Расчет перемычки монолитной: Расчет перемычки в монолитной стене

Содержание

Расчет перемычки в монолитной стене

Тогда максимальный изгибающий момент будет:

Mmax= ql2/12 = (4000*2,52)/12 = 2083 кгм — примем 2500 кгм.

Размеры балки: ширина — 15 см, высота — 25 см. Класс бетона — В20. а = 3см. Расчетное сопротивление сжатию Rпр (Rb) = 117кгс/см2. Расчетное сопротивление растяжению для арматуры класса А-III согласно таблице 7 Ra = 3600 кгс/см2 (355 МПа) тогда:

А0 = M/bh20Rпр = 2500/(0.15•0.222•1170000) = 0.294

находим η = 0.82 и ξ = 0.36

Тогда требуемая площадь сечения арматуры:

Fa = M/ηh0Ra = 2500/(0.82•0.22•36000000) = 0.000384947031288495или 3,84 см2.

Для армирования перемычки можно использовать 4 стержня диаметром 16 мм. Площадь сечения арматуры составит 4,02 см2

Коэффициент армирования μ и процент армирования μ•100 (%):

μ = ξ Rпр/Ra = 0,35*117/3600 =0,011

μ% = 100μ = 1,1

Рекомендуемая СНиП 2.03.01-84(1996) толщина защитного слоя должна составлять не менее толщины стержня арматуры и не менее 15 мм при высоте балки до 250 мм. Это условие у нас соблюдено, так как при а = 3 см защитный слой составит 22 мм.

И правильно ли я понял, что арматура рассчитывается только на один ряд. А если добавить еще один ряд, то это как-нибудь отразится на диаметре арматуры? И еще такой вопрос. А на сколько эта арматура должна заходить в стены или она ложится чисто по длине пролета?

Спасибо.


11-04-2015: Доктор Лом

Несколько уточнений к вашему расчету.

1. Если на перемычку с двух сторон опираются плиты длиной 8 м, то расчетная нагрузка будет около 800х8=6400 кг/м (впрочем эта нагрузка с хорошим запасом).

2. Вы действительно рассчитали арматуру для одного ряда армирования, однако по конструктивным требованиям все того же СНиП 4 стержня в один ряд (при ширине перемычки 15 см) поставить вряд ли получится, так как расстояние в свету должно быть ≥ 30 мм — для горизонтальных или наклонных стержней верхней арматуры. Кроме того при бетонировании монолитных железобетонных конструкций существуют ограничения по размеру зерен: для всех армированных конструкций — не более 0.75 наименьшего расстояния в свету между стержнями арматуры. Т.е. при расстоянии в свету между стержнями 30 мм максимально допустимый размер зерен щебня будет около 22 мм. Больше подробностей в статьях «Анкеровка арматуры» и «Расчет состава тяжелого бетона». Поэтому вам нужно принимать или меньше стержней большего диаметра или располагать арматуру в два ряда, причем расстояние в свету ≥ 50 мм по вертикали — для горизонтальных или наклонных стержней нижней арматуры, расположенных в 2 ряда по высоте (так как вы рассчитывали верхнюю арматуру, то расстояние в свету следует принять еще больше). А с учетом относительно небольшой высоты сечения перемычки второй ряд армирования будет менее эффективным. Тем не менее, если армировать в два ряда арматурой одного диаметра то ho следует принимать как среднее значение, т.е. при ho1 = 22 cм и ho2 = 15 cм и тогда ho(cр) = 18.5 cм. Если армирование будет выполняться стержнями разного диаметра, то ho будет зависеть от соотношения площадей сечений арматуры первого и второго ряда. Например, если площадь сечения верхнего ряда в 2 раза меньше площади сечения нижнего ряда то ho = 22 — 7х1/(1+2) = 19.7 см. Т.е. мы сначала находим центр тяжести приведенного сечения арматуры.

3. Верхняя арматура, которую вы рассчитали, воспринимает изгибающий момент действующий на приопорных участках длиной около 0.25l с каждой стороны. Соответственно в середине пролета верхнее армирование по расчету не требуется, а вот по конструктивным соображениям хотя бы 2 стержня следует оставить. Как глубоко в стены заводить арматуру, зависит от того, как вы собираетесь армировать стену и будет ли перевязка арматуры перемычки с арматурой стены. В общем случае (не учитывая армирование стены) лучше завести арматуру в стены все на те же 0.25l + необходимая длина анкеровки.

4. В пролете вашей перемычки также будет момент, хотя и значительно меньший, тем не менее нижнее армирование на действие этого момента следует рассчитать (см. расчетные схемы и эпюры по ссылкам в статье).

5. Если арматура в верхней и нижней зоне сечения будет по всей длине перемычки, то эту арматуру в сжатой зоне сечения на опорах и в пролете можно учесть и тогда можно будет принять несколько меньший диаметр, см. статью «Расчет балки с арматурой в сжатой зоне».

6. Кроме момента у вас на опорах будут действовать и поперечные силы, т.е. в рассматриваемых сечениях будут действовать не только нормальные, но и касательные напряжения. Значит, вам необходим расчет по наклонным сечениям на действие моментов и на действие поперечных сил. Впрочем опять же по конструктивным соображениям при вашей высоте перемычки поперечная арматура необходима. Больше подробностей в статье «Конструктивные требования по армированию балок и плит перекрытия».

Примерно так.


30-04-2015: Сергей

продолжение:

Пересчитал нагрузку и по расчету получается, что для армирования перемычки можно использовать 2 стержня диаметром 20 мм. Площадь сечения арматуры составит 6,28 см2. И если я сделаю армирование 4 стержнями длиною 3,5м с поперечным армированием прутком диаметром 10 мм с шагом 20 см, то хуже не будет?

.


01-05-2015: Доктор Лом

Не переживайте, рукописи не горят (вопрос задавался в комментариях к статье «Расчет железобетонной балки»). Ваш предыдущий вопрос перемещен в отдельную статью «Расчет перемычки в монолитной стене» в разделе «Вопросы по расчету железобетонных конструкций». И новый вопрос вскоре будет перемещен туда же.

Ну а собственно ответ на ваш новый вопрос на этот раз будет очень коротким: нет, хуже не будет. Вот только длина стержней будет 3.8 м (как на рисунке)

Расчет проема в монолитной стене. Расчет металлической перемычкидля несущей стены. Перепланировка и демонтаж несущих стен под проем

Глухая бетонная стена вздрогнула от мощных ударов кувалды. Зловещее эхо растаяло между восьмым и девятым этажами, и сорвавшийся кирпич стремительно полетел вниз. Именно так будет происходить создание проема в стене, если работу производить неправильно. Если вы собираетесь произвести некоторую перепланировку в квартире и думаете, что ломать — не строить, то придется забыть об этой незатейливой поговорке. Как раз наоборот, и ломать, и строить…

Бетон — большой строительный материал — к сожалению, он может поглощать большие силы давления. Когда дело доходит до растягивающих нагрузок, он довольно слабонервный. К счастью, сталь — это наоборот, поэтому два материала оптимально дополняют друг друга. Железобетон — железобетон, армированный сталью — является решением многих проблем строительства. Эксперт говорит здесь об укреплении.

Баланс сил должен поддерживаться

Усилен фундаментом из стальных матов. Любой, кто хочет построить лестницу, стену, потолок — словом, здание из железобетона — должен точно знать, как работает такая конструкция. Итак, как там работают силы и насколько сильны. Планировщик должен использовать правильную комбинацию бетона и стали, чтобы убедиться, что силы остаются в равновесии, даже если происходят необычные события, например, землетрясение. В хорошем немецком: дело должно остановиться при любых обстоятельствах.

Перепланировка и демонтаж несущих стен под проем

Осуществление перепланировки в квартире невозможно произвести без дополнительных работ по демонтажу стен. Демонтаж стен осуществляют за счет резки проемов, поэтому данные работы считаются сложными, где необходимо учитывать свойства и особенности несущих конструкций.

Усиление проемов в бетонной стене

Теперь кто-то может придумать идею равномерного распределения стали в бетоне, тогда она подойдет. Как-то может быть, но сталь дорогая, и ни один строитель не хочет платить больше, чем абсолютно необходимо. Кроме того, выбор поперечного сечения стали напрямую влияет на несущую способность железобетона.

Но это также материал, который работает только тогда, когда в бетоне образуются микроскопические трещины. Только тогда сталь разворачивает свой полный эффект. Поэтому нецелесообразно размещать слишком много стали, а затем с неправильным диаметром в бетоне. Возможно, вы задавались вопросом, почему утюги, попавшие в бетон, ребристые. Ответ довольно прост: лучше переносить силы с бетона на сталь. Ребра обеспечивают оптимальную блокировку бетона и стали. В прошлом также использовалась гладкая сталь. Здесь, однако, необходимы дополнительные проектные меры, чтобы заставить его работать.

О необходимости согласования создания проемов в стенах несущих знают все, особенно дотошные соседи в доме. Первоначальным этапом расширения или демонтажа проема в несущих стенах является согласование проекта перепланировки. Среди мероприятий по перепланировке необходимо отметить важность основных этапов:

проектирование и согласование
расчет несущих конструкций проема
монтаж металлоконструкций усиления.

Например, сталь была сформирована в петли. Хотя железобетон нуждается в трещинах для его работы, трещины в бетоне также не должны быть слишком большими. Тогда не только ржавое подкрепление угрожает проникновением влаги, но и намного больше. От трещин до полного отказа конструкции. Например, крах здания.

Теперь становится понятнее, почему связь между бетоном и сталью должна соответствовать каждой области конструкции. Инженер-строитель должен точно рассчитать это значение, а затем использовать графики, чтобы указать, как работает армирование. Работник на строительной площадке должен надлежащим образом распределять сталь в бетоне на основе планов подкрепления.

Данные мероприятия относятся к устройству и демонтажу проемов и межквартирных перегородок. При этом учитываются сведения в жилищной инспекции, подтверждающие информацию, что данные перегородки являются несущими.

Регламентируемые работы по перепланировке исключат возникновение дальнейших проблем, а технологически правильно проведенные работы обезопасят проживающих. Как следует согласовывать создание проемов не только на бумаге?

Какие арматуры есть?

Армирующая сталь доступна либо в виде прутков, ковриков или гладильных изделий. Стальные бруски выпускаются в различных диаметрах от 6 до 40 миллиметров. Существует также около 20 различных типов сварных сеток. Так много выбора, когда речь заходит об усилении бетона.

Армирующие маты используются для листовых компонентов, таких как железобетонные стены или потолки, но для колонок, балок, стеновых оснований или перемычек, стремена и стержни являются подходящими средствами. Последние часто обрабатываются в армирующие клетки. Здесь скобки и стержни свариваются вместе или соединены посредством связующего провода.


Для начала определимся с понятием «проем в несущей стене».

Правила устройства проемов

Как ни парадоксально осознавать, но стены современных домов являются, в большинстве случаев, несущими. Проемы в стенах делают с целью объединения смежных комнат или для соединения смежных квартир в качестве межквартирных перегородок. Однако, тупиковая ситуация на первый взгляд, может быть разрешена.

Усиление оконного проема

Такая арматурная клетка может быть круглой или прямоугольной формы — точно так же, как железобетонная колонна. Если такая поддержка равномерно загружена сверху, армирование равномерно распределяется по поперечному сечению. Но об этом в следующей главе.

В принципе, железобетонный компонент можно загружать четырьмя различными способами. Нормальные силы Изгибные силы Силы тяги Силы кручения. . Однако, поскольку все это было бы слишком легко, напряжения возникают в комбинации. Стена получает не только давление сверху, но в основном также со стороны. Например, ветром или земными силами, если это подвал. Или бремя блуждает — как на железнодорожном мосту через поезд, который проезжает по нему.


Существуют следующие нормативные акты, которые регулируют правила устройства проемов в стенах несущих:
СП 20.13330.2011. Нагрузки и воздействия
СП 52-101-2003 Бетонные и железобетонные конструкции
СП 15.13330.2010 Каменные и армокаменные конструкции
СП 70.13330.2011 Несущие и ограждающие конструкции
СП 54.13330.2011 Здания жилые многоквартирные.

От плит перекрытия

В зависимости от высоты и типа нагрузки арматура должна быть распределена по-разному в бетоне. В целом, чем выше силы растяжения, тем больше железа используется. И прежде всего в зоне поезда. Для горизонтального луча, поддерживаемого с обеих сторон, это дно.

Почему это так, можно легко объяснить: положите длинный кусок пены на две чашки, она наклоняется вниз. Особенно, когда они ставят чашку посередине. Глядя на клетки, они сжимаются сверху, но раздвигаются на дно. При определенных условиях может потребоваться усиление зоны давления. Например, в случае высокой изгибной нагрузки или если для самой разнообразной нагрузки требуются одинаковые размеры луча. Подкрепление под давлением никогда не будет таким высоким, как в зоне натяжения.


Согласно нормативным строительным нормам и правилам, вся информация о техническом состоянии конструкции несущей стены и возможности создания или усиления проема должны быть отражены в проекте. Последующая судьба создания проема будет зависеть от следующих факторов:
размера создаваемого или существующего проема
его возможного месторасположения
согласования размеров проема и материала перемычки
способ усиления проема перемычками и металлическими профилями.

В дополнение к статически требуемому усилению часто предоставляется так называемое «конструктивное подкрепление». Они особенно необходимы там, где ожидаются арифметически непризнанные пики напряжения. Например, с углублениями или отверстиями в бетоне. Затем конструктивное усиление предотвращает растрескивание.

Это относится, например, к расстояниям железа друг к другу, но также к бетонному покрытию или тому, как изгибаются стержни. Важно не только, сколько сталей попадает в бетон, но и расстояние между отдельными стержнями. Если он слишком мал, свежий бетон не может быть правильно введен и уплотнен. Кроме того, это обеспечивает достаточную связь.


Напомним, что существуют определенные ограничения, не позволяющие согласовывать проект по созданию проема. Это резка проема непосредственно под стыками плит межэтажных перекрытий, несущих балок с нарушением целостности конструкции существующих колонн и столбов. Проблема усиление проема в несущей стене решается за счет устройства перемычек, которая буквально «взвалит» на свои плечи всю тяжесть несущей конструкции.

Расстояние от стержня зависит от диаметра стержня и наибольшего диаметра зерна бетона. Он должен быть не менее 20 миллиметров и в любом случае, по крайней мере, равен диаметру стержня. Для стержня диаметром 24 миллиметра расстояние должно быть 24 миллиметра или больше. Если в бетоне обрабатываются гальки диаметром более 16 мм, расстояние между стержнями должно быть на 5 мм больше.

Бетонное покрытие, то есть расстояние от поверхности до стали, имеет решающее значение в арматуре. И по трем причинам. Защита стали от коррозионной связи между стальной и бетонной противопожарной защитой. В зависимости от диаметра стали и ожидаемого воздействия на окружающую среду бетонная крышка составляет от 20 до 55 миллиметров.


Есть перемычка!

Проектирование и расчет перемычки считается наиболее ответственным этапом перепланировки. От правильности устройства перемычки зависит безопасность не только «отдельно взятой несущей стены». Берите круче! В мировых масштабах, а вернее в масштабах жилого многоквартирного дома с ворчливыми соседями. Что необходимо учитывать и согласовывать при проектировании и расчете перемычки?

Необходимая бетонная крышка обеспечивается различными способами. Например, с прокладками в виде небольших ножек из пластмассы или волокнистого цемента. Они прикреплены к стенам снаружи арматуры. Для потолков распорки размещаются на опалубке до введения арматуры.

Укрепление в стиле «греческий». В Геракини. Иногда необходимо сгибать подкрепление. Например, для крючков, петель и стремена или для наклонных стержней и других изогнутых стержней. Сгибание не является большой проблемой, но необходимо соблюдать определенные правила. В противном случае может возникнуть бетонирование или разрушение бетонной конструкции в области изгиба. Кроме того, трещины в баре можно избежать путем правильного изгиба.


Безусловно, это следующие данные:
площадь проема относительно площади стен
расстояние от проема до стен смежных и перекрытия
техническое состояние несущей стены и материал, из которого стена изготовлена
расположение и тип плит перекрытия
количество этажей над стеной и под стеной, где выполняется проем.

При изготовлении крючков, петель или крючков минимальный диаметр валика в четыре или семь раз превышает диаметр стержня. Для диагональных стержней и других изогнутых стержней необходимо соблюдать минимальный диаметр в 7, 15 или 20 раз больше диаметра стержня.

Для сварных арматур и матов он выглядит иначе. Здесь необходимо провести различие между преимущественно статическими, а не преимущественно статическими эффектами. Минимально необходимый диаметр рулона может достигать 500 диаметров стержня. Это может работать с небольшой натянутой садовой стеной или с фундаментом для садового сара. Или инженер-строитель с многолетним профессиональным опытом.

Напомним, что несущая стена панельного дома представляет собой конструкцию монолитную из достаточно прочного бетона. Поэтому воспользоваться ударным инструментом в виде кувалды, перфоратора или мощного отбойного молотка не имеет смысла. Во-первых, ударные нагрузки от инструмента способны к повреждению целостности стены, включая повреждение внутренних коммуникаций. Во-вторых, работа по резке проема в межквартирных перегородках будет продвигаться черепашьими шагами. Так почему бы не воспользоваться современными методами алмазной резки?
Как производится алмазная резка по созданию проема в стене представлено в видео.

Армирование стенового фундамента

Но как только реальные нагрузки на нагрузку здания, это зависит от точного размера бетонной арматуры. Если вы хотите создать основу полосы для садовой стены, вы должны конкретизировать это с помощью армирующей клетки. С более высокими садовыми стенами, несущими стенами или поддерживаемым наклоном, необходимо добавить инженера-конструктора, чтобы впоследствии не нанести ущерб.

Основание полосы должно быть глубиной не менее 80 см, чтобы оно не было безморозным. Кроме того, для этого требуется чистота и дренажный слой толщиной от 15 до 20 см из гравия или гравия. Если земля нестабильная, вам нужна опалубка из деревянных досок.

Учитывая сложность проводимых работ по созданию проема, рискнуть проводить резку проема своими руками не рекомендуется. Аргументированные доводы предлагают предпочтение отдать специалистам, которые обладают соответствующим опытом работ и допуском СРО, а также организациям, осуществляющим технический надзор за работой данного типа.

Расчет усиления проемов

Армирующая клетка должна быть бетонирована таким образом, чтобы она была покрыта со всех сторон не менее 3 см бетона. Внизу прокладки обеспечивают необходимую бетонную крышку. Садовые сараи, садовые барбекю или навесы для инструментов нуждаются в базовой плите в качестве основы, поэтому они имеют надежное сцепление. Здесь всегда целесообразно включать армирующий стальной коврик для армирования. Здесь опять же срочное указание, что для крупных строительных проектов обязательно профессионал должен выполнять статический расчет.


Результатом резки и усиления нового проема будут считаться акт, свидетельствующий о проведении скрытых работ.
Именно качественная установка перемычки будет определять безопасность конструкции. Поэтому выбор материала перемычки можно считать первостепенно важным. Предпочтение отдается перемычкам стальным, которые состоят из двух швеллеров, двутавров и уголков.

Арматура должна быть размещена на распорках для обеспечения перекрытия. Важно убедиться, что бетонная крышка также прикреплена к краю. В случае больших фундаментных плит также должны планироваться морозоустойчивые фартуки. Это полосовые основы, которые выступают на глубину не менее 80 см в землю.

Фундаментная плита бетонирована на чистом слое. Он также служит в качестве дренажа, так что нет воды под бетонными плоскими плоскими плотинами. Это особенно опасно при морозе, поскольку замороженная вода расширяется. На боковой стороне требуется опалубка плит, при этом верхняя кромка опалубочных плит равна верхнему краю основания основания. Стальные маты помещают вместе с прокладками перед бетонированием на введенном слое чистоты.


«Железо» для создания проема

Расчетные параметры «железа» при создании проема и установки перемычки будут зависеть в полном объеме от длины самого проема. Параметры необходимо также согласовывать. Это необходимо запомнить. В качестве примера, для проема длиной 2,5 метра по расчету необходимо применять швеллер № 18 длиной три метра. Крепление швеллера осуществляется стяжными болтами.

Цена, чтобы сломать или сделать отверстие в несущей стенке и котировке. Откройте для себя цену ремесленника, чтобы сломать стену. Лучше узнать о стоимости открытия несущей стены, когда вы хотите срубить стену или открыть ее. И не зря, важно доверить этот тип задания опытному каменщику и привыкнуть к таким проектам. Цена на вырубку несущей стены может зависеть от многих критериев.

Во-первых, помните, что делать открытие в несущей стене или пытаться снести это не простая задача. И не зря, разрушение стены может поставить под угрозу стабильность дома. Вот почему мы рекомендуем вам абсолютно пройти через опытную каменную компанию, которая заявила и гарантировала выполнение этой задачи.


Практика ведения работ подсказывает, что предпочтение необходимо отдать болтам диаметром 20мм и длиной, которая позволит выступать швеллеру со стороны стены. Монтируемые в подготовленные штрабы швеллера затем цементируют раствором М100 и устанавливают путем вдавливания. Затем стяжные болты затягивают и заполняют швеллер ячеистым бетоном.


Другой пример: для создания проема в кирпичной стене согласование размеров будет производиться следующим образом:
производим расчет и намечаем контур будущего проема на стене
рассчитываем и устанавливаем перемычку из двух швеллеров
устанавливаем и согласовываем расположение вертикальных уголков по граням проема
привариваем уголки к верхней части швеллера.

Таким образом, согласование устройства проема в стене будут произведено корректно, и не повлечет за собой негативных последствий или переделок.

Более подробная информация о создании проема в несущей стене представлена здесь.

Чтобы расширить область применения приведенных формул, дополнительно произведен расчет сечения металлической перемычки для кирпичной несущей стены на которую опираются плиты перекрытия (результаты выделены красным цветом ) или балки перекрытия (результаты выделены синим цветом ).

1. Определение нагрузок на 1 погонный метр перемычки:

1.1 От веса кладки:

q 1 = p х b х h м/п,

где,
p в кг/м&sup3 — плотность материала, из которого выкладывается стена, в том числе кладочного раствора и штукатурки. Плотность цементного раствора на обычном кварцевом песке — до 2200, что теоретически нужно учитывать при работе с пустотелым кирпичом, гипсовыми блоками и блоками из легких бетонов, но чтобы не заморачиваться с определением доли раствора в кладке, можно просто умножить плотность материала на 1,1 или принять максимальное из нижеприведенных.
Примечание: cтроительная механика рассматривает балки как стержни, высота и ширина которых не имеет существенного значения по сравнению с длиной. Поэтому, при определении распределенной нагрузки от веса кладки мы умножаем плотность кирпича на высоту и ширину кирпичной кладки, получая распределенную нагрузку на 1 м/п, а если бы мы еще умножили эту распределенную нагрузку на 1 метр длины, то получили бы вес 1 метра погонного кладки.

Для справки:

Плотность полнотелого кирпича 1600 — 1900 кг/м&sup3
— плотность пустотелого кирпича 1000 — 1450 кг/м&sup3
— плотность блоков из пенобетона, газобетона, ячеистого бетона 300 — 1600 кг/м&sup3
— плотность гипсовых блоков 900 — 1200 кг/м&sup3

Например:

Если стена над перемычкой будет выкладываться из пустотелого кирпича, то можно принять значение
p = 1500 кг/м&sup3
— для гипсовых блоков p = 1200 кг/м&sup3
— для блоков из легкого бетона — в зависимости от плотности бетона. Чтобы определить эту самую плотность, нужно взвесить 1 блок (или попытаться приблизительно определить вес блока, просто подняв его), а потом разделить вес на высоту, ширину и толщину блока. Например, если блок весит 20 кг и имеет размеры 0,3х0,6х0,1 м, то плотность блока будет 20/(0,3х0,6х0,1) = 1111 кг/м 3 . Таким же образом можно определить и плотность кирпича.
— во всех остальных случаях (особенно в том случае, если Вы не знаете плотность материала и не можете определить его плотность) p = 1900 кг/м&sup3

b — толщина стены в метрах, например для кирпичной стены в два кирпича следует принимать = 0,51-0,55 м, для стен, не отделываемых мокрой штукатуркой — 0,51 м, для стен, отделываемых мокрой штукатуркой только внутри помещений — 0,53 м, для стен, отделываемых мокрой штукатуркой и внутри и снаружи — 0,55 м.

h — высота кладки над перемычкой. Тут сразу могут возникнуть вопросы: а что если высота кладки над перемычкой 10 метров, неужели всю эту высоту нужно учитывать, это какое ж сечение будет у перемычки при такой нагрузке?

Ответ на эти вопросы будет следующим: любая нагрузка перераспределяется таким образом, что на перемычку будет активно действовать только нагрузка от следующего участка стены:

т.е. для расчетов можно принимать высоту h равной половине длины L перемычки. Конечно, в данном случае распределенная нагрузка будет не равномерной, а изменяющейся по длине перемычки (в этом случае следует воспользоваться соответствующей расчетной схемой для определения максимального изгибающего момента), но не будем усложнять и так сложное. Если над расчетным проемом будет еще один проем, то высота кладки в этом случае будет равна расстоянию между верхом нижнего проема и низом верхнего проема.

Для проема длиной 1,5 м для кирпичной стены толщиной в 2 кирпича нагрузка
q 1 = 1900 х 0,53 х 0,5 х 1,5 = 755,3 кг/м

1.2. От собственного веса металлической перемычки:

q 2 = n х P ,

где,
n — количество уголков, швеллеров или других профилей,

P — собственный вес 1 погонного метра уголка или швеллера, определяемый по сортаменту, тут есть небольшая закавыка, ибо как можно знать вес прокатного профиля, если его сечение только определяется, но как правило для металлических перемычек вес перемычки не превышает 1-2% от веса стены или перегородки над перемычкой, а потому этот вес можно учесть поправочным коэффициентом 1,1, учитывающим все неучтенные моменты. Если Вы в чем-то сомневаетесь можно принять значение коэффициента равным 1,2 и даже 1,5.

1.3. От отделочных материалов стен.

Стены могут отделываться различными материалами: сухой или мокрой штукатуркой, керамической плиткой, натуральным или искусственным камнем, пластиковыми или алюминиевыми панелями и т.д. Нагрузки от этих отделочных материалов должны учитываться при расчете. Если стены просто будут штукатуриться с одной или с двух сторон, то тогда эта нагрузка уже учтена в пункте 1.1. Если Вы пока не знаете, чем будут отделываться стены, или знаете, но не можете рассчитать, то умножьте нагрузку от кладки на поправочный коэффициент 1,2-1,3.

1.4.1. От плит перекрытия.

Кроме того, что плиты перекрытия сами по себе весят не мало, так еще нужно учитывать нагрузку от стяжки, утепления, напольного покрытия, мебели и гостей. Чтобы хоть как-то упростить этот процесс, можно принимать вес плит перекрытий и всех выше перечисленных нагрузок в пределах 800-1000 кг/м&sup2. Пустотные плиты перекрытия весят около 320 кг/м&sup2, еще до 100 кг/м&sup2 дает утепление и стяжка, а остальное — нагрузка от мебели, гостей и других неожиданностей. Чтобы определить нагрузку от плит перекрытия и всего, что на плитах перекрытия, нужно знать длину плит перекрытия.

Для проема длиной 1,5 м для кирпичной стены толщиной в 2 кирпича с пустотными плитами перекрытия длиной 6 м нагрузка q 4 = 800 х 0,5 х 6 = 2400 кг/м

Таким образом погонная расчетная нагрузка на перемычку составляет:

q = q 1 + q 2 + q 3 + q 4

Для проема шириной 1,5 м для кирпичной перегородки толщиной в 2 кирпича, оштукатуренной с одной стороны, полная расчетная нагрузка q = 755,3 + 0,015х755,3 + 2400 = 3167 кг/м

1.4.2. От балок перекрытия.

Если балки перекрытия будут находиться на расстоянии 0,5 м от перемычки и выше, то нагрузку от балок перекрытия и перекрытия можно считать распределенной, и дальнейший расчет перемычки вести, как для перемычки на которую опираются плиты перекрытия, но если для междуэтажных перекрытий используются балки и балки находятся на небольшой высоте от перемычки, то в этом случае нагрузка будет точечной и при расчете нужно учитывать, куда будут опираться балки перекрытия:

Под схемой расположения балок дана эпюра изгибающего момента, действующего на балку, в нашем случае перемычку. Если балки перекрытия не будут попадать на перемычку, то нагрузка от балок перекрытия при расчете вообще не учитывается. Как видно из приведенных схем, максимальный изгибающий момент будет действовать на перемычку, если балка перекрытия будет расположена посредине:

М max = (Q х l) / 4

А значение нагрузки Q от балки перекрытия будет зависеть от расстояния между балками перекрытия.

Для проема длиной 1,5 м для кирпичной стены с перекрытием по балкам длиной 6 м, при расстоянии между балками 1 м нагрузка Q = 800 х 0,5 х 6 = 2400 кг

2. Подбор сечения.

2.1.1 Максимальный изгибающий момент для бесконсольной балки на шарнирных опорах , а в нашем случае перемычки, на которую действует распределенная нагрузка (в частности плиты перекрытия), будет посредине балки:

М max = (q х l 2) / 8

2.1.2 Максимальный изгибающий момент для перемычки, на которую действует и распределенная (вес кладки, отделочных материалов и самой перемычки) и сосредоточенная нагрузка (балки перекрытия), также будет посредине балки, но рассчитывается момент по другой формуле:

М max = (q х l 2) / 8 + (Q х l) / 4

Примечание: если концы профилей будут опираться на простенки более чем на 300 мм, то балку можно рассматривать не как лежащую на двух опорах, а как защемленную с двух сторон, в этом случае максимальный изгибающий момент будет на опорах: М max = (q х l 2) / 12 , а изгибающий момент от сосредоточенной нагрузки М max = (Q х l) / 8 .

Для проема длиной 1,5 м для кирпичной стены с плитами перекрытия
М max = (3167 х 1,5 2) / 8 = 890,7 кг·м.

Для проема длиной 1,5 м для кирпичной стены с балками перекрытия
М max = (755,3 х 1,1 х 1,5 2) / 8 + (2400 х 1,5)/4 = 233,7 + 900 = 1133,7 кг·м

2.2 Требуемый момент сопротивления:

W треб = М max / R y

где,
R y — расчетное сопротивление стали. Ry = 2100 кгс/см&sup2 (210 МПа)

Примечание: Вообще-то расчетное сопротивление зависит от класса прочности стали и может достигать значения 4400, но лучше принимать 2100, как наиболее распространенное. Если будут использоваться два металлических профиля для перемычки, то значение W треб нужно разделить на 2, если 3 профиля, то разделить на 3 и так далее.


W треб = (890,7 х 100) / (2100 х 2) = 21,21 см 3

Для проема длиной 1,5 м для кирпичной стены с перемычкой из 2 профилей
W треб = (1133,7 х 100) / (2100 х 2) = 27,0 см 3

2.4. Ну а теперь все просто, сначала определяемся с типом профиля. Перемычку можно сделать из горячекатанных стальных уголков, равнополочных или неравнополочных, швеллеров двутавров, профильных труб. Если, например перемычка будет из уголков, открываем соответствующий сортамент, и смотрим, чтобы значение момента сопротивления было больше полученного при расчете. Тут главное не путать оси, относительно которых действует изгибающий момент. В сортаментах эти оси могут называться по-разному. Здесь ось, относительно которой в поперечном сечении возникают сжимающие и растягивающие напряжения обозначена как z , в сортаментах эта ось может быть обозначена как х . Но важно не название, а принцип, когда мы определяли максимальный изгибающий момент, действующий на поперечное сечение балки, то длина балки l измерялась по оси х , высота балки по оси у , а ширина балки по оси z . Таким образом, какой сортамент Вы бы не взяли, и как ни называлась бы ось, главное, чтобы по этой оси определялась ширина балки.

Для проема длиной 1,5 м для кирпичной стены толщиной в 2 кирпича достаточно 2 неравнополочных уголков 110 х 70 х 8 мм (по сортаменту для таких уголков W z = 23,22 см 3), или 2 швеллеров №8П (по сортаменту для таких швеллеров W z = 22,5 см 3)

Для проема длиной 1,5 м для кирпичной стены толщиной в 2 кирпича достаточно 2 неравнополочных уголков 125 х 80 х 8 мм (по сортаменту для таких уголков W z = 30,26 см 3), или 2 швеллеров №10П (по сортаменту для таких швеллеров W z = 34,9 см 3)

Ну а дальше все зависит от доступности такого профиля и удобства работы с ним, если в продаже таких профилей нет, или работать с ними неудобно, то принимается любой другой профиль с большим сечением. Кроме того, по конструктивным соображениям вместо 2 уголков удобнее использовать 4 уголка, чтобы потом было удобнее вести кирпичную кладку. Например вместо 2 уголков 110х70х8 можно использовать 4 уголка 90х56х5,5.

Примечание : Чем меньше расстояние от плит или балок перекрытия до перемычки, тем более неравномерным будет распределение нагрузки на перемычку. В связи с этим сечение профилей рекомендуется принимать больше на 5-20%. Кроме того профили нессиметричного сечения (неравнополочные и равнополочные уголки) рекомендуется связывать полосами металла для увеличения устойчивости уголков.

Опирать металлические перемычки на стены следует не менее чем на 250 мм, а в сейсмоопасных районах не менее чем на 400-500 мм.

После подбора сечения по максимальному изгибающему моменту желательно рассчитать прогиб балки, для этого даже есть специальная формула:

f = (5 x q x L 4) / (384 x E x I z)

где,
q — нагрузка на перемычку определенная в п.1
L — ширина проема
E — модуль упругости, для стали Е = 2 х 10 5 МПа или 2 х 10 10 кг/м&sup2
I z — момент инерции по сортаменту для выбранного профиля, умноженный на 10 -8 для перевода в метры (для 2 профилей это значение логично умножается на 2), тут главное, не ошибиться с осью.

Для перемычки из 2 уголков 110 х70 х 8 мм над проемом 1,5 м прогиб
f = (5 x 3167 x 1,5 4) / (384 x 2 x 10 10 х 2 x 171,54 х 10 -8) = 0,003045 м или 0,3 см

Для перемычки из 2 швеллеров 8П над проемом 1,5 м прогиб
f = (5 x 3167 x 1,5 4) / (384 x 2 x 10 10 х 2 x 89,8 х 10 -8) = 0,0058 м или 0,58 см

По требованиям СНиПа 2.01.07-85* «Нагрузки и воздействия» максимальная величина прогиба для перемычек не должна превышать 1/200 пролета, т.е. в нашем случае прогиб должен быть не более 150/200 = 0,75 см. Это условие нами соблюдено. Если такой прогиб перемычки Вас все равно не удовлетворяет, то нужно подбирать металлические профили большего сечения. Вот в принципе и все.

Примечание : если расчет производился на действие распределенной и сосредоточенной нагрузки, то расчет на прогиб удобней производить отдельно для распределенной и для сосредоточенной нагрузки, а затем полученные значения сложить.

Онлайн расчет перемычек. Расчет железобетонной балки сборно-монолитного перекрытия


Онлайн калькулятор для расчета желебобетонных балок перекрытия дома

Далее Пересчитать

Назначение калькулятора

Калькулятор для расчёта железобетонных балок перекрытий предназначен для определения габаритов, конкретного типа и марки бетона, количества и сечения арматуры, требующихся для достижения балкой максимального показателя выдерживаемой нагрузки.

Соответственно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» габариты железобетонных балок перекрытия и их устройство подсчитываются по дальнейшим принципам:

  • Минимальная высота балки перекрытия должна составлять не меньше 1/20 части длины перекрываемого проёма. К примеру при длине проёма в 5 м минимальная высота балок должна составлять 25 см;
  • Ширина железобетонной балки устанавливается по соотношению высоты к ширине в коэффициентах 7:5;
  • Армировка балки состоит минимум из 4 арматур – по два прута снизу и сверху. Применяемая арматура должна составлять не меньше 12 мм в диаметре. Нижнюю часть балки можно армировать прутами большего сечения, чем верхнюю;
  • Железобетонные балки перекрытия бетонируются без перерывов заливки, одной порцией бетонной смеси, чтобы не было расслоения бетона.

Дистанцию между центрами укладываемых балок определяют длиной блоков и установленной шириной балок. К примеру, длина блока составляет 0,60 м, а ширина балки 0,15. Дистанция между центрами балок будет равна – 0,60+0,15=0,75 м.

Принцип работы

Согласно ГОСТ 26519-85 «Конструкции железобетонные заглублённых помещений с перекрытием балочного типа. Технические условия» формула расчёта полезной нагрузки железобетонных балок перекрытия складывается из следующих характеристик:

  • Нормативно-эксплуатационная нагрузка на балки перекрытия с определённым коэффициентным запасом. Для жилых зданий данный показатель нагрузки составляет 151 кг на м2, а коэффициентный запас равен 1,3. Получаемая нагрузка – 151*1,3=196,3 кг/м2;
  • Нагрузка от общей массы блоков, которыми закладываются промежутки между балками. Блоки из лёгких материалов, к примеру из пенобетона или газобетона, показатель плотности которых D-500, а толщина 20 см будут нести нагрузку – 500*0,2=100 кг/м2;
  • Испытываемая нагрузка от массы армированного каркаса и последующей стяжки. Вес стяжки с толщиной слоя 5 см и показателем плотности 2000 кг на м3 будет образовывать следующую нагрузку – 2000*0,05=100 кг/м2 (масса армировки добавлена в плотность бетонной смеси).

Показатель полезной нагрузки железобетонной балки перекрытия составляется из суммы всех трёх перечисленных показателей – 196,3+100+100=396,3 кг/м2.

omega-beton.ru

Нагрузка на перемычки железобетонные. Расчет железобетонных перемычек

Нагрузка на перемычки железобетонные. Расчет железобетонных перемычек

При возведении кирпичных стен неизбежно возникает необходимость установки над оконным проемом железобетонной перемычки. Они представляют собой железобетонные балки с различным сечением и длиной, изготовленные на заводе. Чтобы выбрать необходимый типоразмер изделия, необходимо произвести предварительные расчеты, которые будут учитывать такие данные как нагрузка на перемычку и ширина проема.

При этом, говоря о нагрузке, имеют в виду собственный вес перемычки суммарно с весом стены и перекрытия. В случае с жилыми домами, где нагрузки не так высоки, все случаи принято разбивать на три группы:

  1. На стену опирается перекрытие.
  2. Перекрытие на стену не опирается, а сам она является самонесущей.
  3. Перемычку укладывают в перегородке из кирпича толщиной 12 см.

Виды железобетонных перемычек

Прежде чем приступить к расчетам, давайте немного ознакомимся с видами самих перемычек. Чтобы понимать, какие варианты вам доступны, следует открыть сайт любого производителя ЖБИ и посмотреть, какие виды перемычек железобетонных присутствуют в их номенклатуре. Перейдя по ссылке, вы увидите длинный список типоразмеров с их характеристиками. Чтобы научиться быстро ориентироваться в нем, следует научиться расшифровывать маркировку. Сделаем это на примере перемычки 2ПБ 16-2 :

  • 2ПБ – эта часть маркировки означает принадлежность изделия к какому-то виду и типу сечения. В данном случае – перемычка брусковая второго типа сечения .
    • Брусковые перемычки (ПБ) могут иметь ширину 120 или 250 мм, что делает необходимым использование сразу нескольких изделий в случаях, когда толщина перегородки превышает 120 мм. Производят также плитные перемычки (ПП), ширина которых бывает 380 и 510 мм.
    • Второй тип сечения (2ПБ) имеет размеры 120х140 мм. Другие типы имеют следующие габариты: 1ПБ – 120х65 мм, 3ПБ – 120х220 мм, 4ПБ – 120х290 мм, 5ПБ – 50х220 мм.
  • 16 – эта часть шифра говорит о длине изделия, которая равняется 1550 мм. Размер выражен в дециметрах и округлен.
  • 2 – последняя цифра условного обозначения означает нагрузку, на прием которой рассчитана перемычка. В данном случае это 200 кг/м. Приблизительно понимать эти данные следует так: перемычки с индексом нагрузки 1 обычно используют для перегородок; индекс 8, говорит о том, что такие изделия с легкостью справляются с самонесущими стенами; индексом 27 обладают перемычки, применяемые в стенах, на которые опираются перекрытия.

Теперь, зная разнообразие железобетонных перемычек, можно переходить непосредственно к расчету.

Как подбирать железобетонные перемычки

Итак, давайте сперва введем какие-то исходные данные. Допустим, нам надо рассчитать, какую перемычку следует брать для перекрытия пролета шириной 1350 мм в самонесущей стене толщиной 240 мм при высоте стены над проемом – 800 мм. Стройка ведется в зимних условиях.

Толщина стены 240 мм говорит о том, что нам понадобятся две брусковые перемычки шириной по 120 мм. В зимний период на самонесущую перемычку берут нагрузку от высоты стены, равной расчетному пролету. Расчетный пролет считается так:

1350 + 2*100/3 = 1420 мм

100 мм в данном случае – это минимальная глубина опирания перемычки. Так как высота кладки оказалась меньше расчетного пролета, в дальнейшем в расчетах будем использовать именно ее – 800 мм.

0,24*0,8*1,8*1,1/2 = 0,19 т/м = 190 кг/м

В этих расчетах 1,8 т/м3 – это вес кирпича, 1,1 – коэф. надежности, 2 – количество перемычек. Итак, нам необходимо выбирать перемычку из тех, чей индекс нагрузки не менее 2-х.

Как мы уже говорили выше, минимальная глубина опирания данных перемычек составляет 10 см, значит наименьшая возможная длина перемычки в нашем случае равна:

1350 + 100*2 = 1550 мм

Из списка типоразмеров нам могла бы подойти перемычка 2ПБ 16-2 длиной как раз 1550 мм и расчетной нагрузкой до 200 кг/м. Однако нам еще следует учесть нагрузку от собственного веса балки, которая равна 70/1,55 = 45 кг/м. То есть суммарная нагрузка будет составлять 190 + 45 = 235 кг/м, что превышает максимально допустимую для данной перемычки.

В нашем случае подойдет перемычка 2ПБ 19-3. Собственная нагрузка для нее составляет 80/1,94 = 41 кг/м. Тогда суммарная будет равна 190 + 41 = 231 кг/м, что не превышает допустимые 300 кг/м для этой балки. Длина перемычки составляет 1940 мм, и это тоже подходит для наших условий.

В настоящее время в строительстве, сборное железобетонное перекрытие, является самым распространённым. Перекрытие из железобетонных плит выполняется по кирпичным и монолитным стенам. А также по стенам из пенобетона, предварительно укреплённого монолитным поясом.

Укладка железобетонных плит перекрытия.

После того как стены выполнены под отметку верха этажа, можно приступать к перекрытию.

Основным правилом при укладке плиты перекрытия , это соблюдение глубины опирания плиты. Опирания плиты перекрытия на кладку стены должно быть 80–120 мм, а на бетонную стену или консоль балки, 65–120 мм.

Перед укладкой плит, на стену накладывается цементный раствор марки 100 и разравнивается до толщины 8–13 мм. Плиты, с помощью крана, поочерёдно и плотно «друг к другу» укладываются на раствор, при этом должен вестись контроль по соблюдению уровня низа плит. Перепады плит, за счёт толщины растворного шва – недопустимы.

За счёт конусообразных торцов, между плитами остаются швы, которые забиваются цементным раствором марки 100.

Железобетонные плиты, которые имеют длину более шести метров, свариваются между собой арматурными прутьями толщиной 10–12 мм, для этого в верхней зоне таких плит предусмотрены специальные металлические детали. Также к закладным деталям плит привариваются выпуска из гладкой арматуры толщиной 12 мм, для закладки их в стену. Такие выпуска должны быть загнуты в стене и длина их рассчитывается таким образом, чтобы они полностью «прятались» в несущей стене.

В том случае, если перекрытие этажа ведётся в два ряда плит, то эти ряды свариваются между собой.

Укладка железобетонных перемычек.

Железобетонные перемычки укладываются над оконными и дверными проёмами, для дальнейшего продолжения стен. Перемычки бывают несущие и ненесущие (заполнитель). Отличаются они между собой своей несущей способностью.

Несущие перемычки укладываются над проёмами несущих стен, такие перемычки способны нести нагрузки, уложенной на них несущей стены и перекрытия. Глубина опирания перемычки на кирпичную стену – 250 мм.

Ненесущие перемычки укладываются над проёмами перегородок и ненесущих стен, такие перемычки служат заполнением стены или перегородки и несут они только нагрузку уложенной на них кирпичной кладки. Глубина опирания железобетонных перемычек на кирпичную стену, 250 мм, на кирпичную кладку перегородки, 200 мм.

Все железобетонные перемычки укладываются на раствор марки 100, с толщиной шва 8–12 мм.

Опирание перекрытия на газобетон осуществляется посредством специальных армопоясов. Его изготовление необходимо для приема нагрузок от силы тяжести и конструкционных материалов следующих этажей или крыши. Что такое армопояс? Это монолитная конструкция из железобетона, повторяющая контуры стен. Армопояс возводится на несущих стенах, которые строят, применяя газобетон.

Для заливки армопояса подготавливают опалубку для бетона, которая представляет собой конструкцию для создания формы, в которую для жесткости укладывают арматуру.

Если опирание плит осуществляется на внутренние стены дома, стены строят таким образом, чтобы они опирались на фундамент. Армопояс на внутренних стенах под плитами перекрытия усиливает конструкцию, так как происходит распределение нагрузки по всей площади плиты. Армопоясом не считается конструкция, выполненная кирпичной кладкой на

indrikgrad.ru

Расчет железобетонной балки сборно-монолитного перекрытия

 

Для ориентировочного расчета балки сборно-монолитного перекрытия удобно использовать программу-калькулятор. Файл Excel с программой-калькулятором можно скачать, если перейти по этой ссылке и выбрать в меню «Файл» — «Загрузить». К сожалению, найти фамилию автора программы мне не удалось.

Расчет начинают с определения величины желаемой полезной нагрузки. Для расчета сборно-монолитного перекрытия полезная нагрузка складывается:

  1. Из нормативной эксплуатационной нагрузки перекрытия с коэффициентом запаса  (из СНиП). Например, для жилых помещений нормативная эксплуатационная нагрузка 150 кг/м2, коэффициент запаса 1,3, получаем эксплуатационную нагрузку 150 х 1,3=195 кг/м2.
  2. Из нагрузки от веса блоков, которыми заполняется межбалочное пространство. Например, блоки газобетонные плотностью 500 кг/м3 (D=500) толщиной 0,2 м. создадут нагрузку 500 х 0,2=100 кг/м2.
  3. Из нагрузки от веса армированной стяжки. Например, бетонная стяжка толщиной 0,05 м. при плотности бетона 2100 кг/м3 создаст нагрузку 2100 х 0,05=105 кг/м2 (вес арматурной сетки включен в показатель плотности бетона).

Итого желаемая полезная нагрузка на балку составит 195+100+105=400 кг/м2 Далее указываем длину перекрываемого пролета. Например, длина пролета 4,6 м.

Шаг балок — это расстояние между центрами балок, определяется размерами блока и принятой шириной балки. Например, длина блока 0,61 м., ширина балки 0,12 м., шаг балок 0,61+0,12=0,73 м.

Ширина перекрываемого пролета, стоимость бетона и арматуры указываются для того, чтобы калькулятор расчитал количество и стоимость материалов для перекрытия. На расчет параметров армирования эти показатели не влияют.

В разделе «Параметры балки» в первых двух строчках указываются рекомендуемые размеры балки. Принимая во внимание рекомендуемые размеры, выбираем размеры балки исходя из конструктивных соображений. Поскольку используются блоки толщиной 200 мм. и толщина стяжки 50 мм., то принимаем высоту балки 0,25 м. Если стяжка будет заливаться бетоном не одновременно с балками, то высота балки должна приниматься без учета стяжки.

Выбираем количество прутков арматуры из конструктивных соображений. Защитный слой бетона для арматуры должен быть не менее 20 мм., а расстояние между прутками должно превышать размер фракции щебня в бетоне.

На заключительном этапе анализируем результаты расчета и пытамся оптимизировать расходы на устройство перекрытия.

Подбирая число прутков арматуры стараемся уменьшить  вес арматуры на балку. Увеличивая ширину балки пробуем избежать применения поперечной арматуры, при этом правда будет увеличиваться объем бетона на одну балку.

Для нашего примера окончательно выбираем два прутка арматуры в один ряд. Диаметр стержня арматуры 12 мм. Поперечная арматура не нужна. Верхняя арматура также не нужна, так как балка заливается бетоном на месте.

Эта программа-калькулятор позволяет рассчитать перекрытие с равномерно распределенной нагрузкой. Она не применима, если на перекрытие, кроме распределенной, также воздействует значительная сосредоточенная нагрузка от веса каменных перегородок, печей, каминов и пр.

Следующая статья:

Расчет толщины утеплителя перекрытия или покрытия мансарды.

Предыдущая статья:

Сборно-монолитное перекрытие из легких каменных блоков
Еще статьи на эту тему

domekonom.su

Расчет балки (перемычки) | ImhoDom.Ru

Вот тут есть программка в Экселе, по которой можно расчитать балку (сечение и армирование).

http://izba.su/forum/showthread.php?1230-%D0%A1%D0%BE%D1%84%D1%82-%D0%B4%D0%BB%D1%8F-%D1%81%D1%82%D1%80%D0%BE%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE-%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F/page5

Применяется она с учетом вот этих разъяснений…

http://www.sovetporemontu.ru/item170.html

Но я со своим гуманитарным складом ума и таким же образованием не могу в этом всем разобраться!

Может тут кто-нибудь на форуме мне помочь?

Вводные данные такие…

На втором этаже в несущей центральной стене у меня по проекту большой пролет. Там нужно сделать балку. Изначально пролет таким не был, по центру была подпорка-колонна. Но по моей просьбе проектировщик ее убрал, получился широкий проем в стене.

Насколько я понимаю, с учетом снеговых нагрузок на эту балку будет распределяться вес не выше 2,4 тонны на погонный метр.Сверху балки будет продолжение из несколько рядов кирпичной стены (кирпич полнотелый) толщиной 380 мм, далее — армопояс на который будут опираться деревянные балки перекрытия. Выше — холодный чердак (утепление базальтовая вата) и затем крыша. Конструкция крыши, как почти у всех, из дерева. Покрытие — мягкая черепица.Так вот, длина этого пролета 3960мм. Плюс сколько нужно с каждой стороны для опирания на стену?И как понять какую нужно делать высоту этой балки и какое армирование, если бетон будет самый обычный, В15? По ссылке уж очень сложно мне разобраться в формулах! 🙂

В моем проекте заложены в этом месте три перемычки 4ПБ-48-8-П, но я что-то сомневаюсь. Опирание получается аж по 40 см с каждой стороны. Не много ли? Ну и по допустимой нагрузке мне кажется, что будет совсем на грани. Три эти перемычки держат 2,4 т. на метр. Проектировщик сказал, что если я так уж переживаю, то можно сделать сварную железную балку из швеллеров и двутавра. Она будет держать 3750 кг\м.

Но ведь там по этой центральной стене пойдет коньковый брус. Будет центр кровли опираться в это место… Не лучше все же сделать по месту единую бетонную балку с хорошим армированием?Сможете помочь и исходя из вышеуказанных данных сказать какие должны быть ее параметры?

imhodom.ru

подбор перемычек

Рассылка»Новости проекта»

Добавлено: 07 Окт 2011   roki-os

Подбор сборных перемычек

Состав архива

Перемычка_2.2.xls

Комментарии

Комментарии 1-6 из 6

РастОК

, 11 октября 2011 в 20:31

#6

Гы. Это не подбор перемычек, а ведомость которую заполнять нужно вручную. Никаких действий тут не предусматривается, либо это какой-то из пробных вариантов. Оформление очень хромает. А сама идея хорошая, нужно будет самому такую сделать. Паролей тоже никаких я не обнаружил.

roki-os

, 11 октября 2011 в 10:24

#5

для самых продвинутых пользователей пароль 000 (три нуля), если доработаете выкладываете, делал давно принцип расчета смутно помню

roki-os

, 11 октября 2011 в 10:21

#4

заполняешь исходные данные, он тебе ответ выдает по схеме

vladas

, 11 октября 2011 в 01:15

#3

вопросов немало

ДенисКа

, 10 октября 2011 в 21:48

#2

Удобная наверное штука, тока вот воспользоваться нельзя! Может и пароль напишешь, ежели это не девичья фамилия твоей матери….

lera_lev

, 10 октября 2011 в 19:47

#1

не работает…

673236732267321673206731967318

Комментарии могут оставлять только зарегистрированные участникиАвторизоваться

dwg.ru

Расчет монолитной плиты перекрытия

Невзирая на высокий ассортимент готовых плит, железобетонные монолитные плиты не утратили своей актуальности, продолжая пользоваться спросом. Особенно актуальным их применение является при строительстве малоэтажной загородной недвижимости, которой характерна индивидуальная планировка с различным размером комнат или в тех случаях, когда для строительства не используются подъемные краны. Такой вариант возведения зданий позволит сэкономить средства на доставке материалов и сократить затраты на монтаж. При этом возрастет время на осуществление подготовительных работ, которые будут связаны с возведением опалубки. Впрочем, этот факт не отпугивает застройщиков, которые не видят трудности в покупке бетона и арматуры. Гораздо сложнее произвести правильный расчет плит перекрытий, определить марку необходимого бетона, вид арматуры, значение действующей нагрузки и прочие связанные с прочностью и надежностью характеристики.


Принцип расчета

Монолитная плита перекрытия представляет собой один из компонентов каркаса здания, который воспринимает на себя вертикальные нагрузки, вступая одновременно в качестве элемента жесткости всей конструкции. Расчет параметров железобетонных конструкций осуществляется в соответствии с регламентом строительных норм и правил СП 52-101-2003 и СНиП 52-01-2003. Процесс ручного расчета конструкций представляет собой ряд этапов, в ходе которых производится подбор таких параметров, как класс бетона и арматуры, поперечного сечения, достаточного для того чтобы избежать разрушения при воздействии максимальных сил нагрузки. В случае использования ПЭВМ находят применение специализированные программные комплексы.

Как показывает практика применения железобетонных плит перекрытия, для упрощения задачи можно пренебречь сложными вычислениями таких величин, как расчет на раскрытие трещин и деформацию, сил кручения и поперечных сил, а также продавливания и местного сжатия. При обычном строительстве в этом нет необходимости, сосредоточив свое внимание на вычислении изгибающего момента, действующего на поперечное сечение.

Характеристики монолитной плиты

Реальная длина плиты может отличаться от расчетного значения пролета, которым принято считать расстояние между стенами, выступающими в виде опор. Стены выполняют функцию поддержки плиты. Таким образом, пролет – это размер помещения в длину и в ширину. Для его измерения можно использовать простую рулетку, с помощью которой можно измерить расстояние между стенами. При этом реальное значение длины монолитной плиты должно быть обязательно больше. В качестве опор для плиты выступают стены, материалом для которых может послужить распространенный кирпич или шлакоблок, камень, керамзитобетон, газо- или пенобетон. Необходимо учитывать прочность стен, которые должны выдерживать массу плиты. В случае с камнем, шлакоблоком и кирпичом можно не сомневаться в несущей способности, тогда как пенобетонные конструкции должны быть рассчитаны на определенную массу. Для примера произведем расчет однопролетной схемы перекрытия с опорой на две стены, расстояние между которыми составляет 5000 мм.

Геометрические размеры толщины и ширины плиты задаются. Как правило, наиболее часто в загородном строительстве применяют плиты толщиной 0,1 м с условной шириной равной одному метру. Принимаем за основу конструкцию с армированием плиты перекрытия при помощи арматуры марки А400 при заливке бетона В20. В дальнейшем плита при расчете рассматривается как балка.

Выбор типа опоры

Во время расчета плита перекрытия может по-разному опираться на несущие стены, в зависимости от типа использованного при их возведении материала. Различают следующие варианты опоры:

  • жестко защемленная на опорах балка;
  • балка консольного типа шарнирно-опертая;
  • бесконсольная шарнирно-опертая балка.

Вид опоры определяет принцип расчета. Рассмотрим пример расчета для наиболее распространенного вида конструкции плиты перекрытия с шарнирно-опертой балкой бесконсольного типа.


Определение нагрузки

В процессе строительства, а впоследствии при эксплуатации на балку воздействую различные виды нагрузок. При расчете нас интересуют, прежде всего, динамические и статистические нагрузки, возникающие вследствие передвижения или давления сил временного характера, вызванного перемещением людей, транспорта, работы механизмов и постоянные составляющие, обусловленные массой строительных элементов. При проведении расчета, для получения необходимого запаса прочности, можно пренебречь разницей между данными видами нагрузок.

По характеру нагрузки дифференцируются на:

  • распределенные хаотически и неравномерно;
  • точечные;
  • равнораспределенные.

При расчете плиты перекрытия достаточно ориентироваться на равномерные нагрузки. Для сосредоточенной нагрузки усилия измеряются в ньютонах, килограммах (кг), либо килограммсилах (кгс).


В случае с равным распределением актуально апеллировать данными о нагрузке, воздействующей на метр. Для жилых домов параметр равнораспределенной нагрузки составляет в среднем 400 Н/м2. При толщине плиты в 10 см ее масса создаст нагрузку около 250 кг/м2, а с учетом стяжки или использовании керамической плитки она может возрасти до 350 кг/м2. Таким образом, нагрузка рассчитывается с коэффициентом запаса в 20%, составляя:

Q = (400+250+100)*1.2 = 900 Н/м

Данная величина нагрузочной способности обеспечит прочность при различных вариациях статических и динамических нагрузок. При наличии лестниц или бетонных маршей опирающихся на плиту перекрытия, необходимо брать в расчет их массу и не упускать из виду динамическую нагрузку во время эксплуатации. Проектировка загородных домов должна предусматривать инсталляцию крупных объектов на плите, например, каминов, масса которых может варьироваться от 1 до 3 тонн. Для обеспечения прочности в таких случаях используется местное усиление – армирование или предусматривается отдельная балка.

Расчет изгибающего момента

Для бесконсольного типа балки при наличии равномерно распределенной нагрузки, которая сосредоточена на опорах шарнирного вида показатель максимально изгибающего момента определяется по формуле:

Мmax = (Q * L²) / 8, где

L – длина балки.

При расчете имеем:

Мmax = (900*5²) / 8 = 225 кг/м.


Основания для расчета

Для бетонных плит перекрытий сопротивление материала растяжению практически равно нулю. Такой вывод можно сделать на основании анализа и сопоставления нагрузок на растяжение, которые испытывает арматура и бетон. Разница между этими данными составляет три порядка, что свидетельствует о том, что всю нагрузку берет на себя арматурный каркас. С нагрузками на сжатие ситуация обстоит иначе: силы равномерно распределяются вдоль вектора силы. Как следствие, сопротивление на сжатие принимаем равным расчетному значению.

Для выбора арматуры необходимо определить значение по формуле:

ER = 0,8/ 1+RS/700 , где

RS – расчетное значение сопротивления арматуры, МПа.

Имея значение данные о расстоянии между нижней частью балки и центром окружности, сформированной плоскостью поперечного сечения арматуры, ее марку выбирают исходя из таблицы.


Правильный подбор арматуры обеспечит надежное сцепление с бетоном, которое гарантирует предел прочности без деформаций и растрескиваний. При этом максимальное растягивающее усилие арматуры не должно превышать полученное расчетным путем значение.

При армировании на один погонный метр, как правило, уходит не менее чем пять стержней, которые располагаются равномерно на одинаковых расстояниях. Точное число стержней зависит от нагрузки и определяется по СНиП 52-01-2003. Формируется каркас чаще всего из нескольких слоев стержней, которые могут иметь различное сечение. Сетка скрепляется заранее хомутами или фиксируется при помощи сварки. В качестве элементов армирования чаще всего применяется ненапрягаемая арматура Ат-IIIС и Ат-IVС с наличием термического упрочнения.


Таким образом, расчет железобетонной конструкции плиты перекрытия включает в себя следующие стадии:

  • составление схемной реализации перекрытия с компоновкой элементов. При возведении многоэтажек расстояния между колоннами должны быть кратные 3000 мм в диапазоне величин от 6 до 12 метров. Значение высоты одного этажа может находиться в пределах от 3,6 до 7,2 метра с дискретностью 600 мм. Данные условия помогут упростить вычисление и обеспечить стандартный автоматический расчет;
  • прочностный конструкционный расчет монолитной плиты. К расчетной части должна прилагаться графическая часть в виде составленного подробного чертежа, который можно составить самостоятельно или доверить его реализацию специалистам из проектных организаций. При этом необходимо произвести расчет элементов перекрытия и главной балки. Выбор бетона при проектировании осуществляется по классу материала на сжатие по заданной прочности, исходя из норм и табличных значений. Как правило, балка и монолит проектируются из одной марки бетона;
  • в зависимости от архитектурных особенностей строения может понадобиться расчет колонны, а также ригеля или второстепенной балки;


  • на основании всех произведенных расчетов, полученных масс и нагрузок формируется фундамент. Монолитное основание представляет собой подземную конструкцию, с помощью которого нагрузка от здания передается на грунт. Общий чертеж должен отображать конструкцию здания в целом с учетом изображения положения плит перекрытий, несущих стен и основания.

Расчетная часть строительного проекта для любого здания является необходимой документаций, которая содержит информацию о размерах архитектурного объекта, его особенностях, технологии возведении. При этом именно на основе проекта составляется строительная расходная ведомость, в которую включаются необходимые для возведения здания материалы, определяются трудозатраты. А основе расчета осуществляется планирование материалов, этапов выполнения строительных работ, их объемов и сроков. Прочность и надежность здания во многом зависят от правильности расчетов, качества используемых материалов и соблюдения технологии строительства на каждом из отдельно взятых этапов.

Преимущества применения плит перекрытий

Технология возведения перекрытий в виде армированных бетонных плит обладает целым рядом преимуществ, среди которых:

  • возможность сооружения перекрытий для зданий и сооружений с практически любыми габаритами, независимо от линейных размеров. Единственным нюансом являются конструктивные особенности зданий. При слишком большой площади покрытия для устойчивости перекрытий, отсутствия провисаний устанавливаются дополнительные опоры. Для домов и сооружений, стены которых выполнены на основе газобетона для установки плиты железобетонного перекрытия осуществляют монтаж дополнительных опор, изготовленных из стали или бетона;
  • отсутствие необходимости масштабных отделочных работ на внутренней части поверхности, которая, как правило, благодаря технологии монолитного литья имеет гладкую и ровную форму;
  • высокая степень звукоизолирующих свойств. Принято считать, что плита перекрытия толщиной 140 мм обладает высокой степенью шумоподавления, обеспечивающего комфортность проживания в доме для человека;
  • конструктивно данная технология обладает гибкими инструментами для строительства различных архитектурных форм и объектов. Так, например, загородный дом можно с легкостью оборудовать балконом на втором этаже, который будет иметь необходимые размеры и конфигурацию;
  • высокий уровень прочности и долговечности строительной конструкции перекрытии в целом, который обусловлен набором прочностных характеристик армированного бетона.


Расчет индивидуальной железобетонной балки

При возведении зданий и сооружений для устройства перекрытий и стеновой кладки над различными проемами часто, помимо применения железобетонных балок и перемычек заводского изготовления, возникает необходимость в устройстве индивидуальных монолитных железобетонных балок непосредственно на строительной площадке.

Что касается строительства с применением несъемной опалубки, то индивидуальные балки являются его неотъемлемой структурной частью. При наличии конструкторской проектной документации вопросов по их устройству не возникает.

Но на площадках индивидуальных застройщиков весьма распространена практика строительства по архитектурным проектам, так называемым эскизникам, и расчеты монолитных балок приходится выполнять по ходу строительства.

Разберем, как можно выполнить расчет железобетонной балки самостоятельно.

Что принять за основу расчета (общие рекомендации)

 

 

 

 

 

 

 

 

 

Основными нормативами для расчетов железобетонных конструкций являются методики, изложенные в Пособиях к СНиП 2.03.01-84 и СП 52-101-2003.

Конечно, правильнее применять более «свежие» методики, но, судя по отзывам специалистов, для людей, решивших самостоятельно разобраться и рассчитать вручную железобетонную конструкцию, не имея предварительного опыта и специального образования, проще воспользоваться старой методикой.

При этом нужно учесть, что весь расчет следует выполнять в рамках одних нормативов. Если уж начали рассчитывать по новому, значит, во всем применяйте данные нового СП.

Для примера, как они могут различаться, приведем таблицы расчетных значений сопротивления бетона сжатию:

Расчетные значения сопротивления бетона сжатию (СНиП 2.03.01-84*(1996))

 

 

Расчетные значения сопротивления бетона сжатию (СП 52-101-2003)

Разница очевидна и по выбору типа бетона, и по количеству расчетных значений.

В дополнение приведем соответствие классов бетона по СНиП 2.03.01-84 маркам бетона по СНиП II-21-75, все еще используемым в обиходе (соответствие — по столбцам):

Марки бетона (СНиП II-21-75)

М50М75М100М150М200М250М300М350М400М450М500М600М700М800

Классы бетона (СНиП 2.03.01-84)

В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60

Железобетон – материал, включающий в себя несколько составляющих, поэтому учесть работу каждого элемента в общей структуре балки (под влиянием всех факторов на ее несущую способность) весьма затруднительно и под силу лишь профессионалам, которые имеют опыт практических расчетов на основе сопромата.

Конечно, существуют специальные расчетные программы, но они весьма не дёшевы и имеют их крупные проектные организации. Для единичного же расчета углубляться в изучение этих программных комплексов нет особой целесообразности.

На помощь может прийти универсальная программа расчета железобетонной балки. Ее работа основана на автоматическом расчете основных параметров при введении исходных данных, таких как: длина перекрываемого пролета, тип железобетонной опоры, значения нагрузок и прочее.

Область применения бетонных блоков для стен подвалов довольно обширна. Кроме возведения ленточного фундамента, они применяются при строительстве технических подпольев и стен цокольных этажей, используются для обнесения опасных участков дорог, а также при постройке гаражей.

При строительстве любых сооружений и зданий основным из требований к конструкции является надежность, должное сопротивление деформированию во время воздействия различных нагрузок. О железобетонных балках перекрытия читайте здесь.

Встроенный в программу калькулятор бетонной балки определит количество арматуры, в зависимости от заданного диаметра стержней и сечения.

Ориентирами же могут служить следующие базовые положения:

  • Вся арматура в железобетонной конструкции должна располагаться внутри бетона не ближе 2см от его поверхности
  • Арматура должна работать на растяжение, поэтому устанавливать её следует в нижней части конструкции. В верхнем поясе рабочие арматурные стержни устанавливают в случаях, отдельного изготовления балки на строительной площадке с последующим подъемом краном для установки её в проектное положение
  • Диаметр сечения рабочей (продольной) арматуры принимается не менее 12мм и класс её – АIII
  • Высота сечения не менее(!) 1/20 части перекрываемого пролета (6м/20 = 0,3м)
  • Значение отношения высоты к ширине от 2 до 4 (h/b = 2~4)

Также калькулятор железобетонной балки способен выполнить расчет на прочность и рассчитать прогиб.

Определение типа опирания балки

В зависимости от типа опирания (см. Устройство буронабивных свай) выбирается метод расчета. Рассмотрим основные типы опор железобетонных балок на несущие конструкции.

Шарнирный тип опирания.

 

Таковым считается случай, когда в проектное положение устанавливают предварительно изготовленную железобетонную балку.

Причем конструкцией не предусмотрены никакие закладные детали для последующего жесткого соединения с конструктивными элементами здания. Как правило при таком типе опирания ширина плоскости опирания на несущие конструкции (стены, колонны) не превышает 20см.

Жестко защемленная балка.

Чтобы считать балку жестко защемленной на концах, условия должны быть следующими: балка бетонируется одновременно с прилегающими конструкциями в составе монолитной стены, в ее конструкции имеются закладные детали для последующего жесткого соединения с остальными конструктивными элементами.

При бетонировании создает монолитные узлы соединений конструкций.

Многопролетное опирание.

При необходимости перекрыть несколько последовательно расположенных пролетов опирание балки выполняется на несколько опорных конструкций (колонны, простенки между окон).

Такое опирание рассчитывается как многопролетное в случае, если опоры шарнирные). Если опоры жесткие, то расчет ведется по каждому отдельному пролету, как по самостоятельной балке.

Консольное опирание.

Речь о таком типе опирания ведется, когда один или оба конца балки не имеют опор, а так же при отступе опор от концов на некоторое расстояние (свес с опоры).

Например: часть плиты перекрытия выпущена за пределы стены в виде козырька. Такую плиту можно рассматривать балкой с консольной опорой.

Нагрузки на балку

Еще из курса физики известно: все, что неподвижно закреплено (прибито, приклеено и пр.) на чём-либо – это статическая нагрузка.

Соответственно, движущиеся (прыгающие, сотрясающие и т.п.) объекты создают динамические нагрузки.

Но в свою очередь эти нагрузки в случае строительной физики подразделяются на сосредоточенные и равномерные. К сосредоточенным нагрузкам можно отнести, к примеру, бетонную скульптуру, установленную на перемычке (балке) арки.

С равномерными нагрузками несколько сложнее, так как они подразделяются еще на подгруппы: равномерно распределенные по всей поверхности, равномерно изменяющиеся по длине или ширине и неравномерно изменяющейся, соответственно.

Для сосредоточенной нагрузки единицей измерения принят килограмм (килограмм-сила (кгс), ньютон (Н)).

Единицей измерения для распределенной нагрузки принято отношение кгс/м?, однако, при расчетах сборных железобетонных балок для перекрытия значение распределенной нагрузки принимается на метр погонный (м.п.). Для построения эпюр изгибающих моментов к расчету принимается только длина, а высота и ширина игнорируются.

Чтобы перейти от метров квадратных к погонным, когда идет расчёт балки перекрытия, значение распределенной нагрузки умножим на показатель расстояния между балками перекрытия (их осями).

А если определяем нагрузку на перемычку, то плотность лежащего на перемычке материала конструкции, умножаем на ширину и высоту этой конструкции.

Арматура для изготовления стропильных и подстропильных железобетонных балок должна быть предварительно напряженной, для отдельных типов допускаются исключения предусмотренные ГОСТом.

При изготовлении железобетонных конструкций, плотность укладки бетона контролируют по коэффициенту уплотнения (отношение действительной плотности бетона к ее расчетному значению). О данном виде изделий читайте в этой статье.

От тщательности сбора и расчета нагрузок на балку зависит конструктивная надежность сооружения.

Но если со статическими нагрузками все более-менее ясно, то рассчитать возможные динамические нагрузки на все случаи жизни – занятие неблагодарное и приведет к малообоснованному удорожанию строительства.

Поэтому динамические нагрузки принимаются с различными коэффициентами, приближающими к реалиям возможности возникновения одномоментно различных динамических воздействий в данном конкретном месте.

Приведем некоторые значения, наиболее часто учитываемых при расчетах, нагрузок:

  • Вес сборных железобетонных плит заводского изготовления (h=220 мм) 310 ~ 350кг/м2;
    Объемный вес бетона М200 — 2450 кг/м3;
  • Полезная нагрузка на перекрытие с учетом различных коэффициентов:
    жилые помещения ~200 кг/м2
    офисные помещения ~ 250 кг/м2
  • Вес покрытия пола из керамической плитки с цементно-песчаной стяжкой толщиной 25-30мм ~ 100 кг/м2
  • Снеговые, дождевые, сейсмические и прочие нагрузки от природных факторов нужно принимать по СНиП 23-01-99*(«Строительная климатология») с учетом климатического района строительства.

Таким образом, выполнить расчет железобетонной балки вручную вполне возможно, но, на наш взгляд, гораздо рациональнее будет потрачено время, если воспользоваться какой-либо программой для расчета.

Мне нравится3Не нравится2

ПОДБОР ПЕРЕМЫЧЕК | Осиповичский завод железобетонных конструкций

В кирпичной кладке над оконными и дверными проемами необходимо укладывать перемычки — обычно это железобетонные элементы заводского изготовления по типовой серии 1.038.1-1 или в случае больших пролетов — по серии 1.225-2. Также, если нет возможности купить готовые перемычки, можно в условиях стройки выполнить армированные монолитные железобетонные перемычки или балки из металлических элементов — все зависит от размеров проема и нагрузки на стену.

Железобетонные перемычки по серии 1.038.1-1

 Подобрать перемычки по данной серии просто. Нужно знать:

— ширину проема,

— нагрузку на перемычку от собственного веса, веса стены и перекрытия (обычно для жилых домов, в которых нет больших нагрузок, можно выделить три типа: 1 — случай, когда на стену опирается перекрытие; 2 — когда стена самонесущая и перекрытие не опирается; 3 — когда перемычка укладывается в кирпичной перегородке толщиной 120 мм).

Все перемычки в серии имеют обозначение, например 2ПБ18-8 и приведены в виде таблицы, в которой указаны необходимые характеристики — размеры, вес и допустимая нагрузка на перемычку.

Что зашифровано в названии перемычки 2ПБ18-8?

ПБ — это марка. Есть марка ПБ — перемычки брусковые шириной 120 или 250 мм, которые нужно набирать по несколько штук в зависимости от ширины стены и толщины перемычки (для перегородки толщиной 120 мм укладывается одна перемычка, для стены толщиной 380 мм — уже две или три перемычки). А есть марка ПП — это перемычки плитные шириной 380 или 510 мм, рассчитанные на то, чтобы перекрыть сразу всю стену по ширине.

2 — это шифр, скрывающий в себе размеры сечения перемычки. Так перемычка с шифром 1ПБ имеет сечение 120х65 мм, где 120 мм — это ширина перемычки; шифр 2ПБ — 120х140 мм; шифр 3ПБ — 120х220 мм; шифр 4ПБ — 120х290 мм; шифр 5ПБ — 250х220 мм (250 мм — ширина). Для плитных перемычек свои значения. Все это можно посмотреть в таблицах серии 1.038.1-1.

18 — в этом шифре заложена длина перемычки 1810 мм. Если вычесть глубину опирания на стену с двух сторон по 100 мм, получим максимальную ширину проема для данной перемычки 1610 мм.

8 — это нагрузка, которую перемычка выдерживает (в данном случае 800 кг/м). Например, если это 8, то перемычка отлично справится с самонесущей стеной, если 1 — это только для перегородок, а начиная с 27 и выше можно применять для стен, на которые опирается перекрытие.

Как просто подобрать перемычку по серии 1.038.1-1? Разберем на примерах:

Пример 1. Проем в кирпичной перегородке толщиной 120 мм размером 900 мм. Кладка в летних условиях.

Нагрузка на такую перемычку небольшая, для перегородок подходят три типа перемычек:

1ПБ10-1 (длиной 1030 мм), 1ПБ13-1 (длиной 1290 мм) и 1ПБ16-1 (длиной 1550 мм). Минимальная глубина опирания перемычки на стену 100 мм.

Определим длину перемычки: 900 + 100 + 100 = 1100. Таким образом, нам подходит перемычка длиной 1290 мм марки 1ПБ13-1.

Другие примеры подбора перемычке в перегородках здесь.

Пример 2. Самонесущая стена (перекрытие на нее не опирается) толщиной 250 мм, над проемом высота стены 900 мм, проем размером 1400 мм. Кладка в зимних условиях.

Так как ширина стены 250 мм, перемычек нужно две по ширине стены.

В зимних условиях на самонесущую перемычку берется нагрузка от высоты стены, равной расчетному пролету перемычки. Предварительно принимаем расчетный пролет равным 1400 + 2*100/3 = 1470 мм (здесь 100 мм — глубина опирания перемычки). Т.к. 1470 мм > 900 мм (высоты кладки над перемычкой), то в расчете будет участвовать величина 900мм.

Определим нагрузку на 1 погонный метр перемычки:

0,25*0,9*1,8*1,1/2 = 0,23 т/м = 230 кг/м (здесь 1,8 т/м3 — вес кирпича, 1,1 — коэффициент надежности, 2 – количество перемычек), при этом собственный вес перемычки еще не был добавлен. С учетом того, что нужно будет учесть собственный вес перемычки, выберем нагрузку в таблице серии 300 кг/м. Выбираем перемычку с индексом 3. Для этих перемычек минимальная глубина опирания 100 мм.

Определим наименьшую возможную длину перемычки: 1400 + 100 + 100 = 1600 мм.

Подбираем перемычку длиной 1940 мм 2ПБ19-3.

Нагрузка от собственного веса этой перемычки равна 81/1,94 = 42 кг/м, таким образом, несущей способности 300 кг/м достаточно, чтобы выдержать нагрузку, равную 230 + 42 = 272 кг/м.

Еще примеры подбора перемычек в самонесущих стенах здесь.

Пример 3. Несущая стена толщиной 380 мм с опиранием перекрытия пролетом 3 м с одной стороны, над проемом высота стены 900 мм, проем размером 1350 мм. Кладка в летних условиях.

Для этого варианта нужно подобрать две разные перемычки — несущую со стороны опирания перекрытия и менее мощную с другой стороны. Чем больше несущая способность перемычки, тем она дороже.

При кладке в летних условиях нагрузка от перемычки берется от 1/3 расчетного пролета перемычки. Но для несущей перемычки берется вся высота кладки — от верха перемычки до низа перекрытия, т.е. нагрузку будем рассчитывать от высоты 900 мм. А вот для ненесущей перемычки предварительно примем расчетный пролет равным 1350 + 2*100/3 = 1420 мм, тогда 1420/3 = 470 мм — высота кладки, от которой определим нагрузку для ненесущей перемычки.

Определим нагрузку на 1 погонный метр стены со стороны опирания перекрытия:

1,1*0,3*0,5*3 + 1,2*0,15*0,5*3 + 0,66*1,1*1,8*0,38*0,9 = 1,21 т/м = 1210 кг/м (здесь 1,1 и 1,2 — коэффициенты, 0,3 — нагрузка от 1 кв. м перекрытия, 0,5*3 — половина пролета перекрытия, 0,15 — временная нагрузка, 0,66*1,1*1,8*0,38*0,9 — две трети нагрузки от веса стен, определяется как в примере 2). Ближайшая большая нагрузка в таблицах серии 2800 кг/м. Выбираем перемычку с индексом 27. Для этих перемычек минимальная глубина опирания 230 мм, ширина перемычки 250 мм.

Определим наименьшую возможную длину перемычки: 1350 + 230 + 230 = 1810 мм.

Подбираем перемычку длиной 1810 мм 5ПБ18-27. Нагрузка от веса этой перемычки равна 250/1,81 = 138 кг/м, итого нагрузка на перемычку 1210 + 138 = 1348 кг/м, что значительно меньше допустимой нагрузки 2800 кг/м – прочность обеспечена.

Нагрузка на 1 погонный метр стены со стороны, на которую перекрытие не опирается равна:

0,33*1,1*1,8*0,38*0,47 = 0,117 т/м = 117 кг/м (здесь 0,33 — 1/3 ширины стены). Ближайшая большая нагрузка 250 кг/м.

Выбираем перемычку с индексом 2, для нее глубина опирания 100 мм.

Определим наименьшую возможную длину перемычки: 1350 + 100 + 100 = 1550 мм.

Максимальная длина перемычек с индексом 2 равна 1480 мм, что меньше требуемой. Подбираем наиболее подходящую перемычку 2ПБ19-3 (длиной 1940 мм) или 3ПБ18-8 (длиной 1810 мм). Если добавить к полученной нагрузке 223 кг/м собственный вес любой из выбранных перемычек, мы убедимся, что их несущей способности достаточно.

Другие примеры подбора перемычек в несущих стенах можно найти здесь.

Пример 4. Несущая стена толщиной 380 мм с опиранием перекрытия пролетом 6 м с одной стороны и 4,2 м с другой, над проемом высота стены 900 мм, проем размером 1200 мм. Кладка в зимних условиях.

В зимних условиях нагрузка берется от части стены, высота которой равна расчетному пролету перемычки. Т.к. ширина проема 1200 мм больше высоты стены над проемом 900 мм, то в расчете будет участвовать величина 900 мм.

Определим нагрузку на 1 погонный метр:

1,1*0,3*5,1 + 1,2*0,15*5,1 + 0,68 = 3,3 т/м = 3300 кг/м (здесь 1,1 и 1,2 — коэффициенты, 0,3 — нагрузка от 1 кв. м перекрытия, 5,1 = (6+4,2)/2 м — длина сбора нагрузки от перекрытия, 0,15 — временная нагрузка, 0,68 = 0,38*0,9*1,8*1,1 т/м — нагрузки от веса стены).

Подберем плитную перемычку. Нагрузка на нее без учета собственного веса 3300 кг/м.

Ближайшая большая нагрузка 7200 кг/м. Выбираем перемычку с индексом 71. Минимальная глубина опирания для таких перемычек 170 мм.

Определим длину перемычки: 1200 + 170 + 170 = 1540 мм. Подбираем плитную перемычку 3ПП16-71 длиной 1550 мм.

Оконные и дверные перемычки и проемы, перекрытия

Проемы в стенах перекрывают сборными брусковыми перемычками или сборно- монолитными перемычками.

Сборно-монолитные перемычки выполняются с помощью несъемной опалубки из U-образных блоков. Размеры определяются расчетом. При расчете сборно-монолитной перемычки не принимают в расчет опалубку из U-образных блоков. Перемычки изготовляются из тяжелого бетона марки по прочности М200. Арматурный каркас – из арматурной стали класса АIII. Сборно-монолитные перемычки разработаны в альбоме технических решений, выполненных ООО «ИНСИПРОЕКТ» шифра 168/2008. Монтаж сборных перемычек в зависимости от их размера и веса выполняется как вручную, так и с помощью грузоподъемных механизмов. Перемычки укладываются на тот тип раствора, который применяется для кладки стен. Сочетание различных типов растворов для ведения кладки и опирания перемычек не допускается.

В таблицах 8, 9, 10, 11 приведены данные полученные при расчете зданий, выполненных из «ИНСИ-блоков» марки по средней плотности D500, класса по прочности B2,5 на клею марки М50. Высота этажа принята равной 3 м, пролет железобетонной плиты перекрытия 6 м. Плиты опираются на стены не менее 125мм. Перекрытие верхнего этажа и стропила кровли выполнены из деревянного бруса. Утепление чердачного перекрытия выполнено минераловатным утеплителем. Покрытие кровли — листы металлочерепицы. Расчеты выполнены для условий строительства г. Челябинска (III снеговой район).

Простенки стены толщиной 400мм для двухэтажного здания в несущей наружной рекомендуется выполнять шириной согласно таблице 8. Простенки стены толщиной 400мм для трехэтажного здания рекомендуется выполнять шириной согласно таблице 9.

Простенки стены толщиной 500мм для двухэтажного здания в несущей наружной стене рекомендуется выполнять шириной согласно таблице 10.

Простенки стены толщиной 500мм для трехэтажного здания в несущей наружной стене рекомендуется выполнять шириной согласно таблице 11.

Минимальная толщина внутренней стены при условии опирания на нее с двух сторон плит перекрытия двухэтажного здания (высотой не более 8м) принимается не менее 300мм. Для двухэтажного здания при толщине внутренней несущей стены 300мм минимальный простенок рекомендуется выполнять шириной не менее 1,8м (при ширине дверного проема не более 0,9м). При высоте этажа 3 метра и менее минимальный простенок можно увеличить до ширины 1,2м.

Рекомендованная ширина оконных простенков из «ИНСИ-блоков» при толщине наружной несущей стены 400 мм для двухэтажного здания.

Таблица 8
Ширина простенка, мШирина оконного проема, м
0,91,21,51,82,1
0,6 +
0,9 + + + +
1,2 + + + + +
1,5 + + + + +

«+» — рекомендуется к применению.

«−» — не рекомендуется к применению

Рекомендованная ширина оконных простенков из «ИНСИ-блоков» при толщине наружной несущей стены 400 мм для трехэтажного здания.

Таблица 9
Ширина простенка, мШирина оконного проема, м
0,91,21,51,82,1
0,6
0,9 + +
1,2 + + + +
1,5 + + + + +

«+» — рекомендуется к применению.

«−» — не рекомендуется к применению

Рекомендованная ширина оконных простенков из «ИНСИ-блоков» при толщине наружной несущей стены 500 мм для трехэтажного здания.

Таблица 10
Ширина простенка, мШирина оконного проема, м
0,91,21,51,82,1
0,6 + + +
0,9 + + + + +
1,2 + + + + +
1,5 + + + + +

«+» — рекомендуется к применению.

«−» — не рекомендуется к применению

Рекомендованная ширина оконных простенков из «ИНСИ-блоков» при толщине наружной несущей стены 500 мм для двухэтажного здания.

Таблица 11
Ширина простенка, мШирина оконного проема, м
0,91,21,51,82,1
0,6 + + + + +
0,9 + + + + +
1,2 + + + + +
1,5 + + + + +

«+» — рекомендуется к применению.

«−» — не рекомендуется к применению

В стенах из «ИНСИ-блоков» дверные и оконные проемы не имеют четвертей. Крепление деревянных коробок производится оцинкованными гвоздями или металлическими ершами. Зазоры между проемом и оконной (дверной) коробкой тщательно заполняются эффективным утеплителем с установкой упругих прокладок, а откосы оштукатуриваются. Подоконную часть наружной стены следует защищать сливом из кровельной стали.

Перекрытия.

Опирание плит перекрытия на стену должно осуществляться через распределительный пояс, шириной 250 мм и толщиной минимум 120 мм. Распределительный пояс выполняется на всю длину опирания диска перекрытия на стену. Плиты перекрытия должны опираться на распределительный пояс не менее чем 120 мм. Во внутренних несущих стенах распределительный пояс устраивается на всю ширину стены.

Распределительный пояс может быть из монолитного железобетона или из трех рядов полнотелого кирпича, армированного кладочной сеткой.

Для изготовления железобетонного пояса необходимо использовать бетон класса В15. Пояс заходит на продольные стены на ширину 200-250 мм с обеспечением теплоизоляции торца железобетонного пояса слоем газоблоков толщиной не менее 140 мм. Пояс армируется сетками из арматуры диаметром не менее 10 мм класса АIII.

От торца плиты перекрытия до наружной грани стены здания рекомендуется оставаться слой из газоблоков толщиной 150 мм. Между стеной и торцом плиты должен оставаться пустой зазор толщиной 1-2 см для восприятия температурных деформаций здания. При уменьшении наружного слоя из блоков, зазор между торцом плиты перекрытия и стеной должен дополнительно утепляться эффективным легкодеформируемым утеплителем.

По наружным продольным и поперечным стенам в уровне перекрытия располагают армопояс. сечения арматуры в армопоясе не менее двух стержней диаметром 10мм класса АIII. Стержни должны идти непрерывно по всему периметру и по внутренним стенам. При необходимости сварки между собой прочность сварного шва должна быть выше прочности металла по основному сечению стержней.

Под торцами плит перекрытия, опирающихся на стену, арматурные стержни должны проходить внутри железобетонного пояса. Арматурные стержни выпускаются из железобетонного пояса и привариваются к стержням армопояса продольных стен.

Стержни армопояса в продольных стенах укладываются в специально прорезанные штробы, штробы заполняются клеем.

В случае выполнения распределительного пояса из полнотелого кирпича стержни армопояса прокладывают в блоке под распределительным поясом. Стержни армопояса в продольных и поперечных стенах укладываются в специально прорезанные штробы, штробы заполняются клеем. В углах производят сварку стержней.

Чердачное перекрытие, стропильные конструкции.

Опирание деревянной балки деревянного чердачного (междуэтажного) перекрытия на стену из «ИНСИ-блоков». Торец балки должен устанавливаться в гнездо, вырезанное или оставленное в стене из газоблоков. Глубина опирания балки не менее 250 мм. Частота установки балок определяется расчетом. Балка устанавливается на центрирующую растворную подушку из раствора марки М200. Конец балки оборачивается рубероидом, торец остается открытым. Между торцом и стеной должен оставаться воздушный зазор не менее 20 мм. Деревянные балки должны быть антисептированы и обработаны противопожарными составами.

Крепление скатной кровли к стене из «ИНСИ-блоков» осуществляется через мауэрлат. Мауэрлат крепится к распределительному поясу из монолитного железобетона или полнотелого кирпича рис.7.


Рис.7. В местах опирания стропильной системы.

  1. — кладка стены;
  2. — обвязочный пояс;
  3. — мауэрлат;
  4. — элементы стропильной крыши (стропильные балки и обрешетки)

Армопояс по наружным продольным и поперечным стенам (включая фронтоны) выполняется из арматуры не менее двух стержней диаметром 10мм класса АIII. Стержни должны идти непрерывно по всему периметру и по внутренним стенам. При необходимости сварки между собой прочность сварного шва должна быть выше прочности металла по основному сечению стержней.

В местах опоры мауэрлата, арматурные стержни должны проходить внутри железобетонного опорнрго пояса. Арматурные стержни выпускаются из железобетонного пояса и привариваются к стержням армопояса продольных стен. Стержни армопояса в продольных стенах укладываются в специально прорезанные штробы, штробы заполняются клеем.

В случае выполнения распределительного пояса из полнотелого кирпича стержни армопояса прокладывают в блоке под распределительным поясом. Стержни армопояса в продольных и поперечных стенах укладываются в специально прорезанные штробы, штробы заполняются клеем. В углах производят сварку стержней.

Все примыкания деревянных элементов к кладке, железобетону, кирпичу или утеплителю должны быть гидроизолированы путем прокладки слоя рубероида. При конструировании кровли должна быть исключена передача горизонтальных сил от распора возникающих в стропильной системе на наружные стены здания. Силы распора должны полностью восприниматься внутренними затяжками стропильной системы.

При устройстве плоской крыши с парапетом, парапет должен быть усилен армопоясом. Армопояс устанавливается под последним сверху поясом кладки.

Перегородки из «ИНСИ-блоков».

Перегородки могут выполняться из «ИНСИ-блоков» толщиной 100мм, 150мм, 200мм, плотностью D500. Кладка перегородок осуществляется на клеевом составе, с толщиной швов 2-5мм. Высота перегородок из «ИНСИ-блоков» подбираются из условия прочности и устойчивости. Перегородки не должны превышать 3 м при толщине блока 100 мм и 5 м при толщине блока 200 мм. С креплением к наружным, внутренним стенам с шагом 1м по высоте. И с шагом 2м к плитам перекрытия по длине перегородки «упругими» анкерами. При высоте более 3м перегородку необходимо армировать стеклосеткой (прочность на разрыв не менее 80кгс/пог. см) или оцинкованной полосой 50х2мм по всей длине в шве кладки.

Для исключения передачи усилий от деформации перекрытий пространство между перегородкой и плитой перекрытия должно быть заполнено уплотнительной прокладкой (пороизол, вилотерм, минплита). В основание перегородки подкладываются войлочные полоски, пространство между которыми заполняется клеем.

Крепление перегородок допускается осуществлять Т-образными анкерами или анкерами из полосовой оцинкованной стали, устанавливаемыми в стену в уровне горизонтальных швов перегородок и стен. К перекрытию полосовые анкера крепятся дюбелями, отгибаются и гвоздится к торцу блока.

По данным европейских производителей, конструкции стен из газобетона плотности D500 с тонкостенной штукатуркой толщиной 100мм , 150мм и 200мм имеют величину звукоизоляции соответственно 39 дБ, 44 дБ и 46дБ. Конструкция перегородки, состоящая из двух слоев газобетоных блоков по 100мм и слоя минеральной ваты 50мм посередине, обеспечивает величину звукоизоляции 52 дБ. При проектировании необходимо обращать внимание на передачу звука через несущие конструкции и пропуски инженерных систем. В основании перегородок подкладывать упругие прокладки, технологические отверстия должны быть заделаны.

Защитно-декоративные покрытия стен

Декоративно-защитные слои со стороны фасада здания могут быть выполнены из кладочных материалов, облицовочных материалов и изделий с механическим креплением, а также штукатурными и окрасочными составами.

Стены из ячеистых блоков с кирпичной облицовкой допускаются для зданий высотой не более 5 этажей (15м). Облицовочная стена полностью опирается на сплошной фундамент или рандбалку. Передача вертикальных усилий от облицовочной стены на кладку не допускается. Для беспрепятственного удаления водяных паров, прошедших через кладку из ячеистых блоков, следует проектировать с вентилируемой воздушной прослойкой. Облицовочная стена связывается с основной стеной с помощью гибких связей. Гибкие связи выполняются из нержавеющей стали, оцинкованной стали или стеклопластика, устанавливаются в швы и забиваются в тело блоков. Количество гибких связей определяется расчетом, но не меньше 3-4 шт. на метр квадратный кладки.

Запрещается соединять облицовочный кирпичный слой с кладкой из ячеистобетонных блоков арматурными сетками, заложенными в швы кладки.

Облицовка с использованием различных вентилируемых фасадов позволяет разрабатывать различные архитектурные элементы, выполнять сложные цветовые решения фасадов, в том числе сочетание различных цветов на одном фасаде. Необходимо обратить внимание на крепежные элементы, обеспечивающие надежное крепление фасада к ячеистому бетону, следовать рекомендациям производителей навесных систем и крепежных элементов.

Для оштукатуривания фасадов целесообразно использовать высококачественные тонкослойные штукатурные смеси, модифицированные полимерными добавками. Всештукатурные составы должны быть модифицированы водоудерживающими добавками из расчета 98% водоудерживающей способности. В помещениях с влажными режимами эксплуатации применяют гидроизоляционные штукатурные составы.

Нанесение штукатурных составов следует начинать при влажности ячеистых блоков не выше 27%. При толщине защитно-декоративного слоя до 10мм включительно его допускается не армировать. Если толщина защитно-декоративного слоя от 10мм до 15мм, для более равномерного распределения усадочных деформаций его необходимо армировать стеклосеткой, микроармирующим строительным волокном по ТУ 2282-006-1342727-2007 производства ООО «СИ АЙРЛАЙД». При толщине защитно-декоративного слоя от 15мм до 20мм включительно, следует предусмотреть армирование металлической сеткой, микроармирующим строительным волокном. Проектирование защитно-декоративного слоя больше 20мм не допускается.

Для окрашивания применяются различные фасадные краски, не препятствующие процессу «дыхания» блоков и обеспечивающие защиту от увлажнения.

При возведении зданий из блоков используются следующие инструменты:

  • Ленточная пила – предназначена для распиловки блоков из ячеистого бетона при больших объемах работ. Прямой привод, автоматическое отключение.
  • Электропила ручная – предназначена для распиловки блоков непосредственно на строительной площадке.
  • Ручная пила – предназначена для распиловки блоков вручную непосредственно на строительной площадке. Имеет победитовые наконечники и высокую степень износостойкости. При небольших объемах возможно использование обычной ножовки.
  • Сверло для стен, винтовое сверло – предназначено для сверления кладки для трубных разводок.
  • Сверло – предназначено для подготовки отверстий для распределительных коробок, розеток и выключателей.
  • Ручной штраборез– предназначен для прорезки канавок, пазов, штраб для укладки анкеров, труб и электрической разводки. Применим для ячеистобетонных блоков класса не выше В 2,5
  • Долото – предназначен для нарезки штраб для труб и электрической разводки. Применим для блоков класса не выше В 2,5
  • Рубанок ручной – предназначен для снятия фасок с блоков.
  • Лопастная мешалка – предназначена в качестве насадки к электрической дрели мощностью не менее 600 Вт
  • Зубчатая кельма – применяется для нанесения клеевого раствора при кладочных работах. Изготавливается для всех толщин стен от 100 до 600 мм.
  • Ковш-скребок с зубчатым краем – предназначен для нанесения и расстилки раствора (клея) по поверхности кладки.
  • Молоток резиновый – применяется для подгонки блоков при выполнении клдочных работ.
  • Шлифовальная доска – предназначена для ликвидации неровностей на поверхности блоков.
  • Уголок – предназначен для обеспечения точности обрезки блоков.
  • Направляющий шаблон – предназначен для срезки блоков в проемах или откосах.

Информация по производству и применению автоклавных ячеистых «ИНСИ-блоков».

Всю информацию по производству и применению автоклавных ячеистых «ИНСИ-блоков» можно получить на сайте: http://www.gazo-beton.ru/

Монолитное определение | Монолитная плита | Монолитная опора | Монолитный фундамент | Преимущества и недостатки монолитного плитного фундамента

Монолитное определение

Монолитное строительство — это процедура, при которой используется однородная смесь, конструкция представляет собой монолитно построенную . Это сооружение, построенное из единственного материала, собранное и выкопанное.

Обе монолитные плиты, стены , лестницы, вместе с дверью и оконными проемами отливаются по методу монолитного . Процедура на месте с использованием специально изготовленной, более простой в использовании модульной опалубки , изготовленной из алюминия , пластмассового композитного материала с меньшими затратами рабочей силы и оборудования.

Система сопротивления боковым и гравитационным нагрузкам в этой системе содержит железобетонные стены и плиты из железобетона . Основными вертикальными конструктивными элементами являются железобетонные конструкционные стены с двойной функцией , способные выдерживать как силу тяжести , так и боковые нагрузки. ( Стандартный размер кирпича )


Монолитная опора Монолитные опоры

Монолитный фундамент дает всего за одну заливку , так что фундамент сконструирован для замены нижних колонтитулов на подошву , сделанную из бетонного перекрытия с более толстыми секциями под конструктивными элементами и с обеих сторон периметр .

Это значительно на более гладкий и поддерживает себестоимости производства на ниже, потому что плита сливается вместе сразу.Построить монолитных фундаментов очень просто. Вероятно, сделать каждое из них за один день.

Монолитная конструкция имеет толщину всего 12 дюймов (1 фут). Благодаря благоприятному усилению, это основа для стоимости, цены, и дизайна предпочтения. Это тоже считается выражением.


Что такое монолитная плита?

Монолитные плиты — это фундаментные конструкции, построенные с помощью одной бетонной заливки, обычно содержащие бетонную плиту толщиной 4 дюйма с утолщенными внутренними секциями под несущими стенами и всегда с утолщениями на краях периметр .

Монолитная плита

В конструкции бетонных плит монолитная плита — это фраза, используемая для обозначения бетонных конструктивных компонентов , таких как опоры , плиты, фундаменты, опорные балки, опоры, и колонны , которые заливаются одновременно.

Не просто монолитная цементная плита применима к бетону , уложенному на землю , но она аналогичным образом соответствует подвесной плите .Использование опорных материалов делает заливку бетонных плит монолитно с бетонными балками и колоннами, в то время как подвесная бетонная плита находится над уровнем земли .

Строительство монолитной плиты значительно быстрее, а затраты на рабочую силу низкие, так как в этой плите бетон заливается сразу. Монолитная конструкция имеет решающее значение для минимизации толщины стены, минимизации ширины основания и минимизации сейсмического эффекта . ( МДФ )

При использовании в подходящих условиях, монолитная плита может быть такой же прочной, как плиты стебель-стена . Мы использовали опалубку в монолитной раме , что дает правильную ориентацию , гладкую поверхность и качественную работу. Это увеличивает скорость строительства по сравнению с традиционными подходами за счет использования опалубки .

Подробнее: Что такое плавающий фундамент | Пригодность плавающего фундамента | Преимущества и недостатки плавающего фундамента | Как построить фундамент плавучего дома


Монолитный фундамент для плиты Монолитно-плитный фундамент

Монолитный означает залить за один раз , что подчеркивает основную разницу с этим типом фундамента — это заливка за один раз.Тот факт, что он разливается за один раз, ускоряет процедуру, что позволяет снизить затраты на рабочую силу.

Заливаемая бетонная плита толще снаружи, чтобы поддерживать несущих стен , и нет нижних колонтитулов снаружи.

Монолитный фундамент хорошо подходит для ровной поверхности. Если поверхность неровная, то для выравнивания с землей используется засыпки ; со временем это может привести к трудностям с растрескиванием , если грунт не утрамбован должным образом.

Обычно бетонная поверхность заливается монолитно или независимо от фундамента . Чтобы избежать растрескивания из-за оседания, выбирается арматура или волокнистая сетка . На его строительство уходит меньше времени и труда, чем на традиционный фундамент . ( Водопроводная труба)

Под линией промерзания , должен простираться пол фундамента ниже.


Преимущества монолитно-плитного фундамента

Преимущества монолитной плиты

1.

Скорость строительства

Монолитные плиты очень просто построить. Добавьте периферийную траншею и рассыпьте гравий до тех пор, пока не будет утрамбовано почвы (или удалите верхний слой почвы ).

В самой узкой части (например, в середине дома) бетон должен быть толщиной 4 дюйма и в основном выдержит несколько дней для полного высыхания. Это на значительно быстрее , чем любой другой метод строительства фундаментов .


2.

Устойчивость

С точки зрения простоты , монолитный плиточный фундамент прослужит почти 50 лет , если будет построен правильно. Из-за отсутствия сложных компонентов, нет ничего плохого в самой плите.

В бетоне нет швов. , и если вспомогательные и анкерные болты установлены надлежащим образом, у вас будет прочный фундамент , способный выдержать большой вес.


3.

Плохое обслуживание

Чтобы поддерживать его в приличной форме , вам не нужно ничего делать из по месяцам , если вы регулярно проводите осмотр, чтобы убедиться, что нет пробелов в фундамент .


4.

Энергоэффективность

Между землей и домом нет места для фундамента из монолитных плит , означает, что вам не нужно тратить слишком много энергии на нагрев воздуха под ним в вашем доме .Даже для подвала или подполья происходит постоянная трата энергии.

Это говорит о том, что монолитная плита основания не только дешевле в краткосрочной перспективе, но и в долгосрочной перспективе, это сэкономит ваши деньги.


Недостатки монолитно-плитного фундамента

У монолитной плиты несколько недостатков,

1.

Нет доступа

Подвальное помещение или подвал дает доступ к полу, что гарантирует, что в этом конкретном пространстве вы можете установить водопровод , а также электрическую панель и проводку.

Точно так же, если что-то пойдет не так с монолитным основанием плиты , вы не сможете добиться этого, чтобы исправить сложность.


2.

Дорогой ремонт

В то время как вещи с фундаментом из монолитных плит редко выходят из строя, когда они треснут , это может быть очень дорого .

В основном вам потребуется использовать методы , которые могут стоить тысяч долларов , такие как поддомкрачивание грязи или базовое поддомкрачивание.


3.

Плохая погода

Дом только что приподнят на 6 дюймов или около того от уровня земли л с бетонными перекрытиями плитами , гарантируя, что остальная часть здания уязвима для наводнений . Это значительная уязвимость в определенных частях мира.


4.

Цена перепродажи дома

Монолитная плита в некоторых случаях может снизить стоимость вашего дома.Если у вас есть старая монолитная плита основания , потенциальный потребитель обнаружит, что может потребоваться дорогостоящего ремонта .

Если вы продолжите проектировать его самостоятельно, покупатель может неуверенно оценить его результаты.


Как сформировать монолитную плиту? Формовка монолитной плиты

Удовлетворительный участок планирование и укрепление бетона являются важными критериями для строительства монолитной плиты .

1.

Почва

Это, безусловно, удобный вариант , где бетон смешан в настоящее время и имеет достаточно стали, чтобы он не расслаивался. Кроме затяжки швов , у нет швов или холодных швов . Использование сборных фундаментов не предусмотрено.

Очень важно уплотнить почву под плитой и исключить органических веществ . Если верхний слой почвы очищен от , то он, как правило, цементирует ненарушенный грунт под ними должным образом.

Значительно дренаж почвенная скважина . Очень важно учесть водных потоков, и должно быть подготовлено адекватное перенаправление , чтобы не подрезало плиты.


2.

Траншеи по периметру

Утолщенный периметр монолитной плиты образован траншеей вдоль окружности плиты. В теплую погоду траншея может быть просто фута глубиной и футов шириной .

Траншея должна иметь глубину 2 фута в регионах с проницаемыми морозами и может быть изолирована, чтобы предотвратить образование морозного пучения под плитой.


3.

Гравий

Плотный гравий рассыпается под плитой и в траншеях на глубину 3,5 дюйма от до 4 дюйма и более.

Хорошо дренирующий гравий с заполнителями от 0,38 дюймов до 0.75 дюйма — отличный выбор.


4.

Арматура

Арматура составляет примерно 6 дюймов на 6 дюймов. Плетеная проволочная сетка (6 ″ x 6 ″) используется в обычной установке, которая устанавливается на арматурных стульях так, чтобы ее можно было закрепить рядом с промежуточным звеном завершено плита .

К армируют утолщенный периметр , обычно указываются 4 стержня .Там, в самой нижней части траншеи, 2 последовательных стержня могут быть размещены рядом друг с другом, начиная с одного стержня в верхней части.

Арматуру следует закладывать в траншеи и повторно связывать.


5.

Бетон

В большинстве случаев бетон определяется как 3000 фунтов на квадратный дюйм , а также как минимум толщиной 4 дюйма.

Минимум 6 дюймов выше нижнего пола должен быть в конце плиты.Земля, которая его окружает, должна иметь уклон от плиты на .


6.

Анкерные болты

Анкерные болты с болтами 0,5 дюйма , самые нижние плиты стен формации прикреплены к плите . На концах, которые помещают в бетон, когда он уже влажный, эти болты обычно имеют J-образную или L-образную форму.

Различные стороны анкерных болтов имеют резьбу, так что верхняя сторона настенной пластины может быть затянута гайками .Обычно анкерных болтов отстоят на 6 футов от промежуточного.


Какие проблемы возникают с монолитным фундаментом?

Несмотря на удобство и простоту установки монолитного фундамента , могут возникнуть проблемы, которые могут поставить под угрозу фундамент. Для фундамента может потребоваться дорогостоящих ремонтов , что говорит о том, что было бы неплохо использовать обычный фундамент .

Типичные трудностей , обнаруженные с монолитным фундаментом: трещины в различных жилых районах поддерживаются фундаментом.

Трещины фундамента — это огромный регион , концерн . Когда в фундаменте появляются трещины, фундамент можно утеплить на холодных стыках (стена встречается с плитой) . Маленькие отверстия облегчают проникновение воды, влаги и насекомых в дом.

Проблемы с повышением влажности на в почве или неправильная конструкция могут повредить фундамент. Это может привести к неровной поверхности столешниц , этажей, и стен в доме.Движение в фундаменте может привести к дверям и окнам , которые залипают и ломаются в стенах из гипсокартона .


Когда не следует использовать монолитно-плитный фундамент при строительстве

Подрядчикам следует избегать использования монолитных плит фундаментов (монополярных) в следующих ситуациях:

  • Жилые комплексы с уклоном могут привести к дорогостоящим расходам из-за необходимого количества бетона .
  • Дома с несколькими засыпанными грязью отверстиями под домом приводят к трещинам в бетоне.
  • Строительная компания не может построить монолитный фундамент плиты в зоне затопления из-за положений кодекса.

Надлежащая подготовка площадки под фундамент из монолитных плит

Почва под плитой не должна содержать органических веществ. Почва должна быть утрамбованной (удаление верхнего слоя почвы) и хорошо дренированной .

Применение кода определяет тип и расположение арматуры в этом фундаменте типа . Наиболее часто используется монолитная плита из четырех арматурных стержней. Арматурный стержень — это два металлических стержня , которые легко сгибаются и располагаются бок о бок с перекрытием , — в траншеях и соединены проволокой.

Траншея вдоль периферии плиты — это то, что образует утолщенный край. Должностные лица строительного кодекса указывают глубину и ширину траншеи. Эта траншея может быть шириной 1 фут и глубиной 1 фут в теплую погоду или шириной 1 фут и глубиной 2 фута в условиях , где наблюдается морозное пучение.

Подробнее: Фонд «Что такое хорошо» | Строительство фундамента колодца | Типы фундаментов колодцев | Компонент фундамента скважины | Проходка фундамента колодца


Монолитное строительство
  • Монолитная система строительства с алюминиевой опалубкой — это быстрое и устойчивое к стихийным бедствиям сооружение, происходящее развитие, которое дает рентабельных и быстрых массовых жилых домов.
  • Монолитная архитектура — это механизм , с помощью которого одновременно размещаются плиты и стены.
  • В этой конкретной системе свежая цементная смесь помещается в легкий алюминиевый , создавая устройство с арматурными стержнями, необходимыми для обеспечения требуемой прочности .
  • Процедура относительно проста, так как стены и плиты отливаются за один раз.Это желательно для многоэтажного дома постройки, что дает возможность быстрого повсеместного строительства .
Монолитное перекрытие
  • Обеспечивая более эффективное использование времени, ресурсов, и строительных материалов , таких как цемент и сталь, эта технология дает более быстрые альтернативы быстро растущему жилищному дефициту в городских районах.
  • Когда мы переходим к массовому жилищному строительству , это дает быстрое развитие при оптимальных затратах и ​​времени, особенно для экономически более слабых секций и классов с низким доходом , которых много без домов.
  • Это очень полезная технология, которая одновременно упрощает бетонирование всех элементов , таких как кровля , стен и т. Д., В результате чего получается чрезвычайно прочная монолитная конструкция .
  • Техника включает в себя необученных и полуквалифицированных (ручных) рабочих и, следовательно, не требует использования дорогостоящей строительной техники .
  • Таким образом, рентабельно, Модульные конструкции в популярных жилых помещениях застройки открывают новые возможности для повторного использования опалубки, создавая относительно рентабельную технологию .
  • Материал опалубки ( либо алюминий, либо HDPE) является экологически чистым и исключает использование критически важной древесины из природных ресурсов. Это дает начало устройству eco-safe .
  • Эта система обеспечивает выдающееся управление качеством из всей структуры в соответствии с BIS и различными международными стандартами.
  • Не требуется плиток, блоков, штукатурки и .
  • Надстройка и фундамент Расходы могут быть уменьшены без ущерба для прочности благодаря уменьшению собственного веса примерно на 50%.
  • Поведение коробчатого типа почти обеспечивает чрезвычайно высокую конструктивную прочность , что делает его устойчивым к землетрясениям и ветру или циклонам, действующим вертикально и горизонтальным силам.
  • Прекрасная завершенная поверхность исключает дорогостоящей штукатурки и укрепляет поверхность , которая является относительно полностью водонепроницаемой.
  • Из-за уменьшенной толщины стенок коврового пространства доступно для предусмотренной зоны цоколя .
  • Монолитная бетонная конструкция обеспечивает точной подготовки и гарантированного регулирования консистенции.

Когда монолитно-плитный фундамент — лучший вариант?

В некоторых погодных условиях монолитный фундамент из плит — достойный выбор. Это в основном во влажном и умеренном климате.

1.

Влажный климат

В влажном климате монолитная плита сможет выдерживать влаги двумя основными способами.

Во-первых, , это материал, который не вызывает коррозии после намокания; в отличие от , опоры и балки фундамента созданы из дерева, которое относительно плохо переносит влажность .

Во-вторых, , поскольку между землей и домом нет отверстия , влага не может проникнуть.Это не только уменьшает структурных повреждений , но также уменьшает повреждения от плесени (что является обычным явлением в ползунках).

Подробнее: Какой фундамент для дома самый прочный | Какой фундамент для дома самый лучший | Фонд Best House


2.

Мягкий климат

В очень холодную погоду , , где промерзание грунта является обычным явлением, подвал — полезная особенность дома (действительно, предписано некоторыми из строительных норм ).Однако, если вы не живете в районе, где часто замерзает , нет аналогичного императивного для подвала.

Как упоминалось выше, в мягком климате можно установить монолитный фундамент плит перекрытия для повышения общей энергоэффективности. В очень жаркую или пустынную погоду лучше всего подойдет ползунок , в морозном климате это может быть подвал, но в погодных условиях , которые попадают между двумя (например, большинство из Соединенные Штаты ).


Часто задаваемые вопросы

Монолитный фундамент?

Монолитная плита Фундамент — это фундаментные конструкции, построенные с помощью единой бетонной заливки, обычно содержащие бетонную плиту толщиной 4 дюйма с утолщенными внутренними секциями под несущими стенами и всегда утолщенными по краям периметра.

Что лучше — монолитная плита?

Да, монолитная плита — хороший выбор , потому что она значительно более гладкая и снижает стоимость производства, потому что плита сразу заливается вместе.Его строительство происходит значительно быстрее, а затраты на рабочую силу низкие.

Каковы преимущества монолитно-плитного фундамента

?

Монолитный фундамент из плит имеет следующие преимущества:
1. Монолитные плиты очень просто построить.
2. С точки зрения простоты монолитный фундамент из плит при правильном строительстве прослужит почти 50 лет.
3. Чтобы поддерживать его в приличной форме, вам не нужно ничего делать ежемесячно, если вы регулярно проводите осмотр.
4.В самой узкой части (например, в середине дома) бетон должен иметь толщину 4 дюйма, и на полное высыхание потребуется несколько дней.

Какой толщины должна быть монолитная плита?

Монолитная плита имеет толщину всего от 12 дюймов от (1 фут) до 18 дюймов. Это фундаментные конструкции, построенные с помощью единой бетонной заливки, обычно содержащие бетонную плиту толщиной 4 дюйма с утолщенными внутренними секциями под несущими стенами и всегда утолщенными по краям периметра.

Монолитные опоры

Монолитные опоры дают всего за одну заливку , так что фундамент сконструирован для замены нижних колонтитулов на подошву , сделанную из бетонного перекрытия с более толстыми секциями под конструктивными элементами и с обеих сторон периметр .

Монолитное значение

Строение, построенное из единого большого блока камня.


Вам также может понравиться


Изображение предоставлено: Изображение1 Изображение2 Изображение3 Изображение4 Изображение5

Балка VS Перемычка — Разница между балкой и перемычкой

Перемычка и балка являются горизонтальными элементами здания, но отличаются друг от друга.Балка и перемычка имеют разные функции, а также различаются по техническому аспекту. Итак, в этой статье мы увидим разницу между балкой и перемычкой .

, давайте начнем с

Разница между балкой и перемычкой

Концепция

Это горизонтальные элементы, используемые для поддержки вертикально приложенных нагрузок. Это горизонтальный элемент, расположенный параллельно плите.

Перемычки — это горизонтальные элементы, используемые для поддержки кирпичной кладки окон, дверей и других проемов в стене.

Типы

Типы балок: просто опорная балка, фиксированная балка, консольная балка, свисающая балка и т. Д. Они могут быть из разных материалов, но обычно имеют форму RCC.

В то время как перемычки в основном поддерживаются просто. Типы перемычек: деревянные перемычки, бетонные перемычки, каменные перемычки, кирпичные перемычки, стальные перемычки и т. Д. В настоящее время деревянные перемычки не используются, потому что древесина подвержена гниению, а также может быть повреждена во время пожара и, следовательно, может вызвать обрушение стены наверху. Это.

Путь передачи нагрузки

Балка несет нагрузку от плиты и передает ее на колонну, колонна переносится на основание и, наконец, с основания на грунт.

При этом перемычка несет нагрузку стены над проемами и передает ее только на стены.

Также прочтите Что такое цокольная балка? Защита цоколя, разница между балкой цоколя и поперечной балкой

Функция

Балка предназначена для поддержки лежащей на ней плиты.Он также обеспечивает поддержку пола и потолка.

В то время как основная функция перемычки — поддерживать кирпичную стену над проемами, такими как дверь, окно, и передавать свою нагрузку на боковые стены.

Поведение

Балка может действовать как неподвижная балка или просто опорная балка в зависимости от условий опоры.

В то время как перемычка обычно действует как балка без опоры.

Элемент конструкции

Балка является элементом каркаса и частью несущего каркаса.

При этом перемычка не является элементом каркаса и не является частью несущего каркаса.

Значение в структуре

Балка является наиболее важным элементом здания и, следовательно, требует должного внимания при проектировании.

Хотя в большинстве случаев перемычки не принимаются во внимание, иногда эти конструкции даже не предусмотрены, что в конечном итоге приводит к диагональным трещинам в отверстиях.

Также прочтите Разница между уровнем цоколя, уровнем подоконника и уровнем перемычки.

Расположение

Балка опирается на колонну и стену, ее конечная точка опирается на колонны.

В то время как перемычка размещается на дверной или оконной раме, а иногда и на стене, ее конец опирается на стены.

Возможность проектирования

Проектирование балки непросто по сравнению с перемычкой, поскольку она является частью несущего каркаса, но в настоящее время работа стала легкой, поскольку для проектирования доступно множество программ для трехмерного моделирования.

, в то время как конструкция перемычки проста, поскольку она не является частью структурного каркаса.

Геометрия

Балки могут быть прямыми, изогнутыми или сужающимися в плане.

С другой стороны, перемычки могут быть прямыми или изогнутыми в плане, но последняя тенденция состоит в том, чтобы избегать перемычек и обеспечивать глубокий луч, доходящий до верхней части дверной или оконной рамы, что приводит к экономии времени и обеспечивает больше звука и прочная конструкция.

Процесс строительства

Балка обычно отливается вместе с плитой в целом, за исключением сборной балки, балки непросто и легко построить по сравнению с перемычкой.

С другой стороны, при возведении каменной стены перемычку можно отлить отдельно. Также можно использовать сборные перемычки. Построить перемычку несложно и легко по сравнению с балкой.

Также прочтите Что такое наведение? Виды наведения, цели и методы.

Ширина

Ширина балки может быть равна или больше размера стены внизу. это зависит от нагрузки.

При этом ширина перемычки равна размеру стены внизу.

Длина

Балка может быть длинной или короткой в ​​зависимости от конфигурации конструкции. Он намного длиннее своего поперечного сечения.

При этом перемычка в основном является короткопролетным элементом. По сравнению с поперечным сечением он ненамного длиннее.

Площадь поперечного сечения

Площадь поперечного сечения балки больше по сравнению с перемычкой.

При этом площадь поперечного сечения перемычки меньше, чем у балки.

Заключение

Это разница между балкой и перемычкой . В этой статье я постарался охватить все различия. Если вы нашли эту статью полезной, обязательно поделитесь ею.

Наконец, спасибо! за прочтение статьи.

Также прочтите

Как рассчитать удельный вес стального стержня

График гибки стержня — важность | преимущества | Подготовка

Разница между длиной нахлеста и длиной развертки

Разница между уплотнением и консолидацией

Как выполнить расчет нагрузки на колонну, балку, стену и перекрытие | Расчеты конструкции колонны | Расчет балочной нагрузки | Расчет нагрузки на стену

Что такое столбец?

Элемент сжатия, т.е.е., колонна, является важным элементом каждой железобетонной конструкции . Они используются для безопасной передачи нагрузки надстройки на фундамент.

В основном колонны, стойки и постаменты используются в качестве элементов сжатия в зданиях, мостах, опорных системах резервуаров, заводов и многих других подобных конструкций.

Колонна определяется как вертикальный сжимающий элемент, который в основном подвергается действующей длине и осевым нагрузкам, превышающей в три раза ее наименьший поперечный размер.

Компрессионный элемент, эффективная длина которого меньше чем в три раза меньше его наименьшего поперечного размера, называется опорой.

Сжимающий элемент, который является наклонным или горизонтальным и подвергается осевым нагрузкам, называется распоркой. В фермах используются подкосы.

Функция колонн заключается в передаче нагрузки конструкции вертикально вниз для передачи ее на фундамент. Помимо стены выполняет также следующие функции:

  • Он разделяет территорию здания на разные отсеки и обеспечивает конфиденциальность.
  • Обеспечивает защиту от взлома и насекомых.
  • Сохраняет тепло в здании зимой и летом.

Также прочтите: Что такое Pier Foundation | Типы пробуренных опор | Преимущества и недостатки фундаментов пробуренных опор

Что такое луч?

Балка — это конструктивный элемент, устойчивый к изгибу. В основном балка несет на себе вертикальные силы тяжести, но также тянет на нее горизонтальные нагрузки.

Балка называется стеновой плитой или порогом , которая несет передающие и нагружает их на балки, колонны или стены. Он прикреплен с помощью.

В ранние века древесина была наиболее предпочтительным материалом для использования в качестве балки для этой структурной опоры, теперь она выдерживает силу вместе с вертикальной гравитационной силой, теперь они сделаны из алюминия, стали или других подобных материалов. .

Фактически балки — это конструкционные материалы, которые выдерживают поперечную силу нагрузки и изгибающий момент.

Для того, чтобы выдерживать большее напряжение и нагрузку, предварительно напряженные бетонные балки широко используются в настоящее время в фундаменте мостов и других подобных громоздких конструкций.

Несколько известных балок, используемых в настоящее время, поддерживаются балкой, фиксированной балкой, консольной балкой, неразрезной балкой, нависающей балкой.

Что такое стена?

Стена — структурный элемент, который разделяет пространство (комнату) на два пространства (комнаты), а также обеспечивает безопасность и укрытие. Как правило, стены подразделяются на два типа: внешняя стена и внутренняя стена.

Наружные стены ограждают дом для укрытия, а внутренние стены помогают разделить ограждение на необходимое количество комнат. Внутренние стены также называются перегородками.

Стены делят жилую зону на разные части. Они обеспечивают конфиденциальность и защиту от температуры, дождя и кражи.

Также прочтите: Что такое гипс | Тип штукатурки | Дефекты штукатурки

Что такое плита?

Плита предназначена для обеспечения плоских поверхностей, обычно горизонтальных, на крышах зданий, перекрытиях, мостах и ​​других типах конструкций .Плита могла поддерживаться стенами , железобетонными балками, обычно , монолитно залитыми с плитой, балками из конструкционной стали, либо колоннами , либо из земли.

Плита — это пластинчатый элемент, имеющий глубину (D), очень маленькую по сравнению с его длиной и шириной. Плита используется в качестве перекрытия или крыши в зданиях, равномерно переносит распределительную нагрузку.

Плита может быть

  • Просто поддерживается.
  • Continuos.
  • Консоль.

Расчет различных нагрузок на колонну, балку, стену и перекрытие

  • Столбец = Собственный вес x Количество этажей
  • Балки = Собственная масса на погонный метр
  • Нагрузка на стену на погонный метр
  • Общая нагрузка на плиту (постоянная нагрузка + динамическая нагрузка + ветровая нагрузка + собственный вес)

Помимо указанной выше нагрузки на колонны также действуют изгибающие моменты, которые необходимо учитывать при окончательном проектировании.Эти инструменты представляют собой упрощенный и трудоемкий метод ручных расчетов для проектирования конструкций, который в настоящее время настоятельно рекомендуется в полевых условиях.

Наиболее эффективным методом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как STAAD Pro или ETABS. Для профессионального проектирования конструкций есть несколько основных допущений, которые мы используем при расчетах нагрузок на конструкции.

Также прочтите: Введение в портальную балку | Нагрузка на портальный желоб | Тип нагрузки на портальный желоб

Расчет нагрузки на колонну:

Мы знаем, что собственный вес бетона составляет около 2400 кг / м 3 , , что эквивалентно 24.54 кн / м 3 , а собственный вес стали составляет около 7850 кг / м 3 . (Примечание: 1 килоньютон равен 101,9716 килограмму)

Итак, если мы примем размер колонны 300 мм x 600 мм с 1% стали и 2,55 (, почему 2,55 так, высота колонны 3 м — размер балки ) метра стандартная высота, собственный вес столбец около 1000 кг на этаж , что id равно 10 кН.

Как загрузить расчет в столбец?

  1. Размер колонны Высота 2.55 м, длина = 300 мм, ширина = 600 мм
  2. Объем бетона = 0,30 x 0,60 x 2,55 = 0,459 м³
  3. Вес бетона = 0,459 x 2400 = 1101,60 кг
  4. Вес стали (1%) в бетоне = 0,459 x 1% x 7850 = 36,03 кг
  5. Общий вес колонны = 1101,60 + 36,03 = 1137,63 кг = 11,12 кН

При проведении расчетов мы предполагаем, что собственный вес колонн составляет от 10 до 12 кН на этаж.

Расчет балочной нагрузки:

Мы применяем тот же метод расчета для балки.

мы предполагаем, что каждый метр балки имеет размеры 300 мм x 600 мм без учета толщины плиты.

Предположим, что каждый (1 м) метр балки имеет размер

Как выполнить

Расчет балочной нагрузки ?
  1. 300 мм x 600 мм без плиты.
  2. Объем бетона = 0.30 x 0,60 x 1 = 0,18 м³
  3. Вес бетона = 0,18 x 2400 = 432 кг
  4. Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  5. Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м

Таким образом, собственный вес будет около 4,51 кН на погонный метр.

Также прочтите: Разница между битумом и гудроном | Что такое битум | Что такое смола

Расчет нагрузки на стену :

мы знаем, что плотность кирпича варьируется от 1800 до 2000 кг / м 3 .

Для кирпичной стены толщиной 9 дюймов (230 мм), высотой 2,55 метра и длиной 1 метр ,

Нагрузка на погонный метр должна быть равна 0,230 x 1 x 2,55 x 2000 = 1173 кг / метр,

, что эквивалентно 11,50 кН / м.

Этот метод можно использовать для расчета нагрузки кирпича на погонный метр для любого типа кирпича с использованием этого метода.

Для газобетонных блоков и блоков из автобетона (ACC), таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до кг на кубический метр.

Нагрузка на погонный метр должна быть равна 0,230 x 1 x 2,55 x 650 = 381,23 кг

, если вы используете эти блоки для строительства, нагрузка на стену на погонный метр может составлять всего 3,74 кН / метр , использование этого блока может значительно снизить стоимость проекта.

Расчет нагрузки на перекрытие :

Пусть, Предположим, плита имеет толщину 150 мм.

Таким образом, собственный вес каждого квадратного метра плиты будет

Расчет нагрузки на перекрытие = 0.150 x 1 x 2400 = 360 кг, что эквивалентно 3,53 кН.

Теперь, если мы рассмотрим нагрузку на чистовую отделку пола равной 1 кН на метр , добавленная временная нагрузка составит 2 кН на метр, а ветровая нагрузка согласно Is 875 Около 2 кН на метр .

Итак, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно в от 8 до 9 кН на квадратный метр.

Расчет нагрузки на перекрытие балки колонны

Часто задаваемые вопросы

Расчет нагрузки на колонну:

  • Объем бетона = 0.23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10KN

Расчет нагрузки на стену

  1. Плотность кирпичной стены с раствором составляет примерно 1600-2200 кг / м 3 . Таким образом, мы учитываем собственный вес кирпича стены 2200 кг / м 3 в этом расчете .
  2. Объем кирпичной стены: Объем кирпичной стены = l × b × h, длина = 1 метр, ширина = 0,152 мм, высота стены = 2,5 метра, объем = 1 м × 0,152 м × 2,5 м, объем кирпичной стены = 0,38 м 3
  3. Статическая нагрузка на кирпичную стену: Вес = объем × плотность, собственная нагрузка = 0,38 м 3 × 2200 кг / м 3 , Статическая нагрузка = 836 кг / м
  4. Его пересчитаем в килограмм Ньютон, поделив на 100, получим 8,36 кН / м
  5. Таким образом, статическая нагрузка кирпичной стены составляет около 8.36 кН / м, действующее на колонну.

Расчет балочной нагрузки

  • 300 мм x 600 мм без учета толщины плиты.
  • Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  • Вес бетона = 0,18 x 2400 = 432 кг
  • Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  • Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м

Нагрузка на колонну

Колонна является важным элементом конструкции RCC, который помогает передавать нагрузку надстройки на фундамент.Это вертикальный сжимающий элемент, подверженный прямой осевой нагрузке , и его эффективная длина в три раза больше, чем его наименьший поперечный размер.

Расчет статической нагрузки для здания

Собственная нагрузка = объем элемента x удельный вес материалов.

Посредством вычисления объема каждого элемента и умножения его на удельный вес материалов, из которых он составлен, можно определить точную статическую нагрузку для каждого компонента.

Расчет конструкции колонны

  • Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10KN

Расчет опорной нагрузки

Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр можно измерить нагрузку на погонный метр, эквивалентную 0.150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН / метр . Следуя этой методике, можно измерить нагрузку на погонный метр для любого типа кирпича.

Расчет нагрузки на бетонную плиту

  • Размер плиты Длина 3 м x 2 м Толщина 0,150 м
  • Объем бетона = 3 x 2 x 0,15 = 0,9 м³
  • Вес бетона = 0,9 x 2400 = 2160 кг.

Расчет нагрузки на сталь

  • Размер плиты Длина 3 м x 2 м Толщина 0,150 м
  • Объем бетона = 3 x 2 x 0.15 = 0,9 м³
  • Вес бетона = 0,9 x 2400 = 2160 кг.
  • Вес стали (1%) в бетоне = 0,9 x 0,01 x 7850 = 70,38 кг.
  • Общий вес колонны = 2160 + 70,38 = 2230,38 кг / м = 21,87 кН / м.

Расчет нагрузки на балку

  1. 300 мм x 600 мм без плиты.
  2. Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  3. Вес бетона = 0,18 x 2400 = 432 кг
  4. Вес стали (2%) в бетоне = 0.18 x 2% x 7850 = 28,26 кг
  5. Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м
Понравился этот пост? Поделитесь этим с вашими друзьями!

Рекомендуемое чтение —

Монолитное строительство | Ускоренное массовое строительство дома

Технология монолитного бетонного строительства с использованием алюминиевой опалубки — МЕТОДОЛОГИЯ СТРОИТЕЛЬСТВА ТЕХНОЛОГИЯ СТРОИТЕЛЬСТВА МИВАН:
Mivan Shuttering — это быстро развивающаяся строительная техника, которая обеспечивает прочность и долговечность здания за счет использования системы алюминиевой опалубки.

С растущим акцентом на доступные дома и жилье для всех, все больше внимания уделяется использованию новых и инновационных строительных технологий. Одной из таких технологий является опалубка Mivan, которая продвигается за ее способность способствовать массовой строительной деятельности.

Его использование продвигается в Индии для реализации самой амбициозной государственной программы — «Жилье для всех» к 2022 году.

Строительная техника

Укладка стены Стальная арматура — Стальная арматура используется для придания конструкции конструкции здания и поддержки бетона до тех пор, пока они не наберут половину необходимой прочности.Алюминиевая опалубка залита вокруг стальной сетки, которая изготавливается на заводе и устанавливается непосредственно на строительной площадке.

Установка алюминиевой опалубки — вдоль стены из арматурной стали возводятся сборные стены размером с комнату и плиты перекрытия. Эти плиты из алюминиевого сплава изготовлены с высокой точностью и просты в обращении.В эти конструкции также интегрированы пространства для окон, воздуховодов, дверей и других элементов, таких как лестницы, фасадные панели, плиты чердаков (кухонная столешница с несущими стенами) и чайджи. Опалубки соединяются между собой с помощью системы штифтов и клиньев, которые можно быстро демонтировать после изготовления бетонной конструкции для вертикальных поверхностей и даже для горизонтальных поверхностей с помощью систем немедленной подпорки.

Заливка бетона — После заливки форм заливается высококачественный бетон, такой как бетон типа SCC, с хорошими и приемлемыми расходами, специально разработанный для богатой смеси.Этот бетон принимает форму и форму отливки, достигая ядра, и углы формы легко обрабатываются, которые позже удаляются, чтобы освободить место для конструкции, полностью сделанной из цементного бетона, поддерживаемой элементами армирования стен. Алюминиевые формы можно использовать повторно как минимум 250 раз, что приводит к минимуму отходов на строительной площадке.


Полученная структура аккуратная, гладкая и законченная. Имеет высокую стойкость и не требует дополнительной штукатурки.В результате экономится время, силы и деньги.

Mivan Technology сокращает время строительства почти вдвое по сравнению с традиционными методами. Поскольку он имеет установленную процедуру, которую необходимо точно соблюдать, он сводит к минимуму потребность в квалифицированной рабочей силе и полностью исключает трудоемкие операции, такие как кладка и штукатурка ».

Что касается конструкции, то эта технология делает здания более сейсмоустойчивыми и долговечными. Поскольку количество стыков меньше, утечки в здании меньше, а значит, обслуживание незначительно.

Конструкция Mivan отличается единообразием, стены и плиты имеют гладкую поверхность. Более того, эта технология позволяет уменьшить площадь ковра по сравнению с традиционными методами.

Использование опалубки Mivan
  • 3S — Система построения — Скорость, прочность, безопасность
  • Колонно-балочная конструкция исключена
  • Отливка стен и перекрытий за одну операцию
  • Специально разработанные, простые в обращении легкие предварительно спроектированные алюминиевые формы
  • Монтаж и монтаж части опалубки
  • Выполнение бетонирования стен и перекрытий вместе
Преимущества
  • Опалубка Mivan требует меньше труда
  • Повышенная сейсмостойкость
  • Повышенная прочность
  • Меньшее количество стыков и меньшие утечки
  • Ковровое покрытие выше
  • Гладкая отделка стены и перекрытия
  • Единое качество строительства
  • Незначительное обслуживание
  • Более быстрое завершение
РОЛЛЕТЫ MIVAN, ИСПОЛЬЗУЕМЫЕ В НАШИХ ЗАВЕРШЕННЫХ И ТЕКУЩИХ ПРОЕКТАХ
Строительство доступного дома в деревне Валегерахалли 2-й и 4-й этапы в Кенгерихобли, Бангалор.
Клиент:
BDA
Номер домов:
752
Статус:
Завершено
Строительство ЖК 2БХК по ул.95 в деревне Канминеке, КенгериХобли, Южный Талук Бангалора, на основе единовременной выплаты под ключ на основе собственного проекта тендера в рамках системы двух гарантий (Фаза 2) и (Фаза 3), Бангалор.
Клиент:
BDA
Номер домов:
960
Статус:
Завершено
Строительство 2 жилых домов BHK в Sy.№ 30 в деревне Коммагхатта в Кенгери Хобли с единовременной выплатой «под ключ», на основе собственного планирования и дизайна тендера в рамках системы двух гарантий (Фаза-I), Бангалор.
Клиент:
BDA
Номер домов:
216
Статус:
Завершено
Строительство 2 жилых домов BHK в Sy.№ 30 в деревне Коммагхатта в Кенгери Хобли с единовременной выплатой «под ключ», на основе собственного планирования и дизайна тендера в рамках системы двух гарантий (Фаза-II), Бангалор.
Клиент:
BDA
Номер домов:
320
Статус:
Завершено
Строительство ЖК 2БХК в Сы.№ 115/1 поселка Коммагхатта в соответствии с планом Надапрабху Кемпеговда на основе единовременной выплаты «под ключ», основанной на собственном планировании и дизайне участника тендера в рамках системы двух гарантий (Фаза-III), Бангалор.
Клиент:
BDA
Номер домов:
336
Статус:
В пути
Строительство 2 BHK Housing Project Valagerhalli Phase-VI в Sy.№ 70, 101/3 и 102/2 в соответствии с планом Гнанабхарати, 1-й блок, Кенгери Хобли, Бангалор, Южный Талук, Бангалор, на основе единовременной выплаты под ключ на основе собственного планирования и дизайна участника тендера по системе двух покрытий
Клиент:
BDA
Номер домов:
360
Статус:
В пути
Строительство 749 жилых домов (T-II-100, T-III-04, T-IV-30, TV-15) и 3 казарм 240 человек в Групповом центре, Кадарпур, Гургаон, включая ж / д. с.S / I, Внутренний электромонтаж, пожаротушение, пассажирские / грузовые лифты И разное обслуживание и ремонт
Клиент:
CRPF- CPWD
Статус:
В пути
Mivan Shuttering — Строительные фотографии, выполненные Hombale Construction @ Vallagerahalli Фаза II и IV во время выполнения работ с уровня земли
Фотографии внутренней отделки
ЭТАП РАБОТЫ С MIVAN FORM WORKS ДЛЯ БЫСТРЫХ РАБОТ
Sl No. Этапы работ дней
1 Разметка поверхности для укладки опалубки и работ по армированию 01-й день
2 Вертикальные арматурные работы 2 день
3 Вертикальные и горизонтальные опалубочные работы Размещение и фиксация со всеми принадлежностями 3 день
4 Работы по бетонированию целых блоков, включая стены, Chejja, чердаки и верхние плиты, включая затопленные части день 4
5 Работы по снятию опалубки стеновых панелей после не менее 16 часов непрерывного отверждения и проверка кубической прочности 05 день
6 Панели перекрытий Работы по снятию опалубки через 36 часов / 3 дня бетонирования с немедленным повторным закреплением плит методами непрерывного отверждения / Отверждающие составы при нанесении на поверхность. 06 день
Непрерывное отверждение будет осуществляться в течение 28 дней в соответствии со стандартами. Поскольку эти дни относятся к 1 разливочной единице в доме, такая же система будет продолжаться в вертикальном и горизонтальном направлениях в зависимости от скорости работы систем.
Вид сверху на реализуемые проекты с опалубкой Mivan для Vallagerhalli Phase 06 и Kommaghatta Phase -03
ОТЧЕТ О ПРОЕКТНОМ КОНСТРУКЦИИ МОНОЛИТНОГО СТРОИТЕЛЬСТВА С ИСПОЛЬЗОВАНИЕМ АЛЮМИНИЕВЫХ РУЛЕТОВ
А.1 РАЗДЕЛ — 1 ВВЕДЕНИЕ

Об альтернативных технологиях строительства (Монолитное строительство с использованием алюминиевой опалубки:

1. Преамбула

Эти дома предназначены для строительства в среднем по 2 дома в день с использованием монолитного бетона для всех структурных элементов с алюминиевой опалубочной системой «Стеновые анкеры и формы» (WTF). Эта процедура принята в качестве одной из «техник ускоренного строительства», что приводит к сокращению времени цикла, лучшему контролю качества на площадке, меньшей мобилизации материалов и минимальному трудозатрату.В этой методике стены, перемычки, балки, плиты, чейджа и кухонная платформа отливаются монолитно

2. Огнестойкость

Поскольку высота здания превышает 15,0 м, при анализе и проектировании предлагаемой конструкции учитывается предел огнестойкости 2,0 часа.

3. Система опалубки

Система опалубки — это точно спроектированная система, изготовленная из алюминия, соответствующая архитектурным и конструктивным требованиям.Стеновые опалубки используются для опалубки стен, соединяемых стеновыми анкерами и скобами. Формы для перекрытий используются для поддержки плит при бетонировании. Формы перекрытий поддерживаются на стойках в соответствующем месте, основанном на конструктивных требованиях, простой последовательности демонтажа и обращении с материалами. Алюминий легче, поэтому материал для опалубки прост в обращении и установке. Полученная структура имеет хорошее качество поверхности и точные допуски по размерам.

4. Порядок ремонта опалубочной системы:

Стеновые опалубки укладываются после завершения изготовления арматуры, электричества / ремонта PHE.Стеновые формы соединяются посредством стяжек и хомутов. Затем возводятся опалубки перекрытий и производится необходимое изготовление арматуры, электротехническое кондиционирование перекрытий. Теперь агрегат готов к бетонированию за одну заливку.

5. Бетон

Самоуплотняющийся бетон (SCC) подходящей марки в соответствии с конструкцией смеси и структурными требованиями будет использоваться для бетонирования. Неотъемлемым свойством SCC является самоуплотнение без сегрегации. Следовательно, SCC больше подходит для этой технологии.Свободный поток бетона во время заливки поддерживается на уровне не менее 600 мм, чтобы обеспечить надлежащий поток и уплотнение.

6. Удаление опалубки (снятие опалубки)

Удаление опалубки стеновых опалубок будет выполнено после 16-24 часов бетонирования в соответствии с конструктивными требованиями. Формы для перекрытий будут удалены через 3 дня, а стойки будут закреплены в соответствующих местах сразу после удаления форм для перекрытий.

7.Лечение

Отверждение — это процесс контроля скорости и степени потери влаги из бетона во время гидратации цемента. Отверждение предназначено в первую очередь для сохранения влажности бетона, предотвращая потерю влаги из бетона в течение периода, когда он набирает прочность. Отверждение оказывает большое влияние на свойства затвердевшего бетона, такие как долговечность, прочность, водонепроницаемость, износостойкость, стабильность объема и устойчивость к замерзанию и оттаиванию.

Мембраны, образующие отверждающие составы (BASF Mastercure-107), представляют собой жидкости, которые наносятся непосредственно на бетонные поверхности и затем высыхают, образуя относительно непроницаемую мембрану, которая замедляет потерю влаги из бетона сразу после удаления опалубки стен. Состав на основе воска.

Плиты выдерживаются методом заливки минимум 7 дней

8. Фонд

Будет использоваться традиционный тип фундамента, такой как ленточный фундамент / плотный фундамент в зависимости от грунтовых условий.

9. Преимущества

Этот тип конструкции принят благодаря следующим преимуществам;

  • Техника быстрого строительства
  • Вся конструкция изготовлена ​​из более прочного, долговечного и жаростойкого бетона
  • Формы могут быть изготовлены на заказ по требованиям
  • Сокращенное время цикла
  • Лучший контроль качества на объекте за счет меньшей мобилизации материалов на объекте
  • Рентабельность
  • штукатурки можно полностью избежать
  • Формы можно разместить даже неквалифицированным персоналом
  • Алюминиевые формы, хотя и стоят дороже, но с большим количеством повторений дешевле

Принимая во внимание вышеуказанные преимущества альтернативной технологии, эта технология строительства больше подходит для данного проекта.

О методике проектирования монолитного строительства:

RCC — это основной материал, используемый в этой конструкции. При использовании традиционных методов сначала отливают стены из RCC, а затем отливают плиту. Но в этой технологии одновременно отливаются и стены, и плиты. Стены спроектированы как стены со сдвигом с использованием метода предельных состояний в соответствии со стандартными расчетными уравнениями, приведенными в IS13920 и IS 456. Плиты проектируются в соответствии с IS 456. Толщина элементов (стены, плиты и балки) выбирается на основе огнестойкости и требований к конструкции. .Предельное состояние прочности используется для расчета конструкций различных элементов жилищных единиц. Предельное состояние эксплуатационной пригодности (устойчивость, растрескивание и прогиб) будет соблюдаться для определения критериев долговечности.

RCC предполагается использовать в предлагаемом проекте. При проектировании конструкции соблюдаются директивы, соответствующие IS 456, IS13920, IS 1893, IS 875. Бетон (портландцемент + 30% (максимум) GGBS) и процедуры бетонирования будут выполняться в соответствии с индийскими стандартными руководящими принципами и методами.GGBS / Flyash уменьшает микротрещины и защищает арматуру, тем самым увеличивая долговечность бетона. Таким образом, построенная конструкция будет достаточно прочной, чтобы ее можно было использовать в качестве жилого дома.

Использование программного обеспечения

NISA / CIVIL (Numerically Integrated Elements for System Analysis), разработанный M / s Cranes Software International или ETABS, будет использоваться для анализа и проектирования предлагаемой конструкции.

О требованиях Совета по экологическому строительству Индии:

Передовой опыт Индии будет соблюдаться на этапах планирования, проектирования и строительства

10.Устойчивая архитектура и дизайн

Ориентация здания будет разработана с учетом энергосбережения (солнечное тепло и свет) без нарушения существующих характеристик участка.

11. Выбор и планирование площадки

Для выбора и планирования площадки требуется подключение к инфраструктуре и сети общественного транспорта. Предлагаемый участок хорошо связан с сетью общественного транспорта.

12.Водосбережение

Предусмотрен сбор дождевой воды, чтобы удовлетворить потребности в дни дефицита и пополнить источник воды.

Двойная система трубопроводов для очищенной воды (оборотной воды) и питьевой воды будет принята с использованием эффективных сантехнических устройств.

Использование воды: Поскольку используются отвердители, использование воды для отверждения сводится к минимуму во время строительства.

13.Энергоэффективность

Будет соблюдаться концепция проектирования зданий с использованием пассивных солнечных батарей, чтобы сократить или даже исключить использование механических систем охлаждения и обогрева и дневного искусственного освещения.

Эти параметры могут быть обеспечены при правильной планировке здания, его ориентации и расположении окон, дверей и оконных штор.

14. Строительные материалы и ресурсы
  • 30% GGBS / Flyash используется в бетонном строительстве.Ниже приведены преимущества GGBS / зола в бетоне.
    1. На единицу воплощенной энергии бетона снижается
    2. Использование GGBS увеличивает удобоукладываемость бетона.
    3. GGBS / зола лучшая защита стали от коррозии
  • Окна сделаны из ПВХ, поэтому использование древесины сведено к минимуму
  • Полы керамические / остеклованные, поэтому на 100% состоит из переработанного стекла
  • Алюминиевая опалубка позволяет использовать большее количество раз и избежать использования фанеры в качестве опалубки. Соответствующая система искусственного освещения и их расположение могут быть использованы для снижения потребности в электроэнергии
Свод правил

Список общеприменимых кодов выглядит следующим образом:

Sl No. КОД НАЗВАНИЕ
1 IS 456 Обычный и железобетон — практические правила
2 IS: 875 (Часть 1) Свод правил для расчетных нагрузок (кроме землетрясений) для зданий и сооружений. Часть 1. Собственные нагрузки — Удельные веса строительных материалов и хранимых материалов (включая IS 1911: 1967)
3 IS: 875 (Часть 2) Свод практических правил по расчетным нагрузкам (кроме землетрясений) для зданий и сооружений: Часть 2 Действующие нагрузки
4 IS: 875 (Часть 3) Свод практических правил по расчетным нагрузкам (кроме землетрясений) для зданий и сооружений, часть 3 Ветровые нагрузки
5 IS 1893 Критерии сейсмостойкого проектирования конструкций — Часть
1: Общие положения и здания
6 СП 16 Средства проектирования для железобетона в соответствии с IS 456: 1978
7 СП 34 Справочник по армированию и деталированию бетона
8 IS 13920 Пластичная детализация железобетонных конструкций, подверженных сейсмическим воздействиям
С.1 РАЗДЕЛ-2 ОПИСАНИЕ ПАРАМЕТРОВ АНАЛИЗА
Конструктивная схема

Применимы конструкции с плотом + перекрытиями или цокольным + этажом. Общая высота этажей составляет 3,0 метра. Рассмотрены габариты компоновки согласно Архитектурным чертежам.

Свойства материала

При анализе и проектировании использовались следующие свойства материала.

Марка бетона M25 и M30
Марка арматурной стали FE-500 и FE-500D
Плотность бетона 2500 кг / м 3
Соотношение ядов 0.2
Модуль Юнга 27386 Н / мм 2
Размеры конструктивного элемента
Стены ПКК 160 мм минимум
Плита крыши 125 мм минимум (изменения по конструкции)
Плиты унитаза утоплены на 400 мм (индийский водопроводный кран) и на 200 мм (европейский водопроводный кран) 0.2
Фонд

Ленточные опоры / опоры для плотин предназначены для ж / б стен. SBC грунта в соответствии с отчетом о грунте предполагается использовать при проектировании фундамента. Коэффициент 1,25 для SBC был использован при проектировании из-за сейсмических данных.

Модель конечных элементов

Модель конечных элементов создается с использованием программного обеспечения NISA / CIVIL версии 16 для выполнения структурного анализа.Идеализация структуры основана на следующих соображениях

RC Slab, RC Стены моделируются с использованием четырехузловых элементов оболочки. Колонны и балки RC представляют собой элементы с двумя узлами, имеющими 6 степеней свободы на узел.

Система фундамента

Фундамент ленточный под стену или плотный фундамент

D.1 РАЗДЕЛ-3 ОСНОВНЫЕ СЛУЧАИ НАГРУЗКИ И СОЧЕТАНИЯ
Общий

Здесь обсуждаются основные загружения и сочетания нагрузок, учитываемые при проектировании корпусного блока.

Варианты базовой нагрузки

Рассмотрены следующие основные загружения

15. Нагрузка ID -1: Постоянная нагрузка (DL)

Собственный вес конструкции автоматически рассчитывается программой. Однако не смоделированные компоненты, такие как отделка пола, были применены как сверхналоженная нагрузка на конструкцию

Собственный вес, покрытие пола = 1 кН / м2, дополнительная статическая нагрузка = 0.5 кН / м2 в качестве нагрузки под давлением в направлении прямой силы тяжести (Global Z).

Затонувшие участки заполнены газобетоном / шлакобетоном. Предполагая, что глубина погружения составляет 400 мм, плотность пенобетона / шлакобетона 8 кН / м3, 3,2 кН ​​/ м2 были применены в качестве дополнительной нагрузки давлением в направлении сильной гравитации (Global Z) в затопленных частях.

16. Нагрузка ID -2: Живые нагрузки (LL)

Сверх установленная динамическая нагрузка = 2 кН / м2, приложенная как нагрузка от давления в направлении прямой силы тяжести (Global Z) для всех плит перекрытия выше уровня опор.Тем не менее, к коридорам и лестничной клетке была приложена временная нагрузка 3 кН / м2.

В зависимости от требований в центре блока могут быть предложены подвесные бытовые цистерны ПКР

и накладные противопожарные цистерны.

17. Вариант нагружения ID -3: Ветровые нагрузки (WL) + направление X
Базовая скорость ветра 33 м / с
K1 1.00
K2 1,05
K3 1,00
Расчетная скорость ветра 33 х 1,0 х 1,05 х 1,0
34.65 м / с
Расчетное давление ветра 720,37 Н / м2

Однако 1 кН / м2 применяется как нагрузка давлением

18. Вариант нагружения ID -4: Ветровые нагрузки (WL) + направление Y

1 кН / м2 в качестве нагрузки давлением

19. Нагрузка ID -5: сейсмические нагрузки (SL) + направление X (для грунта + перекрытия)
Фактор зоны 0.10
Фактор важности 1,0
Коэффициент уменьшения отклика 5,0 для бетона
% Динамические нагрузки, учитываемые при расчете сейсмического веса 25%
Тип почвы Среднее
Высота конструкции (включая фундамент, подвесной резервуар)
Базовый размер, параллельный приложенной сейсмической силе
  1. Фундаментальный период времени основан на допущении «ЗАЛИВНЫЕ СТЕНЫ» i.е., T = 0,09 H / √d, где H = в метрах: высота здания, d = в метрах ширина здания. Следовательно, T = 0,39 с
  2. Был проведен только псевдостатический анализ в соответствии с п. 7.8.1 IS 1893 (Часть: 1) -2002. (Для здания высотой более 90 м требуется динамический анализ)
  3. Сейсмический сдвиг основания Vb: Ah x W
    Где,
    W — Общий сейсмический вес (полная статическая нагрузка + 25% динамической нагрузки) здания,
    Ah — Расчетное значение спектра горизонтального ускорения, соответствующее фундаментальному время в соответствующем направлении
20.Нагрузка ID -6: Сейсмические нагрузки (SL) + направление Y (G + этажи)
Фактор зоны 0,10
Фактор важности 1,0
Коэффициент уменьшения отклика 5,0 для бетона
% Динамические нагрузки, учитываемые при расчете сейсмического веса 25%
Тип почвы Среднее
Высота конструкции (включая фундамент, подвесной резервуар)
Базовый размер, параллельный приложенной сейсмической силе
Сочетания нагрузок

Ссылаясь на IS-456: Таблица 18

Таблица 1: Расчет стержня (предельное состояние обрушения)
Идентификатор загружения 501 (DL + LL) Нагрузка ID 510 1.5 (DL + WL (-Y))
Нагрузка ID 502 1,5 (DL + LL) Нагрузка ID 511 1,2 (DL + LL + WL (+ X))
Нагрузка ID 503 1,5 (DL + SL (+ X)) Идентификатор загружения 512 1.2 (DL + LL + WL (-X))
Нагрузка ID 504 1,5 (DL + SL (-X)) Нагрузка ID 513 1,2 (DL + LL + WL (+ Y))
Нагрузка ID 505 1,5 (DL + SL (+ Y)) Нагрузка ID 514 1.2 (DL + LL + WL (-Y))
Нагрузка ID 506 1,5 (DL + SL (-Y)) Нагрузка ID 515 1,2 (DL + LL + SL (+ X))
Нагрузка ID 507 1,5 (DL + WL (+ X)) Нагрузка ID 516 1.2 (DL + LL + SL (-X))
Нагрузка ID 508 1,5 (DL + WL (-X)) Нагрузка ID 517 1,2 (DL + LL + SL (+ Y))
Идентификатор загружения 509 1,5 (DL + WL (+ Y)) Нагрузка ID 518 1.2 (DL + LL + SL (-Y))

Примечание. Комбинация нагрузок 501: DL + LL не используется при проектировании стержня (предельное состояние обрушения). Расчет фундамента выполняется путем исключения факторов из вышеуказанных комбинаций нагрузок с помощью программного обеспечения. Таким образом, программа автоматически создает следующие комбинации дополнительных нагрузок.

Таблица 2: Размеры фундамента
Идентификатор загружения 502 (DL + LL) Нагрузка ID 511 (DL + LL + WL (+ X))
Нагрузка ID 503 (DL + SL (+ X)) Идентификатор загружения 512 (DL + LL + WL (-X))
Нагрузка ID 504 (DL + SL (-X)) Нагрузка ID 513 (DL + LL + WL (+ Y))
Нагрузка ID 505 (DL + SL (+ Y)) Нагрузка ID 514 (DL + LL + WL (-Y))
Нагрузка ID 506 (DL + SL (-Y)) Нагрузка ID 515 (DL + LL + SL (+ X))
Нагрузка ID 507 (DL + WL (+ X)) Нагрузка ID 516 (DL + LL + SL (-X))
Нагрузка ID 508 (DL + WL (-X)) Нагрузка ID 517 (DL + LL + SL (+ Y))
Идентификатор загружения 509 (DL + WL (+ Y)) Нагрузка ID 518 (DL + LL + SL (-Y))
Нагрузка ID 510 (DL + WL (-Y))
Граничные условия

Фиксированные граничные условия (ограничивающие как повороты, так и смещения во всех трех направлениях) применяются под столбцами «Стойка».

E.1 РАЗДЕЛ-4 СТРУКТУРНЫЙ АНАЛИЗ И ПРОЕКТИРОВАНИЕ F.1
Общий

Расчет конструкций основан на теории линейной упругости для расчета внутренних сил, создаваемых расчетными нагрузками, включая силы, вызванные деформациями, с использованием пакета программного обеспечения для анализа и проектирования NISA / CIVIL.

Минимальная толщина и прозрачное покрытие для основной арматуры:
Воздействие Легкая
Огнестойкость 2.0 часов
Sl. No. Элемент мин. Размерность Крышка Замечания
1 Плита 125 мм 25 мм
2 Луч 200 мм 40мм к звеньям
3 Колонна 300 мм 40мм к звеньям
4 Опоры 50 мм Минимальная глубина фундамента 2.0 мес.
5 Стены 160 мм 25 мм Двухсторонний арматурный стержень минимум 0,4% арматуры
100 мм 50 мм Арматурный стержень средней стороны, минимум 1.0% Арматура
Структурное проектирование

Конструктивное проектирование элементов конструкций выполнено по проекту «Предельное состояние» в соответствии с ИС 456-2000.

Конструкция опор: Расчет опор производится по состоянию работоспособности. Конструктивное проектирование фундамента выполняется по критериям прочности.Предполагается, что SBC площадью 12 т / кв.м находится на глубине 1,5 м от EGL. Предполагается, что марка бетона M25 / M30 и арматура FE-500 / FE-500D. Опоры предназначены для этажей G + этажа. Результаты представлены в таблице в Приложении.

Расчет поперечной стенки: равнодействующие напряжений в плоскости и вне плоскости в каждой стене вычисляются путем интегрирования сил из программного обеспечения. Эти силы были использованы для определения прочности конструкции, соответствующей IS 456 и IS 13920. M25 / M30 Марка бетона FE-500 / FE-500D арматура принимается .Стены со сдвигом предназначены для полов G +.

Результаты проектных расчетов

Армирование колонн, балок, перекрытий и опор рассчитывается с помощью программного обеспечения. Стенки сдвига рассчитываются согласно IS13920 и IS 456.

Bond Beam Block vs. Lintel Block | Что такое Bond Beam | Что такое перемычка? Деталь Bond Beam

Что такое связующая балка?

Связующая балка — это горизонтальный структурный элемент, обычно являющийся закладной частью конструкции кирпичной стены.Связующая балка служит для придания горизонтальной прочности стене, которая в противном случае не может быть скреплена полом или конструкцией крыши.

Деталь связующей балки

Связующая балка — это горизонтально усиленный элемент в каменной стене, который обеспечивает сопротивление сдвиговым нагрузкам, а также помогает распределять боковые нагрузки по всему участку стены. Арматура укладывается в специальные связки балки единиц, которые имеют поперечные перемычки уменьшенной высоты и залиты сплошным раствором.

Балки из клеевого камня.

Связка в кирпичной кладке , систематическое расположение кирпичей или других строительных элементов, составляющих стену или конструкцию, таким образом, чтобы обеспечить их устойчивость и прочность. Различные типы соединительных балок могут также иметь второстепенную декоративную функцию. Балки Masonry Bond Beams уложены непрерывным соединением , с чередующимися рядами перекрывающихся носилок.

Также прочтите: Как рассчитать длину резки хомутов в балке и колонне

U-образный бетонный блок.

В этом случае блок имеет форму буквы U, с выемкой сбоку или снизу. Ключевая функция этой выемки — обеспечить возможность размещения как вертикальной, так и горизонтальной арматуры. Высота поперечной перемычки существенно уменьшена, что обеспечивает доступ к балке.

Что такое перемычка?

Перемычка представляет собой структурный горизонтальный блок , который перекрывает пространство или проем между двумя вертикальными опорами. Это может быть декоративный архитектурный элемент или комбинированный орнаментальный элемент конструкции.Его часто можно найти над порталами, дверями, окнами и каминами.

Блок связующей балки против блока перемычки

Клещевые балки обычно используются в стене, а перемычки проходят через проем, например дверь или окно. Блоки соединительных балок также предлагают иногда важное преимущество как вертикального, так и горизонтального армирования.

Как спроектировать перемычки R.C.C — Стоимость строительства

В наши дни модель R.Перемычки C.C чаще всего используются для расширения проемов для дверей, окон и т. Д. В конструкции благодаря их прочности, негибкости, огнестойкости, рентабельности и простоте конструкции. Перемычки R.C.C рекомендуются для всех нагрузок и для любого пролета. Ширина перемычки аналогична ширине стены. Глубина перемычки зависит от длины пролета и величины нагрузки.

Перемычка может быть изготовлена ​​из различных материалов. Такие как сталь, дерево, камень, ПКК и т. Д.

Как правило, наиболее эффективным материалом для перемычек является железобетонный бетон.Обычно соотношение бетона для перемычки RCC составляет 1: 2: 4.

На основе методов литья перемычка RCC классифицируется как сборная перемычка RCC и монолитная перемычка RCC.

МЕТОД КОНСТРУКЦИИ RC LINTEL

Есть сходство между методами проектирования перемычки (однопролетной или непрерывной с несколькими отверстиями) и методами проектирования простой балки .

1. Ширина перемычки равна толщине стенки.

2.Обеспечьте соответствующую глубину перемычки.

3. Выберите рабочий диапазон перемычки (соблюдайте рациональные концевые опоры и реальную глубину).

4. Предположим, W как совокупный вес кирпичной кладки, завернутой в треугольник, предполагая, что условия допускают треугольную нагрузку мастерства на перемычку.

5. Оцените предельный изгибающий момент (M1) в центре перемычки (из-за треугольной нагрузки).

M1 = Wl / 6

Теперь оценивает максимальный изгибающий момент (M2) из-за собственного веса перемычки на метр длины.2/8

Чтобы прочитать статью полностью, перейдите по следующей ссылке www.dailycivil.com

~~~~~~~~~~~~~~~~~~~~

Опубликовано

Арка Рой

www.constructioncost.co

~~~~~~~~~~~~~~~~~~~~

Нравится:

Нравится Загрузка …

Связанные

Правительство округа Кэрролл | Рекомендации по соблюдению жилищного кодекса округа Кэрролл, Мэриленд

Следующий список требований кодекса предназначен для того, чтобы помочь вам в соблюдении Кодекса публичных местных законов и постановлений округа Кэрролл, глава 170, но не охватывает весь кодекс.
Несоблюдение всех применимых требований кодекса приведет к уведомлению о нарушении и / или приказу о прекращении работы до тех пор, пока такие нарушения не будут исправлены.
РАЗРЕШЕНИЕ НА СТРОИТЕЛЬСТВО И ОДИН КОМПЛЕКТ УТВЕРЖДЕННЫХ ЧЕРТЕЖЕЙ ДОЛЖНЫ БЫТЬ ДОСТУПНЫ НА МЕСТЕ ДЛЯ ТРЕБУЕМОЙ ПРОВЕРКИ.
Если у вас возникнут какие-либо вопросы относительно этих требований, звоните по телефону 410-386-2674.


1. ПРОЕКТИРОВАНИЕ ЗДАНИЯ
a. Глубина линии замерзания 30 ”
b. Живые нагрузки на перекрытие
i. Жилые комнаты 40 # PSF добавить 10 # статическая нагрузка
ii.Спальные места и кладовые на чердаке с лестницей 30 # PSF добавить 10 # статическую нагрузку
iii. Склад на чердаке (легкий склад без лестницы) 20 # PSF добавить 10 # статическая нагрузка
iv. Деки 40 # PSF
c. Кровельные нагрузки
i. Статическая нагрузка на нижний пояс 10 # PSF
ii. 40 # PSF
г. Конструкция со скоростью ветра 115 миль / ч, максимальная


2. ФУТБОЛКА
a. Минимальная глубина уклона до низа всех опор — 30 дюймов или до твердой опоры, в зависимости от того, что больше.
г. Размер — должен иметь толщину 8 дюймов и выступать как минимум на 4 дюйма за пределы стены с каждой стороны.
г. Опоры дымохода — должны иметь толщину 12 дюймов и выходить на 6 дюймов за пределы стены со всех сторон.
г. Подушка основания колонны — одноэтажная опора 24 x 24 x 12 дюймов, 30 x 30 x 15 дюймов для двухэтажной опоры или 36 x 36 x 18 дюймов для трехъярусной опоры; при несении нагрузки на крышу увеличивать размер опорной площадки до следующей колонны; или сконструированы так, чтобы выдерживать необходимый груз.
e. Верхняя поверхность должна быть ровной, нижняя поверхность — уклон не более 1: 10.
ф. Ступенчатые опоры — верхний проход должен перекрывать предыдущий и связывать вместе.
г. Монолитная заливка — одновременная заливка нижних колонтитулов, стены и плиты — может использоваться с шириной не менее 12 дюймов и глубиной 30 дюймов и толщиной плиты 3 ½ дюйма.


3. ФУНДАМЕНТАЛЬНЫЕ СТЕНЫ
a. Верхний слой блока должен быть сплошным или заполненным.
г. Верх стены на высоте не менее 6 дюймов над уровнем земли.
г. Толщина стены в зависимости от глубины засыпки. Максимальная засыпка для 8-дюймового пустотелого блока 4 ’, для 10-дюймового блока 5’, для 12-дюймового блока 6 ’. Должностное лицо Кодекса, когда того требуют почвенные условия, может уменьшить допустимый объем обратной засыпки или запросить отчет инженера.
г. Пластинчатые анкеры — утвержденные ремни должны располагаться и устанавливаться в соответствии с инструкциями производителя. Болты ½ дюйма на расстоянии не более 6 дюймов по центру, 7 дюймов в кирпичную кладку и не более 12 дюймов от углов.
e. Если толщина стен из полых блоков из кирпичной кладки или полых стен, связанных с каменной кладкой, уменьшается, то между стеной внизу и более тонкой стеной сверху должен быть построен ряд сплошной кладки.
ф. Стеновая конструкция каменной кладки должна быть установлена ​​в соответствии с нормами.


4. ДРЕНАЖ ФУНДАМЕНТА, ГИДРОИЗОЛЯЦИЯ
a.Перфорированная дренажная плитка = минимальный диаметр 3 дюйма или утвержденная дренажная система с отчетом ICC ES. Устанавливается по внешнему периметру стен, где внутренняя оценка ниже внешней.
г. Плитка окружена 4-дюймовым гравием и покрыта утвержденным фильтрующим материалом.
г. Дренажная плитка должна сливаться в герметичный отстойник, который содержит насос или обеспечивает самотечный поток для выравнивания, слива как минимум на 10 футов от дома и 10 футов от границы участка.
г. Свободный дренаж, привязанный к герметичному поддону или положительному потоку с помощью 2-дюймовой трубы с минимальным уклоном ¼–1’0 дюймов или 3-дюймовой трубы с минимальным уклоном от 1
/8 ”до 1’0”
e.Внешняя часть каменных стен, окружающих подвалы ниже уровня земли, должна быть покрыта портландцементом 3/8 дюйма, выгравированная внизу и покрытая утвержденной гидроизоляцией.
ф. Залитые бетонные стены, ограждающие участки ниже уровня земли, должны иметь стенные анкеры, отломанные заподлицо с поверхностью и покрытые утвержденной гидроизоляцией.


5. ОПОРНЫЕ КОЛОННЫ ДОМА
a. Все опорные стойки или колонны должны быть закреплены сверху и снизу.
г. Регулируемые колонны — закрепляются винтами в бетоне для предотвращения бокового смещения.
г. Все поверхности стальных колонн должны быть покрыты антикоррозийной краской.
г. Расстояние между колоннами — справочные размеры балок.
e. Опоры колонн — см. Раздел 2 d.


6. ЗАЩИТА ОТ ПОВРЕЖДЕНИЯ
a. Подоконники, прошедшие обработку давлением, менее 8 дюймов от готового сплава.
г. Вся древесина, контактирующая с землей или бетоном, должна обрабатываться под давлением.
г. Деревянные балки забиты в каменную стену — зазор ½ дюйма по бокам и по краям. Низ балки не должен находиться в прямом контакте с кладкой.
г. Деревянные балки или нижняя часть деревянного конструкционного пола, если расстояние составляет менее 18 дюймов, или деревянные балки, когда расстояние до открытого грунта составляет менее 12 дюймов, должны подвергаться обработке давлением.
e. Подоконники и шпалы на бетонной или кирпичной плите, находящейся в непосредственном контакте с землей, должны подвергаться обработке давлением, если они не отделены от такой плиты непроницаемым барьером для влаги.
ф. Сайдинг, обшивка, каркас стен снаружи на расстоянии менее 6 дюймов от земли должны быть изготовлены из дерева, обработанного под давлением, или защищены утвержденным способом.
г. Деревянные планки обрешетки или другие элементы деревянного каркаса, прикрепленные непосредственно к внутренней части наружных каменных стен или бетонной стены ниже уровня земли, за исключением случаев, когда одобренный антипирен наносится между стеной и полосами обрешетки или элементами каркаса.
ч. Вся древесина, контактирующая с землей и поддерживающая постоянные конструкции, должна быть обработана пиломатериалом.
и. Все крепежные детали для дерева, обработанного под давлением, должны быть горячеоцинкованы, оцинкованы, из нержавеющей стали, силиконовой бронзы или меди.

7. ПОМОЩНИК
a. Доступ ко всем подпольным помещениям. Минимальный размер проема в полу должен составлять 18 x 24 дюйма;
проемов в стене по периметру должны быть не менее 16 x 24 дюйма.
г. Вентиляция подлозки 1 кв.футов площади на 150 кв. футов. Одно отверстие в пределах 3 футов от каждого угла.
г. Установите водосточную плитку, если уклон под полом ниже, чем уровень отделки снаружи.
г. Радоновая система должна быть установлена ​​в соответствии с Приложением F Международного жилищного кодекса
и обозначена непрерывной оранжевой линией краски по всей конструкции.
e. Наружная часть кирпичных стен, окружающих подвалы ниже уровня земли, должна быть покрыта 3
/8 ”портландцементом
с выгнутым дном и покрытым утвержденной гидроизоляцией.
ф. Залитые бетонные стены, ограждающие участки ниже уровня земли, должны иметь стенные анкеры, отломанные заподлицо с лицевой стороной
и покрытые утвержденной гидроизоляцией.


8. СТРОИТЕЛЬСТВО СТЕН
a. Несущие стены — внутренние и внешние. Двойная верхняя пластина. Исключение: одинарная верхняя пластина
может быть установлена ​​в несущие и наружные стены при условии, что пластина должным образом закреплена в стыках, углах и
пересекающихся стенах по крайней мере эквивалентом оцинкованной стали толщиной 3 дюйма на 6 дюймов на 0,9036 дюйма, что составляет
прибивают к стене стойки или сегменту стены тремя гвоздями 8d или аналогичными, при условии, что стропила или балки
центрируются по стойкам с допуском не более 1 дюйма.
г. Должны быть сооружены внутренние несущие перегородки и противопожарны внешние стены.
г. Внутренние ненесущие перегородки могут быть сконструированы с использованием стоек 2 «x 3», расположенных на расстоянии 16 дюймов по центру, или стоек 2 «x
4″, расположенных с интервалом 24 дюйма по центру, где они не нужны в качестве укрепленной линии стены.
г. Противопожарная защита всех скрытых пространств перегородок с карнизами стен, чтобы отрезать все скрытые сквозняки и до
сформировать эффективный противопожарный барьер между этажами и крышей.
e. Здания должны быть укреплены в соответствии с нормами или инженерным проектированием.
ф. Стойки должны быть непрерывными от пола / фундамента до потолка или крыши.
г. Все пролеты коллекторов и балок должны быть установлены в соответствии с нормами или спроектированы в
в соответствии с принятой инженерной практикой.


9. ОБЩЕЕ СТРОИТЕЛЬСТВО КЛАДКИ
a. Минимальная толщина кладки несущей стены более одного этажа должна составлять 8 дюймов.
г. ПЛОТНЫЕ кирпичные стены одноэтажных жилых домов и гаражей должны быть не менее 6 дюймов в толщину и не более 9 дюймов в высоту.
г. Если толщина стен из полых блоков из кирпичной кладки или полых стен, связанных с каменной кладкой, уменьшается, то между стеной внизу и более тонкой стеной сверху должен быть построен ряд сплошной кладки.
г. Пустотные опоры должны быть покрыты 4-дюймовым каменным слоем или бетоном или должны иметь полости верхнего слоя, заполненные бетонным раствором.
e. Кладка над проемами должна поддерживаться стальными перемычками, железобетонными или каменными перемычками или каменными арками, предназначенными для поддержки прилагаемой нагрузки.
ф. Балки, фермы или другие сосредоточенные нагрузки, поддерживаемые стеной или колонной, должны иметь опору длиной не менее 3 дюймов на сплошную кладку толщиной не менее 4 дюймов или на металлическую опорную плиту соответствующей конструкции.
г. Стены ствола кладки высотой и длиной 48 дюймов или меньше должны быть усилены.


10. СТЕНОВЫЕ ПОКРЫТИЯ
a. Сайдинг, перекрытие, потолок или одобренный тип для наружного использования.
и. За виниловым сайдингом необходим водостойкий барьер.
г. Кладочный шпон
i. 1 дюйм воздушного пространства или 1 дюйм заделки до обрамления.
ii. Кладочный шпон не должен выдерживать никакой вертикальной нагрузки, кроме статической нагрузки шпона выше.
iii. Крепится к несущей стене с помощью нержавеющих металлических стяжек.
iv. Металлические стенные анкеры должны располагаться на расстоянии не более 24 дюймов по центру по горизонтали и должны выдерживать не более 2,67 кв. Футов площади стены.
v. Фетровая бумага без дырок и разрывов или другой одобренный атмосферостойкий материал должен быть покрыт всеми внешними стенами.
vi. Гидроизоляция для облицовки кладки должна располагаться под первым слоем кладки над уровнем готовой земли над фундаментной стеной или плитой.
vii. Снаружи кладки должны быть предусмотрены дренажные отверстия на максимальном расстоянии 33 дюйма от центра и не менее 3/16 дюйма в диаметре.
viii. Гидроизоляцию следует использовать вокруг окон и дверей, под каменной кладкой и на ее концах, прежде всего выступов, деревянной отделки, там, где подъезды, террасы или лестницы, прикрепленные к стене или полу, на всех пересечениях стен и крыши.

11. НАПОЛЬНЫЕ СИСТЕМЫ
a. Минимальная нагрузка на балку: дерево — 1 ½ дюйма, кладка — 3 дюйма.
г. Подвесить балки или перекрыть балку минимум на 3 дюйма.
г. Системы инженерных полов должны быть установлены, закреплены и заблокированы в соответствии с инструкциями производителя.

12. РАФЕРЫ ИЛИ ФЕРМЫ
a. Конструкция крыши и потолка должна быть способна выдерживать все нагрузки, возникающие в соответствии с требованиями к нагрузке, и передавать результирующие нагрузки на опорные элементы конструкции.
г. Фермы должны быть скреплены для предотвращения вращения и обеспечения поперечной устойчивости в соответствии с требованиями, указанными в строительной документации или требованиями BCSI 1-03. Вся строительная документация должна быть на месте.
г. Обшивка кровли:
и. Фанера — ½ ”24” по центру без зажимов; 3/8 ”24” по центру используйте зажимы или блокировку
ii. Фанера OSB — ½ ”24” по центру без зажимов; 7/16 «24» по центру без зажимов 3/8 «16» по центру
используйте зажимы или блокировку.


13.ВЕНТ, ДОСТУП НА ЧЕРДАК
a. Вентиляционные отверстия софита и конька или фронтальные вентиляционные отверстия, чистая свободная вентиляция 1 кв. Фут на каждые 150 кв. Футов площади вентилируемого помещения
.
г. Обеспечьте легкодоступную панель доступа 22 x 30 дюймов.
г. Обеспечьте вентиляцию скрытых пространств стропил.
г. Обеспечьте спусковую лестницу с проходом шириной 2 фута к платформе обслуживания HVAC 30 x 30 дюймов, когда блок установлен на чердаке.
e.

14. КРЫША
a. Подложка по требованию R905.1.1 с уклоном крыши более 4 дюймов на 12 дюймов, являющимся однослойным, и уклоном крыши 4 на 12 дюймов, но не менее 2 дюймов на 12 дюймов, являющимся двухслойным, если не утверждено иное.
г. Битумная черепица крепится в соответствии с печатными инструкциями производителя.
г. Установка долин, стен и других гидроизоляций в соответствии с печатными инструкциями производителя битумной черепицы. Требуются ледяные барьеры, указанные в R905.1.2.

15. БЕТОННЫЕ ПОЛЫ
а. Бетонная плита на уровне уклона: минимальная толщина 3 ½ дюйма, прочность на сжатие 2500 SPI, каменное основание толщиной 4 дюйма.
г. Заливка не должна содержать растительности и посторонних материалов и должна быть уплотнена, чтобы обеспечить равномерную опору. Заливка не должна превышать 24 дюйма.
г. Пароизоляция толщиной 6 мил с швами, наложенными не менее чем на 12 дюймов между бетонной плитой перекрытия и основанием. Пароизоляция может отсутствовать; отдельно стоящие гаражи, хозяйственные постройки и другие неотапливаемые сооружения; подъездные пути, дорожки, патио и другие плоские участки.
г. На плите с уровнем пола менее 12 дюймов ниже уровня земли должна быть установлена ​​изоляция R-10 в соответствии с Международным энергетическим кодексом.
e. Радоновая система должна быть установлена ​​в соответствии с Приложением F Международного жилищного кодекса и обозначена непрерывной оранжевой линией краски по всей конструкции.

16. ДЫМОХОД И КАМИНЫ
a. 4-дюймовая каменная кладка вокруг футеровки дымохода с воздушным пространством ½ дюйма вокруг дымохода.
г. 8 ”массивная кладка без футеровки дымохода.
г. Расстояние между дымоходом и горючими материалами 2 дюйма внутри и / или 1 дюйм снаружи.
г. Противопожарные меры на перекрытиях, перекрытиях и крышах.
e.Верх дымохода должен выступать не менее чем на 2 фута над любой частью здания в пределах 10 футов, но не должен быть менее чем на 3 фута выше точки, в которой он проходит через крышу.
ф. Установите сверчков в дымоходе, если размер, параллельный линии гребня, превышает 30 дюймов и не пересекает линию гребня.
г. Очаги должны выдвигаться минимум на 20 дюймов. Надставки должны быть 16 дюймов для топок площадью менее 6 кв. Футов и 20 дюймов для топок более 6 кв. Футов. Дровяной камин должен иметь установленные двери с уплотнением.
ч. Отверстия для чистки, если они предусмотрены, должны быть оборудованы дверцами и рамами из черных металлов, конструкция которых должна оставаться плотно закрытой, за исключением случаев использования.
и. Отверстия для чистки не являются обязательными, за исключением случаев, когда дровяные печи должны быть подключены к дымоходам. Если они предусмотрены, они должны быть оборудованы дверцами и рамами из черных металлов, которые должны оставаться плотно закрытыми, когда они не используются. Отверстия для очистки должны располагаться не менее чем на 2 ‘6 дюймов ниже самого нижнего входа в дымоход.
Дж. Сборный дымоход — одобренный тип национально признанным испытательным агентством с допусками, указанными в 16-c.

17. ОСВЕЩЕНИЕ, ВЕНТИЛЯЦИЯ И ОТОПЛЕНИЕ
a. Подвал — 2% площади пола с инфильтрацией дверей.
г. Жилые комнаты — 8% площади; ½ в рабочем состоянии
ИСКЛЮЧЕНИЯ:
i. Застекленные области могут не открываться, если предусмотрена утвержденная система механической вентиляции, способная производить смену воздуха каждые 30 минут.
ii. Застекленные зоны могут быть исключены в помещениях, где предусмотрена утвержденная система механической вентиляции, способная производить смену воздуха каждые 30 минут; Предусмотрен искусственный свет, способный производить в среднем 6 футов свечей на площади
комнаты на высоте 30 дюймов над уровнем пола.
г. Ванные комнаты — 1 окно площадью не менее 3 кв. Футов с остеклением на ½ открываемых или вытяжных вентиляторов, выводимых наружу, с утвержденными концевыми фитингами в каждом отсеке.

18. РАЗМЕР НОМЕРА
а. Минимум 1 комната минимум 120 кв. Футов.
г. Прочие жилые помещения минимум 70 кв. Футов. Исключение: кухни
c. Комнаты, за исключением кухонь, должны быть не менее 7 футов по горизонтали.

19. НЕОБХОДИМАЯ ВЫСОТА ПОТОЛКА
a. Незаконченный подвал 6’-8 ’, кроме балок 6’-4”.
г. Жилые помещения — минимум 7 футов; для наклонных потолков см. код.
г. Меховые потолки не менее 7 футов.


20. САНИТАРИИ
a. Обеспечьте как минимум 1 санузел, туалет, ванну или душ и кухонную раковину в каждой квартире
.


21. РАСПОЛОЖЕНИЕ БЕЗОПАСНОГО СТЕКЛА
a. Входные и выходные двери.
г. Панели раздвижных дверей патио, панели распашных дверей.
г. Штормовые двери.
г. Двери и ограждения для гидромассажных ванн, гидромассажных ванн, спа, парных, ванн и душевых.Остекление в любой части стены здания, охватывающей эти отсеки, где нижний край остекления находится менее чем на 60 дюймов над входным отверстием слива и в пределах 60 дюймов от кромки воды.
e. Остекление в неподвижной или работающей панели рядом с дверью, где ближайший вертикальный край находится в пределах 24-дюймовой дуги двери в закрытом положении и нижний край которой находится менее чем на 60 дюймов над полом или пешеходной поверхностью.
ф. Окна площадью более 9 кв. Футов и нижний край менее 18 дюймов над полом; верхний край на высоте более 36 дюймов над полом.Одна или несколько поверхностей для ходьбы в пределах 36 дюймов по горизонтали от остекления.
г. Лестница.


22. ПРИСОЕДИНЕННЫЙ ГАРАЖ
a. Отделен от дома и его мансарды гипсокартоном ½ ”со стороны гаража.
г. Гараж между жилыми комнатами должен быть отделен от жилых комнат наверху гипсокартоном 5/8 дюйма типа X, а стены, поддерживающие такую ​​конструкцию, — гипсокартоном 1/2 дюйма.
г. Дверь между домом и гаражом, а не в спальные помещения, двери со сплошным сердечником 1-3 / 8 дюйма или 20-минутные огнестойкие двери или аналогичные, самозакрывающиеся.
г. Пол, негорючий, с уклоном в сторону главного подъезда транспортного средства или водостока.

23. ТРЕБОВАНИЯ К ВЫХОДУ
a. На каждую жилую единицу должна быть предусмотрена как минимум 1 выходная дверь. Дверь должна иметь боковые петли и обеспечивать минимальную ширину в свету 32 дюйма при измерении между лицевой стороной двери и упором с дверью, открытой под углом 90 градусов.
г. Подвал, жилые чердаки и каждая спальная комната должны иметь как минимум один дверной выход или окно с чистым проемом 5.7 кв. Футов с минимальной открытой шириной 20 дюймов, минимальной открытой высотой 24 дюйма и максимальной высотой порога от пола 44 дюйма. Исключение: чистый проем окон первого этажа уменьшен до 5,0 кв. Футов. ПРИМЕЧАНИЕ: минимальная открытая ширина 20 дюймов и минимальная открытая высота 24 дюйма не обеспечат 5,7 кв. Фута чистого чистого проема. Ширина проема в свету в дюймах x высота проема в свету в дюймах = 820 кв. Дюймов.
г. Решетки, решетки и сетки или другие препятствия, помещенные над окнами для аварийного выхода, должны сниматься изнутри без использования ключа или инструмента.
г. Замок или защелка на всех выходных дверях должны легко открываться со стороны выхода без использования ключа.


24. ПОСАДКИ
а. Площадка минимум 3х 3 фута должна быть с каждой стороны выходных дверей. Пол или площадка не должны быть более чем на 1 ½ дюйма ниже вершины порога.
ИСКЛЮЧЕНИЯ:
i. Наверху внутренней лестницы при условии, что дверь не поднимается над лестницей.
ii. Посадка у внешнего дверного проема должна быть не более чем на 7 ¾ дюймов ниже верха порога, если дверь не опускается над площадкой.
iii. Наружные штормовые и сетчатые двери освобождены от требований к посадке.

25. ЛЕСТНИЦА
а. Минимальная ширина 36 дюймов выше высоты поручня и ниже требуемой высоты перемычки.
г. Минимальная ширина на высоте поручня и ниже составляет 32 дюйма.
г. Минимальный протектор — 10 дюймов от носа к носу. Максимальный подступенок составляет 7 ¾ ”от верха проступи до верха проступи.
г. Наибольшая высота ступени или подступенка в пределах любого лестничного марша не должна превышать наименьшую более чем на 3/8 дюйма. Высота по высоте не менее 6 футов 8 дюймов.
e. Допускаются забежные, винтовые и круговые лестницы; у каждого свой код.
ф. Подступенки не должны пропускать 4-дюймовую сферу.
г. Закрытое доступное пространство под лестницей должно иметь стены и перекрытия, защищенные с закрытой стороны сухой стеной ½ дюйма.

26. ПОРУЧНИ И ЗАЩИТЫ
a. Поручни, имеющие минимальную и максимальную высоту 34 и 38 дюймов от выступа протектора.
г. Поручни рядом со стеной должны иметь пространство не менее 1 ½ дюйма между стеной и поручнем и должны быть возвращены или должны заканчиваться новыми стойками.
г. Ограждения для подъездов, балконов или фальшполов на высоте более 30 дюймов над уровнем пола или уровня должны иметь ограждения высотой не менее 36 дюймов, измеренные по вертикали от носа ступеней.
г. Открытые стороны лестниц с общим подступенком более 30 дюймов над полом или уровнем должны иметь перила не менее 34 дюймов в высоту, измеренные по вертикали от носа ступеней.
e. Расстояние между элементами ограждения по горизонтали и вертикали не должно превышать 4 дюйма.
ф. Промежуточные рельсы и / или декоративные затворы не должны пропускать объект диаметром 6 дюймов или более.
г. Треугольные отверстия, образованные подступенком, ступенькой и нижним поручнем перил на лестницах, не должны пропускать сферу диаметром 6 дюймов.

27. ДЫМОВАЯ СИГНАЛИЗАЦИЯ
a. Установлены дымовые извещатели по мере необходимости для новых жилищ; на каждом этаже, за пределами каждой отдельной спальной зоны и в каждой спальне. См. Раздел IRC R314 для получения дополнительной информации.
г. Установлены сигнализаторы угарного газа возле каждой спальной зоны в непосредственной близости от спален. Дополнительную информацию см. В разделе IRC R315.

28.КУХОННАЯ ВЕНТИЛЯЦИЯ И СУШИЛКА ДЛЯ ОДЕЖДЫ ВЫХЛОПНАЯ
a. Вентиляционные системы должны быть независимыми от всех других систем и должны выводить влагу наружу.
г. Вентиляционные отверстия не должны быть соединены винтами для листового металла или средствами крепления, которые заходят в вентиляционное отверстие.
г. Вытяжные отверстия должны быть оборудованы обратным клапаном.
г. Вентиляционные отверстия должны быть выполнены из жестких металлических каналов с гладкими внутренними поверхностями с соединениями, проходящими в направлении воздушного потока.
e. Соединения гибких воздуховодов не должны быть скрыты внутри конструкции.
ф. Размер вентиляционного отверстия должен быть не менее диаметра выпускного отверстия прибора.
г. Максимальная длина вытяжного вентиляционного отверстия диаметром 4 дюйма не должна превышать 35 футов от места сушилки до стены или окончания крыши и должна заканчиваться полностью открывающимся вытяжным колпаком. Если воздуховод скрыт, постоянная этикетка или бирка должна быть расположена в пределах 6 футов от длины соединения, и каждый вертикальный стояк должен быть снабжен средствами для очистки.
ч. Должно применяться уменьшение максимальной длины на 30 дюймов для каждого изгиба на 45 градусов и на 5 футов для каждого изгиба на 90 градусов.

29. МИКРОВОЛНОВЫЕ ПЕЧИ
a. Установка перечисленного и маркированного кухонного прибора или микроволновой печи над перечисленным и маркированным кухонным прибором должна соответствовать условиям перечисления и маркировки верхнего прибора.


30. ВЫСОКИЕ ВЕНТИЛЯЦИОННЫЕ ВЫТЯЖКИ
a. Домашние бройлеры с открытым верхом должны иметь металлический вентиляционный колпак размером не менее 28 с зазором не менее ”между колпаком и нижней стороной из горючего материала или шкафов.
г. Между варочной поверхностью и горючими материалами или шкафами должно быть сохранено расстояние не менее 24 дюймов.
г. Вытяжной колпак должен быть не меньше ширины бройлера и распространяться по всему блоку.

31. Желоба и водостоки
a. Требуется для конструкций с любой долей ниже допустимой.
г. Забрызгивайте блоки на водосточные трубы.

32. ТРЕБОВАНИЯ К ИЗОЛЯЦИИ ПРЕДВАРИТЕЛЬНЫЙ МЕТОД
a. Потолки Р-49.
г. Стены Р-20 или Р-13 + 5 сплошная изоляция
c.Стены подвала Р-10 сплошные или Р-13 полые.
г. Периметр плиты Р-10. (см. требования — Бетонный пол, Раздел 15)
e. Стены подполья Р-10.
ф. Этаж Р-19.
г. Окна должны иметь значение U 0,35

.


33. ТРЕБОВАНИЯ К ИЗОЛЯЦИИ ТАКЖЕ МОГУТ БЫТЬ ВЫПОЛНЕНЫ РАСЧЕТАМИ ЭНЕРГЕТИЧЕСКОГО КОНТУРА:
a. Агентство, одобренное третьей стороной.
г. Отчет о проверке соответствия РЭС.
г. Соответствие программе Energy Star на основе принятой IECC.


34. ТРЕБОВАНИЯ К ПРОГРАММИРОВАНИЮ
a. Утвержденный антикоррозийный оклад должен быть установлен в соответствии с правилами для предотвращения попадания воды на все окна, двери, дымоходы, крыши, кирпичную кладку, настил и отделку наружных стен.

.