Модуль упругости бетона в25: Модуль упругости и коэффициент Пуассона бетона (понятие и значение)

Содержание

что это такое и как определяется

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;
Модуль упругости бетона разных классов
  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от  упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога.  Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.

Модуль упругости бетона – таблица

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства.

Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона. 

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.
Различные технологии изготовления бетона

Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Заключение

Понимание физической сущности параметра упругости бетонного материала позволит правильно выбрать класс бетона для обеспечения необходимой прочности и долговечности строительных конструкций. Желая подробно ознакомиться с методикой расчета бетонных конструкций, изучите внимательно Свод правил 52 101 2003, положения которого распространяются на строительные конструкции из бетона и железобетона.

elima.ru › Таблица начальных модулей упругости бетона

БетонНачальные модули упругости бетона при сжатии и растяжении Eb·103 [МПа] при классе бетона по прочности на сжатие
В1В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60
Тяжёлый:
естественного твердения9,51316182123273032,534,53637,53939,540
подвергнутый тепловой обработке при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
подвергнутый автоклавной обработке7101213,516172022,524,52627282929,530
Мелкозернистый групп:
А — естественного твердения71013,515,517,519,522242627,528,5
подвергнутый тепловой обработке, при атмосферном давлении6,5912,51415,5172021,5232424,5
Б — естественного твердения6,5912,51415,5172021,523
подвергнутый тепловой обработке при атмосферном давлении5,5811,51314,515,517,51920,5
В — автоклавного твердения16,51819,521222323,52424,525
Лёгкий и поризованный марки по средней плотности D:
80044,555,5
100055,56,37,288,4
120066,77,68,79,51010,5
140077,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистый автоклавного твердения марки по средней плотности D:
5001,11,4
6001,41,71,82,1
7001,92,22,52,9
8002,93,44
9003,84,55,5
100067
11006,87,98,38,6
12008,48,89,3

в25, в30, в20, в15, таблица

Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.

Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.

Испытание на растяжение

Классификация

Виды и таблицы

Заливка плитного фундамента

  • Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
  • Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Наименование бетонаМодуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа
B1B1,5B2B2,5B3,5B5B7,5B10B12,5В15В20В25В30B35B40B45B50B55B60
Тяжёлые
Естественный цикл затвердевания9,51316182123273032,534,53637,53939,540
Тепловая обработка при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
Автоклавная обработка7101213,516172022,524,52627282929,530
Мелкозернистые
А-группа (естественное отвердение)71013,515,517,519,522242627,528,5
Тепловая обработка при атмосферном давлении6,5912,51415,5172021,5232424,5
Б-группа (естественное отвердение)6,5912,51415,5172021,523
Теплообработка при автоклавном давлении5,5811,51314,515,517,51920,5
В-группа автоклавного отвердения16,51819,5212122232424,525
Лёгкие и горизонтальные — средняя плотность D
80044,555,5
100055,56,37,288,4
120066,77,68,79,51010,5
140077,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистые, автоклавное твердение, плотность D
5001,11,4
6001,41,71,82,1
7001,92,22,52,9
8002,93,44
9003,84,55,5
100067
11006,87,98,38,6
12008,48,89,3

Таблица модулей упругости бетона с учётом СНИП 2.03.01-84

Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.

Рекомендация. При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция.

Модуль упругости — от чего он зависит

Бетонные арки. Фото

В первую очередь, упругость зависит от характеристик наполнителя, к тому же, если отобразить такое влияние на графической схеме, то мы увидим прямолинейное возрастание. Получается, что чем выше значение модуля, тем больше упругость раствора, где самые высокие показатели у тяжёлых бетонов, так как там используются очень плотные наполнители — щебень и гравий. Повышение таких характеристик связано с будущей возможностью нагрузки на ту или иную конструкцию, а также от того, с какой периодичностью будет осуществляться это воздействие (узнайте здесь, как производится крепление лаг к бетонному полу).

Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.

Автоклавная обработка

Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для  поризованных.

Приготовление бетона своими руками при строительстве дома

В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (читайте также статью «Облицовка газобетона: способы и их особенности»).

Примечание. Каким бы ни был модуль упругости, в любом случае сталь будет крепче, нежели бетон, поэтому, наличие армирующего каркаса значительно увеличивает такие показатели. Плотность армирования и сечение прута определяется по ГОСТ 24452-80.

Заключение

В заключение следует сказать, что резка железобетона алмазными кругами или алмазное бурение отверстий в бетоне напрямую зависят от его модуля упругости, так как от этого возрастает или падает сопротивляемость материала. Всё дело в том, что победитовые накладки на сверле или буре не справятся с гравием или даже со щебнем крупной фракции, поэтому в этих случаях целесообразнее использовать инструмент с алмазным напылением (узнайте также как сделать крепеж для газобетона).

что это такое и как определяется

что это такое и как определяется

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость.

Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона.

Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;

Модуль упругости бетона разных классов

  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от  упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога.

  Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.

Модуль упругости бетона – таблица

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства.
Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса.

Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.

Различные технологии изготовления бетона

Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Заключение

Понимание физической сущности параметра упругости бетонного материала позволит правильно выбрать класс бетона для обеспечения необходимой прочности и долговечности строительных конструкций. Желая подробно ознакомиться с методикой расчета бетонных конструкций, изучите внимательно Свод правил 52 101 2003, положения которого распространяются на строительные конструкции из бетона и железобетона.

Модуль (коэффициент) упругости бетона: формула для расчета

Определение упругости и единицы измерения

Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно.

Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.

Нормативные сведения также включают данные о:

  • классе материала,
  • его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
  • технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).

В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения.

Таблица утверждена СНиП и составлена на основе результатов опытных исследований.

Таблица начальных модулей упругости E (МПа*10-3) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками

Классы по прочности на сжатие

В3,5

В5

В7,5

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Характеристики бетона

Тяжелые бетоны

Естественное твердение

9,5

13

16

18

21

23

27

30

32,5

34,5

36

37,5

39

39,5

40

Тепловая обработка при атмосферном давлении

8,5

11,5

14,5

16

19

20,5

24

27

29

31

32,5

34

35

35,5

36

Автоклавная обработка

7

10

12

13,5

16

17

20

22,5

24,5

26

27

28

29

29,5

30

Мелкозернистые

Естественное твердение, А-группа

7

10

13,5

15,5

17,5

19,5

22

24

26

27,5

28,5

Тепловая обработка при атмосферном давлении

6,5

9

12,5

14

15,5

17

20

21,5

23

Естественное твердение, Б-группа

6,5

9

12,5

14

15,5

17

20

21,5

23

Автоклавная теплообработка

5,5

8

11,5

13

14,5

15,5

17,5

19

20,5

Автоклавное твердение, В-группа

16,5

18

19,5

21

21

22

23

24

24,5

25

Легкие и поризованные

Марка средней плотности, D

800

4,5

5,0

5,5

1000

5,5

6,3

7,2

8

8,4

1200

6,7

7,6

8,7

9,5

10

10,5

1400

7,8

8,8

10

11

11,7

12,5

13,5

14,5

15,5

1600

9

10

11,5

12,5

13,2

14

15,5

16,5

17,5

18

1800

11,2

13

14

14,7

15,5

17

18,5

19,5

20,5

21

2000

14,5

16

17

18

19,5

21

22

23

23,5

Ячеистые автоклавного твердения

Марка средней плотности, D

700

2,9

800

3,4

4

900

3,8

4,5

5,5

1000

6

7

1100

6,8

7,9

8,3

8,6

1200

8,4

8,8

9,3

От чего зависит упругость бетона

1.

Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т.

е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Расчет модуля упругости в лабораторных условиях

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца.

Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения.

Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.

Модуль упругости бетона

СП 63.13330.2012

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:

где φb,cr— коэффициент ползучести бетона, принимаемый согласно 6.1.16.

Таблица 6.11

БетонЗначения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5в10В12,5B15B20B25в30В35В40В45В50В55В60В70В80В90В100
Тяжелый9,513,016,019,021,524,027,530,032,534,536,037,038,039,039,541,042,042,543
Мелкозернистый групп:
А — естественного твердения7,01013,515,517,519,522,024,026,027,528,5
Б — автоклавного твердения16,518,019,521,022,023,023,524,024,525,0
Легкий и порисованный марки по средней плотности:
D8004,04,55,05,5
D10005,05,56,37,28,08,4
D12006,06,77,68,79,510,010,5
D14007,07,88,810,011,011,712,513,514,515,5
D16009,010,011,512,513,214,015,516,517,518,0
D180011,213,014,014,715,517,018,519,520,521,0
D200014,516,017,018,019,521,022,023,023,5
Ячеистый автоклавного твердения марки по средней плотности:
D5001,4
D6001,71,82,1
D7001,92,22,52,9
D8002,93,44,0
D9003,84,55,5
D10005,06,07,0
D11006,87,98,38,6
D12008,48,89,3
Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еbпринимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.

6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200)2.

Таблица 6.12

Относительная влажность воздуха окружающей среды, %Значения коэффициента ползучести бетона φb,crпри классе тяжелого бетона на сжатие
В10В15В20В25взоВ35В40В45В50В55В60 — В100
Выше 752,82,42,01,81,61,51,41,31,21,11,0
40 — 753,93,42,82,52,32,11,91,81,61,51,4
Ниже 405,64,84,03,63,23,02,82,62,42,22,0
Примечание — Относительную влажность воздуха окружающей среды принимают по СП 131. 13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

elima.ru › Таблица начальных модулей упругости бетона

БетонНачальные модули упругости бетона при сжатии и растяжении Eb·103 [МПа] при классе бетона по прочности на сжатие
В1В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60
Тяжёлый:
естественного твердения9,51316182123273032,534,53637,53939,540
подвергнутый тепловой обработке при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
подвергнутый автоклавной обработке7101213,516172022,524,52627282929,530
Мелкозернистый групп:
А — естественного твердения71013,515,517,519,522242627,528,5
подвергнутый тепловой обработке, при атмосферном давлении6,5912,51415,5172021,5232424,5
Б — естественного твердения6,5912,51415,5172021,523
подвергнутый тепловой обработке при атмосферном давлении5,5811,51314,515,517,51920,5
В — автоклавного твердения16,51819,521222323,52424,525
Лёгкий и поризованный марки по средней плотности D:
80044,555,5
100055,56,37,288,4
120066,77,68,79,51010,5
140077,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистый автоклавного твердения марки по средней плотности D:
5001,11,4
6001,41,71,82,1
7001,92,22,52,9
8002,93,44
9003,84,55,5
100067
11006,87,98,38,6
12008,48,89,3

влияющие факторы и методы определения

Для характеристики эксплуатационных и физико-механических свойств материалов используются различные показатели.

Широкое распространение получил модуль упругости бетона, характеризующий способность упруго деформироваться в результате воздействия внешней силы и давления. Чтобы разобраться в свойствах готового бетонного раствора, стоит узнать, что это такое, от чего зависит и каким образом определяется.

Читайте в статье

Понятие модуля упругости бетона и единицы измерения

В процессе эксплуатации твёрдые тела подвергаются нагружению и начинают деформироваться. Сначала протекающие деформационные изменения являются обратимыми, а их величина от прикладываемого усилия является линейной. Как только нагрузка снимается, изделие полностью восстанавливает первоначальную форму. Для описания протекающих процессов используется закон Гука, согласно которому в качестве коэффициента пропорциональности между абсолютным сжатием либо удлинением и прикладываемым усилием используется модуль упругости.

ФОТО: portbeton.ruМодуль упругости зависит от марки бетона ФОТО: konspekta.netМодуль выступает в качестве коэффициента пропорциональности

Определение данного показателя звучит следующим образом: модуль упругости – коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной деформацией.

Измеряется в кгс/см² (Н/м², Па). Называют модулем Юнга.

Как только нагрузка превысит определённый уровень, начинается фаза необратимых изменений. Деформативность становится неупругой. Сдвиг увеличивается без дальнейшего приложения нагрузки. В зоне ползучести внутренние связи начинают разрушаться, и бетонная конструкция теряет прочность.

ФОТО: gidrocor.ruПри превышении определённого значения бетонная конструкция начинает разрушаться

Факторы, влияющие на модуль упругости бетона

Значение модуля упругости может существенно отличаться. На него влияет множество факторов. Чтобы получить желаемый результат, стоит с ними познакомиться заранее.

ФОТО: static.tildacdn.comЗначение зависит от многих факторов

Качество и объёмное содержание заполнителей

Бетон представляет собой смесь, состоящую из некоторого количества цемента и заполнителей. Качество и концентрация последних оказывают непосредственное влияние на значение модуля упругости. Если структура является неоднородной, вероятность возникновения сложного напряжённого состояния существенно возрастает.

Основная нагрузка приходится на жёсткие частицы. Зоны с пустотами и порами испытывают поперечное растяжение.

Внимание! Введение в состав крупного заполнителя способствует увеличению упругих свойств железобетона.

ФОТО: house-keys.ruСоотношение компонентов может отличаться

Класс бетона

Класс бетона оказывает непосредственное влияние на модель упругости. Чем выше класс, тем большей прочностью на сжатие и плотностью будет обладать состав и будет лучше сопротивляться воздействующей нагрузке. Самое высокое значение – у бетона В60 –  численно равно 39,5 МПа×10-3. Наименьшее значение у В10 и соответствует 19 МПа×10-3.

ФОТО: cemmix.ruКласс бетона – важный критерий

Температура воздуха и влажность среды

При повышении температуры деформация в бетоне увеличивается, а упругие свойства снижаются. Это способствует повышению внутренней энергии смеси, а также линейному расширению материала, траекторий движения молекул и увеличению пластичности.

Внимание! Температурные колебания учитывают только, если их диапазон превышает 20 °С.

ФОТО: static.tildacdn.comТемпература определяет скорость набора прочности и количество деформаций

Влажность влияет на упругость материала. В расчётах используется коэффициент ползучести. Чем выше процентное содержание водяного пара, тем ниже будут пластические деформации.

ФОТО: wallpapertag.comУровень влажности бетона влияет на пластичность

Время воздействия нагрузки и условия твердения смеси

Продолжительность действия нагрузки на бетонную конструкцию также влияет на модуль упругости. Если нагружение осуществляется, мгновенно деформация конструкции увеличивается пропорционально приложенным внешним силам. Длительное напряжение приводит к уменьшению величины модуля. Зависимость носит нелинейный характер. Пластическая и упругая деформация складываются.

ФОТО: static.tildacdn.comХарактер прикладываемой нагрузки может отличаться

Условия, в которых бетон набирает свою прочность, могут отличаться. В естественных условиях значение всегда выше. Если материал обрабатывается в автоклавной установке либо осуществляется пропаривание в условия атмосферных давлений, значение несколько снизится. Причиной этого является образование большого числа пустот и пор благодаря неравномерному температурному расширению объёма, понижению качества гидратации зёрен цемента.

ФОТО: beton-house.comТвердение в естественных условиях предпочтительней

Возраст бетона и армирование конструкции

Для набора прочности свежезалитому бетону достаточно четырёх недель. По истечении указанного периода смесь будет обладать упругими свойствами и достаточной пластичностью. Максимальная твёрдость будет достигнута только через 200-250 дней. Именно в это время модуль упругости достигнет максимального значения, соответствующего марочной прочности.

ФОТО: cemmix.ruДля набора прочности требуется время

Для того чтобы монтируемая конструкция прослужила подольше, её обязательно армируют. В качестве армирующих элементов берётся сетка либо каркас, для изготовления которого использовалась арматура, относящаяся к классам АI, AIII, А500С, Ат800, древесина и композиты. Все эти элементы в процессе эксплуатации воспринимают растягивающие и сжимающие нагрузки, воздействующие на бутон.

Благодаря армированию удается повысить упругость и прочностные характеристики конструкции. Уменьшается вероятность образования трещин деформационного и усадочного типа.

ФОТО: a-plus-enterprises.comАрмирование повышает упругость

Модуль упругости бетона (Еб): способы определения значения

Порядок определения  Еб может несколько отличаться. Каждый способ имеет свои отличительные особенности. Стоит ознакомиться с нюансами каждого метода, чтобы не допустить ошибок в момент определения значения.

Механическое испытание

При проведении механических испытаний образец подвергается разрушению. Исследование производится с учётом требований ГОСТ 24452, устанавливающих требования к используемым образцам и порядку проведения исследований.

ФОТО: nilstroi.ruДля проведения испытания требуется специальное оборудование

Материалы и инструменты

Для проведения исследований используются образцы, имеющие форму круга либо квадрата. Соотношение высоты и поперечного сечения принимают равным четырём. Образцы высверливаются, выбуриваются либо выпиливаются из готового изделия. До начала испытаний их держат под влажной тканью.

Для получения искомого значения образцы помещают на пресс, оснащённый специальными базами, позволяющими измерить деформацию. Приборы располагаются под разными углами к грани образца. Для фиксации индикаторов используются стальные рамки. В некоторых случаях индикаторы приклеиваются к опорным вставкам.

Внимание! Если конструкция работает в условиях повышенной влажности, требуется специальная подготовка по ГОСТ 24452-80.

ФОТО: beton-house.comОбразец помещается под пресс

Схема испытания образцов

Испытания выполняются в следующей последовательности:

  1. Образцы подготавливаются и с индикаторами помещаются под пресс, добиваясь совмещения осей образца и центра плиты. Назначают разрушающую нагрузку в т/м2. Величина зависит от марочной прочности бетона.
  2. Производят ступенчатое увеличение нагрузки с шагом 10 % от разрушающей и интервалом 4-5 минут.
  3. Доводят значение до 40-45 % от максимального. При отсутствии дополнительных требований приборы снимают, а дальнейшее нагружение выполняют с постоянной скоростью.
  4. Результаты для каждого образца обрабатывают, когда нагрузка составляет 30 % от разрушающей. Данные отображаются в журнале испытаний.

По проведенным исследованиям определяют начальный модуль упругости Еб. Нормативные значения для каждого класса содержатся в таблицах со строительными нормами и маркировке изделия. Для В15, В20, В25, В30, полученного в условиях естественного твердения, коэффициент равен 23, 27, 30, 32,5 МПа×10-3 соответственно, в условиях термической обработки – 25, 24,5, 27, 29.

ФОТО: studfile.netНагрузка повышается ступенчато

Неразрушающий ультразвуковой способ

Механический способ предполагает выемку образца из уже готовой конструкции. Это не всегда удобно и сопряжено с рядом трудностей. Ультразвуковой способ позволяет обойтись без локального разрушения. В условиях повышенной влажности погрешность составляет 15 -75 % из-за более высокой скорости распространения ультразвуковых волн в водной среде. Существует метод, позволяющий найти значение при различной влажности материала. Испытания проводятся на образцах, имеющих различную водонасыщенность.

Для нахождения нормативных и расчётных значений используют корректирующие коэффициенты, учитывая соответствующие значения. Методика приведена в СП 63.13330.2012.

Делитесь в комментариях, какому методу определения модуля упругости бетона вы доверяете больше всего и каким приходилось пользоваться.

ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями

Модуль упругости бетона на растяжение и сжатие

Данное понятие известно в основном специалистам. Для «самодеятельного» строителя, частного застройщика это словосочетание мало о чем говорит. Но долговечность той или иной постройки напрямую зависит от него.

Сам бетон является твердым материалом. И, тем не менее, под влиянием различных внешних сил он частично деформируется. Именно поэтому различают 2 показателя его прочности – на растяжение и на сжатие, хотя ориентируются в большей степени на последний. Следовательно, и модули упругости также должны быть соответственно рассчитаны на эти разносторонние воздействия.

Но на практике они принимаются равными и свидетельствуют о способности бетона временно деформироваться под воздействием повышенных нагрузок, при этом не подвергаясь необратимым изменениям – разрушению структуры, появлению трещин, сколов и тому подобное. Это особенно важно знать, когда конструкция подвергается различным прогибам (например, ж/б сооружения арочного типа, перекрытия). В отличие от многих других строительных материалов бетон под влиянием нагрузки (в известных пределах) действует как пружина.

Рассматриваемый показатель определяется экспериментальным путем на основе испытаний образцов материалов. Обозначается символом «E» и имеет второе название – «модуль Юнга». Различают начальный и приведенный модуль упругости (Eb и Eb1 соответственно). Для рядового пользователя все эти вычисления и используемые при этом формулы практического значения не имеют, так как во всех нюансах сможет разобраться только профильный специалист.

Нужно лишь знать, что оказывает влияние на данную характеристику материала, а также о существовании таблиц, которыми при необходимости можно воспользоваться.

От чего зависит модуль упругости

1. Непосредственное влияние оказывают характеристики наполнителя, причем эта зависимость – практически прямолинейная (если отобразить ее графически). Для легких бетонов значение модуля ниже, чем тот же показатель у «тяжелых» аналогов с крупными гранулами (щебня, гравия).

2. Класс бетона. Для определения существует специальная таблица. Частный застройщик на практике использует ограниченный ассортимент подобной продукции, поэтому нет смысла приводить ее в полном виде. Вот некоторые данные по прочности и модулю, из которых видно, что они имеют прямо пропорциональную зависимость, которая не изменяется при температурах до 230 0С. Следовательно, практически никогда.

  • В10 соответствует 19;
  • В 15 – 24;
  • В20 – 27,5;
  • В25 – 30;
  • В30 – 32,5.

Это позволяет «управлять» таким свойством материала, как упругость, причем для одной и той же марки продукции. Такая характеристика принимается во внимание в зависимости от того, какой элемент конструкции будет монтироваться. Например, слабо или сильно нагруженный, с какой периодичностью и длительностью будет действовать дополнительный вес.

3. Возраст бетона. Наблюдается тенденция увеличение численного показателя модуля упругости с течением времени. Поэтому при определении значения в конкретный период пользуются специальными таблицами, где отражены начальные показатели, которые умножаются на поправочные коэффициенты.

4. Технология обработки материалов. Есть разница, как отвердевал бетон – естественным путем, при термической обработке без использования закрытых камер или «прошел» через автоклав.

5. Продолжительность воздействия нагрузки. Для определения данной величины начальный модуль упругости (взятый из таблицы), умножается на соответствующий коэффициент. Он равен 0,85 для бетонов мелкозернистых, легких (если заполнитель мелкий) и тяжелых. Для легких (с пористым заполнителем) и поризованных бетонов коэффициент равняется 0,7.

Перед тем, как рассмотреть иные факторы, влияющие на рассматриваемую характеристику, стоит остановиться на таком показателе, как ползучесть бетона. От нее зависит степень деформации материала. Дело в том, что при кратковременном воздействии (причем в определенных пределах) после снятия нагрузки материал принимает первоначальную форму.

Если воздействие не прекращается, то речь идет уже о пластичной деформации, которая, как правило, имеет необратимый характер. Не стоит вдаваться во все нюансы, так как порой разделить оба вида деформации крайне сложно. Достаточно указать, что пластичная (то есть дальнейшее изменение формы) вызывается «ползучестью» бетона. Она учитывается при длительном воздействии. Коэффициент ползучести обозначается символом «φb,cr»

6. Влажность воздуха. Существует зависимость между ней и φb,cr. Это также определяется по таблицам. Кроме того, учитываются и такие факторы, как температура и радиация (интенсивность излучения).

7. Наличие армирующего каркаса. Понятно, что металл деформируется под нагрузкой не в такой степени, как бетон.

Для тех читателей, которые захотят более глубоко вникнуть в этот вопрос, укажем Государственный Стандарт № 24452 от 1980 года, в котором описаны, в частности, и методы определения данной характеристики бетонов.

Модуль упругости бетона: таблица зависимости

Модуль упругости – определение знакомо по большей части профессионалам. Малоопытному специалисту либо обычному потребителю это понятие незнакомо. Однако прочность и долговечность возведенного строения во многом зависит именно от этого показателя. Бетон само по себе довольно крепкое изделие. Но все-таки под воздействием некоторых внешних раздражителей он подвержен разрушению. Как раз по этой причине существует пара коэффициентов его крепости – на сжатие и на растяжение. Однако чаще всего обращают внимание именно на первое значение. Соответственно, и другие искомые параметры обязаны быть готовы к таким различным влияниям.

Что такое модуль упругости?

При воздействии повышение разрушения объясняется тем, что бетон известен такой характеристикой, как ползучесть. Сперва во время определенного воздействия внутри него начинается упругое разрушение. Данный эффект означает временное изменение состояния тела, при котором после окончания воздействия все возвращается к исходному состоянию. Если воздействие продолжается, то в конструкции начинаются необратимые разрушения.

Именно поэтому первый вариант воздействия называют упругим разрушением, а второй вариант – пластичным. Данное явление происходит по причине ползучести бетона. Если же воздействие не будет прекращено, то это приведет к значительной деформации строения. Модуль упругости бетона иногда еще могут называть, как коэффициент разрушения. Его выясняют при помощи различных технологий.

Вернуться к оглавлению

Что влияет на модуль упругости?

  • Прямое воздействие оказывают свойства компонентов в бетоне. Мало того, данная подвластность полностью прямолинейная. У бетонов с небольшим весом этот показатель меньше, а вот у более тяжелых крупнозернистых видов он больше.
  • Классификация бетона. Для выяснения зависимости искомого коэффициента составлена специальная таблица. Обычный потребитель в работе применяет небольшой перечень данных изделий, в связи с этой причиной нет необходимости приводить ее целиком. По известным показателям прочности и модуля понятно, что они пропорционально зависят друг от друга. Причем, данная зависимость не меняется при температурном воздействии ниже 230С. То есть в основном показатели не меняются вообще. Данный нюанс дает возможность контролировать такую характеристику продукта, как упругость, к тому же это выполнимо в одних и тех же классах материала. Это свойство учитывают для того, чтобы знать какой из продуктов может быть установлен. При возведении загородных частных домов применяют довольно маленький перечень бетонных растворов, согласно их классности. Чаще всего этот выбор происходит в диапазоне от В7 до В30, а также М100, М150, М200, М250, М300, М350, М400. Однако данного ассортимента полностью хватает для возведения малоэтажных зданий. Это возможно, даже если в строительстве применяются плитные цоколи, а также формируются арки для декорирования.
  • Возраст бетона. Известна зависимость между повышением искомого коэффициента и периода эксплуатации. По этой причине во время определения показателя в нужный отрезок времени, применяют специальные таблицы. В ней указаны первичные данные, которые необходимо умножить на поправочные модули.
  • Метод переработки компонентов. Большую роль играет то, в каких условиях происходило застывание бетона. Ведь он мог отвердеть естественным образом, во время термического воздействия либо с применением автоклава.
  • Длительность влияния давления. Чтобы выяснить этот показатель, начальный показатель множат на требуемый модуль. Для каждого из типов бетона данный модуль имеет свое значение. Для легких, тяжелых и мелкозернистых – 0,85, для поризованных – 0,7.

Прежде чем изучить другие нюансы, оказывающие воздействие на анализируемую характеристику, необходимо подробнее рассмотреть такое определение, как ползучесть бетона. Данный показатель оказывает большое влияние на стадию разрушения изделия. Ведь при недолгой малой нагрузке материал деформируется, но после прекращения воздействия он возвращается в изначальное состояние.

Данный момент можно детально не разбирать, так как весьма сложно определить вид деформации. Внешне пластичная и упругая деформация никак не отличается. Однако стоит указать, что пластичное разрушение объясняется свойством ползучести бетона. В частности, именно этот параметр берется в расчет при долгом воздействии на материал. Модуль ползучести также имеет свое буквенное обозначение:

  • Влагосодержание в окружающем воздухе. Данное обстоятельство связано с модулем ползучести. Если необходимо точное значение, то она также узнается из соответствующих таблиц. В таком случае во внимание также берутся температура и уровень радиационного фона.
  • Наличие металлического каркаса для армирования. Благодаря своему составу, металл не так сильно подвержен разрушениям вследствие воздействия, в отличие от простого бетона.

Необходимо отметить, что каким бы ни был показатель упругости, металл всегда превосходит бетон по прочности. Благодаря такому свойству, использование каркаса для армирования в любом случае повысит собственный показатель упругости у бетонного изделия.

Вернуться к оглавлению

Таблица зависимости модуля упругости от различных факторов

Таблица упругости бетона.

Довольно полезно будет изучить специальную таблицу, ведь именно благодаря ей появилась возможность выяснить модуль упругости бетона и не только. В данной таблице имеются следующие компоненты:

  • карбид кремния – модуль упругости 35,5; температура плавления 2800С;
  • периклаз – модуль упругости 24,6; температура плавления 2800С;
  • корунд – модуль упругости 37,2; температура плавления 2050С;
  • железо – модуль упругости 21,1; температура плавления 1539С;
  • медь – модуль упругости 11,2; температура плавления 1083С;
  • алюминий – модуль упругости 7,0; температура плавления 660С;
  • свинец – модуль упругости 1,5; температура плавления 327С;
  • полистирол – модуль упругости 0,3; температура плавления 300С;
  • каучук – модуль упругости 0,007; температура плавления 300С.

В данном перечне приведены температуры плавления разных компонентов, подобный норматив обладает прямой зависимостью от искомого модуля. В связи с чем становится ясно, что владение информацией о влиянии различных факторов на показатели бетона – это важно.

Вернуться к оглавлению

Способы определения модуля упругости

Ультразвуковой способ контроля модуля упругости бетона.

Норматив упругости конструкции выясняется в ходе экспериментальных исследований на пробах по бетону Данное значение принято обозначать буквой «Е». Однако у него имеется и другое обозначение – «модуль Юнга». Профессионалы разделяют показатель упругости на подвиды: начальный и приведенный.

Необходимо заметить, что обычному малоопытному потребителю непростые формулы и примеры вычетов, которые делаются по данному показателю, никоим образом не пригодятся в жизни. В подобных тонкостях и нюансах может разобраться лишь человек опытный либо владеющий специальным образованием.

Показатель упругости возможно выяснить во время проведения отдельных проб на способность противостоять сжатию либо растяжению. Стоит заметить, что материал, не содержащий внутри армировочный каркас к такому явлению как растяжение, не подвластен. По результатам проведенных экспериментов, происходит построение графика, в котором указана зависимость между прикладываемым воздействием и разрушением изделия.

Начальный показатель, характеризующийся упругостью бетона, выясняется не так легко, как хотелось бы. Но его примерное значение можно выяснить косвенным методом. Довольно часто секущая полоса к кривой, обозначающая зависимость воздействия от разрушения, расположена параллельно относительно касательной линии. Также правильным будет определение того, что показатель упругости материала повышается прямо пропорционально значению его крепости. Но все-таки это является точным лишь для главной части графика. Также значение сильно подвластно условиям и месту эксперимента.

Вернуться к оглавлению

Заключение

Данная тема является весьма сложной и непростой. Однако при должном изучении никаких трудностей возникнуть не должно. Стоит заметить, что условия резки железобетонных изделий при помощи алмазных кругов во многом подвластны показателям упругости материала. То же самое можно сказать и об алмазном бурении изделий.

При разных показателях упругости увеличивается либо уменьшается сопротивляемость изделия. Хотя бы для облегчения такой работы стоит знать показатели упругости бетона.

Модуль упругости бетона — определение и важность при проектировании

Модуль упругости бетона (Ec) определяется как отношение приложенного напряжения к соответствующей деформации. Он не только демонстрирует способность бетона противостоять деформации из-за приложенного напряжения, но и его жесткость. Другими словами, он отражает способность бетона упруго отклоняться. Модуль упругости бетона зависит от пропорций заполнителя и смеси в бетоне.

При проектировании бетонных конструкций очень важен модуль упругости, который требует определения. Линейный расчет элементов, основанный на теории упругости, используется в некоторых случаях для удовлетворения требований предельного состояния по прочности и пригодности к эксплуатации, например, при проектировании предварительно напряженных бетонных конструкций.

Общие применимые нормы по всему миру, такие как Кодекс ACI, Европейский Кодекс, Британские стандарты, Канадская ассоциация стандартов и Индийский стандарт, предоставили формулу для расчета модуля упругости бетона.

Расчет модуля упругости бетона

Расчет модуля упругости бетона с использованием уравнений различных кодов представлен ниже:

1. Модуль упругости на основе ACI 318-14

Согласно ACI 318-14, раздел 19.2.2, модуль упругости бетона оценивается следующим образом:

Для бетона удельный вес (wc) колеблется от 1440 до 2560 кг на кубический метр.

Для бетона с нормальным весом:

2.Модуль упругости на основе CSA

Модуль упругости для бетона с нормальным весом согласно Канадской ассоциации стандартов (CSA A23.3):

Для высокопрочного бетона:

3. Модуль упругости согласно EC

Модуль упругости бетона по Еврокоду можно оценить с помощью следующего выражения:

Где,

Ecm: средний модуль упругости

фут · см: средняя прочность бетона на сжатие через 28 дней в соответствии с таблицей 3.1 BS EN 1992-1-1: 2004

4. Модуль упругости согласно британскому стандарту

.

Значение модуля упругости при 28-дневном возрасте бетона приведено в BS 8110: Часть II 1985:

.

Где:

ko: составляет 20 кН на квадратный миллиметр
для нормального бетона

fcu, 28: прочность бетона на сжатие через 28 дней.

5. Модуль упругости в соответствии с IS 456

.

Модуль упругости бетона по индийскому стандарту можно рассчитать с помощью следующего выражения:

Важность проектирования бетонных конструкций

Очень важно определить модуль упругости бетона при проектировании бетонной конструкции.Линейный анализ элементов, основанный на теории упругости, используется для удовлетворения требований как по предельному состоянию, так и по предельному состоянию, например, в случае предварительно напряженного бетона, который демонстрирует сечение без трещин вплоть до разрушения.

В дополнение к вычислению прогибов, которые должны быть ограничены в соответствии с требованиями эксплуатационной пригодности для всех конструкций. Наконец, знание модуля упругости высокопрочного бетона очень важно для предотвращения чрезмерной деформации, обеспечения удовлетворительной работоспособности и избегания наиболее экономичных конструкций.

Модуль упругости бетона

Что такое модуль упругости?

Модуль упругости (также известный как модуль упругости, коэффициент упругости) материала — это число, которое определяется отношением приложенного напряжения к соответствующей деформации в пределах упругости. Физически это указывает на сопротивление материала деформации при приложении к нему напряжения. Модуль упругости также указывает на жесткость материала. Значение модуля упругости выше для более жестких материалов.

\ [\ text {Модуль упругости,} \; E = \ frac {f} {s} \]

Здесь f = приложенное напряжение к телу
s = деформация, соответствующая приложенному напряжению

Определение модуля упругости бетона. Источник: http://civilarc.com

Единицы модуля упругости

Единицы модуля упругости следующие:

  • В единицах СИ МПа или Н / мм 2 или кН / м 2 .
  • В единицах FPS psi или ksi, psf или ksf.
Модуль упругости бетона

Модуль упругости бетона можно определить как наклон линии, проведенной от нулевого напряжения до нулевого сжимающего напряжения.45f ’ c . Ведь бетон — это неоднородный материал. Прочность бетона зависит от относительной пропорции и модуля упругости заполнителя.

Чтобы узнать точное значение модуля упругости бетонной смеси, можно провести лабораторные испытания. {1.2
\]

Испытание для определения модуля упругости бетона

Следующее видео (источник: youtube.com) поможет вам получить хорошее представление об экспериментальной процедуре определения модуля упругости бетона. В этом видео проиллюстрирована процедура испытания для определения модуля упругости бетона в соответствии с нормами EN 12390-13.

Модуль упругости бетона? [3 различных стандарта]

Модуль упругости бетона

Бетон представляет собой композиционную смесь материалов (крупнозернистые, мелкие заполнители, цемент с водой).Обладает высокой прочностью на сжатие и низкой прочностью на разрыв. Модуль упругости бетона разный для разных смесей. Бетон разрушается под действием растягивающих напряжений. При низких напряжениях эластичность бетона постоянна, а при высоких напряжениях начинает развиваться растрескивание.

Бетон имеет очень низкий коэффициент теплового расширения. Под действием растягивающих и усадочных напряжений все бетонные конструкции в той или иной степени растрескиваются. Поскольку сейчас бетон демонстрирует разные свойства при разных соотношениях воды и цемента и имеет другую бетонную смесь (M15, M20 и т. Д.).

Определение

Он определяется как отношение нормального напряжения к нормальной деформации ниже пропорционального предела материала, называемого модулем упругости Ec.

Модуль упругости = удельное напряжение / единичная деформация

При испытании на прочность на сжатие образца бетона (цилиндр диаметром 15 см и длиной 30 см, имеющий объем 15 см куб) модуль упругости бетона рассчитывается с помощью справка по графику напряжений и деформаций.

В соответствии с кодами ACI, модуль упругости бетона можно измерить по формуле

А при нормальной плотности или весе бетона эти два соотношения можно упростить следующим образом:

# Где

Ec = Модуль упругости из бетона.

f’c = Прочность бетона на сжатие.

Согласно

  • ACI 318–08, (бетон нормального веса) модуль упругости бетона Ec = 4700 √f’c МПа и
  • IS: 456 модуль упругости бетона 5000√f ‘ c, МПа.

Основными факторами, которые могут повлиять на определение значений модуля упругости, являются:

  • Прочность бетона
  • Состояние влажности бетона:

Эта таблица показала, что мы получаем разную эластичность в разных смесях,

#Where

ГПа = Гигапаскаль

МПа = Мегапаскаль

Значение модуля упругости бетона может варьироваться и зависит от следующих факторов,

  • Состав смеси.
  • Свойства крупного заполнителя.
  • Скорость загрузки.
  • Условия отверждения.
  • Минеральные добавки.
  • Химические добавки.

Плотность бетона составляет около 150 фунтов / куб. Фут или (2400 кг на кубический метр).

Эластичность

Определяется как способность материала возвращаться в исходное положение (размер и форму) после снятия сил.

  • Поведение эластичности разное для разных материалов.
  • При приложении силы решетка материала меняет свою форму и размер и возвращается в исходное положение после ослабления силы.
  • Подразделяется на линейную или конечную эластичность.
Единицы

Единицы модуля упругости следующие:

  • В единицах СИ МПа или Н / мм 2 или кН / м 2 .
  • В единицах FPS psi или ksi, psf или ksf.

Связанная тема:

  1. Преобразователи для гражданского строительства

Модуль упругости высокоэффективного бетона

Модуль упругости высокоэффективного бетона

Бетон с высокими эксплуатационными характеристиками
— Бетон с высоким модулем упругости

Разработка бетона с высокими эксплуатационными характеристиками
года.Много десятилетий назад бетон с прочностью на сжатие 5000
psi считался высокой прочностью. В настоящее время прочность на сжатие составляет
приближается к 20 000 фунтов на квадратный дюйм. Высокопрочный бетон преимущественно используется в
колонны многоэтажных домов. Он также используется в мостовых балках,
морские буровые конструкции и плотины.

Модуль упругости — очень важное механическое свойство
конкретный. Чем выше значение модуля, тем жестче материал.
является.Таким образом, сравнивая бетон с высокими эксплуатационными характеристиками с бетоном нормальной прочности,
видно, что модуль упругости для бетона с высокими эксплуатационными характеристиками будет
быть выше, тем самым делая бетон более жестким. Жесткость — это
желаемое свойство для бетона, потому что прогиб конструкции
может стаж уменьшится. Однако деформации, такие как ползучесть,
повышение прочности бетона (Невилл 608).

Модуль упругости бетона обычно рассчитывается из
испытание бетонного образца на прочность при сжатии.Из этих испытаний на прочность,
напряжения и деформации измеряются и наносятся на график. Соотношение стрессов
от деформации на этих диаграммах называется модулем упругости,
E. Поскольку бетон обычно не действует линейно упруго,
на диаграмме зависимости напряжения от деформации нет участка, где крюки
закон может применяться для определения модуля упругости.

s = Ee Hookes
Закон

(где s = напряжение, e
= напряжение)

Следовательно, несколько методов
используются для определения значения модуля упругости по напряжению по сравнению с
диаграмма деформации.Также есть несколько уравнений
которые были разработаны для вычисления значения модуля упругости
после определения прочности на сжатие испытательного цилиндра.

Следующие параметры могут влиять на значение, полученное для модуля упругости.
эластичности:

Хотя все эти свойства влияют на модуль упругости, не все из
эти свойства являются решающими факторами. Поэтому при работе с высокими
бетон с высокими характеристиками и желаемым модулем упругости, это наиболее
Важно использовать высокопрочный крупнозернистый заполнитель.

Информация собрана Деборой Сипикс.

Список литературы

Модуль упругости — обзор

9.5.4 Модуль упругости

На модуль упругости влияют характеристики цементного теста и заполнителя в бетоне, присутствующие относительные количества и их реакция на приложение нагрузки.Что касается прочности на разрыв, подробные сведения о свойствах для проектирования включены в стандарты. 315 ​​

Бетон, содержащий природный пуццолан, более крупный, чем поликарбонат, используемый с 20% цемента при соотношении веса и веса 0,57. Бетон 324 , как было обнаружено, имел модуль упругости, аналогичный эталонному бетону из поликарбоната через 60 дней. Включение пемзы или диатомита на низких уровнях в цемент (1%, 2% и 4%) 325 снизило как прочность на сжатие, так и модуль упругости при испытаниях до 28 дней (с меньшим эффектом на более высоких уровнях).В другой работе, упомянутой выше, модуль упругости снижается на 2,5 ГПа для каждых 15% натурального пуццолана, используемого для замены цемента в бетонах с равным соотношением в / ц, 316 при примерно одинаковой прочности (с 19% и 29% естественной прочности). pozzolana) были получены вариации значений модуля в узком диапазоне. 317

Исследование, в котором учитывались относительно высокие уровни (40–50%) летучей золы с низким содержанием извести в цементе (в бетоне с почти равным соотношением в / ц). постепенно снижается с увеличением уровня летучей золы, и это происходило при испытательном возрасте до 365 дней.В другой работе 327 с учетом мелкой и крупной летучей золы были получены аналогичные значения модуля упругости для бетонов, рассчитанных на одинаковую прочность на сжатие (28 дней). Результаты испытаний бетона, содержащего различные комбинации цемента 320 и дозированного различными способами, показаны на рис. 9.51 и согласуются с прочностью на сжатие.

Рис. 9.51. Влияние метода дозирования смеси (серия A) и типа цемента (серия B) на модуль упругости бетона.

(Воспроизведено с разрешения: Dhir RK, McCarthy MJ, Paine KA. Инженерные свойства и взаимосвязь структурного проектирования для новых и разрабатываемых бетонов. Mater Struct 2005; 38 (1): 1–9.)

Исследования по изучению кварцевого дыма в бетоне w / c соотношение 0,6 316 показывает, что при включении 5% микрокремнезема в цемент модуль упругости увеличился с 30 до 33 ГПа (прочность на сжатие увеличилась с 41,0 до 46,5 МПа). Дальнейшее увеличение содержания микрокремнезема до 20% дало увеличение прочности на сжатие в 7 раз.5 МПа, при этом модуль упругости изменяется всего на 1,0 ГПа. В том же исследовании было обнаружено, что метакаолин демонстрирует аналогичное поведение при уровнях содержания в цементе до 25%. Другая работа 322 , охватывающая ряд заполнителей, показала, что модуль упругости увеличился в среднем на 16% и 32% при включении 10% и 15% микрокремнезема в бетон с соотношением масс 0,35. В бетонах с относительно высокой прочностью и равным соотношением масс. / Цемент. 328 было обнаружено небольшое увеличение свойств при содержании метакаолина до 15%, при этом было получено заметное увеличение прочности на сжатие.

Таблица проектных свойств бетона (fcd, fctm, Ecm, fctd)

Расчетные значения свойств бетонного материала согласно EN 1992-1-1

Масса единицы γ

Удельный вес бетона γ указан в EN1991-1-1, приложение A.
Для простого неармированного бетона γ = 24 кН / м 3 .
Для бетона с нормальным процентным содержанием арматуры или предварительно напряженной стали γ = 25 кН / м 3 .

Нормативная прочность на сжатие f

ck

Характеристическая прочность на сжатие f ck является первым значением в обозначении класса бетона e.грамм. 30 МПа для бетона C30 / 37.
Значение соответствует характеристической прочности цилиндра (5% фрактильной прочности) согласно EN 206-1.
Классы прочности согласно EN 1992-1-1 основаны на характеристических классах прочности, определенных для 28 дней.
Изменение характеристической прочности на сжатие f ck (t) со временем t указано в EN1992-1-1 §3.1.2 (5).

Характеристическая прочность куба на сжатие f

ck, куб

Характеристическая кубическая прочность на сжатие f ck, cube является вторым значением в обозначении класса бетона, e.грамм. 37 МПа для бетона C30 / 37.
Значение соответствует характеристической прочности куба (5% хрупкости) согласно EN 206-1.

Средняя прочность на сжатие f

см

Средняя прочность на сжатие f см связана с характеристической прочностью на сжатие f ck следующим образом:

f см = f ck + 8 МПа

Изменение средней прочности на сжатие f см (t) со временем t указано в EN1992-1-1 §3.1.2 (6).

Расчетная прочность на сжатие f

cd

Расчетная прочность на сжатие f cd определяется в соответствии с EN1992-1-1 §3.1.6 (1) P:

f cd = α cc ⋅ f ck / γ C

где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN 1992-1-1 §2.4.2.4 и Национальном приложении.

Коэффициент α cc учитывает долгосрочное влияние на прочность на сжатие и неблагоприятные эффекты, возникающие в результате приложения нагрузки.Это указано в EN1992-1-1 §3.1.6 (1) P и в национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (101) P и национальное приложение).

Нормативная прочность на разрыв

Предел прочности при концентрической осевой нагрузке указан в EN1992-1-1, таблица 3.1.
Вариабельность прочности бетона на растяжение определяется следующими формулами:

Формула средней прочности на разрыв f

ctm

f ctm [МПа] = 0.30⋅f ck 2/3 для класса бетона ≤ C50 / 60

f ctm [МПа] = 2,12 ln [1+ (f см /10 МПа)] для класса бетона> C50 / 60

Формула для 5% прочности на разрыв f

ctk, 0,05

f ctk, 0,05 = 0,7 f ctm

Формула для 95% прочности на разрыв f

ctk, 0,95

f ctk, 0,95 = 1,3 f ctm

Расчетная прочность на разрыв f

ctd

Расчетная прочность на разрыв f ctd определяется в соответствии с EN1992-1-1 §3.1.6 (2) П:

f ctd = α ct ⋅ f ctk, 0,05 / γ C

где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN 1992-1-1 §2.4.2.4 и Национальном приложении.

Коэффициент α ct учитывает долгосрочное влияние на предел прочности при растяжении и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Это указано в EN1992-1-1 §3.1.6 (2) P и Национальное приложение (для мостов см. Также EN1992-2 §3.1.6 (102) P и Национальное приложение).

Модуль упругости E

см

Упруго-деформационные свойства железобетона зависят от его состава и особенно от заполнителей.
Приблизительные значения модуля упругости E см (значение секущей между σ c = 0 и 0,4f см ) для бетонов с кварцитовыми заполнителями приведены в таблице 3 стандарта EN1992-1-1.1 по следующей формуле:

E см [МПа] = 22000 ⋅ (f см /10 МПа) 0,3

Согласно EN1992-1-1 §3.1.3 (2) для известняка и песчаника значение E см должно быть уменьшено на 10% и 30% соответственно.
Для базальтовых заполнителей значение E см следует увеличить на 20%.
Значения E см , приведенные в EN 1992-1-1, следует рассматривать как ориентировочные для общих применений, и их следует специально оценивать, если конструкция может быть чувствительна к отклонениям от этих общих значений.

Изменение модуля упругости E см (t) со временем t указано в EN1992-1-1 §3.1.3 (3).

Коэффициент Пуассона ν

Согласно EN1992-1-1 §3.1.3 (4) значение коэффициента Пуассона ν может быть принято равным ν = 0,2 для бетона без трещин и ν = 0 для бетона с трещинами.

Коэффициент теплового расширения α

Согласно EN1992-1-1 §3.1.3 (5) значение линейного коэффициента теплового расширения α может быть принято равным α = 10⋅10 -6 ° K -1 , если нет более точной информации. имеется в наличии.

Минимальная продольная арматура ρ

мин. для балок и перекрытий

Минимальное продольное растяжение арматуры для балок и основное направление плит указано в EN1992-1-1 §9.2.1.1 (1).

A с, мин = 0,26 ⋅ (f ctm / f yk ) ⋅b t ⋅d

где b t — средняя ширина зоны растяжения, d — эффективная глубина поперечного сечения, f ctm — средняя прочность бетона на растяжение, а f yk — характерный предел текучести стали.

Минимальное усиление требуется, чтобы избежать хрупкого разрушения.
Обычно требуется большее количество минимальной продольной арматуры для контроля трещин в соответствии с EN1992-1-1 §7.3.2.
Секции с меньшим армированием следует рассматривать как неармированные.

В соответствии с EN1992-1-1 §9.2.1.1 (1) Примечание 2 для балок, для которых допустим риск хрупкого разрушения, A s, min можно принять равным 1.В 2 раза больше площади, необходимой для проверки ULS.

Минимальная поперечная арматура ρ

w, min для балок и перекрытий

Минимальная поперечная арматура для балок и плит указана в EN1992-1-1 §9.2.2 (5).

ρ w, min = 0,08 ⋅ (f ck 0,5 ) / f yk

где f ck — характеристическая прочность бетона на сжатие, а f yk — характеристический предел текучести стали.

Коэффициент усиления сдвига определен в EN1992-1-1 §3.1.3 (5) как:

ρ w = A sw / [s⋅b w sin (α)]

где где b w — ширина стенки, а s — расстояние между поперечной арматурой по длине элемента.
Угол α соответствует углу между поперечной арматурой и продольной осью.
Для типичной поперечной арматуры с перпендикулярными ветвями α = 90 ° и sin (α) = 1.

Модуль упругости бетона

В этой статье мы обсудим следующее: — 1. Определение модуля упругости 2. Определение модуля упругости 3. Измерение деформаций в бетоне 4. Типы модуля упругости Юнга 5. Связь с прочностью 6. Факторы, влияющие на 7. Использование .

В теории железобетона предполагается, что бетон является упругим, изотропным и однородным и подчиняется закону Гука. На самом деле ни одно из этих предположений не является строго верным, и бетон не является идеально эластичным материалом.По определению эластичности, деформация возникает при приложении напряжения или силы и исчезает при снятии напряжения. Если деформационное отверждение является прямым, как показано на рис. 15.1, то материал эластичный.

С другой стороны, если кривая такая, как показано на рис. 15.2, то материал не является идеально эластичным. В случае бетона он деформируется при приложении нагрузки, но эта деформация не подчиняется никаким установленным правилам. Деформация бетона зависит от величины нагрузки, скорости приложения нагрузки и времени, по истечении которого регистрируются наблюдения.Таким образом, деформационное поведение бетона довольно сложно.

Для расчета прогиба конструкций и расчета бетонных элементов с учетом их сечений, количества стали и т. Д. Необходимо знать деформационные свойства. При проектировании железобетонной конструкции предполагается, что связь между бетоном и сталью идеальна, а напряжение в стали в m, умноженное на напряжение в бетоне, где m — это соотношение модуля упругости стали и конкретный.Это соотношение известно как модульное соотношение. Точность расчета будет зависеть от значения модуля упругости бетона, поскольку модуль упругости стали более или менее является определенной величиной.

Определение модуля упругости :

Его можно определить как наклон зависимости между напряжением и деформацией. Он также может быть определен как изменение напряжения по отношению к упругой деформации и может быть вычислен с помощью следующего соотношения.

Модуль упругости = единичное напряжение / единичная деформация

Это мера жесткости или сопротивления деформации материала.Термины модуль упругости или модуль упругости Юнга могут применяться строго к линейной зависимости, то есть к прямой части кривой напряжения-деформации. Величина наблюдаемых деформаций и кривизна зависимости напряжения от деформации зависят от скорости приложения напряжения. Когда нагрузка прикладывается очень быстро, регистрируемые деформации значительно уменьшаются, а кривизна кривой деформации напряжения уменьшается до очень небольшого значения.

При снижении скорости нагружения, т. Е. При увеличении времени нагружения с 5 секунд до примерно 2 минут, обнаруживается, что увеличение деформации увеличивается на 15%, но при нормальной скорости нагружения, обычно от 2 до 10 минут. время требуется для испытания образца в обычной испытательной машине, увеличение деформации очень мало.Следовательно, степень нелинейного поведения также очень мала.

Определение модуля упругости :

Модуль упругости определяется путем одноосного сжатия цилиндра диаметром 15 см и длиной 30 см или куба 15 см, как правило, в U.T.M. (Универсальная испытательная машина) и измерение деформаций или деформаций с помощью тензодатчиков или индикаторов с круговой шкалой, закрепленных на определенной измерительной длине. Величина деформации рассчитывается путем деления показаний датчика на длину датчика.Напряжение будет получено путем деления нагрузки на площадь поперечного сечения образца. Кривая напряжения-деформации строится с помощью полученных значений напряжения и деформации.

Модуль упругости, полученный таким образом при действительной нагрузке, называется статическим модулем упругости. Было замечено, что даже при кратковременной нагрузке бетон не ведет себя как эластичный материал. Однако до примерно 10-15% предела прочности бетона кривая напряжения-деформации не сильно изогнута, и могут быть получены более точные значения модуля упругости.

Для более высоких напряжений кривая напряжения-деформации будет более искривленной и даст неточные результаты. Кривые напряжение-деформация для бетона с различными пропорциями смеси показаны на рис. 15.3. Модуль упругости бетона может быть измерен при сжатии, растяжении или сдвиге. Модуль упругости при растяжении равен модулю упругости при сжатии.

Зависимость напряжения от деформации заполнителя и Ce Паста:

Кривая, проведенная между напряжением и деформацией одного только заполнителя, представляет собой довольно хорошую прямую линию.Точно так же кривая напряжения-деформации только цементного теста показывает довольно хорошую прямую линию. Но кривая напряжения-деформации бетона, который представляет собой комбинацию заполнителя и цементного теста, дает искривленную кривую.

Возможно, это связано с развитием мелких или микротрещин на границе раздела заполнителя и цементного теста. Это разрушение связи на границе раздела нарастает быстрее, чем из-за приложенного напряжения. Таким образом, кривая напряжения-деформации продолжает изгибаться быстрее, чем увеличивается напряжение.Напряжение-деформация заполнителя, цементного теста и бетона показана на рис. 15.4.

Измерение деформации бетона :

Измерение деформации бетона — непростая задача, но в определенных пределах ее можно определить с помощью роликового экстензометра Лэмба. В этом методе экстензометр закрепляют на цилиндре размером 15 x 30 см, помещают в машину для испытания на сжатие и нагружают со скоростью 140 кг / см 2 в минуту. Нагрузка на цилиндр увеличивалась до 1/3 прочности куба плюс 7 кг / см. 2 .Теперь эта нагрузка выдерживается 1 минуту. После продолжительной нагрузки в течение одной минуты нагрузка постепенно снимается со скоростью 1,5 кг / см 2 .

Во второй операции регистрируют показания экстензометра, и он снова нагружается до тех пор, пока нагрузка не достигнет 1/3 прочности куба плюс 1,5 кг / см. 2 . Регистрируют показания экстензометра и медленно снимают нагрузку, пока она не достигнет значения 1,5 кг / см. 2 на образце цилиндра.

В третьем цикле нагрузка от нулевого положения до 1/3 прочности куба плюс 1.5 кг / см 2 делится на 10 интервалов. Цилиндр нагружают со стандартной скоростью, и в конце каждого интервала отмечают показания экстензометра. Разница между штаммами второго и третьего наблюдений не должна превышать 5%. Эти деформации нанесены на график зависимости от напряжения, как показано на рис. 15.5.

Типы модуля упругости Юнга :

Модуль упругости бетона можно разделить на две основные группы:

1.Статический модуль.

2. Динамический модуль.

1. Статический модуль упругости:

Деформации, полученные, как указано выше, нанесены на график в зависимости от напряжения, и получена кривая, как показано на рис. 15.5. Поскольку бетон является несовершенным эластичным материалом, диаграмма деформации напряжений представляет собой изогнутую линию. Следовательно, для определения модуля упругости можно использовать три метода.

(a) Начальный касательный модуль.

(b) Модуль касательной упругости.

(c) Секущий модуль.

(a) Начальный модуль упругости по касательной:

Он представлен наклоном касательной к кривой напряжения-деформации, проведенной через начало координат. Этот модуль имеет значение только для низких напряжений и, следовательно, имеет ограниченное значение и его нелегко определить. Он представлен линией OA на рис. 15.5.

(b) Модуль упругости по касательной:

Он представлен наклоном линии, касательной к кривой напряжения-деформации в любой точке кривой, но этот модуль применяется только к очень небольшим изменениям нагрузки выше или ниже нагрузки, при которой учитывается касательный модуль.Во-вторых, сложно определить касательный модуль с точностью, поскольку касательная к кривой проводится на глаз.

(c) Модуль упругости в сексе:

Он представлен наклоном линии, проведенной от начала координат до любой точки C на кривой. Этот метод наиболее практичен и широко используется, поскольку он представляет фактическую деформацию в выбранной точке, и при ее определении нет никаких неопределенностей. Установлено, что секущий модуль упругости уменьшается с увеличением напряжения, поэтому следует указать напряжение, при котором он был определен.

2. Динамический модуль упругости:

Значение модуля упругости E c , определяемое фактическим нагружением бетона, известно как статический модуль упругости. Этот метод испытаний известен как разрушающий метод, поскольку образец подвергается напряжению или нагрузке до его разрушения. Статический модуль упругости не отражает истинное упругое поведение бетона из-за явления ползучести. При более высоких напряжениях модуль упругости изменяется более серьезно.

Таким образом, для определения модуля упругости принят неразрушающий метод испытаний, известный как динамический метод. В этом случае к образцу не прикладывается никакого напряжения. Модуль упругости определяется путем воздействия на образец продольной вибрации на собственной частоте, поэтому этот модуль известен как динамический модуль.

В этом методе измеряется либо резонансная частота, проходящая через образец бетона, либо скорость импульса, проходящего через бетон.Из известных значений длины образца, плотности бетона и резонансной частоты значение динамического модуля в единицах S.I. определяется из соотношения —

Ed = K.n 2 L 2 ρ

где,

Ed = динамический модуль упругости

K = постоянная

n = резонансная частота

L = длина образца

ρ = плотность бетона

Если длина образца измеряется в мм, а плотность ρ в кг / м 3 , то —

Ed = 4n 2 L 2 ρ x 10 –15 ГПа

Значение динамического модуля упругости также можно определить из соотношения —

Ed = ρv 2 [(1 + µ) (1-2µ) / (1 — µ)]

где,

v = скорость импульса в мм / с

ρ = плотность бетона кг / м 3

µ = коэффициент Пуассона.

Значение динамического модуля упругости, вычисленное с помощью метода скорости ультразвукового импульса, несколько выше, чем статический модуль упругости, поскольку динамический модуль не влияет на ползучесть. Ползучесть также существенно не влияет на начальный касательный модуль. Таким образом, значение начального касательного модуля и динамического модуля примерно одинаково, но значение динамического модуля заметно выше, чем секущий модуль. Связь между статической и динамической модульностью задается следующим соотношением в G.Н / м 2 .

Ec = 1,25 Ed — 19… (i)

Это соотношение не применимо к очень богатому бетону с содержанием цемента более 500 кг / м 3 и легкому бетону. Для легкого бетона отношение-

Ec = 1,04 Ed — 4,1… (ii)

Зависимость модуля упругости от прочности :

Было замечено, что для того же отношения напряжения к прочности, чем прочнее бетон, тем выше деформация. Напротив, чем сильнее бетон, тем выше модуль упругости.Это может быть связано с тем, что для более прочных бетонов его гель также является более прочным, следовательно, для данной нагрузки возникает меньшая нагрузка. Эта более низкая деформация дает более высокие значения модуля упругости. В международной системе единиц (единицы СИ) единицей модуля упругости является ГПа. (Гега Паскаль)

ISI-456-2000 предложил соотношение между статическим модулем упругости Ec и характеристической прочностью бетона следующим образом:

E e = 5000 √f ck

, где Ec в Н / мм. 2 единиц (ГПа), f ck прочность бетонного цилиндра 28 суток.

Некоторые значения модуля упругости приведены в таблице 15.1:

В единицах СИ E e = 9,1 (f ck ) 1/3 для плотности бетона 2320 кг / м 3 .

Примечание:

Фактические измеренные значения могут отличаться на ± 20% от значений, полученных из вышеуказанного соотношения.

Факторы, влияющие на модуль упругости :

На значение модуля упругости влияют следующие факторы:

1.Прочность бетона:

Это один из наиболее важных факторов, влияющих на модуль упругости. Более высокая прочность дает более высокое значение модуля упругости.

2. Состояние влажности бетона:

Значение модуля упругости влажного образца выше от 3 до 4 ГПа (от 3,2 до 4,3 x 10 4 кг / см 2 ), чем у сухого образца, т.е. модуль упругости влажного бетона выше на 16,3 % до 7,5 в зависимости от прочности на сжатие.Более высокое значение 16,3% наблюдается для более низкой прочности, т.е. 21 МПа и увеличение на 7,5% для прочности 70 МПа, в то время как прочность влажного бетона меньше, чем у сухого бетона. Деформация влажного бетона ниже, чем у сухого бетона, следовательно, модуль упругости у влажного бетона выше, чем у сухого.

Влияние условий влажности во время испытания на секущий модуль для разных возрастов показано на рис. 15.6.

3. Свойства заполнителя:

Модуль заполнителя и его объемная пропорция влияют на модуль упругости бетона следующим образом:

(a) Чем выше модуль заполнителя, тем выше модуль упругости бетона.Модуль заполнителя выше модуля цементного теста.

(b) Чем больше объем заполнителя, тем выше модуль упругости бетона. Однако эти свойства не сильно влияют на прочность бетона.

4. Влияние возраста:

Модуль упругости бетона увеличивается с возрастом быстрее, чем прочность бетона. Таким образом, соотношение между модулем упругости бетона и его прочностью зависит от возраста.

5. Пропорции смеси:

Было замечено, что более богатые смеси имеют более высокий модуль упругости бетона, т. Е. Большее количество цемента; выше модуль упругости. Значение модуля упругости бетона пропорции 1: 1,67: 2 составляет 31,9 ГПа, а для смеси 1: 2,5: 3 — 25 ГПа для того же возраста и во влажных условиях.

Модуль упругости легкого бетона на заполнителе обычно варьируется от 40 до 80% модуля упругости обычного бетона той же прочности, фактически он аналогичен модулю цементного теста.

Форма кривой напряжение-деформация:

Форма кривой напряжение-деформация влияет на статический модуль упругости бетона E c , но не на динамический модуль E d , поэтому соотношение E c и E d не является фиксированным. На соотношение между модулем упругости и прочности не сильно влияет температура до 230 ° C, поскольку оба эти свойства изменяются в зависимости от температуры одинаковым образом. Бетон, отверждаемый паром, имеет несколько более низкий модуль упругости, чем бетон такой же прочности, отверждаемый водой.

Использование модуля упругости:

Хотя бетон не является эластичным материалом в истинном смысле этого слова, в определенных пределах он считается эластичным материалом. Модуль упругости бетона используется при расчетах деформаций конструкции. В случае железобетонных конструкций он используется для определения напряжений, возникающих в простых элементах, а также для определения моментов, прогибов и напряжений в более сложных конструкциях.

Динамический модуль упругости используется для определения относительной долговечности бетона при воздействии суровых климатических условий, поскольку динамический модуль бетона изменяется в зависимости от качества бетона.

Модуль упругости бетона

СП 63.13330.2012

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:

где φb,cr— коэффициент ползучести бетона, принимаемый согласно 6.1.16.

Таблица 6.11

БетонЗначения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5в10В12,5B15B20B25в30В35В40В45В50В55В60В70В80В90В100
Тяжелый9,513,016,019,021,524,027,530,032,534,536,037,038,039,039,541,042,042,543
Мелкозернистый групп:
А — естественного твердения7,01013,515,517,519,522,024,026,027,528,5
Б — автоклавного твердения16,518,019,521,022,023,023,524,024,525,0
Легкий и порисованный марки по средней плотности:
D8004,04,55,05,5
D10005,05,56,37,28,08,4
D12006,06,77,68,79,510,010,5
D14007,07,88,810,011,011,712,513,514,515,5
D16009,010,011,512,513,214,015,516,517,518,0
D180011,213,014,014,715,517,018,519,520,521,0
D200014,516,017,018,019,521,022,023,023,5
Ячеистый автоклавного твердения марки по средней плотности:
D5001,4
D6001,71,82,1
D7001,92,22,52,9
D8002,93,44,0
D9003,84,55,5
D10005,06,07,0
D11006,87,98,38,6
D12008,48,89,3
Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еbпринимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.

6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200)2.

Таблица 6.12

Относительная влажность воздуха окружающей среды, %Значения коэффициента ползучести бетона φb,crпри классе тяжелого бетона на сжатие
В10В15В20В25взоВ35В40В45В50В55В60 — В100
Выше 752,82,42,01,81,61,51,41,31,21,11,0
40 — 753,93,42,82,52,32,11,91,81,61,51,4
Ниже 405,64,84,03,63,23,02,82,62,42,22,0
Примечание — Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

 

Модуль упругости бетона

⇐ ПредыдущаяСтр 10 из 14Следующая ⇒

 

Класс бетона В15 В20 В25 В30 В35
Еb ,кПа 20,5·106 24,0·106 27·106 29,0·106 31·106

 

Приведенное зна­чение K получают из предположения, что влияние различных значений Kiна работу сваи уменьшается до нуля в пределах hm–мощности слоев грунта (рис. 16), определяющих в основном работу свай на горизонтальные нагрузки

hm=3,5dc+1,5. (48)

Расчетный размер сваи вычисляется по формуле

dp=Kэ(1,5dc+0,5), (49)

где Kэ=1 – для прямоугольного сечения сваи; Еbначальный модуль упругости бетона; I – момент инерции поперечного сечения сваи; dс –размер поперечного сечения сваи, м.

Момент в голове сваи

Мв=0.

Поперечная сила в голове сваи

Qв=Qx /n, (50)

где п – количество свай; l0свободная длина сваи, l0=0.

Расчет изгибающего момента Мz осуществляется с помощью ЭВМ по программе КОСТ – 2. Данные для расчета сводятся в табл. 6.

 

Таблица 6

Исходные данные к расчету Mz, Qz, Pzь

 

При свободном опирании ростверка на сваи принимается MB=0. N – количество сечений свай, в которых вычисляем вышесказанные величины при ,принимаем N=18; при N=17;при ≤3,0; .

Наибольший момент по длине элемента устанавливается по эпюре Mz.

Марку сваи определяют по типовому проекту 1.001-10.1[8].

Поиск по сайту:

от чего зависит и как правильно произвести расчет

Любые растворы, которые имеют свойство затвердевать, в застывшем состоянии обладают некой плотностью. Бетон не является исключением. Плотность позволяет определить, для каких работ пригоден материал, поэтому при любом строительстве нужно учитывать все эксплуатационные характеристики, в том числе класс прочности и модуль упругости бетона. Именно от этих параметров будут зависеть качество и срок эксплуатации постройки.

Основное понятие

Важным параметром при выборе бетона является его упругость, которая показывает способность застывшей массы оставаться в целостности даже под воздействием деформации. Такие данные нужны проектировщикам для того, чтобы возводить прочные и долговечные конструкции.

Безусловно, главным достоинством материала является его твердость. Но из-за ползучести затвердевшая масса в процессе эксплуатации может деформироваться. Все это может происходить из-за воздействия нагрузки, если ее значение превысит допустимые нормы. Поэтому следует учитывать величину приложенной нагрузки и значение коэффициента ползучести, из-за которых структура затвердевшего изделия постепенно меняется.

Этапы изменения структуры

При строительстве необходимо учитывать деформацию от приложенной нагрузки. В процессе эксплуатации бетонная структура деформируется в два этапа:

  1. Первый этап — краткосрочное изменение структуры. На этой стадии бетон сохраняет свою целостность и может восстанавливать исходное состояние. При этом во время растяжения, сжатия и изгибания возникает упругая деформация без необратимых разрушений.
  2. Второй этап — разрушения необратимого типа, которые происходят в результате внезапной и сильной нагрузки. Во время пластичной деформации появляются трещины, вследствие которых начинается постепенное разрушение бетонных конструкций.

Помимо деформации от приложенной нагрузки существует такое понятие, как коэффициент упругости. Такой показатель просто необходим для людей, занимающихся расчетом прочности бетонных зданий.

Для застройщиков же такие расчеты проводить не нужно, так как главным ориентиром прочности является класс материала. И чем выше класс, тем больше увеличивается начальный модуль упругости бетона.

Виды раствора

Все подобные материалы подразделяются на несколько видов. Самое интересное заключается в том, что даже не все профессиональные строители знают, что существует несколько разновидностей бетона:

  1. Тяжелые. Такой вид имеет маркировку М100, М150, М200 и т. д. В состав смеси входят плотные наполнители известняк и гранит. Тяжелый бетон является высокопрочным. Он быстро затвердевает, поэтому его главное предназначение — сборные железобетонные конструкции.
  2. Легкие. В такой бетон при изготовлении добавляют легкие пористые наполнители, такие как керамзит, пемза, вспученный шлак и другие. Благодаря такому составу материал становится намного легче, поэтому его используют для возведения несущих стен и других ограждающих сооружений.

Легкие изделия бывают еще поризованные, крупнопористые и ячеистые. Отличаются они своим составом и сферой применения.

Факторы, влияющие на упругость

Чтобы понять, от чего зависит модуль упругости бетона В25, В20, В15 и других классов, нужно рассмотреть все причины. На эту величину влияет очень много факторов, но самыми распространенными являются:

  1. Свойства наполнителя. Если изделие имеет низкую плотность, то и модуль упругости у него небольшой. При использовании тяжелых наполнителей упругость возрастает в несколько раз.
  2. Классность. Чем выше класс, тем больше и упругость. Например, модуль упругости В30 равен 32,5, а у класса В10 он составляет всего лишь 19.
  3. Продолжительность использования. Бетонные конструкции становятся крепче со временем, поэтому специалисты используют таблицы для таких целей.
  4. Особенности производства. В процессе изготовления могут использоваться разные обработки бетона. Некоторые применяют высокую температуру и давление. Другие же проводят обработку при атмосферном давлении и дают строительному материалу затвердевать естественным путем. Все эти особенности изготовления напрямую влияют на показатель прочности и упругости.
  5. Время нахождения под давлением и нагрузкой. Для расчета используются специальные таблицы, из которых берется значение и умножается на корректирующий коэффициент.
  6. Влажность воздуха. Температура и влажность также влияют на значение упругости.
  7. Арматура. Использование стальной арматуры помогает противостоять различным нагрузкам и сопротивляться деформациям. Необходимые значения находятся в нормативных документах.

Хоть и многие факторы влияют на упругость материала, все же бетонные изделия нельзя назвать ненадежными и недолговечными. При качественном производстве и правильных расчетах конструкции прослужат долгое время.

Начальный модуль

Коэффициент напрямую зависит от температурных условий. Он остается неизменным до определенного порога температуры, который у каждого класса свой. Например, материалы, имеющие температуру плавления 300 ⁰C, при превышении порога могут потерять частично свою устойчивость к деформации. Хотя бетон и не относится к материалам, которые плавятся, но при воздействии высокой температуры нарушается структура массива.

Существуют таблицы, в которых в соответствии со всеми установленными правилами указаны нужные значения. С их помощью можно определить начальный модуль упругости бетона В20, В25, В30 и других классов. Зная классность материала, его плотность и технологию производства, можно легко узнать этот параметр. Для этого для расчетов используются необходимые коэффициенты упругости, плотности и модуль деформации бетона В30, В15 и т. д.

Помимо этого, модуль упругости определяется во время исследований на пробах по бетону. Такой параметр принято обозначать буквой Е. В профессиональных кругах у него есть второе название — модуль Юнга бетона.

 

Модуль упругости бетона? [3 различных стандарта]

Бетон — это композитная смесь материалов (крупнозернистый, мелкозернистый заполнитель, цемент с водой). Обладает высокой прочностью на сжатие и низкой прочностью на разрыв. Модуль упругости бетона разный для разных смесей. Бетон разрушается под действием растягивающих напряжений. При низких напряжениях эластичность бетона постоянна, а при высоких напряжениях начинает развиваться растрескивание.

Бетон имеет очень низкий коэффициент теплового расширения.Под действием растягивающих и усадочных напряжений все бетонные конструкции в той или иной степени растрескиваются. Как мы знаем, бетон демонстрирует разные свойства при различных соотношениях воды и цемента и имеет различную бетонную смесь ( M15, M20 и т. Д. ).

Модуль упругости бетона

Он определяется как отношение нормального напряжения к нормальной деформации ниже пропорционального предела материала, называемого модулем упругости Ec .

Модуль упругости = единичное напряжение / единичная деформация

При испытании на сжатие на образце бетона (цилиндр диаметром 15 см и длиной 30 см, имеющий объем 15 см куб ) модуль упругости бетона рассчитывается с помощью графика напряжений и деформаций.

Согласно кодам ACI, модуль упругости бетона можно измерить по формуле
А с нормальной плотностью или массой бетона эти два соотношения можно упростить как

# Где

Ec = Модуль упругости бетона.

f’c = Прочность бетона на сжатие.

Согласно

  • ACI 318–08, (бетон нормального веса) модуль упругости бетона Ec = 4700 √f’c МПа и
  • IS: 456 модуль упругости бетона 5000√f ‘ c, МПа.

Основными факторами, которые могут повлиять на определение значений модуля упругости, являются:

  • Прочность бетона
  • Состояние влажности бетона:

Эта таблица показала, что мы получаем разную эластичность в разных смесях,

# Где

ГПа = Гигапаскаль

МПа =

мегапаскалей

Значение модуля упругости бетона может варьироваться и зависит от следующих факторов,

  • Состав смеси.
  • Свойства крупного заполнителя.
  • Скорость загрузки.
  • Условия отверждения.
  • Минеральные добавки.
  • Химические добавки.

Плотность бетона составляет около 150 фунтов / куб.фут или ( 2400 кг на кубический метр ).

Эластичность

Определяется как способность материала возвращаться в исходное положение (размер и форму) после снятия сил.

  • Поведение эластичности разное для разных материалов.
  • При приложении силы решетка материала меняет свою форму и размер и возвращается в исходное положение после ослабления силы.
  • Делится на линейной или конечной эластичности.

Квартир

Единицы модуля упругости следующие:

  • В единицах СИ МПа или Н / мм 2 или кН / м 2 .
  • В единицах FPS psi или ksi, psf или ksf.

Связанная тема:

  1. преобразователи для гражданского строительства
пожаловаться на это объявление

состав бетона — португальский перевод — Linguee

Состав бетона : F au ry, Valette and Leclerc […]

du Sablon Methods; — Виды и классификация бетона

apps.ipb.pt:8080

Mtodos para o estu do de composio de be tes: F aury, […]

Valette e Leclerc du Sablon; — Tipos e classificao de betes

apps.ipb.pt:8080

, однако, это выходит за рамки настоящего ETA, чтобы указать положения, регулирующие практическое применение

[…]

модифицированная летучая зола в

[…] productio n o f бетон , i .e . Требования Concer ni n g состав , m ix ing, размещение, отверждение и т. д. . o f бетон c o nt модифицированное покрытие […]

летучая зола.

lnec.pt

No entanto, est para alm do mbito da presente ETA especificar as sizes que regem a aplicao prtica da cinza volante

[…]

Изменение на производстве

[…] de beto, ou seja , os r equis itos rel ativ os composio, m is tura co cu

5, tura co ca , tura co ca , ra и т. Д. ., до до со nte до в za volante […]

модификации.

lnec.pt

, не забывая больше специализированных областей

[…] обработка мар bl e , бетон p r od ucts, стекло и термореактивный ti n g состав

омсг.ит

sem esquecer de setores especficos como or tratamento

[…] de manufaturados e m m rmor e e concreto, vi dro e re ba rbas de termoendurecidos.

омсг.ит

Комитет

[…] сможет соответствовать спецификации , если i c состав t o fi n d бетон o lu tions.

eur-lex.europa.eu

Сероорганизация

[…] reuni e s com um a composio e spe cfic a para enc on trar sol u es.

eur-lex.europa.eu

Состав a n d производитель e o f бетон

приложения.ipb.pt:8080

Composio e fab rico do beto

apps.ipb.pt:8080

самое неблагоприятное предположение относительно

[…] модуль упругости a n d состав o f d различная высота профиля; температура 2 5 C , бетон B 2 5. Гвозди фундаментные, доски […]

и т. Д. Остаются неизменными

[…]

и прочно заблокированы в земляном полотне.

redaxo.consulting-bt.de

Presume-se uma situao negativa

[…]

em relao ao mdulo de

[…] elast ic idad e e composio das diff er entes alturas dos feitios, temp er atura 25 , conp rego da terra, […]

tbuas или algo parecido

[…]

no se deslocam e esto bem ancorados no subsolo.

redaxo.consulting-bt.de

Это позволит, например, управлять природными ресурсами и биоразнообразием подробнее

[…]

эффективно, чтобы контролировать состояние

[…] океаны и химия ic a l состав o f t he атмосфера, […]

два ключевых фактора изменения климата,

[…]

для реагирования на стихийные бедствия и антропогенные катастрофы, включая цунами, и для обеспечения более эффективного наблюдения за границами.

eur-lex.europa.eu

Торна-се ассим поссвел, пор пример, герир де форма маис эфас ос рекурсос природный е

[…]

a biodiversidade, monitorizar o

[…] estado dos o cean os e a composio qu mic a da a tmosfera […]

— factores-chave das alteraes climticas

[…]

-, ответчик, имеющий естественные природные и человеческие ресурсы, включая цунами, и гарантию умственного наблюдения за действующими лицами.

eur-lex.europa.eu

Что касается i t s состав , i t следует выделить […]

увеличение доли префиксных ценных бумаг с 9% до 15% в соответствии с

[…]

со стратегией постепенного снижения подверженности Национального казначейства краткосрочным рискам колебаний экономических переменных.

stn.gov.br

N o tocan te a s ua composio, c abe de staca r o aumento […]

от участия в программе dos ttulos prefixados, de 9% para 15%, em linha com

[…]

a estratgia de reduo gradient da Exposio do Tesouro Nacional ao risco de flutuaes de curto prazo das variveis econmicas.

stn.gov.br

Indaver хочет поддерживать свою устойчивую

[…] подход wi t h бетон r e su lts.

indaver.com

Indaver quer corroborar a sua abordagem

[…] Sustentvel co m resul tad os бетон .

indaver.com

Тем не менее, инструмент

[…] еще не предоставил de a бетон s o lu ция к дилемме […]

несогласованных и фрагментированных земель

[…]

использует на уровне мегаполисов.

urbanage.net

Entretanto, или другой инструмент

[…] fornece r uma solu o concreta p ar a o dile ma do uso […]

e ocupao do solo no-coordenada

[…]

e fragmentada no mbito metropolitano.

urbanage.net

Действует как

[…] центральная координация n o f бетон ( 5 4, 000 м 3 / год), контроль качества производства, исследования и te t s состав o f t he различный класс s o f бетон f

jobkon.com

Exercendo funes de coordenao

[…] da cen tr al de beto pront o (54000 м3 в год), контроль качества продукции, estudo e en saio de composio das

5 er sas c lasse sd e beto p ara as s ua sariadas […]

приложений.

jobkon.com

Внезапно я не могу

[…] просто скажу вам wh a t бетон c o ll удаление с […]

университета и обмен студентами там могут быть.

europarl.europa.eu

No lhe consigo fazer, de implviso, o ponto da

[…] situao da colabora o em matria de u niversidades […]

e intercmbio de estudantes.

europarl.europa.eu

Звучит как абстрактная проблема, но

[…] на самом деле это привет gh l y бетон .

europarl.europa.eu

O assunto parece abstracto mas, na

[…] realida de , bast an teconcreto .

europarl.europa.eu

Интенсивное обучение в

[…] Национальная строительная лаборатория (отдел материалов) в 1996 г., длительность, т ч e состав из бетон a n потенциал болезни — практическое применение в использовании программного обеспечения.

jobkon.com

Интенсивный курс по уходу за телом и Сегурана в районе Трабальо

[…]

2003, com a durao

[…] от 96 часов Formao Intensiva no Laboratrio Nacional de Engenharia Civil (Departamento de Materiais), в 1996 г., 2 дня, с по по состав из по по

5 enciais […]

patologias — aplicao

[…]

для использования программного обеспечения.

jobkon.com

Лимонная кислота

[…] также входит в состав t h e состав o f d растворяет таблетки […]

в фармацевтической промышленности и используется в косметической промышленности.

europa.eu

Нет сектора farmacutico, o cido

[…] ctri co entr и a composio d e c ompri mi dos efervescentes, […]

sendo igualmente utilizado na indstria de cosmticos.

europa.eu

Правило 3 Правил Организации требует от Членов информировать Исполнительного директора,

[…] в письменной форме t h e состав o f t наследников.

dev.ico.org

Регламент 3-го Регламента по вопросам организации, определяющий меморандумы по обмену сообщениями на сайте

[…] Direto r- Execu tiv или composio de sua s del eg aes.

dev.ico.org

Дозирование, агрегат ga t e состав , b в der и вода готовятся автономно в соответствии с t h d e fi ned and validated […]

заранее.

sa-machado.com

A ama ss adura , composio d e agr , например, ados, ligante e gua, preparada, autonomamente, conf или me a s id composies d e validadas […]

предыдущая версия.

sa-machado.com

Что касается t o бетон a c ti on’ для оценки воздействия на людей, когда показатели n o t t конкретно e s ta blished или когда конкретные статистические оценки […]

не перевезены

[…]

, как уже говорилось, весь подход к оценке, применяемый оценщиком ex post, был разработан для того, чтобы сделать выводы из различных источников информации (отчеты об оценке государств-членов, национальные семинары, личные интервью с заинтересованными сторонами программы, примеры из практики). исследования и др.).

eur-lex.europa.eu

Relativamente aa c es concretas p ara aval ia ro impacto sobre os indivduos, quando os indicadores no so install 9013 9013 906 ci ma concreta ou q u и o as a valiaes […]

estatsticas especficas

[…]

no foram realizadas correntemente, como j afirmado, toda a abordagem da avaliao seguida pelo avaliador ex post foi concbida para tirar завершает partir de vrias fontes de informao (relatrios de avaliao dos Estados-Membros, ateliers nacistasanastes programme, entotes naciónastes programme) , estudos de casos).

eur-lex.europa.eu

Есть ли

[…] необходимо обеспечить mo r e бетон a n d рабочее воздействие […]

общих стратегий?

europa.eu

Необходимость ассемблера

[…] comuns um impa cto ma is concreto e ope rac ional ?

europa.eu

Перед установкой t h e бетон f l oo r это только […]

необходимо для удаления мягкой земли.

irpaa.org

A n tes de concretar o fund o, s Preciso […]

retirar a terra fofa.

irpaa.org

Хрупкость Иисуса составляет мес. с t конкретно e x pr , как он дает […]

поднял свой дух после переживания собственной страсти до и на самом кресте.

secretariadojmv.org

A fragilidade de Jesus se

[…] expressa de m anei ra m ai s concreta q ua ndo Ele en trega […]

o seu esprito depois da Experincia de sua

[…]

prpria paixo antes e sobre a prpria cruz.

secretariadojmv.org

Следовательно, Комиссия устанавливает

[…]

ниже, как применять

[…] результаты исследования мес r e конкретно a n d как с пользой […]

перевести их в операционную политику

[…]

выводов, чтобы внести вклад в будущие политические дебаты.

eur-lex.europa.eu

Por conguinte, Comissotermina em seguida

[…] qual a manei ra mai s concreta d e a pli car o s resultados […]

do estudo e de como os transformar,

[…]

de modo til, em заключение polticas operacionais que venham alimentar o дебаты Futuro.

eur-lex.europa.eu

С равенством для всех государств-членов в

[…] с точки зрения т ч e состав o f t он Комиссия является неизменным пунктом в Конвенции, должна быть возможность найти для м o f состав w h ic h лучше […]

под диктовку

[…]

законности и эффективности действий Комиссии.

eur-lex.europa.eu

Com efeito, sendo a igualdade dos

[…] Estados-Mem br os pa ra a composio d oc olgi o um ponto adquirido na Conveno, deve ser posvel encontra r um m composio que re spon da mais s exigncias […]

de legalimidade

[…]

eficcia da aco da Comisso.

eur-lex.europa.eu

То есть диалог должен будет происходить в разных

[…] формы и разн.

проблемы.

europa.eu

Quer isto dizer que o dilogo dever assumir diversas formas, sendo mantido em

[…] группы de diffe ren tes composies e s end o ada pt ado em […]

funo dos problemas.

europa.eu

Они должны соответствовать t h e композиционным c r it eria указано […]

в Приложении.

eur-lex.europa.eu

Os produtos devem

[…] cumprir os cr itri os de composio es pec ifica do s no Anexo.

eur-lex.europa.eu

Это будет записано как аудио

[…] и используется в качестве материала для s ou n d составов .

пейзажа.org

Isto ser gravado em udio e utilizado

[…] como m at erial pa ra as composies so or as .

paivascapes.org

(c) банкротство, производство по делу о ликвидации неплатежеспособных компаний или других юридических лиц, судебное разбирательство nt s , составы a n d аналогичное производство

европа.eu

c) As falncias e as concordatas em matria de falncia de sociedades ou outras pessoas colectivas, os acordos judiciais, os acordos d e credores o u outroscesses anlogos

europa.eu

Освященная жизнь сегодня нуждается в духовном возрождении, которое будет отражать духовное и евангельское значение крещения и его нового освящения. особое освящение.

fms.it

A vida consagrada hoje needita sobretudo de um no vo impulso espiritual, que ajude a levar concreo da vida o sentido evanglico e espiritual da consagrao batismal e da sua nova e especial consagrao.

fms.it

Использование молотого глиняного кирпича в качестве дополнительного вяжущего материала для улучшения характеристик гидратации, механических свойств и прочности бетона по ASR

% PDF-1.7 % 1 0 объект > эндобдж 2 0 obj > поток 2018-08-14T23: 32: 07-07: 002018-08-14T23: 32: 07-07: 002018-08-14T23: 32: 07-07: 00Appligent AppendPDF Pro 5.5uuid: 9fef3b48-a95d-11b2-0a00- 782dad000000uuid: 9fef7b1d-a95d-11b2-0a00-a049097bfe7fapplication / pdf

  • Использование молотого глиняного кирпича в качестве дополнительного вяжущего материала для улучшения характеристик гидратации бетона, механических свойств и прочности по ASR
  • Prince 9.0 rev 5 (www.princexml.com) AppendPDF Pro 5.5 Linux Kernel 2.6 64bit 2 октября 2014 Библиотека 10.1.0 конечный поток эндобдж 5 0 obj > эндобдж 3 0 obj > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 62 0 объект > / Повернуть 0 / Тип / Страница >> эндобдж 63 0 объект > / Повернуть 0 / Тип / Страница >> эндобдж 64 0 объект > / Повернуть 0 / Тип / Страница >> эндобдж 65 0 объект > / Повернуть 0 / Тип / Страница >> эндобдж 66 0 объект > / Повернуть 0 / Тип / Страница >> эндобдж 82 0 объект > поток x] [o \ cɕ% A, 8Y’HFLJw2n @ (P $ 0ЇOi @ B ~ 3 ܋ | S4 / 43y_fm # 䬍? ~~ = _} l | g4Q3 QDgN ~ z? xahZ {7W4N | yX \ ba ڶ i [g_7ĥt6̬a ڮڭ 6 ]; wWXFze7M; L / k! SM) lMh ~% $ 3c) K-9 {ζ | ݎ L! GB: QY # {Jqv ~ Ѝ3΋ /: 5µr ~ j! ݰ õ2 ׮ I! 52M! + — bͭ ۺ B5 / `g} mxc] O h65) WHiG8 ٳ 3: Zew- N! 1 ݏ j% CȄkie = -G #, TTK * s | # 7ii-N: V # 9H $ v? {, NŶBNG $ | BY \

    ] hEh $ Lm} 1xd8KOr2 BUr ~}!) Ł8l? 1C @ u: {; 4! MR ا fNj ~ dS) Ř; cv8? Š% \ Eв \ ,.