Прочность газобетона: Прочность газобетона. Класс прочности по марке газоблока

Содержание

Прочность газобетона. Класс прочности по марке газоблока

Газобетон имеет характеристики легкого ячеистого строительного материала, обладающего довольно невысокой прочностью. Но при этом газобетонные блоки выдерживают нагрузку зданий, состоящих из нескольких этажей. Для строительства двухэтажного дома важно подобрать подходящую плотность, которая рассчитана на конкретный строительный проект.

При монтаже несущих стен специалисты рекомендуют использовать материал с плотностью от D300 до D700, но более востребован газобетон со средней плотностью D400 и D500, который имеет подходящий уровень прочности и степень теплоизоляции.

ГлавСтройБлок изготавливает газобетон высокого качества по новым технологиям, поддерживая однородность материала. Его класс прочности значительно выше, чем у бетона, полученного по старой технологии. Лучший материал, имеющий плотность D400, относится к классу B2.5. А более дешевый газобетон имеет только класс B1.5. Наличие класса B2.5 у газоблока говорит о том, что материал рассчитан на нагрузку в 25 кг или 2.5 Ньютона.

Марка газобетона

Класс

Массовый

Лучший

D300

B1,5

B2

D400

B2

B2,5

D500

B2,5

B3,5

D600

B3,5

B5

Завод-изготовитель гарантирует, что каждый газоблок имеет прочность, достаточную для возведения коттеджа в несколько этажей. Марку материала определяют среднестатистически по прочности, то есть по полученным при тестировании данным, когда оценивают блоки из одной партии. Степень прочности можно установить по среднему значению, и ниже она уже быть не может. Для присвоения класса прочности изделия необходимо узнать расчетное сопротивление несущих стен.

Марка газоблока

Класс прочности на сжатие

Средняя прочность (кг/см²)

D300 (300 кг/м³)

B0,75 — B1

10 — 15

D400

B1,5 — B2,5

25 -32

D500

B1,5 — B3,5

25 — 46

D600

B2 — B4

30 — 55

Несущие показатели стен будут меньше в 5 раз, чем фактическая прочность изделия на сжатие. Такие показатели будут зависеть от различных факторов, которые могут ухудшать характеристики кладки и уменьшать прочность по СНиП.

Главные показатели, которые влияют несущую способность: толщина и высота стены, оказываемая на нее нагрузка. Чем выше несущие стены, а кладка тоньше, тем большую погрешность может давать под воздействием нагрузки стена, что снижает несущую способность.


 


Класс прочности газобетона и плотность блоков

Газобетон является легким пористым материалом, который имеет довольно низкий класс прочности. Да, по прочности на сжатие газобетон проигрывает почти всем строительным материалам. Но, очень важно понимать, что даже имеющейся прочности с запасом хватает на возведение двух/трехэтажного дома. Главное выбрать требуемую плотность газобетона, которая обеспечит нужную прочность по проекту.

Для строительства несущих стен применяют газобетоны плотностью от D300 до D700, а самыми популярными являются середнячки – D400 и D500, так как они обладают оптимальными прочностными и теплосберегающими свойствами.

Современные заводы по производству автоклавного газобетона изготавливают очень качественный и однородный газобетон, класс прочности которого, намного выше чем у устаревших заводов. К примеру, лучший газобетон плотностью D400 обладает классом B2.5, в то время, как более дешевый дотягивает только до B1.5.

Числовое значение класса B2.5 обозначает, что квадратный миллиметр газобетона выдерживает нагрузку в 2.5 Н(Ньютона). То есть, квадратный сантиметр гарантировано выдерживает нагрузку в 25 кг.

Само понятие “класс прочности газобетона” означает то, что каждый блок, привезенный с завода будет обладать прочностью, не менее чем заявлена производителем. То есть, это обеспеченная гарантийная прочность, ниже которой быть не должно.

Марка газобетона – среднестатистическое значение по прочности, получаемое при тестировании нескольких блоков из партии. То есть, взяли шесть блоков на пробу, и их показатели прочности составили соответственно: 31, 32, 32, 33, 35, 35 кг/см2. Среднее полученное значение – 33 кг/ см2. Что соответствует марке М35.

Таблица, прочность на сжатие (газобетон)
Марка газобетона Класс прочности на сжатие Средняя прочность (кг/см²)
 D300 (300 кг/м³) B0,75 — B1 10 — 15
D400
 B1,5 — B2,5 25 -32
D500  B1,5 — B3,5 25 — 46
D600 B2 — B4 30 — 55
D700 B2 — B5
30 — 65
D800 B3,5 — B7,5 46 — 98
D900 B3,5 — B10 46 — 13
D1000 B7,5 — B12,5 98 — 164
D1100 B10 — B15 131 — 196
D1200 B15 — B20 196 — 262

Марка прочности – это усредненное значение, а класс прочности – обеспеченное значение, ниже которого быть не может.

Чтобы определиться с требуемым классом прочности газобетона, необходимо знать расчетное сопротивление кладки и несущую способность участка стены.

Несущая способность стены будет примерно в 5 раз меньше, чем прочность материала на сжатие. Это связано с различными факторами, уменьшающими несущую способность кладки, и запасами по прочности по СНиП.

Основные факторы, влияющие на несущую способность: высота стены, толщина стены, и зона приложения нагрузки(эксцентриситет). Чем стена выше и тоньше, тем она сильнее может изгибаться под нагрузкой, что уменьшает ее расчетную несущую способность.

Зона приложения нагрузки(эксцентриситет) также сильно влияет на прочность конструкции, ведь если плита перекрытия опирается на стену только краем, и не доходит до центра стены, получается внецентренное сжатие, приводящее к сгибающему моменту.

Вывод. Газобетон бывает различной плотности от D300 до D700 и различных классов по прочности, от B1 до В5, что позволяет строить из него дома различной этажности и сложности. Если прочности газобетона не хватает, применяются железобетонные включения, на подобии железобетонных балок, перемычек, армопоясов и армокаркасов.

Прочность газобетона, класс прочности газобетонных блоков

Газобетон, относящийся к разряду ячеистых бетонов, считается одним из самых выгодных и экономичных строительных материалов. Он подходит для возведения внешних и несущих стен здания, закладки бетона, выстраивания перегородок, а армированные перемычки из газобетона востребованы во всех сферах строительства. Популярность этого типа материала обуславливается рядом преимуществ вроде долговечности, небольшого веса, легкости в монтаже, морозоустойчивости, огнеупорности и теплоизоляции. Газобетон не требует дополнительного ухода, а его стоимость располагает к приобретению вне зависимости от того, нужна покупка для частного или крупного строительства.

Одним из главных преимуществ материала является прочность газобетона, которая обуславливает его долговечность и износоустойчивость.


Прочность газобетона на сжатие

Ошибочное мнение о хрупкости изделий из газобетонного сырья возникает после ознакомления с его внешним видом и структурой. Наличие большого количества воздушных пузырей в газоблоке вызывает сомнения в прочности стен из газобетона. Несмотря на то, что изделия легко поддаются монтажу и обработке, они не расположены к быстрому разрушению.

Материал отлично сопротивляется процессу растяжения, а прочность газобетона на сжатие доказана большим числом экспериментов. Плотность материала на сжатие равна 35 кг/кв.м, что означает что он является идеальным вариантом для малоэтажного строительства.

Прочность газобетонных блоков обусловлена тем, что они имеют толстые стенки, по которым равномерно распределяется нагрузка в ходе строительства здания. Чтобы повысить долговечность здания, строители применяют горизонтальную кладку.

Для расчета методики создания качественного материала, который гарантирует строительство надежного здания, комфортного для проживания, существует определенная классификация, которой должны соответствовать производимые изделия. В ней учитывается и такой показатель как прочность. Класс прочности газобетона должен соответствовать требоаниям ГОСТ 10180, ГОСТ Р53231.

 

Показатели Нормативные сопротивления ячеистого бетона сжатию Rbn, растяжению Rbtn и срезу Rshn; расчетные сопротивления для предельных состояний второй группы Rb,ser, Rbt,ser и Rsh,ser при классе бетона по прочности на сжатие
Класс бетона по прочности на сжатие В1 В1,5 В2,0 В2,5 В3,5 В5 В7,5 В10 В12,5 В15 В20
Сопротивлению осевому сжатию (призменная прочность) Rbnи Rb,ser 0,95 9,69 1,40 14,3 1,90 19,4 2,4 24,5 3,3 33,7 4,60 46,9 6,9 70,4 9,0 91,8 10,5 107 11,5 117 16,8 168,3
Сопротивление бетонов растяжению Rbtn и Rbt, ser 0,14 1,43 0,22 2,24 0,26 2,65 0,31 3,16 0,41 4,18 0,55 5,61 0,63 6,42 0,89 9,08 1,0 10,2 1,05 10,7 1,1 11,2
Сопротивление бетонов срезу Rshn, Rsh, ser 0,2 2,06 0,32 3,26 0,38 3,82 0,46 4,56 0,6 6,03 0,81 8,08 0,93 9,26 1,31 13,09 1,47 14,7 1,54 15,44 1,6 16,2

Примечания

1. Сверху указаны сопротивления в МПа, снизу – в кгс/см2
2. Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10% (по массе)

 


От чего зависит прочность изделий?

Прочность газобетона для несущих стен зависит от нескольких факторов, в числе которых объемный вес, равномерность его структуры, а также от характеристик материалов, используемых в качестве сырья.

Прочность стен из газобетона может меняться в зависимости от высоты, а если блок обладает неравномерной структурой, следует ожидать разрушения периферийных слоев и ядра изделия. В случае с использованными в производстве материалами стоит говорить об их способности к поглощению влаги. Чем выше этот показатель, равно как и водоцементное отношение, тем ниже прочность изделия.

Выбирая материал для приобретения, помните, что различные марки газобетона обладают разными показателями прочности:

  • D600 располагает повышенными показателями прочности и теплоизоляции. Эта марка идеально подходит для кладки фасадов зданий.
  • D500 выбирают при планировании возведения высотных домов и коттеджей.
  • D400 показывает меньшую прочность, но актуален благодаря отличным теплоизоляционным качествам. Он подходит для строительства перегородок и улучшения теплоизоляции в доме.


Купить газобетонные блоки любого класса прочности можно на сайте компании УниверсалСнаб. Здесь вы найдете материалы высокого качества по выгодным ценам.

 

Расчеты газобетона на прочность | AEROC

Прочностные расчеты кладки из стеновых блоков должны выполняться в соответствии с действующими нормативными документами, в частности ДБН В.2.6-162:2010 «Каменные и армокаменные конструкции».
Газобетон AEROC предназначен для кладки как несущих, так и ненесущих стен и перегородок. Высокая точность размеров позволяет вести кладку на тонкослойных клеевых смесях со средней толщиной шва 2±1 мм.
Использование мелкозернистого клея не только повышает теплотехническую однородность кладки и увеличивает прочностные характеристики конструкций на 30% (в действующих нормах проектирования увеличение прочности при кладке на клею не отражено), но и ведет к общему снижению затрат на строительство.
Прочностные расчеты кладки из стеновых блоков должны выполняться в соответствии с действующими нормативными документами, в частности ДБН В.2.6-162:2010 «Каменные и армокаменные конструкции».

Расчетные характеристики бетона блоков

Марка по средней плотности, класс по прочности на сжатиеРасчетные сопротивления для предельных состояний I группыРасчетные сопротивления для предельных состояний II группыНачальный модуль упругости при сжатии eb, МПа
сжатия осевое rb, МПасопротивление растяжения rbt, МПасопротивление срезу rsh, МПасжатия осевое rb, МПа

сопротивление растяжения rbt, МПа

сопротивление среза rsh, МПа

D500 C2,51,60,140,202,40,310,461400
D400 C2,51,60,140,202,40,310,461000
D300 C2,01,30,120,171,90,260,38850

Кладка из блоков AEROC должна вестись на клею или строительном растворе марки не ниже М50.

Расчетные сопротивления кладки из блоков, МПа

Марка блоков по средней плотностиПрочность на сжатие R, мпаОсевое растяжение, rtРастяжение при перегибе, rtbСрез по перевязанном пересечению, rsq
по неперевязанному пересечениюпо перевязанном пересечениюпо неперевязанному пересечениюпо перевязанном пересечению
D500 C2,51,20,080,160,120,250,16
D400 C2,51,2
D300 C2,00,8

Модуль упругости (начальный модуль деформаций) кладки из блоков Е0, МПа:

  • Для блоков D400 і D500 В2,5;  Е0 = 1867.
  • Для блоков D300 В2,0;  Е0 = 1350.

Расчетный модуль деформации кладки должен приниматься равным:

  • При расчете конструкций по прочности для определения усилий в кладке Е = 0,5 · Е0;
  • При определении кратковременных деформаций кладки от продольных и поперечных сил Е = 0,8/Е0.

Относительная деформация кладки из блоков с учетом ползучести ε = 3,5 · σ / Е0, де
σ — напряжение, при котором определяется ε.

Ненесущие конструкции

Основное количество газобетона, выпускаемого заводом «Аэрок», используется в многоэтажном домостроении при заполнении наружных ограждений каркасных зданий. В этом варианте газобетонные стены делаются с поэтажным опиранием на перекрытия. Несущей способности блоков классов по прочности С2,0 и С2,5 для восприятия вертикальных нагрузок оказывается более чем достаточно (при правильном устройстве деформационного шва между кладкой и вышележащим перекрытием).
Однако такие стены, особенно при большой этажности зданий, должны проверяться на устойчивость к горизонтальным нагрузкам (ветровой напор и отсос, кратковременные нагрузки от опирания на стены находящихся в помещении людей). В общем случае, газобетонные стены должны закрепляться к поперечным несущим стенам или колоннам в двух уровнях по высоте этажа.

Прочность и плотность газобетона для несущих стен

Бытует миф о низкой прочности газобетона. Это заблуждение: качественные газобетонные блоки для наружных и несущих стен, например, от YTONG, обладают достаточной прочностью, чтобы из них можно было строить дома в несколько этажей. А миф о непрочности газобетона возник, скорее всего, из-за ошибочного представления о самом понятии «прочность» и о том, как работает кладка из любого каменного материала. Рассмотрим всё это подробнее.


Что такое прочность

Говоря о прочности, имеют в виду, прежде всего, прочность на сжатие. Это способность материалов или конструкций выдерживать нагрузки, не повреждаясь. Нагрузки бывают разные, но для стен дома важнее всего так называемые постоянные, длительные нагрузки. Например, нагрузка от собственного веса стены, перекрытий, вышележащих этажей, крыши. Стены должны быть достаточно прочными, чтобы выдерживать их. И у газобетона достаточная несущая способность, чтобы воспринимать нагрузки от конструкции здания.

Прочность и плотность

Как правило, прочность газобетона зависит от его плотности. Чем выше плотность, тем прочнее газобетон (хотя на рынке встречается газобетон плохого качества, у которого при высокой плотности довольно низкая прочность).

Какие же показатели прочности у разных по плотности марок газобетона YTONG:

  • Даже у блоков с невысокой маркой по плотности, D400, прочность на сжатие довольно высокая – 3,65 МПа, их класс прочности – В2,5.
  • У более плотных блоков D500 прочность на сжатие уже 4,8 МПа, а класс прочности – В3,5.

Что означают на практике эти цифры:

  • Из блоков YTONG D500 без проблем можно строить дома высотой до 5 этажей включительно. И это не маркетинговое заявление, а заключение государственной экспертной организации – ЦНИИСК им. В.А. Кучеренко.
  • Менее плотные блоки D400 подходят для возведения зданий высотой до 3 этажей включительно (без несущего железобетонного каркаса).

Учитывая, что российские нормы запрещают строить объекты ИЖС высотой более трёх этажей, прочности блоков из газобетона D400 будет достаточно для любого загородного жилья.

Прочность блоков и прочность кладки

Оценивая прочность каменного дома, нужно оценивать несущую способность кладки, а не прочность отдельных её элементов. Ведь несущая способность каменной кладки зависит не только от прочности блоков, но также от их структуры и размеров, технологии кладки, толщины растворного шва и других факторов.

Поясним на примере. Качественные крупноформатные керамические блоки («тёплая керамика») марки М75, толщиной 380 мм, более чем в два раза прочнее газобетонных блоков YTONG D400 толщиной 375 мм. Но при этом кладка из газоблоков имеет расчётную прочность на сжатие 1 МПа, а из керамоблоков – 1,4 МПа, то есть не в два раза, а всего на 40% больше.

Безусловно, газобетон не столь прочен, как некоторые другие каменные материалы, но его прочности вполне хватает для двух-трёхэтажного здания.

Стоит ли выбирать более прочный газобетон

Возникает вопрос: а может, лучше перестраховаться и выбрать более плотные и, как следствие, более прочные газобетонные блоки D500? Чаще всего в этом нет смысла. У блоков D400 достаточная несущая способность и при этом у них есть важное преимущество над более плотным газобетоном: они «теплее», что особенно важно для наружных стен.

Чем меньше плотность материала, тем выше его теплозащитные свойства. И потому из блоков D400 можно строить однослойные стены, то есть стены без дополнительного утепления, которые полностью отвечают требованиям СП 50.13330.2012 «Тепловая защита зданий» для средней полосы России. Между тем стены из более плотных блоков D500, скорее всего, придётся утеплять, чтобы не переплачивать за отопление.

У однослойных стен множество плюсов над многослойными, утеплёнными:

  • Однослойные долговечнее. Газобетон прослужит более ста лет, в то время как утеплитель в многослойных стенах – намного меньше.
  • Однослойные проще строить, меньше вероятность ошибок, а если они всё же допущены, их можно заметить ещё на этапе строительства и сразу же исправить. В утеплённых стенах проблемы обнаруживаются уже во время эксплуатации, и исправить их намного сложнее.
  • Строить однослойные стены дешевле и быстрее, чем конструкцию «газобетон + утеплитель». Такую конструкцию придётся сооружать в несколько этапов, осуществляя несколько доставок материалов и крепежа. А если предполагается утеплять стены паронепроницаемым пенополистиролом, то придётся сначала построить коробку дома, а затем ждать до полугода, прежде чем можно будет её утеплять. Ожидание необходимо для того, чтобы из газобетонных блоков «выветрилась» так называемая производственная влага, иначе со временем может повредиться отделка стен, как наружных, так и несущих.

Прочность блоков Ytong A++

Ytong А++ – новый продукт в линейке производителя газобетона, из которого мы строим дома. Это блоки марки D300. Уменьшение плотности позволило получить газобетон, который ещё «теплее», чем D400, то есть с меньшим коэффициентом теплопроводности. Какие плюсы у нового материала?

  • По теплотехнике кладка из Ytong A++ при стандартной толщине 375 мм значительно превосходит требования указанного выше СП. А значит, можно построить дом с однослойными каменными стенами, который удастся экономно отапливать даже электричеством. Ytong A++ – достойный конкурент энергоэффективным каркасным домам.
  • Благодаря энергоэффективности блоков Ytong A++, можно возводить однослойные стены толщиной всего 300 мм, которые будут соответствовать теплотехническим требованиям для центрального региона России. Плотности и прочности такого газобетона будет вполне достаточно для несущих стен. Уменьшая толщину стен, вы уменьшаете расходы на доставку и строительство, при этом увеличивая полезную площадь здания.

Но есть важный нюанс: чем ниже плотность газобетона, тем ниже и его прочность. Однако компании YTONG удалось создать блоки марки D300 с классом прочности В2,0. Это означает, что из них можно строить дома высотой в два этажа, но только при условии грамотного проекта.


Газобетон – хрупкий?

Прочность и хрупкость – не противоположные свойства (противоположность хрупкости – пластичность). Как известно, чугун очень прочен, но при этом хрупок. Газобетон отличается долговечностью, но он тоже относительно хрупкий материал. В чём это проявляется? Если по краю блока резко и сильно ударить чем-то тяжёлым, то может появиться скол. Когда блоки находятся внутри кладки, удары не столь опасны: напряжение от удара распределяется во всей кладке, не концентрируясь на одном блоке. То есть расколоть кладку намного сложнее.

Влияет ли хрупкость блоков на прочность кладки? Нет, не влияет. Но она диктует довольно жёсткие требования по перевозке и разгрузке материала, чтобы избежать сколов.

Требования чётко прописаны производителем газобетона, и наша компания их неукоснительно соблюдает. Этих требований много, среди них:

1. У грузового автомобиля, который перевозит паллеты с газобетоном, должны быть: пневматические подвески, откидной или съёмный борт, ровный пол – без дефектов и посторонних предметов.
2. Паллеты должны быть надёжно закреплены в кузове, не имея возможности смещаться. Для этого каждый ряд паллет фиксируют к кузову мягким текстильным ремнём. При этом на верхних внешних углах крайних паллет в ряду устанавливают специальные пластиковые уголки. Ремень накидывают на них, чтобы при затягивании он не повредил кромки блоков. Это необходимая мера, вне зависимости от того, какую плотность газобетона решил выбрать заказчик.
3. Загружать и разгружать паллеты можно только тремя способами:

  • Вилочным автопогрузчиком.
  • С-образным вилочным захватом, которым оснащён манипулятор или кран.
  • Манипулятором или краном с двумя мягкими такелажными стропами (чалками) достаточной ширины.

При этом допустимо разгружать паллеты только по одной штуке. Переносить сразу весь ряд нельзя.

Если эти требования выполнены, то блоки попадут на стройплощадку в целости и сохранности. А если какие-то блоки всё же оказались повреждёнными (по ГОСТ 21520-89 допустим бой не более 5% от поставки), их вполне можно обрезать и использовать в кладке – в тех местах, где необходимы обрезанные блоки.

Ещё один момент. Из-за структуры и хрупкости газобетона кладка из этого материала плохо сопротивляется изгибающим нагрузкам. Впрочем, низкая прочность на изгиб свойственна большинству каменных стеновых материалов. В этом нет ничего «криминального», просто нужно учитывать этот момент при выборе и проектировании фундамента.

Что же в итоге? Газобетоные блоки – прочный каменный материал для возведения несущих и наружных стен, отличающийся долговечностью. При этом он «тёплый», технологичный в строительстве и сравнительно недорогой. Всё это делает его оптимальным выбором для современного загородного дома.


Прочность газобетона

К основным преимуществам газобетона следует отнести: хорошую морозостойкость и небольшую теплопроводность, а также достаточную прочность на изгиб и сжатие. Важной характеристикой рассматриваемого материала считается небольшая усадка.

Прочность газобетона к сжимающим усилиям зависит от его марки и может колебаться от 12 до 140 кгс/см2, блоки с плотностью 500 кг/м3 выдерживают нагрузку в 2,5 МПа, газобетон марки Д 600 – 3,2 МПа. Значение на этот показатель оказывает объёмный вес, а также качество и количество вяжущего вещества. Также прочность будет зависеть от равномерности структуры изделия. Если пузырьки в материале расположены неравномерно и имеют разные диаметры, то разрушения газоблока может происходить в два этапа: сначала разрушаются периферийные слои, а затем ядро, имеющее большую прочность. В подобных случаях проблематично определить прочность испытуемого материала, но она будет гораздо меньшей, чем у материала с равномерной структурой.

Следует заметить, что улучшенные прочностные показатели имеет газобетон автоклавного твердения. Такие материалы изготовляют в больших объёмных формах, что будет способствовать более равномерному распределению пор. Большое влияние на рассматриваемый показатель оказывает расход цемента. При увеличении веса изделий улучшаются прочностные показатели и увеличивается теплопроводность. Так, вес теплоизоляционных материалов может колебаться от 300 до 500 кг/м3, а плотность конструкционных изделий, применяемых для кладки несущих стен, начинается с 600 кг/м3.

А теперь рассмотрим зависимость прочности газобетона от типа твердения материала. Газобетон неавтоклавного твердения застывает и приобретает основные характеристики в естественных условиях, причём максимальная его прочность достигается через три месяца от даты его изготовления, 35% через неделю и половина прочности примерно через месяц.

Газобетон автоклавного типа твердения имеет гораздо лучшие прочностные показатели, причём получить подобную характеристику можно со сравнительно небольшим расходом вяжущего вещества. Объяснить такое явление достаточно просто и это связано с тем, что порошкообразные кремнеземистые добавки вступают в реакцию с известью и компонентами цемента, в результате чего образуется новое вещество со свойствами вяжущего.

Что касается прочности газобетонного блока на изгиб, то она находится в пределах от 25% до 33% такого же показателя материала, но на сжатие. 

Газобетон: плотность vs прочность

Поскольку газобетон еще относительно новый продукт для отечественного рынка стройматериалов, часто возникает путаница в его свойствах. Сегодня мы покажем разницу между такими важными в строительстве качествами, как прочность и плотность автоклавного газобетона.

Плотность газобетона.

Плотность газобетонных блоков маркируется литерой D и имеет отношения к пористости материала. Напомним, что именно пористая структура делает газобетон наиболее предпочтительным, когда необходимо построить энергоэффективный дом без дополнительного утепления. Воздух, заполняющий застывшие в процессе изготовления пузырьки, является непревзойденным естественным теплоизолятором. Маркировка плотности газоблоков варьируется от D100 до D600. В гражданском строительстве применяют, в основном, газобетон плотностью от D100 до D500.

Чем выше количество пор в газобетоне, тем ниже его плотность, но и тем он теплее. Так, газоблоки с плотностью D300 позволяют построить значительно более теплый дом, чем D500. Поскольку тепло передается фрагментам блока по сплошной части, то у более пористого расстояние от комнат до улицы оказывается длиннее, и теплопередача затруднена. Более высокий показатель плотности говорит о том, что сплошных фрагментов больше, и расстояние от тепла к холоду короче.

Прочность газобетона.

Если говорить о прочности, то данный параметр обозначают литерой В, он характеризует устойчивость материала к несущим нагрузкам, а именно – прочность на сжатие. Выбирая для строительства газоблоки, необходимо учитывать, что далеко не все они способны выдерживать вес межэтажных перекрытий, верхних этажей. К тому же, в материале с более низкой прочностью трудно будет удержать крепёж навесных фасадов снаружи, радиаторов центрального отопления внутри и т.д.

Чем меньше прочность газобетонных блоков, тем менее высокие дома можно из них построить, тем меньше возможностей применения ЖБИ в качестве материала лестниц, балок, перекрытий. В таких случаях приходится применять пиломатериалы, которые куда менее долговечны.

Прочность маркируют от В1,5 до B3 с шагом 0,5.

Соотношение плотности и прочности.

Существует тесная взаимосвязь между плотностью и прочностью газоблоков. Количество пор в материале напрямую влияет на прочностные характеристики. Получается, что чем теплее дом из газобетона, тем более хрупкими окажутся его стены, можно ожидать появления трещин и крошки при попытке укрепить в них, например, дюбель и гвоздь. Стены из газобетона с более низкой плотностью (например, в промышленности и военной отрасли применяют газобетон D500, D600) будут и более устойчивыми на сжатие. Кроме того, D600 – весьма морозостоек, и поэтому хорошо подходит к условиям климатических зон с суровым, неустойчивым климатом.

Можно ли добиться увеличения параметра «прочность» при сохранении низкой теплопроводности? Попытки разработки подобной технологии изготовления газобетона постоянно предпринимают производители. И на текущий момент уже есть определенный диапазон решений. В частности, значительно повышает прочность ячеистого бетона метод отвердения его в автоклавах. Вот почему сегодня трудно найти более дешёвый, лёгкий, тёплый и довольно прочный материал, чем автоклавный газобетон.

Прочность на сжатие газобетона.

Контекст 1

… образцы были испытаны на физико-механические свойства, а именно на объемную плотность в высушенном состоянии, прочность на сжатие и теплопроводность. Эти свойства визуализированы на следующих рисунках. Сравнение насыпной плотности газобетона (рис. 1) показывает уменьшение насыпной плотности в образцах, содержащих 13% зольную добавку FBC. Эта тенденция явно положительна для газобетона, поскольку насыпная плотность связана с теплоизоляционными свойствами материала.Через 2 года произошло небольшое увеличение насыпной плотности. Причину следует искать в микроструктуре газобетона и будет обсуждаться позже. Примесь золы FBC также оказала влияние на снижение прочности на сжатие (рис. 2). Это явление можно объяснить качеством золы от сжигания жидкого угля, особенно в отношении содержания SiO 2, а также его формы. Летучая зола из обычных порошковых слоев состоит на 80-95% из аморфных алюмосиликатов, тогда как зола FBC содержит в основном минеральные фазы.Таким образом, можно предположить, что SiO 2, содержащийся в золе FBC, будет менее реактивным, что было подтверждено с учетом механических свойств бетона. После 2 лет хранения у большинства образцов наблюдается небольшое снижение прочности на сжатие. Однако влияния зольной добавки FBC на прочность при сжатии после 2 лет хранения не наблюдалось. Зола FBC явно имеет положительное влияние на теплопроводность согласно результатам, представленным на рис. 3. Как упоминалось выше, это связано в основном с более низкой насыпной плотностью газобетона, содержащего золу FBC.После 2 лет хранения коэффициент теплопроводности практически не изменился. После определения физико-механических свойств была проанализирована микроструктура образцов. На следующих рисунках представлены рентгеновские дифрактограммы газобетона после 2 лет хранения (рис. 4, рис. 5) и СЭМ-изображения образцов (рис. 6, рис. 7). Рентгеновские дифрактограммы показывают, что образцы состоят в основном из тоберморита. Также присутствует некоторое содержание катоита (Ca 3 Al 2 (SiO 4) (OH) 8).Когда летучая зола используется в качестве силикатного компонента в ячеистом бетоне, в системе образуются CaO-Al 2 O 3 SiO 2 -H 2 O кальций-алюминат-силикат-гидраты, к которым также относится упомянутый выше катоит. Образование этого минерала во время гидротермальной реакции желательно, поскольку тоберморит также кристаллизуется из раствора растворенных ионов катоита на более поздних стадиях гидротермальной реакции. Формулы также показывают значительное содержание эттрингита, который вторично образовался в течение 2 лет хранения и является продуктом сульфатирования.Также присутствует кальцит, который указывает на карбонизацию газобетона. Присутствие этих минералов также может объяснить небольшое снижение прочности и увеличение насыпной плотности за 2 года. Сравнение рентгеновских дифактограмм образцов на основе высокотемпературной летучей золы и образцов, содержащих золу FBC, показывает, что использование золы FBC приводит к снижению интенсивности пика тоберморита. Сравнение химического состава золы (Таблица 2) показывает значительную разницу в содержании SiO 2, примерно на 2%.10%. Важным фактором является также характер SiO 2 в золе, который аморфен в высокотемпературной золе и, следовательно, обладает высокой реакционной способностью. Можно предположить, что SiO 2, содержащийся в золе FBC, мало реакционноспособен и не вносит полного вклада в образование фаз CSH. Изображения, полученные с помощью SEM-микроскопа, показывают, что все образцы имеют микроструктуру хорошего качества, образованную в основном хорошо развитыми игольчатыми кристаллами тоберморита, которые хорошо сцеплены и образуют прочный каркас из пенобетона.Некоторые неиспользованные зерна летучей золы и, в небольшой степени, катоита наблюдались в бетоне без примеси золы FBC (рис. 6). Однако изометрические кристаллы катоита в основном присутствовали в бетоне с 13% зольной примеси FBC (рис. 7). На СЭМ-изображении этого газобетона также были обнаружены кристаллы кальцита, которые растут из места, покрытого тоберморитом. Таким образом, можно предположить наступление карбонизации бетона. Анализ микроструктуры зольного газобетона позволил сделать вывод о том, что в образцах могут наблюдаться признаки карбонизации и сульфатирования после 2 лет хранения в помещении с переменным температурно-влажностным режимом.В частности, это проявилось в наличии в бетоне эттрингита и кальцита. Присутствие этих минералов в равной степени наблюдалось в обоих типах газобетона (сделанном с использованием высокотемпературной летучей золы и 13% -ной примеси золы FBC). Микроструктура этих двух газобетонов различалась в основном содержанием тоберморита. Было обнаружено, что добавление золы FBC отрицательно влияет на образование этого минерала. Результаты анализа микроструктуры были подтверждены при определении физико-механических свойств бетона.За 2 года хранения почти у всех образцов произошло небольшое увеличение насыпной плотности и снижение прочности на сжатие. Теплопроводность осталась неизменной. Примесь золы FBC положительно повлияла на насыпную плотность, т.е. уменьшилась. Прочность на сжатие тоже, что, однако, отрицательно …

% PDF-1.5 % 1 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 6 0 obj > / XObject> / ProcSet [/ PDF / Text / ImageB / ImageC] >>>> эндобдж 7 0 объект > эндобдж 8 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 270 328 339769 541 823 836 175 394 394 500 833 270 330 270 278541 541 541 541 541 541 541 541 541 299 299 833 833 833 383 986 760 657 720 766 584 553 769 806 354 354 715 571 903 796 803 803 701 546 695787 760 1030 713 659 579 394 278 394 1000 500 500 459 513 458519 457 306 451 560 274 ​​269 546 267 815 560 516 519 513 374 382 325 560 484 700 492461383 500 500 500 833 600 541 600 230 541 462 1000 500 500 500 1229 546 308 1037 600 579 600 600 230 230 462 462 5 1000500 822 382 308 810 600 383 659 541 328 541 541 541 659 500 500 500 822 344 473 833 330 822 500 329 833 357 357 500 578 500 270 500 357 387 473848 848 849 383760 760 760 760 760 760 934 720 584584584 354 354 354 354 766 796 803 803 803 803 803 833 803787 787 787 787 659 603 539 459 459 459 459 459 703 458 457 457 457 457 274 274 274 274 516 560 516 516 516 516 516 516 516 516 516 516 516 516 560 560 560 560 461 519 461] эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 270 368 339 769 541 778 810 175 382 382 500 833 271 329 271 278 541 541 541 541 541 541 541 541 541 282 282 833 833 833 412 986 713 678 701 752625 579725 793 348 431 743 602917 774 799 623 799 660 532 671 819 694 995738 655 609 382 278 382 1000 500 500 491 405 491410 292461493273248 456 255 765 521468 488 468 359 356 308 528 498 757 442470 391 500 500 500 833 600 541 600 271 541463 1000 500 500 500 1150 532 273 1044 600 609 600 600 271271463463 5 1000500 822 356 273 719 600 391 655 541 368 541 541 541 541 500 500 500 822 400 428833 329 822 500 329 833 357 357 500 578 500 271 500 357 361428 848 848 849 412 713 713 713 713 713 713 986 701625625625625348 348 348 348 762 774 799 799 799 799 799 833 799 819 819 819 819 655 637 484 491491491491491686 405410 410 410 410 273 273 273 273 468 521 468 468 468 468 468 468 528 528 528 528 470 472 470] эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 342 402 587 867 711 1272 862 332 543 543 711 867 361 480 361 689 711 711 711 711 711 711 711 711 711 711 402 402 867 867 867 617 964776 762 724 830 683 650 811 837 546 555 771 637 948 847 850 733 850 782 710 682812 764 1128 764 737 6925453 689 543 867 711 711 668 699 588 699 664 422 699 712 342 403 671 342 1058 712 687 699 699 497 593 456 712 650 979 669 651597 711 543 711 867 1000 711 1000 332 711 587 1049 711 711 711 1777 710 543 1135 1000 692 1000 1000 332 332 587 587 711 711 1000 711 964 593543 1068 1000 597 737 342 402711 711 711 711 543 711 711 964 598850 867 480 964 711 587 867 598 711 721 711 361 711 598 598 850 1182 1182 1182 617 776 776 776 776 776 1094 724 683 683 683 683546546546546830 847850 850850850867850 812812812812 737 735 713 668 668 668 668 668 668 1018 588 664 664 664 342 342 342 342 67979 712 687 687 687 687 687 867 687 712 712 712 712 651 699 651] эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 750 750 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 58458458456 1015 667 667 722 722 667 611 778722 278 500 667556833 722778 667 778722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 750 556 750 22 25 56 333 1000 556 556 333 1000 667 333 1000 750 611 750 750 22 22 22 23 33 333 350 556 1000 333 1000 500 333944750500 667 278 333 556 556 556 556 260 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 537 278 333 333 365 556834 834 834 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 549 556 556 556 556 500 556 500] эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 342 402 587 867 711 1272 862 332 543 543 711 867 361 480 361 689 711 711 711 711 711 711 711 711 711 711 402 402 867 867 867 617 964776 762 724 830 683 650 811 837 546 555 771637 948 847 850 733 850 782710 682812 764 1128 764 737 6925453 689 543 867 711 711 668 699 588 699 664 422 699 712 342 403 671 342 1058 712 686 699 699 497 593 456 712 649 979 669 651597 711 543 711 867 1000 711 1000 332 711 587 1049 711 711 711 1777 710 543 1135 1000 692 1000 1000 332 332 587 587 711 711 1000 711 964 593543 1068 1000 597 737 342 402711 711 711 711 543 711 711 964 598850 867 480 964 711 587 867 598 711 721 711 361 711 598 598 850 1182 1182 1182 617 776 776 776 776 776 1094 724 683 683 683 683 546 546 546 546 830 847 850 850 850 850850 867 850 812 812 812 812 737 735 713 668 668 668 668 668 668 1018 588 664 664 664 342 342 342 342 67979 712 686 686 686 686 686 867 686 712 712 712 712 651 699 651] эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 352 394 459 818 636 1076 727 269 454 454 636 818 364 454 364 454 636 636 636 636 636 636 636 636 636 454 454 818 818 818 545 1000 684 686 698 771 632 575775 75142145 693 557 843 748 787 603787 695 684 616 732 684 989 685 615 685 454 454 454 818 636 636 521 623 596 352 623 633 274 344 592 274 973 633 607 623 623 427 521 394 633 592818 5925925635 454635 818 1000 636 1000 269 636 459 818 636 636 636 1521 684 454 1070 1000 685 1000 1000 269 269 459 459 545 636 1000 636 977 521 454 981 1000 525 615 352 394 636 636 636 454 636 636 1000 545 645 818 454 1000 636 542 818 542 542 636 6426 364 636 542545 645 1000 1000 1000 545 684 684 684 684 684 684 984 698632 632 632 632 421421421421775 748 787787 787787818 787 732 732 732 615 605 620 601 601 601 601 601 955521596596596596 274 274 274 274 274 612 633 607 607 6018 607 607 607 633 633 633 633 592 623 592] эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 408 500 500 833 778 180 333 333 500 564 250 333250 278 500 500 500 500 500 500 500 500 500 500 278 278 564564 444 921 722 667 667 722 611 556722 722 333 389 722 611 889 722 722 556 722 667 556611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 778 500 778 333 500 444 1000 500 500 333 1000 556 333 889 778 611 778 778 333 333 444 444 350500 1000 333980389333722778444722250 333500500500500200500 333760 276 500 564 333760 500 400 549 300 300 333 576 453250 333 300 310 500 750 750 750 444722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 722 722 722 722 722 722 722 564722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 500 500 500] эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 352 394 459 818 636 1076 727 269 454 454 636 818 364 454 364 454 636 636 636 636 636 636 636 636 636 454 454 818 818 18 545 1000 683 686 698766 632 575 775 75142145 693 557 843 748 787 603 787 695 684 616 732 683 990 685 615 685 454 454 454818 6236 601 521 623 596 352 622 633 274 344 587 274 973 633 607 623 623 427 521 394 633 591 818 59259 1525 635 454635 818 1000 636 1000 269 636 459 818 636 636 636 1519 684 454 1070 1000 685 1000 1000 269 269 459 459 545 636 1000 636 977 521 454 980 1000 525 615 352 394 636 636 636 454 636 636 1000 545 645 818 454 1000 636 542 818 542 542 636 6426 364 636 542545 645 1000 1000 1000 545 683 683 683 683 683 683 989 698632 632 632 632 421421421421766 748 787787 787 787 818 787 732 732 732 732 615 605 620 601 601 601 601 601 955521596596596596 274 274 274 274 612 633 607 607 6018 607 607 607 633 633 633 633 591 623 591] эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > поток

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПЛОТНОСТЬ И ПРОЧНОСТЬ ПЕРИОДИЧЕСКОГО БЕТОНА

Газобетон является относительно однородным материалом по сравнению с обычным бетоном, поскольку он лишен фазы крупного заполнителя, но при этом демонстрирует значительные различия в своих свойствах.Большинство исследований в прошлом ограничивалось автоклавированными продуктами. В данной статье представлены результаты систематического исследования, проведенного с целью определения влияния соотношения известково-цементный раствор, летучей золы как частичной / полной замены песка, размера частиц песка и дозировки аэрирующего агента на плотность и прочность на сжатие. газобетон влажного твердения и автоклавного твердения. В этом исследовании установлено, что с точки зрения снижения плотности летучая зола может играть ключевую роль в ячеистом бетоне без особого ущерба для прочности.Наблюдается, что повышенное соотношение извести и цемента отрицательно сказывается на прочности, тогда как уменьшение размера частиц песка ниже определенного уровня не оправдано в случае неавтоклавного пенобетона. (А)

  • Наличие:
  • Корпоративных авторов:

    Томас Телфорд Лимитед

    Лондон, объединенное Королевство
  • Авторов:
    • Рамамурти, К
    • НАРАЯНАН, N
  • Дата публикации: 2000-6

Язык

Информация для СМИ

Предмет / указатель терминов

Информация для подачи

  • Регистрационный номер: 00795011
  • Тип записи: Публикация
  • Агентство-источник: Транспортная исследовательская лаборатория
  • Файлы: ITRD
  • Дата создания: 7 июля 2000 г., 00:00

Оценка механических свойств блока из автоклавного ячеистого бетона (AAC) и его кладки

  • 1.

    В. Сринивас, С. Сасмал, Экспериментальные и численные исследования поведения кирпичной кладки при предельной нагрузке. J. Inst. Англ. (Индия) Сер. A 97 (2), 93–104 (2016)

    Статья Google Scholar

  • 2.

    S.H. Баша, Х. Кошик, Оценка нелинейных свойств материала кирпичной кладки из зольной пыли при сжатии и сдвиге. J. Mater. Civ. Англ. (ASCE) 27 (8), 04014227 (2014)

    Статья Google Scholar

  • 3.

    А. Радж, А.С. Борсайкия, США, Диксит, Производство автоклавного газобетона (AAC): текущее состояние и будущие тенденции. в Advances in Simulation, Product Design and Development (Springer, Singapore, 2020), стр. 825–833

  • 4.

    Д. Ферретти, Э. Мишелини, Г. Розати, Растрескивание в автоклавном ячеистом бетоне: экспериментальное исследование и моделирование XFEM. Джем. Concr. Res. 67 , 156–167 (2014)

    Артикул Google Scholar

  • 5.

    Н. Нараянан, К. Рамамурти, Микроструктурные исследования ячеистого бетона. Джем. Concr. Res. 30 (3), 457–464 (2000)

    Артикул Google Scholar

  • 6.

    Александерсон Дж. Связь между структурой и механическими свойствами автоклавного газобетона. Джем. Concr. Res. 9 (4), 507–514 (1979)

    Артикул Google Scholar

  • 7.

    Л. Малышко, Е. Ковальска, П. Билко, Расщепление при растяжении автоклавного газобетона: сравнение результатов различных образцов. Минусы. Строить. Мат. 157 , 1190–1198 (2017)

    Артикул Google Scholar

  • 8.

    Д. Ферретти, Э. Мишелини, Г. Розати, Механические характеристики кладки из газобетона автоклавного твердения, подвергнутой нагрузке в плоскости: экспериментальное исследование и КЭ моделирование. Минусы. Строить.Мат. 98 , 353–365 (2015)

    Артикул Google Scholar

  • 9.

    A. Bhosale, N.P. Заде, Р. Дэвис, П. Саркар, Экспериментальное исследование кладки из автоклавного газобетона. J. Mater. Civ. Англ. (ASCE) 31 (7), 04019109 (2019)

    Артикул Google Scholar

  • 10.

    А. Радж, А.К. Борсайкия, США, Диксит, Прочность сцепления при сжатии и сдвиге блоков и кирпичной кладки с канавками.Матер. Struct. 52 (6), 116 (2019)

    Артикул Google Scholar

  • 11.

    https://brikolite.com/brikolite-user-guidelines/, получено 19 сентября 2019 г.

  • 12.

    Х.Р. Кумават, Экспериментальное исследование механических свойств кладки из глиняного кирпича путем частичной замены мелкого заполнителя отходами глиняного кирпича. J. Inst. Англ. (Индия) Ser A 97 (3), 199–204 (2016)

    Статья Google Scholar

  • 13.

    М. Кешава, С.Р. Рагхунатх, Экспериментальные исследования каменных стен с осевой и внецентренной нагрузкой. J. Inst. Англ. (Индия) Ser A 98 (4), 449–459 (2017)

    Статья Google Scholar

  • 14.

    G. Sarangapani, B.V.V. Редди, К. Джагдиш, Кирпичная кладка и прочность на сжатие. J. Mater. Civ. Англ. (ASCE) 17 (2), 229–237 (2005)

    Статья Google Scholar

  • 15.

    А.Дж. Фрэнсис, К.Б. Хорман, Л. Jerrems, Влияние толщины шва и других факторов на прочность кирпичной кладки при сжатии. in Proceedings of 2 nd International Brick Masonry Conference , ed. Автор: HWH West, Британская керамическая ассоциация, Сток-он-Трент, стр. 31–37 (1971)

  • 16.

    Индийский стандартный свод правил [IS: 6441-1972, подтвержден в 2001 г.] для испытаний изделий из ячеистого бетона в автоклаве (пятая редакция) , Нью-Дели, Индия

  • 17.

    H.B. Кошик, Д.К. Рай, С.К. Джайн, Напряженно-деформированные характеристики кладки из глиняного кирпича при одноосном сжатии. J. Mater. Civ. Англ. (ASCE) 19 (9), 728–739 (2007)

    Статья Google Scholar

  • 18.

    S.B. Сингх, П. Мунджал, характеристики прочности связи и напряжения-деформации при сжатии кирпичной кладки. J. Build. Англ. 9 , 10–16 (2017)

    Артикул Google Scholar

  • 19.

    Индийский стандартный свод правил [IS: 3495-1976, подтвержден в 2002 году] для испытания строительных кирпичей из обожженной глины (третья редакция), Нью-Дели, Индия

  • 20.

    Американские стандартные методы испытаний для отбора проб и испытаний кирпича и структурной глиняной плитки , ASTM C67-00, 4-е изд., Американское общество испытаний и материалов (ASTM), Филадельфия, Соединенные Штаты, (2001)

  • 21.

    Американский стандартный метод испытания прочности на разрыв кирпичных блоков при разделении, ASTM C 1006-07 , Американское общество испытаний и материалов (ASTM) Вест Коншохокен, США, (2007)

  • 22.

    Индийский стандартный свод правил [IS 2250-1981, подтвержден в 2002 г.] для приготовления и использования строительных растворов (первая редакция), Нью-Дели, Индия

  • 23.

    Индийский стандартный свод правил [IS 1905-1987, подтвержден в 2002 г. ] для структурного использования неармированной кладки (Третья редакция), Нью-Дели, Индия

  • 24.

    Американский стандартный метод испытания прочности сцепления раствора с каменными блоками, ASTM C 952-91, Соединенные Штаты, (1991)

  • 25.

    С. Малликарджуна, Экспериментальное определение параметров для критерия разрушения, основанного на микромоделировании, для стены сдвига из блочной кладки AAC, М.tech. диссертация, Индийский технологический институт, Гувахати, Индия, 2017

  • 26.

    В. Алеччи, М. Фагоне, Т. Ротунно, М. Де Стефано, Прочность на сдвиг кирпичных стен, собранных с использованием различных типов раствора. Минусы. Строить. Мат. 40 , 1038–1045 (2013)

    Артикул Google Scholar

  • 27.

    A.A. Коста, А. Пенна, Г. Магенес, А. Галаско, октябрь. Оценка сейсмостойкости каменных зданий из автоклавного ячеистого бетона (AAC).in Proceedings of the 14th World Conference on Earthquake Engineering , (Пекин, Китай), 05-04 (2008)

  • Прочность на сжатие Ячеистый бетонный блок AAC

    Прочность на сжатие пенобетонный блок AAC

    СРАВНИТЕЛЬНЫЙ АНАЛИЗ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ — SMARTBRIX AAC

    … СКАЧАТЬ. Сравнительный анализ и спецификации. Легкие автоклавные газобетонные блоки с высокой прочностью на сжатие (блоки SmartBrix AAC) …

    Узнать больше

    Влияние условий окружающей среды на газобетон в автоклаве

    Автоклавный газобетон (AAC) получил широкое распространение в качестве … изоляционные свойства и возможность резки блоков просто ручной пилой. … прочность на сжатие и трещиностойкость автоклавного газобетона…

    Узнать больше

    Испытания на прочность легкого бетона с ненаполненными поперечными швами и

    на сжатие и сдвиг согласно шведским нормам относятся к минимальным. … способ строительства из блоков из автоклавного газобетона. Однако далее …

    Узнать больше

    PDF Технические характеристики блоков AAC — (Газобетон в автоклаве

    Технические характеристики блоков AAC Свойства технических характеристик блоков AAC Общий размер 625 мм * 240 мм * (75-300) мм Толщина 50,75,100,125,150,200,225 Минимум Прочность на сжатие от 3 до 4.5 Н / мм2 (IS 2185) Минимальная плотность в сухом состоянии от 450 до 650 кг / м3 Термическое сопротивление 0,8-1,25 на дюйм толщины

    Узнать больше

    О блоках AAC — MEPCO

    Блоки из автоклавного пенобетона производятся путем переработки летучей золы . Летучая зола … Долговечна, обладает высокой прочностью на сжатие и устойчива к термитам. Не требует …

    Узнать больше

    Газобетонные блоки от Mannok

    Газобетонные блоки Mannok — ранее Quinn Lite — простой способ достичь превосходных тепловых характеристик.Легкие, высокопроизводительные термоблоки, которые прецизионно изготавливаются из газобетона в автоклаве (AAC) с использованием передовых технических процессов. Блоки из газобетона Mannok являются лучшими в Ирландии по тепловым характеристикам, прочности и долговечности

    Узнать больше

    Оценка механических свойств газобетона в автоклаве

    12 марта 2020 … Блоки AAC слабые и мягкие по сравнению с обычной глиной кирпичные блоки [17] и блоки из кирпича из летучей золы [2]. Прочность на сжатие глиняного кирпича…

    Узнать больше

    Прочность на сжатие блока AAC (подзаголовки — пояснение

    Испытание на прочность на сжатие блока из автоклавного газобетона (AAC) .. Ребята держите вкладку подзаголовок о … преимуществах блоков AAC и другой полезной информации …

    Узнать больше

    Механические свойства легкого газобетона с различным содержанием

    от прочности на сжатие газобетона [8-10]. … замена песка [11] и переменного тока с различными блоками и кирпичами (газобетон ,.

    Узнать больше

    Блоки AAC: газобетонные блоки из автоклавного бетона | — Civil Read

    2017. 4. 26. — Сформованный таким образом продукт не только легкий, но и имеет более высокую прочность на сжатие. Плотность этих легких блоков AAC обычно …

    Узнать больше

    Использование бамбуковых и автоклавных блоков из пенобетона для растяжения

    не требует высокой прочности на сжатие, поэтому его можно заменить на автоклавный газобетон (AAC) . Блокировать.Целью этого исследования является …

    Узнать больше

    Прочность на сжатие Ячеистый бетонный блок AAC — портативный

    2017-5-4 · Автоклавный газобетон (AAC) изготавливается из песка, извести, цемента, воды и алюминиевого порошка. … 5 МПа и рассчитан на …

    Узнать больше

    Прочность на сжатие автоклавных блоков из пенобетона

    … прочности каменных стен. В этой статье обсуждаются различные параметры, которые влияют на прочность на сжатие блоков из автоклавного газобетона с…

    Узнать больше

    Понимание IS 2185: Часть III 1984 — 2005: Автоклавные

    Автоклавные газобетонные блоки покорили строительную отрасль в большом … Итак, когда мы берем блок AAC для проверки прочности на сжатие , это …

    Узнать больше

    Сравнительный анализ бетонных блоков из aac, clc и золы

    Ключевое слово: легкий бетон, пенобетон, автоклавный газобетон, зольный бетон, сравнительное исследование, тематическое исследование, прочность на сжатие, термический…

    Узнать больше

    Copyright © 2021 PEAKEDNESS Inc. Все права защищены.

    научных статей, журналов, авторов, подписчиков, издателей

    Как крупный международный издатель академических и исследовательских журналов Science Alert издает и разрабатывает названия в партнерстве с самыми престижные научные общества и издатели.Наша цель заключается в том, чтобы максимально широко использовать качественные исследования аудитория.
    Мы прилагаем все усилия, чтобы поддержать исследователей которые публикуют в наших журналах. Есть масса информации здесь, чтобы помочь вам публиковаться вместе с нами, а также ценные услуги для авторов, которые уже публиковались у нас.
    2021 цены уже доступны. Ты может получить личную / институциональную подписку перечисленных журналы прямо из Science Alert. В качестве альтернативы вы возможно, пожелает связаться с выбранным вами агентством по подписке. Направляйте заказы, платежи и запросы в службу поддержки клиентов. в службу поддержки клиентов журнала в Science Alert.
    Science Alert гордится своей тесные и прозрачные отношения с обществом. В виде некоммерческий издатель, мы стремимся к самым широким возможное распространение публикуемых нами материалов и на предоставление услуг высочайшего качества нашим издательские партнеры.
    Здесь вы найдете ответы на наиболее часто задаваемые вопросы (FAQ), которые мы получили по электронной почте или через контактную форму в Интернете.В зависимости от характера вопросов мы разделили часто задаваемые вопросы на разные категории.
    Азиатский индекс научного цитирования (ASCI) стремится предоставить авторитетный, надежный и значимая информация по освещению наиболее важных и влиятельные журналы для удовлетворения потребностей мировых научное сообщество.База данных ASCI также предоставляет ссылку к полнотекстовым статьям до более чем 25000 записей с ссылка на цитированные ссылки.

    Пористость и механическая прочность автоклавного глинистого ячеистого бетона

    В данной статье исследуются пористость и механическая прочность автоклавного глинистого ячеистого бетона (ACCC) со связующим, изготовленным из 75 мас.% Каолинитовой глины и 25 мас.% Портландцемента.В качестве вспенивающего агента использовали алюминиевый порошок от 0,2 до 0,8 мас.%, Получая образцы с различной пористостью. Результаты показывают, что образцы с более высоким содержанием алюминия продемонстрировали слияние пор, что может объяснить более низкую пористость этих образцов. Пористость, полученная с использованием использованного в исследовании содержания алюминия, была высокой (около 80%), что объясняет низкую механическую прочность исследованных ячеистых бетонов (максимум 0,62 МПа). Тем не менее, сравнивая результаты, полученные в этом исследовании, с результатами для низкотемпературного глинистого газобетона аналогичного состава, можно заметить, что автоклавирование эффективно для увеличения механической прочности материала.1 ]. Тепловая и акустическая изоляция и огнестойкость — вот некоторые из свойств, которые делают ячеистый бетон очень интересным материалом для применения в строительстве [2–4].

    Есть много возможных способов производства ячеистого бетона.Различные композиции вместе с различными методами отверждения могут использоваться для получения различных конечных свойств, таких как плотность, механическая прочность, термическая и акустическая проводимость [1].

    Конечные свойства ячеистого бетона во многом зависят от его пористости, которую можно изменить, изменив тип и состав пенообразователя. Очень пористый материал будет обладать отличными тепло- и звукоизоляционными свойствами из-за большого количества увлеченного воздуха. Однако эти свойства достигаются в ущерб механической прочности, которая уменьшается с увеличением объема пор.Таким образом, определение пористости и ее влияние на механическую прочность ячеистого бетона является очень важным фактором, который необходимо анализировать при производстве этого вида материала.

    Некоторые исследования [5] показывают, что при той же пористости и составу механическая прочность ячеистого бетона может быть увеличена путем изменения метода твердения. Автоклавный газобетон (AAC), то есть отвержденный под давлением пара при температурах между и обычно имеет более высокую прочность на сжатие, чем бетон неавтоклавного пенобетона (NAAC) влажного отверждения при комнатной температуре.Кроме того, во время автоклавирования материал достигает своей окончательной микроструктуры, в то время как NAAC претерпевает микроструктурные изменения со временем и, как следствие, медленные и постепенные изменения своей механической прочности [5].

    Состав ячеистого бетона на каолинитовой глинистой основе был исследован Goual et al. [6–8]. В их исследованиях Clayey Cellular Concrete (CCC), как его называли, отверждался во влажной среде при относительной влажности 90%. Поскольку реакции между каолинитом и портландцементом очень медленные при комнатной температуре, этому материалу могут потребоваться месяцы, прежде чем будет достигнута его окончательная механическая прочность.Инновация, предложенная в этой статье, связана с использованием автоклава для улучшения свойств материала этого типа ячеистого бетона.

    Это исследование направлено, в частности, на изучение пористости и механической прочности автоклавного глинистого ячеистого бетона (ACCC) и сравнение результатов с результатами, представленными CCC с аналогичными составами, о которых сообщается в литературе.

    2. Экспериментальная
    2.1. Материалы

    Используемая глина состояла на 98,3% из каолинита (Caulina Minérios, Бразилия), а цемент представлял собой стандартный портландцемент с высокой начальной прочностью (CP V-ARI-RS, Votorantim, Бразилия).Алюминиевый порошок представлял собой Stanlux Flake CL 4010 (Aldoro, Бразилия) со средним размером частиц 16 мкм. Для повышения удобоукладываемости глиняно-цементного теста был использован суперпластификатор на основе поликарбоксилата (Glenium 51, BASF, Германия) (32 мас.% Сухого вещества).

    2.2. Композиции

    Автоклавный глинистый ячеистый бетон (ACCC) получали путем аэрации водной пасты каолинитовой глины и портландцемента с использованием алюминиевого порошка в качестве пенообразователя. Алюминиевый порошок реагирует с раствором каустика, который выделяется во время реакции гидратации, с образованием пузырьков газообразного водорода [7].В конце процесса вспенивания водород улетучивается в атмосферу и замещается воздухом, который удерживается в виде пузырьков в пасте, становясь сферическими порами после полного схватывания цемента, создавая ячеистую структуру [6].

    Были проанализированы четыре состава, различающиеся количеством используемого алюминиевого порошка. Количества, рассчитанные в процентах от массы сухих глино-цементных материалов, были следующими: 75 мас.% Глины, 25 мас.% Цемента, 65 мас.% Воды и суперпластификатор на основе поликарбоксилата (0.8 мас.%, Массовый процент твердых веществ по отношению к сухим материалам), к которому добавляли от 0,2 мас.% До 0,8 мас.% Алюминиевого порошка с шагом 0,2%. Образцы в этом исследовании были обозначены как A2 для 0,2, A4 для 0,4, A6 для 0,6 и A8 для 0,8 мас.% Алюминия.

    2.3. Подготовка образцов

    В этом эксперименте глина и цемент были смешаны в сухом состоянии в смесителе с планетарной осью на низкой скорости в течение 2 минут. Затем постепенно добавляли воду, продолжая перемешивание на низкой скорости еще 2 минуты.Сделали короткую остановку на 1,5 минуты при перемешивании, чтобы соскоблить материал, прилипший к стенкам емкости для смешивания. Затем смесь гомогенизировали на низкой скорости в течение 1 минуты, а затем в течение 2 минут на высокой скорости. Суперпластификатор добавляли при остановленном смесителе в течение 30 секунд. После добавления этой добавки пасту перемешивали на низкой скорости в течение 1 минуты и затем останавливали еще на 30 секунд для добавления алюминиевого порошка, который смешивали и гомогенизировали с пастой в течение 1 минуты на низкой скорости.

    Восемь образцов каждой смеси были отлиты в цилиндрические (50 100 мм 3 ) металлические формы, предварительно смазанные маслом для облегчения извлечения из формы. Через шестнадцать часов после формования лишние расширенные части были отрезаны. Через 48 часов образцы вынимали из форм и выдерживали во влажном помещении при 25 и 90% относительной влажности в течение 2 дней, а затем автоклавировали при 12 атм в течение 10 часов. Перед началом экспериментов образцы сушили в сушильном шкафу при температуре 70 ° C до достижения постоянного веса.

    Микроструктуру и фазы ACCC сравнивали с микроструктурой и фазами низкотемпературного глинистого ячеистого бетона, отвержденного при температуре окружающей среды во влажном помещении при относительной влажности 25 и 90% в течение 21 дня.

    2.4. Плотность, пористость и механическая прочность

    Относительная плотность ячеистого бетона соответствует отношению между кажущейся плотностью (геометрически измеренной) ячеистого материала и плотностью твердого вещества, составляющего матрицу этого ячеистого материала [9 ]: Пористость определяется по [9]

    Для измерения образцов ACCC диски размером приблизительно 50 15 мм 3 были вырезаны из центра 2 образцов каждого состава.Затем были измерены их масса и относительные размеры для расчета объема, при этом кажущаяся плотность была определена по формуле (3). где определяется геометрической формулой для расчета цилиндрического объема.

    Для измерения использовался гелиевый пикнометр (Multipycnometer, QuantaChrome, США). Для этого анализа были измельчены репрезентативные образцы каждого состава. Для измерения использовали примерно 4 г порошка каждой композиции. Для каждого образца порошка было выполнено в общей сложности 10 измерений, что являлось окончательным значением, полученным как среднее арифметическое.

    Для определения механической прочности образцов пять цилиндрических образцов (50 100 мм 3 ) каждого состава были испытаны на универсальной машине для механических испытаний (DL 20000, Emic, Brazil) в соответствии с бразильским стандартом. [10]. Базовые поверхности образцов были покрыты штукатуркой Paris для получения плоских и параллельных поверхностей. Используемая скорость нагрузки составляла 1 мм / мин.

    2,5. Микроструктура и фазовый анализ

    Продукты в этой работе были охарактеризованы с помощью рентгеновской дифрактометрии (XRD, Phillips, модель Xpert, Нидерланды) и сканирующей электронной микроскопии (SEM, Phillips, Нидерланды).

    3. Результаты и обсуждение
    3.1. Плотность и пористость

    На рисунке 1 показаны кажущаяся плотность и пористость проанализированных образцов ACCC, как функция процентного содержания порошка Al. Как можно заметить, плотность не изменилась, как и ожидалось для разных количеств Al. Как правило, плотность ячеистого бетона уменьшается с увеличением процентного содержания пенообразователя из-за большего количества образующихся пор. Однако в данном случае такое поведение как раз наблюдалось для образцов с 0.2 и 0,4 мас.% Al. Для образцов с большим количеством порошка Al плотность увеличивалась. Такое же аномальное поведение было отмечено для пористости образцов ACCC. Пористость увеличилась между образцами А2 и А4, но впоследствии она уменьшилась для образцов А6 и А8, достигнув более высокого значения в образце А4 (83,2%).


    Анализ изломов поверхностей образцов ACCC показал, что смеси A6 и A8 имели поры неоднородной формы, которые были больше, чем наблюдаемые для смесей A2 и A4, что свидетельствует о слиянии пор смесей с более высоким содержанием Al.Это могло объяснить неожиданные результаты по плотности и пористости. На рисунках 2 (а) и 2 (б) показана поверхность излома образцов А2 и А8 соответственно.

    Когда поры соединяются вместе, они приобретают больший объем и имеют тенденцию выходить из материала [1] из-за более сильных сил, оказываемых на них жидкостью (плавучесть, оказываемая цементной пастой на пузырьки газа). Таким образом, часть газа, образующегося во время реакции между Al и гидроксидами, не эффективна для образования пор, что приводит к более низкой пористости образцов A6 и A8.

    Фактором, который может объяснить слияние пор в этих образцах, является высокая реакционная способность порошка алюминия, использованного в данном исследовании. Как показано на Рисунке 1, 0,2 мас.% Al уже было достаточно для получения пористости 81,8%. Когда было добавлено более высокое содержание Al, количество образовавшихся пузырьков водорода могло быть настолько большим, что для них было более стабильно слиться, чем оставаться изолированными. Коалесценция обеспечивает минимизацию общей площади поверхности пор, что приводит к более стабильной конфигурации системы [11].

    Возможные решения этой проблемы заключаются в минимизации количества суперпластификатора, используемого для увеличения вязкости цементирующей пасты, чтобы задержать выход пузырьков водорода, и в оптимизации количества используемой энергии Al (Stanlux Flake CL4010), поскольку меньшего количества этого порошка достаточно для получения высокой пористости.

    3.2. Механическая прочность

    Механическая прочность образцов ACCC соответствовала результатам по плотности и пористости, то есть более высокая пористость приводила к более низкой механической прочности, что можно увидеть на Рисунке 3.


    Различные значения механической прочности на сжатие, представленные образцами, проанализированными в этом исследовании, являются следствием их ячеистой морфологии. В образцах А2 и А4 из-за большего количества и однородного распределения пор межпоровые стойки тоньше, что придает материалу меньшую прочность. Однако в образцах A6 и A8, хотя поры больше из-за слияния, стойки толще, что привело к более высокой прочности на сжатие. Даже в этом случае полученные значения были очень низкими, достигая максимального значения 0.62 МПа для состава А8 (пористость 78,23%).

    Согласно Гибсону и Эшби [9], механическая прочность ячеистого материала является потенциальной функцией его относительной плотности согласно уравнению: где — механическая прочность полностью плотного материала, — геометрическая постоянная пропорциональности, его пористость и эмпирический показатель степени.

    С помощью этого уравнения значения механической прочности, которые образцы CCC представили бы, если бы они имели ту же пористость, что и образцы ACCC, проанализированные в этом исследовании, были оценены на основе данных, представленных в литературе [6].Сравнение показано на рисунке 4.


    Можно заметить, что значения механической прочности, оцененные для образцов CCC, значительно меньше, чем значения, измеренные для ACCC с такими же относительными плотностями. Это позволяет сделать вывод, что автоклавирование эффективно для упрочнения ячеистого бетона на глинистой основе, поскольку при равной пористости прочность на сжатие ACCC значительно выше, чем у CCC, который отверждается при комнатной температуре.

    Поскольку более высокая прочность на сжатие, проанализированная в этом исследовании, была равна 0.62 МПа для образца с 0,8 мас.% Al, становится ясно, что необходимо уменьшить количество используемого порошка Al, чтобы получить образцы с более низкой пористостью и, следовательно, более высокой механической прочностью, чтобы соответствовать техническим условиям. Однако, если целью является использование материала с пористостью, аналогичной анализируемым здесь, необходимо изучить некоторые изменения в составе.

    3.3. Микроструктура и фазовый анализ

    Кристаллические фазы ACCC сравнивали с таковыми из глинистого ячеистого бетона, выдержанного при 90% относительной влажности в течение 21 дня (Рисунок 5).В обоих случаях могут наблюдаться пики каолинита и галлуазита из непрореагировавшей глины. Относительная интенсивность пика кальцита уменьшается при автоклавировании CCC, что приводит к образованию тоберморита. Типичные игольчатые структуры тоберморита [12, 13] более заметны в образце ACCC (рис. 6 (b)) по сравнению с образцом, отвержденным CCC. при низкой температуре (рис. 6 (а)).


    4. Выводы

    Это исследование было направлено на изучение влияния автоклавного отверждения на механическую прочность ячеистого бетона на глинистой основе.Были проанализированы пористость и механическая прочность образцов разного состава, различающихся только содержанием Al, и результаты сопоставлены с литературными данными для глинистого ячеистого бетона, отвержденного при комнатной температуре (CCC).

    По результатам можно сделать следующий вывод: (i) Образцы с содержанием алюминиевого порошка от 0,6 до 0,8% производили столько водорода, что поры больше не оставались дискретными, то есть поры слились до такой степени, что избыток водорода мог вырваться из матрицы.Это означает, что, вероятно, будет оптимальный уровень добавления алюминия в диапазоне от 0,4 до 0,6% для получения максимальной пористости. (Ii) Механическая прочность образцов ACCC варьировалась в зависимости от их пористости, то есть она увеличивалась по мере уменьшения пористости. . Однако полученные значения были очень низкими, достигая максимума 0,62 МПа для образца с более низкой пористостью (78,23%). (Iii) Путем экстраполяции данных, представленных в литературе [6] для образцов CCC, было обнаружено, что, при той же пористости и составе автоклавный глинистый ячеистый бетон (ACCC) имеет значительно более высокую механическую прочность, чем CCC, что показывает, что автоклавирование эффективно для упрочнения этого типа материала.