Коэффициент теплового линейного расширения стали – Коэффициент линейного расширения сталей и сплавов

Содержание

Коэффициент теплового линейного расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины: теплоемкость, теплопроводность, температуры кипения, плавления, пламени. Удельные теплоты сгорания и парообразования. Термические константы. Коэффициенты теплообмнена и расширения / / Коэффициенты теплового линейного расширения, теплового объемного расширения.  / / Коэффициент теплового линейного расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.  Вариант для печати.

Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Материал

Коэффициент линейного теплового расширения

(10-6 м/(мK)) / ( 10-6 м/(мoС))

(10-6 дюйм/(дюйм oF))

ABS (акрилонитрил-бутадиен-стирол) термопласт 73.8 41
ABS — стекло, армированное волокнами 30.4 17
Акриловый материал, прессованный 234 130
Алмаз 1.1 0.6
Алмаз технический 1.2 0.67
Алюминий 22.2 12.3
Ацеталь 106.5 59.2
Ацеталь , армированный стекловолокном 39.4 22
Ацетат целлюлозы (CA) 130 72.2
Ацетат бутират целлюлозы (CAB) 25.2 14
Барий 20.6 11.4
Бериллий 11.5 6.4
Бериллиево-медный сплав (Cu 75, Be 25) 16.7 9.3
Бетон 14.5 8.0
Бетонные структуры 9.8 5.5
Бронза 18.0 10.0
Ванадий 8 4.5
Висмут 13 7.3
Вольфрам 4.3 2.4
Гадолиний 9 5
Гафний 5.9 3.3
Германий 6.1 3.4
Гольмий 11.2 6.2
Гранит 7.9 4.4
Графит, чистый 7.9 4.4
Диспрозий 9.9 5.5
Древесина, пихта, ель 3.7 2.1
Древесина дуба, параллельно волокнам 4.9 2.7
Древесина дуба , перпендикулярно волокнам 5.4 3.0
Древесина, сосна 5 2.8
Европий 35 19.4
Железо, чистое 12.0 6.7
Железо, литое 10.4 5.9
Железо, кованое 11.3 6.3

Материал

Коэффициент линейного теплового расширения

(10-6 м/(мK)) / ( 10-6 м/(мoС))

(10

dpva.ru

Коэффициент линейного расширения, формула и примеры

Определение и формула коэффициента линейного расширения

При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение.

Допустим, что изначальная длина тела равна — его удлинение при увеличении температуры тела на , в таком случае определен формулой:

   

Коэффициент линейного удлинения является характеристикой относительного удлинения (), которое происходит при увеличении температуры тела на 1К.

Применение коэффициента линейного расширения

Коэффициент линейного расширения используют для нахождения длины тела (), после нагревания , она считается равной:

   

Формулу (2) можно использовать и для нахождения длины тела при его охлаждении.

Величина зависит от вещества, из которого изготовлено тело. В большом количестве случаев .

Величина в общем случае зависит от температуры. Эмпирически установлено, что одно и то же тело при высоких температурах испытывает большее тепловое расширение, чем при низких температурах. Но в большинстве случаев этим пренебрегают и считают, что изменение размеров тела пропорционально температуре.

Для нахождения величины коэффициента линейного расширения измеряют длину стержня () из изучаемого материала. При этом температура стержня поддерживается одинаковой по всей длине. Температуру увеличивают на некоторую величину и измеряют удлинение стержня которое вызвало повышение температуры. Для изменения малой величины удлинения применяют, например, микроскоп. При этом один конец стержня закрепляют и в микроскоп наблюдают за перемещением другого конца при нагревании.

Следует отметить, что коэффициент линейного расширения можно считать постоянной величиной, не зависящей от температуры только при небольших изменениях температур. Так, для железа при температуре, равной oC ; при 0oC ; при 600oC . Следовательно, формулу (2) применяют для небольшой величины , используя значение коэффициента линейного расширения для соответствующего интервала температур.

Единицы измерения

Основной единицей измерения коэффициента линейного расширения в системе СИ является:

   

Примеры решения задач

ru.solverbook.com

Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)

Температурный коэффициент линейного расширения металлов и сплавов

В таблице приведены средние значения температурного коэффициента линейного расширения 

ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).

Металл, сплав

Коэффициента линейного расширения ɑ, 10-6°С-1

Алюминий

2,4

Бронза

13-21

Вольфрам (в интервале температур от 0 до 200 °С)

4,5

Дуралюмин (при t = 20 °С)

23

Золото

14

Железо

12

Инвар*

1,5

Иридий

6,5

Константан

42339

Латунь

17-19

Манганин

18

Медь

17

Нейзильбер

18

Никель

14

Нихром (от 20 до 100 °С)

14

Олово

26

Платина

9,1

Платинит** (при t = 20 °С)

41920

Платина-иридий*** (от 20 до 100 °С)

8,8

Свинец

29

Серебро

20

Сталь углеродистая

43009

Цинк

32

Чугун (от 20 до 100 °С).

41952

* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.

** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.

*** Из этого сплава изготовлены прототипы килограмма и метра.

Температурный коэффициент линейного расширения твердых веществ

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура). 

Вещество

Коэффициента линейного расширения ɑ, 10-6°С-1

Алмаз

1,2

Бетон (при t = 20 °С)

41913

Гранит (при t = 20 °С)

8

Графит

7,9

Древесина (при t = = 20 °С):

 

  — вдоль волокон

5,5-5,5

  — поперек волокон

34-60

Кварц плавленый (при * = 40 °С)

0,4

Кирпич (при t = 20 °С)

41885

Лед (в интервале температур от —20 до 0 °С)

51

Парафин (от 16 до 48 °С)

70*

Дуб (от 2 до 34 °С):

 

  — вдоль волокон

4,9

  — поперек волокон

54,4

Сосна (от 2 до 34 °С):

 

  — вдоль волокон

5,4

  — поперек волокон

34

Стекло лабораторное

41885

Стекло оконное (от 20 до 200 °С)

10

Фарфор

2,5-4,0

Шифер (при t = 20 °С)

10

* коэффициент объемного расширения парафина.

Температурный коэффициент обьемного расширения жидкостей

В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре  20 °С (если не указана иная).

Жидкость

Коэффициента обьемного расширения β, 10-6°С-1

Бензин

1240

Вода

200

Вода (в интервале от 10 до 20 °С)

150

Вода (от 20 до 40 °С)

302

Воздух жидкий (от -259 до -253 °С)

12600

Глицерин

505

Керосин

960

Кислород (от -205 до -184 °С)

3850

Нефть

900

Раствор соли (6%)

300

Ртуть

181

Серная кислота

570

Скипидар

940

Спирт

1080

Эфир

1600

Хлор (в интервале температур от -101 до -34,1 °С) 

1410

Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а

infotables.ru

Коэффициенты теплового расширения — iForms Центр Полиграфических Оснасток

Материал

Коэффициент теплового расширения

(10-6 м/(мK)) / ( 10-6 м/(мoС))

(10-6 дюйм/(дюйм oF))

ABS (акрилонитрилбутадиенстирол) термопласт73.841
ABS — стекло, армированное волокнами30.417
Акриловый материал, прессованный234130
Алмаз1.10.6
Алмаз технический1.20.67
Алюминий22.212.3
Ацеталь106.559.2
Ацеталь, армированный стекловолокном39.422
Ацетат целлюлозы (CA)13072.2
Ацетат бутират целлюлозы (CAB)25.214
Барий20.611.4
Бериллий11.56.4
Медно-бериллиевый сплав (Cu 75, Be 25)16.79.3
Бетон14.58.0
Бетонные структуры9.85.5
Бронза18.010.0
Ванадий84.5
Висмут137.3
Вольфрам4.32.4
Гадолиний95
Гафний5.93.3
Германий6.13.4
Гольмий11.26.2
Гранит7.94.4
Графит, чистый7.94.4
Диспрозий9.95.5
Древесина, пихта, ель3.72.1
Древесина дуба, параллельно волокнам4.92.7
Древесина дуба, перпендикулярно волокнам5.43.0
Древесина, сосна52.8
Европий3519.4
Железо, чистое12.06.7
Железо, литое10.45.9
Железо, кованое11.36.3
Золото14.28.2
Известняк84.4
Инвар (сплав железа с никелем)1.50.8
Инконель (сплав)12.67.0
Иридий6.43.6
Иттербий26.314.6
Иттрий10.65.9
Кадмий3016.8
Калий8346.1 — 46.4
Кальций22.312.4
Каменная кладка4.7 — 9.02.6 — 5.0
Каучук, твердый7742.8
Кварц0.77 — 1.40.43 — 0.79
Керамическая плитка (черепица)5.93.3
Кирпич5.53.1
Кобальт126.7
Констанан (сплав)18.810.4
Корунд, спеченный6.53.6
Кремний5.12.8
Лантан12.16.7
Латунь18.710.4
Лед5128.3
Литий4625.6
Литая стальная решетка10.86.0
Лютеций9.95.5
Литой лист из акрилового пластика8145
Магний2514
Марганец2212.3
Медноникелевый сплав 30%16.29
Медь16.69.3
Молибден52.8
Монель (никелево-медный сплав)13.57.5
Мрамор5.5 — 14.13.1 — 7.9
Мыльный камень (стеатит)8.54.7
Мышьяк4.72.6
Натрий7039.1
Нейлон, универсальный7240
Нейлон, Тип 11 (Type 11)10055.6
Нейлон, Тип 12 (Type 12)80.544.7
Нейлон литой, Тип 6 (Type 6)8547.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав8044.4
Неодим9.65.3
Никель13.07.2
Ниобий (Columbium)73.9
Нитрат целлюлозы (CN)10055.6
Окись алюминия5.43.0
Олово23.413.0
Осмий52.8
Палладий11.86.6
Песчаник11.66.5
Платина9.05.0
Плутоний5430.2
Полиалломер91.550.8
Полиамид (PA)11061.1
Поливинилхлорид (PVC)50.428
Поливинилденфторид (PVDF)127.871
Поликарбонат (PC)70.239
Поликарбонат — армированный стекловолокном21.512
Полипропилен — армированный стекловолокном3218
Полистирол (PS)7038.9
Полисульфон (PSO)55.831
Полиуретан (PUR), жесткий57.632
Полифенилен — армированный стекловолокном35.820
Полифенилен (PP), ненасыщенный90.550.3
Полиэстер123.569
Полиэстер, армированный стекловолокном2514
Полиэтилен (PE)200111
Полиэтилен — терефталий (PET)59.433
Празеодимий6.73.7
Припой 50 — 5024.013.4
Прометий116.1
Рений6.73.7
Родий84.5
Рутений9.15.1
Самарий12.77.1
Свинец28.015.1
Свинцово-оловянный сплав11.66.5
Селен3.82.1
Серебро19.510.7
Скандий10.25.7
Слюда31.7
Сплав твердый (Hard alloy) K2063.3
Сплав хастелой (Hastelloy) C11.36.3
Сталь13.07.3
Сталь нержавеющая аустенитная (304)17.39.6
Сталь нержавеющая аустенитная (310)14.48.0
Сталь нержавеющая аустенитная (316)16.08.9
Сталь нержавеющая ферритная (410)9.95.5
Стекло витринное (зеркальное, листовое)9.05.0
Стекло пирекс, пирекс4.02.2
Стекло тугоплавкое5.93.3
Строительный (известковый) раствор7.3 — 13.54.1-7.5
Стронций22.512.5
Сурьма10.45.8
Таллий29.916.6
Тантал6.53.6
Теллур36.920.5
Тербий10.35.7
Титан8.64.8
Торий126.7
Тулий13.37.4
Уран13.97.7
Фарфор3.6-4.52.0-2.5
Фенольно-альдегидный полимер без добавок8044.4
Фторэтилен пропилен (FEP)13575
Хлорированный поливинилхлорид (CPVC)66.637
Хром6.23.4
Цемент10.06.0
Церий5.22.9
Цинк29.716.5
Цирконий5.73.2
Шифер10.45.8
Штукатурка16.49.2
Эбонит76.642.8
Эпоксидная смола , литая резина и незаполненные продукты из них5531
Эрбий12.26.8
Этилен винилацетат (EVA)180100
Этилен и этилакрилат (EEA)205113.9
Эфир виниловый16 — 228.7 — 12

iforms.ru

Коэффициент теплового расширения, формула и примеры

Определение и формула коэффициента теплового расширения

Тепловым расширением называют изменение размеров тела при изменении его температуры. Тепловое расширение (сжатие) характеризуют при помощи соответствующего коэффициента. Различают линейное и объемное тепловое расширения. Эти процессы характеризуют коэффициентами теплового расширения: — средний коэффициент линейного теплового расширения, средний коэффициент объемного теплового расширения.

Обозначим начальную длину тела , — его удлинение при увеличении температуры тела на , тогда будет равен:

   

Коэффициент линейного теплового расширения является характеристикой относительного удлинения (), которое происходит при увеличении температуры тела на 1К.

При увеличении температуры увеличивается объем тела. Для твердых тел и жидкостей можно считать справедливой формулу:

   

где — начальный объем тела, — изменение температуры тела.

Коэффициент объемного расширения тела — это физическая величина, характеризующая относительное изменение объема тела (), происходящее при нагревании тела на 1 K давление должно быть постоянным. Коэффициент можно определить как:

   

Тепловое расширение твердого тела связывают с ангармоничностью тепловых колебаний частиц, составляющих кристаллическую решетку тела. В результате данных колебаний при увеличении температуры тела увеличивается равновесное расстояние между соседними частицами этого тела.

Изменение объема тела ведет к изменению его плотности:

   

где — начальная плотность, — плотность вещества при новой температуре. Так как величина то выражение (4) иногда записывают как:

   

Коэффициенты теплового расширения зависят от вещества. В общем случае они будут зависеть от температуры. Коэффициенты теплового расширения считают независимыми от температуры в небольшом интервале температур.

Существует ряд веществ, имеющих отрицательный коэффициент теплового расширения. При повышении температуры такие материалы сжимаются. Обычно это происходит в узком интервале температур. Есть вещества, у которых коэффициент теплового расширения почти равен нулю в некотором определенном интервале.

Связь коэффициентов теплового расширения

В первом приближении можно считать, что коэффициенты линейного и объемного расширения изотропного тела связаны соотношением:

   

Единицы измерения

Основной единицей измерения коэффициентов температурного расширения в системе СИ является:

   

Примеры решения задач

ru.solverbook.com

Температурные коэффициенты линейного расширения в металлокерамических узлах

Таблица 10. Температурные коэффициенты линейного расширения материалов, используемых в металлокерамических узлах.

Материал

Значения α х 107 в интервале температур, °С

20-200

20-300

20-400

20-500

20-600

20-700

20-800

20-900

Керамика

Поликор

69

76

78

79

80

81

83

86

Сапфирит

67

68

74

78

80

83

85

86

ГМ

62-66

 

 

78

А-995

62

75

Стоал

75±5(20-1000°С)

ЦМ-332

85

22-ХС

62

68

71

73

75

76

73

80

М-7

61

64

67

69

72

75

 

80

ВГ-IV

62

66

70

73

75

78

 

82

Брокерит-9

72

 

 

82-86

СК-1

65

 

 

СПК-2

59

79

 

ТК-21

64

84

 

199

55

ЛФ-11

83

89

93

98

101

103

106

109

КВФ-4

80±5

100±5 (20-1000°С)

17

83

84

87

89

91

93

96

97

Фарфор

40-60

Металлы и сплавы

Ковар

48

46

45

63

78

90

99

110

Н-42

52

53

63

81

95

77

Н-46

78

77

77

89

102

111

120

129

Медь

172

177

180

182

186

190

193

197

Армко железо

123

126

130

134

136

138

135

Сталь 03Х18Н12ВИ

171

174

180

183

186

196

199

Вольфрам

43

45

43

43

45

48

50

55 (20-1100°С)

Молибден

49

53

54

55

57

00

63

73 (20-1100°С)

Тантал

65

65

66

68

71

73

81 (20-1100°С)

Ниобий

73

74

75

76

77

77

81 (20-1100°С)

МД15 Н. П (Ni 2,8-2,0; Си 14- 15, Мо — остальное)

75

78

80 (20-1000°С)

МД32НП (Ni 2,8; Си 29,8; Мо — остальное)

105

113

120 (20-1000°С)

ЦНТ-3

63

70

74

78

79

МР-47ВП (Re 47 ± 3; Мо — остальное)

66

66

67

ВР-27ВП (W73; Re- остальное)

55

Цирконий

54

69

89

Титан

88

92

95

97

99

99

100

www.prosvarky.ru

Сплавы с заданным температурным коэффициентом линейного расширения

Сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) широко применяются в приборостроении, авиационно-космической отрасли, машиностроении. Также, достаточно часто из таких сплавов изготавливают мерительный инструмент со штриховыми мерами. Главное требование, которое предъявляется к деталям из таких сплавов это размерная стабильность в определенном интервале температур.

Коэффициент линейного расширения это такой зверь физическая величина 𝛼 в 10-6 степени, которая измеряется величиной обратной температуре 1/°С (1/°К). Он характеризует относительное изменение линейных размеров тела с увеличением температуры на 1 градус.

Наверное самым известным представителем сплавов с заданным ТКЛР является сплав 36Н — инвар. Это аустенитный сплав, состоящий из 0.05% C, 36% Ni, Fe — ост. Его применяют при изготовлении деталей автомобилей и бытовых приборов. Этот сплав имеет коэффициент линейного расширения 𝛼 = 1,5*10-6 1/°С. Для улучшения свойств сплава в химсостав дополнительно вводят медь и кобальт. Это будет уже сплав суперинвар — 32НДК. Сплав 32НДК состоит из ~0.05C, 32% Ni, ~3.5% Co, ~0.7% Cu. Суперинвар имеет коэффициент линейного расширения 𝛼, не более 1*10-6 1/°С

Также, в приборостроении широко применяется другой сплав с заданным температурным коэффициентом линейного расширения — ковар или сплав 29НК. Он состоит из 29%Ni, 18%Co, Fe- ост. Ковар широко применяется в оптическом производстве, в изделиях из молибденового стекла, при производстве люминесцентных ламп.

При нагреве, на поверхности ковара образуется окисная пленка, которая при взаимодействии со стеклом способствует образованию достаточно плотного контакта. Ковар применяется при производстве радиоаппаратуры со стеклами, в микроэлектронике, при производстве деталей космических спутников и аппаратов. Ковар имеет ТКЛР 𝛼 = (4,6 — 5,5)*10-6 1/°С.

В качестве более дешевого аналога ковара, применяются сплавы 18ХТФ и 18ХМТФ (0.35%Mo, 0.35V, 18%Cr, 0.6%Ti). Эти сплавы применяются при изготовлении изделий из стекла, например телевизионных кинескопов, когда от сплава требуется коэффициент линейного расширения 𝛼 ≤ 8,7*10-6 1/°С


heattreatment.ru