Новости Наши партнёры | Песчаный асфальтобетон (либо песчаный асфальт) в различие с другими типами асфальтобетонной продукции, изготавливается из песка и битума (без использования щебня либо гравия). Различается весьма небольшой фракцией. Цена песчаного асфальта находится в зависимости от признака густоты и схемы укладывания. Заказать песчаный асфальтобетон, Вы можете с доставкой по Москве и Московской области на интересных условиях: мы предлагаем песчаный асфальтобетон в каждом спрашиваемом размере, конкурентоспособные стоимость товаров и гибкую систему бонусов в согласовании с объемом партии и комплектностью заказа.
Цена на песчаный асфальтобетон дана без учета доставки. При заказе продукции более 1000 тонн с доставкой нашим транспортом — СКИДКИ!!!
Заказать песчаный асфальт с доставкой вы можете по телефонам: ☎ +7(965)139-93-93 ☎ +7(495)235-05-04 Производство и применение песчаных асфальтобетонных смесейПесчаный асфальтобетон производится из песка и битума при значительной температуре. Согласно виду песка, какой используется в ходе производства, песчаный асфальтобетон разделяется на соответствующие типы:
По технологическим процессам укладывания, песчаный асфальтобетон, подобно иным разновидностям асфальтобетона, случается прохладный и жаркий. Нагретый до 159 градусов песчаный асфальтобетон, потребует некоторое время на застывание. Холодный асфальтобетон способен укладываться при невысокой температуре и никак не потребует периода для затвердевания. Цена холодного песчаного асфальта немного больше, нежели горячего. К превосходствам холодного асфальта, возможно причислить то, что по нему можно ездить мгновенно после выполнения работ по укладке или и ремонту дорожного полотна. Песчаный асфальтобетон используется, в основном, с целью укладывания покрытия на дорогах с низкой автотранспортной загрузкой, в проходных и парковых районах. Характеристики и свойства песчаного асфальтобетонаМы рекомендуем песчаный асфальтобетон в соответствии с ГОССТАНДАРТОМ 9128-2013. Далее перечислены главные высококачественные свойства песчаного асфальта:
Песчаный асфальтобетон довольно легок в изготовлении и использовании, прекрасно подойдет с целью покрытий путей и площадей, где отсутствуют большие запросы к крепости и истираемости асфальтированного покрытия. Продажа и доставка песчаного асфальтаПокупая песчаный асфальтобетон с доставкой или на самовывоз в компании ГлавДорСтрой, вы приобретаете высочайший сервис, невысокую стоимость и быструю поставку смеси на ваш строительный объект.Мы доставляем песчаный асфальтобетон автотранспортом в любом количестве. Все до единого поставки исполняется исключительно прямо с заводов. Закажите песчаный асфальтобетон в компании ГлавДорСтрой и Вы приобретете верного генпоставщика на долгие годы! |
Отличия асфальта и асфальтобетона, их состав
Анастасия
Специалист примет заявку и ответит на ваши вопросы!
8 (800) 500-88-47
Содержание страницы
В дорожном строительстве используются многочисленные виды асфальтобетонных смесей. На их выбор оказывают влияние различные факторы. Основные из них – характеристика режима движения автотранспорта и климатические условия в регионе строительства. Кроме этого, выбор материала (асфальт или асфальтобетон) зависит от способа его укладки и применяемого для дорожных работ оборудования.
Содержание страницы
Асфальт – его особенности
По происхождению асфальт бывает природный и созданный искусственно путем смешивания гравия, песка с битумом, минеральным порошком. Природный материал получается из тяжелых нефтяных фракций при испарении из них наиболее легких компонентов. Добыча асфальта осуществляется из пластовых жильных залежей, а также там, где нефть имеет естественный выход нефти на поверхность.
В природном асфальте количество смолисто-асфальтеновых веществ может достигать до 75 процентов, масел – до 40 процентов. Масла придают битуму подвижность и текучесть. Сравнивая между собой асфальт и асфальтобетон в чем разница между ними, следует обратить внимание, что внешне природный асфальт трудно отличить от обычной смолы. Поэтому его называют горной смолой. Асфальтобетонная смесь часто содержит в своем составе крупные фракции щебня, гравий.
Выбирая асфальтобетон или асфальт, сравнивая их характеристики, отмечены положительные качества искусственного материала. Он выдерживает большие нагрузки, обладает лучшей демпфирующей способностью. В зависимости от процентного содержания битума, щебня, минерального порошка, песка производится асфальт следующих марок: 1, 2, 3.
Асфальтобетон – его разновидности и свойства
Получаемый в результате уплотнения асфальтобетонной смеси и включения в ее состав других добавок материал называется асфальтобетоном. Для его изготовления применяется смесь следующего состава:
- Минеральный заполнитель (щебень и гравий из высокопрочных горных пород, природный или дробленый песок). В качестве структурообразующего компонента также используется минеральный порошок, который производится путем измельчения доломита, битуминозного известняка, доменных шлаков. Он необходим для заполнения пор между гравием (щебнем), а также для увеличения прочности битума.
- Битумное вяжущее. В эту категорию входят битумы, а также их модифицированные разновидности. Класс и марка битума выбирается с учетом особенностей климата в местах использования асфальтобетона, категории дорожного покрытия. Требования к дорожным нефтяным битумам содержатся в ГОСТ 22245-90.
Перемешиваются компоненты в нагретом состоянии и при определенной температуре. Вид используемых добавок оказывает влияние на свойства асфальта или асфальтобетона, который подразделяется на следующие виды:
- Щебеночный.
- Гравийный.
- Песчаный.
По типу вяжущего вещества и способу укладки асфальтобетонные смеси бывают:
- Холодные. Для них применяются жидкие нефтяные дорожные битумы. Укладывается смесь при температуре не менее 5°C. Асфальтобетон, одним из компонентов которого является полимермодифицированное битумное вяжущее, и приготовленный без нагревания, может использоваться при температуре от +5 до -5 °C. Одно из главных свойств, чем асфальт отличается от асфальтобетона, это способность последнего после приготовления долго находиться в рыхлом состоянии. Составы холодных асфальтобетонных смесей отличаются от горячих тем, что в холодных составах содержится большее количество минерального порошка (до 20%), а щебня – не более 50%.
- Теплые. Производятся на вязких и жидких нефтяных битумах. Укладываются при температуре смеси не менее 70°C.
- Горячие. Готовятся на дорожных нефтяных битумах (вязких и жидких). Применяются сразу после изготовления смеси, температура которой должна быть равной или выше 120°C.
К основным характеристикам, определяющим свойства и отличие асфальта от асфальтобетона, относятся:
- прочность;
- водостойкость;
- плотность.
Их значения указаны в ГОСТ 9128-2013 и других нормативных документах.
Выбор сферы применения
Асфальт или асфальтобетонная смесь – что выбрать? Это зависит от областей применения, главной из которых является дорожное строительство. Асфальтобетон находит широкое применение при создании монолитных слоев дорожного покрытия, где ценится высокая механическая прочность, технологичность, более низкая стоимость по сравнению с природным асфальтом. Асфальтобетонные смеси незаменимы при строительстве:
- автомобильных дорог различных категорий;
- взлетных полос на аэродромах;
- автостоянок;
- торговых площадок;
- улиц, тротуаров в населенных пунктах, пр.
В чем разница между асфальтом и асфальтобетоном, из-за которой асфальтобетонная смесь может использоваться для ремонта дорог даже в холодное время года? Различие заключается в том, что смесь не замерзает при температуре до -5°C. Благодаря этому можно увеличить промежуток времени, необходимого для проведения ремонтных работ. Работы с асфальтом можно осуществлять при плюсовых температурах. Зная, чем асфальт отличается от
Асфальтобетонная смесь тип Д марка 2-Вологда Инертные Материалы
Квалифицированные менеджеры компании «Вологда инертные материалы» помогут вам выбрать и выгодно приобрести необходимые материалы для строительства в нужных объёмах, быстро и бережно доставить на базу, склад, строительные или промышленные объекты, а также предоставить необходимый транспорт и специализированную технику, отвечающую вашим строгим требованиям.
Индивидуальный подход к клиентам и ответственное отношение к срокам доставки каждой партии материалов и услуг ставят нашу компанию на высокий уровень среди конкурентов. Мы стараемся получить доверие всех наших клиентов. Долгосрочное сотрудничество и длительные партнерские отношения – наша основная цель.
Компания «Вологда Инертные Материалы» занимается поставками инертных материалов
Инертные материалы-это каменные материалы, такие как песок (карьерный, речной, намывной), ПГС (песчано-гравийная смесь), щебень (гранитный, гравийный, доменный, сталеплавильный, природный), торф, грунт плодородный, керамзит.
Инертные материалы бывают природного и искусственного . Наша компания поставляет материалы толко природного происхождения. Не одно строительство невозможно возвести без инертных материалов. Они используются при строительстве всегда закладываясь в его основу.
Мы предлагаем своим клиентам инертные материалы в чистом виде, либо в смесях, различных фракций.
Компания Вологда инертные материалы предоставляют услуги транспорта для перевозки инертных материалов, различных грузов необходимых в строительстве и производстве различных отраслей, а также специализированную технику применяемую в строительстве и коммунальной сфере.
Вся техника используемая нашей компанией находится в отличном техническом состоянии и управляется опытными водителями и операторами.
Компания «Вологда инертные материалы является одним из ведущих поставщиков бетонов и растворов, различных марок для строительных организаций г. Вологды и Вологодской области, а также организаций коммунального и дорожного хозяйства.
Все поставляемые нами растворы и бетоны отличаются особой прочностью и долговечностью.
Новым видом деятельности для компании стало, производство металлоизделий и металлоконструкций, применяемых в строительстве. В этом направлении наша компания динамично набирает обороты и предлагая нашим клиентам различный вид услуг.
В Московской области тестируют новый тип асфальтобетона — Российская газета
Федеральное казенное учреждение «Центравтомагистраль» начало укладку экспериментального дорожного покрытия с асфальтовой крошкой. Повезло подмосковному городскому округу Ликино-Дулево — именно на его территории проходит эксперимент, для которого выделен участок дороги А-108 (Московское большое кольцо).
В оба слоя асфальтобетонного покрытия добавляется асфальтовая крошка. Лабораторные испытания показали: старый раскрошенный асфальт, добавленный в свежую асфальтобетонную смесь, делает дорожный ремонт дешевле при тех же качественных характеристиках. И задача проводимого в Орехово-Зуеве эксперимента — подтвердить это на практике.
В пресс-службе «Центравтомагистрали» «РГ» уточнили: в верхний слой асфальта крошку в нашей стране еще не добавляли, хотя за рубежом такая практика применяется повсеместно.
«Используя до 20% старого материала, можно получить покрытие с таким же качеством, как если бы использовалась чистая асфальтобетонная смесь, — считает президент Ассоциации производителей и потребителей асфальтобетонных смесей Николай Быстров. — Это даст экономический эффект: за те же деньги можно будет сделать больший объем ремонта на подмосковных дорогах». Есть и экологический аспект. Снятый при ремонте старый асфальт нужно куда-то девать, а это всегда головная боль — вариантов его повторного использования не так много, а утилизация считается экологически небезопасной.
Асфальтовая крошка делает ремонт дешевле
Однако не все эксперты смотрят на эксперимент оптимистично. «Экономия будет присутствовать однозначно, а вот с сохранением качества — вопрос», — говорит депутат городского округа Красногорск Роман Володин. Он много лет занимается производством бетона и считает, что в данном случае европейские технологии в пример брать не стоит. В Европе более мягкие зимы, там за сезон не бывает столько переходов через ноль, пагубно влияющих на состояние дорожного полотна. И столько перегруженных машин, разбивающих дороги, — тоже.
Песчаный асфальтобетон — Дорожно-строительные материалы и машины
Асфальтобетонная смесь, имеющая в своем составе минеральные зерна не более 5 мм. называется песчаной асфальтобетонной смесью. Асфальтобетонная смесь изготавливается из песка, минерального порошка и битума.
Песчаный асфальтобетон подразделяется на следующий виды, в зависимости от вида, используемого в их составе песка:
- Д и Дх – используется песок природного происхождения с содержанием отсевов дробления от 70%;
- Г и Гх – используется песок или их смесь, с содержанием отсевов дробления не менее 30%.
Песчаная асфальтобетонная смесь может быть следующих марок:
- Гх – I и II марок;
- Дх – II марки.
Песчаная асфальтобетонная смесь может быть, как холодной, так и горячей.
Песчаный асфальтобетон применяется в дорожном строительстве при укладке верхнего слоя покрытия на автомобильных дорогах и устройстве тротуаров, пешеходных и велосипедных дорожек. Обычно песчаный асфальтобетон избегают применять там, где ожидаются тяжелые эксплуатационные нагрузки на покрытие. Кроме того, песчаный асфальтобетон менее стоек к истиранию. Достаточно часто песчаный асфальтобетон используется для ремонта дорожных покрытий.
Процесс укладки песчаных асфальтобетонных смесей практически не отличается от укладки других видов асфальтобетона. При уплотнении песчаного асфальтобетона целесообразнее всего использовать катки на пневматических шинах. Уплотнение происходит звеном из трех катков: легкого, тяжелого и среднего. Температура, при которой ведётся уплотнение зависит от марки нефтяного дорожного битума, используемого при приготовлении смеси. Уплотнение плотного песчаного асфальтобетона производят при температуре около 120 градусов Цельсия. Если укладывается пористый песчаный асфальтобетон, то используют катки на пневмошинах массой до 12 тонн. Допускается использовать виброкатки и гладковальцовые катки массой до 10 тонн. Для пористого песчаного асфальтобетона температура уплотнения варьируется от 80 до 90 градусов. При окончании работ температура снижается до 60 градусов.
»Асфальтобетон
Современное использование асфальта для строительства дорог и улиц началось в конце 1800-х годов и быстро росло с появлением автомобильной промышленности. С тех пор технология асфальта достигла огромных успехов, поэтому сегодня оборудование и методы, используемые для строительства конструкций асфальтового покрытия, очень сложны.
Асфальтобетон — это композитный материал, обычно используемый при строительстве дорог, автомагистралей, аэропортов, автостоянок и многих других типов покрытия.Его обычно называют просто асфальтом или асфальтом. Термины «асфальтобетон», «битумный асфальтобетон» и аббревиатура «AC» обычно используются только в инженерной и строительной документации и технической литературе, где определение «бетон» означает любой композитный материал, состоящий из минерального заполнителя, склеенного вместе со связующим. независимо от того, является ли это связующее портландцемент, асфальт или даже эпоксидная смола. Для неспециалистов асфальтобетонные покрытия чаще всего называют просто « асфальт ».
Дисциплины технологии асфальта
Технология асфальта — это изучение асфальтовых смесей, свойств и характеристик, которое можно разделить на три основные дисциплины;
- Технология плотного гранулированного асфальта — Гранулированные смеси производятся из хорошо или непрерывно отсортированного заполнителя (кривая градации не имеет резкого изменения наклона) и предназначены для общего использования. Как правило, более крупные заполнители «плавают» в матрице мастики, состоящей из асфальтобетонного цемента и отсеивания / мелочи.При правильном проектировании и изготовлении смесь плотной фракции относительно непроницаема. Плотные смеси обычно обозначаются по их номинальному максимальному размеру заполнителя. Кроме того, они могут быть классифицированы как мелкозернистые или крупнозернистые. Мелкодисперсные смеси содержат больше мелких и песчаных частиц, чем крупнозернистые.
- Open Graded Asphalt Technology — смеси с заполнителем относительно однородного размера, типичным примером которого является отсутствие частиц среднего размера (градационная кривая имеет почти вертикальный спад в диапазоне промежуточных размеров).Смеси, типичные для этой структуры, представляют собой проницаемую полосу трения, обычно называемую «открытой ступенчатой полосой трения» (OGFC), и проницаемые основы, обработанные асфальтом. Из-за их открытой структуры принимаются меры для минимизации стекания асфальта за счет использования волокон и / или модифицированных связующих. Типичным примером этих смесей является контакт камня с камнем с тяжелым покрытием из частиц асфальтобетона.
- Технология асфальта с зазором — В смесях с зазором используется градация заполнителя с частицами от крупных до мелких, с отсутствием некоторых промежуточных размеров или присутствующими в небольших количествах.Градационная кривая может иметь «плоский» участок, обозначающий отсутствие размера частиц, или крутой наклон, обозначающий небольшие количества этих промежуточных размеров агрегатов. Эти смеси также характеризуются контактом камня с камнем и могут быть более проницаемыми, чем смеси с плотной фракцией, или очень непроницаемыми, как в случае асфальта с каменной матрицей (SMA).
Типы асфальтобетонных смесей
Асфальтобетонная смесь должна быть спроектирована, произведена и размещена таким образом, чтобы получить следующие желаемые свойства смеси: 1) стабильность, 2) долговечность, 3) непроницаемость, 4) удобоукладываемость, 5) гибкость , 6) Сопротивление усталости и 7) Сопротивление скольжению.Асфальт / асфальтобетонные смеси предназначены для определенных функций, характеристик, атрибутов, производительности, местоположения и функции в структуре дорожного покрытия. Например, асфальтовые смеси для покрытия поверхности выполняют совершенно иную функцию в структуре дорожного покрытия, чем базовые асфальтовые смеси, и поэтому имеют другую конструкцию.
Поверхностные асфальтовые смеси — «Крыша» над структурными слоями дорожного покрытия, спроектированная так, чтобы быть долговечной, жертвенной (спроектирована так, чтобы в первую очередь изнашиваться, защищая нижележащие слои).В какой-то момент (обычно через 12-15 лет или более после размещения) они удаляются холодным строганием (обычно называемым фрезерованием) и заменяются новой поверхностью. Различные рабочие характеристики с точки зрения прочности поверхности, износа шин, эффективности торможения и дорожного шума также могут быть достигнуты в зависимости от области применения, желаемой функции и производительности.
Базовые смеси — структурный элемент прочности системы асфальтового покрытия, рассчитанный на максимальную прочность, распределяя нагрузки от колес по основанию и земляному полотну.Поскольку они защищены асфальтовой «крышей» (поверхностью), соответствующие характеристики асфальтобетонных смесей могут быть достигнуты экономически.
Различные виды асфальтобетона
Чтобы обеспечить наилучшую производительность в различных секторах, мы можем предложить большое разнообразие асфальтовых смесей. Из-за различных требований, например, дорога должна соответствовать требованиям (интенсивное движение, суровые погодные условия и т. д.), соответствующая используемая смесь должна иметь достаточную жесткость и сопротивление деформации, чтобы выдерживать давление от колес транспортного средства, с одной стороны, но с другой стороны, необходимость иметь достаточную прочность на изгиб, чтобы противостоять растрескиванию, вызванному изменяющимся давлением, оказываемым на них.Более того, хорошая удобоукладываемость во время нанесения важна, чтобы гарантировать, что они могут быть полностью уплотнены для достижения оптимальной долговечности.
- Горячий асфальт (HMA)
- Горячие смеси производятся при температуре от 150 до 190 ° C.
- В зависимости от области применения можно использовать другую асфальтобетонную смесь.
- Пористый асфальт
- Каменный мастичный асфальт (SMA)
- Асфальтобетон
- Асфальтобетон для очень тонких слоев
- Двухслойный пористый асфальт
- Теплый асфальтобетон (WMA)
- Типичный WMA составляет производится при температуре примерно на 20-40 ° C ниже, чем у эквивалентной горячей асфальтовой смеси.Требуется меньше энергии, а во время укладки покрытия температура смеси ниже, что приводит к улучшению условий труда для бригады и более раннему открытию дороги.
- Холодная смесь
- Холодные смеси производятся без нагрева агрегата. Это возможно только благодаря использованию специальной битумной эмульсии, которая разрушается либо во время уплотнения, либо во время смешивания. После разрушения эмульсия покрывает заполнитель и со временем увеличивает его прочность.Холодные смеси особенно рекомендуются для дорог со слабым движением.
Хотите узнать больше?
Ссылки по теме
Асфальтобетон: типы, преимущества и недостатки
Асфальтобетон (обычно называемый асфальтом, асфальтовым покрытием или тротуаром в Северной Америке, а также асфальт, битумный щебень или рулонный асфальт в Соединенном Королевстве и Республике Ирландия ) представляет собой композитный материал, обычно используемый на дорогах, автостоянках, аэропортах и в сердцевине насыпных дамб.
Это смесь заполнителя и фильтра с асфальтом; горячие или холодные и прокатанные.
Здесь мы узнаем об асфальтобетоне, типах асфальтобетонов и многом другом.
Введение в асфальтобетон:
Короче говоря, асфальтобетон представляет собой композитный материал, и асфальт, используемый в качестве связующего, смешивают вместе, затем формуют в слои и уплотняют.
Его также называют специальным бетоном, состоящим из смеси гранулированного бетона и горячего асфальта для нанесения и распределения.
Компоненты асфальтобетона:
- Тщательный подбор вяжущих и заполнителей.
- Объемное дозирование ингредиентов.
- Оценка готовой продукции.
Типы асфальтобетона:
1. Асфальтобетон горячей смеси (HMAC или HMA):
HMAC получают путем нагревания асфальтового вяжущего и сушки заполнителей для удаления из него влаги перед смешиванием.
Смесь обычно собирают при температуре около 150 ° C для нового асфальта, 166 ° C для модифицированного полимером асфальта и 95 ° C для асфальтоцементного покрытия; конденсат, когда асфальт достаточно шипит.
HMAC — это тип асфальта, обычно используемый для дорожных покрытий с интенсивным движением на автомагистралях, в аэропортах и гоночных трассах.
2. Асфальтобетон с теплой смесью (WMA):
Этот тип бетона также получают путем добавления цеолитов, восков, асфальтовых эмульсий или воды к асфальтовому вяжущему перед смешиванием.
Такой бетон выделяет меньше CO2, аэрозолей и паров, более низкая температура укладки способствует быстрой доступности пола для использования, что особенно выгодно для строительных площадок с жизненно важным графиком работы.
Добавление добавок, таких как цеолиты, воски и асфальтовые эмульсии, к горячему смешанному асфальту может вызвать легкую конденсацию и сделать возможным холодную погоду или более длительный срок хранения.
3. Холодная асфальтобетонная смесь:
Эта холодная асфальтобетонная смесь производится путем смешивания асфальтов в воде с мылом перед смешиванием с заполнителями.
Когда бетон находится в смешанном состоянии, битум становится менее вязким, и смесь становится легче работать и становится более плотной.
Холодные смеси обычно используются в качестве дозирующих материалов на подъездных дорогах с низкой интенсивностью движения.
4. Разрезанный асфальтобетон:
Разрезанный асфальтобетон получают растворением связующего в керосине или другой более легкой фракции нефти перед смешиванием с заполнителем.
В растворенном состоянии асфальт намного менее вязкий, и смесь становится более простой в работе.
После добавления смеси более легкая фракция испаряется.
Это увеличивает загрязнение летучими органическими соединениями, присутствующими в летучей фракции, поэтому отсеченный асфальт в значительной степени заменен эмульсией асфальта.
5. Мастичный асфальтобетон или листовой асфальт:
Мастичный бетон образуется путем нагревания выдутого битума истощенной марки в смесителе до тех пор, пока он не превратится в вязкую жидкость, после чего добавляется заполнитель.
Битумная смесь заполнителя выдерживается в течение примерно 6-7 часов. Как только она будет приготовлена, битумно-мастиковую смесь отправляют на строительные работы на шоссе.
Обычно его толщина составляет около 20-30 мм для тротуаров и шоссе и до 10 мм для полов или крыш.
В редких случаях для улучшения свойств конечного продукта могут быть добавлены такие добавки, как полимеры и средства для удаления муравьев.
6. Натуральный асфальтобетон:
Натуральный асфальтобетон может производиться из битумной породы, которая естественным образом встречается в некоторых частях мира.
видео
Преимущества асфальтобетона:
- Асфальтобетон дешевле, чем бетон, требует меньше времени на строительство дороги.
- Эта толстая асфальтовая конструкция долговечна и требует только ухода за поверхностью.
- Они быстрые и экономичные, особенно для городских и проселочных дорог.
Недостатки асфальтобетона:
- Асфальтобетон менее прочен и становится мягче в жарком климате.
- Неправильная укладка асфальта вызывает трещины и проблемы.
- Метод строительства требует установки тяжелого оборудования, независимо от того, какой тип асфальта использовался.
Также прочтите: Самовосстанавливающийся бетон, Затвердевший бетон и Свежий бетон
Заключение:
Для асфальтобетона конструкция смеси включает заполнители, комбинацию щебня, гравия и асфальта с асфальтовой эмульсией.
Требования к оценке жизненного цикла
Конструкция асфальтобетона, требуемые свойства составляющих материалов и их соотношения в смеси имеют огромное значение и должны выполняться с учетом всего жизненного цикла этих материалов и окончательной конструкции.Соответствие требованиям к долгосрочным характеристикам закладных материалов является общей целью оценки жизненного цикла (LCA). Следовательно, в рамках оценки необходимо оценивать свойства материалов с учетом всего срока службы — от момента встраивания в конструкцию до их утилизации или вторичного использования. Оценка направлена на проверку соответствия критериям, установленным для этих материалов, и должна гарантировать эксплуатационную пригодность и производительность в течение всего срока их службы.Переработка и повторное использование асфальтобетона предпочтительнее утилизации материала. В данной статье представлена методика оценки жизненного цикла асфальтобетона. Он был создан для того, чтобы гарантировать не только применимость материалов на начальном этапе, в момент их заделки, но и их пригодность с точки зрения нормативно предписанных эксплуатационных характеристик окончательной конструкции. Описанные методы и результаты представлены в тематическом исследовании асфальтовой смеси AC 11; Я проектирую.
1. Введение
Конструкция асфальтовой смеси с точки зрения материалов и соотношений смесей должна обеспечивать соблюдение критериев выдерживания всех неблагоприятных условий на протяжении всего жизненного цикла в реальных условиях эксплуатации.Строительные материалы, составляющие слой асфальтобетона, должны обеспечивать перевозку грузового транспорта, касательные деформации от замедлений на перекрестках, условия высоких и низких температур, ультрафиолетовое излучение и т. Д. Эти неблагоприятные условия должны выдерживать закладные материалы в течение всего жизненного цикла, составляющего примерно 20 лет. Необходимые материалы для обеспечения работоспособности готовой конструкции в этот период. Чтобы материалы соответствовали критериям, необходимо принять комплексный подход к испытаниям, чтобы проверить характеристики материала.Этот подход состоит из комбинации экспериментальных лабораторных испытаний, которые основаны на применении материалов, и долгосрочного мониторинга выбранных участков дороги. В рамках экспериментальных испытаний первостепенное значение имеет определение деформационных и усталостных свойств материалов, а также срока их службы. Эти лабораторные тесты дополняет долгосрочный мониторинг.
2. Деформационные свойства
Для LCA основных, нормативно [1] предписанных параметров асфальтобетонных смесей необходимо проанализировать деформационные свойства, а также полученные на их основе сопротивление усталости и ожидаемый срок службы.Параметры определены в соответствии с нагрузками, которым материал асфальтобетонной смеси подвергается в реальных условиях эксплуатации.
Комплексный модуль упругости [МПа] — это характеристика, которая определяет деформационные свойства асфальтобетонных смесей и на основании которых могут быть получены уровни напряжения материала асфальтовой смеси. Поскольку AC обладает вязкоупругими свойствами материала, их характеристики следует определять на основе реологических параметров. Как вязкие, так и упругие грани материала в зависимости от температуры могут быть определены как комплексный модуль путем испытания на двухточечной трапециевидной изгибающей балке, форма которой показана на рисунке 1 [2].
Частота индукции напряжения, частота колебаний, действующих на образцы, находится в диапазоне от 6 до 25 Гц, что соответствует реальным условиям нагрузки от транспортных средств, действующих на асфальтобетон на поверхности дорожного покрытия. Испытание проводится при температуре + 15 ° C и частоте колебаний 10 Гц. Деформационные свойства изменяются в зависимости от интенсивности, частоты и температуры напряжений. В рамках исследования для данной статьи асфальтобетонная смесь АС 11; Меня тестировали на максимальные уровни транспортной нагрузки, например, в качестве материала, предназначенного для слоя покрытия.Тестирование проводилось согласно соответствующему стандарту [3]. Измеренное значение комплексного модуля = 15 ° C; = 10 Гц = 7576 МПа, измерено при 15 ° C и 10 Гц. Результаты показаны на Рисунке 2. Смесь состоит из минерального заполнителя и 5,5% связующего B50 / 70. Продолжительность изменений комплексного модуля показана для каждой комбинации частоты и температуры (например, 27 ° C). Для частоты 1 Гц и различной температуры значения комплексного модуля находятся в диапазоне от 1500 МПа до 15000 МПа.Диапазон рассматриваемых температур составлял от −10 ° C до + 27 ° C. Основываясь на проведенных измерениях, мы можем утверждать, что изменение температуры для различных климатических условий (будь то лето или зима) оказывает значительное влияние на ожидаемый срок службы асфальтовых материалов.
Связь также можно оценить с помощью основных кривых. Преимущество основных кривых состоит в том, что после введения газовой постоянной можно пересчитать комплексные значения модуля упругости для различных температур и частот и установить взаимосвязь.Таким образом, о качестве асфальтобетона можно судить по относительно небольшому количеству испытаний. Метод оценки основной кривой показан на рисунке 3.
3. Усталость: срок службы
Усталость — это элементарная характеристика для определения срока службы материала переменного тока. Параметры усталости, которые устанавливаются экспериментальными измерениями, являются предпосылкой для расчета остаточного срока службы. Исходными данными для этого является расчет уровней напряжений, которым подвергается материал в конструкции.Уровень напряжения связан с прочностью материала, уменьшенной характеристикой усталости. Расчет деформации основан на математической модели слоистого упругого полупространства [4] с использованием критерия зарождения трещин на нижней кромке связанных слоев асфальта.
Критерий зарождения трещин на нижнем крае связующего слоя асфальта считается выполненным, если применяется (1): где = радиальное напряжение на нижнем крае связанного слоя асфальта «» [МПа]; = максимальное растягивающее напряжение, возникающее в точке разрушения после одного цикла нагружения поверхностного слоя дорожного покрытия «» [МПа]; = усталостная характеристика материала поверхностного слоя асфальтового покрытия.
Характеристика усталости зависит от количества повторений стандартной осевой нагрузки (SAL) и выводится на основе экспериментальных измерений. Он может быть выражен как где = коэффициенты усталости, полученные для различных материалов, связанных с асфальтом, и = количество повторений стандартных осевых нагрузок [SAL].
Следовательно, после интегрирования (2) в (1) срок службы слоя может быть рассчитан как здесь = срок службы слоя «» при стандартной нагрузке на ось [SAL]; = расчетное радиальное напряжение на нижней кромке ограниченного слоя поверхности дорожного покрытия «» [МПа]; , = коэффициенты усталости, полученные для различных асфальтовых или цементно-связанных материалов.
Коэффициенты усталости для AC I, определенные путем экспериментальных измерений, должны лежать в этих интервалах [2, 5]: Асфальтобетон I:,.
3.1. Измерение характеристик усталости
В соответствии с европейским стандартом [3] усталость должна определяться с помощью линейной регрессии, представленной логарифмической функцией. Эта функция должна быть основана на результатах, которые представляют длительность усталостной долговечности, выбранную посредством линейной регрессии между значением lg и значением lg (сопротивление усталости) в соответствии с here = условной усталостной долговечностью образца; = ордината функции; = крутизна функции; lg = среднее значение lg.
Срок службы можно рассчитать по тому же принципу, что и в (1). Разница в том, что вместо оценки напряжения и прочности материала AC I, рассчитанной в слоистом упругом полупространстве, используются пропорциональные деформации на дне слоев асфальта, а сопротивление усталости характеризуется средней упругой и остаточной деформацией, вычисляемой по формуле экспериментальные измерения [6, 7].
Исходя из этой процедуры, необходимо определить кривую Велера посредством экспериментальных испытаний, которые будут определять циклы нагружения и деформации, выраженные через параметр и параметры,.
В качестве результатов исследования для этой статьи мы представляем взаимосвязь циклов нагружения и амплитуды асфальтобетонных смесей (AC) AC 11; I на рисунке 4 и в таблице 1.
| |||||||||||||||||||||||||
Величина усталости — это относительная деформация за 1 миллион циклов нагружения испытательных образцов для одной асфальтобетонной смеси [8].
4. Производительность: скорость износа
Экспериментальные измерения усталости и соответствующие производные параметры составляют основу для расчета срока службы. Однако при реальном применении смесей переменного тока, которые образуют поверхность дорожного покрытия, на материал влияют другие факторы, которые нельзя моделировать в этих измерениях усталости.Поэтому в расчет включаются другие коэффициенты, чтобы выразить коэффициент усталостной надежности по отношению к реальной эксплуатации смеси переменного тока [6]. Во-вторых, гораздо более точным вариантом является выполнение измерений на реальных участках дороги, срок службы которых измеряется напрямую. В ходе исследования прогресс деформации материала переменного тока непосредственно наблюдался в течение 10 лет, в течение которых материал выдержал 7 миллионов циклов нагрузки SAL.
Так как характеристики усталости экспериментально оцениваются с помощью деформационных характеристик, упругих и пластических, оценка срока службы в реальных условиях эксплуатации проводилась путем измерения продольной неровности, то есть путем измерения пластической деформации.
Предпосылка для этих измерений заключалась в том, что конструкция поверхности тротуара — прежде всего основания — не влияет на асфальтобетон в покрытии. Поэтому, помимо продольной неровности, необходимо было выяснить несущую способность конструкции, чтобы подтвердить это предположение. Кроме того, для создания моделей деградации, применимых к точно определенным условиям, интенсивность движения и климатические условия, а также температура воздуха и температура поверхности должны регулярно регистрироваться через установленные интервалы [9].
Оценка продольной неровности выполняется с использованием моделей прогрессии продольной неровности, то есть моделей характеристик дорожного покрытия [10–12]. Однако они выражают изменения в покрытии в зависимости от загруженности транспорта. Для наших исследовательских целей было необходимо регистрировать деформационные изменения материала AC I в течение длительного периода с помощью IRI, Международного индекса шероховатости. Измерения выполнены компанией PROFILOGRAPH GE [13–15]. Результаты выражаются через IRI в м / км в соответствии с: здесь = среднее арифметическое значение ординат; = количество измерений.
Поперечная неровность выражается через глубину колеи. На рисунке 5 показаны характеристики поверхности.
Устройство измеряет неровности с помощью 16 рельсовых лазеров с интервалом 20 м. Одно из измерений секции долгосрочного мониторинга производительности (LTPPM) показано в таблице 2.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Математические отношения между IRI SAL могут быть получены из IRI SAL. загрузка пересчитана в SAL.Они были нарисованы для дорог и автомагистралей 1-го класса, у обеих есть AC 11; I, показанный на рисунках 6 и 7. Показанные результаты представляют собой промежуток времени в 10 лет. На основе измеренных значений были выведены три зависимости: линейная, полиномиальная и экспоненциальная. Полиномиальная функция наиболее точно представляет измеренные значения. (I) Квадратичная полиномиальная функция для дорог 1-го класса с AC 11; I всплытие: (ii) квадратичная полиномиальная функция для автомагистрали с AC 11; I всплытие: мы можем сделать вывод из этих графиков, что, хотя начальные значения IRI различаются (дороги 1-го класса были построены ранее), деформация, накопленная в течение 10 лет базисного периода и приблизительно 6 миллионов циклов нагрузки (SAL), одинакова для обоих участки дороги — IRI увеличивается до 1.5 м / км, что в точности соответствует предположениям лабораторных испытаний. Остаточный срок службы можно рассчитать по этой модели деградации. Если предположить, что критическое значение IRI составляет 5 м / км, AC 11; Остаточный срок службы материала I составляет 4 года. AC 11; Однако остаточный срок службы материала, встроенного в автомагистраль, составляет почти 13 лет. По истечении этого периода AC 11; I материал необходимо утилизировать или переработать. Еще одно преимущество этого анализа, помимо оценки свойств асфальтобетона с точки зрения LCA, заключается в том, что результаты тесно связаны с расчетами затрат пользователей дорог и методами оптимизации для технического обслуживания, ремонта и реабилитации [16].
5. Утилизация и переработка асфальтобетонных материалов
Утилизация этого материала возникает как важный вопрос в конце эксплуатации асфальтобетона. Большим преимуществом асфальтобетонных материалов является то, что они могут быть переработаны в составе новых смесей [5, 17]. Однако эти вновь воссозданные материалы должны соответствовать тем же критериям, что и новые. Таким образом, переработанные материалы были подвергнуты всем испытаниям, которым будут подвергаться новые материалы [15].В результате исследования мы представляем кривую усталости для асфальтобетона (смесь 1) AC 11, модифицированную PmB 70 / 100-83 (5,6%), кривую усталости для той же смеси с добавлением переработанного материала (смесь 2 ), с 15% переработанного материала и 4,9% битума и кривой усталости для AC 11 с 40% переработанных материалов и 3,7% битума (смесь 3). Кривые представлены на Рисунке 8 и в Таблице 3.
| |||||||||||||||||||||||||||||||
На основании результатов можно констатировать, что переработанные материалы соответствуют правилам [6], касающимся их использования.Строительство с использованием этих материалов может быть переоценено в анализе жизненного цикла с использованием тех же принципов для методов оптимизации технического обслуживания, ремонта и восстановления, что и слои, сделанные из новых материалов.
6. Заключение
Оценка материалов на основе LCA имеет огромное значение, поскольку она основана только на установленных характеристиках материалов и может применяться в реальных условиях.
Чтобы оценить материалы с точки зрения их жизненного цикла, необходимо точно установить параметры для оценки соответствия этих материалов.Они должны быть оценены с точки зрения дизайна, реальной эксплуатации в строительстве, а также их утилизации или переработки.
Также по этой причине методология оценки должна включать лабораторные испытания, а также долгосрочный мониторинг эффективности на месте. В рамках длительного исследования, результаты которого представлены в данной статье, материал AC 11; Меня оценивали на максимальный уровень загрузки трафика. Изменения этих характеристик определялись посредством усталостных испытаний материала.Для определения параметров усталости необходимо было рассчитать ожидаемый срок службы материала в зависимости от транспортной нагрузки. Результаты измерений подтверждают, что AC 11; I материал способен выдерживать необходимый объем транспортной нагрузки.
Был проведен долгосрочный мониторинг характеристик для определения функций износа наплавок из AC 11; Я материал. Результаты 10-летнего долгосрочного мониторинга производительности подтверждают, что увеличение деформации, измеренное в IRI для 600 тысяч циклов нагружения (SAL) в год, соответствует 20 годам расчетного требуемого срока службы.Кроме того, математические модели деградации могут использоваться для расчета остаточного срока службы AC 11; Я материал. Важность этих расчетов заключается в том, что они позволяют рассчитать оптимальный год для ремонта и реабилитации.
Заключительный этап анализа жизненного цикла основан на утилизации материала. Материалы переменного тока разделяют то преимущество, что их можно перерабатывать — повторно использовать в строительстве. Результаты измерения показывают, что при использовании правильного сочетания переработанного и нового материала достигаются параметры, сопоставимые с параметрами новой смеси.Это оказывает прямое влияние на экономический аспект проектирования конструкции переменного тока.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.
Благодарности
Исследование поддержано Европейским фондом регионального развития и Государственным бюджетом Словакии для проекта «Исследовательский центр Жилинского университета», ITMS 26220220183. Исследовательская деятельность в Словакии поддерживается, и проект финансируется за счет ресурсов ЕВРОПА.
Что такое горячее асфальтовое покрытие?
Асфальтовое покрытие — любая дорога с асфальтовым покрытием. Горячий асфальт (HMA) представляет собой смесь примерно 95% камня, песка или гравия, связанных вместе асфальтовым цементом, продуктом сырой нефти. Асфальтовый цемент нагревается, комбинируется и смешивается с заполнителем на установке HMA. Полученный горячий асфальт загружается в грузовики для транспортировки к месту мощения. Самосвалы выгружают горячую асфальтобетонную смесь в бункеры, расположенные в передней части асфальтоукладчиков.Асфальт укладывается, а затем уплотняется тяжелым катком, который перемещается по асфальту. Движение по тротуару обычно разрешается, как только оно остынет.
HMA Ultra-Thin предлагает простой и экономичный способ ухода за дорогами и улицами, поскольку он защищает ваши вложения в них. Обработка горячего асфальта, разработанная специально для укладки тонких слоев (3/4 дюйма), HMA Ultra-Thin была разработана для структурно прочных дорожных покрытий, которые проявляют признаки старения, окисления или незначительного разрушения поверхности.В результате вы получаете более прочное и красивое покрытие, которое улучшает качество езды для водителей и снижает уровень шума транспорта для населения. Сочетание хорошо задокументированных преимуществ асфальта в гладкости и безопасности с продвинутым процессом проектирования многослойного покрытия … Perpetual Pavement сочетает хорошо задокументированные преимущества асфальта в гладкости и безопасности с продвинутым процессом проектирования многослойного покрытия, который регулярное обслуживание, продлевает срок службы проезжей части до полувека и более.Тротуары, спроектированные и построенные в соответствии с концепцией Perpetual Pavement, будут долговечными, долговечными и долговечными.
Руббилизация
Руббилизация — это проверенный метод строительства, который превращает разрушенную бетонную дорогу в основание для создания гладкого, безопасного, бесшумного и прочного покрытия, построенного из горячего асфальта (HMA). Это сводит к минимуму задержки для автомобилистов и позволяет строить в «непиковые» часы. Обработка асфальтом — очень рентабельный метод восстановления.
Стоимость жизненного цикла
Асфальтовое покрытие на начальных этапах строительства и в долгосрочной перспективе экономит деньги на строительстве и обслуживании. К такому выводу пришли дорожные инженеры и отделы транспорта всей страны. «Затраты на жизненный цикл» — деньги, потраченные на строительство и обслуживание дороги в течение ее срока службы — значительно ниже при использовании горячего асфальта (HMA), чем при использовании бетона.
Ваше рентабельное решение
Тонкие покрытия HMA, 1 ½ дюйма или меньше, являются экономически эффективным решением для сохранения дорожного покрытия, прежде всего благодаря их способности:
Гладкости
Забота автомобилистов про ровные тротуары.Асфальт будет обеспечивать водителям плавную и бесшумную езду, на которую они привыкли. Гладкие дороги позволяют экономить топливо. Гладкое покрытие снижает эксплуатационные расходы автомобиля. Гладкие тротуары служат дольше. Асфальтовое покрытие более гладкое, и его легче поддерживать гладким, чем бетонное.
Управляемость
Национальное исследование показало, что водители предпочитают ухоженные, безопасные и ровные дороги; более того, они понимают, что эти качества требуют периодического обслуживания и финансовых вложений.
Уплотнение горячих асфальтовых покрытий: Часть I
Единственным наиболее важным фактором, влияющим на долгосрочную долговечность покрытия из горячего асфальта (HMA), является плотность смеси, которая достигается подрядчиком во время строительства. Плотность материала определяется как вес материала, занимающего определенный объем пространства. Процесс уплотнения вызывает сжатие асфальтобетонной смеси и уменьшение ее объема. По мере увеличения плотности горячего асфальтового материала содержание воздушных пустот в смеси уменьшается (они обратно пропорциональны друг другу).Правильно спроектированная смесь HMA должна иметь содержание воздушных пустот в диапазоне от 3% до 5%.
Если уплотненная горячая асфальтовая смесь имеет высокое содержание воздушных пустот (более 8%), смесь не будет работать так же хорошо при движении. Точно так же, если уплотненная асфальтовая смесь имеет низкое содержание воздушных пустот (менее 3%), смесь будет подвержена остаточной деформации или колейности, а также деформации под воздействием транспортных нагрузок. Таким образом, для того, чтобы смесь функционировала должным образом, подрядчик должен иметь возможность уплотнять смесь до желаемого уровня плотности или содержания воздушных пустот.
Плотность асфальтобетонной смеси определяет ее долговечность. Все следующие факторы связаны с содержанием воздушных пустот в горячем асфальтовом материале: усталостная долговечность; остаточная деформация; окисление; повреждение от влаги; искажение; и распад.
По мере того, как воздушное пространство в горячей асфальтовой смеси уменьшается, усталостная долговечность или количество повторений нагрузки до разрушения этой смеси увеличивается. Испытания показали, что уменьшение содержания воздушных пустот в данной асфальтобетонной смеси с 8% до 5% может удвоить усталостную долговечность дорожного покрытия.Таким образом, для данной толщины HMA как части конструкции дорожного покрытия способность смеси выдерживать нагрузку может быть значительно увеличена, когда смесь уплотняется до более низкого содержания воздушных пустот.
Поиск и устранение неисправностей
Степень остаточной деформации или колейности, которая возникает под нагрузкой в горячем асфальтовом материале, также напрямую связана с содержанием воздушных пустот в смеси. По мере того как содержание воздушных пустот уменьшается, количество колейности, возникающей в этой смеси, также уменьшается.При правильной конструкции смеси хорошо уплотненная смесь не будет покидать колеи под действием транспортных нагрузок. Если конструкция смеси в каком-либо аспекте несовершенна, надлежащее уплотнение смеси все же может значительно уменьшить количество колейности и поперечных деформаций, которые будут возникать при повторяющихся приложениях нагрузки. Если, однако, содержание воздушных пустот в смеси уменьшается до менее 3%, это может привести к увеличению скорости образования колейности смеси.
Со временем асфальто-цементное вяжущее в асфальтобетонной смеси окисляется и становится более хрупким.Этот процесс окисления или старения приводит к уменьшению пенетрации и увеличению вязкости асфальтового цемента. Скорость окисления напрямую связана с содержанием воздуха в смеси. Чем ниже содержание воздушных пустот, тем менее быстро горячий асфальтовый материал будет стареть и становиться более жестким.
Повреждение или снятие влаги происходит, когда вода может попасть в смесь и под повторяющимся движением транспорта пробивается между асфальтовым покрытием на заполнителе и поверхностью заполнителя.Степень повреждения влагой в первую очередь связана с характеристиками заполнителя, используемого в смеси, но также напрямую связана с содержанием воздушных пустот в смеси. По мере того, как содержание воздушных пустот в смеси уменьшается, количество повреждений, наносимых влагой, также уменьшается. Действительно, смесь, которая может плохо отслаиваться при содержании воздушных пустот 8%, может не пострадать от влаги, если она может быть уплотнена до содержания воздушных пустот ниже 4%.
Искажение или толчок — это смещение смеси, обычно в продольном направлении, под действием движения.Искажение в первую очередь связано с дизайном и свойствами смеси, но также связано с содержанием воздушных пустот. Для данной смеси уменьшение содержания воздушных пустот во время строительства уменьшит количество искажений, которым смесь будет подвергаться при воздействии транспортных нагрузок, особенно при остановках или поворотах. Увеличение плотности смеси (уменьшение содержания воздушных пустот) увеличит внутреннюю стабильность и прочность смеси и может значительно уменьшить степень деформации, возникающей под нагрузкой.
Распад или растрескивание напрямую связаны с содержанием воздушных пустот в смеси. Если смесь должным образом уплотнена (до содержания воздушных пустот 8% или менее), она, как правило, не рассыпается при правильном содержании асфальта. Однако, если та же смесь уплотняется до высокого содержания воздушных пустот, под воздействием транспортных нагрузок может произойти сильное расслоение. По мере того как содержание воздушных пустот в смеси уменьшается, количество растекания также будет уменьшаться.
Асфальтобетонная смесь должна быть полностью уплотнена, прежде чем она остынет до температуры около 175 F.При температурах выше этого значения смесь обычно все еще достаточно теплая, чтобы оборудование для уплотнения могло переориентировать частицы заполнителя в их наиболее плотную конфигурацию. Однако ниже этой температуры смесь, как правило, слишком густая, чтобы увеличить ее плотность на сколько-нибудь значительном уровне при продолжении прокатки, хотя следы от валков часто можно удалить ниже этой предельной температуры уплотнения. Поэтому смесь необходимо уплотнять, пока она еще горячая. Пять факторов напрямую влияют на скорость охлаждения асфальтобетонной смеси, когда этот материал помещается поверх другого существующего слоя конструкции дорожного покрытия.Эти переменные: температура воздуха; базовая температура; температура выкладывания смеси; толщина слоя; и скорость ветра.
При прочих равных условиях, при повышении температуры окружающего воздуха время, доступное для уплотнения, также увеличивается. Смесь потребуется больше времени, чтобы остыть до предельной температуры 175 F в теплый день, чем в прохладный день. Повышение температуры воздуха позволяет оборудованию для уплотнения достичь желаемого уровня плотности смеси.
Более важной, чем температура воздуха, в скорости охлаждения горячей асфальтовой смеси является температура поверхности слоя, на которую укладывается новая смесь.Хорошо известно, что тепло в слое асфальтобетона теряется в двух направлениях. Поверхность смеси охлаждается по мере передачи тепла воздуху. Нижняя часть смеси также охлаждается, поскольку тепло передается нижележащему основному материалу. Смесь охлаждается вниз в основание быстрее, чем вверх в окружающий воздух.
Базовая температура — температура слоя, на который укладывается новая асфальтобетонная смесь — на самом деле более важна, чем температура воздуха при определении времени, доступного для уплотнения.Повышение базовой температуры дает больше времени для уплотнения.
По мере увеличения температуры смеси, выходящей из-под стяжки, время, доступное для уплотнения, также увеличивается. Смесь, помещенная при температуре 300 F, для данной толщины подъема и других факторов окружающей среды, потребует больше времени для охлаждения до предельной температуры 175 F, чем та же смесь, помещенная при температуре 250 F.
Толщина — критический компонент скорости охлаждения
Вероятно, наиболее важным фактором в скорости охлаждения асфальтобетонной смеси является толщина укладываемого и уплотняемого слоя.По мере увеличения толщины слоя время, доступное для уплотнения, также увеличивается. Для 3-дюймовой модели требуется значительно больше времени. толстый слой горячей асфальтовой смеси для охлаждения до предельной температуры 175 F, чем для 1 дюйм. слой остыть до той же температуры. Время охлаждения не прямо пропорционально толщине подъема, но геометрически пропорционально. Например, в день при 40 F при той же температуре основания, 3 дюйма. Толстому слою HMA, помещенному при температуре 250 F, потребуется 19 минут, чтобы охладиться от температуры укладки до температуры отсечки 175 F.В тот же день 40 F, с той же базовой температурой и для той же температуры укладки смеси 250 F, 1 дюйм. толстый слой HMA остынет до температуры отсечки всего за 3 минуты.
Тонкий слой асфальтобетонной смеси остывает быстрее при сильном ветре, чем при слабом ветре или его отсутствии. Ветер оказывает гораздо большее влияние на поверхность смеси, чем на различных глубинах в слое HMA. Сильный ветер может вызвать такое быстрое охлаждение поверхности, что образуется корка.Эта корка должна быть разрушена роликами до завершения процесса уплотнения. Чем выше скорость ветра, тем меньше времени остается на уплотнение, при прочих равных условиях.
Диксон и Корлью опубликовали набор кривых охлаждения для асфальтобетонных смесей. Эти кривые показывают количество времени, доступное для уплотнения при различных комбинациях условий. Кривые воспроизводятся в Разделе Шестой Части Третьей Руководства по укладке горячего асфальта, доступного в Национальной ассоциации асфальтобетонных покрытий.Для ввода графиков используются три переменные: температура укладки смеси, базовая температура (которая считается равной температуре воздуха) и толщина уплотненного слоя.
В чем разница между асфальтом и бетоном?
Термины, как правило, немного путают те, кто не работает в отрасли, но между асфальтом и бетоном существует значительная разница. Если вы один из многих, кто не знает, что именно, давайте попробуем прояснить для вас проблему.Для начала, мостовые исторически подразделяются на две основные категории — гибкие и жесткие. Эти традиционные определения, как правило, несколько упрощают, но они дают описание того, как асфальт и бетон реагируют на силовые нагрузки и окружающую среду.
Между ними асфальтовое покрытие представляет собой гибкую разновидность. По сути, асфальт состоит из довольно тонкой поверхности износа, построенной над слоями основания и основания. Эти слои обычно состоят из камня или гравия и опираются на уплотненное земляное полотно (которое представляет собой уплотненный грунт).И наоборот, жесткие мостовые сооружаются из портландцементного бетона. В зависимости от конкретного проекта между бетонным покрытием и земляным полотном может быть или не быть основного слоя.
В прошлом бетон был предпочтительным выбором для мощения дорог, участков и других подобных объектов. Ситуация изменилась, и теперь предпочтение отдается асфальту. Чтобы понять, почему произошло это переключение, мы должны взглянуть на то, как создаются оба типа дорожного покрытия.Асфальт изготавливается из заполнителя (например, песка или щебня), связанного битумом.Это связующее представляет собой темное липкое вещество, полученное из сырой нефти. Когда участки, проезды и дороги строятся с использованием асфальта, горячий битум, смешанный с мелким заполнителем, выливается на слой более тяжелого заполнителя. Затем асфальт прессуется паровым катком, который все уплотняет и обеспечивает надежное сцепление. На этом этапе асфальт должен остыть до температуры окружающего воздуха, после чего он становится достаточно прочным, чтобы выдерживать движение. Этот процесс обеспечивает твердость и долговечность, а также обеспечивает достаточную гибкость, чтобы компенсировать любые недостатки основной поверхности.
Как и в случае с асфальтом, бетон изготавливается с использованием заполнителя. В этом случае связующим веществом, удерживающим заполнитель, является цемент. По мере высыхания смеси она становится жесткой, неумолимой (вот почему она считается «жестким» типом дорожного покрытия). У бетона есть свои применения, но важно знать, что он может ломаться и трескаться, особенно когда поверхность под ним не идеально гладкая.
Помимо присущей ей гибкости, использование асфальтового покрытия по сравнению с бетоном или цементом имеет и другие преимущества.Одним из примеров является то, что удаление и замена поврежденного асфальта — относительно простой и легкий процесс по сравнению с тем, как это делать с бетоном. Во-вторых, асфальт на 100% пригоден для вторичной переработки.
Еще одно преимущество асфальта перед бетоном — это экономия времени и денег. Асфальтовые проекты могут быть готовы к реализации быстрее и с гораздо меньшими затратами, чем бетонные. (Собственно, это касается и обслуживания и ремонта асфальтового покрытия.)
Это некоторые из основных различий между асфальтовым и бетонным покрытием.Однако, пожалуй, наиболее заметное различие сводится к цвету — асфальт черный, а бетон серый.
Как лидер в индустрии мощения в Западном Мичигане, мы можем помочь вам разобраться в подобных вопросах. Более того, мы предоставляем комплексные услуги по укладке дорожного покрытия. Когда вы нанимаете Stripe A Lot для выполнения своего проекта, вы нанимаете только Stripe A Lot — никаких субподрядчиков! — и наш многолетний опыт работы в отрасли. Чтобы узнать, что мы можем для вас сделать, просто позвоните нам сегодня по телефону 1-800-BLACKTOP (или 616-772-2559).Пока вы на связи, не забудьте запросить БЕСПЛАТНУЮ СМЕТУ!
Горячие асфальтобетонные смеси — CEMEX USA
Горячий асфальт и другие промышленные асфальтовые смеси
CEMEX имеет представительства по производству асфальта в Аризоне и Калифорнии, Орегоне, Вашингтоне и Эль-Пасо, Техас. Мы продаем широкий ассортимент асфальтобетонных изделий, от стандартной горячей асфальтовой смеси (HMA) до государственных конструкций DOT и даже индивидуальных смесей по индивидуальному заказу. Горячий асфальт обычно используется в промышленном асфальтовом покрытии.CEMEX также производит другие специализированные продукты, такие как холодная смесь и асфальтобетонная основа.
Договор
Наши проекты варьируются от основных межгосударственных автомагистралей до промышленного асфальтирования.
Стандартный горячий асфальт (HMA)
Описание продукта
Стандартная горячая асфальтовая смесь — это один или несколько слоев горячей асфальтовой смеси. HMA — один из наиболее используемых и долговечных материалов для мощения дорог. Его изготавливают путем смешивания щебня (гравия и песка) с жидким асфальтовым цементом (черным липким веществом, которое является побочным продуктом переработки нефти).Многие из наших продуктов для горячего асфальта содержат переработанный асфальт. По весу асфальт является одним из наиболее перерабатываемых продуктов в мире.
Области применения / Области применения
Дорожное покрытие — это инженерная конструкция, такая же, как здания и мосты, и должна быть спроектирована таким образом, чтобы выдерживать удельные весовые нагрузки, интенсивность движения и погодные условия.
Информация по охране труда
www.hotmix.org
Дополнительная информация
Заводы по производству горячего асфальта производят широкий спектр различных смесей для дорожных покрытий определенных типов.В установках горячего асфальта нагревают заполнители, затем смешивают с асфальтовым цементом. Асфальтовый цемент действует как клей, удерживая тротуар вместе.
Асфальт по ГОСТ
Описание продукта
Смеси, одобренные Государственным департаментом транспорта (DOT), асфальтобетонные основания (ATB) и холодные смеси для временного ямочного ремонта.
Использование / применение
Эти высокотехнологичные продукты могут использоваться на основных межгосударственных автомобильных дорогах вплоть до сельских проселочных дорог.Многие городские и уездные муниципалитеты указывают эти типы асфальтобетонов на своих общественных и коммерческих асфальтовых покрытиях.
Технические характеристики
Конструкции смесей, утвержденные WSDOT.
Дополнительная информация
CEMEX является членом нескольких ассоциаций асфальтобетонных покрытий. Мы получили множество наград за качество и защиту окружающей среды.
Чтобы использовать калькулятор вместимости, сначала выберите, какие единицы вы будете использовать: английские или метрические. Затем просто введите размеры проекта, нажмите, измеряете ли вы толщину в футах или дюймах, затем нажмите кнопку «Рассчитать».Калькулятор рассчитает приблизительный тоннаж заполнителей и асфальта, а также объем удаляемой грязи: Нажмите здесь.
Асфальтовое покрытие обычно состоит примерно на 95 процентов из заполнителя, который может быть камнем, песком или гравием, и на 5 процентов из асфальтового цемента в качестве связующего. Связующее является продуктом нефтепереработки и склеивает агрегаты.