действие на материал льда, зависимость марки и класса затвердевшей смеси от температур
Показатель морозостойкости бетона актуален для России. Разрушение монолитных конструкций случается в результате многократно повторяющихся циклов перехода капиллярной воды в лёд и обратной оттайки. Задача строителей — минимизировать негативные последствия низкотемпературного климата посредством внесения поправок в технологический регламент и специальных добавок в состав смеси. Есть зависимость между классом, маркой бетона и морозостойкостью.
Разрушение бетона от замораживания
Механизм эрозии под влиянием заморозки и оттаивания воды, содержащейся в порах, разрушает дороги, мосты, гидротехнические сооружения, если морозоустойчивость бетона недостаточно высока. Объяснение обычное: увеличение объёма твёрдой воды при фазовом переходе 9%, что вызывает разрыв материала. Причинами разложения монолита бывают разные структурные упущения, воздействуя на которые заморозка вызывает множественные формы эрозии. По ним и определяют главный источник разрушения:
- Поверхностные шелушения, переходящие в расслаивание, наблюдаются в естественных условиях и во время лабораторных исследований. Связаны с движением влаги к охлаждаемой плоскости бетона.
- Незаметное взрыхление монолита с увеличением его объёма, снижением прочности и упругости, ростом водопоглощения. Внешних признаков не наблюдается. Встречается у пластичных бетонов на цементах с высоким содержанием трехкальциевого алюмината (10―14%), а также в монолитах на пуццолановых вяжущих и шлакопортландцементах с добавкой кислого граншлака. Возникновение дефекта обусловлено высокой капиллярной пористостью бетона.
- Резкое и неожиданное разрыхление монолита, который хорошо держался при заморозках, но через 100―120 циклов терял прочность и упругость. Дальше происходит быстрое разрушение изделия. Причина — тонкомолотый портландцемент, он даёт большую усадку.
- Местное, участковое расслоение объясняется включениями неморозостойких зёрен, глины в наполнителе и другими подобными причинами, связанными с качеством ингредиентов смеси. Наблюдается при эксплуатации бетонных покрытий дорог.
- Растрескивание монолита с распадом на отдельные части. Касается пропаренного пластичного бетона, когда допущены дефекты при нарушении технологии изготовления.
Чтобы разобраться, от чего зависит морозостойкость бетона, недостаточно сослаться на общую пористость. Влияние оказывает и величина водоцементного отношения, и другие факторы технологии.
Повышение прочности против холода
Если класс морозостойкости бетона необходимо повысить, это возможно сделать различными способами. Специалисты предлагают следующие варианты:
- Уменьшить макропористость повышением густоты смеси, качественным её уплотнением при заливке. Сильное утрамбовывание снижает объём пустот.
- Сократить количество воды в составе раствора, использовав чистые заполнители. Рекомендуемое соотношение влаги с цементом В/Ц<0,5.
- Отодвинуть срок первой заморозки. Со временем количество пустот в бетоне уменьшается.
- Применить добавки, увеличивающие образование микропор. В них вода не проникает. Присадки представляют собой соли угольной, соляной и азотной кислот, кальция. А также примешивается и мочевина.
- Ограничить контакты с водой путём гидроизоляции бетонной поверхности. Для этого используют фасадные краски, битум, полимерные пропитки и мастики. При нанесении они образуют защитную плёнку.
Применение глинозёмистых цементов, гидрофобных и воздухововлекающих добавок также способствует повышению морозостойкости.
Рекомендуемый объём вовлечённого воздуха 4―6%. Зависит показатель от качества ингредиентов: максимальное значение устанавливают при снижении крупности заполнителя и увеличении присутствия воды и цемента.
Классификация по морозостойкости
Стандартами в строительстве марка бетона по морозостойкости отмечается символом F, имеет ряд значений от 25 до 1000. Её определяют на стадии изготовления. Для этого образец много раз погружают в воду и замораживают при -18ºС, а потом оттаивают. Завершив серию испытаний, бетону присваивают соответствующий класс. По применяемости в той или иной местности и по предполагаемым срокам эксплуатации монолитных сооружений марки по морозостойкости классифицируются следующим образом:
- Низкий показатель — меньше F 50: используется редко, требует гидроизоляции.
- Нормальный уровень — F 75, F 100, F 150: применяется везде, где явно выражены 4 времени года. Срок службы объектов достигает 100 и больше лет.
- Повышенный класс — F 200, F 300: для регионов, где зима суровая, а грунт промерзает на несколько метров.
- Высокая марка — F 400, F 500: для условий, в которых сильные холода сочетаются с изменчивым уровнем воды.
- Крайне высокая степень — F 600, F 800, F 1000: для строительства вечных объектов. Изготавливается смесь на высокомарочных цементах со специальными добавками.
Существует зависимость между характеристиками бетона: чем выше класс бетона и марка прочности, тем устойчивее монолит к низким температурам и сильнее его водонепроницаемость.
Соотношение показателей надёжности затвердевшей смеси из минеральных составляющих приведено в таблице:
Марка прочности бетона М | Класс монолитного изделия В | Морозостойкость F | Влагонепроницаемость W |
100, 150 | 7,5; 12,5 | 50 | 2 |
200, 250 | 15; 20 | 100 | 4 |
300, 350 | 22,5; 25 | 200 | 6, 8 |
400 | 30 | 300 | 10 |
500 | 40 | 300 | 14 |
Марка F 300 означает, что до потери прочности на 5% бетон выдерживает 300 циклов замораживания и оттайки. Это самый распространённый класс, применяемый в средней полосе, где низкие температуры не редкость.
tvoidvor.com
Морозостойкость бетона — Статьи — М350
Морозостойкость бетона — это его способность сохранять прочность и работоспособность при действии попеременного замораживания и оттаивания в насыщенном водой состоянии. Разрушение бетона в водонасыщенном состоянии при циклическом действии положительных и отрицательных температур, а также переменных отрицательных температур обусловлено комплексом физических коррозионных процессов, вызывающих деформации и механические повреждения изделий и конструкций.
К настоящему времени отсутствует единая теория, объясняющая механизм морозного разрушения бетона, хотя очевидно, что, в конечном счете, снижение прочности влажного бетона при попеременном замораживании и оттаивании обусловлено, в основном, образованием льда в порах бетона. В результате того, что объем, занимаемый льдом, на 9% больше объема воды, возникают значительные растягивающие напряжения, воздействующие на стенки пор и постепенно расшатывающие его структуру.
Существует несколько основных гипотез, объясняющих способы передачи напряжений на элементы структуры бетона, возникающих в результате образования льда.
- Гипотеза непосредственного воздействие кристаллизующегося льда на стенки пор.
- Гипотеза гидростатического давления воды — в отличие от первой утверждает, что на стенки пор давит не сам лед, а вода, на которую передается давление льда. В пользу большей корректности второй гипотезы говорит тот факт, что вода, заполняющая капиллярные поры, не может, как правило, полностью превратиться в лед из-за отсутствия необходимого места и поэтому передает давление льда на стенки пор. Но гипотеза также не может объяснить ряд явлений, наблюдаемых при действии отрицательных температур на бетон. Так, при увеличении скорости замораживания разрушение ускоряется, тогда как давление льда при этом не возрастает. Более того, морозом разрушаются бетоны, поры которых заполнены водой менее чем на 90%.
- Гипотеза гидравлического давления Т. Пауэрса, объясняющая отмеченные явления. В соответствии с ней главной причиной разрушения бетона при попеременном замораживании и оттаивании является гидравлическое давление, создаваемое в порах и капиллярах бетона под влиянием замерзающей воды в результате сопротивления гелевой составляющей цементного камня. Убедительным аргументом в пользу этой гипотезы является то, что она объясняет механизм защитного действия воздушных пор. При их достаточном количестве «избыточная» вода оттесняется в эти поры без нарушений структуры бетона. Разрушение бетона происходит тогда, когда объем условно замкнутых пор постепенно заполняется водой и они не могут выполнять функции резервных (демпферных). В соответствии с гипотезой гидравлического давления напряжения, возникающие в бетоне, будут пропорциональны скорости замораживания, количеству оттесняемой жидкой фазы и ее вязкости и обратно пропорциональны проницаемости цементного камня.
Модель, предложенная Т. Пауэрсом, представляет циллиндрический капилляр, заполненный водой и окруженный цементным камнем. Поддействием гидравлического давления в циллиндрической оболочке капилляра возникают растягивающие напряжения о . Разрушение происходит, если напряжения а достигли предела прочности цементного камня при растяжении Вр. К недостаткам этой модели следует отнести то, что в ней не учитывается соотношение размеров капилляра и оболочки. В действительности в цементном камне толщина оболочки капилляра может быть в 5-20 раз больше его радиуса. В объем капилляров включался весь объем пор цементного камня без разделения его на объем пор геля и капилляров, хотя замораживание воды происходит практически лишь в капиллярных порах. Расчет напряжений в бетоне по модели Пауэрса проводят для статического состояния без учета перемещения фронта льдообразования.
В соответствии с современными представлениями гидравлическое давление не является единственной причиной разрушения. Разрушению способствуют также осмотические явления. Они возникают в результате повышения концентрации растворенных веществ (Са(ОН)2, щелочей и др.) в жидкой фазе бетона на границе со льдом. Диффузия воды к области замерзания создает дополнительное давление. - гипотеза термической несовместимости компонентов бетона. Заполнители и Цементный камень имеют различные коэффициенты термического расширения. При отрицательных температурах термическая несовместимость компонентов резко усиливается, так как коэффициент термического расширения льда в 3-7 раз больше чем бетона.
Возможно одновременное действие различных механизмов деструкции бетона при его циклическом замораживании, и вклад каждого будет зависеть от многих факторов: влажности материала, В/Ц, возраста бетона и т.д.Факторы, влияющие на морозостойкость бетона. Влияние циклического изменения температуры усиливается дополнительным воздействием растворов солей. Получила, например, широкое распространение практика применения солей (NаСl, СаСl2) для удаления льда с дорожных покрытий. В результате таяния льда при посыпке соли на поверхность бетона поглощается большое количество теплоты (334 Дж/г) и температура резко понижается.
В присутствии солей увеличиваются осмотические явления в замораживаемом бетоне, повышается вязкость жидкой фазы. В результате возрастает величина гидравлического давления и ускоряется разрушение бетона. При попеременном замораживании и оттаивании насыщенных водой железобетонных конструкций нарушается соответствие температурных деформаций стали и бетона, в результате возникают значительные внутренние напряжения и уменьшается прочность сцепления стали с бетоном. Растягивающие напряжения в арматуре при замораживании насыщенных водой железобетонных конструкций могут достигать
120-150 МПа.
На долговечность бетона, работающего на растяжение и изгиб в условиях замораживания и оттаивания, влияет степень нагружения. При напряжениях, составляющих 0,45 призменной прочности, уже заметно ускоряются деструктивные процессы в замораживаемом бетоне, а при напряжениях, равных 0,6-0,8 призменной прочности, отмечены случаи разрушения бетона через несколько циклов замораживания.
При замораживании влажного железобетона ускоряется трещинообразование в растянутой зоне и увеличиваются размеры трещин. При этом наиболее интенсивно повышение влажности бетона наблюдается в растянутой зоне конструкций. Это объясняется переносом влаги из менее разрушенной сжатой в активно разрушающуюся растянутую зону в результате различия давления пара переохлажденной адсорбированной воды в мелких порах и кристаллического льда в крупных порах и трещинах.
Пористая структура бетона
Морозостойкость бетона обусловлена прежде всего строением его порового пространства. В цементном камне образуются, как указано ранее, три вида пор:
- поры цементного геля, размер которых лежит в пределах (15-40)-1010м,
- капиллярные поры 0,01-1 мкм,
- условно замкнутые поры 10-500 мкм.
Поры геля характеризуются минимальной проницаемостью для жидкостей и газов (коэффициент проницаемости для пор геля менее 1010 м/с). Перенос жидкой фазы в порах геля возможен только по механизму молекулярной диффузии. Вода в порах геля при эксплуатации бетонных и железобетонных конструкций не замерзает, что объясняется их размером, содержанием в поровой жидкости добавок-электролитов.
Капиллярные порыможно представить как часть объема воды цементного теста, которая не заполнена продуктами гидратации цемента. Микрокапилляры имеют размер меньше 10-1 мкм. Они обладают способностью к капиллярной конденсации влаги, обусловливающей гигроскопичность материалов. Макрокапилляры с радиусом больше 0,1 мкм (обычно до 10 мкм) заполняются водой только при непосредственном контакте с ней.
Капиллярные поры являются основным дефектом структуры цементного камня. В свежеприготовленном тесте можно считать порами все пространство, заполненное водой. При твердении часть его заполняется гелем. Чем больше степень гидратации цемента (а), тем больше образуется геля и тем меньший объем остается на капиллярные поры. Данные по водопроницаемости цементного камня и бетона показывают, что переход от непрерывной системы пор к условно изолированной происходит при капиллярной пористости цементного камня Пк < 0,33.
Температура замерзания воды в капиллярно-пористом теле зависит от размеров капилляров. Например, в капиллярах диаметром 1,57 мм вода замерзает при -6,4°С; 0,15 мм при -14,6°С; 0,06 мм — -18°С. В порах диаметром менее 0,001 мм вода практически не замерзает, она приобретает свойства псевдотвердого тела.
В порах, обусловленных контракцией, создается вакуум, и они заполняются в зависимости от условий твердения воздухом или водой. Контракционный объем рассматривают в наше время не как самостоятельный вид пор, а как часть капиллярной пористости.
К условно замкнутым порам относят пузырьки воздуха в цементном камне и бетоне. Суммарным объемом пор, их размером, количеством и удельной поверхностью можно управлять введением воздухововлекающих или газообразующих добавок. Воздушные поры, получаемые путем введения в бетонную смесь воздухововлекающих добавок, существенно изменяют структуру цементного камня. Число воздушных пор в 1 см3 цементного камня может достигать одного миллиона, а поверхность этих пор — 200-250 см2. Через эту поверхность поступает в воздушные поры избыточная вода, вытесняемая из капилляров при замораживании бетона. Защитным действием обладают лишь достаточно мелкие воздушные поры размером менее 0,5-0,3 мм.
В качестве критерия для оценки эффективности защитного действия воздушных пор распространение получил т.н. «фактор расстояния», предложенный Т. Пауэрсом. Для его расчета принимается, что в цементном камне имеется некая идеализированная система одинаковых воздушных пор, расположенных на равном расстоянии друг от друга. Наиболее удаленными в этом случае от воздушной поры являются точки цементного камня, лежащие в углах куба.
К важнейшим эксплуатационным факторам, кроме числа циклов замораживания и оттаивания, относятся степень водонасыщения и температура замораживания бетона.
Снижение прочности бетона после замораживания и оттаивания наблюдается лишь при его водонасыщении выше определенной величины, которая, в свою очередь, связана со значением отрицательной температуры. Величина критического водонасы-щения может быть достигнута не только при водонасыщении бетона перед замораживанием, но и в результате перераспределения поровой воды в замерзающем бетоне в виде пара. Водонасыще-ние бетона возрастает в присутствии солей.
Факторы, влияющие на морозостойкость бетона
- С увеличением В/Ц возрастает как общий объем открытых пор, так и средний их размер, что также негативно влияет на морозостойкость. При этом повышаются проницаемость и водопоглощение и в таких бетонах невозможно образование существенного объема резервных пор. При проектировании морозостойких бетонов принято ограничивать В/Ц в зависимости от условий службы бетона в сооружениях. Снижение В/Ц возможно как за счет уменьшения расхода воды при применении пластифицирующих добавок, более жестких смесей, так и за счет увеличения расхода цемента. Второй способ снижения В/Ц технико-экономически неэффективен.
- степень гидратации цемента (зависит от активности цемента, интенсивности роста ее во времени, длительности и условий твердения бетона). Степень гидратации портландцементов к 28-суточному возрасту по усредненным данным равна 0,6, 90 сут — 0,66 и 180 сут — 0,7. Повышению степени гидратации цемента способствуют различные способы его активизации и надлежащий уход за бетоном.
- расход воды затворения и, соответственно, расхода цемента. По данным П. И. Горчакова, каждый процент снижения капиллярной пористости достигается уменьшением количества воды затворения на 10 л/м3 либо увеличением расхода цемента на 20-35 кг/м3. Увеличение расхода цемента с одной стороны уменьшает В/Ц, с другой, приводит к увеличению объема цементного теста, что повышает объем капиллярных пор бетона.
- Оптимальный расход песка из условия морозостойкости выше, чем из условия прочности, что связано с условиями воздухововлечения. По данным О.В. Кунцевича, повышение доли песка в смеси заполнителей с г=0,33, оптимальной по прочности, до г = 0,5 привело к росту расхода цемента на 40 кг/м3, но повысило морозостойкость с 120 до 400 циклов.
- Из минералов цемента отрицательное влияние на морозостойкость оказывает С3А. По рекомендациям С.В. Шестоперова, при марке бетона по морозостойкости, выраженной числом активных циклов замораживания и оттаивания за проектный срок эксплуатации сооружения, до Р500, С3А в цементе должно быть менее 10, Р1000 — менее 6 и Р6000 — менее 4%. Рекомендуется также повышенное содержание С35 — 55 — 60%. Под «активными циклами» С.В. Шестоперов подразумевал циклы, «вносящие в структуру материалов, составляющих бетон, изменения, связанные с нарушением монолитности». Это определение, однако, не является достаточно четким.
- В морозостойких бетонах нежелательны активные минеральные добавки, особенно с повышенной водопотребностью. В то же время, экспериментально показано, что бетоны с умеренным содержанием доменных шлаков или каменноугольной золы-уноса могут иметь удовлетворительную морозостойкость, особенно при введении в бетон эмульгированного воздуха.
- Низкую морозостойкость имеют пуццолановые цементы. Шлакопортландцементы по морозостойкости занимают промежуточное положение между портланд- и пуццолановым цементом.
- К снижению морозостойкости бетона приводит повышение удельной поверхности цемента свыше 400 м2/кг. Такие сверхтонкие цементы характеризуются повышенной усадкой, ведущей к появлению микротрещин.
- Жесткие требования предъявляются к ограничению величины потери при прокаливании, обусловленной лежалостью цемента. Хранение (лежалость) цемента значительно больше влияет на его морозостойкость, чем на активность. По мнению С.В. Шестоперова, наличие оболочки из новообразований гидратированных минералов на зернах цемента является одной из основных причин снижения долговечности бетона.
- Обычно применяемые для получения тяжелого бетона кварцевый песок и щебень из плотных изверженных или метаморфических пород, отвечающие требованиям стандартов, позволяют получать высокоморозостойкий бетон. На морозостойкость бетона существенное влияние оказывают морозостойкость самих заполнителей и их водопотребность. По данным С.В. Кунцевича, морозостойкость заполнителей неоднозначно связана с их прочностью. Неморозостойкие зерна могут быть достаточно прочными и плотными с водопоглощением 0,7-2%. Важными с позиций морозостойкости являются свойства заполнителей, определяющие их сцепление с цементным камнем, и модуль упругости.
- Пластифицирующие добавки повышают морозостойкость бетона как в результате уменьшения водопотребности и соответственно капиллярной пористости, так и вследствие определенного воздухововлечения. Добавки-пластификаторы типа ЛСТ снижают водопотребность бетонных смесей на 9-12%, при этом больший эффект пластификации достигается в «жирных» смесях на низкоалюминатных цементах. Добавки этого типа способствуют воздухововлечению и образованию в затвердевшем камне замкнутых пор. С.В. Шестоперов наблюдал значительное (в 2-3 раза) повышение морозостойкости с добавкой СДБ (старое название ЛСТ) даже без снижения В/Ц для бетонов, твердевших в течение 1 года. Добавки — суперпластификаторы позволяют снизить водопотребность смесей на 20-30%, однако они, как правило, вовлекают недостаточное количество воздуха, и улучшение долговечности бетона определяется, главным образом, снижением В/Ц. При использовании суперпластификаторов для повышения подвижности смесей без уменьшения В/Ц увеличение морозостойкости бетона достигается дополнительным введением воздухововлекающих добавок.
- Гидрофобизирующие добавки, адсорбируясь на стенках пор бетона, снижают их водопоглощение и капиллярный подсос. Повышению морозостойкости способствует пластифицирующее действие гидрофобизирующих добавок, особенно заметное в «тощих» смесях (8-10%).Основные воздухововлекающие добавки относятся к гидрофобизирующим ПАВ, обладающим значительной поверхностной активностью на границе раствор — воздух. Эти добавки при их введении с водой затворения вызывают образование в системе довольно высокодисперсной эмульсии воздуха, устойчиво диспергированного в бетонной смеси. Воздухововлекающие добавки, или т.н. пенообразователи, изготавливаются в виде концентрированных растворов, густых паст или в виде сухого, легко растворимого порошка. Для приготовления добавок используются древесные смолы, продукты переработки нефти, растительные жиры и другое сырье. Наиболее часто в качестве воздухововлекающих применяют добавки на основе древесной смолы (смола нейтрализованная воздухововлекающая — СНВ, синтетическая поверхностно-активная добавка — СПД, омыленный древесный пек — ЦНИПС-1 и др.). Их вводят в бетонные смеси обычно в количестве 0,01-0,02% от массы цемента. При этом объем вовлеченного воздуха составляет 30-60 л/м3 или, как правило, 3-6% от массы цемента. Такой объем вовлеченного воздуха обычно существенно превышает объем воды, оттесняемой при замораживании. При этом значения «фактора расстояния» между воздушными порами оказывается значительно меньше критического, которое обычно принимают 0,25 мм. Морозостойкость бетона с воздухововлекающими добавками возрастает в несколько раз.
Кроме вида и содержания добавок, на воздухововлечение влияют и другие факторы: удобоукладываемость бетонных смесей, тонкость помола цемента, зерновой состав заполнителей, время перемешивания, температура.
Наряду с воздухововлекающими для образования системы условно-замкнутых пор в бетоне применяют газообразующие добавки, например ГКЖ-94. Имеются данные, что система условно-замкнутых пор с добавкой ГКЖ-94 более стабильна, чем в бетонах с воздухововлекающими добавками. - Кроме особенностей исходных материалов и состава бетонной смеси, на морозостойкость бетона определенное влияние оказывают условия его твердения. Оптимальные условия твердения должны способствовать получению бетона с минимально возможными значениями капиллярной пористости и степени оводнения условно замкнутых пор. Наиболее полно протекают процессы гидратации, уменьшаются объем и размеры капиллярных пор при водном твердении. При водном твердении, однако, повышается степень водонасыщения бетона, контракционный объем заполняется водой. При твердении бетона в воде возможно обводнение мельчайших искусственно вовлеченных воздушных пор, что снижает морозостойкость.
Для заполнения контракционного объема воздухом иногда рекомендуется твердение бетона на воздухе при его 100%-ной относительной влажности. Однако при таком твердении, хотя и увеличивается резервная пористость, возрастает по сравнению с водным твердением объем капиллярных пор.
О.В. Кунцевич рекомендует комбинированное твердение бетона. По его данным бетон с вовлеченным воздухом, твердевший 14 сут. в воде и затем 14 сут. на влажном воздухе, имел большую морозостойкость, чем при твердении 21 сут в воде и 7 сут на воздухе.
Отмечено, что после подсушивания повторно насыщенные водой образцы имеют меньшую влажность, чем образцы, постоянно находящиеся в воде. Такой эффект объясняется защемлением в капиллярах при высушивании некоторого количества воздуха. Предполагается также, что сушка приводит к резкому увеличению проницаемости бетона, в результате уменьшается гидравлическое давление, возникающее при замораживании.
При тепловлажностной обработке получение морозостойкого бетона обеспечивается при минимизации деструктивных процессов, вызванных температурным расширением воды и воздуха. Снижение интенсивности деструктивных процессов достигается при мягких режимах пропаривания: удлиненной (не менее 3-5 ч) предварительной выдержке, замедленной скорости подъема температуры и охлаждения (не более 15-20 град/час), пониженной температуре изотермического прогрева (60-80°С).
Измерение и прогнозирование морозостойкости
Стандартизированный метод оценки морозостойкости бетона характеризуется числом циклов замораживания и оттаивания образцов при нормированных условиях испытания без существенного снижения прочности. Этот метод предложен в 1886 г. Н.А. Белелюбским и позволяет оценить стойкость бетона при некотором условном экстремальном режиме его работы: полном водонасыщении и непрерывном циклическом замораживании при общей длительности одного цикла 4,5-6,5 ч. При основном стандартном способе испытаний замораживание производится при -15 — -20°С на воздухе, а оттаивание при +20°С в воде. Для ускорения испытаний температуру замораживания снижают до -40 — -60°С, насыщают образцы водным солевым раствором, уменьшают их размеры и сокращают длительность циклов.
Часто при испытании морозостойкости для определения фактического изменения прочности через заданное число циклов используют коэффициент морозостойкости Кмрз =Rмрз / Rк , где Rмрз — прочность бетона после принятого числа циклов испытаний; Rк — прочность контрольных образцов. Марка бетона по морозостойкости считается обеспеченной через требуемое число циклов, если Кмрз > 0,95.
Наряду с определением морозостойкости путем прямого испытания прочности бетона через определенное число циклов замораживания и оттаивания применяют неразрушающие методы:
- определение скорости ультразвуковых волн;
- измерение динамического модуля упругости,
- измерение остаточных деформаций (относительного удлинения образцов после испытания).
Ультразвуковые испытания продолжаются до характерного перелома на кривой времени прохождения ультразвука от числа циклов (в логарифмическом масштабе). Этот перелом обусловлен образованием и развитием микротрещин в бетоне при его циклическом замораживании.
Динамический модуль упругости измеряют прозвучиванием образцов продольными (реже поперечными) ультразвуковыми волнами. Снижение динамического модуля упругости на 40-45% свидетельствует об интенсивном морозном разрушении бетона.
Дополнительным показателем стойкости бетона при морозном разрушении служат потери массы. Этот показатель более приемлем, когда деструкция бетона носит характер поверхностного шелушения, например, для дорожных бетонов. Потери массы при определении морозостойкости бетона ограничивают не более 5%.
С. В. Шестоперов для экспрессной оценки степени повреждения материалов при попеременном замораживании и оттаивании предложил 5-балльную шкалу для растворов и 10-бальную для бетонов. Качество бетона на 1ой подготовительной стадии разрушения оценивается от 10 баллов, когда образцы не имеют никаких изменений, до 7 баллов, когда начинается шелушение граней и ребер и образуются лунки при наличии неморозостойких зерен заполнителей. На второй завершающей стадии разрушения состояние образцов по мере разрушения может быть охарактеризовано последовательно в убывающем порядке от 6 до 1 балла. Предложено также балльную оценку состояния образцов производить по нескольким критериям в зависимости от степени их влияния на развитие деструктивных процессов.
В ряде случаев глубокое разрушение бетона нельзя оценить визуально и эффективна совместная оценка состояния образцов по внешнему виду и, например, результатам прозвучивания.
В зависимости от числа циклов замораживания и оттаивания водонасыщенных образцов бетона до 5%-ного снижения прочности устанавливают т.н. марку бетона по морозостойкости (Р). Последняя при проектировании конструкций назначается в основном в зависимости от числа переходов через 0°С в регионе эксплуатации конструкций и сооружений с поправкой на среднюю температуру холодного периода года.
В соответствии со стандартом предлагается 11 марок бетона по морозостойкости с градацией 25- 100 циклов от Р50 до Р1000. На практике при лабораторных подборах составов бетона задача сводится обычно к обеспечению морозостойкости не в пределах заданной марки, а не менее ее нормированного значения.
Высокая степень условности марок бетона по морозостойкости и несовершенство методики их назначения часто приводит к неэффективности трудоемких усилий технологов по обеспечению проектных значений Р. Например, марка бетона по морозостойкости в бетонных облицовках каналов Украины в соответствии с принятой методикой назначалась Р50 — Р100. Однако опыт эксплуатации показал, что во многих случаях облицовка разрушалась уже через 2-7 лет.
До настоящего времени не разработана научно обоснованная методика для установления численного критерия морозостойкости и назначения его при проектировании бетона. Существующая практика назначения числа циклов замораживания и оттаивания,
которое должен выдержать бетон в конструкциях и сооружениях, основана, главным образом, на опыте проектантов, проанализировавших долговечность бетона различного состава в определенных климатических условиях. Рекомендации, имеющиеся в нормативной литературе, весьма неполны. Например, рекомендуется назначать число циклов, основываясь только на количестве переходов через 0°С и наиболее низкой температуре холодного периода года. При этом не учитываются такие существенные факторы, влияющие на морозостойкость, как степень водонасыщения, изменчивость отрицательных температур, характер напряженного состояния бетона и ряд других. Нельзя считать достаточно надежными и методики назначения числа циклов замораживания и оттаивания с помощью предложенных эмпирических формул. Однако при проектировании состава бетона необходимое число циклов замораживания и оттаивания остается удобным численным критерием морозостойкости бетона. В ряде стран, например в США и Канаде, при проектировании составов бетонов принято указывать не конкретное число циклов замораживания и оттаивания, а режим работы бетона. Для каждого режима работы рекомендуется определенная область допустимых В/Ц.
Известен ряд методик назначения марки бетона по морозостойкости с учетом как климатических, так и эксплуатационных факторов, влияющих на развитие деструктивных процессов.
Известный исследователь морозостойкости С.В. Шестоперов предложил оценивать морозостойкость некоторой условной маркой (М), равной произведению проектного срока эксплуатации сооружения, среднегодового числа циклов замораживания и оттаивания и коэффициента запаса прочности. Для обоснования 8 условных марок (от М-25 до М-6000) им даны рекомендации по 25 параметрам, учитывающим качество исходных материалов, составы бетона и технологию работ. Однако современные представления теории морозостойкости и практический опыт не позволяют согласиться в достаточной мере как с критерием М, так и рядом рекомендаций по его обеспечению.
Попытки имитационного моделирования для расчета длительности безремонтной эксплуатации бетона в зависимости от марки по морозостойкости даже с учетом многих дополнительных факторов пока нельзя считать успешными.
Рациональной является предложенная авторами система нормирования морозостойкости, в соответствии с которой указывается не заданное число циклов замораживания и оттаивания лабораторных образцов, а класс бетона по морозостойкости, например:
- 1-ый класс -умеренной (Р = 50- 150),
- 2-ой — повышенной (Р =150 — 300),
- 3-ий — высокой (Р = 300 -500),
- 4-ый — особо высокой морозостойкости (Р > 500).
При такой системе существенно уменьшается число нормируемых ступеней морозостойкости бетона, становятся излишними при соответствующих ограничениях составов (В/Ц, содержание вовлеченного воздуха) длительные и трудоемкие лабораторные подборы составов бетонов с необходимой маркой по морозостойкости, которые часто носят запоздалый характер.
Различные методы прогнозирования морозостойкости основаны на зависимостях ее от параметров, характеризующих структуру бетона, степень деструктивных изменений при циклическом замораживании, а также регрессионных уравнениях, связывающих морозостойкость с другими свойствами и составом бетонной смеси.
Все методы прогнозирования морозостойкости бетона можно разделить на экспериментально-расчетные и расчетные. Экспериментально-расчетные методы предполагают определение соответствующих экспериментальных параметров, а затем с помощью уравнений связи или графически нахождение ожидаемого критического числа циклов. Наряду с прочностью, модулем упругости и остаточными деформациями бетона, испытанного в солевом растворе, при повышенной скорости замораживания и оттаивания, а также сверхнизких температурах экспериментальными параметрами для ускоренного прогнозирования могут служить время прохождения ультразвука относительный предел выносливости, водопоглощение и др. Существуют корреляционные зависимости между морозостойкостью и льдистостью бетона.
Для определения содержания льда в бетоне предлагаются различные экспериментальные методы. Наибольшей известностью пользуется калориметрический метод, в основе которого лежит зависимость между изменением температуры при переходе воды в лед и массой образовавшегося льда. Применяют также метод сверхвысоких частот, ультразвуковой и сорбционный методы.
Расчетные методы позволяют ориентировочно прогнозировать морозостойкость бетона «а priori», т.е. без проведения предварительных опытов. Такие методы представляют особенный интерес при проектировании составов морозостойких бетонов. Вместе с тем, расчетные составы при нормировании морозостойкости, также, как и прочности, необходимо проверять экспериментально.
Авторы: Л. И. Дворкин, О. Л. Дворкин
m350.ru
марки, способы определения и методы повышения
Основной материал, применяемый в строительной и ремонтной индустрии – бетон, он составляет основу любого сооружения. Одним из главных параметров при выборе является морозостойкость бетона. Она показывает, какое количество раз бетон может выдержать замораживание и оттаивание, потеряв не более 5 процентов от прочности.
Методы определения
Морозостойкий бетон маркируется буквой «F». Со временем такой продукт не крошится и не изменяет формы под влиянием климатических факторов. Сохраняет свойства в регионах с повышенной влажностью.
Показатель морозостойкости важно знать на этапе строительства, ведь бетон низкого качества может заметно снизить несущие свойства сооружений. Определение этого показателя прописано в ГОСТ 10060-2012. В данной технической документации представлены четыре способа определения. Суть всех методик заключается во множественной заморозке и оттаивании образца в водной смеси или растворе солей.
Перед началом испытания на морозостойкость, готовят базовые и контрольные пробы смеси. Контрольные применяют, чтобы определить прочность на сжатие. Базовые пробы претерпевают многократный цикл заморозки и оттаивания в лаборатории. Для испытаний потребуется следующая аппаратура:
- Камера для замораживания. Температура заморозки — -130°C;
- Контейнер, в котором образцы насыщают водой. Температура нагрева +180°C.
После проведения повторных циклов нагрева и заморозки, бетон проверяют на прочность. Если после всех испытаний образец сохранил прочность, он считается качественным.
Исследования в лаборатории не точные. В подобных условиях пробы могут разрушиться, а в естественной среде выдерживать требуемую прочность. Ведь в первом случае влияние факторов на материал является максимальным, поэтому он быстрее рассыпается.
Определить качество бетонной смеси возможно по внешнему виду и состоянию. Обычно таким методом руководствуются опытные строители:
- Крупные зерна смеси, трещины, расслаивание, пятна являются маркерами для определения качества бетона, и говорят о его низкой надежности и морозостойкости.
- Высушивание и растрескивание под влиянием солнечных лучей указывает на низкую морозостойкость бетона.
- Наличие расщелин говорит о слабой устойчивости к низким показателям температуры.
Существует ускоренный способ определения морозостойкости. Он подразумевает погружение образца в раствор сульфата натрия на сутки и его просушивание на протяжении четырех часов при температуре сто градусов Цельсия. Такую процедуру проводят пять раз, после на образце не должны появиться трещины.
Классификация
Классификация зависит от количества циклов заморозки-оттаивания. Марка бетона по морозостойкости определяется параметром F.
При выборе бетона требуется руководствоваться климатическими условиями региона.
Разделяют несколько типов маркировки бетонных растворов:
- Меньше, чем F50 — низкая степень морозостойкости. Этот вид используется редко. При воздействии окружающей среды, перестает отвечать требованиям прочности (трескается, крошится).
- F50 до F150 — умеренная степень. Такой материал имеет средние показатели устойчивости к влиянию среды. При несерьезных колебаниях перепада температур обеспечивает длительное использование. Широко применяется в строительной сфере, на всех регионах страны с устойчивым климатом.
- F150 до F300 — повышенный уровень. Устойчив к значительному перепаду температуры. Применим в регионах с промерзаним почвы до нескольких метров.
- F300 до F500 — высокая степень морозоустойчивости. Применяется в исключительных ситуациях. В областях с повышенной влажностью и постоянно меняющимся уровенем воды, с промерзанием грунта на несколько слоев.
- F500 и более. Применяется при строительстве крупных объектов, рассчитанных на вековую эксплуатацию.
Повышение морозоустойчивости
Морозостойкость бетона обеспечивается несколькими факторами: размеры и количество пор, прочность на растяжку, состав и наличие добавок. Для увеличения качества используют несколько методик:
- Уменьшение влаги в материале, применением незагрязненных заполнителей, а также специальных добавок.
- Уменьшение макропористости. Для этого необходимо создать условия для быстрого затвердевания раствора, и применить добавки, снижающие потребность в водной составляющей.
- Заморозка бетона в позднем возрасте, снизит степень пористости.
- Изоляция. Иногда проще оградить материал от неблагоприятных условий. Существуют специализированные краски и пропитки, повышающие срок службы бетонных изделий.
- Добавление химических присадок (растворы азотной, угольной и соляной кислот). Специальные добавки способствуют увеличению количества маленьких пор, в которые не может проникнуть вода. Введение присадок выполняется нагревательными методами. Пропорции добавок требуется соблюдать по инструкции, иначе существует риск только ухудшить свойства бетона.
Заключение
Каждый регион имеет особые климатические показатели. Поэтому знание маркировки бетонной смеси по морозостойкости обязательно при ведении строительных работ.
На всей территории России климат имеет значительные расхождения в показателях. В некоторых регионах зима бывает суровой, и столбик температуры понижается до рекордных отметок. По этим причинам к строительным материалам предъявляются серьезные требования к морозоустойчивости, прочности и надежности.
betonpro100.ru
особенности и сфера применения — Статьи — Стройка.ру
Географическое положение нашей страны диктует свои правила и технологии на все виды строительных работ, проводимых в холодное время года. В условиях эксплуатации зданий в средних и северных широтах долговечность бетонных и железобетонных конструкций во многом определяется морозостойкостью бетона.
Морозостойкость бетона – это его качество оставаться монолитной структурой при многократных перепадах температур и повышенной влажности. Специальный состав предназначается для возведения фундаментов и дорожного полотна, гидротехнических сооружений, для упрочнения бетонных конструкций. На территории России и других стран постсоветского пространства рассматриваемую характеристику принято определять в соответствии с требованиями межгосударственного стандарта Гост 10060.1-95. В этом документе приведены методы установления этой характеристики строительного состава, а также условия проведения работ по укладке раствора.
Коэффициент морозостойкости бетона обозначается буквой «F» с коэффициентом от 25 до 1000. Он показывает наибольшее количество переменного замораживания и оттаивания, которое выдерживают образцы 28-дневного (или иного проектного) возраста со снижением предела прочности и с потерей массы на величину, установленную нормативной документацией. Испытания осуществляют на контрольных и основных образцах, которые изготавливают и исследуют серийно.
- F25–F50. Морозостойкость, установленная на данном уровне, не позволит добиться широких возможностей для применения. Готовые конструкции, к сожалению, легко и быстро растрескиваются при резких и длительных перепадах температур и влажности. Применяется в умеренном климате.
- F50–F150. Морозостойкость, лежащая в указанном диапазоне, является самой распространенной и популярной. Это стандартный признак для материалов со средними показателями на сжатие. Она позволяет обеспечить многолетнюю эксплуатацию даже при воздействии неблагоприятных погодных и климатических факторов. Применяется повсеместно.
- F150–F300. Подходит даже при самых суровых условиях применения. Материал выдерживает перепады температур в значительных диапазонах и на протяжении десятилетий сохраняет первозданные внешние эстетические, а также все технические качества. Применяется в северных регионах.
- F300–F500. Морозостойкость бетона на данном уровне требуется только в особых случаях. Например, когда необходимо обеспечить эксплуатацию в условиях переменного уровня воды. Стоимость состава в связи с этим увеличивается в разы.
- F500 и более. Морозостойкость бетона настолько исключительна, что смесь применяется при строительстве объекта, который должен сохранить первозданный вид на века. Как правило, в состав введены специальные добавки.
Противоморозные добавки для бетона
Основное предназначение противоморозных добавок (ПМД) – обеспечение возможности зимнего бетонирования при минусовых температурах и отсутствии дополнительного прогрева залитой конструкции. Отдельные виды добавок позволяют производить бетонирование при температуре до — 25 градусов. Главная суть застывания раствора или бетонной смеси – это так называемая гидратация цемента. То есть процесс кристаллизации минералов (силикатов, алюминатов), присутствующих в цементе, при взаимодействии его с водой. Скорость этого процесса существенно зависит от температуры окружающего воздуха. К примеру: в нормальных условиях (+20 градусов Цельсия) за неделю бетон набирает до 70% прочности. При температуре окружающего воздуха +5 градусов, срок набора 70% марочной прочности бетона может растянуться на 3–4 недели.
Рекомендуемые нормативы зимнего бетонирования:
- Оптимальная температура для схватывания бетона +10…+20 °C.
- При температуре -20…+10 °C необходимо принимать меры для нормальной гидратации бетона.
- При опускании температуры ниже отметки -20 °C все виды бетонных работ запрещены.
Соответственно, главные задачи современных противоморозных добавок – сократить время схватывания цемента и ускорить время твердения бетона (в условиях низких температур), уменьшить температуру замерзания воды. Они вводятся в бетон в строгом процентном соотношении с количеством цемента, входящего в ту или иную марку бетона. Кроме того, количество противоморозной добавки зависит от предполагаемой температуры воздуха, при которой будет происходить бетонирование. Среди ее недостатков можно отметить несколько. Во-первых, при минусовых погодных показателях смесь схватывается при дополнительном подогреве, чтобы не допустить замерзание и кристаллизацию влаги. Во-вторых, без подогрева необходимо добавлять присадки, иначе бетон не будет достаточно прочным. В-третьих, противоморозные добавки увеличивают время схватывания раствора и его стоимость.
К основным достоинствам относится: применение в любых климатических поясах, увеличение срока эксплуатации объекта, водонепроницаемость и антикоррозийная защита. Кроме того, бетон не деформируется и не крошится.
На нашем сайте размещаются лучшие предложения проверенных поставщиков оборудования и фирм, которые предоставляют высокий уровень сервиса, ценят время и экономят деньги своих клиентов! Они с легкостью разработают индивидуальный или адаптируют типовой архитектурный проект для вашего дома, а также воплотят все ваши идеи в жизнь в полном соответствии с мировыми стандартами. Ознакомьтесь с услугами специализированных компаний, опытных мастеров и строительных бригад, с полным перечнем качественных сертифицированных материалов в нашем каталоге!
Фото: www.google.ru.
Прочтений: 2794 Распечатать Поделиться:Мой мир
Вконтакте
Одноклассники
Не так давно на строительном рынке России появился новый продукт – щебень из дробленого бетона или вторичный щебень. Так называют материал, полученный из железобетонного лома путем машинного дробления с различными фракциями от 0 до 60 мм. Благодаря способу изготовления стоимость его кубометра значительно ниже, чем у материалов аналогичного назначения. Вторичный щебень имеет все основания для того, чтобы стать серьезным конкурентом природному щебню или ПГС. В тверском регионе материал предлагает флагман областной бетонной промышленности – АО «ТЖБИ-4».
бетон смесь грунтовочная бетоносмеситель щебень песчано-гравийная смесь (ПГС) грунт (почва) щебень цветной щебень облегченный щебеночно-песчаная смесь (ЩПС)
В нашей статье специалисты расскажут о самых главных секретах, технологиях и трендах в современном строительстве. Вы узнаете, как быстро возвести дом, коттедж или даже, сэкономив семейный бюджет. Читайте и воплощайте рекомендации на практике.
строительство домов, коттеджей строительство домов из блоков
24.06.2019 | Стройка.ру
В статье профессионалы строительного портала Stroyka.ru проанализировали основные моменты, связанные с возведением домов, дач, загородных коттеджей.
строительство домов, коттеджей строительство конструкций строительство жилых домов получение разрешения на строительство строительство зданий строительство промышленное
18.06.2019 | Стройка.ру
Строительство жилых и нежилых объектов невозможно без наличия разработанного специалистами проекта, то есть комплекта документации, носящей конструкторский и технический характер. В этой связи проектирование объектов строительства должно выполняться исключительно высококвалифицированными специалистами.
строительство домов, коттеджей строительство конструкций строительство жилых домов строительство зданий
17.06.2019 | Стройка.ру
Бетон представляет собой материал, который получается при смешивании нескольких ингредиентов с водой и последующим затвердевании этой смеси.
бетон бетоносмеситель автобетоносмеситель бетонолом бетонолом-экскаватор аренда бетононасоса бетонный завод бетономешалка бетонные работы бадья для бетона
10.06.2019 | Стройка.ру
stroyka.ru
Бетон морозостойкий. Бетон Тёплый с зимними добавками с завода
Главная / Статьи / Бетон морозостойкий. Бетон Тёплый с зимними добавками с заводаВ Российских условиях бетон должен быть морозостойким, так как он подвергается значительным колебаниям температуры. Русская зима очень пагубно влияет на свойства и характеристики бетона. В результате термического воздействия бетон теряет свою прочность и в нем появляются трещины. Естественно, что восстановление первоначальных характеристик невозможно. Для того, что бы бетон был надежным элементом строения он должен быть морозостойким.
Потеря прочности и появление деформационных процессов в бетоне является результатом избыточного водонасыщения бетона и большого количество циклов замораживания и оттаивания. Дело в том, что при замораживании вода, находящаяся в батоне, кристаллизуется и увеличивается в объеме, в результате чего внутри бетона создается избыточное напряжение. Из-за этого происходит изменение внутренней структуры самого бетона, что уже и влияет на его качество. Снижение прочности особо характерно для бетонов с высоким водонасыщением. Существует также зависимость, в результате которой видно, что интенсивность снижения прочности зависит от первоначальной прочности бетона. То есть, чем выше марка прочности, тем меньше в процентном отношении ее снижение.
Морозостойкость бетона в соответствии с ГОСТ маркируют с помощью буквы «F» и цифр от 50-1000, что отображают количество циклов замораживания и оттаивания. По эксплуатационным характеристиками морозостойки бетоны делятся на группы. Наиболее распространенной является умеренная группа F50-F150, она имеет неплохую морозостойкость и низкую проницаемость воды. Повышенная группа морозостойких бетонов варьируется в пределах F150-F300 и позволяет применяться в условиях с частыми и резкими перепадами температур. Высокая группа F300-F500 предназначена для условий с изменяющимся уровнем влажности. Особо высокая группа применяется при строительстве очень важных объектов. Отметим, что класс морозостойкости бетона не обеспечивает его застывание при низких температурах.
Бетон с противоморозной добавкой. ПМД для бетона. Бетон зимний
Существует несколько методов, с помощью которых можно определить, насколько морозоустойчив уже готовый бетон. Наличие на бетоне трещин, его шелушение и присутствие пятен говорит о снижении прочности бетона. Возможно быстро проверить бетон на морозостойкость, для этого его необходимо поместить несколько раз в сернокислый натрий и высушить при температуре более 100 °С, если на исследуемом образце не появилось признаков разрушения, то такой бетон устойчив к морозам.
Достижение морозостойкости происходит так же благодаря применению специальных добавок. Существует два типа добавок повышающих устойчивость к термическому воздействию. К первой относятся добавки, что позволяют увеличить плотность структуры бетона в результате замедления его схватываемости. Благодаря увеличению седиментации. Ко второй группе относятся добавки способствующие образованию шаровидных воздушных пор. В результате чего достигается эффект воздушной подушки и увеличиваются термоизоляционные свойства бетона, соответственно и его восприимчивость к температурным перепадам. Параллельно применение противозамораживающих добавок позволяет проводить бетонные работы при температурах до -15 °С.
Бетон с ПМД цена с доставкой. Противоморозные добавки в бетон
Производство морозостойкого бетона требует применения высококачественных материалов. Так как небольшое количество материала низкого качества может свести все труды на нет. Песок для бетона несколько раз пересевается, а гравий проходит тщательную очистку и промывку. Поэтому стоимость бетона с зимними добавками выше по сравнению с обычным бетоном.
Каждая из добавок не только помогает противостоять холодам, но и сделает бетонную смесь более податливой, поможет быстро застыть и придаст цвет. Есть еще ряд преимуществ, которые могут дать добавки:
- Улучшение технических характеристик.
- Бетонная смесь становится антикоррозийной
- Возможность избежать разрушения стен
Звоните и заказывайте зимний бетон с доставкой в компании ПТК «ПРОМ БЕТОН» по телефону +7 (495) 960-85-71, оставляйте заявку через форму или пишите на наш e-mail: [email protected].
prom-beton.ru
Морозостойкость и водонепроницаемость бетона. Марки бетона по морозостойкости и водонепроницаемости. Добавки в бетон для водонепроницаемости
Несмотря на разнообразие современных строительных материалов, бетон продолжает сохранять лидирующие позиции среди конкурирующих вариантов, так как обладает такими важными характеристиками, как прочность, надежность и долговечность. Он является неотъемлемой составляющей растворов для создания фундаментов, кладки стен, штукатурки и прочих строительных операций.
Водонепроницаемость бетона, равно как и его способность противостоять суровым погодным условиям, являются основными качествами, обеспечивающими продолжительный срок службы готовых изделий. Именно эти критерии являются основными при выборе марки данного строительного материала.Бетон, морозостойкость и водонепроницаемость которого находятся на высоком уровне, является залогом качества и отличных эксплуатационных показателей любой конструкции. Под данными свойствами подразумевается способность бетонных изделий противостоять негативному воздействию таких природных явлений, как влага, вода и отрицательные температуры.
В настоящее время существуют различные марки бетона по морозостойкости и водонепроницаемости, отличающиеся качеством, ценой и технологическими возможностями. Такая классификация помогает подобрать оптимально подходящий материал для создания конструкций, предназначенных для эксплуатации в тех или иных условиях.
В зависимости от степени водонепроницаемости, бетон подразделяется на десять основных марок (ГОСТ 26633). Они обозначаются латинской литерой W с определенным цифровым значением, указывающим на максимальное водяное давление, которое выдерживает тестовый бетонный образец цилиндрической формы высотой 15 см в ходе специальных испытаний.Определение водонепроницаемости бетона осуществляется по прямым и косвенным показателям его взаимодействия с водой. Прямыми показателями являются марка бетона и его коэффициент фильтрации, а косвенные – это показатели водоцементного отношения и водопоглощения по массе.
В частной и коммерческой строительной практике, чтобы узнать водонепроницаемость бетона, обращают внимание на его марку, а остальные критерии имеют значение в основном при производстве этого стройматериала.
Характерные особенности марок бетона по показателям водонепроницаемости
При выборе необходимой марки бетона для выполнения определенного вида строительных работ руководствуются цифровыми индексами, стоящими после буквы W, характеризующими степень взаимодействия материала с влагой и водой. Так, например, самая низкая водонепроницаемость бетона и, следовательно, невысокое качество у марки W2. Растворы на этой основе категорически не рекомендуется использовать в средах даже с незначительным уровнем влажности.
Нормальная степень водопроницаемости у бетона марки W4. Это означает, что данный состав обладает способностью поглощать нормальное количество воды, поэтому его использование возможно лишь при условии обеспечения хорошей гидроизоляции.
На следующей позиции в шкале качества стоит марка W6, которая характеризуется пониженной водопроницаемостью. Этот бетон относится к составам среднего качества и невысокой ценовой категории, чем и обусловлена популярность его применения в строительстве.
Бетон марки W8 обладает низкой проницаемостью, так как поглощает влагу в количестве всего около 4,2% от своей массы. Он является более качественным и дорогостоящим вариантом, по сравнению с маркой W6.
Далее следуют марки бетона с индексами 10, 12, 14, 16, 18 и 20. Чем выше цифровой показатель, тем ниже водопроницаемость материала. Согласно данной классификации, самым водоустойчивым является бетон марки W20, однако используют его не часто из-за довольно высокой цены.
Практическое использование определенных марок бетона по водоустойчивости
Разновидность бетона должна подбираться в зависимости от условий эксплуатации объектов. К примеру, для заливки фундамента вполне подходит марка W8 при условии обустройства дополнительной гидроизоляции. Оштукатуривание стен производится бетонами марок W8-W14. Однако для обустройства достаточно сырых и холодных помещений водонепроницаемость бетона должна быть максимальной, поэтому рекомендуется применять растворы наиболее качественные, а также потребуется дополнительная обработка стен специальными грунтовыми составами.Для качественной и долговечной внешней отделки стен, заливки приусадебных площадок и дорожек также следует использовать бетоны с максимальными показателями водонепроницаемости, так как эти участки будут систематически подвергаться негативному воздействию внешних погодных факторов.
Добавки в бетон для водонепроницаемости своими руками
Необходимость использования высококлассных бетонных смесей при производстве тех или иных объектов или их элементов очевидна, однако это требует значительных финансовых вложений в связи с высокой стоимостью таких материалов. Но что же делать, если бюджет на строительство ограничен, а нарушение технологического процесса недопустимо? Ответ прост: можно воспользоваться компромиссным вариантом, а именно увеличить водонепроницаемость бетона самостоятельно.
Сегодня существует несколько эффективных способов повышения стойкости бетонных смесей к воздействию воды, но наибольшую популярность завоевали два из них: путем ликвидации усадки бетона и с помощью временного воздействия на бетонный состав.
Ликвидация процесса усадки бетона
Бетоны низких и средних марок являются достаточно пористыми материалами, легко вбирающими в себя влагу. Это негативное свойство усиливается в процессе усадки раствора при застывании. Таким образом, повысить качество и водонепроницаемость бетонной смеси можно путем уменьшения степени ее усадки.
Достичь желаемого результата поможет комплексный подход:
- Необходимо использовать специальные добавки в бетон для водонепроницаемости. Принцип их действия заключается в том, что при застывании раствора они образуют защитную пленку, препятствующую его усадке. Сегодня на рынке представлены различные добавки в бетон для водонепроницаемости, и хоть задача перед ними стоит одна, все же каждый отдельный вариант обладает своими особенностями, поэтому перед покупкой следует внимательно ознакомиться с инструкцией производителя.
- Помимо того, что добавляют в бетон для водонепроницаемости специальные присадки, его также рекомендуется поливать водой. Процедура эта выполняется в течение первых четырех дней с интервалом в 4 часа. Далее бетонная конструкция должна высыхать в естественных условиях.
- При быстром испарении влаги из раствора при застывании также происходит нежелательная усадка. Чтобы замедлить этот процесс, после заливки бетонной конструкции ее необходимо сразу же покрыть специальной пленкой, под которой будет образовываться конденсат, предотвращающий усадку и способствующий повышению прочности бетона. Покрытие располагают таким образом, чтобы оно не касалось заливки. По краям оставляют небольшие зазоры для вентиляции воздуха.
Временное воздействие на бетонный состав
Данный способ заключается в том, чтобы дать сухому раствору «вылежаться» в течение определенного времени. Главным требованием при этом является соблюдение правильных условий хранения. Смесь должна находиться в теплом темном помещении и подвергаться постоянному увлажнению. Таким образом, уже через полгода ее водонепроницаемость сможет повыситься в несколько раз.Морозостойкость бетона
Под данным показателем подразумевается способность бетонных смесей сохранять свои физико-механические свойства в условиях многократного замораживания и оттаивания. Эта характеристика играет приоритетную роль при выборе бетонов для строительства мостовых опор, аэродромных и дорожных покрытий, гидротехнических сооружений, зданий и прочих объектов, эксплуатируемых в средних и северных широтах.Определение морозостойкости бетона осуществляется путем лабораторных испытаний с применением двух способов: базового и ускоренного. Если результаты исследований расходятся, окончательным вариантом будут считаться данные, полученные с помощью базового метода.
Исследование стойкости бетона к воздействию низких температур
Испытания проводят с использованием основных и контрольных образцов, которые производят из бетона различных марок по водонепроницаемости для серийного тестирования. Контрольные бетонные заготовки служат для определения их прочности при сжатии. Данная процедура проводится перед испытаниями основных образцов, которые будут подвергаться попеременному замораживанию и оттаиванию в разных режимах водонасыщения, которые имеют место в естественных природно-климатических условиях.Например:
- при наличии максимально высокого уровня грунтовых вод;
- при сезонных оттаиваниях вечной мерзлоты;
- при воздействии атмосферных осадков;
- при полном отсутствии периодического водонасыщения, когда бетон надежно защищен от грунтовых вод и осадков.
Классификация уровня морозостойкости бетона по маркам
Согласно последней редакции ГОСТ, марки бетона по морозостойкости обозначаются латинской буквой F. Данная величина характеризует максимальное количество циклов замораживания/оттаивания, выдерживаемых образцами определенного проектного возраста с учетом снижения предела прочности и уменьшения массы материала на его величину, предусмотренную нормами действующих стандартов.Для определения уровня морозостойкости бетона используются цифровые показатели от 25 до 1000. Чем больше данное значение, тем выше качество и надежность материала.
Правила выбора бетонных смесей
Выбор необходимой марки бетонных смесей по морозостойким свойствам должен осуществляться с учетом климатических особенностей местности, а также количества циклов промерзания и оттаивания в течение холодного периода года. Следует учесть, что наибольшей морозостойкостью обладают бетоны с высокими показателями плотности.
fb.ru
Морозостойкость бетона – основные характеристики, свойства и марки + Видео
Почему появилась необходимость в таком материале?
Изготавливаемые с применением морозостойкого материала конструкции отличаются необычной стойкостью и долговечностью. В условиях ежегодного изменения температур бетон подвергается многочисленным замораживаниям и размораживаниям. Под этим воздействием меняется структура материала, именно поэтому обычный бетон часто разрушается.
Специалисты внимательно изучают классификацию бетона, прежде чем закупить товар и начать его использование. Иными словами морозостойкость можно определить как количество замораживаний и оттаиваний, которое может выдержать бетон.
Не стоит экономить на закупке материала, практика показывает, что использование морозостойкого состава позволяет увеличить срок эксплуатации здания на несколько лет. В некоторых случаях воплощение проекта в жизнь без закупки соответствующего бетона становится вовсе невозможным.
Свойства морозостойкого бетона
Такой вид бетона превосходно переносит погодные изменения, не меняет форму и не крошится, что дает возможность использовать его не только в зонах с пониженными температурами, но и при строительстве зданий в местах с повышенной влажностью.
В состав морозостойкого варианта входят: вода, цемент, песок и наполнитель. Специалисты настаивают на том, чтобы при его изготовлении использовались только высококачественные элементы, даже малая горсть плохо очищенного щебня может свести на «нет» все положительные качества материала.
При изготовлении морозостойкого бетона используется очищенный в несколько этапов песок, именно такая подготовка объясняет повышенную стоимость строительного материала.
Главный показатель качества бетонной смеси – марка бетона по морозостойкости, она учитывается при изготовлении и его утверждении. У каждой марки есть специальные цифры, например, 100, 200 и так далее, они обозначают предел прочности на сжатие кг/см2.
Определение и проверка марки бетона
Марка бетона по морозостойкости – это максимальное число циклов заморозки и оттаивания, которое может пройти образец. При этом снижение прочности становится недопустимым, оно не может превышать 5% в сравнении с образцами, не подвергшимися воздействию пониженных температур.
На сегодняшний день есть установленные марки по морозостойкости: 50, 75, 100, 150, 200, 300, 400, 500 с префиксом «F». Следует правильно понимать, что цифры не показывают возможность бетона затвердевать при отрицательных температурах. За эту особенность отвечают специальные вещества – добавки и присадки.
На качество рассматриваемого бетона прямо влияет способ укладки и соблюдение требований на этапе изготовления состава. Качественный бетон морозостойкий легко проходит проверки на прочность, а результаты тестов полностью соответствуют заявлениям производителей.
Качественное проведение экспертизы материала является обязательным перед началом строительства, существуют специальные рекомендации и алгоритмы действия, обеспечивающие получение корректных данных. Для проведения эксперимента требуется изготовить 2 формы (2 куба), в которые будет заливаться материал.
Само определение морозостойкости бетона проводится в соответствии с ГОСТом. Образцы помещают в воду на 24 часа, при этом в жидкость погружают лишь одну третью часть куба. По истечению суток уровень воды поднимают до двух третьих и оставляют на сутки. В третий день под водой скрывают весь образец, нужно, чтобы жидкость окружала его со всех сторон не менее чем на 2 сантиметра.
После этого бетон оставляют в воде на 2 дня. Далее образцы испытывают на сжатие, таким образом, получая всю необходимую информацию и сверяя данные с заявленными.
ogodom.ru