Модуль упругости бетона в20: Модуль упругости бетона: В15, В20, В25, В30

Содержание

Модуль упругости бетона: В15, В20, В25, В30

При проектировании строительной конструкции стоит задача спрогнозировать ее поведение при заданных нагрузках и внешних условиях. Бетон воспринимает значительные усилия, поэтому важный этап расчета — определение деформаций и прогибов при статическом нагружении.

В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.


Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).



Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;


Модуль упругости бетона разных классов

  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Расчетное и нормативное сопротивление бетона

Что такое расчетное сопротивление?

Вернуться к оглавлению

Кавабанга! Бетон как защита от радиации

Как производить расчеты?

Вернуться к оглавлению

Нормативные показатели

Вернуться к оглавлению

Характеристики расчетного значения

Вернуться к оглавлению

Другие характеристики

Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:

Заключение

Этот параметр является важным для проектирования несущих стен и других конструкций. Расчеты значений просты: они сводятся к делению нормативных значений на определенные коэффициенты.



Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога. Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.


Модуль упругости бетона – таблица

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Определения

Расчетное сопротивление – это показатель стойкости материала нагружающим воздействиям. Используется он при проектировочных расчетах, и неотъемлемо связан с нормативными показателями сопротивления сжатию.

До 2000−х годов ориентировались только на марки материала, которые и принимали как расчетный показатель, но по новым техническим документам, каждой марке присвоен новый критерий соответствия образца сжимающим нагрузкам.

Согласно СП 52−101−2003, нормативные значения сопротивления представлены на фото ниже.

Есть еще такое определение, как предел прочности на растяжение. По своей природе, данный материал в разы хуже выдерживает растягивающие нагрузки. Поэтому его и армируют в ЖБИ, стяжках пола большой толщины, фундаментах и прочее.

Таблица 6. 7 из СП 63.13330.2012″СНиП 52-01-2003, в которой указаны марки сопротивление к сжатию, растяжению.

ВидБетонНормативные сопротивления МПа, и расчетные сопротивления для предельных состояний второй группы и МПа, при классе материалапо прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60В70В80В90В100
Сжатие осевое растяжениеТяжелый, мелкозернистый и напрягающий2,73,55,57,59,5111518,52225,529323639,54350576471
Легкий1,92,73,55,57,59,5111518,52225,529
Ячеистый1,41,92,43,34,66,99,010,511,5
Растяжение осевоеТяжелый, мелкозернистый и напрягающий0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80
Легкий0,290,390,550,700,851,001,101,351,551,751,952,10
Ячеистый0,220,260,310,410,550,630,891,001,05

Кавабанга! Обзор свойств и характеристик ЦПС марки М-300

От прочности в срезе при скалывании, зависит устойчивость к сжатию от корреляционных показателей.

Примечание. Сопротивление сжатию В25 наиболее часто встречающийся показатель при проектировании материала.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.


Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства. Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

График теста на растяжение

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

E=α/ε

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.


Различные технологии изготовления бетона
Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Материалмодуль Юнга E, ГПа
Алюминий70
Бронза75-125
Вольфрам350
Графен1000
Латунь95
Лёд3
Медь110
Свинец18
Серебро80
Серый чугун110
Сталь200/210
Стекло70

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Модуль (коэффициент) упругости бетона | СтройFAQ

Главной характеристикой, определяющей прочность бетона, является коэффициент его упругости. Он важен для профессиональных проектировщиков, которые проводят расчеты нагрузочных способностей бетонных конструкций.

Железобетонные строительные конструкции постоянно испытывают большие нагрузки. Это необходимо учитывать еще на этапе их планирования. Поэтому технологами была разработана система придания бетону способности упруго деформироваться под воздействием таких факторов, как давление и сила. Величина, характеризующая данный показатель, получила название модуль упругости бетона.

Модуль упругости бетона — это коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной упругомгновенной деформацией при σ1=0,3Rпр при осевом сжатии образцов. (ГОСТ 24452-80 Бетоны, Rпр — призменная прочность бетона)

Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Актуализированная редакция СНиП 52-01-2003.

Таблица

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа · 10-3, согласно таблицы 6. 11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона
B10B15B20B25B30B35B40B45B50B55B60B80
19,024,027,530,032,534,536,037,038,039,039,542,0
Значения в МПа
B10B12,5B15B20B25B30B35B40B45B50B55B60B80
19 00021 50024 00027 5003 00032 50034 50036 00037 00038 00039 00039 50042 000


Модули упругости бетона при сжатии и растяжении Eb, МПа · 10-3 согласно СНиП 2. 03.01-84*(1996)
Классы по прочности на сжатиеВ3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60
Характеристики бетона
Тяжелые бетоны
Естественное твердение9,51316182123273032,534,53637,53939,540
Тепловая обработка при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
Автоклавная обработка7101213,516172022,524,52627282929,530
Мелкозернистые
Естественное твердение, А-группа71013,515,517,519,522242627,528,5
Тепловая обработка при атмосферном давлении6,5912,51415,5172021,523
Естественное твердение, Б-группа6,5912,51415,5172021,523
Автоклавная теплообработка5,5811,51314,515,517,51920,5
Автоклавное твердение, В-группа16,51819,5212122232424,525
Легкие и поризованные
Марка средней плотности, 
8004,55,05,5
10005,56,37,288,4
12006,77,68,79,51010,5
14007,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистые автоклавного твердения
Марка средней плотности, D 
7002,9
8003,44
9003,84,55,5
100067
11006,87,98,38,6
1200
8,48,89,3

Определение упругости и единицы измерения

В литературе для профессионалов параметр упругости принято обозначать буквой Е. На его величину влияет действующая нагрузка и структура бетона. За единицу измерения взят паскаль, поскольку напряжение, вызванное в опытном образце действующей на него силой, измеряется в паскалях. На модуль упругости В20 и других видов влияет технология производства, в частности способ твердения: естественный, автоклавный или тепловой обработки. Важную роль играют эксплуатационные характеристики материала.

Поэтому такой показатель, как упругость не одинаковый у одного класса. Например, если рассматривать ячеистые или тяжелые материалы, имеющие одно и то же значение прочности на м2, то величины их модулей будут разные.

От чего зависит упругость бетона

1. СОСТАВ. Бетон с более высоким модулем упругости подвергается меньшей относительной деформации. Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. КЛАСС. Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие. Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона. Так, у бетона класса В10 величина упругости равна 19, а у В30 она составляет 32,5, т. е. бетон В30 является более устойчивым к относительным деформациям по сравнению с В10.

Расчет модуля упругости

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца.

Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Если материал не имеет армирования, то он не способен к растяжению. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов. С учетом результатов экспериментов строится график, отражающий показатели зависимости прикладываемого воздействия и разрушения опытного образца.

Методика расчета бетонных конструкций содержится в СНиП 52-01-2003, распространяющихся на все строительные бетонные и железобетонные конструкции.

Бетон Фундамент

 17-01-2021

Сообщить о ошибке (Ctrl+Enter)

Модуль упругости бетона

Что такое модуль упругости?

Модуль упругости (также известный как модуль упругости , коэффициент упругости ) материала представляет собой число, определяемое отношением приложенного напряжения к соответствующей деформации в пределах предела упругости. Физически это указывает на сопротивление материала деформации при воздействии на него напряжения. Модуль упругости также указывает на жесткость материала. Значение модуля упругости выше для более жестких материалов.

\[\text {Модуль упругости}\; E=\frac{f}{s} \]

Здесь f= приложенное напряжение к телу
s= деформация, соответствующая приложенному напряжению

 

Определение модуля упругости бетона. Источник: http://civilarc.com

 

Единицы модуля упругости

Единицы модуля упругости следующие:

  • В единицах СИ МПа или Н/мм 2 или кН на квадратный метр.
  • В единицах FPS фунтов на квадратный дюйм, или тысяч фунтов на квадратный дюйм, или фунтов на квадратный фут, или тысяч на квадратный фут.

Модуль упругости бетона

Модуль упругости бетона можно определить как наклон линии, проведенной от нулевого напряжения до напряжения сжатия 0,45 f’ c . Так как бетон — неоднородный материал. Прочность бетона зависит от относительной доли и модуля упругости заполнителя.

Чтобы узнать точное значение модуля упругости бетонной смеси, можно провести лабораторные испытания. Кроме того, существуют некоторые эмпирические формулы, предоставленные различными кодами, для получения модуля упругости бетона. Эти формулы основаны на зависимости между модулем упругости и прочностью бетона на сжатие. Можно легко получить приблизительное значение модуля упругости бетона, используя 28 дней прочности бетона (9{1,50}\times0,043\sqrt{f’_{c}} \quad МПа \]

Эта формула действительна для значений w c между 1440 и 2560 кг/м 3 . 2 92
\]

Тест для определения модуля упругости бетона

Следующее видео (источник: youtube.com) поможет вам получить представление об экспериментальной методике определения модуля упругости бетона. В этом видеоролике показана процедура испытания для определения модуля упругости бетона в соответствии со стандартом EN 12390-13.

 


Связанные статьи
  • Использование бетона
  • Преимущества и недостатки бетона
  • Преимущества и недостатки железобетона
  • Что такое предварительно напряженный бетон? Как это работает?
  • Типы предварительно напряженного бетона
  • Преимущества и недостатки предварительно напряженного бетона
  • Вакуумный бетон | Определение, процедура и преимущества
  • Что такое сборный железобетон?
  • Преимущества и недостатки сборного железобетона
  • Разница между шлакоблоком и бетонным блоком

 

Модуль упругости бетона – определение и значение при проектировании

🕑 Время чтения: 1 минута

Модуль упругости бетона (Ec) определяется как отношение приложенного напряжения к соответствующей деформации. Он демонстрирует не только способность бетона противостоять деформации из-за приложенного напряжения, но и его жесткость. Другими словами, он отражает способность бетона упруго прогибаться. Модуль упругости бетона чувствителен к пропорциям заполнителя и смеси бетона.

При проектировании бетонных конструкций очень важен модуль упругости, который необходимо определить. Линейный расчет элементов, основанный на теории упругости, используется в некоторых случаях для удовлетворения требований предельного состояния по несущей способности и пригодности к эксплуатации, например, при расчете предварительно напряженных железобетонных конструкций.

Стандарты, применимые во всем мире, такие как Кодекс ACI, Европейский кодекс, Британские стандарты, Канадская ассоциация стандартов и Индийский стандарт, предоставили формулу для расчета модуля упругости бетона.

Содержание:

  • Расчет модуля упругости бетона
    • 1. Модуль упругости на основе ACI 318-14
    • 2. Модуль упругости на основе CSA
    • 3. Модуль упругости на основе 8,1 EC 490 Модуль упругости на основе Британского стандарта
    • 5. Модуль упругости на основе IS 456
  • Важность при расчете бетонной конструкции

Расчет модуля упругости бетона

Расчет модуля упругости бетона с использованием уравнений различных кодов представлен ниже:

1. Модуль упругости На основе ACI 318-14

Согласно ACI 318-14 раздел 19.2.2, модуль упругости бетона оценивается следующим образом:

Для бетона удельный вес (wc) колеблется от 1440 до 2560 кг на кубический метр.

Для нормального бетона:

2. Модуль упругости на основе CSA

Модуль упругости для нормального бетона на основе Канадской ассоциации стандартов (CSA A23.3):

Для высокопрочного бетона:

3. Модуль упругости На основе EC

Модуль упругости бетона на основе кода Евро можно оценить с помощью следующего выражения:

Где,

Ecm: средний модуль упругости

fcm: средняя прочность бетона на сжатие через 28 дней в соответствии с таблицей 3.