Сопромат перемещения и деформации – 6.Деформации и перемещения. Деформации линейные и угловые.

Перемещения при изгибе

Как отмечалось ранее, деформацией при изгибе является искривление продольной оси балки.

Вследствие этого искривления, точки и поперечные сечения балки получают линейные и угловые перемещения.

Рассмотрим на примере простой консольной балки.

Линейные перемещения

Отметим в произвольном месте балки точку K и приложим к свободному концу консоли сосредоточенную силу F.

Под действием этой силы балка изогнется, и точка K переместится в новое положение K’.

Очевидно, что перемещение точки K произойдет, не строго вертикально, поэтому разложим его на две составляющие:
вертикальное перемещение по оси y, называемое прогибом балки в т. K (yK)

и горизонтальное (осевое) смещение точки вдоль горизонтальной оси — zK

Практические расчеты показывают, что осевые смещения как правило, несоизмеримо меньше вертикальных перемещений (например, в данном случае zKK), поэтому ими пренебрегают, ограничиваясь вычислением прогибов.

Линейные перемещения (прогибы балки) измеряются в метрах или кратных единицах измерения (миллиметрах и сантиметрах).

Прогибы, при которых сечение в результате деформации балки перемещается вверх принимаются положительными.

Именно по величине прогибов определяется жесткость балки.

Угловые перемещения

Кроме линейных, сечения балки при изгибе получают и угловые перемещения.
Проведем касательные к продольной оси балки в точках K и K’.

В первом случае линия касательной совпадает с прямой осью балки, во втором – располагается под углом θ.
Угол между касательными очевидно равен углу между нормалями к оси балки в этих точках.

Этот угол θK называется углом наклона сечения K в результате деформации балки.

Вычисляется в радианах, с последующим переводом в градусы.

Между линейными и угловыми перемещениями при изгибе существует дифференциальная зависимость.

Например, в сечениях, углы наклона которых равны нулю следует ожидать экстремума изогнутой линии балки на данном участке.

Методы расчета перемещений

Существует несколько способов расчета линейных y и угловых θ перемещений при изгибе:

Метод начальных параметров (МНП)

Перемещения рассчитываются по уравнениям МНП

Считается относительно простым методом расчета перемещений в прямых балках с постоянной жесткостью сечения.
Данный способ не применим для расчета прогибов и углов наклона в балках переменного сечения, с изогнутой или ломаной осью и в рамах.
Подробнее >>

Интеграл Мора

Интеграл Мора относится к энергетическим методам расчета перемещений.

В отличие от МНП позволяет определять линейные и угловые перемещения для любых систем.
Подробнее >>

Способ Верещагина

Данный способ расчета перемещений представляет собой графическую интерпретацию интеграла Мора, особенностью которой является «перемножение эпюр» грузовой и единичных схем.

Подробнее >>

Метод интегрирования дифференциального уравнения упругой линии балки

Непосредственное интегрирование дифференциального уравнения упругой линии


является одним из наиболее универсальных способов расчета перемещений в балках. Может применяться без ограничений к балкам любой формы.

По результатам расчета перемещений сечений балки строится линия изогнутой оси балки (либо эпюра прогибов), с указанием числовых значений прогибов и углов наклона в характерных сечениях.

Эти вычисления и построения необходимы для проверки балок на жесткость.

Примеры решения задач >
Лекции по сопромату >

isopromat.ru

3.5. Деформации участков стержня и перемещения сечений. Условия жесткости

При осевом растяжении или сжатии до предела пропорциональности σpr справедлив закон Гука, т.е. закон о прямо пропорциональной зависимости между нормальными напряжениями

и продольными относительными деформациями :

(3.10)

или (3.11)

Здесь Е – коэффициент пропорциональности в законе Гука имеет размерность напряжения и называется модулем упругости первого рода, характеризующим упругие свойства материала, илимодулем Юнга.

Относительной продольной деформациейназывается отношение абсолютной продольной деформации участкастержня к длине этого участка

до деформации:

(3.12)

Относительная поперечная деформация будет равна: ’ = = b/b, гдеb=b1–b.

Отношение относительной поперечной деформации ’ к относительной продольной деформации, взятое по модулю, есть для каждого материала величина постоянная и называется коэффициентом Пуассона:

Определение абсолютной деформации участка бруса

В формулу (3.11) вместо иподставим выражения (3.1) и (3.12):

Отсюда получим формулу для определения абсолютного удлинения (или укорочения) участка стержня длиной :

(3.13)

В формуле (3.13) произведение ЕА называетсяжесткостью бруса при растяжении или сжатии,которая измеряется в кН, или в МН.

По этой формуле определяется абсолютная деформация , если на участке продольная сила постоянна. В случае, когда на участке продольная сила переменна, она определяется по формуле:

(3.14)

где N(х) – функция продольной силы по длине участка.

В частности, по этой же формуле вычисляется абсолютная деформация при учете собственного веса для вертикального бруса, когда вес одного погонного метра бруса входит в выражение для N(х) как интенсивность распределенной нагрузки, направленной вниз, параллельно оси бруса:

,

где – плотность материала бруса, кН/м3, Н/м3; А – площадь поперечного сечения бруса, м2.

Определение перемещений сечений бруса

Определим горизонтальное перемещение точки аоси бруса (рис. 3.5) –ua: оно равно абсолютной деформации части брусааd, заключенной между заделкой и сечением, проведенным через точку, т.е.

В свою очередь удлинение участка аdсостоит из удлинений отдельных грузовых участков 1, 2 и 3:

(3.15)

Продольные силы на рассматриваемых участках:

Следовательно,

Тогда

Аналогично можно определить перемещение любого сечения бруса и сформулировать следующее правило:

перемещение любого сечения j стержня при растяжении–сжатии определяется как сумма абсолютных деформаций n грузовых участков, заключенных между рассматриваемым и неподвижным (закрепленным) сечениями, т.е.

(3.16)

Условие жесткости бруса запишется в следующем виде:

, (3.17)

где

– наибольшее значение перемещения сечения, взятое по модулю из эпюры перемещений;u– допускаемое значение перемещения сечения для данной конструкции или ее элемента, устанавливаемое в нормах.

ПРИМЕР 3.2

Требуется построить эпюру N для бруса, изображенного на рис. 3.6а и подобрать площадь сечения А и размер сторон квадратного сечения из условия жесткости при

Е = 0,27105 МПа,u= 2 мм = 210–3 м.

РЕШЕНИЕ

1. В данной задаче, как и в предыдущей, нет необходимости определять реакцию заделки, так как один конец бруса свободный.

2. Разбиваем брус на грузовые участки 1, 2, 3.

3. В пределах каждого грузового участка проводим сечения на расстоянии xiот начала участка, т.е. используем местную систему координат.

4. Используя рабочее правило и принятое правило знаков, в каждом сечении записываем функцию продольной силы Ni

i) (в таком случае рекомендуется рукой или бумагой закрывать отбрасываемую часть бруса, чтобы не делать дополнительных рисунков). При этом рассматриваем свободную часть бруса.

При

При

При

При

5. По вычисленным результатам строим эпюру N (рис. 3.3б).

Анализ построенной эпюры N позволяет выделить следующие особенности:

– в сечении, где приложена сосредоточенная сила F, параллельная оси бруса, имеется скачок, равный этой силе;

– на грузовых участках, где действуют равномерно распределенные нагрузки интенсивностью q, на эпюре N имеются наклонные прямые, тангенсы углов между этими прямыми и осью бруса равны интенсивности распределенной по длине нагрузки q;

– на тех грузовых участках, где отсутствует распределенная нагрузка, эпюра N постоянна.

6. Определим перемещения характерных сечений и построим эпюру перемещений при А = const:

uA= 0 (так как здесь защемление, препятствующее вертикальным перемещениям).

Используя полученные результаты, строим эпюру перемещений сечений (см. рис. 3.3в), из которой видим, что Используя равенствополучаем

Отсюда А = 

При А = сторона квадратного поперечного сечения будет равна а =

ПРИМЕР 3.3

Для бруса, изображенного на рис. 3.7а требуется:

– построить эпюру Nбез учета собственного веса;

– подобрать площади поперечных сечений из условий прочности;

– построить эпюры продольных сил N, нормальных напряжений  и перемещений сечений u с учетом собственного веса бруса и проверить прочность и жесткость при следующих данных:

Rt= 0,9 МПа = 0,9103кПа.

;= 25 кН/м3;u= 0,510–3м.

РЕШЕНИЕ

1. Как и в предыдущем примере, опорную реакцию не определяем, так как один конец бруса свободен.

2. Выделяем грузовые участки стержня 1, 2, 3.

3. В этом примере эпюру N будем строить, записывая их функции на каждом грузовом участке, используя рабочее правило, приведенное в конце примера 3.1 (с. 17).

Расчет без учета собственного веса бруса

x2 = 0, N2(0) = 40 кН;

х2 = 1,2 м, N2(1,2) = 16 кН;

N3(x3) = – F3 + F2–F1 – qn )1,2 + x3) = 

 = –100 +140 – 120 – 20(1,2 +x3) = –104 – 20x3.

x3 = 0,N3(0) = –104 кН;

х3= 1,2 м, N3(1,2) = –144 кН.

По вычисленным значениям строим эпюру продольных сил N (рис. 3.7б).

Рис. 3.7

4. Из условий прочности (3.3), используя эпюру N, построенную без учета собственного веса, определяем требуемую площадь поперечного сечения бруса, соблюдая заданное соотношение площадей на отдельных участках (рис. 3.7а). По условию задачи на участках 2 и 3 (нижняя ступень) площади сечения одинаковы и равны 2А. Для этих участков из эпюры N имеем:

В условиях прочности (3.3) приравняем и получаем:

На участке 1 (верхняя ступень) площадь сечения по условию задачи должна быть равна А. Из эпюры N для этого участка имеем:

.

Площадь поперечного сечения будет равна:

Из трех найденных значений А выбираем большую:

, 2А = 44,4410–3м2.

studfiles.net

Определение перемещений | ПроСопромат.ру

Виды перемещений. Дифференциальное уравнение упругой линии балки

При плоском изгибе балки её упругая линия, лежащая в плоскости действия внешних сил, искривляется, точки этой линии получают некоторые перемещения.

Произвольно выбранная точка С перемещается как в направлении, перпендикулярном АВ, так и вдоль этой линии на величину . Наибольший практический интерес представляет перемещение , которое называется прогибом балки. Угол между направлениями 1-1 и 2-2 называется углом поворота сечения балки. Таким образом , перемещения бывают линейные и угловые.

Наряду с расчётом балки на прочность необходимо производить и расчёт на жёсткость, то есть определять прогибы и углы поворота балки. Существует несколько способов решения задачи о деформациях балок.  Рассмотрим аналитический способ. Установим зависимость координаты   – уравнение упругой линии.

Из рисунка видно ,что Но! В упругой стадии работы материала углы поворота настолько малы ,что можно считать угол равным его тангенсу. Вспомнив геометрический смысл производной, можно принять угол поворота равным  первой производной прогиба по абсциссе сечения.

Правила знаков для перемещений, знаки перемещений

Угол считается положительным, если сечение поворачивается против хода часовой стрелки и наоборот. Прогиб считают положительным согласно принятому направлению осей координат. Если ось координат направлена вверх, то положительным будет прогиб вверх, а отрицательным —  вниз.

Для нахождения зависимости y=f(z) используем известное соотношение  между кривизной оси с изгибающим моментом и жесткостью сечения балки          

При постоянных моменте, кривизне и жесткости  балка изгибается по окружности.

Из математики известно, что кривизна кривой может быть выражена так:

Пренебрегая   получим приближённое дифференциальное уравнение изогнутой оси балки:                     

Или 

При приближённом дифференциальном уравнении изогнутой оси балки пользуются принципом малости перемещений, а если перемещения очень большие, то используют точное дифференциальное уравнение. В технике допускаемая величина прогиба , где    длина пролёта балки. Уравнение    представляет собой линейное дифференциальное уравнение второго порядка с разделяющимися переменными и может быть проинтегрировано в общем виде:

где v- линейное перемещение (прогиб), θ – угловое перемещение, С1 и С2 – постоянные интегрирования.

С1угол поворота в начале координат, умноженной на величину ЕI;

С2  – прогиб балки в начале координат, умноженный на EI.

Значения этих постоянных определяют из граничных условий ,т.е. условий опирания балки и условий на границах смежных участков.  Вот эти условия:

у свободно лежащей балки прогибы на обеих опорах равны нулю. При симметричном нагружении у такой балки угол поворота в середине пролета также равен нулю;

у консольной балки в заделке и прогиб и угол поворота равны нулю;

— на границе смежных участков балки прогиб и угол поворота одинаковы как для левого, так и для правого участка.

Определение перемещений по методу начальных параметров (или по универсальным формулам прогибов и углов поворота сечений)

где у0 и φ0 – начальные параметрыто есть прогиб и угол поворота в начале координат, которые определяются из условий закрепления балки:

Порядок определения перемещений по универсальным формулам:

  1. Определить все опорные реакции.
  2. Поместить начало координат обязательно в крайнее сечение балки (левое или правое).
  3. Ось у направить вверх, ось z — вдоль балки.
  4. Найти начальные параметры из условий закрепления балки (возможные случаи показаны выше).
  5. Зная начальные параметры у0 и φ0по универсальным формулам определить интересующие нас перемещения.

При использовании универсальных формул необходимо выполнять следующие требования:

а) В универсальные формулы включать только те внешние силы, которые действуют между началом координат (т.0) и сечением, в котором определяются перемещения. Следует помнить, что опорные реакции – тоже внешние силы.

б) Каждая внешняя сила (МiFiqi) вводится со знаком изгибающего момента, который эта сила вызывает в сечении, где определяется перемещение.

prosopromat.ru

Построение эпюры перемещений при растяжении-сжатии

Задача

Рассчитать перемещения характерных сечений стержня постоянного сечения и построить их эпюру.

Пример решения

Предыдущие пункты решения задачи:

  1. Расчет опорной реакции стержня,
  2. Расчет внутренних сил с построением эпюры,
  3. Подбор размеров поперечного сечения,
  4. Построение эпюры напряжений,
  5. Расчет деформаций участков стержня.

Под действием внешних сил стержень деформируется, вследствие чего его поперечные сечения перемещаются (в данном случае влево либо вправо).

Для расчета величины и направления перемещений воспользуемся соответствующей формулой:

где δi – перемещение рассматриваемого сечения,
δi-1 – перемещение предыдущего сечения,
Δli – деформация участка расположенного между указанными сечениями (рассчитаны ранее).

По расчетной схеме видно, что сечение, расположенное в заделке (сечение B) перемещаться не может, следовательно, его перемещение равно нулю, т.е.

Перемещение остальных сечений рассчитывается последовательно от него.

Следующим рассматриваем сечение C.
Его перемещение δC будет складываться из двух составляющих:

  1. изменения дины участка BC,
  2. перемещения предыдущего сечения B с которым связан их общий участок.

Так как сечение В неподвижно, сечение C переместится ровно на ту величину, на которую растянется III участок BC.

Перемещения остальных сечений рассчитываются аналогично:

По этим данным строится эпюра перемещений δ. Для этого рассчитанные значения в выбранном масштабе откладываются от базовой линии под соответствующим сечением стержня.

Эпюра наглядно показывает, что в результате деформации стержня наибольшее перемещение получило сечение K, которое переместилось вправо на 0,66 мм, а общая длина всего стержня увеличилась на 0,51 мм.

На участках, где нормальные напряжения положительны линия эпюры перемещений идет на возрастание (при условии, что заделка слева) и, наоборот. При этом, чем больше величина напряжений, тем больше угол наклона линии эпюры δ к базовой линии.

Другие примеры решения задач >

isopromat.ru

ПОНЯТИЕ О НАПРЯЖЕНИЯХ, ДЕФОРМАЦИЯХ И ПЕРЕМЕЩЕНИЯХ. — КиберПедия

Рабочие гипотезы СОПРОМАТА

ОТВЕТ: В отличие от термеха, базирующегося на модели абс. твердого тела, в сопромате принята своя расчетная модель-модель идеализированного деформируемого тела. А для упрощения расчетов принимаются следующие допущения или гипотезы: 1) Материал тела имеет сплошное строение. 2) материал однороден, т.е. во всех точках свойства одинаковы. 3) материал изотропен, т.е. по всем направлениям свойства одинаковы. 4) до приложения внешних сил начальные напряжения в материале отсутствуют. 5) при решении реальных задач целесообразно использовать принцип суперпозиции, или принцип независимости действия сил, т.е. воздействие на конструкцию группы сил равно сумме воздействий от каждой силы в отдельности и не зависит от последовательности приложения этих сил.

ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ И МЕТОД ИХ ОПРЕДЕЛЕНИЯ.

ОТВЕТ: Под действием внешних сил на брус возникают внутренние силы или внутренние силовые факторы, для определения которых в сопромате принят единый расчетный метод – метод сечений. 1) разрезаем мысленно брус в исследуемом сечении на 2 части I и II. 2) Отбрасываем одну из частей. 3) Заменяем действие отбрасываемой части II на часть I внутренними силовыми факторами(в общем случае их 6). Qx Qy – поперечные силы, Nz – продольная сила, Mx My – изгибающие моменты, Mz – крутящий момент. 4) Уравновешиваем оставшуюся часть бруса и с помощью уравнений равновесия термеха находим искомые силовые факторы.

 

ПОНЯТИЕ О НАПРЯЖЕНИЯХ, ДЕФОРМАЦИЯХ И ПЕРЕМЕЩЕНИЯХ.

ОТВЕТ: Мерой интенсивности действия внутренних сил в окрестности точки рассматриваемого поперечного сечения являются напряжения, определяемые отношением силы к единице площади [Па]. Если в поп. сечении выделить элемент DА, к которому будет приложена сила DР, то DР/DА=рm – среднее полное напряжение в рассматриваемой точке поперечного сечения. — полное истинное напряжение. Вектор раскладывают на и . — нормальное напряжение – вызывает разрушения путем отрыва. — касательное напряжение – вызывает разрушение путем сдвига. Перемещения и деформации – понятия, характеризующие изменение размеров и формы исследуемого тела. При этом перемещения являются следствием деформации.

Напряжения и деформации при кручении вала круглого поперечного сечения.

Определение деформаций.

При кручении как было отмечено выше лин. деформаций не происходит,и под действием касат. напряжений происходит перенос сетки(квадраты становятся ромбами, при этом max величины переноса — абсолютный сдвиг, а отношение — относит. сдвиг.



 

По аналогии с растяжением сжатием:

( ) З-Н Гука применительно к кручению: (1) G – модуль упругости II рода

Связь м/у модулями II рода: , для стали

Определение перемещений при изгибе. Условие жесткости. Дифференциальное уравнение изогнутой оси балки.

 

 

 

 

 

 

 

 

Варианты расчета простых статически неопределимых балок

Существует несколько способов расчета простых балок:

1.Сравнение линейных перемещений.

ΔВ=ΔВq+ΔBRB=0(1) доп. уравнение деформаций

 

Слагаемые в(1) могут быть найдены исп-я готовые таблицы или универсальные уравнения. Применительно к рас-му предмету:

ΔBq=-qe4/8EIx; ΔBRB=RBe3 /3EIx;

 

ΔB=-qe4/8EIx +RBe3/3EIx =0 =>RB=3qe/8

 

2. Сравнение угловых перемещений.

Можно отбросить связь, препятствующая повороту опорного сечения А и записать

 

ΔA=ΔAq+ΔAMA=0(2)

Также ур-е деформации слагаемое означает углы поворота.

 

3.Составление замкнутой системы ур-я.

3 ур-я статики+ унивес. ур-е

yB=0.

43. Метод сил для расчета сложных СНС.

Метод при котором за неизвестное принимаются сосредоточенные моменты наз-ся методом сил. Он явл-ся наиболее распространенным и ис-ся для любых упругих систем (балки, рамы,эстакады итд.).

Например:

К трем ур-ям статики для решения данной СНС добавится 3 уравнения, выражающие рав-во 0 перемещений по направлениям всех отброшенных связей т.е. опорное сечение и не перемещаются им в горизонтальном или в вертикальном перемещениях и не переворачиваются.

X1 Δ1=0

X2 Δ2=0 (1)

X3 Δ3=0

Каждое уравнение системы(1) можно записать в развернутом виде:

Δ1=Δ11+Δ12+Δ13+Δ1f=0 (2)

Первый символ указывает направление; 2-й воз-е.

Δ1f-перемещение опорного сечения А в направлении действия X, вызванное внешней нагрузкой

(2) можно выразить через единичные перемещения и искомое неизвестное (это первые три слагаемых)



Δ11=δ11-x1 и тогда система примет закончен. вид.

δ11 x1+ δ12 x2+ δ13 x3+ Δ1f=0

δ21 x1+ δ22 x2+ δ23 x3+ Δ2f=0 (3)-система кумс.

δ31 x1+ δ32 x2+ δ33 x3+ Δ3f=0

Канонические ур-я метода сил-КУМС.

Число ур-й равно степени статической неопределимости.

 

 

Рабочие гипотезы СОПРОМАТА

ОТВЕТ: В отличие от термеха, базирующегося на модели абс. твердого тела, в сопромате принята своя расчетная модель-модель идеализированного деформируемого тела. А для упрощения расчетов принимаются следующие допущения или гипотезы: 1) Материал тела имеет сплошное строение. 2) материал однороден, т.е. во всех точках свойства одинаковы. 3) материал изотропен, т.е. по всем направлениям свойства одинаковы. 4) до приложения внешних сил начальные напряжения в материале отсутствуют. 5) при решении реальных задач целесообразно использовать принцип суперпозиции, или принцип независимости действия сил, т.е. воздействие на конструкцию группы сил равно сумме воздействий от каждой силы в отдельности и не зависит от последовательности приложения этих сил.

ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ И МЕТОД ИХ ОПРЕДЕЛЕНИЯ.

ОТВЕТ: Под действием внешних сил на брус возникают внутренние силы или внутренние силовые факторы, для определения которых в сопромате принят единый расчетный метод – метод сечений. 1) разрезаем мысленно брус в исследуемом сечении на 2 части I и II. 2) Отбрасываем одну из частей. 3) Заменяем действие отбрасываемой части II на часть I внутренними силовыми факторами(в общем случае их 6). Qx Qy – поперечные силы, Nz – продольная сила, Mx My – изгибающие моменты, Mz – крутящий момент. 4) Уравновешиваем оставшуюся часть бруса и с помощью уравнений равновесия термеха находим искомые силовые факторы.

 

ПОНЯТИЕ О НАПРЯЖЕНИЯХ, ДЕФОРМАЦИЯХ И ПЕРЕМЕЩЕНИЯХ.

ОТВЕТ: Мерой интенсивности действия внутренних сил в окрестности точки рассматриваемого поперечного сечения являются напряжения, определяемые отношением силы к единице площади [Па]. Если в поп. сечении выделить элемент DА, к которому будет приложена сила DР, то DР/DА=рm – среднее полное напряжение в рассматриваемой точке поперечного сечения. — полное истинное напряжение. Вектор раскладывают на и . — нормальное напряжение – вызывает разрушения путем отрыва. — касательное напряжение – вызывает разрушение путем сдвига. Перемещения и деформации – понятия, характеризующие изменение размеров и формы исследуемого тела. При этом перемещения являются следствием деформации.

cyberpedia.su

Сопромат

Сопромат (сопротивление материалов) — наука об инженерных методах расчета на прочность, жесткость и устойчивость элементов сооружений и деталей машин.  Прочность — способность элементов сооружений или деталей машин выдерживать определенную нагрузку не разрушаясь. 

Жесткость — способность элементов сооружений или деталей машин противостоять внешним нагрузкам в отношении деформаций. 

Устойчивость — способность элементов сооружений или деталей машин сохранять первоначальную форму упругого равновесия при действии внешних нагрузок. 

 Учитывая большое разнообразие конструктивных форм элементов сооружений и деталей  машин в сопротивлении материалов рассматриваются четыре простых тела: брус, оболочка, пластина, массив.

Брус — тело, продольные размеры которого значительно превышают его поперечные размеры. Оболочка — тело, ограниченное криволинейными поверхностями, расположенными на близком расстоянии друг от друга. Пластинка — тело, ограниченное прямолинейными поверхностями расположенными на близком расстоянии друг от друга. Массив — тело, у которого все три размера одного порядка. 

 Решение основных задач сопромата начинается с выбора расчетной схемы. Выбор заключается в устранении второстепенных факторов, в схематизации рассматриваемого объекта. Основным расчетным объектом сопротивления материалов является брус.  Осью бруса называют линию, проходящую через центры тяжести всех последовательно проведенных поперечных сечений.  Поперечное сечение получается при рассечении бруса плоскостью, перпендикулярной к его оси.  Изменение размеров и формы тела под действием силовых факторов называется деформацией.  Деформации связаны с перемещениями точек, линий и плоскостей. Перемещения по прямой называются линейными. Перемещения, вызванные поворотом линий и плоскостей, называются угловыми. Линейная деформация имеет размерность длины, а угловая — размерность угла. Измеренная величина линейной деформации на данном участке называется абсолютной деформацией, а отношение абсолютной деформации к длине участка — относительной деформацией.  Деформации, полностью исчезающие после снятия нагрузки, называют упругими. Частично остающиеся деформации — пластическими. Свойство материалов полностью восстанавливать первоначальную форму при снятии нагрузок в сопротивлении материалов называется упругостью, а свойство накапливать остаточные деформации — пластичностью. Если внешние силы, действующие на брус, приводятся к силам по его оси, то это растяжение или сжатие. Брус, работающий на растяжение или сжатие, называется стержнем. Если внешние силы приводятся к паре сил, действующих в плоскости, перпендикулярной оси бруса, то это кручение. Брус, работающий на кручение, называется осью или валом.  Если внешние силы приводятся к паре сил, действующих в плоскости продольной оси бруса, то брус испытывает изгиб. Брус, работающий на изгиб, в сопромате называется балкой. Далее опишем основные допущения ( гипотезы), принимаемые в сопромате: 1. Гипотеза о сплошности материла. 2. Гипотеза об однородности и изотропности материала. 3. Гипотеза об идеальной упругости материала. 4. Гипотеза о малости деформаций. Она позволяет не учитывать их при рассмотрении условий равновесия. 5 Принцип независимости действия сил, состоящий в том, что упругую деформацию, вызванную многими силами, действующими одновременно, можно рассматривать как сумму упругих деформаций от каждой силы в отдельности. 6. Гипотеза плоских сечений. Плоские сечения, проведенные в теле до его деформации, остаются плоскими и при деформации.

Основные понятия в сопромате.

Задачи и методы сопромата.

Все элементы конструкции обладают прочностью и жесткостью.

Задачи сопромата: создание методов оценки прочности.

Сопромат характеризуется приближенными приемами расчета.

Расчетные схемы и модели.

Оценка прочности проводится по схеме (модели).

Модель – совокупность основных представлений от основного описания объекта.

Для одной и той же детали можно составить несколько подобных схем. В то же время для одной расчетной схемы можно найти различные детали схем материала, форм, нагружения и разгружения сил. 

Модели надежности.

Модели материала.

Материал бывает однородным, сплошным, непрерывным (можно применить математические формулы), изотропным.

Однородность материала – материал, по всему объему одинаков.

Расчетная модель материала обладает свойствами упругости, пластичности и ползучести.

Упругость – свойство материала восстанавливать форму.

Пластичность – свойство тела сохранять измененную форму.

Ползучесть – свойство тела изменять форму с течением времени (смола).

Модели формы.

Геометрическая форма тел очень сложна. Учесть в формулах все формы не возможно, поэтому их приводят к 4 схемам:

1.Стержень, брус.

2.Пластина.

3.Оболочка.

4.Массив.

Разновидности формы.

Стержень – форма детали, у которой один размер на порядок больше, чем два других.

Пластина – форма детали, у которой один размер меньше на порядок, чем два других.

Массив – все размеры разные, но отличаются меньше, чем на порядок.

Модели нагружения.

Сила – мера взаимодействия двух тел.

Сила бывает внешняя и внутренняя. Внешняя в сою очередь бывает сосредоточенной, распределенной и объемной.

Сосредоточенная – сила, приложенная на малой площади, которую можно считать точкой.

Распределенная – сила, действующая на значительной поверхности, размер которой нужно учитывать.

Объемная – сила, распределенная по всей массе тела.

Модели времени действия сил.

Различают

1. Статические

2. Переменные

a) Малоцикловые

b)   Многоцикловые (больше 100 тыс. изменений)

Модели разрушения.

Разрушение детали – изменение ее формы в плоть до разделения на части.

Изменение формы и разделение на части произойдет тогда, когда внутренние силы превысят силы сцепления отдельных частей материала.

Для суждения о прочности сравнивают внутренние силы с пределами прочности. Внутренние силы представляют собой силы межатомного взаимодействия возникающие при действии внешних сил.

Рассмотрим тело (а), находящееся в равновесии под действием внешних сил  мысленно рассечем это тело на 2 части плоскостью П и рассмотрим 1-у из них (б). Действие одной из них на другую следует заменить системой внутренних сил в сечении. Внутренние силы в сечениях частей тела всегда взаимны (действие равно противодействию). В сопромате изучаются тела находящиеся в равновесии.

Для нахождения равнодействующей (R) и момента (M) воспользуемся уравнениями равновесия.

Проектируем R и М на выбранные оси координат.

Отсеченная часть находится в равновесии

  

Возьмем систему координат xyz и разложим  и на составляющие части.

         

Тогда проекции  и М на эти оси называются внутренними силовыми факторами.

 — продольная сила,  — поперечные силы.

 — крутящий момент,   — изгибающие моменты.

Для вычисления внутренних сил. Факторов необходимо решить 6 уравнений равновесия.

Напряжение и деформация.

Напряжение – интенсивность внутренних сил. факторов.

– полное напряжение в точке.

Напряжение в точке

Касательные и нормальные напряжения.

Силу ΔR разложим на составляющие ΔN – нормальная и ΔQ – касательная силы.

σ – нормальное и τ – касательное напряжения.

                          

Напряжение имеет наименование силы деленной на площадь (Н/).

В системе СИ выражается в Паскалях (Па).

Связь напряжения с внутренними силовыми факторами.

    , где

N-продольная сила, вызывающая напряжение стержня

 — поперечные силы, вызывающие сдвиг.

 — крутящий момент – скручивание

 — изгибающие моменты – искривление продольной оси.

Если на тело действует сила, значит, оно деформируется. В сопромате все тела деформируются, но они крайне малы.

Центральное растяжение – сжатие.

Продольная сила.

Растяжение – вид деформации, при котором в поперечном сечении стержня возникает внутренняя продольная сила N, при этом длина увеличивается, а ширина уменьшается.

В условиях растяжения будет находиться стержень под действием осевых сил на краях (а). Равнодействующая системы равна F.

Для определения продольной внутренней силы N используют метод сечений.

Условимся считать эту силу положительной (т.е. присвоим знак «+»), если она растягивает стержень, и отрицательной – если сжимает – правило знаков.

Для определения N в произвольном сечении x стержня а) рассмотрим равновесие верхней отсеченной части б). Составляем уравнение равновесия , подставляя значения получим

-F+N=0

F=N

Знак «+» показывает, что стержень растянут.

Эпюра продольных сил.

Для суждения о прочности стержня нужно знать продольную силу в любой точке.

График (эпюру) изменения внутренних сил стоит на линии проведенной параллельно оси стержня. Каждая ордината эпюры равна N.

Участок – некоторая длина стержня, на котором отсутствует изменение площади или сил.

Пример.

Пусть стержень ОАВ нагружен силами  и имеет 2 участка ОА и АВ, на них выбраны сечения на расстоянии  и  от начала координат. В сечении  продольная сила      

в сечении  

Напряжения.

Сила N, приложенная в центре тяжести произвольного сечения стержня является равнодействующей внутренних сил, действующих на бесконечно малой площади dA поперечного сечения площади А и  . Тогда,

В пределах действия закона Гука ( ) плоские поперечные сечения стержня при деформации смещаются параллельно начальному положению, оставаясь плоскими (гипотеза плоских сечений), тогда норм. напряжение во всех точках сечения одинаково, т.е.  (гипотеза Бернулли) и тогда

При сжатии стержня напряжение имеют лишь другой (отрицательный) знак (нормальная сила направлена в тело стержня).

Деформация.

Стержень постоянного сечения площадью А под действием осевых растягивающих сил удлиняется на величину , где — длины стержня в деформированном и не деформированном состоянии. Это приращение длины называется полным или абсолютным удлинением.

Относительное удлинение – удлинение отнесенное к первоначальной длине стержня  назыв. линейной деформацией. Измеряется ε в %.

При растяжении (сжатии) возникает не только продольная, но и поперечная деформация стержня , где а – поперечный размер.

Отношение поперечной деформации к продольной  взятое по абсолютной величине, называетсякоэффициентом Пуассона.

Закон Гука. Удлинение стержня.

Между напряжением и малой деформацией существует линейная зависимость, называемая законом Гука. Для растяжения (сжатия) она имеет вид σ=Еε, где Е – коэффициент пропорциональности,модуль упругости.

Е – напряжение, которое вызывает деформацию .

Закон Гука для растяжения (сжатия) стержня.

Δl=Fe/EA=λF, где λ – коэффициент продольной податливости стержня.

ЕА – жесткость сечения стержня при растяжении.

Для стержня переменного (ступенчатого) сечения удлинение определяется по участкам (ступеням) и результаты суммируют алгебраически:

Диаграмм испытания материала.

В расчетах прочности стержня при растяжении и сжатии необходимо знать механич. Свойства материала, которые выявляются при испытаниях образцов на растяжение под нагрузкой. Испытание на растяжение позволяет судить о поведении материала и при сжатии, сдвиге, кручении и изгибе. График зависимости между растягивающей силой F и удлинением образца Δl называютдиаграммой растяжения.

Для исключения зависимости от размеров диаграмму перестаивают в координатах σ – ε.

Характеристики прочности и текучести.

Т.А – участок пропорциональности (закон сохранения Гука).

До т. С – текучесть материала.

Т. В – max значение.

Зоны:

ОА – упругости,

АД – пластичности,

ДВ – упрочения,

ВМ – местной текучести.

В зоне ОА справедлив закон Гука

Величина предела упругости близка к пределу пропорциональности.

Зона АД – зона общей пластичности. Для нее характерно существенное увеличение деформации (длины) образца без заметного увеличения нагрузки – площадка текучести (СД). Образование пластичной деформации вызвано сдвигом в кристаллической решетке.

Для оценки напряженности используют характеристику механ. свойств материала – предел текучести — напряжение, при котором в материале появляется заметное удлинение без увеличения напряжения.

Предел прочности.

Зона ДВ – зона упрочения; здесь удлинение образца возрастает более интенсивно с увеличением нагрузки по сравнению с зоной ОА. В т. В напряжение σ достигает максимума.

Если нагрузить образец в т. F, то при последующем нагружении материал приобретает способность воспринимать без остаточных деформаций воспринимать большие нагрузки.

Явление повышения упругих свойств материала в результате предварительного деформирования носит название наклепа.

Зону ВМ называют зоной местной текучести. Здесь удлинение образца происходит с уменьшением силы и сопровождается образованием местного сужения – шейки. Напряжение в поперечном сечении шейки возрастает. В т. М наступает разрушение образца. Максимальное напряжение на диаграмме, которое способен выдержать образец, называют пределом прочности  (временное сопротивление).

Пластичность и хрупкость.

Под пластичностью понимают способность материала получать большие остаточные деформации без разрушения.

Хрупкость —  способность материала разрушаться без образования заметных остаточных деформаций.

Допускаемые напряжения. Расчетные конструкции.

Условие прочности при растяжении запишется в виде , где [σ] – допускаемое напряжение, являющееся характеристикой конструкционного материала, которая зависит от принятого коэффициента запаса прочности n.

n – величина показывающая, во сколько раз предельное напряжение  для данного материала больше рабочих [σ]

Как правило, за предельное напряжение принимают предел текучести (прочности).

 

Сдвиг и кручение.

Основные вопросы:

1. Понятие сдвига

2. Закон Гука при сдвиге

3. Инженерные расчеты на сдвиг материала бруса

4. Понятие кручения бруса круглого сечения

5. Выражения касательных напряжений углов закручивания

6. Условие прочности и жесткости

7. Определение опасных сечений

8. Инженерные расчеты на кручение.

Внутренние силовые факторы и деформации. Сдвиг – вид деформации, когда в поперечном сечении стержня действует только перерезывающая сила, остальные силовые факторы – отсутствуют.Элементарные кубики искажаются, на боковых гранях возникает напряжение .

Схема сдвига. Закон Гука. Напряженное состояние, при к-м на гранях выделен. элемента возникает только касательные напряжение , называют чистым сдвигом.  а-абсолютный сдвиг, -угол, на к-й изменяются прямые углы элемента ,называют относительным сдвигом.

Уравнение равновесия отсеченной части , где G – модуль упругости, GA- жесткость при сдвиге  -з-н Гука при сдвиге,   

Расчет конструкций на сдвиг. Многие детали (склеенные, сваренные,…) подвержены сдвигу.

Условие прочности , — допускаемое напряжение на срез.

=(0,5…0,6) -для пластич. материалов

=(0,7…1,0) — для хрупких материалов

Кручение.

Кручение- вид деформации, при к-м действует только крутящий момент.

Внутренние силовые факторы. Чтобы построить эпюру, разбивают на участки, рассекая сечениями на расстояниях х1,х2,… Диаграмму, показывающую расраспределение значений крут. моментов по длине вала, называют эпюрой крутящих моментов. Правило знаков: момент, направленный против часовой стрелки- положителен, по стрелке- отриц.

Построение эпюры крутящих моментов. Ур-е равновесия  или -правая часть аналогично рассмат все сечения.

Вывод: в любом сечении вала действует крутящий момент, = сумме вращающих моментов, лежащих по одну сторону от этого сечения. Эпюра крутящих моментов — ступенчатая линия, к-я показывает степень нагружаемости каждого из участков вала.

Деформации при кручении. При кручении образующие цилиндра обращаются в винтовые линии, круглые и  плоские сечения сохраняют свою форму, поворот одного сечения относительно другого происходит на некоторый угол закручивания, расстояние между поперечными сечениями почти не меняется. Сечения, плоские до закручивания, остаются плоскими после закручивания, радиусы поперечных сечений при деформации остаются прямыми.

Кручение – результат сдвигов при взаимном повороте сечений.

Схема нагружения бруса.

,где -угол закручивания на единичной длине стержня.

— относит. угол закручивания.

Геометрия сдвига.

Значения касат. напряжений в точках сечения пропорциональны расст. её от оси стержня.

Момент кручения.

Напряжение при кручении.

-геометрич. характеристика- полярный момент инерции сечения.

-угол закручивания на ед. стержня. -полярный момент сопротивления сечения. 

Полярный момент инерции и сопротивления.

 -поляр. момент инерции.  ,    , для круглого сечения- 

Расчетные формулы. ,   ,  ,   ,  условие жесткости:

Расчеты на прочность и жесткость.

Условие прочности:  .Диаметр вала сплошного сечения

— угол закручивания- определяет жесткость.

Вал рассчитывают по 2 условиям и из найденных значений находят большее.

Изгиб.

Основные вопросы:

1. классификация изгибов

2. нагрузки и внутренние силовые факторы

3. построение эпюр нагрузок, правило знаков

4. нормальные напряжение при чистом изгибе

5. касательные напряжения при чистом изгибе

6. перемещение при изгибе

7. дифференциальное уравнение упругой линии балки

8. определение перемещений методом непосредственного интегрирования

Классификация изгибов. Изгиб – вид деформации, когда под действием внешних сил в поперечном сечении стержня (бруса) возникают изгибающие моменты.

Если изгибающий момент в сечении является единственным силовым фактором, а поперечные и нормальные силы отсутствуют, наз-ся чистым. Если в поперечных сечениях стержня наряду с изгибающими моментами действуют  и поперечные силы, изгиб наз-ся поперечным.

Иногда в поперечном стержне возникает несколько силовых факторов. Это сложное сопротивление. Расчеты стержней основываются на принципе независимости действия сил.

Опоры и их реакции. Для передачи нагрузок стержень должен быть зафиксирован относительно корпуса с помощью опор- устройств, воспринимающих внешние силы.

Различают 3 основных вида опор-  жесткое защемление: 1) заделка- а) исключает осевые , угловые смещения и воспринимает осевые силы и моментную нагрузку, 

2) шарнирно-неподвижная опора –б) ,- допускает поворот вокруг оси и не воспринимает момент,

3) шарнирно- подвижная опопра -в),-не допускает смещение стержня, только в направлении 1 из осей и передает нагрузку вдоль этой силы.

Опорные реакции. Под действием внеш. Нагрузок в местах закрепления стержня возникает опорная реакции. х находят из условий равновесия. Анализ внутренних сил начинается после определения реакции.

Внутренние силовые факторы. Стержень на 2-х опорах, нагруженный силами F. Из условия равновесия найдем опорные реакции:  . Под действием внеш. сил и опорных реакций стержень б) будет находиться в равновесии. Для определения внутренних силовых факторов в сечении m1-mi участка CD стержня мысленно разрежем на 2 части , рассмотрим равновесие левой в). Чтобы она была в равновесии, приложим к т. Сi неизвестные внутренние силовые факторы: нормальную силу Nx(xi), перерезывающую , изгибающий момент.

Правило знаков. Положит. изгибающий момент изгибает горизонтально расположенный стержень (балку ) выпуклостью вниз (а), а отриц. – выпуклостью вверх (б).

Положит. поперечная сила стремится сдвинуть левое сечение стержня вверх относительно правого или правое вниз относительно  левого (а). Отриц. поперечная сила имеет противоположное направление (б).

Определение силовых факторов. Перерезывающая сила в сечении стержня = сумме проекций на ось у всех внешних сил, действующих на мысленно отсеченную часть, т.е. . Изгибающий момент в сечении стержня равен сумме моментов внешних сил, действующих на отсеченную часть, взятых относительно центра тяжести рассматриваемого сечения, т.е.

.

Ур-я статики: , , (чистый изгиб). Если сделать сечение m2-m2 на участке АС и рассмотреть равновесие левой части, то найдем, что при  силовые факторы: (поперечный изгиб)

Схема чистого изгиба. Поля прилож. М продольной силы – дуги окружности, поперечного сечения остаются плоскими, т.е. гипотеза плоских сечений справедлива. При чистом изгибе волокна на выпуклой стороне растягиваются, на вогнутой — сжимаются. Существует слой, в котором удлинения отсутствует,  его называют нейтральным слоем — нейтральной линией.

Связь напряжений и внутренних факторов. Допускаем, стержень – совокупность растянутых и сжатых элементов стержней длинной l, которые свободно удлиняются и укорачиваются. Нормальные напряжения применяют постоянными по ширине сечения.

Статическая часть задачи. Условие равновесия между силовыми факторами:

 Условия б), в),г) удовлет-ся тождественно, условия а),е),д) имеют вид: .

Деформация волокон.  ,- относительное удлинение слоя.

Деформация некоторого слоя зависит от его координат z, отсчитываемой от нейтрального слоя. Используем з-н Гука: . Отношение  — постоянно для конкретного материала и конкретного случая изгиба. Поэтому напряжения — линейная функция координат z. Для нахождения величины нужно знать положение нейтрального слоя или радиус кривизны .

Нормальное напряжение при изгибе.

Из уравнений   а), д), е) с учетом к.

Из ур-я а), т.к. то — это статический момент площади поперечного сечения. Нейтральная ось является центральной осью. Из ур-я е)  получим  Это центробежный момент инерции, если он = 0 — оси главные, центральные. Из ур-я  д) :

 где . Расчетная формула полученна путем подстановки в последнюю зависимости  из формулы к.

Расчетные формулы.  

условие прочности:

Как следует из характеристики распределения, напряженные внутренние слои материала оказываются недогруженными.

Силовые факторы при поперечном изгибе. Гипотезы сопромата распространяются на поперечный изгиб.

Формула касательных напряжений. Выразим силы через нормальное напряжение, а напряжение — через изгибающие моменты, с учетом продольной силы, вызывающей касательное  напряжение получаем:

,    где А0- площадь отсеченной части. -статический момент отсеченной части. На поверхности в центре = max.

Характер перемещения при изгибе. При изгибе есть 2 типа перемещений: линейные и угловые .

,     при малых перемещениях.

Уравнение изогнутой оси.

— дифференциальное Ур-е изогнутой оси балки.

 

 

Основы направленного состояния материала.

Основные вопросы:

1. виды напряженного состояния

2. напряжения на наклонных площадках

3. закон парности касательных напряжений

4. главные площадки и главные напряжения

5. объемная деформация. Закон Гука

6. удельная потенциальная энергия

7. критерии пластичности и разрушения

8. эквивалентные напряжения

9. гипотезы прочности

Виды напряженного состояния. Оценка прочности детали – это совокупность напряженного состояния в «опасной» точки конструкции с пределом прочности материала. Такая оценка оказывается достаточно точной при одноосновном напряженном состоянии (растяжение, сжатие).

Однако многие элементы конструкции работают в условиях сложного напряженного состояния. Тогда совокупность напряжений в точке элемента сопоставляемыми с механическими характеристиками его материала, то есть вводится эквивалентное напряжение, т.е. напряжение в растянутом  образце при котором состояние равноопасно  с заданным.

studfiles.net

Понятие о напряжениях и деформациях (Лекция №5)

   Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n. В окрестности этой точки выделим малую площадку F. Главный вектор внутренних сил, действующих на этой площадке, обозначим через P (рис. 1 а). При уменьшении размеров площадки соответственно

Рис.1. Композиция вектора напряжения.
а) вектор полного напряжения б) вектор нормального и касательного напряжений

уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при получим

   Аналогичный предел для главного момента равен нулю. Введенный таким образом вектор рn называется вектором напряжений в точке. Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки F, характеризуемой вектором п. Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора п определяет напряженное состояние в этой точке.

   В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали п. Проекция вектора рnна направление вектора п называется нормальным напряжением , а проекция на плоскость, проходящую через точку М и ортогональную вектору n, — касательным напряжением (рис. 1 б).

Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м2.

   При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

   Отнесем недеформированное тело к декартовой системекоординат Oxyz (рис. 2). Положение некоторой точки М в этой системе координат определяется радиус-вектором r(х, у, z). В деформированном состоянии точка М займет новое положение М/ , характеризуемое радиус-вектором r(х, у, z). Вектор u=r’—r называется вектором, перемещений точки М. Проекции вектора u на координатные оси определяют компоненты вектора перемещений и(х, у, z), v(х, у, z), w(х, у, z), равные разности декартовых координат точки тела после и до деформации.

   Перемещение, при котором взаимное расположение точек тела не меняется, не сопровождается деформациями. В этом случае говорят, что тело перемещается как жесткоецелое (линейное перемещение в пространстве или поворот относительно некоторой точки). С другой стороны, деформация, связанная с изменением формы тела и его объема, невозможна без перемещения его точек.

Рис.2. Композиция вектора перемещения

 

   Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации. Рассмотрим, например, точку М и близкую к ней точку N, расстояние между которыми в недеформированном состоянии вдоль направления вектора s обозначим через (рис. 2). В деформированном состоянии точки М и N переместятся в новое положение (точки М’ и ), расстояние между которыми обозначим через s’. Предел отношения

называется относительной линейной деформацией в точке М в направлении вектора s, рис.3. Рассматривая три взаимно перпендикулярных направления, например, вдоль координатных осей Ох, Оу и Oz, получим три компоненты относительных линейных деформаций характеризующих изменение объема тела в процессе деформации.

Для описания деформаций, связанных с изменением формы тела, рассмотрим точку М и две близкие к ней точки N и Р, расположенные в недеформированном состоянии в направлении двух взаимно ортогональных векторов s1 и s2. Расстояния между точками обозначим через и (рис. 4). В деформированном состоянии положение точек обозначим через М’, N’ и Р’. Угол между отрезками M’N’ и М’Р’ в общем случае будет отличным от прямого. При , изменение угла между двумя ортогональными до деформации направлениями называется угловой деформацией. Как видно из рис. 4, угловая деформация складывается из двух углов и , связанных с поворотами отрезков M’N’ и М’Р’ ‘в.плоскости, образованной векторами s1 и s2, относительно этих векторов. Если заданы три взаимно ортогональных вектора, направленных вдоль координатных осей, то имеются три угловые деформации , и , которые вместе с тремя линейными деформациями , и полностью определяют деформированное состояние в точке.

Рис.3. Композиция линейной деформации

 

Рис. 4. Композиция угловой деформации

 

НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ. ТЕНЗОР НАПРЯЖЕНИЙ

   Вектор напряжений pn является физическим объектом, имеющим длину, направление и точку приложения. В этом смысле он обладает векторными свойствами. Однако этому объекту присущи некоторые свойства, не характерные для векторов. В частности, величина и направление вектора напряжений зависят от ориентации вектора n нормали бесконечно малого элемента поверхности dF. Совокупность всех возможных пар векторов п, рn в точке определяет напряженное состояние в данной точке. Однако для полного описания напряженного состояния в точке нет необходимости задавать бесконечное множество направлений вектора n, достаточно определить векторы напряжений на трех взаимно перпендикулярных элементарных площадках. Напряжения на произвольно ориентированных площадках могут быть выражены через эти три вектора напряжений. В дальнейшем лектор умышленно меняет ориентацию координат. Так, что ось Z – продольная ось бруса, а X и Y – координаты любой точки его поперечного сечения.

   Проведем через точку М три взаимно перпендикулярных плоскости с векторами нормалей, направления которых совпадают с направлениями координатных осей. Элементарные площадки образуем дополнительными сечениями, параллельными исходным плоскостям и отстоящими от них на бесконечно малые расстояния dx, dy, dz. В результате в окрестности точки М получим бесконечно малый параллелепипед, поверхность которого образована элементарными площадками dFх=dydz, dFн==dxdz, dFя=dxdy. Векторы напряжений px, py, pz, действующие на элементарных площадках, показаны на рис. 5.

   Разложим каждый вектор напряжений на составляющие вдоль координатных осей (рис. 6). На каждой площадке действует одно нормальное напряжение , , , где индекс обозначает направление вектора нормали к площадке и два касательных напряжения с двумя индексами, из которых первый указывает направление действия компоненты напряжения, второй—направление вектора нормали к площадке.

Рис. 5. Равновесное состояние бесконечно-малого параллелепипеда

 

Рис.6. Компоненты тензора напряженного состояния

 

   Совокупность девяти компонент напряжений (по три на каждой из трех взаимно перпендикулярных площадок) представляет собой некоторый физический объект, называемый тензором напряжений в точке. Тензор можно представить в виде матрицы, соответствующим образом упорядочив девять компонент:

   Для компонент тензора напряжений общепринятым является следующее правило знаков: компонента считается положительной, если на площадке с положительной внешней нормалью (т. е. направленной вдоль одной из координатных осей) эта компонента направлена в сторону положительного направления соответствующей оси. На рис. 6 все компоненты тензора напряжений изображены положительными. На площадках с отрицательной внешней нормалью (грани параллелепипеда, не видимые на рис. 5 и 6) положительная компонента направлена в противоположном направлении. Напряжения на трех взаимно ортогональных площадках с отрицательными направлениями нормалей также характеризуют напряженное состояние в точке. Эти напряжения, являющиеся компонентами тензора напряжений, определяются аналогично напряжениям на площадках с положительной нормалью. Они обозначаются теми же символами и имеют положительное направление, обратное изображенному на рис. 6.

Дальше…

toehelp.ru