Прогрев бетона трансформатором — сложности и их решение
Для человека, поверхностно знакомого со строительными технологиями, может показаться, что зимний прогрев бетона – несложная операция.
Внешне все выглядит достаточно просто: достаточно разложить провод по арматуре, залить раствор и подключить выводы к трансформатору.
Электродный способ кажется еще более простым – воткнул металлические стержни и подключил к источнику питания.
На самом деле все намного сложнее.
Технология прогрева бетона основана на принципах физики, а точнее – электротехники.
Любое нарушение правил организации этого процесса грозит потерей времени и средств.
Исправить что-либо, как правило, уже невозможно. Придется искать альтернативные способы защиты бетона от замерзания.
Если бетонная смесь замерзнет, структура искусственного камня нарушится, изделие станет непригодным для эксплуатации.
Насколько сложно правильно подключить трансформатор для прогрева бетона
Чтобы грамотно прогреть бетонную смесь с помощью кабеля, необходимо иметь знания в электротехнике и обладать практическими навыками.
При расчете прогрева бетона важно принять во внимание каждую мелочь – длину греющих петель, закладываемых в монолит, параметры холодных концов и шины.
Обязательно нужно убедиться, что на объекте имеется электросеть с необходимыми параметрами.
Важно, чтобы мощность трансформатора соответствовала объему прогреваемого материала.
Какой провод необходимо использовать для греющих петель
Наиболее распространенной маркой провода для прогрева бетона, является ПНСВ 1.2.
Это изделие представляет собой кабель из однопроволочной отожженной стальной жилы в полиэтиленовой или виниловой оболочке.
Длину греющей петли следует подбирать с таким расчетом, чтобы протекающий по ней ток имел силу в 14-16 ампер.
Если планируемый срок прогрева бетона в зимнее время превышает 7 дней, необходимо корректировать мощность подаваемого на жилы тока.
Только специалист, обладающий опытом выполнения подобных мероприятий, способен учесть все эти нюансы, не забыть проконтролировать исполнение в суматохе строительных работ на объекте.Зачем нужны «холодные концы»
Чтобы передавать бетонному раствору тепловую энергию в достаточном количестве, кабель должен нагреваться не ниже определенной температуры.
Проблема в том, что на воздухе отвод тепла резко снижается, из-за этого токопроводящий элемент перегревается и выходит из строя.
По этой причине соединение греющих петель с шиной, идущей от трансформатора, выполняется через так называемые «холодные концы».
Это отрезки изолированного алюминиевого провода диаметром до 3 мм, которые способны не нагреваясь проводить ток достаточной силы, чтобы обеспечить разогрев бетона.
При грамотной организации процесса греющие петли находятся целиком в залитом растворе, наружу выходят только «холодные концы».
Скрутку проводов необходимо изолировать х/б изолентой.
Чтобы надежно скрутить «холодные концы» с греющими петлями, необходимо зачистить с них изоляцию на 7 – 8 см, избегая повреждения жил.
Шина для подключения электропрогрева бетона
От низкой стороны трансформатора к прогреваемой конструкции подводится кабель с алюминиевыми жилами большого сечения.
Задача этой шины – передать электроэнергию с наименьшими потерями.
Чтобы правильно высчитать пропускную способность этого элемента схемы прогрева бетона, необходимы знания и опыт.
Требуется серьезный подход.
Значение персонала для успешной организации прогрева бетона
Множество нюансов могут повлиять на правильную работу станции прогрева бетона.
Только опытный специалист способен учесть их, а при необходимости грамотно реагировать, если температурный режим или другие параметры процесса отклонятся от запланированных показателей.
Также квалифицированный электрик сможет организовать дежурство и ведение журнала наблюдений.
При прогреве бетона электродами трудностей еще больше.
Необходимо рассчитать длину элементов, расстояние между ними.
Особое внимание следует уделить правильному расположению пар электродов в зависимости от подключения к фазам.
Нарушение одного из этих правил повлечет различные неполадки, из-за которых станет невозможно поддерживать правильный температурный режим.
Чтобы выполнить грамотный расчет, требуются прикладные знания и навыки.
Компания «Беринапрокат» предлагает услуги по обучению электриков предприятий при заказе в аренду трансформаторов прогрева бетона.
Если в штате вашей компании нет сотрудников, обладающих базовыми знаниями в электротехнике, рекомендуем нанять специалиста.
Услуги опытного электрика, обладающего достаточной компетенцией, чтобы выполнить расчет прогрева бетона, обходятся не дешево, но они стоят затраченных средств.
Если в результате неквалифицированных действий неправильно смонтирована схема подключения кабелей к трансформатору, процесс гидратации нарушится.
Это может закончиться тем, что изделие будет испорчено.
Придется демонтировать конструкцию и заливать бетон заново.
Прогрев бетона сварочным аппаратом — схема подключения с кабелем пнсв
Прогрев бетона сварочным аппаратом – один из вариантов решения проблемы замерзания воды и остановки твердения бетонного монолита в условиях пониженной температуры воздуха. Работы с бетоном можно проводить лишь в теплое время года, а когда температура понижается до 0 и дальше, химическая реакция между замерзшей в лед водой и цементом прекращается, процесс твердения останавливается.
При необходимости проводить на строительной площадке работы с бетоном зимой, нужно позаботиться об обогреве и препятствовании замерзанию воды в растворе. Многие мастера принимают решение прогреть бетон сварочным аппаратом, что может быть осуществлено двумя методами – с использованием провода ПНСВ или электродов.
Для электропрогрева бетона при температуре ниже +5 градусов обычно используют воздушные/масляные специальные трехфазные трансформаторы. Правда, для небольших объемов работ в домашних условиях подойдет и сварочный аппарат двухфазного типа.
Читайте также: про строительство и ремонт.
Что необходимо для подогрева бетона
Содержание статьи:
Чтобы подключить сварочный аппарат и использовать его для прогрева бетона, нужно позаботиться обо всем необходимом. Инструменты и расходники найти обычно не трудно – они есть у всех, кто часто использует сварочный аппарат по назначению.
Что нужно для прогрева бетона:
Трансформатор – подходящее устройство с максимальным пределом в районе 200-250 А.
Провод ПНСВ – пару кусков одной длины.
Одинарный алюминиевый провод диаметром 2.5-4 квадратных миллиметров.
Хлопчатобумажные ленты для изоляции.
Пассатижи.
Токовые клещи.
Особенности прогрева бетона сварочным аппаратом:
Нужно правильно рассчитать время нагрева бетонной конструкции – оно зависит от средней температуры окружающей среды и толщины слоя материала.
Залитый бетонный раствор нужно накрыть тонким слоем из опилок для исключения вероятности сильного испарения воды из смеси и теплоизоляционным материалом для исключения потерь тепла.
К сварочному устройству допускается подключать исключительно подходящие для работ кабели и электроды.
С целью проверки напряжения устанавливают контрольную лампу накаливания.
Сварочную цепь не стоит замыкать на внутрибетонную арматуру, так как это слишком энергозатратно.
Прогрев сварочным аппаратом – проводом ПНСВ
Нагрев бетона сварочным аппаратом может осуществляться за счет подключения к нему проводов ПНСВ. Процесс требует определенных знаний, составленной предварительно схемы и учета ряда нюансов.
Особенности нагрева бетона сварочным аппаратом и кабелями:
Питаться устройство должно от электрической бытовой сети 200 вольт.
Конструкция сравнительно простая и эффективная, если все делать правильно.
Такой вариант предполагает экономичность.
Удается существенно сократить время застывания бетонной смеси.
Температуру в монолитной конструкции можно поддерживать в автоматическом режиме.
Схема работы тут идентична использованию масляных трансформаторов, но расчеты осуществляются по-другому. Так, для прогрева бетона с применением сварочного трансформатора и кабеля ПНСВ понадобятся: сварочный аппарат 150-250 А, определенной длины провода ПНСВ, обыкновенный амперметр (клещи), кабель холодных концов из алюминия, обычная изолента на базе ткани.
В качестве примера выполнения расчетов можно взять плиту 3.8 кубических метров величиной 4х5х0.19 метров при температуре воздуха на уровне -12 градусов с использованием сварочного аппарата на 250 А. Кабель ПНСВ режут на куски по 18 метров (для каждого отдельного случая длина может быть разной, тут определялась эмпирическим путем).
Каждый отрезок кабеля может выдержать ток до 25 А. Значит, для 250 А можно взять 10 отрезков. Но желательно оставить небольшой запас, поэтому в примере берут 8 проводов. К каждому из кусков ПНСВ с двух сторон нужно докрутить алюминиевый провод длины достаточной, чтобы скрутка была в толще бетона, а концы (холодные) шли до трансформатора. Скрутку нужно заизолировать изолентой.
Отрезки провода укладываются подвязкой к арматуре с применением пластиковых креплений либо изолированных проводов (чтобы исключить замыкание). В случае с обогревом плиты провод можно крепить ниже верхнего армирования.
Выходы проводов маркируют (-/+) либо разводят концы в разные стороны конструкции. Еще можно соединить фазы (отдельно минусы/плюсы) между собой на поверхности, предварительно изолированной с клеммами.
Далее заливается бетон, подключаются клеммы к прямому/обратному выходам сварочного трансформатора, поставленного на минимальное значение тока. Ток измеряют на сварочных проводах (по проводам должно идти до 240 А) и по отрезкам (до 20 А). В процессе прогревания сила тока постепенно будет падать и на аппарате ее нужно будет увеличивать.
Плиты указанных габаритов в итоге приобрели нужный показатель прочности в течение 40 часов. Желательно после заливки бетон укрывать защитной пленкой, чтобы не дать высохнуть преждевременно. Если температуры слишком низкие, на пленку можно смонтировать теплоизоляционный слой.
Подогрев сварочным аппаратом и электродами
Сварочный аппарат и кабель – не единственный вариант прогрева бетона. Использовать можно также электроды, составив правильную схему и продумав все этапы.
Важная информация про прогрев бетона электродами:
Есть сквозной прогрев, который применяется для бетонных конструкций сложной формы или внушительной толщины. Данный метод предполагает установку электродов на расстоянии минимум 3 сантиметра от опалубки.
Периферийный способ прогрева предусматривает монтаж электродов на поверхности бетона. Так удается извлечь все нагревающие элементы после того, как бетон застынет.
Подаваемый на электроды ток нужно постоянно регулировать, так как влага испаряется и этот процесс требует внимания.
Поверхность нагрева должна быть накрыта специальным теплоизоляционным материалом, это поможет уменьшить тепловые потери с одновременным повышением КПД электродов.
В случае применения стержневого прогрева электроды нужно монтировать на одинаковом расстоянии, чтобы исключить риск перегрева отдельных зон.
Электродный прогрев не эффективен для малых изделий/конструкций.
Текущую температуру бетона нужно постоянно замерять через небольшие промежутки времени.
Правильная схема подключения электродов обязательно должна создаваться индивидуально для каждого случая.
В данном случае нагревающими элементами являются электроды, которые вживляют в толщу бетона. Ток идет прямо через раствор, в связи с чем отмечают главный минус метода – опасность поражения током людей, которые находятся рядом. Уровень безопасного напряжения составляет до 36 В, если больше – важно обеспечить недопущение на объект животных и людей. Некоторые мастера утверждают, что способ может стать причиной быстрого износа сварочного трансформатора, но это не проверено.
Электроды (арматурные прутья) укладывают в бетонную конструкцию, последовательно соединяя так, чтобы вышло два отрезка, изолированных один от другого. К одному отрезку подключают провод прямой, а к другому – обратный. С целью обеспечения контроля тока между двумя электродами желательно подключить лампу накаливания (но это не обязательно).
Важно через одинаковые промежутки времени измерять температуру бетона для исключения вероятности обезвоживания застывающего раствора и покрытия трещинами. Залитая конструкция должна быть накрыта пленкой, сверху утеплителем, чтобы исключить потери влаги и тепла.
Заключение
Греть бетон сварочным аппаратом можно при любой минусовой температуре. Это достаточно эффективный и популярный метод повышения скорости застывания бетонной конструкции и недопущения замерзания воды в смеси. Применение сварочного аппарата для прогрева предполагает использование двух основных методов: подключения кабеля ПНСВ или электродов.
Независимо от применяемой методики, разогретая бетонная конструкция должна быть изолирована от окружающей среды опилками или другим изоляционным материалом, что поможет избежать потери тепла и воды бетоном. Лучшие условия прогрева достигаются при правильном подборе электродов и кабелей, верных расчетах и составленной индивидуально схеме.
Источник
Прогрев бетона сварочным аппаратом, как греть бетон при помощи сварочника
При электропрогреве бетона в температурных условиях ниже +5°C используют специальные масляные или воздушные трехфазные трансформаторы для понижения напряжения сети 200 или 380 В. Но в случае небольших объемов при заливке фундамента на дачном участке своими руками, например, иногда рациональнее использовать сварочный аппарат (двухфазный), который зачастую уже имеется в наличии, а не покупать или арендовать тот же ТСЗП-80. Способ для так называемых «домашних условий».
Такое решение имеет место быть, хотя, и сопряжено с определенными трудностями. Попытаемся разобраться в них для типов греющих элементов ПНСВ провода и электродов.
Прогрев бетона сварочным аппаратом и ПНСВ проводом
Схема работы здесь точно такая же, как и при использовании масляных трансформаторов. Вся тонкость в расчетах. Итак, для обогрева бетона сварочным трансформатором вместе с проводом нам понадобится сварочник 150-250 А, ПНСВ кабель, алюминиевый кабель холодных концов, амперметр (клещи) и изолента, на тканевой основе.
Для примера приведу расчет для прогрева плиты 3,8 м3 размером 4x5x0,19 м при температуре воздуха около -12°C и сварочным аппаратом на 250 А. Итак, ПНСВ провод нарезаем на отрезки длиной по 18 метров. Длина определялась опытным путем и для вашего случая, возможно, будет другой. Каждый из таких отрезков способен выдержать ток до 25 А. Соответственно, для суммарных 250 ампер возможно использовать 10 отрезков. Но чтобы не пускаться в крайности и оставить небольшой запас будем ориентироваться на 8 проводов.
К каждому куску ПНСВ с обеих сторон докручиваем алюминиевый провод такой длины, чтобы сама скрутка находилась в бетоне, а холодные концы дотянулись до трансформатора. Саму скрутку изолируем изолентой.
Укладываем отрезки провода, подвязывая их к арматуре пластиковыми креплениями или изолированным проводом, чтобы избежать замыкания. Для плиты провод можно закрепить чуть ниже верхнего армирующего слоя. Выходы каждого провода надо маркировать, например (+) и (-). Или можно концы развести по разным сторонам конструкции. Также очень удобно соединить фазы (плюсы отдельно, минусы отдельно) между собой на изолированной поверхности (текстолит) с клеммами.
После заливки бетона сразу же подключаем наши клеммы к прямому и обратному выходам сварочного аппарата, установленного на минимальный ток. Измеряем ток на сварочных проводах (должен быть до 240 А) и на каждом отрезке (должен быть до 20 А). По мере нагревания сила тока будет падать, и ее надо будет увеличивать на аппарате.
В итоге плита данных габаритов приобрела нужную прочность за 40 часов. Также после заливки бетона, его рекомендуется укрыть защитной пленкой для предотвращения иссушения. При особо низких температурах сверху на пленку можно положить слой утеплителя.
Видео по укладке ПНСВ провода можно посмотреть ниже:
Прогрев бетона сварочным аппаратом и электродами
При этом способе греющими элементами выступают электроды, вживляемые в бетон. И ток течет непосредственно через раствор. Из этого вытекает и главный недостаток прогрева сварочным аппаратом вместе с электродами: опасность поражения электрическим током находящимся рядом людей. Безопасным считается напряжение до 36 В. Если оно выше, то необходимо озаботиться недопущением на обогреваемый объект людей и животных. Также есть мнение, что подобные арматурные электроды быстро изнашивают сварочный трансформатор.
Электроды (пруты арматуры) укладывают в конструкцию, соединяя последовательно таким образом, чтобы получилось два изолированных друг от друга отрезка. К одному из них подключаю прямой провод, к другому – обратный. Для контроля тока между двумя электродами подключают лампу накаливания (опционально). Очень важно измерять температуру бетона для недопущения его обезвоживания и растрескивания. Залитую конструкцию не забудьте укрыть пленкой и утеплителем во избежание потерь тепла и влаги.
Прогрев бетона сварочным аппаратом, как греть бетон при помощи сварочника
Необходимые инструменты
Строительные работы — это хлопотно, затратно, но в какой-то мере приятно. Особенно когда ведется постройка долгожданного жилища для собственной семьи. И если в промышленных масштабах для заливки бетона в зимнее время требуется специальный трансформатор или кабель, то в условиях небольших объемов можно сделать это имея сварочный трансформаторный аппарат, мощность которого от 150 до 200 Вт. Это мобильный и экономичный прибор, который доступен любому человеку и зачастую уже есть в мастерской строителя. А если такое устройство есть в наличии, то почему бы его не использовать.
Обратить внимание стоит на способ подключения и соответствующую схему при прогреве бетона сварочным аппаратом. Она будет немного отличаться от привычной.
Дополнительно для прогрева бетона сварочным инвертором потребуется:
- греющий провод ПНСВ диаметром 1,5 мм. Его лучше заранее порезать на куски примерно одинаковые по длине;
- алюминиевый одинарный провод с сечением от 2,5 до 4,0 кв. мм;
- лента хлопчатобумажная, для изоляции;
- клещи, для того чтобы определить силу тока;
- пассатижи или любой другой ручной инструмент похожего действия.
Подготовительные работы
В первую очередь необходимо проверить наличие всех необходимых инструментов и материалов, ведь в процессе работы отвлекаться будет некогда. Все выполняемые работы, особенно если они проводятся строителем впервые, лучше продумать и разбить на подпункты: так будет легче и быстрее.
План прогрева бетона сварочным аппаратом должен включать такие действия:
Подготовка провода ПНСВ, а именно разделение его на отрезки.- Подвязка полученных петель к каркасу из арматуры под заливку бетонной конструкции. Нужно отметить, что петли должны располагаться выше середины заливаемой плиты. Наиболее подходящий вариант расположения петель — змееобразно. Расстояние между петлями зависит от температуры воздуха: чем она ниже, тем меньше промежутки.
- Маркировка оконцовок петель изолентой (одна маркируется, другая остается свободной).
- Наращивание на петли алюминиевых проводов, с помощью которых будет происходить подключение к сварочному аппарату. При этом длина провода зависит от расположения прибора, но она не должна превышать 8 метров.
- Изоляция полученных скруток (греющих петель и провода) с помощью изоленты. Если этого не сделать, то скрутка будет постоянно перегреваться и это приведет к поломке аппарата.
Когда подготовительные работы проведены, можно переходить к заливке бетона и подключению сварочного аппарата для его прогрева.
Прогрев бетона сварочным аппаратом и ПНСВ проводом
Схема работы здесь точно такая же, как и при использовании масляных трансформаторов. Вся тонкость в расчетах. Итак, для обогрева бетона сварочным трансформатором вместе с проводом нам понадобится сварочник 150-250 А, ПНСВ кабель, алюминиевый кабель холодных концов, амперметр (клещи) и изолента, на тканевой основе.
Для примера приведу расчет для прогрева плиты 3,8 м3 размером 4x5x0,19 м при температуре воздуха около -12°C и сварочным аппаратом на 250 А. Итак, ПНСВ провод нарезаем на отрезки длиной по 18 метров. Длина определялась опытным путем и для вашего случая, возможно, будет другой. Каждый из таких отрезков способен выдержать ток до 25 А. Соответственно, для суммарных 250 ампер возможно использовать 10 отрезков. Но чтобы не пускаться в крайности и оставить небольшой запас будем ориентироваться на 8 проводов.
К каждому куску ПНСВ с обеих сторон докручиваем алюминиевый провод такой длины, чтобы сама скрутка находилась в бетоне, а холодные концы дотянулись до трансформатора. Саму скрутку изолируем изолентой.
Укладываем отрезки провода, подвязывая их к арматуре пластиковыми креплениями или изолированным проводом, чтобы избежать замыкания. Для плиты провод можно закрепить чуть ниже верхнего армирующего слоя. Выходы каждого провода надо маркировать, например (+) и (-). Или можно концы развести по разным сторонам конструкции. Также очень удобно соединить фазы (плюсы отдельно, минусы отдельно) между собой на изолированной поверхности (текстолит) с клеммами.
После заливки бетона сразу же подключаем наши клеммы к прямому и обратному выходам сварочного аппарата, установленного на минимальный ток. Измеряем ток на сварочных проводах (должен быть до 240 А) и на каждом отрезке (должен быть до 20 А). По мере нагревания сила тока будет падать, и ее надо будет увеличивать на аппарате.
В итоге плита данных габаритов приобрела нужную прочность за 40 часов. Также после заливки бетона, его рекомендуется укрыть защитной пленкой для предотвращения иссушения. При особо низких температурах сверху на пленку можно положить слой утеплителя.
Прогрев бетона электродами
Прогрев электродами – это один из наиболее популярных методов нагрева цементно-песчаной смеси в холодных погодных условиях.
Принципиальная схема трансформатора для прогрева бетона.
Существует несколько видов электродов, применяемых для данного вида работ:
- Пластинчатые.
Токопроводящие элементы выполнены в виде пластины. Подобные нагревательные элементы устанавливаются с внутренней стороны опалубки для обеспечения хорошего контакта с песочно-цементной смесью. Обогрев бетона осуществляется из-за возникновения электрического поля вблизи пластинчатых нагревательных элементов. - Полосовые.
Подобный вариант нагревательных устройств монтируется с обеих сторон опалубки. Принцип действия полосовых электродов идентичен пластинчатым: при подаче тока вокруг греющих элементов возникает электрическое поле, прогревающее бетонную конструкцию. - Струнные.
Нагревательные элементы струнного типа зачастую используются при прогреве цилиндрических бетонных конструкций, например, колонн. Подсоединение электродов осуществляется к центру конструкции, окруженному токопроводящей опалубкой. Для упрощения соединения токопроводящих элементов между собой провода питания, виднеющиеся из опалубки, изгибаются в форме буквы Г. - Стержневые.
По своему виду данная модель нагревательных элементов напоминает арматуру. Монтаж стержневых элементов осуществляется внутрь бетона, что позволяет прогревать даже самые сложные конструкции.
Существуют случаи, когда вместо электродов можно использовать продольные металлические прутья, помещенные в опалубку. Такой метод отличается простотой и эффективностью, но имеет большое потребление электрической энергии.
Подогрев сварочным аппаратом и электродами
Сварочный аппарат и кабель – не единственный вариант прогрева бетона. Использовать можно также электроды, составив правильную схему и продумав все этапы.
Важная информация про прогрев бетона электродами:
- Есть сквозной прогрев, который применяется для бетонных конструкций сложной формы или внушительной толщины. Данный метод предполагает установку электродов на расстоянии минимум 3 сантиметра от опалубки.
- Периферийный способ прогрева предусматривает монтаж электродов на поверхности бетона. Так удается извлечь все нагревающие элементы после того, как бетон застынет.
- Подаваемый на электроды ток нужно постоянно регулировать, так как влага испаряется и этот процесс требует внимания.
- Поверхность нагрева должна быть накрыта специальным теплоизоляционным материалом, это поможет уменьшить тепловые потери с одновременным повышением КПД электродов.
- В случае применения стержневого прогрева электроды нужно монтировать на одинаковом расстоянии, чтобы исключить риск перегрева отдельных зон.
- Электродный прогрев не эффективен для малых изделий/конструкций.
- Текущую температуру бетона нужно постоянно замерять через небольшие промежутки времени.
- Правильная схема подключения электродов обязательно должна создаваться индивидуально для каждого случая.
В данном случае нагревающими элементами являются электроды, которые вживляют в толщу бетона. Ток идет прямо через раствор, в связи с чем отмечают главный минус метода – опасность поражения током людей, которые находятся рядом. Уровень безопасного напряжения составляет до 36 В, если больше – важно обеспечить недопущение на объект животных и людей. Некоторые мастера утверждают, что способ может стать причиной быстрого износа сварочного трансформатора, но это не проверено.
Электроды (арматурные прутья) укладывают в бетонную конструкцию, последовательно соединяя так, чтобы вышло два отрезка, изолированных один от другого. К одному отрезку подключают провод прямой, а к другому – обратный. С целью обеспечения контроля тока между двумя электродами желательно подключить лампу накаливания (но это не обязательно).
Важно через одинаковые промежутки времени измерять температуру бетона для исключения вероятности обезвоживания застывающего раствора и покрытия трещинами. Залитая конструкция должна быть накрыта пленкой, сверху утеплителем, чтобы исключить потери влаги и тепла.
Подключение к сварочному аппарату и особенности прогрева
После заливки бетона, все алюминиевые концы (наращенные) петель подключают к сварочному аппарату. При этом концы с маркировкой изолентой и без таковой подключают на разные полюсы сварочного трансформатора. Включают сварочный аппарат на минимальной нагрузке регулятора мощности.
Клещами проверяют каждую из петель – потребляемый ток должен быть не более 12-14 Ампер. Через 1 час можно добавить половину мощности аппарата, а через 2 часа можно включить аппарат на полную мощность.
Опять проверяем силу тока на каждой петле. Сила тока должна быть не более 25 А. как гласит практический опыт, мощности петли в 20 А, достаточно чтобы качественно прогреть бетон при температуре окружающего воздуха до минус 10 °C.
Как происходит строительство зимой?
Обязательным компонентом любого бетонного раствора является вода, но при низких температурах она просто замерзает и гидратация цемента прекращается. Кристаллы льда расширяются, и монолит начинает крошиться. Даже при термоизоляции, вместо предусмотренных технологией 28 дней, бетон набирает твердость гораздо дольше, что негативно сказывается на себестоимости работ. Оптимальный выход – электропрогрев бетона, позволяющий ускорить работы и обеспечить нужную прочность.
Это наиболее экономичный метод прогрева бетонной смеси в зимнее время, не требующий больших расходов. Важно, чтобы весь объем прогревался одновременно, чего сложно достигнуть, применяя другие технологии обогрева монолитных конструкций в зимних условиях.
Подогрев бетона зимой
В зимнее время наиболее актуальным становится вопрос о том, как и при какой температуре прогревают бетон. Это связано с тем, что в это время наиболее часто можно наблюдать явление кристаллизации воды в растворе, что исключает ее участие в химических реакция связанных с затвердеванием массы.
Именно потому подогрев бетона зимой — это очень важная процедура, которая может быть реализована следующими методами:
- Введение в раствор противоморозных добавок;
- Подогрев методом «Термоса».
Противоморозные добавки
Добавки на основе из антифриза
Противоморозные добавки способны выдержать сильнейшие холода даже при температуре -30 градусов. Состав таких добавок может быть различным, но основным компонентом является антифриз – вещество, не дающее воде замерзнуть.
Любой строитель своими руками может добавить противоморозные средства в раствор.
Для железобетонных изделий или арматурных перекрытий лучше использовать добавки с добавлением нитрита или формата натрия. Именно эти добавки обеспечат конструкции также сохранение физических и химических свойств и станут антикоррозийной защитой для железобетона в условиях низких температур.
Совет. Если после затвердения таких монолитных конструкций вам потребуется просверлить отверстие или поровнять края, можно воспользоваться такими методами, как алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами.
Метод термоса
Суть данного метода кроется в укладке бетона в теплую подогреваемую опалубку, которая будет весь период затвердевания сохранять температур 20-25 градусов. За счет такого подогрева конструкция и будет сохранять прочность.
Совет. Для ускорения процесса отвердения можно в подогретую опалубку заливать подогретый раствор.
Индукционный нагрев
Индукционный прогрев бетона в зимнее время осуществляется при помощи переменного магнитного поля, образующего переменный электрический ток. Металлические конструкции в бетоне нагреваются, передавая энергию раствору.
Изолированный провод (индуктор) прокладывается внутри конструкции, после он периодически включается для повышения температуры арматуры. Это обеспечивает равномерный прогрев всего монолита. Главное условие – арматурный каркас должен быть замкнут.
Другие методы
Существуют и другие способы прогрева бетона, среди которых популярны опалубки с ТЭН и применение тепловых пушек. В первом случае раствор заливается в заранее прогретую опалубку, что сократит время отвердевания и предотвратит возможную деформацию конструкции. Непосредственно при заливке опалубка отключается, а свободная часть немедленно накрывается теплоизоляцией. Температура постепенно поднимается до 80ºС, затем опускается до 60ºС и удерживается до достижения 80% прочности.
Прогрев тепловыми пушками требует возведения вспомогательных теплоизолирующих конструкций над бетоном, куда будет направляться разогретый воздух. Эта методика оправдывает себя там, где нет надежного подключения к электрической сети. В этом случае используется дизельное оборудование, обеспечивающее нормальный прогрев. Нужно учитывать, что использование тепловых пушек стоит дорого. В промышленности используют прогрев бетона паром в специальной двустенной опалубке.
Технология прогрева и схема укладки
Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.
Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.
К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.
Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:
- Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
- Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
- Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.
При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.
Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.
Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.
Расчет длины
Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.
В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.
При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.
Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.
Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.
Советы начинающим строителям
Процесс прогрева дело нетрудное, однако требует некоторых навыков работы со сварочным аппаратом. Поэтому перед началом любых строительных мероприятий следует проконсультироваться со специалистом по поводу целесообразности и правил проведения работ.
Опытные прорабы советуют:
- не прогревать бетон слишком сильно — конструкция должна быть едва теплой;
- не производить прогрев слишком долго — чаще всего достаточно около 48 часов для полной гидратации бетона;
- произвести утепление поверхности. Это можно сделать с помощью матов или поилок.
Все работы стоит проводить только с соблюдением всех правил безопасности. Не стоит пренебрегать покупкой качественных электродов и превышать режим работы аппарата. Это может привести к поломке инвертора и на долгое время приостановить важные строительные работы.
Ведь прогревание бетона с помощью сварочного аппарата — необходимый процесс при заливке фундамента в холодное время года.
Источники
- https://TvoiDvor.com/beton/shemyi-i-sposobyi-podklyucheniya-svarochnogo-apparata-dlya-progreva-betona/
- http://betonprogrev.ru/statji/progrev-betona-svarochnym-apparatom.html
- https://tutsvarka.ru/vidy/progrev-betona-svarochnym-apparatom
- https://1beton.info/maloetazhnoe/progrev-betona-svarochnym-apparatom-shema-podklyucheniya-s-kabelem-pnsv
- https://orioncem.ru/na-zametku/kak-osushhestvlyaetsya-progrev-betona-svarochnym-apparatom.html
- https://post-konvert.ru/kak-progret-beton-v-domashnih-uslovijah/
- https://masterabetona.ru/progrev/260-kak-gret-beton
- https://betonpro100.ru/tehnologii/progrev-betona-v-zimnee-vremya
- https://betonpro100.ru/tehnologii/progrev-provodom-pnsv
- https://lux-stahl.ru/stanki-i-instrumenty/progrev-betona-svarochnym-apparatom.html
[свернуть]
Опубликовано: 26.10.2020
Прогрев бетона, электропрогрев в зимних условиях
При бетонировании в зимних условиях, применяется принудительный прогрев бетона в опалубке во время набора критической прочности. Эта необходимость продиктована остановкой процесса набора прочности бетона при замерзании воды в растворе смеси. Кроме того, замерзшая вода расширяется и разрушает образовавшуюся структуру бетона изнутри, что сказывается на прочности конструкции.
Прогрев бетона в зимних условиях
При бетонировании в зимних условиях для сбережения теплоты бетона выделяют метод термоса основанный на сбережении теплоты выделяемой цементом при твердении, и методы прогрева бетона основанные на применении искуственных источников теплоты. Рассмотрим их подробнее.
Электропрогрев бетона
Из искусственных методов наиболее распространенным является прогрев бетона электродами. Он основан на выделении теплоты в бетоне при пропускании через него электрического тока. Чтобы подвести ток к бетонной смеси используются следующие виды электродов.
- Пластинчатые электроды
Выполнены в виде пластин, навешанных на внутреннюю сторону опалубки для контактирования с бетонеом. В результате подключения противоположных пластин к разным фазам электрисеской сети, в бетонной смеси образуется электрическое поле. Под действием электрического поля, бетон разогревается до требуемой температуры и поддерживается необходимое время. - Полосовые электроды
Принцип действия тот же, но в качестве электродов используются полосы шириной 20-50 мм. Возможно располагать полосовые электроды как с двух сторон конструкции, так и с одной. Во-втором случае, электроды подключаются к разным фазам поочередно и электрическое поле образуется в примыкающем к ним тонком слое бетона, прогревая смесь у контактной поверхности. - Стержневые электроды
Изготавливают из арматуры диаметром 6-12 мм. Их располагают в теле бетона с рассчетным шагом. Электроды крайнего ряда располагают на расстоянии 3 см от опалубки. Ими можно осуществить прогрев бетона конструкций сложной формы. Схему прогрева бетона стержневыми электродами смотрите в таблице. - Струнные электроды
Применяются в основном для прогрева бетона колонн. В центре конструкции устанавливается струнный электрод. Электрическое поле возникает между струной и опалубкой, обитой токопроводящим листом и подключенной к другой фазе электрической сети.
Схемы подключения электродов при электропрогреве бетона приведены в таблице.
Электроды | Схема установки и подключения электродов при прогреве бетона |
Пластинчатые | |
Полосовые | |
Стержневые | |
Струнные |
Контактный прогрев бетона
Контактный метод прогрева бетона основан на применении греющей опалубки.
В тело опалубки встроены нагреватели работающие от электрического тока. Через контактную поверхность, опалубка передает теплоту бетонной смеси.
Инфракрасный прогрев бетона
Используется свойство инфракрасных волн поглощаться раствором и преобразовываться в теплоту. Этоявление широко известено в быту, оно используется в микроволновых печах.
Для практической реализации метода инфракрасного прогрева бетона, на строительной площадке используются специальные излучатели волн. Они направляются на массив уложенного бетона и воздействуют на него. Инфракрасные установки используют энергию электрической сети. Обычно она поступает от трансформаторной подстанции по низковольтным кабелям к распределительному шкафу и далее к каждой установке.
Индукционный метод прогрева бетона
Используется эффект нагревания металлической арматуры и элементов опалубки в электромагнитном поле. Поле создается обмоткой изолированного электрического провода вокруг конструкции (например, колонны). По проводу пропускается переменный электрический ток, что приводит к образованию электромагнитного поля.
Электромагнитное поле создает вихревые токи в металлических элементах конструкции. Это вызывает нагрев металла. Далее через контактную поверхность с бетонной смесью, тепло передается в тело конструкции.
Это может быть интересно — как построить дачный дом.
Прогрев бетона электродами: технология и схема установки
Бетонирование – один из основных строительных процессов. Замерзание незатвердевшей бетонной смеси ведёт к значительной потере прочности готового строения, так как кристаллы льда вызывают расширение и разрушение структуры. Прогрев бетона электродами даёт возможность проводить строительные работы в зимнее время без ухудшения качества готовой конструкции.
Электродный метод не требует применения сложного оборудования. Принцип работы основан на свойствах электрического тока – при прохождении через влажную среду выделяется тепло, которое и способствует прогреванию бетонной смеси и её равномерному застыванию.
Режимы прогрева бетона электродами
Режим выбирают исходя из массивности и геометрии конструкции, марки бетонной смеси, погодных условий, эксплуатации возводимой конструкции. Электродный прогрев бетона проводят по одной из следующих схем:
- две стадии: прогрев бетонной смеси и последующая изотермическая выдержка;
- две стадии: нагрев и остывание с полной теплоизоляцией или сооружением греющей опалубки;
- три стадии: прогрев, изотермическая выдержка, остывание.
Схема прогрева бетона
При прогреве бетона электродами критично важно соблюдать температурные параметры. Процесс начинают с +5 градусов, затем увеличивают температуру со скоростью 8–15 градусов в час. Максимальные допуски зависят от марки бетона и составляют +55… +75 градусов. Для контроля проводятся периодические замеры температуры.
Температурный лист прогрева бетона
Время изотермической выдержки определяется на основании лабораторных исследований кубиковой прочности при сжатии. Зависит от типа цемента, температурного режима нагрева и требуемой прочности готового бетона.
Допустимая скорость остывания 5–10 градусов/час. Точный параметр зависит от объёма конструкции. Повторная теплоизоляция после распалубки требуется, если разница температур окружающего воздуха и бетонных поверхностей более 20 градусов.
Разновидности электролитов для прогрева бетона
В зависимости от вида и геометрии конструкции используются различные электроды для прогрева бетона. Для каждого из них разрабатывается своя схема подключения:
- Струнные.
- Стержневые.
- Пластинчатые.
- Полосовые.
Схема подключения электродов
Струнные. Изготавливают из арматуры длиной 2–3 м диаметром 10–15 мм. Используют для колонн и других подобных вертикальных конструкций. Подключают к разным фазам. В качестве одного из электродов может использоваться армирующий элемент.
Стержневые. Представляют собой куски арматуры толщиной 6–12 мм. Располагаются в растворе рядами с расчётным шагом. Первый и последний электрод в ряду подключают к одной фазе, другие – ко 2-ей и 3-ей. Используются для участка любой сложной геометрии.
Стержневые электроды для бетона
Пластинчатые. Подвешиваются на противоположные края опалубки без заглубления в раствор и подключают к разным фазам. Электроды создают электрическое поле, которое и прогревает бетон.
Расстановка пластинчастых электродов
Полосовые. Выполняются в виде металлических полосок шириной 20–50 мм. Их располагают на поверхности раствора с одной стороны конструкции и подключают к разным фазам. Используют для плит перекрытий и других элементов в горизонтальной плоскости.
Способы установки электродов в конструкцию
Электродный прогрев бетона используется при возведении стен, колонн, диафрагм и других вертикальных элементов. Этот способ не подходит для изготовления плит.
В залитый раствор вставляют электроды с рассчитанным шагом (60–100 см), в зависимости от геометрии конструкции и погодных условий. Локальные перегревы отрицательно влияют на качество бетона, поэтому размещение электродов должно быть равномерным. Проект расстановки составляется с учётом основных норм:
Схема установки электродов в железобетонную конструкцию
- минимальное расстояние между электродами 200–400 мм;
- расстояние от электродов до стержней каркаса 50–150 мм;
- расстояние от электрода до технологического шва конструкции – не менее 100 мм;
- расстояние от крайнего ряда до опалубки – не менее 30 мм.
Если выдержать эти требования невозможно из-за размера или конструктивных особенностей прогреваемых поверхностей, электроды на опасных участках необходимо изолировать эбонитовой трубкой.
После заливки бетона нужно укрыть прогреваемый участок рубероидом, плёнкой или другим теплоизоляционным материалом – без дополнительного утепления проведение обогрева не имеет смысла.
Через понижающий трансформатор, подключенный согласно схеме, на электроды подаётся однофазный или трёхфазный переменный ток. Использовать постоянный ток нельзя, так как он запускает процесс электролиза. В электроцепь обязательно включают приборы контроля – по мере застывания требуется проводить корректировки параметров подаваемого тока.
Схема обогрева бетона с помощью кабеля
Правила безопасности при электродном прогреве
Использование технологии прогрева бетона электродами на стройплощадке требует повышенного внимания к соблюдению правил безопасности:
Схема подключения электродов
- Прогрев заливки с армирующей конструкцией проводится при пониженном напряжении (60–127 В).
- Использование напряжения до 220 В возможно для прогрева локального участка, который не содержит никаких токопроводимых элементов (металлического каркаса, армирования) и не связан с соседними конструкциями.
- Прогрев напряжением до 380 В допустим в исключительных случаях для безарматурных участков.
- Электроды должны быть установлены в строго определенных проектом местах. Категорически нельзя допускать их соприкосновения с армирующими элементами – это приведёт к короткому замыканию и выходу из строя оборудования.
Электродный прогрев бетонной смеси необходимо выполнять в строгом соответствии с технологией. Нарушение временного или температурного режима, схемы расстановки электродов может привести к местным перегревам и недостаточному набору прочности, что впоследствии приведёт к появлению трещин в конструкции и возможному разрушению. При правильно выполненной работе раствор твердеет с равномерной усадкой, что обеспечивает однородную структуру полученного материала и прочность изделия при эксплуатации.
Видео по теме: Электропрогрев бетона
Провод пнсв или провод для прогрева бетона
В большинстве случаев воздействие положительных температур на бетонный раствор, находящийся в опалубке, организовывается при минусовых наружных температурах на стройплощадке. Но практика показывает, что прогревать бетон полезно и в других случаях – чтобы ускорить схватывание и затвердевание массы и получить максимально однородный состав. Один из таких методов, который называют активным прогреванием, использует провод для бетона, закладываемый непосредственно в рабочую массу. Укладка греющего кабеля в опалубку
Методика прогрева железобетона
Главное преимущество этой технологии перед другими методиками прогрева – абсолютное отсутствие потерь тепла, так как тепловая энергия остается в окружающей ее бетонной массе. Затраты же на нагревание кабеля и передачу тепла в тело бетонной конструкции – минимальные по сравнению с другими обогревающими технологиями.
Следующий, несомненно, большой плюс – простота реализации этого способа. Достаточно после расчетов правильно подобрать греющий элемент, схему подключения и укладки, выбрать подходящее напряжение, и конечного результата можно добиться, не прибегая к услугам строителей и электриков.
Сама технология состоит из нескольких этапов, первый из которых – сооружение опалубки или формы соответствующей конструкции, в которую будет укладывать армокаркас, греющий провод и будет заливаться бетон, который перед подачей напряжения в схему обязательно должен уплотняться глубинным вибратором. Заливка раствора в подготовленную форму
Некоторые особенности, которыми обладает ПНСВ или КДБС, использующиеся для прогрева бетонной массы, позволяют схеме более эффективно преобразовывать электроэнергию напряжения в тепловую, главное – правильно все рассчитать. Это тепло и греет бетон, ускоряя его схватывание и затвердевание.
Профессиональные строители знают и понимают разницу между греющим проводом и кабелем, а индивидуальным застройщикам будет полезно иметь об этом представление, что поможет использовать технологию правильно и более эффективно. Методика прогрева при помощи кабеля дороже по следующим причинам:
- Прогрев армированного бетона проводится при подключении схемы к пониженному напряжению через специальный понижающий трансформатор, чтобы не допустить при случайном повреждении изоляции утечки опасного напряжения в конструкцию через влажную металлическую арматуру.
- Греющий КДБС можно подключать к сети не менее 220в. Оптимально – 220в или 380в без понижения сетевого напряжения.
Подключить ПНСВ или КДБС проще в смысле организации рабочего процесса – соединения делаются через специальные муфты, а кабель при этом не нужно укорачивать или наращивать. Но греющий кабель дороже провода, поэтому в индивидуальном строительстве он используется на усмотрение хозяина. Еще один недостаток кабелей – их нельзя использовать повторно. КДБС для прогрева бетона
Отличия проводов:
- Внешне провод от кабеля можно отличить по следующим признакам: у провода обычно одна жила, у кабеля – две или больше.
- У провода номинальные температурные пределы при нагреве бетона – ± 55°С.
- Максимальная сила тока – 16 А.
- Сечение – 0,6-3 мм, что позволяет гнуть провод в любом направлении и использовать сложные схемы укладки. Можно использовать специальный калькулятор расчета сечения провода.
- Расход провода на нагревание 1 м3 бетонного раствора – 50-55 м.
Какие бывают греющие провода
ПНСВ 1.2 считается самой дешевой продукцией для прогревающих схем. Расшифровка характеристики ПНСВ: ПН – провод нагревательный, С – сталь, В – виниловая изоляция. Как уже говорилось, это самый дешевый вариант из существующих, поэтому в индивидуальном строительстве он более популярен, но для его эксплуатации нужен понижающий трансформатор, и в частном хозяйстве в этой роли может выступать обычный сварочный аппарат. ПНСВ 1.2
Провод ПНСВ 2х1.2 представляет собой одну стальную жилу круглого сечения, с ПВХ или пластиковой изоляцией толщиной ≤ 0,8 мм. Рабочее напряжение для запитывания схемы с этим проводом – от 50 до 1000 вольт. Ток – переменный или постоянный. Возможность подключения к источнику постоянного тока позволяет подключать схему прогрева через понижающие трансформаторы с различным напряжением на выходе, но в пределах указанного выше значения. Электрическая развязка через трансформатор – это одна из мер безопасности при работе с высоким напряжением. Расчет температурного диапазона этой марки провода – от -60°С до +50°С, максимально допустимая – +80°С.
Почему эта марка так популярна у строителей и частных хозяйственников:
- Низкая возможность механического повреждения изоляции.
- При перепадах напряжения в сети, даже при подключении через понижающий трансформатор, провод не будет перегреваться так интенсивно, как аналоги.
- Из-за использования стальной жилы провод не деформируется в бетонной массе при ее схватывании и дальнейшем затвердевании.
- Сопротивление провода – 0,15 Ом/метр.
- Номинальная мощность – до 2,5 кВт/м3.
- Расчет расхода для 1 м3 бетонного раствора – до 60 погонных метров.
- Время схватывания бетона при использовании данного метода – до 72 часов.
Вопреки расхожему мнению, ПТПЖ 1х1.2, 2х1.2 (расшифровка: П – провод, Т – радиотрансляционный, П – изоляция из пластмассы, Ж – жила из оцинкованной стали) – это не кабель, а провод, который использовался в народно-хозяйственной промышленности еще до изобретения технологии подогрева бетона электричеством. Технические характеристики практически аналогичны параметрам ПНСВ, стальная жила бывает оцинкованной, сечение – 0,6-1,2 мм, изоляция ПЭВД (высокого давления). Единственное различие – в количестве жил: у ПТПЖ их две.
- ПТПЖ сохраняет рабочие характеристике при уличных температурах до -30°C.
- Радиус изгиба в схеме – не менее 10 диаметров жилы, чтобы не допустить появления микротрещин в изоляции.
Более экономная схема прогревания бетона с использованием ПТПЖ получится, если провод будет иметь сечение не более 0,6 мм. Также ПТПЖ используют в системе «теплый пол».
Также может быть использован АПВ (расшифровка: А – алюминиевая жила; П – провод; В – изоляция из ПВХ-пластиката (винила)). Шаг укладки провода в разных схемах
Особенности укладки греющего провода
Для каждой бетонной конструкции нужно разработать свою схему и подобрать соответствующие материалы, чтобы прогрев раствора проходил равномерно и сохранялась однородность структуры массы.
- Кабель подключается непосредственно к источнику напряжения, провод должен иметь так называемые «холодные» концы, удельное сопротивление (ρ) которых должно быть меньше ρ провода в схеме.
- Минимальный шаг размещения проводов вдоль длинной стороны формы – 15 мм. Их сближение может вызвать оплавление изоляции и короткое замыкание. Также нельзя накладывать их друг на друга.
- Хоть в спецификации к проводу и указаны допустимые диапазоны, на практике производить укладку при температуре на улице ниже -15°С не рекомендуется, так как увеличивается риск растрескивания изоляции, что может привести к КЗ.
- Эффект от обогрева можно увеличить, если поместить его в фольгу. Такая теплоизоляция повысит теплообмен и уменьшит сроки дозревания бетона до нормативных значений прочности.
Методика прогрева и укладки провода
Подготовительные работы, которые проводятся перед монтажом схемы:
- Сборка опалубки и армирующего каркаса. Все элементы этих конструкций должны быть освобождены от наледи.
- Провод укладывается на одном уровне с верхним и нижним рядами армирующего каркаса, без натяжения и сильного провисания, шаг укладки – 80-200 мм, конкретное расстояние зависит от погодных условий и уличной температуры. Пересечений и соприкосновений провода допускать нельзя, крепить кабель к арматуре следует пластиковыми хомутами, в крайнем случае – проволокой в изоляции или металлическими скрепками.
Калькулятор расчета
Температура на улице, °С | Расстояние между проводом, см | Ø ПНСВ, мм | |
для верхнего и нижнего ряда арматуры | для нижнего ряда арматуры | ||
-5,0 | 20 | 10 | 1.1; 1.2; 1.4 |
-10 | 16 | 8 | 1.1; 1.2; 1.4 |
-15,0 | 12 | 8 | 1.1; 1.2; 1.4 |
-20,0 | 10 | 8 | 1.1; 1.2; 1.4 |
- Понижающий трансформатор должен находиться от стройплощадки на расстоянии ≥ 25 м.
- Вокруг участка, на котором будет производиться бетонирование и обогрев раствора, устанавливается ограждение.
- ПНСВ подключается к секциям шин, к которым подключено питание от трансформатора.
- Шинопровод подключается к трансформатору, производится пробный холостой запуск электрической схемы на предмет проверки правильности сборки.
Схема должна учитывать реальное время прогревания бетонной смеси:
- Первоначальный период – это разогрев. Увеличение температуры в этом временном отрезке должно быть в пределах 10°С за 120 минут.
- Основной рабочий период – нагревание, при котором нельзя греть провод выше 80°С.
- Последний период работы схемы – остывание. В это время бетон должен остывать со скоростью ≤ 5°С в час.
Прогревание бетонной массы необходимо закончить после набора начальной прочности в пределах 50% от номинальной. При этом оптимальное время подогрева бетона будет варьироваться от 2-4 часов до трех суток – зависит от практических факторов: объема бетона, уличной температуры, схемы укладки и т.д.
Подключение вашей излучающей системы | | Теплый пол своими руками
Стандартные электрические схемы для контроллеров I-Link
Важное примечание: Помимо электрокотла, t здесь нет прямого электрического соединения между реле I-Link и любой моделью водонагревателя по запросу. Единственное электрическое соединение с водонагревателем по требованию / без резервуара,… это питание (вилка) к / от агрегата (независимо от количества зон) .Водонагреватель срабатывает, когда блок обнаруживает как минимум 1/2 галлона в минуту потока. Водонагреватель активируется, когда какая-либо или все зоны требуют тепла, и насос (ы) циркулирует жидкость через агрегат, создавая «поток», который сигнализирует водонагревателю о включении!
Краткое руководство по электромонтажу для многозонных систем. Для получения более подробной информации прокрутите страницу вниз, чтобы увидеть больше схем.
Мы предлагаем неограниченную техническую поддержку ~ бесплатно 866-теплые пальцы ног (927-6863)Базовый контроллер одной зоны
Итак…..Если у вас простая однозонная излучающая система и вы используете реле I-Link SP-81 , которое мы поставили вместе с вашей системой, следуйте схеме ниже.
Контроллер одной зоны включает насос, когда термостат требует тепла.
18/2 провод термостата от термостата в зоне подключается к клеммам R / W. Красный или Белый могут попасть на любой терминал. Отодвинув язычок над клеммной колодкой, можно легко вставить провод. Электрический провод 14/2 Romex рекомендуется для питания системы лучистого отопления (реле / насос).
ПРИМЕЧАНИЕ: «Питание термостата» на приведенной выше схеме указывает на напряжение 24 В переменного тока, поступающее от контроллера для подачи питания на цифровой дисплей на термостатах, которые не используют батареи для этой цели. В термостатах , которые мы продаем, используются батареи , поэтому эта функция не требуется для цифрового дисплея на наших термостатах. Но, прежде всего, не подключайте к этим клеммам линию 120 В переменного тока.
(вернуться наверх)
Базовый «многозонный» контроллер
Системы с несколькими зонами обычно управляются одним блоком, содержащим несколько реле.Как и SP-81, описанный выше, контроллеры с несколькими зонами используют одну и ту же базовую конфигурацию клеммной колодки для низкого напряжения (термостат) и сетевого напряжения (для работы циркуляционных насосов). Ряд оранжевых выступов в верхней части панели контроллера позволяет вставлять провода термостата, а блок клеммных винтов вдоль нижней части с маркировкой N (нейтраль) и L (нагрузка) упрощает подключение каждого зонного насоса.
Конечно, во всех приложениях релейный блок должен запитываться по линии 110 В (см. Схему ниже) от вашей монтажной панели.Либо это, либо ответвление от существующей цепи может быть проведено к блоку контроллера. Также неплохо подключить стандартный выключатель света к цепи контроллера, чтобы всю излучающую систему можно было выключить в одном центральном месте. Если ваша релейная коробка подключена через выключатель, вам не придется полагаться только на термостаты, чтобы отключить систему во время сезона охлаждения. Эта функция может помешать кому-либо «играть» с вашими термостатами и направлять тепло на ваш пол летом.
В этом примере подключения термостата выполняются в верхнем ряду «Т», клеммы T1, T2, T3 и т. Д. Циркуляционные насосы подключаются к нижним клеммам высокого напряжения для зон 1, 2, 3 и т. д. на блоке на 120 вольт. Линии от источника питания (монтажная панель) подключены к N (общий) и L (горячий). Установленная на заводе перемычка не перемещается.
Ниже приведен еще один пример многозонного контроллера (i-Link SP-83), но для очень простой системы.Другими словами, контроллер — это не что иное, как три зоны теплого пола, активируемые тремя термостатами. Нет необходимости использовать клеммы «системный насос», нет необходимости использовать клеммы «XX» для включения бойлера, и нет «приоритетной зоны» для косвенного водонагревателя.
Базовая схема подключения по существу одинакова для всех контроллеров с несколькими зонами. Многозонный контроллер может содержать от двух до шести реле, но порядок подключения остается неизменным. Конечно, контроллер i-Link также может быть подключен для специальных приложений, наиболее распространенные из которых показаны ниже.
(вернуться наверх)
Специальные схемы подключения контроллеров i-Link
В определенных ситуациях контроллер i-Link должен делать больше, чем просто активировать циркуляционный насос каждый раз, когда зона требует тепла. На следующих схемах показаны три распространенных специализированных приложения.
Активация котла с помощью контроллера одной зоны
Контроллер одной зоны активирует бойлер каждый раз, когда зона требует тепла
Клеммы «5» и «6НО» (нормально разомкнутые) просто замыкают цепь каждый раз, когда термостат зоны излучения требует тепла.Эти клеммы не подают напряжение на котел. В котле есть трансформатор, который срабатывает при замыкании этой цепи.
(вернуться наверх)
Используйте приведенную выше «многозонную» схему, если у вас более одной зоны и вам нужно использовать «концевой выключатель» ( XX, соединения ) на контроллере i-Link для включения котла всякий раз, когда любая из излучающих зон призыв к теплу.
Активировать газовый клапан с зонного контроллера
Контроллер включает газовый котел всякий раз, когда зона требует тепла
Контроллер может взаимодействовать с существующим трансформатором котла и активировать газовый клапан, используя приведенную выше схему.
(вернуться наверх)
Подключение теплообменника / системы первичного контура
Активация «системного насоса» всякий раз, когда какая-либо зона требует тепла
Это схема для использования с теплообменником или системой первичного контура . Насос, работающий в теплообменнике / первичном контуре, называется системным насосом . Очевидно, он должен работать, когда любая зона требует тепла.
Для (любого) подключения насоса первичного контура или насоса теплообменника, нейтраль (белый провод) и нагрузка (черный провод) к разъемам «Системный насос» в нижней части блока реле (эти подключения находятся слева от зоны. соединения насоса.Все провода заземления будут соединены гайкой внутри коробки реле. Заземляющие провода заземляются на / от источника питания, проходят через релейный блок (через гайку) и заканчиваются на каждом насосе.
Установленная на заводе перемычка остается на месте.
(вернуться наверх)
Подключение термостата
Honeywell Pro 1000 Термостат (6 контактов)Pro Th2000 — это универсальный, многофункциональный термостат, очень простой в использовании и подключении.Но вы никогда не узнаете этого, просмотрев РУКОВОДСТВО ПО УСТАНОВКЕ Honeywell. Поэтому мы рекомендуем вам использовать эту страницу и прилагаемую к ней фотографию, чтобы сделать процесс быстрым и простым.
STEP 1 : Рекомендуется провод термостата калибра 18. Можно использовать три (3) провода (R-W и C), если вы решите использовать функцию питания 24 В от реле и устраните необходимость в батареях для термостата Honeywell. Эти провода подключаются к клеммным соединениям реле и термостата (R-W и C).Снимите переднюю крышку и подключите один из проводов термостата калибра 18/2 к клемме «R», а второй провод — к клемме «W». Провода полностью взаимозаменяемы. Но для простоты вставьте «красный» провод термостата в клемму «R», а «белый» провод термостата — в клемму «W».
ШАГ 2 : Установите (2) батарейки AAA и снова установите крышку. Этот шаг не требуется при 3-проводном подключении (см. Выше)
ШАГ 3 : Деактивируйте функцию «Пятиминутная задержка».и v) и удерживая их в течение трех секунд. Это переведет вас в «программный» режим.
B) Находясь в «программном» режиме, нажмите обе кнопки одновременно и переходите по номерам вверх в режим программирования №5.
C) Заводская установка — «1» (5-минутная задержка «включено»), и вы хотите установить этот режим на «0», чтобы отключить функцию 5-минутной задержки.
D) Нажмите кнопку «вниз» («v»), и на экране отобразится «0».
E) Нажмите обе кнопки переключения еще раз, чтобы выйти из «программного» режима.Отображается текущая «заданная» температура.
ШАГ 4: Используйте кнопки-переключатели, чтобы установить термостат на любую желаемую температуру.
Положения проводов для Honeywell Pro 1000 (6-контактная модель)
Подключение и настройка термостата Honeywell Pro 1000 (8 контактов)Версия Pro 1000 с 8 контактами также проста в подключении и программировании, но ее конфигурация немного отличается. Вместо (2) 3-контактных блоков, левой и правой, эта версия имеет (1) вертикальный 8-контактный блок посередине.Выглядит это так:
Процедура настройки выглядит следующим образом:
ШАГ 1 : Снимите переднюю крышку и подключите один из проводов термостата калибра 18/2 к клемме «R», а второй провод — к клемме «W». Провода полностью взаимозаменяемы. Но для простоты вставьте «красный» провод термостата в клемму «R», а «белый» провод термостата — в клемму «W».
ШАГ 2: Установите (2) батарейки AAA и снова установите крышку.и v) переход по различным функциям. Переключайтесь, нажимая обе кнопки, пока не дойдете до функции №15. Используйте стрелку вниз, чтобы установить эту функцию на 0 (ноль).
Примечание: Вам не нужно переключаться четырнадцать раз, чтобы перейти к функции №15. Фактически, вам нужно будет переключиться всего три раза. Это потому, что разработчики термостатов не учитывают последовательно, как все мы. Они инженеры, и в их непостижимом квантовом мире числа представляют собой эзотерические концепции дизайна, а не упорядоченную систему расположения.Для нас, удалив банан из шести пучков, остается пять бананов. Для инженера Honeywell пять оставшихся бананов представляют «функцию № 13». Добавление банана к грозди можно выразить как «функция № 23», или, говоря языком непрофессионала, 6 бананов.
Роберт Шоу термостат маркиЕсли у вас есть термостат марки Robert Shaw , используйте следующую схему.
Схема Роберта Шоу
(вернуться наверх)
Управление насосом с помощью «датчика пола»
Термостат / датчик температуры пола AZEL D-508F (показан ниже) может использовать температуру пола или окружающего воздуха для управления зоной.Используйте эту ссылку для получения дополнительной информации и инструкций по установке: http://azeltec.com/images/D-508Finstruction.pdf
Четыре (4) провода (калибр 18) необходимы для напольного датчика / термостата Azel (D-508). Клеммы «R&C» (питание 24 В) на реле подключаются к клеммным соединениям «R&C» на термостате D-508. Клеммы клемм термостата «R&W / TT» на реле подключите к клеммам № 1 и 2 на термостате D-508. Важно отметить, что при удлинении проводов датчика (калибр 22), идущих от клемм «SS» на термостате, рекомендуется использовать многожильный провод. Эти (удлиненные) соединения проводов должны быть ЗАПЫТАЕМЫ и изолированы (заклеены лентой и т. Д.).) друг от друга, чтобы обеспечить абсолютную непрерывность, поскольку это датчик сопротивления «ОМ».
Датчик / реле отключения использует небольшой датчик для включения циркуляционного насоса. Сам датчик представляет собой небольшой термистор, обычно вставляемый в короткую трубку из полиэтиленгликолята, отлитую в излучающую плиту. Конечно, датчик также можно установить в полости балки, чтобы контролировать температуру пола в системе скоб. Этот датчик отслеживает фактическую температуру пола и игнорирует температуру воздуха в помещении.Это очень полезно в излучающих зонах, где имеется более одного источника тепла.
Если, например, в излучающей зоне регулярно используется система принудительной подачи воздуха или дровяная печь, стандартный термостат контроля воздуха, обычно используемый для контроля пола, будет большую часть времени отключен. Вместо этого встроенный датчик позволяет пассажирам поддерживать базовую температуру пола.
Johnson Controls «Контроллер уставки» Запорный и температурный термистор:
- Коробка Джонсона
- Датчик пола
- Схема подключения
Правильно подключенный датчик температуры пола
Датчик / реле отключения также доступен в модели с низким напряжением (24 В переменного тока).В этом случае датчик температуры пола не питает напрямую циркуляционный насос. Вместо этого он работает как стандартный настенный термостат низкого напряжения — он подключается к реле, которое, в свою очередь, приводит в действие циркуляционный насос. Подключения приложений, использующих датчик / реле отключения низкого напряжения , показаны на фотографиях ниже.
- Макет, показывающий низковольтный датчик пола, подключенный к реле I-Link.
- Соединения проводов крупным планом
Другие области применения датчика столь же разнообразны, как и ваше воображение.Его можно использовать, например, для контроля температуры воды в накопительном / резервном баке. Датчик прикрепляется к одной из труб, входящих или выходящих из резервуара для хранения, изолированной пеной или стекловолокном, затем линия термостата 18 калибра проходит от датчика к реле.
Когда температура в баке падает до заданного вами значения, включается циркуляционный насос и забирает тепло из теплообменника. Такая установка может быть полезна для системы, использующей дровяной котел на открытом воздухе, подключенный к постоянно активному теплообменнику.В зависимости от установленных вами параметров накопительный бак забирает тепло от теплообменника для поддержания постоянной температуры в баке.
Таким способом можно нагреть любой носитель тепла, включая гидромассажные ванны, грядки для выращивания в теплицах, аквариумы, фермы для червей, полотенцесушители… вы называете это.
Этот контроллер также можно использовать в обратном направлении. Другими словами, реле может быть активировано, когда температура в резервуаре с водой поднимается на до заданного значения, и резервуар необходимо охладить.
Чаще всего этот подход используется в системе «Тепловой отвод» , водопроводной системе, которую мы используем для отвода избыточного тепла от солнечного контура. Перемычки внутри A419 настроены на РЕЖИМ ОХЛАЖДЕНИЯ (обе перемычки — перемычка 1 и перемычка 2 — расположены в «снятом» положении на своих штырях), а датчик прикреплен к выпускной трубе HOT солнечного накопителя. Когда достигается высокая уставка в накопительном баке, включается циркуляционный насос теплового сброса.
Пружинный таймер для систем снеготаяния
(вернуться наверх)
Дифференциальный контроллер солнечной энергии
Resol DeltaSol BS
В тепловых системах Resol DeltaSol BSSolar обычно используется специальное реле, называемое дифференциальным контроллером .Как следует из названия, это реле активирует насос или насосы при достижении диапазона (или разницы) между двумя температурами. Другими словами, когда температура в солнечном коллекторе на X градусов выше, чем температура на дне солнечного резервуара, дифференциальный контроллер включает необходимый насос (-ы) и забирает это полезное тепло в систему.
Передача тепла от более горячего к более холодному резервуару для выравнивания температуры в обоих резервуарах и увеличения общей емкости хранения — еще одно распространенное применение дифференциального регулятора.
Два датчика (резервуарный и солнечный) необходимы для правильного «дифференциала». Датчик резервуара прикреплен к трубе около дна резервуара для хранения солнечной энергии или в специальный «колодец» в некоторых резервуарах.
Второй датчик считывает температуру воды на выходе из солнечных коллекторов. Оба датчика должны быть изолированы (стекловолокном или пеной), чтобы температура окружающей среды не влияла на показания. Следует отметить, что датчик, прикрепленный к горячей трубе, НЕ будет точно определять фактическую температуру воды.Фактически, вода обычно на 15-20 градусов теплее, чем показывает датчик.
К счастью, для хорошо функционирующей солнечной системы горячего водоснабжения фактическая температура воды не важна (если, конечно, она не слишком теплая для горячего душа). Важна разница в и между температурами воды в двух местах. В конце концов, если вода на самом деле горячее, чем показывает датчик, тем лучше.
СТАНДАРТНЫЙ РЕЖИМ ДИСПЛЕЯ
Контроллер Resol активируется тремя кнопками: ВПЕРЕД (крайний правый), НАЗАД (крайний левый) и кнопкой УСТАНОВИТЬ (в центре).
В СТАНДАРТНОМ РЕЖИМЕ ДИСПЛЕЯ, то есть не в РЕЖИМЕ ПРОГРАММЫ, пользователь может переключаться между тремя основными полями:
1. COL (датчик коллектора)
2. TST (температура датчика резервуара)
3. HP (накопленные часы солнечной энергии)
ПРОГРАММИРОВАНИЕ
Нажмите и удерживайте кнопку ВПЕРЕД (правая кнопка) в течение ДВУХ секунд. Это переводит RESOL в РЕЖИМ ПРОГРАММИРОВАНИЯ, начиная с DT-O (Delta T, ON).
Примечание. Если удерживать кнопку «Вперед», начнется быстрое переключение между всеми опциями программирования, поэтому, если вы пропустите DT-O, просто используйте кнопку BACKWARD, чтобы вернуться назад.
Delta T — это разница между температурой ваших солнечных коллекторов и температурой на дне накопительного бака. Когда достигается значение Delta T , контроллер Resol включает солнечный насос и перекачивает нагретую жидкость из солнечных коллекторов.
См. ВЫБОР ДЕЛЬТА Т (ниже), чтобы узнать, как лучше всего подходит Дельта Т для вашей ситуации.
Чтобы установить температуру вашего Delta T ON, войдите в РЕЖИМ ПРОГРАММЫ и нажмите центральную кнопку SET.Значок SET начнет мигать на экране. Переключайтесь вверх или вниз до желаемой разницы температур. Снова нажмите SET, чтобы заблокировать программу.
Та же процедура используется для следующего экрана, DT-F, параметра насоса ВЫКЛ.
Это поле позволяет вам решить, когда выключить помпу. Кстати, эта температура должна быть как минимум на 2 градуса ниже, чем температура насоса ВКЛ
.
Как правило, когда жидкость в вашем солнечном контуре всего на несколько градусов выше температуры вашего резервуара, от циркуляции жидкости мало что можно получить.Выключите насос и дайте коллекторам снова нагреться. Разница температур от 3 до 5 градусов, вероятно, подходит для этой области.
S MX , следующее поле, позволяет вам установить МАКСИМАЛЬНУЮ ТЕМПЕРАТУРУ БАКА. Заводская настройка по умолчанию — 140 градусов. Это слишком мало. Установите это поле как минимум на 180 градусов. Возможно, вы даже захотите подняться выше. Контроллер Resol позволяет нагреть бак до 205 градусов. Это всего лишь 7 градусов от пара, но с правильно установленным терморегулирующим клапаном (обязательным для любой солнечной системы) для защиты вашего дома от ожогов вы также можете сохранить как можно больше тепла.
Однако, если вы хотите более низкую максимальную температуру, просто нажмите центральную кнопку SET и переключитесь на желаемую температуру. Снова нажмите SET, чтобы зафиксировать желаемую температуру.
Следующее поле — EM . Это означает аварийное отключение. Если по какой-либо причине в вашем солнечном контуре есть хрупкие, чувствительные к нагреву компоненты, эта настройка отключит насос при заданной вами температуре и предотвратит перегрев. Заводская настройка довольно низкая — 285 градусов, потому что ничто в нашей системе не находится даже близко к опасной зоне при этой температуре (например, циркуляционный насос рассчитан на 400 градусов), поэтому оставить его на заводской температуре по умолчанию должно быть хорошо.
ПРИМЕЧАНИЕ. RESOL — это очень продвинутый контроллер, предлагающий множество функций, которые большинству людей не понадобятся. Остальные поля входят в эту категорию и полезны для специальных приложений. Для обычной солнечной системы водяного отопления игнорируйте эти поля. Заводская установка по умолчанию для этих настроек ВЫКЛЮЧЕНА.
Однако, несмотря на это, тщательное чтение руководства RESOL может вдохновить некоторых пользователей на эксперименты с этими более продвинутыми функциями.
Краткое руководство
В основном режиме доступны только поля температуры коллектора (COL), температуры резервуара (TST) и накопленного солнечного усиления (HP).
Удерживайте кнопку FORWARD две секунды , чтобы войти в режим программирования.
Перейдите к желаемому полю, нажмите SET, используйте FORWARD или BACKWARD, чтобы найти желаемое значение, затем снова нажмите SET для подтверждения.
Примечание. Примерно через 45 секунд бездействия подсветка дисплея гаснет.Нажмите кнопку ВПЕРЕД, чтобы снова засветить дисплей, нажмите еще раз, чтобы перейти к желаемому полю.
Кроме того, через несколько МИНУТ простоя контроллер RESOL автоматически выйдет из РЕЖИМА ПРОГРАММЫ и вернется в ПЕРВИЧНЫЙ РЕЖИМ.
Если вы хотите выйти из РЕЖИМА ПРОГРАММЫ до автоматического возврата, просто используйте кнопку НАЗАД и переключитесь обратно на COL (поле номер один).
Выбор дельты Т
Почему обычно лучше использовать широкий дифференциал
Коллекторная петля — это общая длина медной трубы 3/4 дюйма, как подающей, так и обратной, которая соединяет солнечную батарею с механическими компонентами, т.е.е. теплообменник, накопительный бак и т. д. Эта петля может быть довольно короткой (коллекторы расположены на крыше гаража с механическим оборудованием всего в пятнадцати футах ниже) или довольно длинным (коллекторы заземлены в шестидесяти футах от дома). Труба в короткой петле вмещает тридцать футов (0,8 галлона жидкости). Длинная петля, сто двадцать (3,2 галлона жидкости).
В обоих этих случаях жидкость в коллекторном контуре должна быть нагрета до температуры, прежде чем система будет «работать» в течение любого периода времени.Причина в том, что рано утром, когда солнце начинает нагревать коллекторы, большая часть жидкости в контуре коллектора остается холодной. Однако, как только солнце попадает на панели, жидкость в верхней части коллектора, ближайшей к датчику коллектора, быстро нагревается и запускает систему. Но как только более холодная жидкость в контуре циркулирует мимо датчика, она снова остывает.
Это вызывает совершенно нормальное состояние, известное как «короткий цикл». Ожидайте, что солнечный насос будет работать с коротким циклом, пока вода в общем контуре коллектора не нагреется.Если коллекторная петля длинная, а солнце слабое, многие галлоны холодной жидкости должны нагреться, прежде чем любое полезное тепло может быть передано в резервуар для хранения. Это может занять время.
Практическое правило: держите коллекторную петлю короткой… и хорошо изолируйте ее.
Из приведенного выше описания видно, что «жесткий» дифференциал (от 8 до 15 градусов) увеличивает эффект короткого цикла. Особенно, если коллекторная петля длинная, а массив небольшой (т.е. ограниченная теплопроизводительность).Максимально возможная разница в этой ситуации сведет к минимуму тенденцию системы отключаться и включаться каждые несколько секунд.
Однако, если ваша система имеет высокую пропускную способность (много плоских пластинчатых коллекторов или более 48 вакуумированных трубок), а ваша коллекторная петля короткая , более узкий дифференциал активирует систему раньше и получает больше полезного тепла.
Большая теплопроизводительность и короткий коллекторный контур = плотный дифференциал (от 8 до 15 градусов)
Малая теплопроизводительность и длинный коллекторный контур = широкий дифференциал (от 20 до 24 градусов)
(вернуться наверх)
Бесплатное руководство по установке теплый пол для дома и профессионалов — Radiantec
Руководства по установке — Наши руководства по установке поверхностного отопления написаны на понятном языке с изображениями и схемами. Они предназначены для того, чтобы помочь домашним мастерам, специалистам в области отопления или «достаточно компетентным мастерам» установить системы лучистого отопления с уверенностью и отличными результатами. . Руководство и приложения бесплатны. У вас есть возможность отправить их вам по почте или загрузить в виде файлов PDF.
Пожалуйста, позвоните по нашему бесплатному номеру (1-800-451-7593) или просто нажмите здесь, чтобы перейти к форме автоматического запроса и получить их по почте.
PDF-файлов большие.Для загрузки некоторых из них может потребоваться до 5 минут, если у вас медленное соединение, поэтому дайте им время для загрузки.
Для просмотра файлов PDF вам понадобится бесплатная программа Adobe Acrobat Reader. Если он еще не установлен, Adobe Acrobat Reader можно бесплатно загрузить здесь.
Чтобы загрузить файлы, просто щелкните фотографию рядом с приложением, которое вы хотите просмотреть.
Руководство по проектированию и изготовлению
Если вы плохо знакомы с лучистым теплом, прочтите наше Руководство по проектированию и изготовлению! В этом руководстве содержится обширная общая информация о лучистом тепле .Методы изоляции плит, расчет теплопотерь, варианты трубопроводов, варианты системы и многое другое — все это написано на понятном для домовладельца языке с изображениями и схемами.
Открытая прямая система
Инструкции по установке Open Direct System . В прямой системе используется один высокоэффективный водонагреватель для подачи горячей воды для отопления помещений и бытовых нужд. Пошаговая инструкция с фотографиями всех комплектующих.
Закрытая система .
Замкнутая система использует специальный водонагреватель или бойлер для приготовления горячей воды для лучистого тепла. Пошаговая инструкция с фотографиями всех комплектующих.
Косвенная система
Инструкции по установке косвенной системы . В косвенной системе используется один высокоэффективный водонагреватель для бытовых нужд для обеспечения горячей водой для отопления помещений и бытового использования; Однако в отличие от прямой системы вода для бытового потребления и теплоноситель разделяются теплообменником.
Трубы для бетонной плиты
Инструкция по установке НКТ для бетонной плиты . Установка труб в бетон — один из самых простых и экономичных способов установки лучистого тепла . Вы также можете обратиться к Руководству по проектированию и строительству, чтобы узнать о методах изоляции плит.
Между балками перекрытия
Инструкция по установке труб между балками перекрытия .Если у вас есть доступ к балкам пола снизу, вы можете установить лучистое тепло. В этом руководстве показано, как это сделать!
Установка трубок на полу
Инструкции по установке трубопровода поверх пола . Если вы компетентный самодельщик и не против работать с электроинструментом, вы можете установить высокоэффективную систему лучистого отопления поверх существующего пола, когда у вас нет доступа к балкам снизу.В этом руководстве показано, что делать.
Установка труб в потолок
Инструкция по установке трубки в потолок . Раньше это был очень распространенный метод установки лучистого тепла. Это отличный способ добавить комфорта в любое пространство , если у вас нет доступа к полу. Это также работает как хорошее дополнение, если теплый пол не может полностью обогреть помещение.
Установка труб в стены
Инструкция по установке НКТ в стены . Еще один хороший способ повысить уровень комфорта любого помещения. Это также работает как хорошее дополнение, если теплый пол не может полностью обогреть помещение.
Установка вешалки для полотенец
Инструкция по установке полотенцесушителя. Ничто не сравнится с роскошно теплым полотенцем при выходе из душа; это приложение покажет вам, как этого добиться!
Установка водонагревателя Polaris
Инструкции по установке водонагревателя Polaris.Водонагреватель Polaris — это очень сложное устройство, и крайне важно неукоснительно следовать инструкциям производителя. Однако имейте в виду, что при подключении вашей системы к Polaris вам необходимо следовать схемам подключения Radiantec.
Инструкции по установке Radiantec Controls.
Электрические схемы для всех органов управления, термостатов и датчиков температуры. Обратите внимание, что это руководство обычно является хорошим руководством для электрика.
Идеи для самостоятельной компоновки трубопровода
Идеи для самостоятельной разводки трубок. Это дополнение избавит вас от беспокойства о том, как расположить трубки. Создайте свой собственный шаблон трубок с помощью этого дополнения.
Руководство по установке солнечного водонагревателя Radiantec Basic для бытовых нужд.
«Солнечный водонагреватель для бытовых нужд Radiantec Basic» — это предварительно спроектированный «комплектный» солнечный водонагреватель для бытовых нужд, который обеспечит обильное количество горячей воды для бытового потребления для типичной жилой семьи.Он также может служить отправной точкой для более универсальных систем солнечной энергии, которые также будут обеспечивать теплые полы, таяние снега, подогрев бассейнов и садоводство с помощью солнечной энергии. Эта система разработана с учетом требований различных налоговых органов.
Radiantec Basic Solar Бытовые водонагреватели. Руководство пользователя.
Это руководство проведет вас через регулярные процедуры обслуживания солнечного водонагревателя Radiantec Basic для бытовых нужд.
Технические характеристики кабеля SlabHeat и инструкции по установке
Как установить кабель SunTouch SlabHeat
SlabHeat Electric Indoor SlabHeat
Купить сейчас
Руководство по установке
ПродуктыSlabHeat — это простой способ обогреть определенное пространство.Это руководство по эксплуатации представляет собой руководство по установке SlabHeat Cable, включая рекомендации по проектированию, установке кабеля, установке системы управления, мерам предосторожности и указаниям по покрытию пола.
Технические характеристики кабеля SlabHeat:
SlabHeat Cable — это законченный нагревательный кабель, состоящий из последовательного резистивного нагревательного кабеля и одного кабеля питания для простого одноточечного подключения. Длина нагревательного кабеля не может быть обрезана до нужной длины.
Напряжения: 120 и 240 В переменного тока, 1-фазный
Вт: 15 Вт / кв. Фут (51 БТЕ / ч / кв.футов), с интервалом 4 дюйма по центру 10 Вт / кв. футов (34 БТЕ / ч / кв. фут) с интервалом 6 дюймов по центру (кабель рассчитан на работу при мощности примерно 5 Вт / погонный фут кабеля при номинальном напряжении).
Максимальный ток нагревателя: 15 ампер
Максимальная нагрузка цепи: 15 ампер
GFCI, класс A (защита цепи от замыкания на землю), необходим для каждой цепи
Перечень: Перечислено UL для США и Канады в соответствии с UL 1673 и CAN / CSA C22.2 No. 130-03
Номер файла объявления: E185866
Применение: Только для использования внутри помещений, в бетонном основании.(см. шаг 1.1)
Минимальный радиус изгиба: 1 дюйм
Максимальная температура воздействия (непрерывная и при хранении): 194 ° F (90 ° C)
Минимальная температура установки: 50 ° F (10 ° C)
Установка должна выполняться квалифицированным персоналом в соответствии с местными нормативами, ANSI / NFPA 70 (статья 424 NEC) и разделом 62 CEC, часть I.
Ограниченная гарантия: Для получения полной информации о гарантии на продукт, пожалуйста, обратитесь к ссылке на гарантию внизу
Уровень навыка
Требуются навыки электромонтажа среднего уровня.Обычно нагревательный элемент может быть закреплен квалифицированными установщиками. Тем не менее, подумайте о том, чтобы нанять электрика для грубого монтажа проводки, особенно если ее необходимо прокладывать от панели автоматического выключателя. Имейте в виду, что местные нормы могут требовать, чтобы этот продукт и / или термостат был установлен или подключен электриком.
**** ПРЕДУПРЕЖДЕНИЯ ****
Установка должна выполняться квалифицированным персоналом в соответствии с местными правилами и стандартами.Рекомендуется иметь лицензированного электрика. Перед установкой прочтите эти важные предупреждения и все инструкции по установке. Несоблюдение этого может привести к пожару, поражению электрическим током, материальному ущербу, травмам и / или смерти.
НИКОГДА
- НИКОГДА не обрезайте и не модифицируйте нагревательный кабель. При необходимости кабель питания можно обрезать короче, но никогда не отсоединять его от нагревательного кабеля.
- НИКОГДА не стучите по кабелю шпателем или другим инструментом. Будьте осторожны, чтобы не порезать, не порезать и не защемить кабель, чтобы не повредить его.
- НИКОГДА не перекрывайте и не пересекайте нагревательный кабель сам с собой, а также не размещайте нагревательный кабель ближе, чем на 4 дюйма от другого нагревательного кабеля или кабеля питания.
- НИКОГДА не допускайте, чтобы шнур питания или провод датчика пересекали нагревательный кабель.
- НИКОГДА не прокладывайте нагревательный кабель под шкафами или другими встроенными элементами. Под этими предметами будет накапливаться излишнее тепло, что приведет к их повреждению.
- НИКОГДА не втягивайте нагревательный кабель или заводские соединения в кабелепровод.
- НИКОГДА не прокладывайте нагревательный кабель в стенах, поверх стен или перегородок, доходящих до потолка, или в шкафах.
- НИКОГДА не пытайтесь ремонтировать поврежденный кабель. Обратитесь на завод за помощью.
- НИКОГДА не протягивайте нагревательный кабель за пределы помещения или области, в которой он находится.
ВСЕГДА
- ВСЕГДА отключайте все цепи перед установкой или обслуживанием.
- ВСЕГДА полностью заделывайте нагревательный кабель и заводские соединения в бетоне. Не закрепляйте кабель клеем, предназначенным для ламината или винилового покрытия.
- ВСЕГДА избегайте размещения нагревательного кабеля ближе, чем на 4 дюйма от других предметов, таких как подземный кабель или трубопровод, чтобы избежать их перегрева.
- ВСЕГДА держите концы силовых кабелей сухими до и во время установки.
- ВСЕГДА обеспечивает защиту от замыкания на землю (GFCI) для системы обогрева плиты. Эта функция включена в элемент управления SunStat, однако, если используется другой тип управления, GFCI должен находиться на выключателе.
- ВСЕГДА используйте медный провод в качестве подводящих проводов к контроллеру и кабелю.
- ВСЕГДА обращайте пристальное внимание на требования к напряжению и силе тока автоматического выключателя, системы управления и системы обогрева плиты.
- ВСЕГДА устанавливайте в соответствии со всеми местными правилами и национальными электротехническими нормами (ANSI / NFPA 70, особенно статья 424) и разделом 62 Канадских электротехнических правил (CEC), часть I.
Типовые установки SlabHeat
На иллюстрациях на этой странице показаны некоторые типичные места установки SlabHeat. В дополнение к этому SlabHeat также хорошо подходит для любого вида пристройки дома с бетонной плитой. Он идеально подходит для дополнения спальни, солнечной комнаты, отдельного гаража или большой жилой зоны.SlabHeat также хорошо подходит для использования в коммерческих помещениях.
Весь дом
Гараж
Готовый подвал
Этап 1: Проектирование системы
КабельSlabHeat следует прокладывать во всех помещениях пола, которые необходимо утеплить. Его нельзя использовать для наружных работ, таяния снега или потолков. Во многих случаях его можно использовать и для обогрева помещения, но необходимо произвести точный расчет теплопотерь, чтобы определить, будет ли подано достаточно тепла, чтобы соответствовать теплопотерям в помещении.
ШАГ 1.1
Сделайте набросок комнаты. Измерьте общую площадь обогреваемого пола в квадратных футах (на данный момент измерения следует проводить до края стен, шкафов, ванны и т. Д.). Помните следующее:
- Тепло не будет излучаться более чем на 3–4 дюйма по обе стороны от нагревательного кабеля, поэтому важно равномерное покрытие.
- Не прокладывайте кабели под шкафами или приборами или внутри стены. Избыточное нагревание приведет к повреждению.
- Не прокладывайте нагревательные кабели в маленькие туалеты или другие замкнутые пространства, где может накапливаться чрезмерное тепло.
- Устанавливайте нагревательный кабель на расстоянии от 1-1 / 2 ″ до 2 ″ от прилавка или туалетного столика в пространстве для ног, чтобы обеспечить тепло в этой области.
- Не прокладывайте нагревательные кабели ближе, чем на 6 дюймов от унитазных колец, чтобы избежать возможного плавления восковых колец.
- Не пересекайте компенсационные швы в плите, если не соблюдаете надлежащую технику и меры защиты. (см. шаг 3.10)
- Не размещайте нагревательный кабель ближе, чем на 4 дюйма от других предметов, таких как подземный кабель или трубопровод, во избежание их перегрева.
- Кабель должен быть проложен таким образом, чтобы на поверхности не было других препятствий, расположенных сверху, улавливающих тепло или позволяющих потенциально повредить монтажные кронштейны, болты или подобное (пьедесталы, опорные колонны, стены и т. Д.).
- На открытых площадках, таких как солнечные комнаты или столовые, рассмотрите возможность установки нагревательных кабелей на расстоянии 4–6 дюймов от периметра комнаты, поскольку люди редко подходят так близко к стенам.Однако, если кабель проложен в плите, где будет построена внешняя стена, не забудьте держать кабель на расстоянии 8–12 дюймов от края плиты.
- Нагревательный кабель и заводские стыки должны быть полностью заделаны в бетон. Из плиты может выходить только шнур питания. Он будет протянут через кабелепровод, внесенный в список UL, к распределительной коробке или блоку управления.
- Для новой бетонной плиты, когда длина кабеля превышает 20 футов, необходимо добавить дополнительную U-образную петлю, чтобы минимизировать возможное повреждение кабеля от теплового расширения.
ШАГ 1.2
Выберите расстояние между кабелями. Ниже приведены типичные интервалы для разных типов комнат. Это расстояние может варьироваться в зависимости от изоляции пола и комнаты, а также желаемого эффекта. Примечание. Никогда не размещайте кабели ближе, чем на 4 дюйма друг от друга; это приведет к сильному нагреву поверхности и может вызвать повреждение.
Типичное использование:
- Расстояние 4 дюйма: Полы в солнечных комнатах, плиты в цокольном этаже, ванные комнаты, кухни, жилые помещения и ванны с наружными стенами.(ПРИМЕЧАНИЕ. Изоляция всегда рекомендуется из-за высоких тепловых потерь в этих областях. Характеристики никогда не гарантируются из-за особенностей конструкции и климата в этих областях.)
- Расстояние 6 дюймов: Коридоры, подъезды и большие площади с низкими потерями тепла.
Ожидаемая температура пола:
- Изолированная бетонная плита: Если кабели проложены на изолированной бетонной плите, а сверху — тонко затвердевающий раствор и плитка, большинство полов можно нагреть до температуры на 150 F (90 C) выше, чем в противном случае.
- Неизолированные бетонные плиты: Если кабели проложены на неизолированной бетонной плите, а сверху — тонкий раствор и плитка, большинство полов можно нагреть до температуры на 100-150F (от 60 до -90C), чем они В противном случае проконсультируйтесь с проектировщиком или заводом-изготовителем, если остались вопросы о температуре поверхности, которую можно ожидать от кабелей в какой-либо конкретной конструкции.
ШАГ 1.3
Умножьте квадратные метры, измеренные на шаге 1.1 на 0,90, чтобы обеспечить расстояние от 4 до 6 дюймов по краям площади пола. Используйте полученную площадь в квадратных футах, чтобы выбрать соответствующие кабели из таблиц на стр. 6.
Помните:
- Не подключайте к контроллеру более 15 ампер при 120 В переменного тока (1800 Вт) или 15 ампер (3600 Вт) при 240 В переменного тока.
- Выберите 120 В переменного тока или 240 В переменного тока в зависимости от доступной мощности. ЗАПРЕЩАЕТСЯ смешивать напряжения в одной и той же системе, если необходимо проложить более одного кабеля для покрытия области.
- Нагрузка не более 12 А (1440 Вт) на автоматический выключатель на 15 А или 16 А (1920 Вт) на автоматический выключатель на 20 А.
- Если у вас есть зона, где требуется более 15 ампер кабелей для управления одним термостатом, используйте реле SunStat Relay, чтобы принять дополнительную нагрузку в амперах.
- Для получения справки см. Схемы подключения в Приложении 1.
Если точный рассчитанный размер продукта не найден в таблицах выбора на стр. 6, может потребоваться отрегулировать зону (зоны) обогрева или выбрать , следующий меньший размер . Помните, что нагревательный кабель нельзя обрезать короче, чтобы подогнать его под размер, и он должен быть полностью заделан бетоном в полу. Несоблюдение этого может привести к повреждению продукта. Будьте осторожны, чтобы не выбрать слишком большой продукт.
ШАГ 1.4
При установке SlabHeat поверх существующей плиты выберите достаточное количество фиксатора CableStrap, чтобы закрепить кабель на полу. Одна коробка содержит 25 футов ремня, достаточного для подготовки около 50 квадратных футов пола на высоте 4 фута. интервал. Ремешок обычно расположен через каждые 3-4 фута.по полу.
ШАГ 1.5
Выберите нужные кабели.
ВОДА: Определите, какая тепловая мощность требуется. При проектировании необходимо учитывать размер отапливаемого помещения, а также потери тепла в нем.
15 Вт на квадратный фут: достаточно для полов, подвалов, ванных комнат и кухонь.
10 Вт на квадратный фут: достаточно для коридоров, подъездов и больших площадей с низкими тепловыми потерями
РАЗМЕР: Выберите кабель в Таблице 2, который соответствует площади нагрева, измеренной в Шаге 1.3. Кабели SlabHeat изготавливаются различных размеров, как показано. Если точный размер кабеля не указан в таблице, выберите следующий меньший размер кабеля.
АМПЕР и НАПРЯЖЕНИЕ: Обратите особое внимание на токи, чтобы убедиться, что ваши органы управления, панель автоматического выключателя и вся проводка имеют надлежащую мощность. Разработайте защиту цепи и проводку, чтобы выдержать 125% нагрузки греющего кабеля: цепи -20 А для нагрузки до 15 А
Таблица 2 (сечения кабелей)
Модель | 15 Вт / кв. Фут 4 ″ Расстояние (кв. Футов) | 10 Вт / кв. Фут 6 ″ Шаг (кв. Футов) | Длина кабеля (футы) | Отрисовка усилителя | Ом |
Ш25120050 — 120в | 50 | 75 | 146 | 6.3 | 16-21 |
Ш25120066 — 120в | 66 | 98 | 193 | 8,3 | 11-15 |
Ш25120082 — 120в | 82 | 122 | 241 | 10,3 | 9-12 |
Ш25120100 — 120в | 100 | 149 | 294 | 12,5 | 7-10 |
Ш25120114 — 120в | 114 | 170 | 336 | 14.3 | 6-9 |
Ш25240100 — 240в | 100 | 149 | 394 | 6,3 | 33-41 |
Ш25240132 — 240в | 132 | 196 | 388 | 8,3 | 23-30 |
Ш25240164 — 240в | 164 | 243 | 483 | 10,3 | 18–23 |
Ш25240200 — 240в | 200 | 297 | 590 | 12.5 | 15-20 |
Ш25240228 — 240в | 228 | 339 | 673 | 14,3 | 13-17 |
Этап 2: Подготовка
Перед установкой SlabHeat обязательно полностью осмотрите продукты и тщательно спланируйте свой участок. Следующие шаги могут не обязательно выполняться в указанном порядке, в зависимости от графика работы подрядчика и электрика, а также изменений требований к подготовке площадки.
Необходимые предметы
Материалы:
- Хомут кабеля (для определенных вариантов установки)
- Термостат с датчиком температуры пола (SunStat)
- Автоматический выключатель на 20 А (одиночный для 120 В переменного тока и двойной для систем на 240 В переменного тока)
- Включенный в список электрический шкаф (особо глубокий) для управления; одинарный (не сборный тип) или квадратный ящик глубиной 4 ″ с одинарной крышкой «грязевое кольцо»
- Распределительная коробка 4 ″ с крышкой, при необходимости
- Хомуты для распределительной коробки (для нового строительства)
- Гибкая или жесткая трубка из списка
- Электропроводка 12 или 14 калибра (см. Местные нормы)
- Проволочные гайки при использовании дополнительной распределительной коробки
- Ногтевая пластина
инструментов:
- Цифровой мультиметр [для измерения сопротивления; должен считывать до 20 000 Ом для измерения датчика]
- Сверло с битами 1/2 ″ и 3/4 ″
- Молоток и долото
- Инструмент для зачистки проводов
- Отвертка крестовая
- Рыболовная лента (для существующей конструкции)
- Кольцевая пила (для существующей конструкции)
- Инструмент для укладки напольных покрытий
Примечание: Установщик должен быть знаком с техникой электромонтажа (рекомендуется иметь лицензированного электрика).Если это применимо для вашей установки, установщик также должен быть знаком с методами покрытия пола.
Наконечники
Элементы управления: Элементы управления SunStat обеспечивают прямое управление подогревом пола для повышения комфорта. Элементы управления SunStat также могут определять температуру воздуха с ограничением температуры пола. Другие элементы управления могут не обеспечивать желаемый уровень управления. Всегда выбирайте элементы управления, которые соответствуют номинальным значениям напряжения и силы тока системы и предназначены для систем резистивного нагрева.
LoudMouth: LoudMouth подает звуковой сигнал, если кабель поврежден во время установки. LoudMouth остается подключенным к кабелям питания на протяжении всего прокладки кабеля. Маленькая отвертка для подключения проводов входит в комплект поставки монитора LoudMouth.
ПРОВЕРЬТЕ КАБЕЛЬ, УПРАВЛЕНИЕ и ДАТЧИК
ВНИМАНИЕ: Убедитесь, что питание не подается на продукт, пока он не будет полностью установлен и готов к окончательному тестированию. Все работы должны производиться при отключенном питании цепи, в которой работают.
ШАГ 2.1
Извлеките кабель SlabHeat, регулятор и датчик из упаковки. Осмотрите их на предмет видимых повреждений и убедитесь, что все соответствует размеру и типу в соответствии с вашим планом и заказом. Не пытайтесь установить поврежденный продукт.
ШАГ 2.2
Запишите информацию о кабелях в Таблицу 4. Передайте эту информацию домовладельцу, чтобы он сохранил ее в надежном месте. Номер модели кабеля, серийный номер, напряжение и диапазон сопротивления указаны на паспортной табличке, прикрепленной к проводам питания, а также на маркировке «(x) — ДЛЯ ОБОГРЕВА ПОЛОВ ВНУТРЕННЕГО ПОЛА». Не снимайте эту табличку с паспортной таблички. Инспектор по электрике должен будет это увидеть.
ШАГ 2.3
Используйте цифровой мультиметр для измерения сопротивления между проводниками силовых проводов кабеля. Запишите эти сопротивления в Таблицу 4 в разделе «Заводские настройки перед установкой».
Сопротивление между белыми проводами должно быть в пределах диапазона сопротивления, указанного на паспортной табличке. Если он немного низкий, это может быть связано с низкой температурой воздуха или калибровкой измерителя.В случае сомнений проконсультируйтесь с заводом-изготовителем.
Сопротивление между одним из белых проводов и заземляющим проводом должно быть «разомкнутым», что обычно обозначается буквой «OL» или тем, что показывает измеритель, когда измерительные провода ничего не касаются. Если есть какие-либо изменения в показаниях, запишите эту информацию и свяжитесь с заводом-изготовителем перед установкой. Это может указывать на повреждение, проблемы с измерительными выводами или ряд других проблем. Попробуйте «прикрепить» измерительные провода к проводам кабеля к твердой неметаллической поверхности, если ваши показания колеблются.
Измерьте расстояние между выводами датчика температуры пола. Это сопротивление изменяется в зависимости от температуры, измеренной на наконечнике. В таблице 3 приведены приблизительные значения для сравнения.
ШАГ 2.4
Только квалифицированный электрик: настоятельно рекомендуется, чтобы электрик провел испытание сопротивления изоляции кабеля. Мегометр (например, Megger®), настроенный на минимум 1000 В постоянного тока, должен давать измеренное значение не менее 20 МОм (МОм). Этот тест выявит любые незначительные повреждения кабеля, которые не обнаруживаются стандартным мультиметром.
ПРЕДУПРЕЖДЕНИЕ: мегомметры подают высокое напряжение и могут вызвать поражение электрическим током или серьезную травму при неправильном использовании. Следуйте инструкциям мегомметра для безопасного и правильного использования.
Монитор LoudMouth (продается отдельно), показанный слева, будет постоянно контролировать нагревательный провод в течение всего процесса установки. Если провод порезан или поврежден во время установки, это устройство подаст сигнал тревоги. LoudMouth предотвратит закапывание поврежденного провода под затвердевшим бетоном.
Таблица 3 (значения сопротивления датчика температуры пола)
Температура | Типичные значения |
13 ° C (55 ° F) | 17000 Ом |
18 ° C (65 ° F) | 13000 Ом |
75 ° F (24 ° C) | 10000 Ом |
85 ° F (29 ° C) | 8000 Ом |
Таблица 4 — Журнал сопротивления кабеля
Кабель 1 | Кабель 2 | Кабель 3 | |
Серийный номер кабеля | |||
Модель кабеля | |||
Напряжение кабеля | |||
Диапазон сопротивления кабеля |
ИЗ КОРОБКИ ПЕРЕД УСТАНОВКОЙ
Кабель от белого к белому | |||
Белый кабель на землю | |||
Белый кабель на землю | |||
Датчик |
ПОСЛЕ ЗАКРЕПЛЕНИЯ КАБЕЛЯ
Кабель от белого к белому | |||
Белый кабель на землю | |||
Белый кабель на землю | |||
Датчик |
ПОСЛЕ ЗАЛИВКИ ПЛИТЫ
Кабель от белого к белому | |||
Белый кабель на землю | |||
Белый кабель на землю | |||
Датчик |
Сохраните этот журнал для сохранения гарантии! Не выбрасывайте!
ОСНОВНОЙ МАТЕРИАЛ
ШАГ 2.5
Подготовьте место, которое вы хотите обогреть, с помощью SlabHeat Cable. Это включает в себя учет всех инженерных сетей и препятствий.
ШАГ 2,6
Новая бетонная плита: уложите гладкую, хорошо утрамбованную основу из гравия. Обеспечьте правильный уклон и дренаж в соответствии с местными строительными нормами, чтобы избежать скопления воды в любых обогреваемых или окружающих областях. Следуйте местным строительным нормам и правилам строительства в отношении толщины и типа материала.
Обязательно учитывайте общий сорт и толщину плиты.Кабель SlabHeat должен располагаться не более чем на 1-1 / 2–2 дюйма ниже готовой поверхности пола. См. Страницу 4 для ознакомления с некоторыми типичными установками SlabHeat.
Существующая бетонная плита: Если кабель должен быть проложен на существующем покрытии, убедитесь, что он проверен на предмет наличия острых предметов, незакрепленных участков или других потенциально опасных проблем, которые могут вызвать проблемы в дальнейшем. Очень важно, чтобы кабель был полностью встроен. Кабель должен быть покрыт бетоном толщиной не менее 3/4 дюйма.
ШАГ 2.7
Новая бетонная плита: прикрепите арматуру, например проволочную сетку или арматуру, к основанию примерно на 2 дюйма ниже уровня верхней поверхности. Вы должны использовать «стулья» или другие подходящие предметы, чтобы поднять проволочную сетку до нужного уровня. Позже к этой арматуре будет прикреплен кабель SlabHeat Cable. Очень важно, чтобы кабель был полностью залит бетоном.
Защищайте или удаляйте острые выступы, загибая их, закрывая или обрезая.Острые края могут повредить нагревательный кабель.
Новая бетонная плита
Существующая бетонная плита (крышка плиты)
Электрооборудование
См. Электрические схемы в Приложении 1 для различных напряжений и областей применения.
ОБЗОР Мы рекомендуем устанавливать систему обогрева пола в выделенной цепи, идущей непосредственно от панели автоматического выключателя. При установке этой системы соблюдайте все национальные электрические правила (NEC) и другие местные требования по электрооборудованию. Работы следует выполнять с большой осторожностью и при отключенном питании цепи, в которой выполняется работа.
ШАГ 2,8
Установите автоматический выключатель (и) на 20 А в панель выключателя, в зависимости от нагрузки системы. Используйте однополюсный выключатель на 120 В переменного тока для системы на 120 В переменного тока. Используйте двухполюсный выключатель на 240 В переменного тока для системы на 240 В переменного тока. Контроллер SunStat имеет встроенную защиту от замыкания на землю (GFCI), поэтому прерыватель GFCI не требуется.Однако установите прерыватель типа GFCI, если предполагается использовать другой тип управления. Для систем, которые слишком велики для прямого питания через один элемент управления, но должны управляться одним элементом управления, измеряющим уровень пола, используйте элемент управления SunStat в сочетании с до 10 элементами управления SunStat Relay.
ШАГ 2.9
Установите электрическую коробку, включенную в список. Обратитесь к руководству по установке, прилагаемому к термостату, чтобы определить правильный размер и расположение коробки.
ШАГ 2.10
В соответствии с местными электротехническими правилами, проложите электропроводку типа NM 14 или 12 калибра от панели автоматического выключателя к распределительной коробке управления. Для работы оставьте около 6-8 дюймов дополнительного провода, выходящего из коробки.
ШАГ 2.11
Если блок управления должен быть установлен в месте, которое слишком далеко от проводов силовых выводов, необходимо будет установить распределительную коробку, в которой можно будет заделать выводные провода. Используйте стандартную распределительную коробку с крышкой, закрепив ее в легкодоступном месте.Он должен оставаться легкодоступным и не располагаться за стеной, шкафом или подобным препятствием. Затем используйте тип NM 14- или 12-го калибра или другую приемлемую электрическую проводку для подключения распределительной коробки к блоку управления.
ШАГ 2.12
Кабельный ввод питания
Установите как минимум 3/4 ″ жесткий или гибкий кабелепровод, указанный в списке, от распределительной коробки или распределительной коробки до перекрытия. Выдвиньте его на 2–6 дюймов в край плиты и прикрепите к концу втулку, чтобы предотвратить повреждение силовых выводов кабеля.
ШАГ 2.13
Кабелепровод датчика P>
Датчик SunStat предназначен для встраивания в плиту. Однако для дополнительной защиты рекомендуется устанавливать датчик в жестком или гибком кабелепроводе диаметром не менее 1/2 дюйма. Если конец кабелепровода загерметизирован, это позволит снять датчик и заменить его, если когда-либо возникнет проблема. Устанавливайте так, чтобы наконечник датчика располагался на 1 дюйм ниже поверхности, на полпути между нагревательными кабелями и не менее чем на 1 дюйм в нагреваемую область.
ШАГ 2.14
Отметьте автоматический выключатель на панели, которая питает систему, надписью «Утепление пола / ванна» или аналогичным описанием.
Этап 3: Прокладка кабеля
Следующие шаги с 3.1 по 3.9 охватывают основы установки. Шаг 3.10 охватывает некоторые конкретные приложения и их особые требования.
ОСНОВНАЯ УСТАНОВКА
Следующие шаги с 3.1 по 3.9 охватывают основы установки.Шаг 3.10 охватывает некоторые конкретные приложения и их особые требования.
ОСНОВНАЯ УСТАНОВКА
ШАГ 3.1
Определите время для установки кабеля, когда оборудование, тяжелые инструменты и посещаемость площадки будут минимальными, чтобы не допустить возможного повреждения.
товар. Будьте готовы нанести поверхностные слои на кабель в тот же день, чтобы защитить его от повреждений.
При прокладке кабеля в верхнем слое двухступенчатой бетонной плиты кабель должен быть полностью готов ко второму этапу.Время между этапами ограничено, так как плита не должна полностью затвердеть. Поэтому при использовании кабеля SlabHeat Cable вы можете разложить его и привязать к переплету, который можно будет быстро установить на место после того, как будет проложен первый. Осмотрите область и удалите все острые предметы.
Устанавливайте при температуре не менее 10 ° C (50 ° F).
ШАГ 3.2
Начните с пробной прокладки кабеля в обогреваемой зоне. Убедитесь, что он подходит к области без лишнего кабеля.
ВНИМАНИЕ: Этот нагревательный кабель НЕ МОЖЕТ быть обрезан короче! Не перекрывайте и не перекрещивайте нагревательный кабель сам по себе. Не размещайте нагревательный кабель ближе, чем на 4 дюйма. Несоблюдение этого может привести к повреждению продукта и опасному перегреву.
Избегайте пересечения деформационных швов в плите, если не соблюдаете надлежащую технику и меры защиты (см. Шаг 3.10 на стр. 12).
- Избегайте размещения нагревательного кабеля ближе, чем на 4 дюйма от других предметов, таких как подземный кабель или трубопровод, и на расстоянии 6 дюймов от унитазных колец, чтобы избежать их перегрева. ВНИМАНИЕ: Нагревательный кабель и заводские соединения SlabHeat Cable должны быть полностью заделаны в бетон. Несоблюдение этого требования может привести к повреждению продукта и риску возгорания. Никогда не пытайтесь использовать излишки нагревательного кабеля в окружающих стенах или других незащищенных местах.
- Не сгибайте повторно нагревательный кабель и никогда не сгибайте заводские соединения.
- Никогда не прокладывайте нагревательные кабели в непосредственном контакте с материалами, не являющимися кладочными, такими как изоляционная плита, пароизоляция, изделия из винила и т. Д.Это может привести к повреждению.
- Для новой бетонной плиты, когда длина кабеля превышает 20 футов, необходимо добавить дополнительную нисходящую U-образную петлю с радиусом от 1 до 2 дюймов, чтобы минимизировать возможное повреждение кабеля от теплового расширения.
ШАГ 3.3
Поместите силовые выводы кабеля рядом с вводом кабелепровода. Позже электрик протянет его через кабелепровод. Убедитесь, что он расположен так, чтобы никакая часть стыкового соединения или нагревательного кабеля не попадала в кабелепровод.
ШАГ 3.4
SlabHeat Cable: Начните закреплять нагревательный кабель на желаемом расстоянии к арматурной сетке или арматуре с помощью пластиковых кабельных стяжек. Эти кабельные стяжки следует применять на концах каждого участка и через каждые 2–3 фута. Поверните концы кабельной стяжки вниз или обрежьте их, чтобы они не выступали сквозь поверхностные слои. Не используйте металлические стяжки, так как они могут повредить кабель.
При установке поверх существующей плиты закрепите кабельную ленту на поверхности.Используйте гвозди или аналогичные предметы через каждые 6-10 дюймов. Хомут для кабеля следует размещать на обоих концах нагреваемой зоны, а через каждые 3–4 фута следует накладывать дополнительные ремни, чтобы удерживать кабель на месте во время всплытия.
ШАГ 3.6
Воспользуйтесь цифровым мультиметром, чтобы снова измерить сопротивление между проводниками силовых проводов кабеля. Запишите эти сопротивления в Таблицу 4 в разделе «После закрепления кабеля на месте».
ШАГ 3,7
Пропустите силовые провода через кабелепровод в распределительную коробку, оставив не менее 6 дюймов свободного провода.Закрепите нагревательный кабель и сросток так, чтобы они не попали в кабелепровод. Нанесите обильное количество герметика для кабелепровода на конец кабелепровода вокруг силовых выводов, чтобы предотвратить попадание воды.
ШАГ 3.8
Пропустите провод датчика через кабелепровод датчика, оставив не менее 6 дюймов свободного провода на распределительной коробке управления. Если наконечник датчика прямо встроен в плиту, закрепите его кабельной стяжкой. Убедитесь, что наконечник датчика расположен примерно на 1 дюйм ниже поверхности, на полпути между нагревательными кабелями и не менее чем на 1 дюйм в нагреваемую область.
ШАГ 3.9
Сделайте снимок прокладки кабеля. Это может быть очень полезно позже для коммунальных работ, изменений на сайте и т. Д., Чтобы избежать возможного ущерба. Сохраните фотографии вместе с этим руководством по установке и предоставьте конечному пользователю по завершении.
СПЕЦИАЛЬНОЕ ПРИМЕНЕНИЕ
ШАГ 3.10
Деформационные швы: Нагревательный кабель нельзя прокладывать через компенсатор. Это может привести к повреждению кабеля из-за движения плиты.Рекомендуется проложить кабель так, чтобы избежать этих стыков.
Однако, если это необходимо, часть нагревательного кабеля может быть опущена на уровень ниже компенсатора, как показано. Насыпьте вокруг кабеля песок толщиной не менее 1 дюйма. Петля нагревательного кабеля должна быть достаточно длинной, чтобы допускать изгиб, и не должна быть заделана в бетон (песок должен защищать от этого), поскольку это не позволит кабелю изгибаться при движении плиты.
Этап 4: Финишные покрытия
ШАГ 4.1
Перед началом работы осмотрите кабель на предмет повреждений и закрепите любой кабель, который мог отсоединиться.
Чтобы избежать захоронения любых возможных повреждений, которые могли возникнуть после прокладки кабеля, необходимо выполнить следующие испытания:
С помощью цифрового мультиметра снова измерьте сопротивление между проводниками силовых проводов кабеля (см. Шаг 2.3). Ваш электрик должен проверить сопротивление изоляции кабеля. Мегометр (например,г. Megger®), настроенный на минимум 1000 В постоянного тока, должен давать измеренное значение не менее 20 МОм (МОм). (см. шаг 2.4)
ШАГ 4.2
Залейте бетонное основание и кабель SlabHeat Cable так, чтобы над нагревательным кабелем оставалось как минимум 3/4 дюйма материала. Кабель SlabHeat должен быть не более чем на 1-1 / 2–2 дюйма ниже верхней готовой поверхности пола.
ВНИМАНИЕ: Не используйте острые инструменты, которые могут повредить кабель SlabHeat. Затупленные лопаты должны позволить вам аккуратно обработать бетон на всех участках.
Убедитесь, что нагревательный кабель полностью заделан, а также на кабелепровод (и) от 2 до 6 дюймов, охватывающий кабель питания и проводку датчика плиты.
Дайте бетону полностью затвердеть в соответствии с требованиями поставщика бетона. Не подключайте кабель SlabHeat к источнику питания, кроме как для его кратковременной проверки, поскольку это может ненадлежащим образом ускорить отверждение и потенциально может привести к повреждению бетона.
ШАГ 4.3
Сделайте окончательный осмотр установки. Сделайте еще одно показание сопротивления! Используйте цифровой мультиметр для измерения сопротивления между проводниками силовых проводов кабеля.Запишите эти показания в журнал сопротивления кабеля и датчика (стр. 9).
ШАГ 4.4
Применение керамической или каменной плитки
Нанесите раствор и плитку так, чтобы нагревательные кабели в плите были не более чем на 1-1 / 2–2 дюйма ниже верхней отделанной поверхности. Большая глубина снизит производительность системы. Установите в соответствии с рекомендациями производителя. Плитку следует укладывать в соответствии с директивами Совета Северной Америки по плитке (TCNA) и Американского национального института стандартов (ANSI).
ШАГ 4.5
Покрытия из дерева, ламината и ковров
ВНИМАНИЕ: Не используйте напольные покрытия, которые необходимо прибивать гвоздями в пол, так как это может привести к повреждению нагревательного кабеля.
Суммарные значения R всех напольных покрытий над кабелем SlabHeat не должны превышать R-3.
Этап 5: Органы управления и датчики
См. Типовые электрические схемы на страницах 16 и 17.
ШАГ 5.1
Обесточьте все цепи, питающие эту систему, перед выполнением любых электромонтажных работ.
ШАГ 5.2
При необходимости подключите провода в распределительных коробках для силовых выводов SlabHeat Cable к силовой проводке от блока управления.
ШАГ 5.3
Установите элемент управления на свое место в соответствии с инструкциями, прилагаемыми к элементу управления. Подключите проводку к источнику питания, а также к проводам датчика и проводам кабеля.
Осторожно: Провод заземления, поставляемый с кабелем, должен быть подключен к подходящей клемме заземления / заземления.
ШАГ 5.4
После тщательного осмотра всей проводки подсоедините проводку источника питания к автоматическому выключателю и включите его.
Этап 6: Работа системы
После того, как все компоненты системы установлены и напольные покрытия установлены, вкратце протестируйте работу системы, но не запускайте систему в полную силу, пока материалы раствора полностью не затвердеют (обычно от одной до четырех недель).См. Рекомендации производителя раствора для конкретного типа используемого раствора.
Многие производители ламината и деревянных полов рекомендуют температуру поверхности пола не более 840F (290C). Обязательно запрограммируйте управление соответствующим образом. Проконсультируйтесь с производителем относительно рекомендованной температуры пола для укладываемого пола.
Включите систему. Используйте элементы управления, чтобы система включила кабель SlabHeat Cable. Элемент управления обычно показывает, что на кабель подается питание.Для разогрева кабеля потребуется некоторое время. С помощью амперметра зажимного типа (обычно они есть у электриков) вытащите блок управления из стены и определите, тянут ли кабели ток, тем самым показывая, что они работают должным образом. Выключайте систему НЕ БОЛЕЕ, чем через 10 минут работы. Не включайте систему снова, пока бетон пола и раствор не затвердеют. Как только пол полностью затвердеет, систему управления можно будет использовать в течение многих лет.
Руководство по поиску и устранению неисправностей
Если возникают проблемы с системой, обратитесь к приведенному ниже руководству по поиску и устранению неисправностей.Любые работы по поиску и устранению неисправностей должны выполняться при отключенном питании от цепи, если не указано иное. Электрик должен выполнить поиск и устранение неисправностей, включая проводку, соединения и испытания, требующие подачи питания.
Проблема | Возможная причина | Решение |
Измеренное сопротивление кабеля вне диапазона, указанного на паспортной табличке. | Для снятия показаний использовался аналоговый омметр (с подвижной стрелкой). | Приобретите цифровой омметр, показывающий от 0 до 20 000 Ом, и повторно измерьте сопротивление. |
Если измерение показывает обрыв или короткое замыкание, кабель поврежден. | Запишите значения сопротивления между всеми проводами и обратитесь к производителю. | |
Если результат измерения немного ниже или выше, значит, на сопротивление повлияла комнатная температура. | Установите температуру в помещении 65–75 ° F или обратитесь к производителю. | |
Измерение сопротивления может производиться более чем одним кабелем, подключенным последовательно или параллельно.Любой из них даст ложные показания сопротивления. | Убедитесь, что сопротивление измеряется только для одного кабеля за раз. При подключении к контроллеру более одного кабеля, несколько кабелей должны быть подключены параллельно. | |
Омметр может быть настроен на неправильную шкалу. Например, шкала 200 кОм измеряет до 200000 Ом. | Омметр обычно должен быть настроен на шкалу 200 Ом, за исключением кабелей, номинальное сопротивление которых превышает 200 Ом, указанное на паспортной табличке.Если значение сопротивления выходит за пределы диапазона, указанного на паспортной табличке, обратитесь к производителю. | |
Пол не греется. | Кабель поврежден. | Измерьте сопротивление кабеля. Проверьте наличие «разрыва цепи» и «короткого замыкания», как описано ранее в этом руководстве. В случае повреждения зафиксируйте сопротивление между всеми проводами и обратитесь к производителю. |
Сработал GFCI, на что указывает световой индикатор на элементе управления или «GFCI TRIP». | Проверьте надежность соединения проводов. Сбросьте GFCI на блоке управления или автоматическом выключателе. Если он снова сработает, проверьте, нет ли короткого замыкания в кабеле, как описано ранее в этом руководстве. Если кабель поврежден, запишите сопротивление между всеми проводами и обратитесь к производителю. Если кабель не поврежден, замените элемент управления GFCI. Также см. «Конфликты GFCI» ниже. | |
Подача неверного напряжения или несоответствующие электрические компоненты. | Измерьте «линейное» напряжение, кабель 120 В имеет желтые метки с надписью «120 В», а кабели 240 В имеют красные метки с меткой «240 В». | |
Кабели подключаются последовательно или последовательно (от конца до конца). | Несколько кабелей необходимо подключить «параллельно». | |
Пол постоянно нагревается. | Неправильная проводка. Управление было «шунтировано», когда оно было подключено к источнику питания. | Убедитесь, что электрические соединения выполнены правильно. Проконсультируйтесь со схемой подключения на задней панели устройства управления, инструкциями, прилагаемыми к устройству управления, или схемами подключения в Приложении 2. |
Неисправный контроль. | Верните управление дилеру для замены. | |
Температура пола намного выше, чем кажется на ощупь. | Датчик температуры пола неправильно подключен или расположен неправильно. | Убедитесь, что к контроллеру подключен только один датчик температуры пола. |
Управление работает неправильно. | Если это программируемое управление, программирование может быть неправильным. | Внимательно прочтите инструкции по программированию системы управления и следуйте им. |
Подача неправильного напряжения или использование несоответствующих компонентов. | Проверить напряжение, проверить детали. См. «Подача неверного напряжения» выше. | |
Датчик температуры пола неправильно подключен или работает неправильно. | Убедитесь, что к контроллеру подключен только один датчик температуры пола. | |
Ослабленное соединение (и) на стороне линии и / или на стороне нагрузки блока управления. | Снимите и снова установите гайки проводов на каждом соединении. Убедитесь, что проволочные гайки затянуты. Проверьте все соединения с выключателем. | |
Неисправный контроль. | Верните управление дилеру для замены. | |
Управление вообще не работает. | Нет питания. | Проверить автоматический выключатель. Измерьте напряжение на элементе управления. Проверьте все соединения между выключателем и блоком управления. |
Датчик температуры пола неправильно подключен или работает неправильно. | Убедитесь, что к контроллеру подключен только один датчик температуры пола. | |
Неисправный контроль. | Верните управление дилеру для замены. | |
Конфликты и ложные срабатывания GFCI. | Электродвигатель или источник света с балластом разделяют цепь с кабелем (ами). | Электродвигатели и другие электрические устройства могут вызывать ложное срабатывание GFCI. Подключите выделенный контур к системе обогрева пола. |
Приложение 1: Типовые электрические схемы подключения (120 и 240 В переменного тока)
Типовая электрическая схема подключения с SunStat Control (120/240 В переменного тока) Выделенная цепь 120 или 240 В переменного тока, 20 А (максимум).
Все электромонтажные работы должны выполняться квалифицированным лицензированным электриком в соответствии с местными строительными и электрическими нормативами и Национальным электротехническим кодексом (NEC), особенно статьей 424, часть IX NEC, ANSI / NFPA70 и разделом 62 CEC, часть 1. .
Типовая электрическая схема подключения с контроллером SunStat и реле (ями)
Выделенная цепь 120 В или 240 В переменного тока, 20 А (максимум).
Схема подключения сигнального провода между SunStat Control и реле
Все электромонтажные работы должны выполняться квалифицированным лицензированным электриком в соответствии с местными строительными и электрическими нормативами и Национальным электротехническим кодексом (NEC), особенно статьей 424, часть IX NEC, ANSI / NFPA70 и разделом 62 CEC, часть 1. .Схема подключения сигнального провода между SunStat Control и реле
Приложение 2: Подключение нескольких кабелей
ПРИМЕЧАНИЕ: Элемент управления не показан на этих схемах для упрощения. Эти схемы приведены только в качестве примеров правильного подключения нескольких кабелей. Необходимо соблюдать осторожность, чтобы не переполнить ящик. Обязательно используйте гайки для проводов, размер которых соответствует выполняемым соединениям. Следуйте всем правилам подключения. В случае сомнений проконсультируйтесь с электриком.
Иллюстрация, показывающая, как подключить несколько кабелей от нескольких распределительных коробок к одной электрической коробке управления.
Иллюстрация, показывающая, как подключить три кабеля к распределительной коробке управления.
Приложение 3: Подключение монитора LoudMouth Monitor
Иллюстрации, показывающие (слева), как подключить монитор LoudMouth к двум кабелям, и (справа), как подключить LoudMouth к трем кабелям. LoudMouth может контролировать не более трех кабелей одновременно.ЗАПРЕЩАЕТСЯ оставлять кабели питания подключенными таким образом «последовательно» при окончательном подключении проводов; кабели недостаточно нагреваются.
Щелкните здесь для просмотра видео библиотеки SunTouch
SunTouch и продукт A — SunTouch и продукт B
Ссылки на коврики для обогрева пола SunTouch
Технические характеристики и установка матов SunTouch — Технические характеристики матов SunTouch — Технические характеристики и установка напольных покрытий
Кабельные перемычки SunTouch SlabHeat
SunTouch SlabHeat Технические характеристики и установка — FAQ SlabHeat Cable
Нагревательные звенья системы обогрева пола SunTouch
Инструкции по установке SunTouch WarmWire — Ремешок SunTouch WarmWire — Инструкции по установке WarmWire — Инструкция и информация по заказу WarmWire
Связи управления нагревом
Программируемая спецификация SunStat — Руководство пользователя Программируемая 500670-SB — Руководство пользователя Непрограммируемая 500675 — Непрограммируемая спецификация SunStat — Управление реле SunStat — Инструкция по эксплуатации LoudMouth
Разное.Ссылки SunTouch
SunTouch 25-летняя ограниченная гарантия — ЭМП Электромагнитные поля — Часто задаваемые вопросы — Ремонт нагревательного провода — Гарантия низкой цены SunTouch
Публикация «Спецификация кабеля SlabHeat и инструкции по установке» впервые появились в блоге магазина напольных покрытий.
Диагностика и ремонт Линии электрического лучистого отопления для пола
Ли Дерстон
BS, CBST, Судебный специалист по строительству
BCRA
2106 Pacific Avenue, Suite 300Tacoma, WA 98402 Тел .: 253-627-4367 www.bcradesign.com
Аннотация
Поскольку лучистое отопление полов становится все более популярным как в частных, так и в многоквартирных домах, количество отказов, возникающих в этих системах, пропорционально увеличивается. В настоящее время инфракрасный порт используется для определения точек отказа и помощи в процессе обеспечения / контроля качества на многих строительных площадках. Используя инфракрасный порт, можно сэкономить время и деньги и сыграть неотъемлемую роль в суброгации претензии, поскольку отказ этого типа смягчается.В этой презентации будут представлены советы и приемы, используемые при диагностике и ремонте систем электрического обогрева пола, на основе многочисленных тематических исследований, в которых инфракрасное излучение оказалось ценным ресурсом.
Введение
Лучистое отопление для пола стало очень популярным средством обогрева строений, включая жилые, многоквартирные и коммерческие строительные рынки. Этот недавний всплеск может быть вызван утверждениями о том, что лучистое отопление более энергоэффективно.Хотя в некоторых случаях это утверждение может быть правдой, во многих случаях реальной экономии затрат не будет, а в некоторых случаях потребление энергии может резко возрасти. При новом строительстве необходимо учитывать надлежащие проектные факторы с системой излучающего пола, включая изоляцию пола, тип конструкции, эффективность котла (гидронный) и т. Д. Надлежащая оценка потенциальной модернизации системы пола также должна выполняться третьей стороной, которая не продает продукт. Стоит провести тщательную оценку в каждом конкретном случае, чтобы увидеть, является ли лучистое напольное отопление энергоэффективным и, следовательно, рентабельным.
.
Помимо факторов совместимости, существует редкая вероятность проблем с установкой, которые делают систему в полу бесполезной после завершения строительства. Часто подобные ситуации приводят к полному демонтажу пола, чтобы обнажить рассматриваемую систему. К счастью, количество отказов систем обогрева пола очень низкое, но когда отказ все же происходит, он может нарушить график строительства, вызвать иск и связанный с ним судебный процесс, и в лучшем случае это будет неприятно и довольно дорого.
За последнее десятилетие наука об инфракрасном строительстве резко выросла. Все чаще можно увидеть, как ручная инфракрасная камера ходит по объекту, проверяет электрические панели или ищет проникновение воды. Это был лишь вопрос времени, когда термографист направил камеру на систему лучистого теплого пола и увидел великолепие системы пола, работающей должным образом. С таким ярким изображением очень легко увидеть замысловатый дизайн системы, а также легко увидеть, где система может работать неправильно.Хотя инфракрасные проверки могут быть полезны как для водяных, так и для электрических систем обогрева полов, в этой статье особое внимание будет уделено системам лучистого обогрева полов. Поскольку электрические осмотры могут быть опасными, BCRA рекомендует присутствие лицензированного электрика при выполнении любых работ такого типа.
Обсуждение
Анатомия теплотрасс
Анатомия электрической системы теплого пола очень проста. Начиная с источника питания, электричество проходит через панель управления или термостат к кабелю лучистого обогрева, в котором находятся проводящая линия (и), линия заземления, изоляция и тепловой экран.Существуют как однопроводные линии, так и двухпроводные линии. Эти нагревательные линии бывают основных линий, которые вы размещаете сами, или в заранее расставленных ковриках. Поскольку в проводящем проводе создается сопротивление, он выделяет тепло за счет теплопроводности в окружающие материалы. По мере того, как эти напольные покрытия (бетон, плитка, дерево и т. Д.) Нагреваются, жилое пространство наверху нагревается за счет излучения. Системой можно управлять с помощью встроенного термодатчика, термодатчика в полу или и того, и другого.
Типичные компоненты теплопровода |
Как и все элементы конструкции, возможны поломки.Неисправности могут быть вызваны заводскими дефектами или неправильным обращением с продуктом в полевых условиях. Как мы выяснили, характер проводящего провода, который достаточно мал для создания резистивной нагрузки, также делает его уязвимым для разрывов и порезов, которые могут прервать цепь. Как только этот контур разрывается, частичный нагрев или нагрев не происходит. Чтобы еще больше усложнить проблему, термостаты теперь оснащены защитным комплектом, прерывателем цепи при замыкании на землю (GFCI), который разрывает цепь, если колебания превышают три миллиампера.Из-за хрупкости этих систем производители теперь рекомендуют проверять целостность линий в нескольких точках во время установки.
При возникновении сбоев
Неизбежно, по той или иной причине, пол и внутренняя отделка завершены, и пол не пройдет испытание на целостность или сработает GFCI, что сделает коврик бесполезным. Чтобы избежать выемки грунта на всю поверхность пола и серьезных перебоев в строительстве, при расследовании отказов использовалась инфракрасная термография.Инфракрасный порт позволяет составить быстрый, точный и простой для понимания графический отчет, в котором задокументирована точная область неисправностей вдоль нагревательного провода. Уловка состоит в том, чтобы нагреть область отказа или неисправности и отобразить ее.
Первым шагом к любому исследованию является выполнение адекватного анализа исторических данных. Следует принимать во внимание проектную документацию, информацию о продукции производителя, показания жильцов и т. Д. Кроме того, попросите электрика выполнить краткую проверку, чтобы убедиться, что электрические работы, ведущие к термостату и коврику, установлены правильно.Следующим шагом будет наблюдение за работой мата в аварийном режиме. В некоторых случаях коврик нагревается до определенной точки, а затем срабатывает GFCI и оставляет на полу тепловой след, детализирующий точку разлома.
В большинстве случаев это не так просто. Следующим шагом будет выключение источника питания на панели прерывателя, затем снятие термостата со стены и проводящих проводов с термостата. Непрерывность следует оценивать между токопроводящими проводами и между каждым токопроводящим проводом и заземляющим проводом по отдельности.Некоторые производители строят провода с алюминиевой обмоткой экрана, и в некоторых случаях между фазой и экраном может возникнуть непрерывность. Результаты этой проверки целостности дадут хорошее представление о том, какой тип неисправности произошел. Например, если нет непрерывности между проводниками, но есть непрерывность между проводом и заземляющим проводом, то, скорее всего, у вас оборванный фазный провод. Если между фазными проводами есть обрыв, то, возможно, проблема с термостатом, а не с нагревательным проводом.
Предполагая, что вы установили непрерывность между любыми двумя ножками, выделите эти две ножки и подключите провода источника питания непосредственно к ним. На полу, свободном от препятствий и мусора, включите питание на панели выключателя и наблюдайте с помощью цифрового и инфракрасного видео. В большинстве случаев область повреждения будет выглядеть как небольшая область сильного нагрева, так как дуга возникает на поврежденном участке провода. Другие результаты могут включать в себя функциональную нагревательную проволоку, достигающую точки отказа, при этом оставшаяся часть проволоки работает при половинной прочности.Опять же, часть поврежденного провода легко определить.
Термическая аномалия, представляющая дуговое замыкание Тепловая аномалия, представляющая дуговое замыкание. Обратите внимание на оставшуюся часть линии, работающую на половинной мощностиВ некоторых случаях целостность цепи может не обнаруживаться ни в одной комбинации проводов и / или экрана. Это будет типичным представителем большего количества повреждений, когда провода лучистого обогрева полностью оборваны. В этом случае вы должны создать достаточно большую дугу, чтобы перекрыть зазор.Квалифицированный электрик сможет предоставить трансформатор, способный создавать потенциал дуги такого типа. Для многих примеров, перечисленных в этой статье, трансформатор на 20 000 вольт был извлечен из масляной печи и использован для создания потенциала дуги. С добавлением этого в качестве источника питания проволока может образовывать дугу и даже повторно свариваться. Неисправность снова проявится вместе с возможностью небольшого «взрыва» дуги, если в линию лучистого отопления проникнет крепеж в полу.
После того, как вы определили неисправность, тщательно отметьте место на полу и выключите питание на панели выключателя. Дайте полу остыть и повторите упражнение, подтвердив место неисправности. После подтверждения выкопайте материал чернового пола для визуального осмотра провода. Вы будете искать уровень повреждений, который соответствует предыдущим результатам тестирования. Будьте осторожны, чтобы не повредить провод при раскопках. После того, как провод откроется, в изоляции может остаться только небольшой порез, а может быть и большой участок обгоревшего участка.Дальнейшее изучение внутренних компонентов проводов покажет точный режим отказа. Как только эта область будет четко определена, попросите электрика очистить задействованные провода и при необходимости выполнить стыки на линии. После этого все провода можно закрыть термоусадочной пленкой. Многие производители предоставляют все материалы, необходимые в «наборе для сращивания», который обычно продается для соединения матов или удлинительных проводов.
Раскопки и исследование провода |
Диагностика проблемного провода |
Отремонтированный провод готов к упаковке в термоусадочную пленку |
Излучающие линии следует повторно проверить после завершения ремонта.Это повторное испытание должно происходить без установленного термостата, а затем с установленным термостатом. После завершения проверки работоспособности системы следует отремонтировать черновой пол.
Примеры из практики
Дело № 1
Квартира №104
BCRA провело расследование во время одного посещения объекта. Были приложены все усилия, чтобы не нарушить ход строительства. BCRA получила доступ к помещениям от управляющего объекта. Весь готовый напольный материал над черным полом Ardex, в который заключено лучистое отопление, был удален или отодвинут до нашего приезда.Визуальный осмотр показал, что внутрипольная система лучистого отопления, по-видимому, установлена правильно, хотя змеевики были размещены в нескольких местах достаточно неглубоко, чтобы их можно было увидеть на поверхности бетона. Кроме того, на бетонной поверхности вдоль восточной стены гостиной было четко видно расположение подводящего провода к разрушающемуся мату.
Проектная схема теплого пола |
Инфракрасное обследование не выявило аберраций в тепловом излучении вдоль мата, за исключением тех случаев, когда это могло быть связано с разницей в глубине катушки.При жестком подключении (отключение автоматического отключения) к выключателю коврик оставался включенным, и инфракрасный порт показал, что он работает правильно.
Выявленная тепловая аномалия |
Несмотря на то, что мат в целом работает нормально, инфракрасный анализ показал, что заводское соединение провода с матом излучает большее количество тепла, чем последующие катушки. По требованию начальника участка место сращивания проводов было вырезано из бетона для визуального осмотра и более четкого инфракрасного анализа.Непокрытый участок провода деформировался в том же месте, что и максимальное тепловое излучение, тем самым демонстрируя, что место стыка было местом тепловой аномалии.
Земляной трос | С инфракрасной накладкой |
Инфракрасный анализ показал, что мат № 4 был установлен правильно и катушки функционировали должным образом, но заводское сращивание провода к силовому проводу, которое происходит непосредственно перед излучающими катушками, излучает необычное количество тепла.В электрических приложениях необычно высокая яркость является признаком неисправности или короткого замыкания и требует проверки на предмет надлежащей изоляции и подключения. По мнению BCRA, очевидная неисправность мата №4 заключается в стыке проводов, а не в теплообменниках излучающего тепла.
Дело № 2
BCRA провело расследование во время трех посещений объекта. Были предприняты все усилия, чтобы не нарушить нормальную работу резиденции. BCRA получил доступ к объектам от собственника резиденции и подрядчика.Сначала тепловая линия была подключена напрямую к источнику питания, чтобы обойти термостат GFCI. После этого нагрева не было видно. Затем была проверена непрерывность на каждой из линий и от каждой ветви нагрева до земли. Это не выявило преемственности. К источнику питания был добавлен трансформатор, чтобы произвести дугу и выявить точку отказа. Небольшая область у главной двери действительно показывала тепловую аномалию и оказалась вероятной областью, в которой могла возникнуть точка отказа. Если происходит выемка линии лучистого тепла, BCRA рекомендует провести осмотр на предмет неисправности, начиная с этой точки рядом с входной дверью.Если точка отказа обнаружена, можно произвести ремонтный стык. После того, как этот ремонт будет произведен, систему следует повторно протестировать на предмет любых других сбоев. В этот краткий отчет включены фотографии и термограммы, которые помогут локализовать эту тепловую аномалию.
Температурная аномалия в зоне входной двери ванной комнаты | |
Фотография в видимом свете | Инфракрасная термограмма |
Земляные работы и ремонт этой линии были завершены без BCRA, и теперь пол функционирует нормально.
Дело № 3
BCRA провело расследование во время трех посещений объекта. Были приложены все усилия, чтобы не нарушить ход строительства. BCRA получила доступ к помещениям от управляющего объекта. Визуальный осмотр показал, что в 16 единицах по крайней мере один нагревательный мат не работал. Также было быстро замечено, что коврики работали до укладки ковра. Быстрый отрыв ковра и подкладки показал, что полосы ковра были прикреплены к полу с помощью гвоздей.Было очевидно, что гвозди, которыми закреплялись полосы ковра, были вбиты в черный пол в том же месте, что и система напольного отопления. Чтобы продемонстрировать, какие крепежи повредили нагревательный провод, BCRA указала электрику, как манипулировать цепью, чтобы обеспечить адекватную тепловую сигнатуру в точке (ах) неисправности. Во многих случаях нагревательные провода прокалывались несколько раз, и после каждого ремонта проявлялась следующая неисправность. Ниже приведены некоторые из отмеченных сбоев.
Блок 305: Дуговый сбой в спальне |
Блок 101: Дуговый сбой в спальне |
Блок 105: Дуговый сбой в спальне |
Блок 106: Дуговый сбой в спальне |
Сводка
Несмотря на то, что каждый встреченный случай представляет свой уникальный набор проблем и отклонений, этот документ можно использовать в качестве основы для начала оценки отказов, связанных с электрическими системами лучистого обогрева пола.Благодаря инфракрасной оценке этот процесс может быть быстрым, точным и экономичным. Кроме того, использование инфракрасного излучения позволяет получить простой для понимания графический отчет, поэтому все участвующие стороны могут увидеть проблему.
Благодарности
Автор хотел бы поблагодарить Эда Отто, представителя компании Danfoss Radiant Heating Products, за опыт, предоставленный по этому вопросу.
Об авторе
Г-н Дерстон получил образование микробиолога и инженера-строителя и в настоящее время является директором Группы строительных наук BCRA, многопрофильной проектной фирмы, расположенной в Такоме, штат Вашингтон.Исследования включают экспертизу в области конструкции здания, оболочки здания, внутренней отделки, архитектурного дизайна и безопасности жизни. Его исследовательские навыки включают инвазивные и неинвазивные методы проверки, подтвержденные сертификатом в области термографии в области строительства. Г-н Дерстон принимал участие в многочисленных судебных тяжбах, связанных с дефектами конструкции. Его особый подход использует его навыки в области науки и техники для определения, анализа и устранения проблем или сбоев в искусственной среде.
[wdgpo_plusone show_count = ”да”]Спонсоры посещения:
Электрофизика
FlukeInframationGlobal Maintenance TechnologiesInfraspection Institute Руководство по установке системы обогрева полаWarming Systems и основная информация по установке систем лучистого теплого пола от Warming Systems. Подрядчики и рядовые домашние мастера могут установить наши системы электрического теплого пола с кабелем и матом.
Советы по успешной установке
- Никогда не обрезайте красные нагревательные провода и не накладывайте их друг на друга
- Убедитесь, что сопротивление между черным и белым проводами холодного вывода правильное на протяжении всей установки.
- Залить систему в раствор на основе модифицированного полимером цемента
- При установке на бетонную плиту мы рекомендуем использовать какой-либо тип изоляции, чтобы избежать потери тепла через бетон, например синтетическую пробку Cerazorb
- Держите нагревательный провод на расстоянии 6-8 дюймов от воскового кольца унитаза
- НАГРЕВАТЕЛЬНЫЕ КАБЕЛИ : при использовании кабелей с системой Schluter-DITRA-HEAT или Prodeso Heat Membrane System, проводов, чередуя 3 штыря / 2 штифта для среднего расстояния 3 дюйма.
НЕОБХОДИМЫЕ МАТЕРИАЛЫ ДЛЯ УСТАНОВКИ:
- Термостат с датчиком температуры пола (доступен для покупки с системой подогрева пола)
- Электроблок 4×4, внесенный в список UL, с крышкой «грязевое кольцо» для одинарной секции
- Гибкий или жесткий кабелепровод из списка UL
- Электропроводка 12 или 14 дюймов, см. Электротехнический код
- Проволочные гайки (входят в комплект поставки термостата)
Монитор установки, входящий в комплект поставки, выдает предупреждение, если нагревательный элемент порезан или поврежден во время установки.
Система теплого пола должна быть защищена GFCI. Вы можете сделать это одним из трех способов.
1. Используйте автоматический выключатель с защитой GFCI
2. Отключите систему от защищенной стороны розетки GFCI
3. Используйте термостат со встроенным GFCI
При установке на бетонную плиту мы рекомендуем использовать какой-либо тип изоляции, чтобы избежать потери тепла через бетон, например синтетическую пробковую подкладку Cerazorb https://www.warmingsystems.com/cerazorb-thermal-break-underlayment-2-x-4 -использовать-при-установке-на-бетонной-плите /.
Установка — Обзор
- Проверить систему теплого пола.
- Проверьте термостат и электрические требования, убедившись, что 10-футовый холодный конец (-а) на конце системы достигает термостата.
- Размотайте кабель , расположив его на расстоянии 3 дюйма друг от друга на полу и закрепив прилагаемыми направляющими для кабеля. Разверните мат и используйте методы поворота мата, описанные в руководстве по установке, чтобы правильно закрыть область, которую вы хотите обогреть.Используйте двусторонний скотч на коврике, чтобы закрепить его на месте.
- Подсоедините провода питания и датчик термостата к термостату. Провод датчика должен располагаться между двумя нагревательными элементами на расстоянии не менее 6 дюймов от края нагреваемой области.
- Система отопления должна быть залита цементным раствором, модифицированным полимером, толщиной от 1/4 до 1/2 дюйма. Система обогрева должна быть установлена на бетонной или бетонной опорной плите.
- Установить напольное покрытие
- Прервите все электрические соединения.
Автоматические выключатели и провод питания (всегда соблюдайте местные нормы в отношении калибра провода)
Коврики или выключатель провода питания
В переменного тока Общая кв. Ft. (AWG) Кол-во Тип Номинал
120 до 120 кв. Футов 14 1 однополюсный 15 или 20 A
120 до 150 кв. Футов 12 1 однополюсный 20 A
240 до 240 кв.футов 14 1 двойной полюс 15 или 20 A
240 до 300 кв. футов 12 1 двойной полюс 20 A
Часто задаваемые вопросы по установке:
Какой раствор использовать?
Используйте раствор на основе модифицированного полимером цемента.
Что следует учитывать при установке на бетонную плиту?
Да. Мы рекомендуем использовать изоляцию, чтобы избежать потери тепла через бетон.Мы продаем синтетическую пробковую подкладку под названием Cerazorb, которая делает это https://www.warmingsystems.com/cerazorb-thermal-break-underlayment-2-x-4/.
На каком расстоянии от стены следует ставить систему отопления?
Мы рекомендуем установку на расстоянии 4 дюймов от стены, поскольку тепло излучается не более чем на 2 дюйма в любом направлении от кабеля.
Защищен ли термостат GFCI?
Термостат Aube (TH-115-AF-120S или Th215-AF-240S), который входит в стандартную комплектацию и является опцией термостата по умолчанию, не имеет защиты GFCI.Если вы используете этот термостат, вам понадобится автоматический выключатель с защитой GFCI. Вы можете приобрести aube от Honeywell с защитным термостатом GFCI, с сенсорным экраном с защитой от OJ Electronics GFCI или с сенсорным WiFi-термостатом с сенсорным экраном от OJ Electronics GFCI за дополнительную плату.
Электрический шкаф какого размера мне следует использовать?
Квадратная электрическая коробка 4 дюйма с одиночным грязевым кольцом, расположенная в пределах досягаемости 10-футового холодного ввода.
Могу ли я установить ваш продукт на открытом воздухе?
№Системы электрического обогрева пола, производимые Warming Systems Inc., разработаны для внутренних полов, обеспечивая мощность 12 Вт / квадратный фут. Их нельзя использовать для наружного таяния снега или отопления потолков.
Отопление | История Огайо Связь
В этом разделе представлены компоненты системы обогрева Lustrons, объясняется, как система была спроектирована для работы, а также описываются некоторые общие проблемы и рекомендуемые решения.
Что это такое?
Система Lustron отличается от большинства современных систем отопления, таких как системы принудительной подачи воздуха, которые распределяют теплый воздух в каждую комнату в определенной точке через стенные или потолочные вентиляционные отверстия, или системы лучистого отопления, в которых используются электрические змеевики или трубы с подогревом для отвода тепла вверх от помещения. пол. Это довольно уникальный гибрид обоих, использующий теплый воздух в качестве источника тепла в замкнутой излучающей системе.
Эта необычная система состоит из трех частей: печи, подвешенной на опорных кронштейнах к потолку подсобного помещения; пленум, расположенный в пространстве между потолком и фермами крыши; и вентилятор, который перемещает воздух из печи через камеру статического давления.Первоначально печь Lustron называлась «Williams Oil-O-Matic, модель 6050» или «Williams Gas-O-Matic».
Как это работает?
Корпорация Lustron рекламировала свою конструкцию как последнее достижение в области экологически чистых и эффективных технологий отопления. «Новейший вид отопления для новейшего типа дома. В одной из оригинальных рекламных объявлений Lustron объясняется, что« лучистое отопление — последняя разработка в современной теплотехнике — работает по тому же принципу, по которому солнечные лучи нагревают землю ».Горячий воздух из верхнего топочного агрегата циркулирует через камеру, встроенную в потолок. По мере увеличения температуры потолка тепловые лучи излучаются вниз. Горячий воздух не циркулирует по дому. Отсутствуют неприятные воздушные потоки, несущие грязь и сажу ».
В исходной системе используется нагретый воздух, который непрерывно циркулирует с помощью центробежного вентилятора через узкую камеру статического давления , представляет собой узкую систему воздуховодов, расположенную между потолком и фермами крыши.Воздух нагревается в печи, работающей на жидком топливе или газе, производящей 75 000 БТЕ в час. Вентилятор перемещает нагретый воздух из печи в два приточных канала в камере статического давления, где нагревает керамогранитные металлические потолочные панели, заставляя тепло от нагнетаемого воздуха «излучаться» вниз с потолка в дом. Помимо заполнения камеры статического давления и дополнительных камер, часть нагретого воздуха может перетекать во внешние стены. Это предотвращает образование конденсата на металлических стенах или внутри стеновой конструкции.
Сама система статического давления состоит из ряда компонентов. (Поперечное сечение установки в воздуховоде взято из листа EM-02-G-10.12 Руководства по монтажу) Примерно 6 дюймов неплотной изоляции — стекловолокна, минеральной ваты или «утеплителя» — выдувается или помещается вручную над водоотводящей камерой. Верхняя часть водоотводящей камеры образована из цементно-асбестовых плит размером 2 на 4 на 3/16 дюйма (также называемых «транзитными»). Лист алюминиевой фольги (или «противопожарной фольги», как ее называют в Руководстве по монтажу) или гофрированного асбеста используется для герметизации любых зазоров между переходными панелями, чтобы уменьшить потери тепла.Транзитные плиты, состоящие примерно из 85 процентов портландцемента и 15 процентов асбестового волокна по весу, прикрепляются к нижней стороне стропильных ферм с помощью металлических зажимов, образуя три стороны водоотводящей камеры, высота которой составляет примерно 6 дюймов. Наконец, к кровельным фермам подвешивают керамогранитную металлическую потолочную плитку, чтобы создать дно водоотводящей камеры.
Внутри камеры каждый главный приточный канал ведет к четырем вспомогательным камерам, образованным перегородками из листового металла.Две дополнительные камеры расположены над спальнями, а две другие — над кухней и гостиной. Внутри каждой подкамеры находится лабиринт перегородок из листового металла. Эти пластины направляют нагретый воздух для циркуляции по вспомогательным камерам, создавая равномерное распределение тепла. Они также заставляют охлажденный воздух возвращаться в печь для повторного нагрева. Домовладельцы могут контролировать поток воздуха в дополнительные камеры с помощью заслонок, доступ к которым осуществляется двумя наборами из двух небольших вертикальных стержней, спускающихся с потолка в подсобном помещении.
Печь нагревает воздух примерно до 140 градусов по Фаренгейту, в результате чего средняя потолочная температура во время работы печи составляет около 105 градусов по Фаренгейту. Когда нагретый воздух из печи проходит через камеру, его температура обычно снижается примерно на 45 градусов по Фаренгейту. Затем этот воздух возвращается в печь, где он смешивается со свежим воздухом и снова нагревается до 140 градусов. Общие настройки температуры для всей системы контролируются обычным термостатом, расположенным в гостиной.
Даже если ваша печь была заменена в качестве источника тепла для теплого воздуха, циркулирующего в камере статического давления, принципы работы системы отопления должны остаться прежними, при условии, что не было внесено никаких других изменений.
Для получения более подробной информации о материалах и установке пленума, оригинальных нефтегазовых печах Williams и электрических схемах для системы отопления вы можете просмотреть соответствующие разделы Руководства по монтажу и Спецификации:
Руководство по монтажу
Пленум
Печь
Электрическая печь
Панели потолочные
Вестчестер Делюкс Архитектурный план Модель 02 Дом
- Система лучистого отопления — AP2-J-100
- Основные технические характеристики — редакции 1949 года
- Камера статического давления — см. Раздел I, страницы 9-11 для получения информации о требованиях к установке и изоляции
- Печь — см. Раздел K, страницы 13-15 для получения информации о печи, вентиляторах и характеристиках системы управления
Система отопления: общие проблемы и ремонт
Дома Lustron были исключительно хорошо изолированы для своего времени, но они, как правило, не соответствовали сегодняшним стандартам комфорта.Владельцы часто жалуются, что их дома кажутся холодными и сквозняками, что еще больше усугубляется разницей в температуре между подогреваемым потолком и холодной бетонной плитой пола. Некоторые проблемы с нагревом, с которыми сталкиваются владельцы Lustron, могут быть довольно незначительными и могут потребовать только простых решений, таких как регулировка перегородок для лучшего распределения тепла или регулировка уставки на вашей печи. Другие могут потребовать более сложного и дорогостоящего решения, такого как установка новой или дополнительной изоляции на чердаке и стенах, ремонт изменений, сделанных предыдущим владельцем, или установка новой системы отопления.В следующем разделе представлен обзор многих распространенных проблем с системой отопления, а также предложены некоторые решения. Как всегда, сначала начните с простых решений и используйте систематический подход.
Общие проблемы и простые решения
Холодно? Как насчет вашего термостата?
Оригинальный термостат располагался на стене гостиной. У вас есть оригинальный циферблатный термостат или его заменили? Старые термостаты могут не регистрироваться должным образом и могут помешать вашей печи работать при соответствующей температуре или в подходящее время.Руководство для потребителей по энергоэффективности и системам управления Министерства энергетики США содержит полезную информацию о программировании вашего термостата.
Вы можете связаться со специалистом в области отопления или механики, чтобы определить, правильно ли ваш термостат считывает температуру воздуха и активирует печь, или вы можете проверить это самостоятельно. Простой способ определить, является ли ваш существующий термостат точным, — это разместить рядом с ним цифровой датчик температуры. Сравните два показания температуры.Если разница между ними превышает несколько градусов, вы можете подумать о замене существующего термостата.
Установка нового термостата
Если вы решили заменить существующий термостат, подумайте о «пониженной» или программируемой модели, которая снижает температуру в непиковые часы (ночью, когда вы на работе или в отпуске).
- Для обзора того, как заменить имеющийся термостат на понижающий термостат, щелкните здесь.
- На веб-сайте Energy Star есть обширный раздел о программируемых термостатах.Нажмите здесь, чтобы взглянуть.
Однако, если вы используете потолочную систему лучистого отопления, вы можете не захотеть устанавливать температуру больше, чем на десять градусов по Фаренгейту, поскольку энергия, необходимая для повторного нагрева панелей от низкой температуры, может помешать вам реализовать какую-либо экономию средств. Поэкспериментируйте со временем восстановления (время, необходимое печи для восстановления температуры в помещении), чтобы определить оптимальное снижение температуры.
Имейте в виду, что установка любого нового термостата, скорее всего, потребует сверления новых отверстий во внутренних стеновых панелях.Чтобы свести к минимуму повреждение панелей, просверлите как можно меньше отверстий, сделайте их как можно меньше и предварительно просверлите все новые отверстия сверлом, предназначенным для фарфоровых поверхностей.
Все еще холодно? Правильно ли настроены регуляторы вашей печи?
Это будет зависеть от типа печи в вашем доме. Если у вас оригинальная модель Williams, информацию о правильных настройках можно найти в Руководстве по монтажу на листах EM-02-N-60.11, и EM-02-N-61.1 для масляной печи, листы EM-02-N-65.1 и EM-02-N-66.1 для газовой печи и EM-02-N-68.1 для управления вентиляторами и ограничителями. Если у вас более новая печь, вам нужно будет обратиться к руководству по эксплуатации или спецификации для этой модели, чтобы определить оптимальные настройки. На листе руководства по монтажу EM-02-N-68.1 показаны настройки шкалы.
Имейте в виду, что уставки для новых печей часто слишком низкие для системы Lustron. Первоначальная система лучистого отопления требовала, чтобы воздух из печи был нагрет до 140 градусов по Фаренгейту.Современные печи обычно устанавливаются ниже этого значения, чтобы максимизировать эффективность и снизить нагрузку на агрегат. Эти более низкие уставки не обеспечивают достаточно нагретого воздуха для нагрева всех потолочных панелей до того, как воздух остынет и вернется в печь. Подрядчики могут посоветовать не устанавливать более высокую уставку, чтобы продлить срок службы печи, но более низкая уставка, вероятно, не приведет к адекватному нагреву потолочных панелей.
Если у вас нет опыта работы с механическим оборудованием, рекомендуется обратиться к специалисту по нагреву или механике, чтобы оценить состояние вашей печи, определить, правильно ли работают элементы управления, и отрегулировать настройки.
Все еще холодно? Чек на сквозняки
Убедитесь, что ваши окна должным образом герметизированы, а двери имеют надлежащие уплотнения. Для получения более подробной информации посетите раздел окон. Чтобы узнать, есть ли в люстроне отверстия, через которые поступает воздух, в ветреный день используйте свечу или, возможно, немного ладана и перемещайте ее вдоль плинтуса и вокруг окон (убедитесь, что печь выключена, чтобы предотвратить сквозняки. ). Если у вас есть зазоры, дыму пламени будет мешать движущийся воздух.Обратите внимание, куда проникает воздух. Если воздух попадает в окна, используйте прозрачный силиконовый герметик по периметру окна. Заделайте зазоры между стеной и полом. Вам также может потребоваться удалить плинтус, который проходит вдоль стены и встречается с полом. Иногда между нижней частью стеновой панели и полом может попасть воздух. Однако, если у вас хороший резиновый или виниловый плинтус, это должно значительно сократить проникновение воздуха. Убедитесь, что нижняя часть и дверные коробки ваших наружных дверей имеют соответствующую герметизирующую изоляцию.
Промежуточные решения
Очистите фильтр
В зависимости от типа вашей печи, вам может потребоваться регулярно чистить механизмы или заменять фильтры, чтобы поддерживать ее в оптимальном рабочем состоянии. Вам нужно будет проконсультироваться с информацией производителя для вашей конкретной модели, чтобы определить подходящие интервалы очистки и замены фильтра, где фильтры расположены на вашей печи, надлежащие процедуры очистки и, при необходимости, где вы можете приобрести сменные фильтры. , если необходимо.Хотя это довольно простая задача, вы можете нанять специалиста по механике или отоплению, который поможет вам и объяснит правильные шаги по очистке вашей конкретной печи, если вы беспокоитесь о выполнении этих процедур самостоятельно.
Сбитые с толку?
Перегородки представляют собой тонкие металлические листы в камере статического давления, которые регулируют поток нагретого воздуха внутри четырех подкамер системы статического давления. Эти вспомогательные камеры расположены над задней и передней спальнями, кухней и гостиной.Установка перегородок контролируется довольно простой системой металлических стержней, которые устанавливают перегородки в каждой камере. Если эта система все еще на месте, вы увидите два набора из двух металлических стержней, свисающих с потолка в подсобном помещении. Каждый стержень управляет отдельной перегородкой. Если вы встанете лицом к задней стене подсобного помещения, два стержня слева от вас будут контролировать заднюю спальню (крайняя слева) и переднюю спальню (слева). Два стержня справа от вас будут управлять гостиной (справа) и кухней (справа).
Руководство по монтажу EM-02-N-21.1 содержит указания по правильной настройке для каждой штанги. Когда они находятся в полном «нижнем» положении (полностью опущены), перегородки закрываются. Два стержня для спальни должны быть помещены в полностью «открытое» положение (полностью вверх), тогда как стержень для гостиной должен быть в «полузакрытом» положении, а кухня в положении «закрыто на две трети».
Альтернативного метода регулировки перегородок до рекомендованного значения не существует.Если эти стержни не видны, возможно, они были сняты или неисправны. Если они были сняты, потребуется демонтировать систему отопления, чтобы установить их заново, обратитесь к специалисту по отоплению.
Расширенные решения
Владельцы, которые не знают, что Lustron был разработан с системой лучистого тепла, были известны тем, что вырезали отверстия в потолочных панелях в ошибочной попытке позволить теплому воздуху поступать в комнату, подобно стандартной системе принудительной вентиляции с вентиляционными отверстиями.Такое чередование приводит не только к серьезным повреждениям оригинальных потолочных панелей из керамогранита, но и к системе отопления, которая была спроектирована как закрытая излучающая система.
Для решения этой проблемы необходимо отремонтировать отверстие в потолочной панели, либо сняв исходную панель, либо заменив ее новой; или путем удаления, ремонта и повторной установки поврежденной панели. Эти процедуры подробно обсуждаются в разделе Панели. Обратите внимание, что предыдущие изменения панелей также могли повредить камеру выше.Прежде чем приступить к ремонту или замене потолочных панелей, проконсультируйтесь со специалистом по отопительным или механическим системам, чтобы определить, какое влияние это может оказать на воздушный поток в камере статического давления.
Установить новую печь
Если вы определили, что вам нужна новая печь в вашем доме, возможно, сейчас самое время пересмотреть вашу систему отопления в целом. Было бы полезно ознакомиться с Бюллетенем № 24 Службы национальных парков : Отопление, вентиляция и охлаждение Историческое Здания , Проблемы и рекомендуемые подходы .
Используйте это как возможность полностью изучить ваши варианты, в том числе:
1. Использовать исходную камеру статического давления лучистого отопления и установить новую потолочную печь на потолке подсобного помещения в том же месте, что и исходная. Проконсультируйтесь с консультантом по отоплению или механике, чтобы определить, какой тип устройства лучше всего подходит для ваших нужд. Помните, что оригинальная печь Lustron была разработана для производства 75 000 британских тепловых единиц в час и нагрева воздуха до температуры 140 градусов по Фаренгейту.Ваша новая печь должна соответствовать этим требованиям, чтобы обеспечить надлежащий нагрев потолочных панелей.
2. Установка системы электрического лучистого отопления над существующей бетонной плитой. Более подробная информация об этой опции приведена ниже в разделе Дополнительное отопление .
3. Установка высокоскоростной системы нагнетания воздуха. Эти системы в течение многих лет широко использовались как средство обеспечения современного контроля температуры и влажности в исторических зданиях.Это стандартная система приточного воздуха с вентиляционными отверстиями, модифицированная для работы на высокой скорости. Он использует небольшие гибкие воздуховоды в стенах и на чердаке для распределения нагретого или охлажденного воздуха к небольшому круглому отверстию в полу или потолке. Воздуходувка для системы может быть установлена на чердаке или под потолком подсобного помещения, как и оригинальная печь. Гибкие воздуховоды будут выходить к внешним стенам, сразу за краем исходной камеры статического давления. Разместив конденсатор снаружи дома, вы сможете добавить в систему кондиционер.Это единственный обсуждаемый здесь вариант, при котором в ваш Lustron можно установить кондиционер.
Обратите внимание, что высокоскоростная система приточного воздуха больше не требует нагнетательной камеры, а вместо этого использует небольшие выпускные воздуховоды для циркуляции кондиционированного воздуха непосредственно в комнаты. Это потребует от вас просверлить выходное отверстие регистра и выходное отверстие для возврата воздуха в каждой комнате. Подрядчик печи определит размер установки, а также разместит воздуховоды в каждой комнате для максимальной эффективности. Вы захотите поработать с подрядчиком, чтобы определить место для розеток, которое наименее заметно, но все же выполняет задачу отопления и охлаждения.Для высокоскоростных систем требуется воздуховод гораздо меньшего размера, чем для обычных воздуховодов с принудительной подачей воздуха.
Чтобы узнать больше о высокоскоростных системах с принудительной подачей воздуха, вы можете посетить этот веб-сайт:
Установка дополнительного отопления
Если вы проверили все вышеперечисленные варианты и ваш Lustron все еще слишком холодный для вашего комфорта, то у вас остается только один вариант — вы должны обеспечить дополнительное тепло, установив дополнительную систему отопления.
Поскольку тепло в системе Lustron излучается вниз от потолка, вы можете почувствовать, что поверхность пола и область возле пола никогда не бывает достаточно теплой. Единственный способ решить эту проблему — обеспечить источник тепла ближе к уровню пола, либо в виде лучистого тепла над бетонной плитой фундамента, либо установить систему отопления плинтусом по периметру каждой комнаты. Хотя ни один из этих вариантов не будет легкой или недорогой работой, вы можете рассмотреть следующие вопросы, чтобы решить, какой подход лучше всего подходит для вашей ситуации.
Электрическая система лучистого отопления пола — Если вы не планируете фундаментные работы, которые потребуют заливки новой бетонной плиты, электрическая система предпочтительнее гидравлической (водяной) системы. Гидравлические системы обычно представляют собой более громоздкую установку, которая создает заметные различия в уровне пола у дверных порогов, если их размещать над существующей плитой перекрытия. Кроме того, гидронная система потребует от вас покупки и установки котла в уже ограниченном пространстве подсобного помещения.
Электрическая система лучистого обогрева пола повысит ваш уровень комфорта в доме, не требуя каких-либо значительных изменений исторического характера или характеристик Lustron. Его можно установить поверх оригинальной бетонной плиты и подключить к существующей электрической коробке. Возможно, вам потребуется обновить электрическую панель, чтобы справиться с дополнительной нагрузкой. Обратитесь к квалифицированному подрядчику по электрике, чтобы принять решение.
Есть несколько жизнеспособных вариантов установки новой системы лучистого отопления поверх существующей бетонной плиты.Эти системы помещают тонкий мат из электрических катушек поверх существующего пола, который покрывается тонким слоем «тонкосохнущего» раствора и любых материалов для пола, которые вы выберете. Системе необходимо будет не доходить до межкомнатных дверей, чтобы тонко затвердевающий раствор мог вылиться до уровня существующего пола и дверных порогов. Такой подход также дает вам возможность устранить трещины и участки разделения на стыке пола с внутренними стенами, уменьшая проникновение воздуха и сквозняки.
Если вы хотите узнать больше о системах электрического лучистого отопления, есть несколько производителей, которые размещают информацию на своих сайтах. Простой поиск по запросу «лучистые полы» с помощью вашей любимой поисковой системы поможет вам определить производителей и инсталляторов. Также есть очень полезная информация на веб-сайте Министерства энергетики США.
Система обогрева плинтуса — Извините! Не рекомендуем установку обогрева плинтуса. Бурение, необходимое для установки блоков, и обновление существующей электрической системы сделают его непрактичным из-за большого количества повреждений, которые необходимо будет нанести Lustron для установки системы.
Взгляд на системы лучистого отопления
Реклама медной компании рекламирует уютные, привлекательные полы, которые лучистое тепло, переносимое медными трубами, может обеспечить в снежный зимний день.
Выросший в Хиксвилле, Лонг-Айленд (не смейтесь!), Я провел большую часть младших и старших классов средней школы в одном классе с Билли Джоэлом, ныне суперзвездой «Фортепианный человек». Этот город — не только сайт моей единственной кисти с музыкальной славой, но, как ни странно, также и моей связи с местом, которое познакомило американских потребителей с революцией в комфорте: системами лучистого отопления.
Я отчетливо помню, как сидел рядом с Билли Джоэлом на уроке биологии. В то время нам было около 14 лет, и он пел новую песню Herman’s Hermit, постукивая ее на столе ластиком двух желтых карандашей. Он повернулся ко мне и заявил, что когда-нибудь станет более известным, чем Герман в то время. Я улыбнулся и кивнул. Хотя мы были всего лишь парочкой пригородных ребят, тогда все казалось возможным.
Билли Джоэл жил в Левиттауне, Нью-Йорк, рядом с Хиксвиллом.Социологи написали книги о Левиттауне, потому что это привело к появлению первых домов массового производства в Америке, около 10 000 из них. Все дома были похожи друг на друга, и все, кто в них жил, были одного возраста. Ничего подобного еще не было.
Левиттаун, Лонг-Айленд, был первым жилым комплексом, в котором использовалось лучистое отопление. (Предоставлено: Time & Life Pictures)
Уильям Левитт быстро построил дома в дни, последовавшие за Второй мировой войной, завершая в среднем один дом каждые два часа, используя процесс сборки, подобный Генри Форду.Все дома были спроектированы для обогрева с помощью системы нового типа, называемой лучистым теплом; Левиттаун был первым в Америке застройкой домов с лучистым отоплением.
Гидравлическое лучистое тепло обеспечивает циркуляцию горячей воды по трубам, встроенным в стены, пол или потолок. Возникающее тепло нагревает дом до глубины души, избегая использования воздуховодов с принудительной подачей воздуха или устаревших радиаторов отопления. По словам новообращенных, преимущества лучистого отопления включают более свежий воздух, меньшее количество пыли, с которой нужно бороться, и более низкие эксплуатационные расходы.
Мои собственные воспоминания о пользе лучистого тепла возникли с того момента, когда я впервые положил свое 16-летнее тело на пол в гостиной подруги в Левиттауне одним ветреным декабрьским днем. Северный ветер стучал в штормовые окна, но пол был таким невероятно теплым, будто лежал на пляже в июле. Я ненавидел вставать с этого этажа; это было лучшее место. По сей день я ассоциирую лучистое отопление со всем хорошим: теплом, уютом и молодой любовью.
Вырез оригинальной излучающей системы.(Фото: Tarantino Architect)
Radiant для масс
Излучающая система Левиттауна использовала змеевидные медные трубы, встроенные в бетонные плиты перекрытия, для подачи воды, которая накачивалась и нагревалась с помощью приземистого бойлера, который находился на кухне рядом с другим. бытовая техника. За разработку этого дизайна отвечал исполнительный вице-президент Уильяма Левитта Ирвин «Джал» Джалонак. Джалонак начал свою карьеру сантехником, затем стал инженером HVAC, и именно он принял решение использовать водонагревательные излучающие системы на жидком топливе в Левиттауне.Он долго и упорно искал те маленькие котлы, которые бы поместились на кухне. Их производила компания York-Shipley, и в народе их окрестили «low-Yorks», потому что они были немного выше стиральной машины. Большинство этих котлов продолжают отапливать дома Левиттов по сей день, те, которые все еще используют лучистое тепло. Думаю, можно сказать, что Джал был человеком, который принес в массы лучистое тепло в Америке. Цель Левиттауна как проекта заключалась в том, чтобы сделать доступные, экономичные в обслуживании дома доступными для широкой публики, и лучистые полы с подогревом помогли добиться успеха.
Фрэнк Ллойд Райт использовал лучистые полы для обогрева своих усонианских домов, таких как дом Ричардсона в Глен-Ридж, штат Нью-Джерси. (Фото: Tarantino Architect)
Похожая цель побудила Фрэнка Ллойда Райта использовать лучистое тепло для полов в своих усонианских домах. Последняя фаза дальновидной карьеры Райта, Усонианский дом был доступным домом, предназначенным для простого человека, а не для богатых людей, которые могли позволить себе индивидуальные услуги архитектора. Начиная с 1936 года, Райт спроектировал сотни скромных домов (в среднем 1750 квадратных футов), которые пытались быть максимально эффективными, используя изобретательные методы строительства, часто включающие геометрические конструкции и централизованное ядро кухни / ванны, чтобы помочь покрыть расходы на строительство.В некоторых из этих домов до сих пор живут преданные Райта, которые тщательно восстанавливают первоначальные системы, включая лучистое тепло. Любовь Райта к лучистому теплу, объединяющему механическую систему с дизайном, объединяющему дом и его отопление, проистекает из того факта, что это согласуется с его теориями об органической архитектуре.
Схема современного водяного излучающего пола включает планы обогрева гаража и проезжей части, а также дома. Radiant прошел долгий путь со времен Левиттауна, но он по-прежнему защищает от зимних холодов обнадеживающим теплом.(С любезного разрешения: Uponer Wirsbo)
В обеих попытках создания домов с лучистым обогревом в начале современности большая часть инженерных работ была экспериментальной. Архитекторы и подрядчики спроектировали многое из того, что они делали в те дни, по ходу дела. Например, в домах Левитта не использовалась никакая изоляция под или по краям бетонных перекрытий. В результате многие домовладельцы, чьи системы излучения все еще работают, могут выращивать тюльпаны на улице в феврале. Они думают, что у них зеленые большие пальцы, но я знаю, что у них серьезная потеря тепла.Левитт также не стал беспокоиться о пароизоляции под плитой, потому что это привело бы к слишком большим расходам.
Со временем некоторые из медных трубок начали протекать, и вода просачивалась в землю, а не поднималась через пол. Следовательно, домовладельцы не знали, когда произошла небольшая утечка, что в конечном итоге привело к серьезным проблемам. И в домах Левитта, и в домах Райта были первые медные трубы, которые таким образом доводили габариты до предела. Если рабочие, работающие в сжатые сроки, установят трубопровод со слишком большим люфтом, трубы могут легко сломаться.Фактически, сама природа взаимодействия меди с бетоном привела к коррозии труб, которая могла произойти в конечном итоге, если не был установлен защитный барьер — процесс, который был усовершенствован намного позже. Как только начались утечки, их было почти невозможно исправить, что вынудило многих домовладельцев, столкнувшихся с этой проблемой, отказаться от систем и вместо этого установить конвекторы на плинтусах.
Тонкая настройка старой идеи
Трубки PEX теперь заменяют многие старые излучающие системы. (Фото: Tarantino Architect)
Оглядываясь назад, я понимаю, что те старые излучающие системы были примитивными, особенно с учетом текущих стандартов, которые мы устанавливаем для себя.Сегодня многие подрядчики используют трубки PEX (из сшитого полиэтилена) и резиновые трубки, которые могут выдерживать большее напряжение и напряжение, чем металлические трубки. У нас также есть простые, но невероятно умные элементы управления, которые могут нацеливать и точно поддерживать уровень комфорта в доме.
Имейте в виду, что когда был построен Левиттаун, лучистое тепло еще только зарождалось. Строители собрали эти дома быстрее, чем кто-либо мог себе представить. Качество изготовления и материалы были грубыми, и тем не менее эти системы прослужили десятилетия — некоторые из них продолжают работать и сегодня.Только представьте, как долго прослужит современная, правильно спроектированная и профессионально установленная система лучистого отопления.
Оборудование систем лучистого обогрева обходится дороже, чем системы с принудительной подачей воздуха, но они также работают намного экономичнее. Они также лучше сохраняют тепло. Как только пол нагреется, он удерживает тепло и при необходимости отводит его даже после отключения электричества. Я часто наблюдал это явление, когда рос на Лонг-Айленде. Каждый раз, когда мы теряли силу во время ледяной бури, счастливчики из Левиттауна с их поджаренными бетонными плитами целыми днями сидели на своих нагретых камнях.
Это часть мистики лучистого тепла. Он постоянно радует своей экономичностью и надежным комфортом. И разве это не большая часть того, чего мы все хотим от дома? Место, где можно расслабиться и почувствовать себя уютно?
Я вырос в Хиксвилле, рядом с Левиттауном. В детстве мы играли на теплых полах и верили, что все возможно. Некоторые из нас стали известными рок-звездами, а некоторые из нас сочинили истории о лучистом отоплении. Все мы помним его комфорт.Если вы новичок в лучистом тепле, отдыхайте спокойно.