Минимальный процент армирования железобетонных конструкций минимальный: Коэффициент армирования железобетона, как он считается

Содержание

СП63. Расчет минимального и максимального армирования плит

Минимальное и максимальное, как продольное так и поперечное армирование плит вычислено на основе конструктивных требований Раздела 10 СП63.13330.2018.



Минимальное и максимальное армирование плит согласно СП63.13330.2018

Минимальные / максимальные площади продольной и поперечной арматуры железобетонных плит определяются конструктивными требованиями Раздела 10 СП63.13330.2018.

Конструктивные требования к геометрическим размерам и армированию железобетонных элементов являются обязательными к выполнению согласно пункту 10.1.1 СП63.

Расчет продольного армирования реализован на основе требований пунктов 10.2.1, 10.2.2, 10.3.5, 10.3.6, 10.3.8 и 10.3.9; расчет поперечного – 10.3.12, 10.3.13, 10.3.14 и 10.3.16.

Требования в части возможности размещения арматуры (пункт 10.2.1), обеспечения качественного уплотнения бетонной смеси (пункт 10.

3.5) и др. не имеют количественных критериев выполнения. Выполнение таких требований обеспечивается субъективным решением проектировщика в каждой конкретной проектной ситуации.

1. Продольное армирование плит

1.1. Комментарии и ограничения в реализации

Расчет выполняется для продольных стержней арматуры фиксированного диаметра, расположенных в один ряд*.

 

1.2. Минимальное продольное армирование
As,min

Минимальный процент продольной растянутой арматуры μmin, а также требуемой по расчету сжатой, в явном виде определен пунктом 10.3.6 в зависимости от вида напряженно-деформированного состояния (НДС) и формы поперечного сечения. Соответствующая площадь минимального армирования вычисляется по формуле As,min = μmin · b · (h – c)*.

1.3. Расчет максимального продольного армирования
As,max

Максимальный процент армирования не определен нормами СП63 в явном виде, однако, может быть вычислен* на основе нормируемого минимального расстояния между арматурными стержнями и принятого максимального диаметра d

s,max. Проектировщику необходимо контролировать выполнение качественных конструктивных требований (см. выше).

 

2. Поперечное армирование плит

Поперечное армирование устанавливается у всех поверхностей железобетонных элементов, вблизи которых расположены стержни продольной арматуры, пункт 10.3.11 СП63.13330.2018. В случае воздействия крутящих моментов, пункт 10.3.16 СП63, армирование должно образовывать замкнутый контур.

2.1. Комментарии и ограничения в реализации

Рассмотрено поперечное армирование в виде шпилек и/или ветвей хомутов, расположенных с фиксированным шагом sw под углом 90° к продольной оси балки. Стержни поперечного армирования имеют одинаковый номинальный диаметр dsw.

2.2. Расчет минимального поперечного армирования
Asw,min

Минимальное армирование Asw,min плит вычислено* из условия размещения на ширине b – 2·cs целого числа поперечных стержней минимального диаметра d

sw,min с стремящимся к максимальному по СП63 шагом sw,max. Шаг поперечных стержней по направлению оси плит принят равным sw,max. 

2.3. Расчет максимального поперечного армирования
Asw,max

Исходным данным к расчету Asw,max принята конфигурация продольного армирования, соответствующая определенной в п. 1.3  As,max, (расстояние между центрами продольных стрежней s и их диаметр ds).


Использование данного расчета означает факт согласия с Отказом от ответственности.

Замечания и предложения по данному расчету можно направить через форму обратной связи.

Любое использование материалов сайта допускается лишь с разрешения правообладателя и только со ссылкой на источник: www.RConcreteDesign.com

таблица коэффициента армирования железобетонных конструкций на 1 м3 бетона, расхода арматуры и ее расчет, СНиП

Коэффициент армирования — один из самых значимых моментов при строительных работах. Полноценное знакомство с таблицей коэффициента армирования железобетонных конструкций на 1 м3 бетона оказывается крайне полезным для застройщиков и заказчиков. Обязательно надо интересоваться правилами расхода арматуры и ее расчета, требованиями СНиПа.

Нормы и требования

Коэффициент армирования — это важный процентный показатель, который обязательно должен учитываться при строительных работах. Он вычисляется как частное от деления суммарного сечения упрочняющих деталей на сечение бетонной массы, которая должна быть ими усилена. Правильный расчет всегда должен исходить из указаний СНиПа. Занижение показателя необратимо ухудшит свойства несущей конструкции.

Завышение же будет означать превышение нормативов по материалоемкости и удорожание строительных работ.

К армированию применимы положения СНиПа 2. 03.01-84. Надо также учитывать приложение к этому документу, предназначенное для строений из монолитного железобетона и проектных материалов. Ключевые параметры эксплуатации усиливающих стержней и свойства этих блоков приведены в ГОСТе 10884, принятом в 1994 году. Строительные нормы и правила гласят, что расчет по предельным состояниям должен застраховать от:

  • любых разрушений конструкций при нормальной эксплуатации;
  • дестабилизации конструкционных форм;
  • чрезмерного нарастания усталости металла (в сравнении с обычной инженерной практикой).

Бетонное основание может быть оформлено с применением не менее чем 2 неразрывных каркасов. Их создают, фиксируя стержни внахлест. Подобное решение лучше всего показывает себя в частном домостроении. Промышленное и иное капитальное строительство в основном подразумевает сварочное соединение.

Но поскольку любая сварка ослабляет конструкции, нужно вводить поправочные коэффициенты, а какие именно, разберутся лишь технологи.

Минимальная величина

Наименьший допустимый показатель усиления железобетонных конструкций на 1 м3 бетона лучше всего представить в виде лаконичной таблицы.

Формула расчета

Но стандартная таблица выручает не всегда.

Существует ряд ситуаций, когда усиление железобетона не может ограничиться несколькими типовыми показателями. В этих случаях правильно разобраться с величиной расхода арматуры помогут дополнительные вычисления. Определить процент армирования несложно. Массу каркаса следует поделить на массу монолитной заливки и увеличить результат в 100 раз. Такой подход отлично работает с:

  • балками;
  • колоннами;
  • основой фундамента;
  • капитальными стенами зданий.

Процент армирования железобетонных конструкций: минимальный, максимальный

С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.
Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Особенности расчетов

В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.

Значение армирования

Минимальный процент

Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.

Максимальный коэффициент арматуры

После заливки важно уплотнить бетон, чтобы не было воздуха возле решетки, который приводит к снижению прочности сооружения.

Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.

Сохранение прочности

Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.

Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.

Защитный слой бетона

В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:

Наименование стройматериалаШирина объекта, смСлой бетона, см
Несущая стенаБолее 101,5
СтенаМенее 101
Ребро252
БалкаМенее 251,5
Колонна3
Фундаментная балка

Посмотреть «СНиП 2. 03.01-84» или cкачать в PDF (4.8 MB)

Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.

Минимальный процент — армирование — Большая Энциклопедия Нефти и Газа, статья, страница 1

Минимальный процент — армирование

Cтраница 1

Минимальный процент армирования устанавливают в зависимости от гибкости элемента, он обеспечивает воспринятие не учитываемых расчетом воздействий ( температурных, усадочных и др.

) и предотвращает хрупкое разрушение при образовании трещин.  [1]

Минимальный процент армирования подошвы фундаментов не регламентируется. Толщину защитного слоя бетона принимают не менее 30 мм. Под фундаментами рекомендуется предусматривать подготовку из среднезернистого песка слоем 100 мм.  [3]

При a0 принимают A AS конструктивно по минимальному проценту армирования.  [4]

При as 0 принимают ASA S конструктивно по минимальному проценту армирования.  [5]

Элементы, не удовлетворяющие требованиям табл. 112, по величине минимального процента армирования следует относить к бетонным элементам.  [6]

Для уменьшения влияния на результаты контроля металлической арматуры преобразователи устанавливают на участках с

минимальным процентом армирования.  [7]

Если no расчету окажется / 4s 0, то площадь сечения арматуры назначают по минимальному проценту армирования или уменьшают размеры поперечного сечения элемента, производя затем расчет заново.  [8]

Чтобы уменьшить влияние металлической арматуры на результаты контроля, ультразвуковые преобразователи устанавливают на участках с минимальным процентом армирования.  [9]

Чтобы уменьшить влияние металлической арматуры на результаты контроля, ультразвуковые преобразователи устанавливают на участках с минимальным процентом армирования.  [10]

В элементах со случайными эксцентриситетами и с продольной арматурой, расположенной равномерно по контуру сечения ( см. рис. 17.3) минимальный процент армирования относится к полной площади сечения бетона и принимается вдвое больше ука — занных величин.  [11]

В этом случае разрушение происходит внезапно и носит хрупкий характер, представляющий для конструкции повышенную опасность. Поэтому нормы устанавливают минимальный процент армирования, обеспечивающий, кроме того, воспринятие неучитываемых расчетом температурных, усадочных и других воздействий. Если ( A % iA % min ТО сечсние рассчитывают как бетонное. В предварительно напряженных конструкциях минимальное количество арматуры определяют расчетом из условия, чтобы несущая способность сечения после образования трещин была выше его трещиностойкости.  [12]

Арматуру приконтурных зон ( тип II) рассчитывают по наибольшему значению положительных изгибающих моментов Мх и Му. Ее размещают по всей длине сторон контура оболочки. Арматуру типа III назначают по указаниям норм о минимальном проценте армирования сечений железобетонных конструкций, расчету на действие местных нагрузок, условию уменьшения усадки и ползучести бетона и по другим соображениям. Арматура должна размещаться по толщине оболочки в соответствии с действующими факторами ее напряженного состояния: для восприятия компонент безмоментного состояния — по центру тяжести сечения, а компонент изгибного состояния — как можно ближе к внешней границе растянутой от изгиба зоны поперечного сечения оболочки.  [14]

Страницы:      1

Статья «Определение эффективных параметров армирования железобетонных конструкций» из журнала CADmaster №3(85) 2016

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал — стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1-й группе (прочность, устойчивость), так и по 2-й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в кг/м3).

При этом в действующих строительных нормах [1−3] такой параметр напрочь отсутствует и он никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05−0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой-то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190- 200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис.  1).

Как видно из приведенных выше данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м3. При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но и заодно (что очень важно) проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15−20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5−10%).
а)
б)

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м2 при различных исходных данных:
а) при разных диаметрах арматуры, б) при разных толщинах плит

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры
Фактор Следствие
Инженерно-геологические условия строительной площадки Тип фундамента (свайный, плитный, ленточный)
Шаг сетки несущих вертикальных элементов Пролет плит, их толщина (жесткость)
Размеры сечения колонн/пилонов/стен Удельный вес арматуры в бетоне
Класс бетона и арматуры Расход арматуры в сечении

В табл. 2 мы покажем на различных типах реальных зданий и сооружений, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и т.д.

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Более точно содержание арматуры в бетоне можно определить по формуле:

где
— содержание арматуры в бетоне для всего здания, кг/м3;
— содержание арматуры в бетоне для отдельных конструктивных элементов (фундаментная плита, плиты перекрытия и т.д.), кг/м3;
— удельный вес бетона отдельных конструктивных элементов в общем объеме бетона здания, %;
n — общее количество конструктивных элементов здания.
Таблица 2. Содержание арматуры в бетоне для разных типов зданий
Тип здания Элемент здания Расход, кг/м3
а) 22-этажное здание на сваях (шаг колонн/пилонов 6,0 м) Сваи 64
Фундаментная плита 392
Вертикальные несущие элементы 263
Плиты перекрытия 193
Всего по зданию 212
б) 10-этажное здание на сваях (шаг пилонов 3,4−3,6 м) Сваи 70
Фундаментная плита 223
Вертикальные несущие элементы 148
Плиты перекрытия 129
Всего по зданию 148
в) 8-, 9-этажное здание на плите (шаг пилонов 4,5−4,8 м) Фундаментная плита 238
Вертикальные несущие элементы 126
Плиты перекрытия 150
Всего по зданию 175
г) 2-этажное здание на сваях (шаг колонн/стен 4,5−8,0 м) Сваи 83
Фундаментная плита 179
Вертикальные несущие элементы 118
Плиты перекрытия 170
Всего по зданию 147

Выводы

  • Все вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3) для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.
  • Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.
  • С помощью новых функций, реализованных в 21-й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но намного более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.

Литература

  1. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52−01−2003).
  2. СП 52−101−2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
  3. Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 52−101−2003).
  4. ГЭСН 81−02−06−2001.
  5. ФЕР 06−01−001−17.
Леонид Скорук
к.т.н., доц., старший научный сотрудник
НП ООО «СКАД Софт» (г. Киев)

Процент армирования фундаментной плиты. Калькулятор расчёта минимальной толщины прутьев для основного армирования плитного фундамента. Минимальный процент армирования плиты


Как определить минимальный процент армирования конструкции?

Нормы дают нам ограничение в армировании любых конструкций в виде минимального процента армирования – даже если по расчету у нас вышла очень маленькая площадь арматуры, мы должны сравнить ее с минимальным процентом армирования и установить арматуру, площадь которой не меньше того самого минимального процента армирования.

Где мы берем процент армирования? В «Руководстве по конструированию железобетонных конструкций», например, есть таблица 16, в которой приведены данные для всех типов элементов.

 

Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?

Во-первых, нужно понимать, что ищем мы обычно не площадь всей арматуры, попадающей в сечение, а именно площадь продольной рабочей арматуры. Иногда эта площадь расположена у одной грани плиты (в таблице она обозначена как А – площадь у растянутой грани, и А’ – площадь у сжатой грани), а иногда это вся площадь элемента. Каждый случай нужно рассматривать отдельно.

На примерах, думаю, будет нагляднее.

Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.

1) Найдем площадь сечения бетона 1 погонного метра плиты:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

3) Составим известную со школы пропорцию:

1750 см² — 100%

Х – 0,05%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.

Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.

Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:

 

1) Найдем ширину ребра приведенного двутаврового сечения плиты:

1,2 – 0,15∙5 = 0,45 м

2) Найдем площадь сечения плиты, требуемую условиями расчета:

0,45∙0,2 = 0,09 м² = 900 см²

3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

4) Составим пропорцию:

900 см² — 100%

Х – 0,05%

5) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙900/100 = 0,45 см²

6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.

 

И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 3. Дан  железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.

1) Найдем площадь сечения фундамента:

1,5∙1,5 = 2,25 м² = 22500 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/1.5 = 4,4 < 5 (для прямоугольного сечения):

0,05%

3) Из пункта 2 примечаний к таблице 16 (см. рисунок выше) определим, что мы должны удвоить процент армирования, чтобы найти минимальную площадь арматуры всего сечения фундамента (а не у одной его грани!), т.е. минимальный процент армирования у нас будет равен:

2∙0,05% = 0,1%

4) Составим пропорцию:

22500 см² — 100%

Х – 0,1%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,1∙22500/100 = 22,5 см²

5) Принимаем шаг арматуры фундамента 200 мм, значит по периметру мы должны установить 28 стержней, а площадь одного стержня должна быть не меньше 22,5/28 = 0,8 см²

6) По сортаменту арматуры находим, что мы должны принять диаметр арматуры 12 мм. То есть меньше этого мы устанавливать не имеем права.

И снова обратите внимание! В данном примере мы определяем площадь арматуры не у одной грани фундамента, а сразу для всего фундамента, т.к. он заармирован равномерно по всему периметру.

 

Пример 4. Дана  железобетонная колонна сечением 500х1600 (рабочая высота сечения колонны в коротком направлении h₀= 460 мм). Расчетная высота колонны равна 8 м. Определить минимальный процент армирования у длинных граней колонны.

1) Найдем площадь сечения колонны:

0,46∙1,6 = 0,736 м² = 7360 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для колонны (внецентренно-сжатого элемента с l₀/h = 8/0.5 = 16):

0,2%

3) Составим известную со школы пропорцию:

7360 см² — 100%

Х – 0,2%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,2∙7360/100 = 14,72 см²

5) Из руководства по проектированию находим, что максимальное расстояние между продольной арматурой в колонне не должно превышать 400 мм. Значит, у каждой грани мы можем установить по 4 стержня (между угловой арматурой колонны, которая является рабочей, и ее площадь определялась расчетом), площадь каждого из стержней равна 14,72/4 = 3,68 см²

6) По сортаменту находим, что у каждой грани нам нужно установить 4 стержня диаметром 22 мм. Если считаем, что диаметр великоват, увеличиваем количество стержней, уменьшая тем самым диаметр каждого.

Обратите внимание! Мы определяем площадь арматуры у каждой из двух граней колонны, именно она соответствует минимальному проценту армирования в данном случае.

 

Пример 5. Дана стена и толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм), рабочая высота стены l₀ = 5 м. Определить минимальное количество арматуры у обеих граней стены.

1) Найдем площадь сечения бетона 1 погонного метра стены:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для стены, предварительно определив l₀/h = 5/0.2 = 25 > 24:

0,25%

3) Составим пропорцию:

1750 см² — 100%

Х – 0,25%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,25∙1750/100 = 4,38 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 12 мм, которые нужно установить у каждой грани на каждом погонном метре стены.

Заметьте, если бы стена была толще, минимальный процент армирования резко бы упал. Например, при толщине стены 210 мм потребовалось бы уже 5 стержней диаметром 10 мм, а не 12.

 

class=»eliadunit»>
Добавить комментарий

svoydom.net.ua

Минимальный процент армирования железобетонных конструкций

В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.

Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

  • масса металлического каркаса делится на вес бетонного монолита;
  • полученное в результате деления значение умножается на 100.

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

  • при увеличении слоя бетона показатель армирования снижается;
  • при использовании арматуры большого диаметра коэффициент возрастает.

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

  • минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
  • максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.

Чтобы гарантировать надежность конструкций из железобетона, необходимо соблюдать требования строительных норм

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

  • при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
  • минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
  • для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Заключение

Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.

pobetony.expert

минимальный и максимальный процент усиления. Защитный слой бетона

Как определить минимальный процент армирования конструкции?

Нормы дают нам ограничение в армировании любых конструкций в виде минимального процента армирования – даже если по расчету у нас вышла очень маленькая площадь арматуры, мы должны сравнить ее с минимальным процентом армирования и установить арматуру, площадь которой не меньше того самого минимального процента армирования.

Где мы берем процент армирования? В «Руководстве по конструированию железобетонных конструкций», например, есть таблица 16, в которой приведены данные для всех типов элементов.

 

Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?

Во-первых, нужно понимать, что ищем мы обычно не площадь всей арматуры, попадающей в сечение, а именно площадь продольной рабочей арматуры. Иногда эта площадь расположена у одной грани плиты (в таблице она обозначена как А – площадь у растянутой грани, и А’ – площадь у сжатой грани), а иногда это вся площадь элемента. Каждый случай нужно рассматривать отдельно.

На примерах, думаю, будет нагляднее.

Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.

1) Найдем площадь сечения бетона 1 погонного метра плиты:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

3) Составим известную со школы пропорцию:

1750 см² — 100%

Х – 0,05%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.

Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.

Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:

1) Найдем ширину ребра приведенного двутаврового сечения плиты:

1,2 – 0,15∙5 = 0,45 м

2) Найдем площадь сечения плиты, требуемую условиями расчета:

0,45∙0,2 = 0,09 м² = 900 см²

3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

4) Составим пропорцию:

900 см² — 100%

Х – 0,05%

5) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙900/100 = 0,45 см²

6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.

 

И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 3. Дан  железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.

1) Найдем площадь сечения фундамента:

1,5∙1,5 = 2,25 м² = 22500 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/0.9 = 4,4 < 17:

0,05%

3) Из пункта 2 примечаний к таблице 16 (см. рисунок выше) определим, что мы должны удвоить процент армирования, чтобы найти минимальную площадь арматуры всего сечения фундамента (а не у одной его грани!), т.е. минимальный процент армирования у нас будет равен:

2∙0,05% = 0,1%

4) Составим пропорцию:

22500 см² — 100%

Х – 0,1%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,1∙22500/100 = 22,5 см²

5) Принимаем шаг арматуры фундамента 200 мм, значит по периметру мы должны установить 28 стержней, а площадь одного стержня должна быть не меньше 22,5/28 = 0,8 см²

6) По сортаменту арматуры находим, что мы должны принять диаметр арматуры 12 мм. То есть меньше этого мы устанавливать не имеем права.

И снова обратите внимание! В данном примере мы определяем площадь арматуры не у одной грани фундамента, а сразу для всего фундамента, т.к. он заармирован равномерно по всему периметру.

 

Пример 4. Дана  железобетонная колонна сечением 500х1600 (рабочая высота сечения колонны в коротком направлении h₀= 460 мм). Расчетная высота колонны равна 8 м. Определить минимальный процент армирования у длинных граней колонны.

1) Найдем площадь сечения колонны:

0,46∙1,6 = 0,736 м² = 7360 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для колонны (внецентренно-сжатого элемента с l₀/h = 10/0.5 = 20):

0,1%

3) Составим известную со школы пропорцию:

7360 см² — 100%

Х – 0,1%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,1∙7360/100 = 7,36 см²

5) Из руководства по проектированию находим, что максимальное расстояние между продольной арматурой в колонне не должно превышать 400 мм. Значит, у каждой грани мы можем установить по 4 стержня (между угловой арматурой колонны, которая является рабочей, и ее площадь определялась расчетом), площадь каждого из стержней равна 7,36/4 = 1,84 см²

6) По сортаменту находим, что у каждой грани нам нужно установить 4 стержня диаметром 16 мм.

Обратите внимание! Мы определяем площадь арматуры у каждой из двух граней колонны, именно она соответствует минимальному проценту армирования в данном случае.

 

Пример 5. Дана стена и толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм), рабочая высота стены l₀ = 5 м. Определить минимальное количество арматуры у обеих граней стены.

1) Найдем площадь сечения бетона 1 погонного метра стены:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для стены, предварительно определив l₀/h = 5/0.9 = 5,5 < 17:

0,05%

3) Составим пропорцию:

1750 см² — 100%

Х – 0,05%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм, которые нужно установить у каждой грани на каждом погонном метре стены.

 

class=»eliadunit»>
Добавить комментарий

svoydom.net.ua

Процент армирования железобетонных конструкций: минимальный и максимальный

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температ

sevparitet.ru

Минимальный процент армирования фундамента. Минимальный процент армирования фундаментных плит

ГлавнаяПлитМинимальный процент армирования фундаментных плит

Калькулятор Армирование_Ленты_Онлайн v.1.0 — армирование ленточного фундамента

Калькулятор Армирование-Ленты-Онлайн v.1.0

Расчет продольной рабочей, конструктивной и поперечной арматуры для ленточного фундамента. Калькулятор основан на СП 52-101-2003 (СНиП 52-01-2003, СНиП 2.03.01-84), Пособие к СП 52-101-2003, Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предв. напряжения).

Результаты
Параметры проектируемого фундамента

Ширина фундамента, м:

Высота фундамента, м:

Сечение ленты, м2:

Общая длина ленты, м:

Объем фундамента, м3:

Расчет арматуры
Продольная рабочая арматура

Диаметр арматуры, мм:

Расчитанная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:

Подобранная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:

Количество стержней арматуры в верхнем (нижнем) поясе, шт:

Количество стержней арматуры на сечение ленты, шт:

Общая площадь сечения арматуры, мм2:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Продольная конструктивная арматура (противоусадочная)

Диаметр арматуры не менее (оптимально 12мм), мм:

Количество стержней арматуры на сечение ленты, шт:

Количество горизонтальных рядов:

Расстояние между рядами (шаг), мм:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Поперечная арматура (хомуты)

Диаметр арматуры, мм:

Расстояние между хомутами (шаг), мм:

Количество хомутов на ленту, шт:

Длина одного хомута (с учетом крюков), м:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Общая масса и объем арматуры на ленту

Масса арматуры, кг:

Объем арматуры на ленту, м3:

Алгоритм работы калькулятора
Конструктивное армирование

Если выбран данный пункт меню, калькулятор рассчитает минимальное содержание рабочей продольной арматуры для конструкции фундамента согласно СП 52-101-2003. Минимальный процент армирования для железобетонных изделий лежит в диапазоне 0.1-0.25% от площади сечения бетона, равной произведению ширины ленты на рабочую высоту ленты.

СП 52-101-2003 Пункт 8.3.4 (аналог Пособие к СП 52-101-2003 Пункт 5.11, Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.8)

 

Пособие к СП 52-101-2003 Пункт 5.11

 

В нашем случае минимальный процент армирования составит 0.1% для растянутой зоны. В связи с тем, что в ленточном фундаменте растянутой зоной может быть как верх ленты, так и низ, процент армирования составит 0.1% для верхнего пояса и 0.1% для нижнего пояса ленты.

Для продольной рабочей арматуры используются стержни диаметром 10-40мм. Для фундамента рекомендуется использовать стержни диаметром от 12мм.

Пособие к СП 52-101-2003 Пункт 5.17

 

Руководство по конструированию бетонных и ж/б изделий из тяжелого бетона пункт 3.11

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.27

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94

 

Расстояние между стержнями продольной рабочей арматуры

Пособие к СП 52-101-2003 Пункт 5.13 (СП 52-101-2003 Пункт 8.3.6)

 

Пособие к СП 52-101-2003 Пункт 5.14 (СП 52-101-2003 Пункт 8.3.7)

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.95

 

 

Конструктивная арматура (противоусадочная)

Согласно руководству по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (аналог Пособие к СП 52-101-2003 Пункт 5.16) для балок высотой более 700мм предусматривается конструктивная арматура по боковым поверхностям (2 прутка арматуры в одном горизонтальном ряду). Расстояние между стержнями конструктивной арматуры по высоте должно быть не более 400мм. Площадь сечения одной арматуры должна составлять не менее 0,1% от площади сечения, равной по высоте расстоянию между этими стержнями, по ширине половине ширины ленты, но не более 200мм.

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (Пособие к СП 52-101-2003 Пункт 5.16)

 

 

По расчету получается, что максимальный диаметр конструктивной арматуры составит 12мм. По калькулятору может получаться и меньше (8-10мм), но все же, чтобы иметь запас прочности лучше использовать арматуру диаметром 12мм.

Пример

Исходные данные:

  • Размеры фундамента в плане: 10х10м (+одна несущая внутренняя стена )
  • Ширина ленты: 0.4м (400мм)
  • Высота ленты: 1м (1000мм)
  • Защитный слой бетона: 50мм (выбран по умолчанию)
  • Диаметр арматуры: 12мм

Расчет:

Рабочая высота сечения ленты [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр рабочей арматуры) = 1000 – (50 + 0.5 * 12) = 944 мм

Площадь сечения рабочей арматуры для нижнего (верхнего) пояса = (Ширина ленты * Рабочая высота сечения ленты) * 0.001 = (400 * 944) * 0.001 = 378 мм2

Подбираем кол-во стержней по СП 52-101-2003 приложения 1.

sevparitet.ru

Необходимый расчёт арматуры на монолитную плиту. Процент армирования фундаментной плиты

Армирование монолитной плиты — Фундамент своими руками

 

Усиление монолитных плит
  • Технология: как правильно армировать плиты
  • Особенности армирования фундаментных плит
  • Формула расчета арматуры

Изготовление монолитных конструкций не обходится без применения арматуры, которая выступает связующим материалом в любой железобетонной конструкции.

Чертеж армированной плиты

Арматурой для монолитной плиты являются прутки сечением 8-14 миллиметров, толщина фундаментной плиты при этом составляет 150 миллиметров. Таким образом, процент соотношения диаметра прутка к толщине плиты составляет 5%.

Армирование плиты позволяет решить общую концепцию строительства по-настоящему теплых домов. Поперечные и продольные железобетонные плиты перекрытий позволяют надежно защитить от холода чердачные помещения и эксплуатируемые мансарды.

Все армированные фундаментные плиты перекрытия используются, в первую очередь, в перекрытиях общественных и жилых домов, стены которых выполнены из ячеистых бетонных или крупных блоков, а также кирпича. Такие плиты перекрытий применяются для зданий, процент влажности воздуха в которых составляет 60-75%, которые имеют на поверхности стен внутреннюю пароизоляцию. Глубина опирания плит на несущие стены составляет не менее 80 миллиметров.

Схема армирования монолитной плиты.

Армировать фундаментные плиты необходимо не только для качественного утепления постройки и ускорения процесса строительства, но и для повышения звукоизоляции. Армированные железобетонные плиты имеют небольшой вес, поэтому они снижают нагрузку на стены и фундамент здания, тем самым давая возможность получить дополнительный экономический эффект при возведении дома. Очень важно, что для процедуры армирования пустотных плит перекрытия нет необходимости использовать большую строительную технику, в том числе подъемный кран.

Конструкция получается прочной, она способна без проблем выдержать колоссальные нагрузки, а также воздействие высоких температур на протяжении длительного периода. Для сравнения заметим, что деревянные перекрытия способны выдержать огненное воздействие всего 25 минут, а такие плиты выдерживают час, то есть процент превышения составляет 200 единиц.

Современное строительство, в котором применяют армирование фундаментной плиты, позволяет строить здания любой сложности и любых размеров. Используя монолитные стены, появляется возможность перекрывать те помещения, которые имеют неправильную геометрическую форму стен. Так можно создавать нестандартные по габаритам перекрытия.

Технология: как правильно армировать плиты

Если говорить об основных составляющих данной технологии, то традиционная схема армирования фундаментных плит выглядит так: рабочие стержни снизу плиты, рабочие стержни сверху; арматура, перераспределяющая нагрузку; подставки из катанки. Перед началом армирования важно правильно рассчитать будущую нагрузку и необходимую толщину бетона — этого требует правильная технология. Толщина перекрытия должна рассчитываться из пропорции 1:30. Это означает, что требуемую толщину бетона можно узнать, разделив длину пролета на 30, — так получится оптимальная толщина, процент погрешности — +/- 1%.

Схема армирования углов плиты.

Если толщина фундаментной плиты превышает 150 миллиметров, то в таком случае армирование необходимо совершать в два слоя, которые связываются между собой металлической проволокой. Размер ячеек не должен превышать 200х200 миллиметров, но одновременно не должен быть и меньше 150х150 миллиметров.

Если специально уменьшать толщину бетона, то заметно увеличится расход металлопроката, если возрастает толщина, то это ведет к увеличению объемов используемого бетона. Для прочности изделия применяется, как правило, арматура одного диаметра. Дополнительное армирование плиты можно выполнить, используя прутья длиной 400-1500 миллиметров.

Основная часть нагрузки находится на нижних слоях арматуры, сжимающая нагрузка давит на верхние. С этим усилием может легко справиться и бетон. Процесс армирования фундаментной монолитной плиты необходимо выполнять на всю длину изделия, стоит применять опалубку, которая является важным этапом в монтаже всей плиты. Для создания опалубки можно использовать обычные деревянные доски 50х150 миллиметров или обычную фанеру.

Очень важно надежно и прочно закрепить стойки опалубки. Этот связано с тем, что вес бетона, который используется в данной операции, может достигать 300 кг/кв.м перекрытия. Единственный элемент, без которого будет действительно сложно обойтись, — это телескопические стойки. Это очень надежный и удобный инструмент. Такая стойка способна выдержать две тонны веса, ведь доска может иметь сучки или микротрещины.

Особенности армирования фундаментных плит

Схема расположения усилений.

Монолитную плиту, поперечное сечение которой может быть разной, необходимо армировать в два слоя. Первая сетка располагается в нижней части плиты, вторая — должна идти сверху. Сетки должны располагаться строго в середине бетона. Защитный слой, который создается при помощи опалубки, должен быть от 15-20 миллиметров. Арматура и сетка между собой связываются при помощи специальной вязальной проволоки.

В сетке арматура должна будет полностью цельной, не иметь никаких разрывов, иначе процент разрушенных армированных фундаментных плит будет постоянно расти. Если не хватает длины арматуры, то дополнительные прутья нужно подвязывать с нахлестом, который должен равняться 40 диаметрам самой арматуры. Если, например, армируется перекрытие диаметром в 10 миллиметров, то нахлест необходимо сделать в 400 миллиметров. Все стыки должны располагаться строго в шахматном порядке, в разбежку. Края верхней и нижней арматуры можно связывать между собой П-образным усилением.

Так как процент нагрузки на железобетонную плиту передается сверху вниз, то можно сделать следующий вывод: главной рабочей арматурой является именно нижняя, которая испытывает растягивающие нагрузки. Верхняя, в основном, получает нагрузки на сжатие.

При проводимой процедуре армирования нижняя сетка дополнительно прокладывается между несущими опорами строго посередине. При связке верхней сетки необходимо усиление прокладывать над несущими опорами. Требуется дополнительное усиление в местах большого скопления отверстий разного диаметра. Нижняя сетка усиливается между несущими стенами в проеме.

Верхняя сетка, как правило, усиливается над несущими стенами. Армирование монолитных плит перекрытия в тех местах, где они опираются на колонны, требует создания объемных усилий. Плита перекрытия заливается с помощью бетононасоса. При этом в обязательном порядке уплотняется бетон, для этих целей используется глубинный вибратор. Процесс затвердения бетона сопровождается его усадкой, чей процент возрастает по мере высыхания бетона, что приведет к появлению на его поверхности микротрещин. Именно поэтому на протяжении двух-трех дней после совершения заливки бетоном желательно пролить данную конструкцию обычной водой. Бетон лучше увлажнять путем разбрызгивания, а не прямой струей воды.

Формула расчета арматуры

Имеется плита габаритами 6х10 метров. Используется арматура диаметром 10 миллиметров, шаг сетки 20 сантиметров. Произведем расчет количества арматуры, которую необходимо уложить: (6/0,2+1) + (10/0,2+1)= 31 (прутки по 6 метров) + 51 (прутки по 10 метров) = 82 прутка. Необходимо использовать два пояса армирования, поэтому количество арматуры удваивается. В итоге получается 82 *2 = 164 прутка, в том числе 62 прутка по 6 метров и 102 прутка по 10 метров. Итого 62*6+102*10= 1392 метров арматуры для армирования плиты.

Армирование плиты: особенности, технология

Армирование плиты необходимо выполнять правильно, соблюдая технологию. Перед началом армирования важно правильно рассчитать будущую нагрузку и необходимую толщину бетона.

Источник: moifundament

sevparitet.ru

Процент армирования железобетонных конструкций: минимальный и максимальный

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Армирование бетона

Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.

Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.

Вернуться к оглавлению

Минимальный армирующий процент

Расчетная схема нормального сечения железобетонного элемента с внешним армированием.

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

  1. Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
  2. Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
  3. Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

Вернуться к оглавлению

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Вернуться к оглавлению

Защитный слой бетона

Армирование элементов монолитных железобетонных зданий.

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

Вернуться к оглавлению

Заключение

Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.

При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.

kladembeton.ru

Минимальный процент армирования фундамента своими руками

Содержание статьи:

Армирование – это процедура, позволяющая увеличить общую прочность несущей конструкции. Армирование предусмотрено в большинстве конструкций фундаментов, но в каждом из видов фундамента оно выполняется согласно определенным требованиям. В зависимости от расположения прутов арматуры армирование бывает вертикальное и горизонтальное.

Способы размещения арматуры

Самым распространенным типом является горизонтальное размещение арматуры. Такой вид армирования нивелирует неравномерные нагрузки на фундамент, которые возникают из-за разной несущей способности участков грунта, на котором заложен фундамент, из-за вспучивания грунта и т. п.

Вертикальное армирование чаще всего делается в дополнение к горизонтальному. Такая мера необходима в том случае, когда фундамент подвержен действию сильных горизонтальных нагрузок.

Минимальный процент армирования

Многих интересует такой показатель, как минимальный процент армирования фундамента. Но строгих указаний по этому поводу нет. Количество арматуры можно использовать по своему усмотрению, можно еще обратить внимание и на то, сколько арматуры в кубе бетона должно быть.

Этот коэффициент невозможно рассчитать еще и потому, что играют роль множество факторов: и тип фундамента, и тип грунта, и количество этажей здания, и прочность материалов фундамента, и многое другое. Поэтому минимальный процент армирования фундамента в каждом отдельном случае будет отличаться.

В некоторых случаях армирование фундамента вообще не требуется, но такое бывает редко. Без армирования можно обойтись в том случае, когда нагрузка распределяется на фундамент равномерно и отсутствуют места локального перегруза.

Но такое бывает редко, поэтому практически всегда приходится проводить армирование. Пренебрежение этой процедурой приводит к проседанию здания, появлению трещин в стенах и прочим неприятным последствиям.

Диаметр арматуры

Диаметр прутьев арматуры должен составлять не менее 10-12 мм. Сечение арматуры определяется при расчете нагрузки на фундамент. Установка прутьев арматуры  и расчет, схема армирования должна производиться таким образом, чтобы расстояние между ними было равно 30 см, а расстояние до внутренней стороны фундамента – не меньше 5 см.

Ниже приведено видео с армированием ленточного фундамента.

dom-fundament.ru

Армирование ленточного фундамента | Архитектурный журнал ADCity

Ленточный фундамент под действием неравномерных осадок, просадок грунта основания и сил морозного пучения подвергается воздействию растягивающих и сжимающих. Чтобы придать фундаменту дополнительную прочность и исключить возможность его деформации, при работе на изгиб, необходимо выполнить продольное армирование фундамента в его верхней и нижней части поперечной плоскости, и поперечное армирование получив в результате металлический каркас.

Металлический каркас состоит из двух горизонтальных ярусов продольной арматуры, соединенных между собой поперечной арматурой. Последняя фиксирует продольные ярусы.

Отдельные стержни арматуры соединяются вязальной проволокой и крючком. Перехлест арматуры устраивают на величину 50d при «вязке» и на 8-10d при сварном соединении, при условии что арматуру можно сваривать (см букву «С» в спецификации, например А500с)
Металлический каркас собирается из следующих видов арматуры:
рабочей продольной арматуры класса А-III с периодическим профилем;
вспомогательной поперечной арматуры класса А-l, A-ll, А-lll или Вр-I ;
Минимальный процент продольного армирования железобетонных конструкций, работающих на изгиб — 0,1% от площади поперечного сечения ленты. При этом в расчёт включается только арматура в верхнем и нижнем поясе армирования, при наличии дополнительных стержней, защищающих конструкцию от возникновения наклонных трещин, минимальный процент армирования принимается 0,2%,
Дополнительные продольные стрежни водятся для защиты от наклонных трещин при высоте сечения более 700 мм (СП 52.101-2003). Располагать продольную арматуру нужно как можно ближе к верхнему и нижнему краю ленты, с учётом требований по минимальному защитному слою бетона в 30 и 70 мм.

Поперечная арматура при типе соединения с помощью сварки должна иметь диаметр не менее 6 мм при высоте конструкции до 800 мм и не менее 8мм при высоте свыше 800 мм. Максимальный шаг поперечной арматуры не должен превышать 600 мм или 3/4 высоты сечения ленты. Поперечная арматура огибает продольную снаружи, образуя замкнутый прямоугольник.

Согласно п. 5.14 Пособия к СП 52-101-2003, при ширине ленточного фундамента более 150 мм необходимо устанавливать не менее 2-х стержней продольной арматуры. При этом, максимальное расстояние между стержнями не должно превышать 400 мм.
Углы и пересечения фундамента необходимо усилить Г-образными или П-образными стержнями с перехлестом в 50d.

Минимальные требования к армированию — бетонные конструкции Еврокод

Рекомендуемый минимальный диаметр продольной арматуры в колоннах — 12 мм. Минимальная площадь продольной арматуры в колоннах определяется по формуле: As, min = 0,10 NEd / fyd> 0,002Ac Exp. (9.12N) Диаметр поперечной арматуры не должен быть меньше 6 мм или одной четверти максимального диаметра продольных стержней.

As Площадь общей арматуры колонн

Коэффициент для определения предела гибкости 1 / (1 + 0.2 пф

Ac Площадь поперечного сечения бетона bh

As Площадь общей арматуры колонн

Б

Коэффициент для определения предела гибкости

с

Коэффициент в зависимости от распределения кривизны

10 (для постоянного сечения)

К

Коэффициент для определения предела гибкости

1.7 — п.м.

д

Эффективная глубина

э-2

Эксцентриситет второго порядка

(1 / об) / о / с

ei

Эксцентриситет из-за геометрических дефектов

Es

Модуль упругости арматурной стали

200 ГПа

fcd

Расчетное значение прочности бетона на сжатие

acc fck // c

фак

Нормативная цилиндрическая прочность бетона

л Высота сжимающего элемента между концевыми ограничителями в свету

/ о

Эффективная длина

к,

Поправочный коэффициент в зависимости от осевой нагрузки

Х

Коэффициент с учетом ползучести

Пн1, Пн2

Моменты первого порядка, включая эффект геометрических несовершенств M02I> | Moi |

м2

Номинальный момент второго порядка

NEd e2

Моэ

Эквивалентный момент первого порядка

0.6 M02 + 0,4 M01> 0,4 ​​M02

MEd

Предельный расчетный момент

MEqp

Изгибающий момент первого порядка при квазипостоянной нагрузке

п

Относительная осевая сила

NEd / (Af)

набал

Значение n в максимальный момент сопротивления

0.4

ню

Коэффициент для учета армирования в колонне

1 + рн

NEd

Предельная осевая нагрузка

пог.м

Передаточное число

M01 / M02

х

Глубина до нейтральной оси

(д — я) / 0.4

z

Рычаг

согласно

Коэффициент, учитывающий долгосрочное влияние на прочность на сжатие и неблагоприятные эффекты, возникающие в результате приложения нагрузки

0,85 для изгибных и осевых нагрузок. fi

Степень использования при пожаре

NEd, fi / NRd

Hef

Эффективная ползучесть

p (

H (

Конечный коэффициент ползучести по Cl 3.1,4

Вт

Коэффициент механического усиления

As fyd / (Ac fcd)

IxI

Абсолютное значение x

Макс. {x, y + z} Максимум значений x или y + z

Продолжить чтение здесь: Особые требования к стенам

Была ли эта статья полезной?

Минимальные требования к стальной арматуре в бетоне и прозрачном покрытии

Минимальное количество стальной арматуры определяется как такое, для которого «пиковая нагрузка при первом растрескивании бетона » и «предельная нагрузка после деформации стали » равны.Таким образом можно избежать любого хрупкого поведения, а также любого локального разрушения, если элемент не чрезмерно усилен.

Другими словами, существует процентный диапазон армирования, зависящий от шкалы размеров, в пределах которого может применяться анализ предела пластичности с его статическими и кинематическими теоремами. Минимальная площадь арматуры требуется для контроля растрескивания, которое возникает в бетоне из-за температуры, усадки и ползучести. Это позволяет равномерно распределить трещины и, следовательно, минимизировать ширину отдельных трещин.

Следующие критерии были использованы для определения площади поперечного сечения при температуре или минимальном армировании, требуемом в гидротехнических сооружениях. Указанные проценты основаны на общей площади поперечного сечения армируемого бетона. Если толщина секции превышает пятнадцать (15) дюймов (380 мм), для определения температуры или минимального армирования следует использовать толщину пятнадцати (15) дюймов (380 мм).

Минимальный коэффициент необходимого армирования составляет;

ДЛЯ ПЛИТ:

f мин = 0.002 (для f y = 40000 фунтов на кв. Дюйм)

S мин = 0,0018 (для f y = 60000 фунтов на кв. Дюйм)

ДЛЯ СТЕН:

Для вертикальной стали

f мин = 0,0015

Для горизонтальной стали

f мин = 0,0025

Температурное усиление должно быть не менее ½ дюйма на расстоянии 9 дюймов от центра до центра. Все бетонные успокоительные бассейны, гласис и полы, а также все бетонные конструкции перрона (с толщиной плиты> 15 дюймов) должны быть усилены на открытой (верхней) поверхности с помощью стержней диаметром ¾ дюйма в двенадцати (12) дюймах от центра к центру, в обе стороны, размещенных по три (3) дюйма от бетонной поверхности, если не предусмотрено иное.

Номинальная арматура бетонных блоков желоба, перегородок и порогов для успокоительных бассейнов, перфораций и других частей конструкций должна состоять из стержней диаметром ¾ дюйма, расположенных на расстоянии двенадцати (12) дюймов от центра к центру.

Температурная и усадочная арматура должна быть равномерно распределена вдоль поверхностей элементов конструкции для предотвращения растрескивания из-за температурных изменений, ползучести и усадки.

В зависимости от толщины конструктивного элемента предпочтительно, чтобы расстояние между центрами первичной и вторичной арматуры было равно или меньше 300 мм; однако ни в коем случае он не должен превышать 450 мм.Минимальное расстояние в свету между стержнями не должно быть меньше 1,4 диаметра стержня или 1,4 номинального максимального размера крупного заполнителя, в зависимости от того, что больше. Это требование также распространяется на расстояние в свету между контактным стыком внахлест и соседними стыками и стержнями.

Требования к прозрачной крышке

Минимальная толщина бетонного покрытия над арматурой была определена с учетом достаточной огнестойкости и долговечности.Покрытие для арматуры, отвечающее указанному периоду огнестойкости, имеет следующую информацию:

Пожар

Сопротивление

(часы)

Балки

плиты

столбцов

Простая поддержка

непрерывный

Простая поддержка

непрерывный

0.5

20

20

20

20

20

1,0

20

20

20

20

20

1.5

20

20

25

20

20

2,0

40

30

35

25

25

3.0

60

40

45

35

25

4,0

70

50

55

45

25

Крышка более 40 мм (1.57 дюймов) могут потребоваться дополнительные меры для снижения риска растрескивания.

Крышка от выкрашивания

Бетонный элемент

Минимум

Бетонное покрытие

(дюйм)

(мм)

Лицо в контакте с землей

3

75

Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!

Минимальное армирование в бетонных конструкциях и нестабильность материала / конструкции

  • Абдалла Х.М., Карихалоо Б.Л. (2003) Определение удельной энергии разрушения бетона, не зависящей от размера, по результатам испытаний на трехточечный изгиб и раскалывание клина.Mag Concrete Res 55: 133–141

    Артикул Google Scholar

  • Балух М.Х., Азад А.К., Ашмави В. (1992) Применение механики разрушения к железобетонным элементам при изгибе. В: Carpinteri A (eds) Применение механики разрушения к железобетону. Elsevier, London, стр. 413–436

    Google Scholar

  • Bosco C, Carpinteri A (1992) Оценка механики разрушения минимального армирования в бетонных конструкциях.В: Carpinteri A (eds) Применение механики разрушения к железобетону. Elsevier, London, стр. 347–377

    Google Scholar

  • Bosco C, Carpinteri A (1992b) Смягчение и проскальзывание армированных элементов. J Eng Mech (ASCE) 118: 1564–1577

    Статья Google Scholar

  • Bosco C, Carpinteri A (1995) Прерывистый конститутивный отклик волокнистых композитов с хрупкой матрицей.J Mech Phys Solids 43: 261–274

    Статья Google Scholar

  • Bosco C, Carpinteri A, Debernardi PG (1990) Минимальное армирование в высокопрочном бетоне. J Struct Eng (ASCE) 116: 427–437

    Статья Google Scholar

  • Bosco C, Carpinteri A, Debernardi PG (1992) Влияние масштаба на пластическую вращательную способность ж.ц. балки. В кн .: Бажант З.П. (ред.) Механика разрушения бетонных конструкций.Elsevier, London, стр. 735–740

    Google Scholar

  • Carpinteri A (1981a) Модель механики разрушения для обрушения железобетона. В: Труды I.A.B.S.E. коллоквиум по современной механике железобетона. Delft, pp 17–30

  • Carpinteri A (1981b) Статические и энергетические параметры разрушения горных пород и бетона. Mater Struct 14: 151–162

    Google Scholar

  • Carpinteri A (1984) Устойчивость процесса разрушения в RC-балках.J Struct Eng (ASCE) 110: 544–558

    Статья Google Scholar

  • Карпинтери А., Массабо Р. (1996) Мостиковые и когезионные трещины при изгибе композитов с хрупкой матрицей. Int J Fract 81: 125–145

    Статья Google Scholar

  • Carpinteri A, Massabó R (1997a) Модель непрерывной и прерывистой мостиковой трещины для армированных волокном материалов при изгибе.Int J Solids Struct 34: 2321–2338

    Статья Google Scholar

  • Карпинтери А., Массабо Р. (1997b) Реверс при переходе к масштабированию разрушения волокнистых композитов. J Eng Mech (ASCE) 123: 107–114

    Статья Google Scholar

  • Carpinteri A, Ferro G, Bosco C, Elkatieb M (1999) Масштабные эффекты и явления переходного разрушения железобетонных балок при изгибе.В: Carpinteri A (ed) Минимальное армирование в бетонных элементах, том 24. Публикации ESIS, Elsevier Science Ltd, стр. 1–30

  • Carpinteri A, Ferro G, Ventura G (2003) Влияние размера на реакцию железобетона на изгиб элементы с нелинейной матрицей. Eng Fract Mech 70: 995–1013

    Статья Google Scholar

  • Ferro G (2002) Модель многоуровневой мостиковой трещины для высокопрочных бетонов. Theor Appl Fract Mech 38: 177–190

    Статья CAS Google Scholar

  • Хокинс Н., Хьерсетет К. (1992) Минимальные требования к армированию для бетонных изгибаемых элементов.В: Carpinteri A (eds) Применение механики разрушения к железобетону. Elsevier, London, стр. 37–412

    Google Scholar

  • Hillerborg A (1990) Концепции механики разрушения применительно к моментной и вращательной способности железобетонных балок. Eng Fract Mech 35: 233–240

    Статья Google Scholar

  • Хиллерборг А., Модер М., Петерсон П. (1976) Анализ образования и роста трещин в бетоне с помощью механики разрушения и конечных элементов.Цементный бетон Res 6: 773–782

    Артикул Google Scholar

  • Jenq YS, Shah SP (1986) Распространение трещин в фибробетоне. Дж. Энг Мех (ASCE) 112: 19–34

    Google Scholar

  • Карихалоо Б.Л. (1995) Механика разрушения и конструкционный бетон. Эддисон-Уэсли, Лонгман

    Google Scholar

  • Карихалоо Б.Л., Ван Дж. (2000) Механика армированных волокном цементных композитов.Comput Struct 76: 19–34

    Статья Google Scholar

  • Карихалоо Б.Л., Абдалла Х.М., Имджай Т. (2003) Простой метод определения истинной удельной энергии разрушения бетона. Mag Concrete Res 55: 471–481

    Артикул Google Scholar

  • Li VC, Wang Y, Backer S (1991) Микромеханическая модель разупрочнения при растяжении и мостикового упрочнения коротких хаотично армированных волокнами композитов с хрупкой матрицей.J Mech Phys Solids 39: 607–625

    Статья Google Scholar

  • Ногабай К. (2000) Балки из фибробетона на сдвиг и изгиб: эксперимент и модель. J Struct Eng (ASCE) 126: 243–251

    Статья Google Scholar

  • RILEM TC50 (1985) Определение энергии разрушения раствора и бетона с помощью испытаний на трехточечный изгиб балок с надрезом. Mater Struct 18: 287–290

    Google Scholar

  • RILEM TC89 (1990) Определение параметров разрушения простого бетона с помощью испытаний на трехточечный изгиб.Mater Struct 23: 457–460

    Google Scholar

  • Ruiz G (2001) Распространение когезионной трещины, пересекающей армирующий слой. Int J Fract 111: 265–282

    Статья Google Scholar

  • Руис Г., Элисес М., Планас Дж. (1998) Экспериментальное исследование разрушения железобетонных балок. Mater Struct 31: 683–691

    Статья CAS Google Scholar

  • Свами Р.Н., Аль-Таан С.А. (1981) Деформация и предел прочности при изгибе армированных балок, изготовленных из сталефибробетона.ACI J Proc 5: 395–405

    Google Scholar

  • % PDF-1.4 % 59 0 объект > эндобдж xref 59 68 0000000016 00000 н. 0000001708 00000 н. 0000002479 00000 н. 0000002693 00000 н. 0000002926 00000 н. 0000013387 00000 п. 0000013882 00000 п. 0000014987 00000 п. 0000015342 00000 п. 0000017556 00000 п. 0000017761 00000 п. 0000018154 00000 п. 0000019238 00000 п. 0000019637 00000 п. 0000020266 00000 п. 0000028683 00000 п. 0000029266 00000 п. 0000029703 00000 п. 0000030355 00000 п. 0000036192 00000 п. 0000037331 00000 п. 0000037912 00000 п. 0000038472 00000 п. 0000038776 00000 п. 0000038993 00000 п. 0000039246 00000 п. 0000039426 00000 п. 0000040464 00000 п. 0000040853 00000 п. 0000041382 00000 п. 0000041459 00000 п. 0000041480 00000 п. 0000042206 00000 п. 0000043205 00000 п. 0000049795 00000 п. 0000050750 00000 п. 0000063424 00000 п. 0000063815 00000 п. 0000064380 00000 п. 0000064769 00000 п. 0000065290 00000 п. 0000066074 00000 п. 0000067299 00000 н. 0000067575 00000 п. 0000068029 00000 п. 0000068781 00000 п. 0000070000 00000 н. 0000081578 00000 п. 0000081600 00000 п. 0000082404 00000 п. 0000082426 00000 п. 0000083263 00000 п. 0000083285 00000 п. 0000084095 00000 п. 0000084117 00000 п. 0000084927 00000 п. 0000085183 00000 п. 0000085383 00000 п. 0000085477 00000 п. 0000085978 00000 п. 0000086000 00000 п. 0000086865 00000 п. 0000086887 00000 п. 0000087674 00000 п. 0000087696 00000 п. 0000088327 00000 п. 0000001781 00000 н. 0000002457 00000 н. трейлер ] >> startxref 0 %% EOF 60 0 объект > эндобдж 125 0 объект > поток Hb«f« $ 32 ПаГ% ݧ [~ XtfKI / k + # fHLdh ^% b33tM ք # ‘, 3 KYK ׬ P ^ B, s &% 異 pt [® «jX’W% і84 ޙ Y $.F>

    & i + O | o ؅ & la # -Ⱥ-S`9 pԁ’oO? F4X (X YA | kt6X

    EC2: Минимальное и максимальное продольное армирование

    7.3.2 Минимальные армирующие области

    (1) P Если требуется контроль трещин, требуется минимальное количество склеенной арматуры для контроля трещин в областях, где ожидается растяжение. Величину можно оценить по равновесию между растягивающей силой в бетоне непосредственно перед растрескиванием и растягивающей силой в арматуре при текучести или при более низком напряжении, если необходимо ограничить ширину трещины.

    (2) Если более строгий расчет не показывает, что меньшие площади подходят, требуемые минимальные площади армирования могут быть рассчитаны следующим образом. В профилированных поперечных сечениях, таких как балки и коробчатые балки, необходимо определять минимальное усиление для отдельных частей профиля (стенок, полок).

    A s, min · σ s = k c · k · f ct, eff · A ct

    (7.1)

    где:

    9.2 балки

    9.2.1 Продольная арматура

    9.2.1.1 Минимальная и максимальная площади армирования

    (1) Площадь продольной растянутой арматуры не следует принимать менее A с, не менее .

    Примечание 1: См. Также 7.3, где указана область продольной растянутой арматуры для контроля растрескивания.

    Примечание 2: Значение A s, min для лучей, используемых в стране, можно найти в ее национальном приложении. Рекомендуемое значение приведено ниже:

    A с, мин. = 0.26 · f ctm / f yk · b t · d, но не менее 0,0013 · b t · d

    (9,1N)

    где:

    • b t обозначает среднюю ширину зоны растяжения; для тавровой балки с сжатой полкой при расчете значения b t
    • учитывается только ширина стенки.
    • f ctm следует определять по соответствующему классу прочности в соответствии с таблицей 3.1:
      f ctm = 0,30 × f ck (2/3) , f ck ≤ 50
      f ctm = 2.12 · Ln (1+ (f см /10)), f ck > 50/60
      при f см = f ck +8 (МПа)

    (2) Секции, содержащие меньше армирования, чем A s, мин. , следует рассматривать как неармированные.

    (3) Площадь поперечного сечения растянутой или сжатой арматуры не должна превышать A с, максимум вне мест нахлеста.

    Примечание. Значение A с, макс. для лучей для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение 0,04 · A c .

    9,3 Сплошные плиты

    (1) Этот раздел применяется к односторонним и двусторонним сплошным плитам, для которых b и l eff не менее 5h (элемент, для которого минимальный размер панели не менее чем в 5 раз превышает общую толщину плиты).

    9.3.1 Армирование на изгиб

    9.3.1.1 Общие

    (1) Для минимального и максимального процентного содержания стали в основном направлении 9.Применяются 2,1,1 (1) и (3).

    (2) Вторичная поперечная арматура, составляющая не менее 20% от основной арматуры, должна быть предусмотрена в односторонних плитах. На участках вблизи опор поперечная арматура к основным верхним стержням не требуется, если отсутствует поперечный изгибающий момент.

    (3) Расстояние между стержнями не должно превышать s max, плит .

    Примечание; Значение s max, плиты для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение:

    — для основной арматуры, 3 · h ≤ 400 мм, где h — общая глубина плиты;
    — для вторичной арматуры, 3.5 · h ≤ 450 мм

    В зонах с сосредоточенными нагрузками или в зонах максимального момента эти положения становятся соответственно:
    — для основной арматуры 2 · h ≤ 250 мм
    — для вторичной арматуры 3 · h ≤ 400 мм.

    9,5 Колонны

    (1) В этом разделе рассматриваются столбцы, для которых больший размер h не больше чем в 4 раза меньший размер b.

    9.5.1 Общие

    9.5.2 Продольная арматура

    (1) Продольные стержни должны иметь диаметр не менее Φ мин .

    Примечание. Значение ¢ min для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение — 8 мм.

    (2) Суммарное количество продольной арматуры должно быть не менее A с, min

    Примечание. Значение A с, мин. для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение дается выражением (9.12N)

    .

    A с, мин = макс (0,1 · N Ed / f ярдов ; 0,002 · A c )

    (9.12N)

    где:

    • f ярд — расчетный предел текучести арматуры
    • N Ed — расчетная осевая сила сжатия

    (3) Площадь продольной арматуры не должна превышать A с, не более

    Примечание. Значение A с, максимум для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение составляет 0,04 · A c вне участков внахлестку, за исключением случаев, когда можно показать, что целостность бетона не нарушена, и что полная прочность достигается при ULS.Этот предел следует увеличить до 0,08 · A c на кругах.

    (4) Для колонн, имеющих многоугольное поперечное сечение, по крайней мере, по одному стержню следует размещать в каждом углу. Количество продольных стержней в круглой колонне должно быть не менее четырех.

    9,6 Стены

    9.6.1 Общие

    (1) Этот пункт относится к железобетонным стенам с отношением длины к толщине 4 или более, в которых арматура учитывается при анализе прочности

    9.6.2 Вертикальное армирование

    (1) Площадь вертикального армирования должна лежать между A s, vmin и A s, vmax .

    Примечание 1: Значение A s, vmin для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение — 0,002 · A c .

    Примечание 2: Значение A s, vmax для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение составляет 0,04 · Ac вне участков нахлеста, если не будет продемонстрировано, что целостность бетона не нарушена и что полная прочность достигается при ULS.Этот предел может быть увеличен вдвое на кругах.

    (2) Если минимальная площадь армирования, A s, vmin , контролирует проект, половина этой площади должна быть расположена на каждой грани.

    (3) Расстояние между двумя соседними вертикальными стержнями не должно превышать трехкратную толщину стенки или 400 мм в зависимости от того, что меньше.

    9.6.3 Горизонтальная арматура

    (1) Горизонтальная арматура, идущая параллельно граням стены (и свободным краям), должна быть предусмотрена на каждой поверхности.Оно не должно быть меньше A с, hmin .

    Примечание. Значение A s, hmin для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение составляет 25% от вертикального армирования или 0,001 · A c , в зависимости от того, какое из значений больше.

    (2) Расстояние между двумя соседними горизонтальными стержнями не должно превышать 400 мм.

    9,8 Фонды

    9.8.1 Опоры колонн и стен

    (1) Минимальный диаметр стержня Φ мин. должен быть обеспечен

    Примечание. Значение Φ мин. для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение — 8 мм.

    Технические консультации T 5080.14 Сплошное железобетонное покрытие — Тротуары

    Технические рекомендации T 5080.14 Непрерывно армированное бетонное покрытие

    Заменено в августе 2016 г. Руководством по непрерывно армированному бетонному покрытию: Руководство по проектированию, строительству, техническому обслуживанию и ремонту

    5 июня 1990 г.

    1. НАЗНАЧЕНИЕ . Обрисовать в общих чертах рекомендуемые методы проектирования, строительства и ремонта непрерывно армированного бетонного покрытия (CRCP).
    2. ОТМЕНА . Техническая рекомендация T 5080. 5, Непрерывно армированное покрытие от 14 октября 1981 г., отменена.
    3. ИСТОРИЯ
      1. Непрерывно армированное бетонное покрытие — это покрытие из портландцементного бетона (PCC), которое имеет непрерывную продольную стальную арматуру и не имеет промежуточных поперечных деформационных или усадочных швов. В дорожном покрытии могут образовываться случайные поперечные трещины, и трещины плотно удерживаются вместе с помощью непрерывной стальной арматуры.
      2. В 1970-х и начале 1980-х годов расчетная толщина CRCP составляла примерно 80 процентов от толщины обычного бетонного покрытия с сочленениями. Значительное количество более тонких покрытий вышло из строя раньше, чем предполагалось.
      3. Внимание к проектированию и контролю качества строительства CRCP имеет решающее значение. Отсутствие внимания к деталям конструкции и конструкции привело к преждевременным отказам некоторых CRCP. Причины раннего повреждения обычно связываются с: (1) методами строительства, в результате которых покрытия не соответствовали проектным требованиям; (2) конструкции, приводящие к чрезмерным прогибам при больших нагрузках; (3) основания низкого качества, или; (4) сочетание этих или других нежелательных факторов.
    4. РЕКОМЕНДАЦИИ ПО ДИЗАЙНУ
      1. Толщина бетона . Как правило, толщина плиты равна толщине бетонного покрытия с сочленениями, если местные эксплуатационные характеристики не показали, что более тонкие покрытия, спроектированные с использованием принятого процесса проектирования, являются удовлетворительными.
      2. Арматурная сталь
        • (1) Сталь продольная
        • (2) Поперечная арматура и поперечные стержни
          • (a) Если включена поперечная арматура, это должны быть деформированные стержни № 4, № 5 или № 6 класса 60, отвечающие тем же спецификациям, что и для продольной арматуры.
          • (b) Хотя его можно не использовать, поперечное армирование снижает риск раскрытия случайных продольных трещин и, таким образом, снижает вероятность выбивания. Если включена поперечная арматура, можно использовать следующее уравнение для определения количества необходимой арматуры (см. Номер 5 Приложения 2):

            Где:

            P t = поперечная сталь,%
            W s = общая ширина покрытия, (футы)
            F = коэффициент трения основания
            f s = допустимое рабочее напряжение в стали, фунт / кв. дюйм, (0.75 предел текучести)

          • (c) Расстояние между поперечными арматурными стержнями можно рассчитать с помощью следующего уравнения (см. Номера 1 и 5 в Приложении 2):

            Где:

            Y = поперечное расстояние между сталью (дюйм)
            A s = площадь поперечного сечения стали (в 2 ) на стержень (4, 5 или 6 бар)
            P t = процент поперечной стали
            D = толщина плиты (дюйм)

            Примечание. Расстояние между поперечными стержнями должно быть не менее 36 дюймов и не более 60 дюймов.

          • (d) В тех случаях, когда не используется поперечная сталь, анкерные стержни следует размещать в продольных швах в соответствии с Техническими рекомендациями FHWA, «Соединения бетонных покрытий».
      3. Базы
        • (1) Конструкция основания должна обеспечивать устойчивое основание, что имеет решающее значение для строительных работ CRCP, и не должно задерживать свободную влагу под дорожной одеждой. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Рекомендуется положительный дренаж. Свободная влажность в основании или земляном полотне может привести к перекачиванию кромок плиты, который был определен как один из основных факторов, вызывающих или ускоряющих повреждение дорожного покрытия.Основания, которые будут противостоять эрозии из-за высокого давления воды, вызванного прогибами покрытия под нагрузкой от движения транспорта, или которые имеют свободный дренаж, чтобы предотвратить свободную влагу под покрытием, будут действовать, чтобы предотвратить перекачивание. Стабилизированные проницаемые основания следует учитывать для маршрутов с интенсивным движением. Тротуары, построенные на основе из стабилизированного или щебеночного камня, как правило, дают лучшие эксплуатационные характеристики, чем покрытия из нестабилизированного гравия.
        • (2) Трение между дорожным покрытием и основанием играет роль в развитии трещин в CRCP.Большинство методов проектирования CRCP предполагают умеренный уровень трения между дорожным покрытием и основанием. Полиэтиленовую пленку не следует использовать в качестве разрыва сцепления, если при проектировании не учитывается низкое трение между дорожным покрытием и основанием. Кроме того, государства сообщили о проблемах с ездой и конструкцией, когда PCC был построен на полиэтиленовой пленке.
      4. Подкатники . Непрерывно армированное бетонное покрытие не рекомендуется в районах, где ожидается деформация земляного полотна из-за известных экспансивных грунтов, морозного пучкования или мест заселения.Особое внимание следует уделять получению однородных и должным образом уплотненных грунтовых оснований. Обработка земляного полотна может потребоваться при плохих почвенных условиях.
      5. Соединения
        • (1) Продольные шарниры . Продольные швы необходимы для снятия напряжений, вызванных усадкой бетона и перепадами температур, и их следует включать, когда ширина дорожного покрытия превышает 14 футов. Тротуары шириной более 14 футов подвержены продольному растрескиванию.Шов следует выполнять пропилом на глубину до одной трети толщины дорожного покрытия. Смежные плиты должны быть связаны между собой стяжками или поперечной сталью, чтобы предотвратить разделение полос. Конструкция Tiebar обсуждается в Техническом бюллетене FHWA под названием «Стыки бетонного покрытия».
        • (2) Клеммные соединения . Наиболее часто используемые оконечные устройства — это стальная балка с широкими полками (WF), которая компенсирует движение, и анкер с проушиной, который ограничивает движение.
        • (3) Поперечные строительные швы
          • (a) Строительный шов формируется путем размещения верхней панели с прорезями поперек тротуара, чтобы продольная сталь могла проходить через шов.Сталь в продольном направлении через конструкционный шов увеличивается минимум на одну треть за счет размещения срезных стержней длиной 3 фута того же номинального размера между каждой другой парой продольных стержней. Ни один продольный стальной стык не должен попадать ближе 3 футов от стопорной стороны или ближе 8 футов от начальной стороны строительного шва. См. Параграф 4b (1) (e) для получения информации о рекомендуемых схемах сращивания. Если возникает необходимость выполнить сращивание в вышеуказанных пределах, каждое сращивание должно быть усилено 6-футовой штангой равного размера.Требуется дополнительная осторожность, чтобы обеспечить качество бетона и уплотнение в этих швах. Если между заливкой бетона проходит более 5 дней, температуру прилегающего покрытия следует стабилизировать, поместив на него изоляционный материал на расстоянии 200 футов от свободного конца не менее чем за 72 часа до укладки нового бетона. Эта процедура должна снизить потенциально высокие растягивающие напряжения в продольной стали.
          • (b) Могут потребоваться специальные меры для защиты верхней панели и прилегающей арматуры во время строительства.
      6. Отпуска . Следует избегать временных пробелов в CRCP. Необходимость в пропусках минимизируется за счет надлежащего учета графика укладки во время разработки проекта. Могут быть указаны следующие меры предосторожности, чтобы уменьшить повреждение незаполненной части плиты в случае, если исключение действительно необходимо.
      7. Вспомогательные полосы и обочины пандусов . Покрытие PCC для пандусов, вспомогательных полос и обочин, прилегающих к CRCP, рекомендуется из-за возможного уменьшения прогибов кромок покрытия и более плотных продольных стыков, прилегающих к основному покрытию.Пандусы следует сооружать с использованием бетонного покрытия с сочленениями. Использование сочлененного покрытия на пандусах компенсирует движение и снизит вероятность повреждения CRCP на конечной станции пандуса. Когда покрытие PCC используется для пандусов, вспомогательных полос или обочин, стык следует проектировать так же, как и любой другой продольный стык. См. Технический совет FHWA T 5040. 29, Плечи с твердым покрытием, для получения дополнительной информации о правильной конструкции соединения.
      8. Расширенные полосы . Следует рассмотреть возможность расширения плит правой полосы движения для уменьшения или устранения нагрузок на края дорожного покрытия.Это обсуждается в Техническом бюллетене FHWA T 5040. 29, Мощеные плечи.
    5. СООТВЕТСТВИЕ СТРОИТЕЛЬСТВУ
      1. Многие проблемы с производительностью CRCP были связаны с методами строительства, в результате которых покрытие не соответствовало ранее описанным рекомендациям по проектированию. Поскольку CRCP менее щадящий и более сложный для восстановления, чем сочлененные тротуары, большая осторожность во время строительства чрезвычайно важна. И подрядчик, и инспекторы должны быть осведомлены об этой необходимости, и надзор за строительством CRCP должен быть более строгим.
      2. Размещение стали имеет прямое влияние на производительность CRCP. В ряде государств были обнаружены отклонения продольного размещения стали на ± 3 дюйма в вертикальной плоскости, когда для размещения стали использовались трубчатые питатели. Рекомендуется использовать стулья, чтобы удерживать сталь в нужном месте. Стулья должны располагаться таким образом, чтобы сталь не могла постоянно отклоняться или смещаться на глубину более 1/2 толщины плиты. Пример устройства кресла показан на рисунке 3, комбинация кресла и поперечной стальной детали.

        Рисунок 3: Комбинация стула и поперечной стальной детали

      3. Должны быть выполнены процедуры, обеспечивающие единообразие основания и земляного полотна. Перед укладкой бетона необходимо отремонтировать и скорректировать мягкие участки или отклонения от отметок. Особое внимание следует уделять дозированию, перемешиванию и укладке бетона для достижения однородности и качества. Строгая проверка процедур дозирования и смешивания чрезвычайно важна и может потребовать отклонения партий из-за отклонений, которые могли считаться незначительными в соответствии с ранее существовавшей практикой.При укладке бетона необходимо добиться соответствующей вибрации и уплотнения. Это особенно важно в областях с разрывами дорожного покрытия, таких как конструкция или оконечные стыки. Автоматические вибраторы следует регулярно проверять, чтобы гарантировать работу с указанной частотой и амплитудой и в надлежащем месте в пластиковом бетоне. Вблизи поперечных стыков следует использовать ручные вибраторы. Любой бетон, имеющий признаки расслоения заполнителя, следует немедленно заменить.
      4. Процедуры проверки необходимы, чтобы убедиться, что окончательная длина стыка арматуры и структура, а также размещение стержней соответствуют проектным требованиям.Следует соблюдать особые меры предосторожности, чтобы предотвратить изгиб и смещение арматуры на стыках конструкции. Когда необходимы исключения, они должны быть построены в абсолютном соответствии с проектными требованиями. Продольные швы следует распиливать как можно раньше, чтобы предотвратить случайное растрескивание. Особенно это актуально при многополосном строительстве. Пиление не следует начинать, пока бетон не станет достаточно прочным, чтобы предотвратить растрескивание.
      5. Асфальтобетонные заплатки не рекомендуются в качестве временного или постоянного метода ремонта, поскольку они нарушают целостность CRCP и не обеспечивают передачу нагрузки через соединение.

    \ S \
    Энтони Р. Кейн
    Заместитель администратора
    для инженерного дела и
    Программа развития

    Вложения


    ПРИМЕР ПРОБЛЕМЫ

    Инженер-проектировщик должен выполнить следующие расчеты, чтобы убедиться, что соединение между арматурной сталью и бетоном, а также продольные расстояния между сталью соответствуют критериям параграфа 4c. Уравнение для определения отношения площади сцепления к кубическим дюймам бетона выглядит следующим образом, а уравнение для определения минимального продольного расстояния между сталью следует за ним:

    R b = n x P s x L
    W x t x L

    Где:

    • Ps = периметр стержня (дюйм.)
    • L = Длина плиты = 1 дюйм
    • W = Ширина плиты (дюйм)
    • t = Толщина плиты (дюймы)
    • n = Количество продольных стержней

    Дано: арматурные стержни №6, поэтому P s = 2,456 дюйма и площадь стержня = 0,44 дюйма 2

    W = 12 футов 9 1079 t = 10 дюймов
    Предположить: 0.6% сталь
    Определить: Требуемая минимальная площадь стали и необходимое минимальное количество стержней

    Площадь Conc. = 10 x 144 = 1440 дюймов 2
    Требуемая сталь = 0,006 x 1440 = 8,64 дюйма 2
    Минимальное количество необходимых баров (n) = 8. 64 / 0. 44 = 19. 6 баров, скажем, 20 баров

    Определить: Минимальное отношение площади сцепления к кубическим дюймам бетона.
    R b = 20 х 2.356 x 1 дюйм = 0,0327
    1440 x 1 «

    соблюдается минимальное соотношение площади сцепления к кубическим дюймам бетона, поэтому необходимо проверить минимальное расстояние.
    Определить: Продольные расстояния между стальными элементами следует проверять следующим образом:
    S b = (Вт) = 144 = 7.2 дюйма, скажем 7 дюймов,
    (n) 20

    поэтому минимальное расстояние между стержнями также соблюдается.

    ССЫЛКИ (CRCP)

    1. «AASHTO РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ДВУХСТОРОННИХ КОНСТРУКЦИЙ», 1986.

    2. «Руководство по реабилитации дорожного покрытия FHWA», FHWA-ED-88-025, сентябрь 1985 г. с дополнениями.

    3. Мунчхол Вон, Б.Фрэнк Маккалоу, У. Р. Хадсон, Оценка предлагаемых стандартов проектирования для CRCP, Отчет об исследовании 472-1, апрель 1988 г.

    4. «Методы восстановления дорожного покрытия — учебный курс», FHWA, октябрь 1987 г.

    5. «Проектирование непрерывно армированного бетона для автомобильных дорог», Ассоциированные производители арматурных стержней — CRSI, 1981.

    6. «CRCP — Практика проектирования и строительства в различных государствах», Связанные производители арматурных стержней — CRSI, 1981.

    7. «Проектирование, эксплуатационные характеристики и восстановление концевых соединений широкополочных балок», FHWA, отдел дорожной одежды, февраль 1986 г.

    8. Дартер, Майкл И., Барнетт, Терри Л., Моррилл, Дэвид Дж., «Процедуры ремонта и профилактического обслуживания непрерывно армированного бетонного покрытия», FHWA / IL / UI-191, июнь 1981 г.

    9. «Отказ и ремонт CRCP», NCHRP, Synthesis 60, 1979.

    10. Снайдер, М.Б., Рейтер, М.Дж., Холл, К.Т., Дартер, М.И., «Восстановление бетонных покрытий, Том I — Ремонтно-восстановительные методы, Том III — Оценка и система восстановления бетонных покрытий», FHWA-RD-88-071 , Июль 1989 г.

    Расчет железобетонной колонны

    согласно ACI 318-14 в RFEM

    Анализ бетонной колонны

    Железобетонная колонна с квадратными связями спроектирована так, чтобы выдерживать осевую статическую и временную нагрузку 135 и 175 тысяч фунтов соответственно с использованием конструкции ULS и факторных комбинаций нагрузок LRFD в соответствии с ACI 318-14 [1], как показано на рисунке 01 Бетонный материал имеет предел прочности на сжатие f ‘ c , равный 4 тысячам фунтов на квадратный дюйм, в то время как арматурная сталь имеет предел текучести f и , равный 60 тысяч фунтов на квадратный дюйм.Первоначально предполагается, что процент стальной арматуры составляет 2%.

    Рисунок 01 — Бетонная колонна — вид на фасаде

    Размерный дизайн

    Для начала необходимо рассчитать размеры поперечного сечения. Стойка квадратного сечения должна контролироваться на сжатие, так как все осевые нагрузки находятся строго на сжатии. Согласно таблице 21.2.2 [1] коэффициент уменьшения прочности Φ равен 0,65. При определении максимальной осевой прочности таблица 22.Ссылка на пункт 4.2.1 [1] устанавливает альфа-фактор (α) равным 0,80. Теперь можно рассчитать расчетную нагрузку P и .

    P u = 1,2 (135 k) + 1,6 (175 k)

    Исходя из этих факторов, P u равно 442 тысячам фунтов. Затем полное поперечное сечение A g может быть рассчитано с использованием уравнения. 22.4.2.2.

    P u = (Φ) (α) [0,85 f ’ c (A g — A st ) + f y A st ]

    442k = (0.65) (0,80) [0,85 (4 тысячи фунтов) (A г — 0,02 A г ) + ((60 тысяч фунтов на квадратный дюйм) (0,02) A г )]

    Решая для A г , мы получаем Площадь 188 в 2 . Корень квадратный из A г. округляется в большую сторону, чтобы получить поперечное сечение 14 x 14 дюймов для колонны.

    Требуемая стальная арматура

    Теперь, когда A г установлено, площадь стального армирования A st можно вычислить, используя уравнение 22.4.2.2, подставив известное значение A g = 196 в 2 и решив

    442k = (0.65) (0,80) [0,85 (4 тысячи фунтов) (196 дюймов 2 — A st ) + ((60 тысяч фунтов на квадратный дюйм) (A st ))]

    Решение для A st дает значение 3,24 в 2 . Отсюда можно определить количество стержней, необходимое для проектирования. Согласно разд. 10.7.3.1 [1], квадратный столбец должен иметь не менее четырех стержней. Исходя из этого критерия и минимальной требуемой площади 3,24 в 2 , (8) используется стержень № 6 для стальной арматуры из Приложения A [1]. Это обеспечивает зону армирования ниже.

    A st = 3,52 дюйма 2

    Выбор галстука

    Для определения минимального размера стяжки требуется разд. 25.7.2.2 [1]. В предыдущем разделе мы выбрали продольные стержни № 6, которые меньше стержней № 10. На основании этой информации и раздела выбираем № 3 для галстуков.

    Расстояние между стяжками

    Чтобы определить минимальные расстояния между стяжками, см. Разд. 25.7.2.1 [1]. Связи, которые состоят из деформированных стержней с замкнутыми петлями, должны иметь расстояние в соответствии с пунктами (a) и (b) этого раздела.

    (a) Расстояние в свету должно быть не менее (4/3) d agg . Для этого расчета мы примем совокупный диаметр (d agg ) равным 1,00 дюйма

    s min = (4/3) d agg = (4/3) (1,00 дюйма) = 1,33 дюйма

    (b) Расстояние между центрами не должно превышать минимум 16d b диаметра продольного стержня, 48d b анкерного стержня или наименьшего размера элемента.

    с Макс. = Мин. (16d b , 48d b , 14 дюймов.)

    16d b = 16 (0,75 дюйма) = 12 дюймов

    48d b = 48 (0,375 дюйма) = 18 дюймов

    Расчетное минимальное расстояние между стяжками равно 1,33 дюйма и максимальное рассчитанное расстояние между стяжками равно 12 дюймам. Для этой конструкции максимальное расстояние между стяжками составляет 12 дюймов.

    Проверка детализации

    Теперь можно выполнить проверку детализации для проверки процента армирования. Требуемый процент стали должен составлять от 1% до 8% в соответствии с требованиями ACI 318-14 [1].2} \; = \; 0.01795 \; \ cdot \; 100 \; \; = \; 1.8 \% $ O.K.

    Расстояние между продольными стержнями

    Максимальное расстояние между стержнями в продольном направлении можно рассчитать на основе расстояния в прозрачной крышке и диаметра как стяжных, так и продольных стержней.

    Максимальное расстояние между стержнями:

    $ \ frac {14 \; \ mathrm {in}. \; — \; 2 \; (1.5 \; \ mathrm {in}.) \; — \; 2 \; ( 0,375 \; \ mathrm {in}.) \; — \; 3 \; (0,75 \; \ mathrm {in}.)} 2 \; = \; 4,00 \; \ mathrm {in}. $

    4,00 дюйма менее 6 дюймов, что требуется в соответствии с 25,7.2.3 (а) [1]. ОК.

    Минимальное продольное расстояние между стержнями может быть рассчитано по ссылке 25.2.3 [1], в которой указано, что минимальный продольный интервал для колонн должен быть, по крайней мере, наибольшим из значений от (a) до (c).

    (a) 1,5 дюйма

    (b) 1,5 d b = 1,5 (0,75 дюйма) = 1,125 дюйма

    (c) (4/3) d b = (4/3) ( 1,00 дюйма) = 1,33 дюйма

    Следовательно, минимальное продольное расстояние между стержнями равно 1,50 дюйма.

    Длина развертки (L d ) также должна быть рассчитана с учетом 25.4.9.2 [1]. Это будет равно наибольшему из вычисленных ниже значений (a) или (b).

    (a) $ {\ mathrm L} _ {\ mathrm {dc}} \; = \; \ left (\ frac {\ displaystyle {\ mathrm f} _ {\ mathrm y} \; \ cdot \; { \ mathrm \ psi} _ {\ mathrm r}} {\ displaystyle50 \; \ cdot \; \ mathrm \ lambda \; \ cdot \; \ sqrt {\ mathrm f ‘\; \ cdot \; \ mathrm c}} \ справа) \; \ cdot \; {\ mathrm d} _ {\ mathrm b} \; = \; \ left (\ frac {\ displaystyle \ left (60,000 \; \ mathrm {psi} \ right) \; \ cdot \; \ left (1.0 \ right)} {50 \; \ cdot \; \ left (1.0 \ right) \; \ cdot \; \ sqrt {4000 \; \ mathrm {psi}}} \ right) \; \ cdot \; \ left (0.75 \; \ mathrm {in}. \ Right) \; = \; 14.23 \; \ mathrm {in}. $

    (b) $ {\ mathrm L} _ {\ mathrm {dc}} \; = \ ; 0.0003 \; \ cdot \; {\ mathrm f} _ {\ mathrm y} \; \ cdot \; {\ mathrm \ psi} _ {\ mathrm r} \; \ cdot \; {\ mathrm d} _ { \ mathrm b} \; = \; 0,0003 \; \ cdot \; (60000 \; \ mathrm {psi}) \; \ cdot \; (1.0) \; \ cdot \; (0,75 \; \ mathrm {in} .) \; = \; 13.5 \; \ mathrm {in}. $

    В этом примере (a) — большее значение, поэтому L dc = 14,23 дюйма

    Ссылаясь на 25.4.10.1 [1], Длина разработки умножается на отношение требуемой стальной арматуры к предоставленной стальной арматуре.2} \ right) \; = \; 0.65 \; \ mathrm {ft} $.

    Усиленная квадратная анкерная колонна полностью спроектирована, ее поперечное сечение можно увидеть ниже на Рисунке 02.

    Рисунок 02 — Железобетонная колонна — Расчет / размеры арматуры

    Сравнение с RFEM

    Альтернативой для проектирования квадратной колонны вручную является использование дополнительного модуля RF-CONCRETE Members и выполнение проектирования в соответствии с ACI 318-14 [1].Модуль определит необходимое армирование, чтобы противостоять приложенным нагрузкам на колонну. Кроме того, программа также спроектирует предоставленную арматуру на основе заданных осевых нагрузок на колонну с учетом требований стандарта по расстоянию. Пользователь может внести небольшие изменения в предоставленную схему армирования в таблице результатов.

    На основе приложенных нагрузок для этого примера компания RF-CONCRETE Members определила требуемую площадь продольной арматуры, равную 1.92 в 2 и обеспеченная площадь 3,53 в 2 . Длина развертки, рассчитанная в дополнительном модуле, равна 0,81 фута. Расхождение по сравнению с длиной развертки, рассчитанной выше с помощью аналитических уравнений, связано с нелинейными расчетами программы, включая частный коэффициент γ. Коэффициент γ — это отношение предельных и действующих внутренних сил, взятое из RFEM. Длина развертки в RF-CONCRETE Members находится путем умножения обратного значения гаммы на длину, определяемую из 25.4.9.2 [1]. Более подробную информацию об этом нелинейном расчете можно найти в файле справки RF-CONCRETE Members, ссылка на который приведена ниже. Это армирование можно предварительно просмотреть на Рисунке 03.

    Рисунок 03 — Стержни RF-CONCRETE — Предусмотренная продольная арматура

    Предусмотренная поперечная арматура для элемента в RF-CONCRETE Members была рассчитана как (11) стержни № 3 с шагом (ями) 12 дюймов. Предоставленная компоновка поперечной арматуры показана ниже на Рисунке 04.

    Рисунок 04 — Стержни RF-CONCRETE — Предусмотренная сдвигающая арматура

    .