления бетона Rb и Rbt в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы бетона γbi, которые учитывают следующие факторы: длительность действия нагрузки; многократную повторяемость нагрузки; условия, характер и стадию работы конструкции; способ ее изготовления; размеры сечения и т.д.

 

Нормативные и расчетные сопротивления арматуры

Нормативные сопротивления арматуры Rsn устанавливают с учетом статистической изменчивости прочности и принимают равными наименьшим контролируемым значениям предела текучести, физического или условного (равного значению напряжений, соответствующих остаточному относительному удлинению 0,2%). Доверительная вероятность нормативного сопротивления арматуры – 0,95.

Расчетные сопротивления арматуры растяжению определяют делением нормативных сопротивлений на соответствующие коэффициенты надежности по материалу:

,

где — коэффициент надежности по арматуре, зависящий от класса арматуры.

Расчетные сопротивления арматуры сжатию при наличии сцепления арматуры с бетоном: , но не более 400 МПа.

При расчете элементов конструкций расчетные сопротивления арматуры в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы арматуры γsi, которые учитывают возможность неполного использования прочностных характеристик арматуры в связи с неравномерным распределением напряжений в сечении, низкой прочностью бетона, условиями анкеровки и т.д.



При расчете элементов на действие поперечной силы расчетное сопротивление растяжению поперечной арматуры снижают введением коэффициента условий работы в связи с неравномерным нагружением поперечных стержней γs1 = 0,8: .

 

 

megaobuchalka.ru

Расчетное сопротивление бетона сжатию и растяжению

Июнь 11th, 2013

Ни для кого не секрет, что любая конструкция должна отличаться своей несущей способностью: выдерживать большие нагрузки и успешно сопротивляться атмосферным явлениям, а также любим механическим нагрузкам. Бетонные конструкции, уже на стадии проектирования, рассчитываются согласно общим законам расчетного сопротивления бетона.

Для вычисления этого показателя используются  не нормативные вычисления, а более точные – расчетные по отношению ко всем нормативам.

Для того, чтобы узнать расчетное сопротивление бетона существует специальная формула: R = Rn / g, где g специальный коэффициент надежности по прочности. Для бетона он равен 1.3 Коэффициент g может менять свое значение в зависимости от показателя расхождения прочности выбранного материала. Чем более  разнится однородность  прочности  бетона, тем больше коэффициент g.

Узнаем расчетное сопротивление бетона сжатию

Существуют определенные классы бетона такие как: B50, B55, B60. Чтобы узнать расчетное сопротивление сжатию этих бетонов нужно умножить  их основной показатель расчетное сопротивление (которое мы узнали абзацем выше) на коэффициент сжатия. Этот коэффициент  определяет  механическое сопротивление высокопрочных бетонов.  И соответственно он равен 0.95, 0.925, 0.9 Конечный показатель можно увеличить или уменьшить в зависимости от качества бетона, предполагаемой нагрузки, стадии конструкции и времени эксплуатации.

Расчетное сопротивление бетона растяжению

Данный коэффициент необходим для получения угла раскрытия бетонных трещин, располагаемых как нормально, так и наклонно по отношению к главной оси отдельно выбранного элемента. Но нужно учитывать такой фактор: если  бетонная конструкция не находится под постоянным воздействием  сыпучих или жидких элементов,  то ее выносливость можно не считать, а ограничиться можно только получением  угла раскрытия щелей.  Итоговая формула для расчетного сопротивления бетона растяжению M^RTWT, где RT расчетное сопротивление бетону, а WT – итоговый момент раскрытия трещин.

Рекомендуем узнавать ширину раскрытия трещин, не зависимо от окружающих условий.

Также будет интересным почитать:



Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.

goshara.ru