Механические свойства – 1.6. Механические свойства материалов

📌 Механические свойства материалов — это… 🎓 Что такое Механические свойства материалов?

        совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм2 или Мн/м2), деформациями (в %), удельной работой деформации и разрушения (обычно в кгсм/см2 или Мдж/м2), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл). М. с. м. определяются при механических испытаниях образцов различной формы.

         а по оси абсцисс — относительное удлинение

         (F0 и l0 — соответственно начальная площадь поперечного сечения и расчётная длина образца).

         Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца

         в кгс/мм2. Напряжение

         при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузке Р Рn разгрузка образца приводит к исчезновению деформации, возникшей в нём под действием приложенного усилия; такая деформация называется упругой. Небольшое превышение нагрузки относительно Рn может не изменить характера деформации — она по-прежнему сохранит упругий характер. Наибольшая нагрузка, которую выдерживает образец без появления остаточной пластической деформации при разгрузке, определяет предел упругости материала:

         У конструкционных неметаллический материалов (пластмассы, резины) приложенная нагрузка может вызвать упругую, высокоэластическую и остаточную деформации. В отличие от упругой, высокоэластическая деформация исчезает не сразу после разгрузки, а с течением времени. Высокопрочные армированные полимеры (стеклопластики, углепластики и др.) разрушаются при удлинении 1—3%. На последних стадиях нагружения у некоторых армированных полимеров появляется высокоэластическая деформация. Высокоэластический модуль ниже модуля упругости, поэтому диаграмма деформации в этом случае имеет тенденцию отклоняться к оси абсцисс.

         Упругие свойства. В упругой области напряжение и деформация связаны коэффициентом пропорциональности. При растяжении σ = Еδ, где Е — т. н. модуль нормальной упругости, численно равный тангенсу угла наклона прямолинейного участка кривой σ = σ(δ) к оси деформации (рис. 2). При испытании на растяжение цилиндрического или плоского образца одноосному (σ1>0; (σ2 = σ3 = 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): δ
1
>0; δ2 = δ3        

         в пределах упругости для основных конструкционных материалов колеблется в довольно узких пределах (0,27—0,3 для сталей, 0,3—0,33 для алюминиевых сплавов). Коэффициент Пуассона является одной из основных расчётных характеристик. Зная μ и Е, можно расчётным путём определить и модуль сдвига

        

         и модуль объёмной упругости

                  Для определения Е, G, и μ пользуются Тензометрами.

         Сопротивление пластической деформации. При нагрузках Р > Рв наряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении — удлинение) достигает заданной величины (по ГОСТ — 0,2 %), называется условным пределом текучести и обозначается

        

         Практически точность современных методов испытания такова, что σп и σе определяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 — α) на 25—50 %] и на величину остаточной деформации (0,003—0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2) или обрываться при достижении наибольшей нагрузки Рв. Отношение

        

         характеризует временное сопротивление (предел прочности) материала. При наличии максимума на кривой растяжения в области нагрузок, лежащих на кривой левее в, образец деформируется равномерно по всей расчётной длине l0, постепенно уменьшаясь в диаметре, но сохраняя начальную цилиндрическую или призматическую форму. При пластической деформации металлы упрочняются, поэтому, несмотря на уменьшение сечения образца, для дальнейшей деформации требуется прикладывать всё возрастающую нагрузку. σ

в, как и условные σ0,2, σn и σе, характеризует сопротивление металлов пластической деформации. На участке диаграммы деформации правее в форма растягиваемого образца изменяется: наступает период сосредоточенной деформации, выражающейся в появлении «шейки». Уменьшение сечения в шейке «обгоняет» упрочнение металлов, что и обусловливает падение внешней нагрузки на участке Рв — Pk.

         У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром

D под нагрузкой Р характеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d:

        

         Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением

        

         или сужением

        

         при сжатии — укорочением

        

         (где h0 и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца Θ,

рад или относительным сдвигом γ = Θr (где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется

        

         (Fk — фактическая площадь в месте разрыва).

         Характеристики разрушения. Разрушение происходит не мгновенно (в точке k), а развивается во времени, причём начало в разрушения может соответствовать какой-то промежуточной точке на участке вк, а весь процесс заканчиваться при постепенно падающей до нуля нагрузке. Положение точки к на диаграмме деформации в значительной степени определяется жёсткостью испытательной машины и иннерционностью измерительной системы. Это делает величину Sk в большой мере условной.

         Многие конструкционные металлы (стали, в том числе высокопрочные, жаропрочные хромоникелевые сплавы, мягкие алюминиевые сплавы и др.) разрушаются при растяжении после значительной пластической деформации с образованием шейки. Часто (например, у высокопрочных алюминиевых сплавов) поверхность разрушения располагается под углом примерно 45° к направлению растягивающего усилия. При определенных условиях (например, при испытании хладноломких сталей в жидком азоте или водороде, при воздействии растягивающих напряжений и коррозионной среды для металлов, склонных к коррозии под напряжением) разрушение происходит по сечениям, перпендикулярным растягивающей силе (прямой излом), без макропластической деформации.

         Прочность материалов, реализуемая в элементах конструкций, зависит не только от механических свойств самого металла, но и от формы и размеров детали (т. н. эффекты формы и масштаба), упругой энергии, накопленной в нагруженной конструкции, характера действующей нагрузки (статическая, динамическая, периодически изменяющаяся по величине), схемы приложения внешних сил (растяжение одноосное, двухосное, с наложением изгиба и др.), рабочей температуры, окружающей среды. Зависимость прочности и пластичности металлов от формы характеризуется т. н. чувствительностью к надрезу, оцениваемой обычно по отношению пределов прочности надрезанного и гладкого образцов

        

         (у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос — в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной (

рис. 3). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2ry (на рис. 3, б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.

         Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации K1C и вязкость разрушения

        

         При этом процесс разрушения рассматривается во времени и показатели K1C(G1C) относятся к тому критическому моменту, когда нарушается устойчивое развитие трещины; трещина становится неустойчивой и распространяется самопроизвольно, когда энергия, необходимая для увеличения её длины, меньше энергии упругой деформации, поступающей к вершине трещины из соседних упруго напряжённых зон металла.

         При назначении толщины образца t и размеров трещины 2lтр исходят из следующего требования

        

         Коэффициент интенсивности напряжений К учитывает не только значение нагрузки, но и длину движущейся трещины:

        

         (λ учитывает геометрию трещины и образца), выражается в кгс/мм3/2 или Мн/м3/2. По K1C или G1C можно судить о склонности конструкционных материалов к хрупкому разрушению в условиях эксплуатации.

         Для оценки качества металла весьма распространены испытания на ударный о изгиб призматических образцов, имеющих на одной стороне надрез. При этом оценивают ударную вязкость (См. Ударная вязкость) (в кгсм/см2 или Мдж/м2)работу деформации и разрушения образца, условно отнесённую к поперечному сечению в месте надреза. Широкое распространение получили испытания на ударный изгиб образцов с искусственно полученной в основании надреза трещиной усталости. Работа разрушения таких образцов ату находится в целом в удовлетворительном соответствии с такой характеристикой разрушения, как K1C, и ещё лучше с отношением                   Временна́я зависимость прочности. С увеличением времени действия нагрузки сопротивление пластической деформации и сопротивление разрушению понижаются. При комнатной температуре у металлов это становится особенно заметным при воздействии коррозионной (коррозия под напряжением) или др. активной (эффект Ребиндера) среды. При высоких температурах наблюдается явление ползучести (См. Ползучесть), т. е. прироста пластической деформации с течением времени при постоянном напряжении (рис. 4, а). Сопротивление металлов ползучести оценивают условным пределом ползучести — чаще всего напряжением, при котором пластическая деформация за 100 ч достигает 0,2 %, и обозначают его σ0,2/100. Чем выше температура t, тем сильнее выражено явление ползучести и тем больше снижается во времени сопротивление разрушению металла (рис. 4, б). Последнее свойство характеризуют т. н. пределом длительной прочности, т. е. напряжением, которое при данной температуре вызывает разрушение материала за заданное время (например, σt100, σt1000 и т. д.). У полимерных материалов температурно-временная зависимость прочности и деформации выражена сильнее, чем у металлов. При нагреве пластмасс наблюдается высокоэластическая обратимая деформация; начиная с некоторой более высокой температуры развивается необратимая деформация, связанная с переходом материала в вязкотекучее состояние. С ползучестью связано и др. важное механическое свойство материалов — склонность к релаксации напряжений, т. е. к постепенному падению напряжения в условиях, когда общая (упругая и пластическая) деформация сохраняет постоянную заданную величину (например, в затянутых болтах). Релаксация напряжений обусловлена увеличением доли пластической составляющей общей деформации и уменьшением её упругой части.

         Если на металл действует нагрузка, периодически меняющаяся по какому-либо закону (например, синусоидальному), то с увеличением числа циклов N нагрузки его прочность уменьшается (рис. 4, в) — металл «устаёт». Для конструкционной стали такое падение прочности наблюдается до N = (2—5) ․106 циклов. В соответствии с этим говорят о пределе усталости конструкционной стали, понимая под ним обычно амплитуду напряжения

        

         ниже которой сталь при повторно-переменной нагрузке не разрушается. При |σmin| = |σmax| предел усталости обозначают символом σ-1. Кривые усталости алюминиевых, титановых и магниевых сплавов обычно не имеют горизонтального участка, поэтому сопротивление усталости этих сплавов характеризуют т. н. ограниченными (соответствующими заданному N) пределами усталости. Сопротивление усталости зависит также от частоты приложения нагрузки. Сопротивление материалов в условиях низкой частоты и высоких значений повторной нагрузки (медленная, или малоцикловая, усталость) не связано однозначно с пределами усталости. В отличие от статической нагрузки, при повторно-переменных нагрузках всегда проявляется чувствительность к надрезу, т. е. предел усталости при наличии надреза ниже предела усталости гладкого образца. Для удобства чувствительность к надрезу при усталости выражают отношением

        

        характеризует асимметрию цикла). В процессе уставания можно выделить период, предшествующий образованию очага усталостного разрушения, и следующий за ним, иногда довольно длительный, период развития трещины усталости. Чем медленнее развивается трещина, тем надёжнее работает материал в конструкции. Скорость развития трещины усталости dl/dN связывают с коэффициентом интенсивности напряжений степенной функцией:

        

         Различают сопротивление термической усталости, когда появляющиеся в материале напряжения обусловлены тем, что в силу тех или иных причин, например из-за формы детали или условий её закрепления, возникающие при циклическом изменении температуры тепловые перемещения не могут быть реализованы. Сопротивление термической усталости зависит и от многих других свойств материала — коэффициентов линейного расширения и температуропроводности, модуля упругости, предела упругости и др.

        

         Лит.: Давиденков Н. Н., Динамические испытания металлов, 2 изд., Л. — М., 1936; Ратнер С. И., Разрушение при повторных нагрузках, М., 1959; Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Прикладные вопросы вязкости разрушения, пер. с англ., М., 1968; Фридман Я. Б., Механические свойства металлов, 3 изд., М., 1974; Методы испытания, контроля и исследования машиностроительных материалов, под ред. А. Т. Туманова, т. 2, М., 1974.

         С. И. Кишкина.

        

        Рис. 1. Схемы деформации при разных способах нагружения: а — растяжение, б — сжатие, в — изгиб, г — кручение (пунктиром показана начальная форма образцов).

        

        Рис. 2. Типичная диаграмма деформации при растяжении конструкционных металлов.

        

        Рис. 3. Образец со специально созданной в вершине надреза трещиной усталости для определения K1C. Испытания на внецентренное (а) и осевое (б) растяжение.

        

        Рис. 4. Изменение механических свойств конструкционных материалов в функции времени (или числа циклов).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

dic.academic.ru

📌 Механические свойства — это… 🎓 Что такое Механические свойства?

Механические свойства – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры.

К механическим относят деформативные свойства: прочность, твердость, истираемость, сопротивление износу.

[ Косых, А. В. Искусственные и природные строительные материалы и изделия: учеб. пособие / А. В. Косых, Н. А. Лохова, И. А. Макарова. – Братск: БрГУ, 2006. – 188 с. ]

Механические свойства – совокупность показателей, характеризующих сопротивление материала воздействиям на него нагрузки, его способность деформироваться при этом, а также особенности его поведения при разрушении. Механические свойства определяют качество готовых изделий – прочность, пластичность, долговечность и др. Механические свойства физических тел существенно зависят от их формы, размеров, состояния поверхностей и других факторов; определяются по результатам механических испытаний.

[Новый политехнический словарь, Москва, Научное издательство,2000г.]

Рубрика термина: Свойства материалов

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. — Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

МЕХАНИЧЕСКИЕ СВОЙСТВА

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе мате­риала для изготовления деталей необходимо прежде всего учи­тывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвер­гают воздействию внешних сил (нагрузок). Внешние силы могут быть ста­тическими, динамическими или циклическими (повторно-переменны­ми). Нагрузка вызывает в твердом теле напряжение и деформацию.

Напряжение— величина нагрузки, отнесенная к единице площади по­перечного сечения испытуемого образца. Деформация — изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Различают деформации растяжения (сжатия), изгиба, кручения, среза (рис.8). В действительности материал может подвергаться одному или нескольким видам деформации одновременно.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растя­жение. Испытания проводят на разрывных машинах. В результате испы­таний получают диаграмму растяжения (рис. 9). По оси абсцисс этой диа­граммы откладывают значения деформации, а по оси ординат — нагруз­ки, приложенные к образцу.

 

Виды деформаций: а — сжатие, б — растяжение, в — кручение, г — срез, д— изг

 

Прочность — способность материала сопротивляться разрушению под действием нагрузок оценивается преде­лом прочности и пределом текучести. Важным показателем прочности ма­териала является также удельная прочность — отношение предела прочности материала к его плотнос­ти. Предел прочности Од (временное сопротивление) — это условное напря­жение в МПа, соответствующее наи­большей нагрузке, предшествующей разрушению образца:σн=Рмах/f0), где Рmax — наибольшая нагрузка, H; F0 — начальная площадь поперечного сече­ния рабочей части образца, м2. Истин­ное сопротивление разрыву Sk — это напряжение, определяемое отноше­ние нагрузки Рk в момент разрыва к площади минимального поперечного сечения образца после разрыва Fk(Sk=Pk/Fk).

 

Диаграмма растяжения: а — условная диаграмма в координатах Р — Л1, б — условная диаграмма напряжений и диаграмма истинных напряжений

 

 

Предел текучести (физический) σт — это наименьшее напряжение (в МПа), при котором образец деформируется без заметного увеличения нагрузки: σт=Рт/F0, где Pт — нагрузка, при которой в диаграмме растяже­ния наблюдается площадка текучести, Н.

Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором ос­таточное удлинение достигает 0,2% от расчетной длины образца:σ0.2=P0.2/F0.

Упругость — способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Руп оценивают пределом пропорциональности σпц и пределом упругости σуп.

Предел пропорциональности σпц — напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напряжением и деформацией образца δпц=Pпц/F0.

Предел упругости (условный) σ0,05 — это условное напряжение в МПа, соответствующее нагрузке, при которой остаточная деформация впер­вые достигает 0,05% от расчетной длины образца 10: σ 0,050,05/F0, где Р0,05 — нагрузка предела упругости, Н.

Пластичность — это способность материала принимать новую форму и размеры под действием внешних сил не разрушаясь. Характеризуется относительным удлинением и относительным сужением.

Относительное удлинение (после разрыва) δ — это отношение прира­щения (lk-l0) расчетной длины образца после разрыва к его первоначаль­ной расчетной длине l0, выраженное в процентах: δ =[( lk-l0/ l0) 100%.

Относительное сужение (после разрыва) σ — это отношение разности начальной и минимальной площадей (F0—Fk) поперечного сечения об­разца после разрыва к начальной площади Fg поперечного сечения, выраженное в процентах: σ =[( F0—Fk / F0] 100%.

Чем больше значения относительного удлинения и сужения для мате­риала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицатель­ным свойством.

Ударная вязкость — это способность материала сопротивляться дина­мическим нагрузкам. Определяется как отношение затраченной на из­лом образца работы W (в МДж) к площади его поперечного сечения F (в м2) в месте надрезаKC=W/F.

Для испытания изготовляют специальные стандартные образцы, име­ющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа, затраченная на излом.

Определение ударной вязкости особенно важно для некоторых метал­лов, работающих при минусовых температурах и проявляющих склон­ность к хладноломкости. Чем ниже порог хладноломкости, т.е. темпера­тура, при которой вязкое разрушение материала переходит в хрупкое, и чем больше запас вязкости материала, тем больше ударная вязкость ма­териала. Хладноломкость—снижение ударной вязкости материалов при низких температурах.

Циклическая вязкость — это способность материалов поглощать энер­гию при повторно-переменных нагрузках. Материалы с высокой цикли­ческой вязкостью быстро гасят вибрации, которые часто являются при­чиной преждевременного разрушения. Например, чугун, имеющий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем уг­леродистая сталь.

Твердостью называют способность материала сопротивляться проник­новению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют спо­собами Бринелля, Роквелла и Виккерса(рис. 10).

Способ Бринелля основан на том, что в плоскую поверхность металла вдавливают под постоянной нагрузкой стальной закаленный шарик. Диаметр шарика и величину нагрузки устанавливают в зависимости от твердости и толщины испытываемого металла. Твердость по Бринеллю определяют на твердомере ТШ (твердомер шариковый). Испытание про­водят следующим образом. На поверхности образца, твердость которого нужно измерить, напильником или абразивным кругом зачищают пло­щадку размером 3—5 см2.

Определение твердости металш методами Бринелля (а), Роквелла (б) и Виккерса (в)

 

Образец ставят на столик прибора и поднима­ют до соприкосновения со стальным шариком, который укреплен в шпинделе прибора. Груз опускается и вдавливает шарик в испытывае­мый образец. На поверхности металла образуется отпечаток. Чем боль­ше отпечаток, тем металл мягче.

За меру твердости НВ принимают отношение нагрузки к площади по­верхности отпечатка диаметром d и глубиной t, который образуется при вдавливании силой Р шарика диаметраD (см. рис. 10, а).

Числовое значение твердости определяют так: измеряют диаметр от­печатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла. В об­разец вдавливают алмазный конус с углом при вершине 120″ или стальной закаленный шарик диаметром 1,59 мм. Твердость по Роквеллу измеряется в условных единицах. Условная величина единицы твердости соответст­вует осевому перемещению наконечника на 0,002 мм. Испытание прово­дят на приборе ТК. Значение твердости определяют по глубине отпечатка П и отсчитывают по циферблату индикатора, установленному на приборе. Во всех случаях предварительная нагрузка Р0 равна 100 Н.

При испытании металлов с высокой твердостью применяют алмазный конус и общую нагрузку Р=Р0+Р1=1500 Н. Твердость отсчитывают по шкале «С» и обозначают HRC.

Если при испытании берется стальной шарик и общая нагрузка 1000 Н, то твердость отсчитывается по шкале «В» и обозначается HRB.

При испытании очень твердых или тонких изделий используют алмаз­ный конус и общую нагрузку 600 Н. Твердость отсчитывается по шкале «А» и обозначается HRA. Пример обозначения твердости по Роквеллу:

Н RC 50 — твердость 50 по шкале «С».

При определении твердости способом Виккерса в качестве вдавливае­мого в материал наконечника используют четырехгранную алмазную пирамиду с углом при вершине 136°. При испытаниях применяют нагруз­ки от 50 до 1000 Н (меньшие значения нагрузки для определения твердо­сти тонких изделий и твердых, упрочненных поверхностных слоев ме­талла). Числовое значение твердости определяют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микро­скопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. Пример обозначения твердости по Виккерсу — HV 500.

Для оценки твердости металлов в малых объемах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости. Наконечник (индентор) прибора представляет со­бой алмазную четырехгранную пирамиду (с углом при вершине 136°, та­ким же, как и у пирамиды при испытании по Виккерсу). Нагрузка на индентор невелика и составляет 0,05-5 Н, а размер отпечатка 5-30 мкм. Испытание проводят на оптическом микроскопе ПМТ-3, снабженном механизмом нагружения. Микротвердость оценивают по величине диа­гонали отпечатка.

Усталостью называют процесс постепенного накопления повреж­дений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обус­ловлена концентрацией напряжений в отдельных его объемах, в которых име­ются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся по­сле разрушения образца в результате многократного нагруженияи состоящий из двух разных по внешне­му виду частей. Одна часть излома с ровной (затертой) поверхностью обра­зуется вследствие трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая часть с зернистым изло­мом возникает в момент разрушения образца. Испытания на усталость проводят на специальных машинах. Наиболее распространены ма­шины для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, а также машины для ис­пытаний на растяжение-сжатие и на повторно-переменное кручение. В результате испытаний определяют предел выносливости, характе­ризующий сопротивление усталости.

Выносливость — свойство материала противостоять усталости. Предел выносливости — это максимальное напряжение, которое может выдер­жать металл без разрушения заданное число циклов нагружения. Между пределом выносливости и пределом прочности существует прибли­женная зависимость:

σ1≈0,43δв; σ-1p≈0.36δB, где σ1 и σ-1p — соответст­венно пределы выносливости при изгибе и растяжении-сжатии.

 

5.ТЕХНОЛОГИЧЕСКИЕ И ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА

Технологические свойства. Эти свойства характеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Тех­нологические свойства определяют при технологических пробах, кото­рые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис. 12), осматривают. Признаком того, что образец выдержал испы­тание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическим свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства и др.

Обрабатываемость резанием — одно из важнейших технологических свойств, потому что подавляющее большинство заготовок, а также дета­лей сварных узлов и конструкций подвергается механической обработ­ке. Одни металлы обрабатываются хорошо до получения чистой и глад­кой поверхности, другие же, имеющие высокую твердость, плохо. Очень вязкие металлы с низкой твердостью также плохо обрабатываются: по­верхность получается шероховатой, с задирами. Улучшить обрабатывае­мость, например, стали можно термической обработкой, понижая или повышая ее твердость.

Свариваемость — способность металлов образовывать сварное соеди­нение, свойства которого близки к свойствам основного металла. Ее оп­ределяют пробой сваренного образца на загиб или растяжение.

Ковкость — способность металла обрабатываться давлением в холод­ном или горячем состоянии без признаков разрушения. Ее определяют

Технологические пробы: а — изгиб на определенный угол, б — изгиб до параллельности сторон, в — изгиб до соприкосновения сторон, г— на навивание, д — на сплющивание труб, е — на осадку

кузнечной пробой на осадку до заданной степени деформации. Высота образца для осадки равна обычно двум его диаметрам. Если на боковой поверхности образца трещина не образуется, то такой образец считается выдержавшим пробу, а испытуемый металл — пригодным для обработки давлением.

Литейные свойства металлов характеризуют способность их образо­вывать отливки без трещин, раковин и других дефектов. Основными литейными свойствами являются жидкотекучесть, усадка и ликвация.

Жидкотекучесть — способность расплавленного металла хорошо за­полнять полость литейной формы.

Усадка при кристаллизации — это уменьшение объема металла при пе­реходе из жидкого состояния в твердое; является причиной образования усадочных раковин и усадочной пористости {см. рис. 6) в слитках и от­ливках.

Ликвация — неоднородность химического состава сплавов, воз­никающая при их кристаллизации, обусловлена тем, что сплавы, в отли­чие от чистых металлов, кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллиза­ции сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод).

Эксплуатационные свойства. Эти свойства определяют в зависимости от условий работы детали специальными испытаниями. Одним, из важнейших эксплуатационных свойств является износостойкость.

Износостойкость — свойство материала оказывать сопротивление из­носу, т.е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении. Испытание ме­таллов на износ проводят на образцах в лабораторных условиях, а дета­лей — в условиях реальной эксплуатации. При испытаниях образцов мо­делируются условия трения, близкие к реальным. Величину износа об­разцов или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами.

К эксплуатационным свойствам следует также отнести хладностойкость, жаропрочность, антифрикционность и др. Указанные технологи­ческие свойства будут рассмотрены далее.

 

 

ГЛАВА II. ОСНОВЫ ТЕОРИИ СПЛАВОВ


Похожие статьи:

poznayka.org

Механические свойства

Механические свойства и их показатели имеют большое значение при оценке качества материалов, обосновании выбора их для изделий, разработке конструкции изделия и параметров технологического процесса его изготовления.

В процессе изготовления и эксплуатации материалы и изделия испытывают действие различных усилий (сил). Приложение к материалу внешних усилий называют нагрузкой, а их снятие — разгрузкой. Усилия различают по площади приложения, характеру действия на материалы во времени и по направлению, числу циклов воздействия и др.

По площади приложения нагрузки бывают распределенные и сосредоточенные. Распределенные нагрузки делят на поверхностные и объемные. Поверхностные нагрузки прилагаются ко всей поверхности материала, например аэродинамическая нагрузка на кузов автомобиля. Объемные нагрузки распределены по всему объему тела, например сила тяжести и сила инерции. Сосредоточенные нагрузки прилагаются к малой площадке (точке), например при проколе иглой материал испытывает сосредоточенную нагрузку.

По характеру действия на материалы и изделия нагрузки бывают статические и динамические. Статические нагрузки, прикладываемые к материалу, действуют непрерывно в течение сравнительно длительного времени. При динамических нагрузках на материал действуют силы, которые изменяют свое значение или направление. Так, подвесное устройство люстры испытывает статическую нагрузку, а на гвоздь при его забивании молотком действует динамическая нагрузка.

По числу циклов воздействия различают полу-, одно- и многоцикловые нагрузки. Под циклом понимается суммарное время воздействия нагрузки, разгрузки и отсутствия нагрузки (отдых).

Полуцикловые характеристики определяют поведение материалов при однократном, обычно предельном действии нагрузки, вызывающем разрушение. Они отражают деструкцию молекул вещества, составляющего материал, потерю массы материала и др.

Одноцикловые характеристики, получаемые чаще при длительном нагружении с последующим отдыхом, отражают влияние временного фактора, особенности деформации материалов, их способность сохранять форму.

Многоцикловые характеристики определяют стабильность механических свойств при многократных силовых воздействиях. Под действием многократных по значению, но кратковременно действующих сил, нарушается структура тел, ослабляются межмолекулярные связи, даже деструктируются молекулы. Таким образом, многоцикловыми характеристиками оценивают устойчивость структуры. Многоцикловые нагрузки испытывает, например, обувь при ходьбе.

Под действием нагрузки изменяются размеры материалов и изделий. Явление изменения линейных и угловых размеров материалов и изделий называется деформацией. Деформация является следствием изменения средних расстояний между частицами (молекулами, атомами, ионами) вещества тела. Деформация материала зависит от значения и вида нагрузки, внутреннего строения, формы и характера расположения отдельных частиц, сил межмолекулярного и межатомного сцепления.

Полная деформация материалов и изделий слагается из обратимой (упругой Еу и эластической Еэ) и необратимой (пластической Е ). При обратимой деформации первоначальное состояние и размеры тела полностью восстанавливаются сразу после разгрузки.

Деформация считается необратимой, если тело после разгрузки и не получает исходные размеры.

Е = Еу + Еэ + Е . (5.4)

Составные части полной деформации под действием внешней силы начинают развиваться одновременно, но с различными, присущими им, скоростями.

Упругая деформация мгновенно исчезает после разгрузки. Упругая деформация возникает потому, что под действием внешней силы происходят небольшие изменения средних расстояний между частицами материалов, между соседними звеньями и атомами и макромолекулах. При этом межмолекулярные и межатомные связи охраняются, а валентные углы немного увеличиваются. Эти изменения приводят к тому, что упругая деформация вызывает увеличение объема деформируемого тела. Упругая деформация распространяется со скоростью звука в данном материале, она свойственна материалам не только кристаллического строения, возникает и у материалов аморфного упорядоченного строения, например стекла, когда взаимодействие между частицами тела велико.

Пластическая деформация возникает, когда под действием Внешних факторов происходят изменения конфигурации макромолекул материала, а также их перегруппировка. У некоторых полимерных материалов, например каучука, эта деформация может достигать нескольких сотен процентов и потому называется высоко пластической.

Под действием внешней силы макромолекулы переходят в более распрямленное состояние и ориентируются по направлению действия сил. Для подобной перегруппировки требуется значительное время. Такая деформация осуществляется как релаксационный процесс, идущий во времени и приводящий к достижению равновесного состояния.

Под релаксацией понимается процесс постепенного перехода материала (системы) из неравновесного состояния, вызванного внешними факторами, в состояние равновесия. При этом снижение напряжений происходит вследствие постепенного уменьшения упругой деформации и приращения на то же значение пластической деформации. Продолжительность релаксации зависит ОТ материала и начального напряжения и изменяется от десятков до сотен часов. Скорость релаксации возрастает с увеличением температуры.

Явление релаксации необходимо учитывать при технологической обработке материалов и изучении внутренних напряжений в изделиях. Желательно, чтобы процесс релаксации прошел до поступления товара в эксплуатацию. Если релаксация проявляется в процессе эксплуатации изделия, возможна его деформация. С явлением релаксации тесно связано явление гистерезиса, или запаздывания. Таким образом, эластическая деформация развивается во времени с небольшой скоростью. Она сильно зависит от условий, влияющих на межмолекулярное взаимодействие. Например, повышение температуры, поглощение малых молекул различных веществ, ослабляющих межмолекулярное взаимодействие (так называемая пластификация), ускоряют развитие деформации.

Эластическая деформация чаще проявляется у изделий на основе высокомолекулярных органических соединений (полимеров) и материалов (кожа, ткани, каучук и др.). Значение этой деформации важно для эксплуатации одежды, с ней связаны сминаемость и распрямление тканей. Ткани с высокой эластической деформацией характеризуются хорошей износостойкостью. Релаксация эластической деформации является одной из причин усадки текстильных материалов — их укорочения при смачивании и нагревании, в частности при стирке и других влажно-тепловых воздействиях.

Пластическая деформация остается в материале после разгрузки. В этом случае в материале происходят необратимые смещения звеньев макромолекул на большие расстояния. При развитии этого вида деформации у полимерных материалов макромолекулы преодолевают значительные межмолекулярные связи, поэтому эта деформация развивается медленнее, чем эластическая. У кристаллических материалов пластическая деформация связана с нарушением кристаллической структуры. Пластическая деформация необратима, так как после удаления внешней силы отсутствуют причины ее исчезновения.

В зависимости от того, какие виды деформации в большей степени проявляются в материале, их условно делят на пластичные и хрупкие. Для пластичных материалов характерно явление текучести, когда при определенных нагрузках материал начинает деформироваться под действием постоянной (не увеличивающейся) нагрузки. Отсутствие текучести проявляется как хрупкость.

Типичными представителями пластичных материалов являются незакаленные углеродистые и легированные стали, медь, свинец, алюминий, глина, а хрупких — чугун, закаленная легированная сталь, стекло. Материалы, в которых проявляется в основном упругая деформация и ничтожно малы другие виды деформации, называются упругими. Важно знать, каковы соотношения упругой и пластической деформаций и их природу.

В зависимости от направления приложенной внешней силы различают деформации растяжения, сжатия, изгиба, сдвига, кручения и др. (рис. 5.1).

 

 

Деформация растяжения характеризуется изменением размеров материала под действием продольных (растягивающих) сил. Она проявляется при эксплуатации тканей, кожи, одежды, обуви, строительных материалов и др.

Различные материалы неодинаково реагируют на растяжение, что позволяет судить о специфике их свойств. При одних и тех же значениях нагрузки деформация не одинакова (рис. 5.2). При разгрузке наблюдается большее удлинение материала, чем при нагружении. Кривая разгружения в этом случае не совпадает с кривой нагружения. При этом образуется петля гистерезиса. Площадь петли гистерезиса характеризует затраты энергии на нагревание материала и преодоление сил трения между отдельными частицами при переходе их в первоначальное состояние. Для упругих материалов петля гистерезиса имеет вид замкнутой кривой.

Если тело при растяжении пластически деформируется, то потеря энергии необратима, и при каждом повторном нагружении начало кривой растяжения перемещается из одной точки в другую. При этом повышается жесткость и уменьшается пластичность материала. Это необходимо учитывать при выборе материала для изготовления изделий.

Деформация сжатия важна для хрупких материалов. Ее можно рассматривать так же, как деформацию растяжения, но с обратным знаком. При деформации сжатия в отличие от растяжения увеличиваются поперечные размеры и уменьшается длина образца. Основной показатель деформации сжатия — разрушающее напряжение, вычисляемое по той же формуле, что и для растяжения. Некоторые материалы (кирпич, цемент и др.) по этому показателю делят на марки. Хрупкие материалы разрушаются внезапно, без остаточных деформаций. Пластические материалы разрушаются постепенно, характеризуются большими остаточными деформациями.

 

Рис. 5.2. Петля гистерезиса при растяжении и разгрузке материала

 

Деформации изгиба — это вид деформации, характеризующийся искривлением оси или срединной поверхности деформируемого объекта под действием внешних факторов. Они проявляются при эксплуатации одежды, обуви, строительных материалов.

Если на середину бруса, лежащего на двух опорах, действовать сосредоточенной нагрузкой, то в выпуклой части наблюдается деформация растяжения, а в вогнутой — деформация сжатия; в зоне нейтрального слоя деформации нет.

Деформация изгиба характеризуется стрелой прогиба. При этом напряжение сжатия в вогнутой части бруса постепенно уменьшается до нейтрального слоя, в котором не наблюдается никаких напряжений. Ниже этого уровня возрастает напряжение растяжения. Значения напряжений растяжения и сжатия зависят от изгибающего момента, модуля упругости материала, места расположения и удаления определенной части от нейтральной линии и от радиуса кривизны. Деформация в слое, отстоящем от нейтрального слоя, прямо пропорциональна этому расстоянию и обратно пропорциональна радиусу кривизны нейтрального слоя. Если слой имеет большую толщину, а радиус кривизны мал, возникают значительные напряжения и материал разрушается.

Деформации сдвига проявляются в местах соединений деталей, когда две равные силы (Q) действуют в противоположном направлении и расположены в двух близких поперечных сечениях (см. рис. 5.1, г). Деформация сдвига определяется углом сдвига. Если сдвиг частиц тела происходит в одной плоскости, то деформация называется срезом. Деформация сдвига частично связана с деформациями кручения и изгиба и, как правило, предшествует им. Значение, на которое сечение сместилось относительно соседнего, называется абсолютным сдвигом.

Деформация кручения — вид деформации, характеризующийся взаимным поворотом поперечных сечений стержня, вала, нити под влиянием моментов (пар сил), действующих в противоположных направлениях в плоскости этих сечений. Деформация кручения сообщается волокнам и нитям. Скрученность характеризуется круткой, углом наклона волокон или нитей к продольной оси и направлением крутки (правая, левая).

Напряжение при кручении в определенной точке стержня пропорционально ее расстоянию до центра сечения. Наибольшее напряжение испытывают поверхностные слои материала, а наименьшее — внутренние.

По значению деформации судят о механических свойствах материалов и изделий: пластичности, упругости, прочности, твердости, хрупкости, выносливости, износостойкости и др.

Пластичность — свойство твердых тел необратимо деформироваться под действием механических нагрузок. Пластичность определяет возможность технологических операций обработки материалов давлением (ковки, проката и др.).

Упругость — свойство материала или изделия полностью восстанавливать сразу после разгрузки взаимные положения частиц (размеры тела), которые были до нагрузки. Показателем, характеризующим способность материала упруго сопротивляться нагрузкам, является модуль упругости Е (МПа).

Прочность — способность материала выдерживать действие внешних факторов до предельного состояния (разрушения). Как известно, под действием нагрузки в материале возникают внутренние напряжения, которые могут привести к разрушению или появлению в материале недопустимой пластической деформации (предельного состояния). Исходя из вида деформаций различают прочность при растяжении, сжатии, изгибе, кручении, ударе и др.

 

Рис. 5.3. Диаграмма растяжения

 

При изгибе, кручении, сдвиге в отдельных участках материала имеет место деформация растяжения. Поэтому наиболее часто определяются именно прочностные характеристики при растяжении. На реакцию материала на растяжение существенно влияют размеры и форма образцов, а также скорость увеличения нагрузки и условия среды. При большой длине образцов заметнее влияние неравномерности материала и его релаксационные особенности, поэтому показатели механических свойств материала могут искажаться. В стандартах на методы испытаний материалов и изделий нормируются размеры образца и параметры испытания.

Например, хрупкие материалы (стекло, фарфор, чугун) лучше переносят сжатие, чем растяжение, изгиб, удар.

Прочность материалов и изделий можно оценивать в абсолютных и относительных единицах. К характеристикам прочности относятся разрывная нагрузка, разрывное напряжение, разрывное удлинение, работа разрыва, усталостная прочность, стойкость к истиранию, стойкость к растяжению и изгибу и др. По результатам испытаний строится диаграмма растяжения (рис. 5.3). Значения некоторых показателей регламентируются стандартами. По этим показателям можно судить о режиме изготовления изделий и их поведении при эксплуатации.

Нагрузка, при которой материал разрушается, называется разрывной. Показатель разрывной нагрузки определяют непосредственно на разрывной машине в момент разрыва материала. Разрывная нагрузка используется для общей оценки прочности без уточнения конкретных условий использования материала. Так, разрывная нагрузка является показателем механических свойств ткани.

Разрывное напряжение (Па) — отношение максимальной нагрузки, предшествующей разрушению Рр (Н), к первоначальной площади поперечного сечения образца S (м2):

= P / S (5.5)

Разрывное напряжение позволяет сравнивать прочность различных материалов в недеформированном состоянии.

Абсолютное разрывное удлинение lр представляет собой приращение длины растягиваемого образца к моменту его разрыва и выражается в единицах длины (километрах, метрах, миллиметрах и др.)- Показатель абсолютного разрывного удлинения используется при выборе материала, удлинение которого не превышает конкретного значения при нагрузке до разрыва.

Относительное разрывное удлинение р (%) определяют как отношение абсолютного разрывного удлинения к начальной длине пробы l0:

= 100 l / l (5.6)

Этот показатель используется при общей оценке свойств материалов и изделий без уточнения конкретных условий их применения и тогда, когда требуются материалы с определенным удлинением.

Показатели разрывного удлинения учитываются при оценке качества ниток, тканей, канатов, тросов, проволок, пленок, бумаги и других товаров.

В качестве комплексных характеристик прочности используют относительную и абсолютную работу разрыва.

Абсолютная работа разрыва (Дж), т.е. работа, совершаемая внешней силой при воздействии на материал, показывает, какое количество энергии затрачено на преодоление энергии связей между частицами структуры материала при его разрушении:

R =P l (5.7)

где — коэффициент полноты диаграммы, который показывает, какую часть от площади прямоугольника S занимает площадь S’ под кривой растяжения (см. рис. 5.3): = S/S’.

Относительная работа разрыва оценивается отношением работы разрыва к массе m или объему Vn испытуемого материала или изделия:

r =R /m ; r =R /V (5.8)

Работа разрыва облегчает оценку свойств материала в целом, позволяет определить возможность замены одного материала другим. Чем больше работа разрыва, тем труднее материал разрушить, тем, следовательно, он прочнее.

Многие материалы в процессе изготовления и эксплуатации испытывают многоцикловые нагрузки. При таких воздействиях происходят сложные изменения структуры материалов и накапливание остаточной деформации.

Возможны концентрация напряжений, при которых структура имеет дефекты, а также смешение элементов структуры без усиления связи между ними, возникновения и увеличения трещин, приводящих к разрушению материала.

Процесс постепенного изменения структуры и свойств материала вследствие его многократной деформации называется утомлением. В результате утомления появляется усталость — ухудшение свойств материала, не сопровождающееся существенной потерей массы. Многоцикловые воздействия на материалы и изделия оцениваются остаточным удлинением, выносливостью, долговечностью, пределом выносливости.

Выносливость nр представляет собой число циклов воздействия, которые выдерживает материал до своего разрушения. Эта же характеристика, но выраженная временем tp, в течение которого проводились многократные воздействия, называется долговечностью.

Предел выносливости р — наибольшее значение деформации в каждом цикле, при котором материал выдерживает (заметно не изменяя своих свойств) очень большое число циклов воздействия.

Твердость — способность материала сопротивляться проникновению в него другого, более твердого тела. Твердость материала зависит от его природы, строения, геометрической формы, размеров и расположения атомов, а также сил межмолекулярного сцепления.

Твердость определяет способ формования и обработки материалов, а также назначение изделий. Например, режущий инструмент должен иметь более высокую твердость, чем обрабатываемый материал. Твердость оказывает влияние на сохранение внешнего вида изделий. Так, твердая глазурь фарфора не должна царапаться ножом. Для одних товаров твердость является показателем функциональных свойств (инструменты, ножевые изделия), для других — показателем надежности, а твердость глазури фарфоровых и фаянсовых изделий обусловливает их гигиенические свойства.

 


Похожие статьи:

poznayka.org

Механические свойства

Область напряжений, при которых происходит только упругая деформация, ограничена пределом пропорциональности ?пц. В этой области в каждом зерне имеют место только упругие деформации, а для образца в целом выполняется закон Гука – деформация пропорциональна напряжению (отсюда и название предела).

Переход к пластическому состоянию наблюдается в таком интервале нагрузок, при которых движение дислокаций (и, следовательно, пластическая деформация) происходит только в отдельных кристаллических зернах, а в остальных продолжает реализовываться механизм упругой деформации.

Пластическое состояние реализуется, когда движение дислокаций происходит во всех зернах образца.

После перестройки дислокационной структуры (завершения пластической деформации) металл возвращается в упругое состояние, но с измененными упругими свойствами. 

2.5. ТВЕРДОСТЬ

В единицах HRC часто формулируют требования к  качеству поверхности стальных деталей после термообработки. Твердость HRC в наибольшей степени отражает уровень рабочих характеристик высокопрочных сталей, а с учетом простоты измерений по Роквеллу, очень широко применяется на практике. Подробно о методе Роквелла с описанием различных шкал и твердости разных классов материалов см. http://www.fast-const.ru/articles.php?article_id=2

3.1. ТРЕЩИНОСТОЙКОСТЬ (ВЯЗКОСТЬ РАЗРУШЕНИЯ)

     Свойство противостоять усталости называется выносливостью.    Её важнейшей характеристикой является предел выносливости. Он  показывает наибольшее напряжение цикла, при котором не происходит усталостного разрушения после заданного числа циклов.       Чаще используют симметричные знако-переменные циклы (поочередно действуют одинаковые по амплитуде сжимающие и растягивающие напряжения), в таких случаях предел выносливости  обозначается ?-1.

Испытания на усталостную прочность регламентированы  в ГОСТ 25.502.79 и в ГОСТ 25.505-85

В другом варианте  нижний индекс указывает допустимую скорость установившейся ползучести.

Для получения необходимой полноты сведений о свойствах необходимо пользоваться не ГОСТами, в которых приведены несколько легкоизмеряемых величин,а справочной литературой.

normis.com.ua

Механические свойства и методы их определения

2 лекция

МАТЕРИАЛОВЕДЕНИЕ

Механические свойства и методы их определения

Механические свойства материалов определяют на специальных образцах.

Наиболее распространенными механическими характеристиками являются: твердость , пределы прочности и упругости , ударная вязкость

Испытания выполняются на раз­рывных машинах с использованием специальных образцов. Деформация может быть упругой или пластической . Упругая деформация полностью снимается (исчезает) после снятия
нагрузки. Пластическая деформация не исчезает после снятия нагрузки (согните алюминиевую проволоку, после того как нагрузка снята, проволока не разгибается — она пластически деформирована).

При этом определяются: предел прочности (sв) — напряжение, при котором происходит разрушение образца

Определение твердости

Твердость характеризует сопротивление материала большим пластическим деформациям.

Наиболее распространенные методы определения твердости связаны с внедрением специального тела, называемого индентором, в испытуемый материал с таким усилием, чтобы в материале остался отпечаток индентора.

Метод Бринелля (НВ )

Вдавливание шарика происходит при постоянной нагрузке, в результате на поверхно­сти образца образуется отпечаток в виде сферической лунки.

Диаметр отпечатка измеряется в двух взаимно перпендикулярных направлениях с помощью микроскопа Бринелля — это лупа со шкалой.

Метод Роквелла

Принципиальное отличие этого метода от рассмотренного ранее заключается в том, что твердость определяется не площадью поверхности отпечатка индентора, а глубиной его проникновения в исследуемый образец.

В качестве индентора используют алмазный конус при испытаниях твердых материалов и стальной закаленный шарик при испытаниях мягких материалов. Значения твердости обозначаются: HRC — алмазный конус, нагрузка 150 кгс; HRA — алмазный конус, нагрузка 60 кгс; HRB — шарик (например, 90 HRA). Шкала по измерению твердости HRC изменена в связи с изменением эталона, поэтому в измеряемые значения следует вносить поправку.

Значения твердости в единицах HRC примерно в 10 раз меньше, чем в единицах НВ, т.е. твердость 30 HRC примерно соответ­ствует 300НВ.

Метод Виккерса

Метод основан на вдавливании четырехгранной алмазной пирамидки с углом между противоположными гранями, равным 136°. Твердость (она обозначается HV ) определяется отношением нагрузки к площади поверхности отпечатка.

Значения твердости по Бринеллю и Виккерсу практически равны.

Метод Шора .

При измерении твердости по Шору груз вместе с укрепленным на нем индентором (обычно это стальной шарик) падает с высоты на образец перпендикулярно его поверхности. Твердость по Шору определяется по высоте отскока шарика(груз с инден­тором).

Определение ударной вязкости и вязкости разрушения

Для определения ударной вязкости используют образцы с надрезом, который служит концентратором напряжений. Образец устанавливают на маятниковом копре так, чтобы удар маятника происходил против надреза, раскрывая его. Маятник поднимают на высоту, при падении он разрушает образец, поднимаясь на высоту(так как часть запасенной при подъеме работы тратится на разрушение образца).

Ударная вязкость — это относительная работа разрушения, т.е. работа, отнесенная к площади образца до разрушения.
Вязкость разрушения. Более полную информацию о вязкости металлов дают испытания на вязкости разрушения.

КЛАССОФИКАЦИЯ СТАЛЕЙ

Сплавы с содержанием углерода (С) до 2,14% называются сталями.

Стали классифицируются по химическому составу, способу производства, качеству, степени раскисления, назначению, структуре

По хим. Составу стали классифицируются на углеродистые и легированные.
Углеродистые делятся на: низкоуглеродистые – до 0,25% С,
среднеуглеродистые – 0,25-0,6% С,
высокоуглеродистые – более 0,6% С.
По содержанию легирующих элементов делятся:
низколегированные – до 2,5% лиг. эл.,
среднелегированные – 2,5-10% лиг. эл.,
высоколегированные – долее 10% л. э.

По способу производства различают:
конверторные,
мартеновские,
электростали,
стали особым методом выплавки.

По назначению стали классифицируются:
конструкционные,
инструментальные,
строительные,
стали специального назначения с особыми свойствами.

По качеству различают:
обыкновенного качества,
качественные,
высококачественные,
особовысококачественные.
Качество стали зависит от вредных примесей, преимущественно от (серы, фосфора)

Качество углеродистых сталей отражается в маркировки.
Стали обыкновенного качества маркируют буквами Ст (Ст3).
В конце маркировки высококачественных сталей ставится буква А (У10А).

Все легированные стали производят как минимум качественными (10, 20, 45 — % С в 0,00).

Для производства особовысококачественных сталей применяют специальные виды улучшающие обработку, которые могут указываться в маркировках сталей.
ВИ (ВИТ) – переплавка в вакуумных индукционных печах,
ВД (ВДП) – переплавка в вакуумных дуговых печах,
Ш (ЭМП) – электрошлаковый переплав,
ШД – вакуумный дуговой переплав сталей после электрошлакового переплава,
ОДП – обычная дуговая переплавка,
ПДБ – плазменно-дуговая переплавка.

По степени раскисления различают:
спокойную (ст) которая раскислена марганцем. Кремнием и алюминием.
полуспокойную (пс) раскислена марганцем и алюминием.
кипящую (кп) раскисляется марганцем.

В ГОСТах маркировка сталей принято следующее комбинация, чисел и букв.
Первая цифра в маркировки указывает на содержание углерода в стали:
если цифра однозначная то в 0,0%,
если цифра двухзначная то в 0,00%,
если цифра не указана то ~ 1%.
ПРИМЕР 9ХС – 0,9% углерода

Для обозначение легирующих элементов входящих в состав стали каждому из них присвоена своя буква:

Н-никель, Д-медь, А-азот, Х-хром, Р-бор, П-фосфор, К-кобальт, Б-ниобий, М-малибден, Ц-цирконий, Т-титан, Г- марганец, С-кремний, Ф-ванадий, Ю-алюминий, В-вольфрам.

Цифры идущие после букв, указывают среднее содержание данного легирующего элемента в %. Если цифры нет то легирующего элемента ~ 1%.

Пример:
9ХС — 0,9% угл.,1% хрома,1% кремния.
Х12 – 1% угл., 12% хрома.

Степень раскисления сталей обозначается буквами в конце маркировки стали: СП — спокойная, ПС — полуспокойная, КП – кипящая.

Для некоторых сталей употребляется специальное условное обозначение:

Р – быстрорежущая сталь, цифра за которой указывается содержание вольфрама в % (Р18-быстрорежущая сталь с 18% вольфрама),
маркировка шарикоподшипниковых сталей начинается с буквы Ш и последующей цифры указывающей на содержание хрома в 0,0% (ШХ15 – шарикоподшипниковая сталь 1,5% хрома)

Углеродистые стали обыкновенного качества – Ст0, Ст1, Ст2, Ст3, СТ3Г, …- используется для металлоконструкций слабонагруженных.
Углеродистые конструкционные качественные стали – 08, 10, 15, 20, 25, 30, …85 – винты, гайки, болты.
Автоматные стали – А11,А20,А30,АС40 (С — свинец, Е — селен ) изделия не ответственные изготавливаются на автоматах.

Углеродистые инструментальные стали – У7, У8, У9, …У13.
Высококачественные – У7А, …У13А.
Легированные стали –
ст. средней прочности 15ХР,20ХМ и т.п.
ст. повышенной прочности – 12Х2Н3А, 18Х2НМА изготавливают поршневые кольца
Улучшаемые стали – 30Х,40Х, 50Х изготавливают коленчатые валы.
Хромокремнемарганцевые стали – 30ХГСА автомобильное производство.
Хромоникелевые стали – 40ХН шест-ни

Хромоникельмолибденовые стали – 40ХНМА, 38ХНЗМФА изготавливают сильно нагруженные детали.
Высокопрочные стали – 30ХГСНА, 30Х5МСФА.
Рессорно-пружинистые стали – 55С2, 60С2А, 70С3А изготавливают пружины вагонов, автомобильные рессоры.
Шарикоподшипниковые стали – ШХ15, ШХ15СГ изготавливают траки гусеничных танков, крестовины рельс.

Инструментальные стали – 9ХС, ХВГС, ХВ2, ХВ4 изготавливают плашки, протяжки.
Быстрорежущие стали – Р18, Р6М5, 10Р6М5 крупногабаритный инструмент работающий с знакопеременными нагрузками.
Стали специального назначения – 12Х13, 30Х13,12Х18Н10Т изготавливают лопатки турбин, хирургический инструмент.
Жаростойкие стали – 15Х5, 12Х17, 15Х28, 25Х2М1
A используются в котлостроительстве.

Чугун — классификация и маркировка

В зависимости от степени графитизации, обусловливающей вид излома, — на серый, бел

mirznanii.com

📌 Механические свойства — это… 🎓 Что такое Механические свойства?


Механические свойства

Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала.

Методы проверки механических свойств

Следует отметить следующие основные методы проверки механических свойств:

Важным фактором является влияние термической обработки на механические свойства. Механические свойства должны рассматриваться в комплексе, с учётом конструкции, технологии и условий нагружения.

Существуют ещё параметры материала, связанные с изменением механических свойств при изменении температуры:

Библиография

  • Я.Б. Фридман. Механические свойства металлов. Изд. 3, в 2-х частях. М., «Машиностроение», 1974
  • М.Л. Бернштейн, В.А Займовский. Механические свойства металлов. Мзд. второе, М., «Металлургия», 1979.

Ссылки

Wikimedia Foundation. 2010.

  • Механические приспособления
  • Механический апельсин

Смотреть что такое «Механические свойства» в других словарях:

  • Механические свойства — – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры. К механическим относят деформативные свойства: прочность, твердость, истираемость,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов реакция материала на приложенные механич. нагрузки. Осн. характеристиками механич. свойств являются напряжения и деформации. Напряжения характеристики сил, к рые относят к единице сечения образца материала или изделия, конструкции из… …   Физическая энциклопедия

  • Механические свойства —         горных пород (a. mechanical properties of rocks; н. mechanische Eigenschaften der Gesteine; ф. proprietes mecaniques des roches; и. caracteristicas mecanicas de rocas, propiedades mecanicas de rocas) характеризуют изменения формы,… …   Геологическая энциклопедия

  • механические свойства — Свойства материала, которые показывают упругое и неупругое поведение при воздействии силы, вследствие этого указывая пригодность материала для дальнейшего применения; например, модуль упругости, предел прочности на разрыв, относительное удлинение …   Справочник технического переводчика

  • МЕХАНИЧЕСКИЕ СВОЙСТВА — характеристики поведения тел (большей частью твердых) под действием механических напряжений. Механические свойства характеризуются механическими напряжениями (смотри Прочность), деформациями (смотри Пластичность), работой (смотри Ударная… …   Металлургический словарь

  • Механические свойства — Mechanical properties Механические свойства. Свойства материала, которые показывают упругое и неупругое поведение при воздействии силы, вследствие этого указывая пригодность материала для дальнейшего применения; например, модуль упругости, предел …   Словарь металлургических терминов

  • механические свойства — mechaninės savybės statusas T sritis automatika atitikmenys: angl. mechanical properties vok. mechanische Eigenschaften, f rus. механические свойства, n pranc. propriétés mécaniques, f …   Automatikos terminų žodynas

  • механические свойства — mechaninės savybės statusas T sritis Standartizacija ir metrologija apibrėžtis Kūnų ir medžiagų reagavimo į mechaninius poveikius charakteristikos. atitikmenys: angl. mechanical properties vok. mechanische Eigenschaften, f rus. механические… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • механические свойства — mechaninės savybės statusas T sritis chemija apibrėžtis Kūno reagavimo į mechaninius poveikius charakteristika. atitikmenys: angl. mechanical properties rus. механические свойства …   Chemijos terminų aiškinamasis žodynas

  • механические свойства — mechaninės savybės statusas T sritis fizika atitikmenys: angl. mechanical properties vok. mechanische Eigenschaften, f rus. механические свойства, n pranc. propriétés mécaniques, f …   Fizikos terminų žodynas

Книги

  • Механические свойства металлов. Часть 1. Твердость. Прочность. Пластичность, Михаил Беломытцев, Лабораторный практикум, состоящий из трех частей, включает в себя одиннадцать лабораторных работ из курса «Механические свойства металлов». К каждой лабораторной работе дано краткое… Категория: Техническая литература Издатель: МИСиС, Подробнее  Купить за 536 руб электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)
  • Механические свойства жидких металлов. Экстремальные свойства минимальных монокристаллов металлов, О. С. Николаев, Настоящая книга состоит из двух частей. В первой части изложен тепловой способ оценки механических свойств жидких металлов. Он применим для тел, находящихся в любом из трех состояний. Получен… Категория: Учебники для ВУЗов Серия: Relata Refero Издатель: Едиториал УРСС, Производитель: Едиториал УРСС, Подробнее  Купить за 440 грн (только Украина)
  • Механические свойства жидких металлов. Экстремальные свойства минимальных монокристаллов металлов, Николаев О.С., Настоящая книга состоит из двух частей. В первой части изложен тепловой способ оценки механических свойств жидких металлов. Он применим для тел, находящихся в любом из трех состояний. Получен… Категория: Научная, учебная литература для специалистов Серия: Relata Refero Издатель: URSS, Подробнее  Купить за 347 руб
Другие книги по запросу «Механические свойства» >>

dic.academic.ru