Как рассчитать буронабивной свайный фундамент для дома
Вопросы экономии на строительстве фундамента могут быть решены путем использования передовых и безопасных решений, которые отличаются меньшей затратой строительных материалов по сравнению с традиционными вариантами оснований. В частности, с каждым годом возрастает популярность буронабивных фундаментов, которые успели зарекомендовать себя с положительной стороны. Но прежде чем приступать к строительству, необходимо провести тщательный расчет буронабивного фундамента. О том, как это сделать своими силами, вы сможете прочитать в нашей небольшой статье.
С чего начать расчет?
Итак, вы уже знаете, какой дом будете возводить на вашем участке. Все, что вам нужно – последовательно пройти через ряд этапов, большая часть которых сводится к проведению аналитической работы:
- оценить характер грунта;
- просчитать нагрузку от здания;
- провести расчет площади фундамента, вернее – площади его подошвы;
- определиться с параметрами буронабивных свай и их количеством
Оцениваем качественные параметры грунта
В статье «Расчет фундамента» мы приводили достаточно полную информацию о том, как самостоятельно оценить показатели грунта, а также рассчитать требуемую площадь подошвы фундамента. Там же вы можете посмотреть примерный расчет буронабивного фундамента. Стоит учитывать условие, что буронабивное свайное основание не подходит для участков с высоким УГВ.
Рассчитываем нагрузку от дома
На данном этапе необходимо прикинуть примерную нагрузку от будущего сооружения. Как это сделать, описано в этой статье. По сути, требуется лишь просуммировать массу стройматериалов, которая пойдет на строительство надземной части дома – сделать это несложно, имея в своем распоряжении сводные таблицы со средними значениями удельной массы.
Расчет параметров и количества буронабивных свай
Очевидно, что от параметров опор, в том числе – от площади подошвы каждой сваи, зависит их требуемое количество. Порядок расчетов такой же, как и при расчете столбчатого фундамента. В конце статьи, на которую мы ссылаемся, приведен пример того, как определиться с количеством опор. Не забываем о том, что минимально допустимый шаг между сваями составляет 2 метра, и все опоры необходимо объединить в одну систему обвязкой железобетонным ростверком. Уже на этом этапе можно «на бумаге» провести достаточно точный расчет прочности фундамента – выдержит ли он воздействия, как со стороны здания, так и со стороны грунта?
Сколько бетона и арматуры потребуется на устройство буронабивного основания
На этапе, когда вы определились с количеством буронабивных свай, самое время определить требуемый объем бетонной смеси. О том, как это сделать, мы писали здесь – рекомендуем ознакомиться с этой тематической статьей. Не забываем и про арматуру для фундамента. При желании, вы можете самостоятельно приготовить бетонную смесь прямо на участке – так будет дешевле и, благо, буронабивное основание нетребовательно к срокам заливки: сваи можно заливать так, как вам удобно!
Загрузка…Онлайн калькулятор бетона для свайного фундамента. Завод «ЭКОБЕТОН» Вологда
Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента
Поможет оценить и рассчитать всю материальную часть будущего проекта, в том числе позволит определиться с тем, сколько бетона потребует проект. Он является хорошим подспорьем на этапе планирования. Рекомендуем связаться со специалистами для получения рекомендаций касательно фундаментных работ.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003.
Свайный (или столбчатый) – тип фундамента, при возведении которого сваи (столбы) погружают в грунт на нужную глубину. Их верхушки соединяют между собой, не соприкасающейся с землей непосредственно, железобетонной лентой, которая называется ростверк. Глубина, на которую будут забиты или иным способом погружены опоры, является основным отличием между первым и вторым типами.
Такой фундамент лучше подойдет для строительства в условиях слабых, пучинистых, растительных грунтов, либо в регионах, где земля промерзает на большую глубину. Учитывая возможность забивать сваи в любое время года, данный фундамент находит свое применение в областях с холодным климатом. Помимо этого, свайный фундамент может похвастаться быстротой постройки при минимуме земляных работ, которые ограничиваются бурением нужного количества отверстий или забиванием уже готовых свай. Во втором случае необходима специализированная техника.
Свайный фундамент отличается по геометрии свай, материалу, из которого их изготовляют, способу воздействия на почву, технологии монтажа свай и видам ростверка. Понимание климатических факторов, нагрузок на сваи и свойств почвы помогут выбрать вариант, подходящий под конкретную постройку.
Важно не
пытаться производить проектирование самостоятельно в попытке сэкономить и не
заниматься самостроем. Работа без контроля со стороны специалистов с профильным
образованием и опытом работы может привести к таким плачевным последствиям, как
обрушение здания.
онлайн калькулятор, какое количество свай нужно, необходимая несущая способностьи подробный монтаж
Фундамент выполняет важную и ответственную функцию, не допускающую никаких сомнений в возможностях или надежности основания.
В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.
Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.
Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.
Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.
Содержание статьи
Какие параметры нужно рассчитать для правильного выбора свайного фундамента
Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы
:- Измеряемые.
- Расчетные.
К измеряемым могут быть причислены все свойства грунта на данном участке:
- Состав слоев.
- Уровень залегания грунтовых вод.
- Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
- Глубина залегания и состав плотных слоев.
К расчетным параметрам относятся:
- Величина нагрузки на основание.
- Несущая способность опоры.
- Схема расположения стволов.
- Параметры свай и ростверка.
Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.
ВАЖНО!
Расчет фундамента — ответственная и очень сложная задача. Ее решение можно поручить только грамотному и опытному специалисту, имеющему соответствующую профессиональную подготовку и квалификацию
Расчет с помощью онлайн-калькулятора
Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.
Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.
Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.
Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.
Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.
Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.
Как найти нагрузку на основание
Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:
- Стены дома.
- Перекрытия.
- Стропильная система и кровля.
- Наружная обшивка, утеплитель.
- Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
- Вес людей и животных.
- Снеговая и ветровая нагрузка.
Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.
Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.
От каких факторов зависит шаг?
Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.
Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.
Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.
Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.
На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м
.Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.
Пример вычисления необходимого количества опор
Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.
Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.
Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.
Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.
Она определяется практически, методом пробного погружения сваи или бурением скважины.
Пример расчета буронабивной основы
Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.
Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.
После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.
Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.
Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.
ОБРАТИТЕ ВНИМАНИЕ!
Необходимо помнить, что все расчеты производятся по формулам, не учитывающим реальной обстановки на участке.
Основные схемы размещения
Существует несколько разновидностей схем расположения свай:
- Свайное поле.
- Свайный куст.
- Свайная полоса.
Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.
Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.
Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.
При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.
Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.
Как правильно рассчитать шаг
Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.
ВАЖНО!
В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.
Оптимальное расстояние
Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.
Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.
Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.
Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.
В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.
Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.
Пример нахождения размеров ростверка
Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.
Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.
Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.
Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.
Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.
Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.
Полезное видео
В данном разделе вы сможете ознакомиться с пособием по расчету свайно-ростверкового, плитно-свайного, а также свайно-ленточного фундамента:
Заключение
Большинство пользователей не производит расчет фундамента, так как это слишком сложная и ответственная задача.
Чаще всего для этого привлекают опытных специалистов.
Как минимум, используются онлайн-калькуляторы, позволяющие получить нужные данные быстро и совершенно бесплатно.
Кроме того, такие ресурсы позволяют найти необходимое количество всех материалов и нередко даже рассчитывают их стоимость для монтажа.
Следует учитывать, что всецело полагаться на качество подсчета при помощи неизвестного алгоритма опасно, надо хотя бы продублировать расчет на другом, подобном ресурсе.
В целом, самостоятельный расчет можно производить только для вспомогательных или хозяйственных построек, чтобы не слишком рисковать своим имуществом, здоровьем и жизнью людей.
Вконтакте
Google+
Одноклассники
Калькулятор расчета свайного фундамента — онлайн расчет столбчатого фундамента
С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.
Онлайн-калькулятор для расчета монолитного буронабивного ростверкового фундамента поможет рассчитать размеры фундамента, опалубки, диаметр и общую длину арматуры и объём расходуемого бетона. Перед началом проектирования здания с таким фундаментом обязательно проконсультируйтесь у специалистов, насколько оправдан такой выбор.
Расчеты данного калькулятора основываются на нормативах, приведенных в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».
Столбчатый и свайный фундамент – разновидности фундаментов, в которых используются столбы или сваи в качестве опор. Они погружаются в грунт на необходимую глубину, а их верхние части соединяются цельной железобетонной конструкцией (ростверком), которая не соприкасается с землёй. При столбчатом и свайном варианте ростверкового фундамента отличается глубина установки опор.
Ростверковая конструкция имеет смысл там, где грунт не пригоден для обычного размещения фундамента (слабый грунт, пучинистый, либо промерзающий на значительную глубину). Поскольку сваи забиваются при любых климатических условиях, ростверковый фундамент особенно актуален для регионов с низкими температурами и суровым климатом. Другие преимущества ростверковой технологии – высокая скорость возведения и низкая потребность в земляных работах. Достаточно пробурить отверстия и выполнить установку уже готовых свай.
Многие параметры ростверкового фундамента могут варьироваться. Это форма и материалы свай, способы действия на грунт, способы установки, форма ростверка. Каждый случай ростверкового фундамента должен учитывать расчётные нагрузки, климатические условия, специфику грунта и другие особенности местности и будущего сооружения. Чтобы уточнить все эти моменты, нужно провести необходимые замеры и расчёты, при необходимости – пригласить специалистов. Экономия на первоначальных расчётах может обернуться серьезными последствиями в будущем. Чтобы этого избежать, в первую очередь рекомендуем внимательно изучить данный калькулятор. В нем вы сможете определить будущие расходы и на примере стандартной конструкции определиться с составляющими планируемого фундамента.
Заполняя поля калькулятора, сверьтесь с дополнительной информацией, отображающейся при наведении на иконку вопроса .
Внизу страницы вы можете оставить отзыв, задать вопрос разработчикам или предложить идею по улучшению этого калькулятора.
Разъяснение результатов расчетов
Общая длина ростверка
Суммарный периметр фундамента, включая внутренние перегородки.
Площадь подошвы ростверка
Площадь нижней части ростверка, которая нуждается в гидроизоляции.
Площадь внешней боковой поверхности ростверка
Площадь боковых поверхностей наружной стороны фундамента, нуждающаяся в утеплении.
Объем бетона для ростверка и столбов
Общее количество бетона, которое понадобится для заливки фундамента заданных параметров. Фактическая потребность может оказаться выше из-за уплотнений при заливке, а объём фактически доставленного бетона может оказаться меньше заказанного. Поэтому рекомендуем заказывать бетон с 10-процентным запасом.
Вес бетона
Приблизительный вес бетона при средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
При расчете берется во внимание полный вес конструкции.
Минимальный диаметр продольных стержней арматуры
Рассчитывается по нормативам СНиП. Учитывается относительное содержание продольной арматуры в сечении ленты ростверка.
Минимальное количество рядов арматуры ростверка
Для противодействия естественной деформации ленты ростверка под действием сил сжатия и растяжения, необходимо использовать продольные стержни в разных поясах ростверка (вверху и внизу ленты).
Общий вес арматуры
Вес стержней арматуры, вместе взятых.
Величина нахлеста арматуры
Для крепления стержней арматуры внахлёст, используйте данное значение.
Длина продольной арматуры
Общая длина арматуры включая нахлест.
Минимальное количество продольных стержней арматуры для столбов и свай
Необходимое количество продольных стержней арматуры для каждого столба или сваи.
Минимальный диаметр арматуры для столбов и свай
Минимально допустимый диаметр продольных стержней арматуры, обеспечивающих прочность столбов или свай.
Минимальный диаметр поперечной арматуры (хомутов)
Определяется, основываясь на нормативах СНиП.
Максимальный шаг поперечной арматуры (хомутов)
Рассчитывается таким образом, чтобы при заливке бетона арматурный каркас не был смещён или деформирован.
Общий вес хомутов
Суммарный вес хомутов, которые потребуются при строительстве всего фундамента.
Минимальная толщина доски при опорах через каждый метр
Необходимая толщина досок опалубки при заданных параметрах фундамента и заданном шаге опор. Рассчитывается исходя из ГОСТ Р 52086-2003.
Количество досок для опалубки
Число досок стандартной длиной 6 метров, которые потребуются для возведения всей опалубки.
Периметр опалубки
Общая протяженность опалубки с учетом внутренних перегородок.
Объем и примерный вес досок для опалубки
Такой объем досок потребуется для возведения опалубки. Вес досок рассчитывается из среднего значения плотности и влажности хвойных пород дерева.
Расчет буронабивного фундамента калькулятор. Онлайн калькулятор расчета буронабивных и столбчатых фундаментов
Онлайн калькулятор расчета буронабивных и столбчатых фундаментов
Информация по назначению калькулятора
Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003
Свайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли. Главным отличием между столбчатым и свайным фундаментом является разная глубина установки опор.
Основными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.
Существует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий.
Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.
srpj.ru
Расчет буронабивного фундамента
Классификация, расчет и другие важные параметры, без которых невозможно выполнить устройство буронабивных свай, содержатся в СНиП 2.02.03-85 – настольной книге всех проектантов и подрядчиков. |
«Что нам стоит дом построить? — нарисуем и живем!» — как все хорошо, легко и весело получается в сказках, мультика и кино. А в реальной жизни ну как минимум надо слово «нарисуем» заменить на «рассчитаем», потому что без этих волшебных расчетов при строительстве просто никуда.
Вот и определившись с выбором фундамента встает вопрос: «Как же правильно его посчитать?». Посмотрев множество ресурсов в сети интернет на первый взгляд может показаться, что это не сложно. Имеется множество калькуляторов расчета фундамента, например, вот здесь и здесь. Однако, когда начинаешь вникать чуть глубже, то понимаешь, что квалифицированно осуществить расчет буронабивного фундамента очень не просто.
Поэтому мы сразу же вам предлагаем передать этот сложный процесс в руки квалифицированных специалистов «ПромГражданСтрой», которые не только смогут вам посчитать фундамент, но и сделают его под ключ с соблюдением всех необходимых норм и стандартов.
А что бы вас еще больше убедить в этом давайте пройдемся по этапам расчета свайного фундамента.
Основные шаги расчета следующие:
- Изучение характеристик грунта
- Расчет нагрузок на фундамента
- Расчет буронабивных свай
- Определение размеров ростверка и типа его армирования
А теперь кратко рассмотрим эти этапы.
Изучение характеристик грунта
Очень важный этап, в процессе которого определяются показатель прочности грунта на участке возведения здания, глубина залегания грунтовых вод, глубина промерзания грунта и глубина нахождения прочного грунта на который можно опереться.Вся информация собирается за счет выработки шурфов или бурения разведочных скважин. Причем делать это нужно в нескольких точках в пределах пятна застройки здания и надо знать много тонкостей, например, обязательно изучить грунт в самом низком месте планируемого расположения фундамента.Вы готовы это все сделать? Или на глаз по верхнему слою прикинете состав грунта, его тип, консистенцию и др. характеристики, что бы определить прочность грунта?Безусловно есть много информации и таблиц, но что бы в них хорошо ориентироваться нужно немного быть геологом.Здесь все проще. Нужно только посчитать сколько будет весить ваш дом с учетом снеговой, дождевой и полезной нагрузки, не забыть добавить к этому запас прочности.Только правильный расчет веса здания должен учитывать:толщину, высоту и материал изготовления стен и перегородоктолщину, площадь и материал изготовления перекрытийвес кровли (тут, как говориться проще взвесить, чем посчитать)
К этому нужно добавить временные нагрузки (как минимум это снеговая и полезная), это ведь только кажется, что снега на крыше не очень много, но если перевести в кг, то может выйти и в 30-40% от веса здания.Полезная же нагрузка — это то, что планируется к размещению внутри здания и она может быть очень вариативна, потому что кто-то хочет поставить аквариум на 500 л, кто-то захочет камин на два этажа, кто-то бассейн и т. п.И если всего этого не учесть, то результат может быть очень печальным.Кто-то скажет, а давайте брать по максиму — такой подход тоже возможен, только приводит к очень высокой стоимости фундамента в результате, а это ни кому не нравится.
И здесь тоже нет ничего сложного, делим рассчитанную нагрузку на несущую способность выбранной сваи и получаем кол-во свай. Осталось их правильно распределить по пятну застройки здания и все.Только какую сваю выбрать? Они бывают круглого сечения, прямоугольного (это, конечно, не случай буронабивного фундамента, но бывают ведь), разных диаметров, разной глубины залегания, с подошвой и без и еще ряд моментов, которые нужно учесть, а про них еще ведь и знать надо.Как же их распределить правильно? Ну то, что они по углам должны быть это понятно, а то, что, например, между сваями должно быть не менее трех диаметров свай, мы можем и не знать, а может мы еще чего-то не знаем?
Здесь вообще все просто. В методиках говориться что «Геометрические характеристики ростверка не столь критичны, главное, чтобы обрез фундамента соответствовал ширине будущей стеновой конструкции, а высота не была меньше рабочего слоя бетона с учетом расположенной арматуры и защитного слоя.» Вот и все. Только откуда мы возьмем рабочий слой бетона? Каким образом нужно учесть расположение арматуры и защитного слоя, а что вообще за защитный слой?А про расчет армирования я даже и упоминать не буду.
Как вы видите — действительно, кажется, все просто. Но когда приступаешь к реальным расчетам появляется масса вопросов. Что бы найти на них ответы потребуется определенное время, терпение, какие-то минимальные знания. Даже потратив все это время у вас не будет ощущения, что вы учли все и все параметры и коэффициенты определили правильно.Поэтому этот процесс лучше доверять профессионалам.Обращайтесь к нам в «ПромГражданСтрой». Наши специалисты за разумную цену произведут расчет фундамента на буронабивных сваях с ростверком.
Расчет фундамента из свай
Расчет несущей способности бутобетонной буронабивной сваи. Несущую способность буронабивных бутобетонных свайных фундаментов, воспринимающих вертикальную сжимающую нагрузку, определяют исходя из сопротивления материала фундамента и сопротивления грунта основания (под нижним концом и на боковой поверхности сваи), принимая меньшее из двух значений. Несущая способность буронабивной сваи глубиной от 1,5 м до 3 м по грунту, работающей на осевую сжимающую нагрузку (Р), определяется по формуле:
P несущая способность сваи = 0,7 коэфф. однородности грунта х (Rн нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u периметр сваи (м) х 0,8 коэфф. условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li — толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м)
Rн — нормативное сопротивление грунта в тоннах под нижним концом сваи, принимается по таблицам №№1, 2, 3; fiн — нормативное сопротивление грунта на боковой поверхности ствола сваи, т/м2, принимаемается по таблице №4. При разных слоях грунта на глубине залегания сваи сумма сопротивления грунта на боковой поверхности сваи рассчитывается отдельно для каждого слоя грунта и полученный результат умножается на периметр сваи.
Таблица №3 Нормативные сопротивления глинистых грунтов в плоскости нижних концов бутобетонных буронабивных свай.
Твердые |
Полутвердые |
Туго пластичные |
Мягко пластичные |
||
Супеси |
0,5 |
47 |
46 |
45-43 |
42-41 |
Супеси |
0,7 |
39 |
38 |
37-35 |
34-33 |
Суглинки |
0,5 |
47 |
46 |
45-43 |
42-41 |
Суглинки |
0,7 |
37 |
36 |
35-33 |
32-31 |
Суглинки |
1,0 |
30 |
29 |
27-24 |
23-21 |
Глины |
0,5 |
90 |
87 |
84-78 |
76-72 |
Глины |
0,6 |
75 |
72 |
69-63 |
60-57 |
Глины |
0,8 |
45 |
43 |
42-39 |
37-36 |
Глины |
1,1 |
37 |
35 |
33-28 |
26-24 |
Таблица №4 Нормативные сопротивления грунтов на боковой поверхности буронабивных свай.
Полутвердые |
Тугопластичные |
Мягкопластичные |
|
0,5 |
2,8 |
1,7-0,8 |
0,3 |
1 |
3,5 |
2,3-1,2 |
0,5 |
2 |
4,2 |
3,0-1,7 |
0,7 |
3 |
4,8 |
3,5-2,0 |
0,8 |
Таблица. Признаки визуального определения консистенции глинистых грунтов в поле *
Твердая и полутвердая |
При ударе грунт разбивается на куски, при сжатии в руке рассыпается. |
Тугопластичная |
Брусочек грунта при попытке его сломать заметно изгибается до излома, достаточно большой кусок грунта разминается с трудом. |
Мягкопластичная |
Разминается руками без особого труда, при лепке хорошо сохраняет форму. |
Текучепластичная |
Грунт легко разминается руками, плохо держит форму при лепке. |
Текучая |
Течет по наклонной плоскости толстым слоем (языком). |
* Указания по инженерно-геологическим обследованиям при изысканиях автомобильных дорог. М.-1963г.- Приложение №1
Пример ориентировочного расчета свайного фундамента на буронабивных сваях . Требуется рассчитать расстояние между висячими (без опоры на скальные грунты) буронабивными короткими сваями (до 3 м) под здание с центрально приложенной вертикальной расчетной нагрузкой Np = 5,5 т/погонный метр. Грунтовые условия, по данным инженерно-геологических изысканий представлены суглинками, залегающими с поверхности земли до глубины 3 м. Причем, до глубины 2 м – залегают суглинки тугопластичные, а с глубины 2м до 3 м — суглинки полутвердые. Далее, до глубины 9,2 м — пески крупные, плотные влажные. Грунтовые воды находятся на глубине 9,2 м от поверхности. Буровая скважина сухая.
Схема: Грунтовые условия и глубина буронабивных свай, расчет которых необходимо произвести.Принимаем размеры свай (вариант A): диаметр буронабивной сваи d = 0,5 м; длина буронабивной сваи l = 3,0 м. Нагрузка, приходящаяся на одну сваю составляет x метров (шаг свай) х 5,5 тонн (нагрузка на погонный метр фундамента ). Несущую способность набивных свай исходя из грунтовых условий рассчитывают по формуле
P несущая способность сваи = 0,7 коэфф. однородности грунта х (Rн нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u периметр сваи (м) х 0,8 коэфф. условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li — толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м)
В плоскости нижних концов свай залегает крупный песок, плотный влажный с несущей способностью Rн = 70 т/м2. Площадь сечения (основания) круглой сваи составляет S= 3,14 D2/4 S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2 Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м; Дополнительный коэффициент условий работы mf = 0,8; В глинах и в скважинах с водой коэффициент работы сваи вместо 0,8 принимается равным 0,6. (Таблица 7.5 СП 50-102-2003 Проектирование и устройство свайных фундаментов). Нормативное сопротивление грунта на боковой поверхности ствола, принимаемое по табл., составит:
- Для первого тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м2 (См. строку для грунта на глубине 1 метр). Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м2
- Для второго полутвердого слоя грунта (суглинка) глубиной от 2 до 3 метров (среднее – 2,5 метра) – от 4,2 до 4,8 т/м2 . Принимаем самое малое значение сопротивления грунта с запасом 4,2 т/м2
Несущая способность сваи по грунту будет:Р = 0,7 х 1 [70 х 0,196 + 1,57 х 0,8 (1,2 х 2 + 4,2 х 1)] = 15,4 т. Минимально допустимый шаг свай составит 15,4 тонны / 5,5 тонн/м =2,8 метра. Разумно достаточным будет использование шага между сваями 2,5 метра.
Посмотрим, как изменится несущая способность сваи по грунту при уменьшении диаметра сваи до 40 см (вариант Б): Площадь сечения (основания) круглой сваи составляет S= 3,14 D2/4 S= 3,14 х 0,2 / 4 = 0,16/4 = 0,125 м2 Периметр сваи u = 3,14 D = 3,14 x 0,4 = 1,25 м; Несущая способность по грунту сваи диаметром 40 см составит: Р = 0,7 х 1 [70 х 0,125 + 1,25 х 0,8 (1,2 х 2 + 4,2 х 1)] = 10,7 т. Такие сваи придется ставить через 2 метра.
Посмотрим, как изменится несущая способность сваи диаметром 50 см при уменьшении глубины ее заложения с 3 до 2-х метров (вариант В):
При глубине заложения на 2 метра, буронабивная свая будет опираться на слой полутвердого суглинка, а боковые поверхности ствола сваи будут соприкасаться с 2 метровым слоем тугопластичного суглинка. В плоскости нижних концов свай залегает полутвердый суглинок, с несущей способностью Rн = 36 т/м2. Площадь сечения (основания) круглой сваи составляет S= 3,14D2/4 S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2 Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м; Дополнительный коэффициент условий работы mf = 0,8; Нормативное сопротивление грунта на боковой поверхности ствола для тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м2 (См. строку для грунта на глубине 1 метр). Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м2 Несущая способность по грунту сваи диаметром 50 см и глубиной 2 метра составит: Р = 0,7 х1 [36 х 0,196 + 1,57 х 0,8 (1,2 х 2) = 7 т. Такие сваи придется ставить уже через 1,2 метра.
Из вышеприведенного примера можно сделать два важных вывода:
- При устройстве фундамента важно проводить исследование подлежащего грунта для определения его несущих способностей.
- Обычно увеличение несущей способности по грунту для коротких висячих свай дает увеличение глубины их заложения. При этом необходимо соблюдать минимальный рекомендованный диаметр для буровых свай глубиной до 3 м величиной не менее 30 см (требования пункта 15.2.Свода правил СП 24.13330.2011 «Свайные фундаменты. Актуализированная редакция СНиП 2.02.03-85 и пункта 1810.3.5.2.2 Международного строительного кода IBC -2009).
Расчет столбчатого фундамента, расчет свайного фундамента
Расчет столбчатого фундамента, свайный фундамент с ростверкомСтолбчато-ленточный фундаментПростой онлайн калькулятор рассчитает точное количество требуемых строительных материалов для монолитного свайно-ленточного фундамента. Начните расчет сейчас!
Чаще всего в загородном строительстве используют буронабивные сваи фундамента, которые идеально дополняются монолитной лентой – это самый простой и экономичный способ. Сваи берут на себя несущую функцию, тогда как ростверк (лента) берет на себя соединяющую функцию и таким образом равномерно распределяет нагрузку на столбы. Столбчатый монолитный железобетонный фундамент отлично подходит для пучинистых грунтов, когда земля промерзает и расширяется, при этом строение должно быть легким или средней тяжести. Фундамент на столбах идеальное решения для возведения деревянных, каркасных и дачных домов, а так же гаражей и хозяйственных построек. Столбчатый фундамент лучше не использовать при строительстве каменных или кирпичных домов.
Столбчатый фундамент своими рукамиОнлайн калькулятор столбчатого фундамента позволяет вам не только произвести расчет количества столбов, количества арматуры и объема бетона, но и получить наглядные чертежи фундамента с ростверком и полную стоимость буронабивного фундамента с ростверком.
Технология предполагает заливку бетонного раствора в опалубку, для этого нужно заранее пробурить отверстия, при возведении частного дома земляные работы можно провести в ручную, без привлечения бурильной установки. Диаметр сваи рассчитывается из расчета давления, которое будет оказывать вес загородного дома. Сваи фундамента должны быть углублены ниже, чем уровень промерзания грунта в вашем регионе. Бетонные столбы подойдут для любой глубины, они могут быть монолитными, как в нашем случае, важно чтобы их ширина была минимум 400 мм. Асбестобетонные или металлические трубы подходящего диаметра можно залить бетоном, при этом исключаются работы по опалубке. Рекомендуемое расстояние между столбами не более 3 метров.
Несущая способность фундамента на сваях с ростверком
Учтите, что данный онлайн калькулятор предполагает только расчет материалов и затрат по вашему фундаменту, но не дает возможность просчитать несущую способность фундамента, так как для подобного расчета потребуется геодезия вашего участка, сбор нагрузок и прочее.
Калькулятор фундамента дома онлайн: все варианты и цены.
Калькулятор фундамента под деревянный дом онлайн от 100срубов
— мелкозаглубленного ленточного армированного
— и монолитного свайно-ростверкового на буронабивных сваях
Расчёт стоимости онлайн не является коммерческим предложением. Расчет производится предварительно, в тестовом режиме.
Рассчитать фундамент! мп длина ростверка
см ширина ростверка всего
см высота:
25 см шаг хомутов
40 см песчаная подушка под фундамент
01234567891011121314151617181920212223242526 ниток арматуры
012345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182100120штук количество бетонных буронабивных свай*
* параметры сваи:
диаметр см,
глубина см до ростверка
Материалы
Наименование | Ед. изм. | Количество | Цена, руб | Сумма, руб |
бетон М-300 В22,5** | м3 | ** | ||
арматура, д.12 | мп | |||
арматура, д.6 | мп | |||
песок для ростверка | м3 | |||
геотекстиль ширина 2м | мп | |||
гидроизолирующая пленка для фундамента 3м | м2 | |||
пластиковая труба для продухов, комплект | мп | |||
асбестовые трубы д.300 | мп | |||
цемент для раствора | меш 50 кг | |||
фундаментные блоки 20х20х40 | шт | |||
вязальная проволока | мп | |||
фанера для опалубки 2,25м2 | лист | |||
шпильки 1х0,8 | лист | |||
трубки пвх | лист | |||
доска 50х100 для опалубки | м3 | |||
накладные | руб | |||
итого материалы | руб |
Доставки и аренды
Наименование | Количество | Цена, руб | Сумма, руб | |
доставка материалов | руб | 1 | ||
доставка бетона | руб | |||
доставка бытовки проживание рабочих | руб | |||
аренда бетононасоса | руб | |||
аренда ямобура | руб | |||
итого доставки и аренды | руб |
Работы
Наименование | Ед. изм. | Количество | Цена, руб | Сумма, руб |
Разбивка участка, вынос осей | ||||
Устройство песчаной подушки 400 мм с виброуплотнением | ||||
Устройство железобетонного монолитного фундамента с изготовлением арматурного каркаса и опалубки | ||||
Устройство свай | шт | |||
Бурение свай | шт | |||
Укладка геотекстиля | м2 | |||
Укладка гидроизолирующей пленки | м2 | |||
Разработка траншеи | м3 | |||
итого работы | руб |
ВСЕГО |
справочно: утепление пенополистирол | шт |
—————————————————————————————————————————————————-
в том числе фундаментные блоки -высота 01 ряд — 20 см2 ряда — 40 см3 ряда — 60 см4 ряда- 80 см5 рядов — 100 см6 рядов — 120 см
в том числе фундаментные блоки -ширина 020 см40 см
в том числе бетон см
Окончательная стоимость фундамента может быть определена специалистами 100срубов.
Свяжитесь с нами по телефону 8(495)988-58-84
ACI 318 Проектирование бетонных свай
Односвайная конструкция в соответствии с ACI 318 (2014)Сваи — это длинные и тонкие элементы, которые переносят нагрузки от надстройки на более глубокую почву или на скалу с соответствующей несущей способностью. Материалы, используемые для свай, могут включать дерево, сталь и бетон. Установка сваи в грунт может быть забита, пробурена или поддомкрачена, которые затем соединяются с заглушками свай. Для классификации типа и установки свай учитывается множество факторов, таких как условия площадки, тип почвы, передача нагрузок.В этой статье основное внимание уделяется проектированию бетонной сваи в соответствии с Американским институтом бетона (ACI) 318 — 2014.
МодульSkyCiv Foundation Design включает в себя проектирование свай в соответствии с Американским институтом бетона (ACI 318) и австралийскими стандартами (AS 2159 и 3600).
Хотите попробовать программное обеспечение SkyCiv Foundation Design? Наш бесплатный инструмент позволяет пользователям выполнять расчеты несущей способности без загрузки или установки!
Калькулятор проектирования фундамента
Несущая способность сваиОбычно вертикальные нагрузки, прикладываемые к сваям, воспринимаются концевой опорой сваи, и сопротивление поверхностному трению развивается по всей ее длине.Предельная грузоподъемность (Q U ) должна быть представлена уравнением (1). Коэффициент запаса прочности применяется для расчета допустимой грузоподъемности (Q A ).
\ ({Q} _ {u} = {Q} _ {p} + {Q} _ {s} \) (1)
Q U = Максимальная грузоподъемность
Q P = Сопротивление концевого подшипника
Q S = Сопротивление поверхностному трению
\ ({Q} _ {A} = \ frac {{Q} _ {U}} {FOS} \) (2)
Q A = Допустимая грузоподъемность
FOS = коэффициент безопасности
Для получения более подробного руководства ознакомьтесь с нашей статьей о расчете сопротивления трению и несущей способности конца.
Конструктивная прочность одинарной сваиСваи также подвергаются действию осевых сил, силы сдвига и изгибающего момента, поэтому они конструктивно аналогичны колоннам. В разделе 10.5.1.1 указано, что вся факторная нагрузка не должна превышать соответствующую расчетную прочность.
\ ({øP} _ {N} ≤ {P} _ {U} \) (3a)
\ ({øM} _ {N} ≤ {M} _ {U} \) (3b)
\ ({øV} _ {N} ≤ {V} _ {U} \) (3c)
P U , M U , V U = Фактор осевого, изгибающего момента, поперечных нагрузок
P N , M N , V N = Номинальный осевой, изгибающий момент, поперечные нагрузки
ø = Коэффициенты снижения прочности (Таблица 1)
Коэффициенты снижения прочности (ϕ) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Осевой | 0.65-0,90 | ||||||||||||
Изгиб | 0,65-0,90 | ||||||||||||
Ножницы | 0,75 |
Таблица 1: Коэффициенты снижения прочности (Таблица 21.2.1, ACI 318-14)
Прочность на сдвиг одиночной сваи (øV N )
Номинальная прочность на сдвиг должна быть эквивалентна совокупному вкладу прочности на сдвиг бетона и стальной арматуры.
Прочность бетона на сдвиг (V c )Вклад бетона в сопротивление сдвигу рассчитывается, как показано в уравнении (4), которое определено в разделе 22.5.5.1 ACI 318-14.
\ ({V} _ {c} = 0,17 × λ × \ sqrt {fc ’} × b × d \) (4)
λ = коэффициент модификации бетона = 1 (бетон нормального веса, таблица 19.2.4.2)
fc ’= Прочность бетона
b = ширина или диаметр сваи
d = 0,80 × глубина сваи (Раздел 22.5.2.2)
Прочность стальных стержней на сдвиг (V s )Вклад арматуры на поперечный сдвиг в сопротивление сдвигу вычисляется как минимум между уравнениями (5) и (6).
\ ({V} _ {s} = 0,066 × \ sqrt {fc ’} × b × d \) (5)
\ ({V} _ {s} = \ frac {{A} _ {v} × {f} _ {yt} × d} {s} \) (6)
A V = Площадь сдвига арматурных стержней
f yt = предел текучести арматурных стержней на сдвиг
s = Расстояние между центрами поперечных арматурных стержней
Номинальное сопротивление сдвигу (øV N )Суммируя выходные данные уравнения 4-6, получаем номинальную прочность сваи на сдвиг.Коэффициент уменьшения прочности (ø) должен быть равен 0,75, как определено в таблице 22.2.1 ACI 318-14.
\ ({øV} _ {N} = ø × ({V} _ {c} + {V} _ {s}) ≤ {øV} _ {U} \) (7)
Осевая и изгибная способности одиночной сваи (øP N , øM N )Осевая и изгибная способности проверяются с помощью диаграммы взаимодействия. Эта диаграмма представляет собой визуальное представление поведения изгибных и осевых нагрузок, вызванных увеличением нагрузки от чистой точки изгиба до точки равновесия.
Рисунок 1: Схема взаимодействия столбцов
Диаграмма взаимодействия колоннТочка чистого сжатия на диаграмме — это место, где свае полностью не сжимается. В этот момент осевая нагрузка прикладывается к пластическому центру тяжести сечения, чтобы оставаться в сжатом состоянии без изгиба. Прочность сваи между точками чистого сжатия до точек разуплотнения можно рассчитать с помощью линейной интерполяции. Точка декомпрессии — это когда деформация бетона на крайнем сжимающем волокне равна 0.003, а деформация в крайнем растяжимом волокне равна нулю. Точка чистого изгиба — это точка, при которой осевая нагрузка равна нулю. Между переходом от точки декомпрессии к точке чистого изгиба достигается состояние равновесия. В этот момент деформация бетона достигает своего предела ( ε c = 0,003), а внешняя деформация стали достигает предела текучести ( ε s = 0,0025). Любая комбинация осевой нагрузки и изгибающего момента за пределами диаграммы приведет к отказу.
Максимальная номинальная прочность на осевое сжатие для конструкции (øP N )Расчетная осевая прочность секции должна быть ограничена только 80–85% от номинальной осевой прочности для учета случайного эксцентриситета.
\ ({øP} _ {N} = ø × {P} _ {o} \) (8a)
\ ({P} _ {o} = F × [0,85 × {f} _ {c} × ({A} _ {g} — {A} _ {st}) + ({f} _ {y} × {A} _ {st})] \) (8b)
F = 0,80 (Связи)
F = 0,85 (спираль)
A G = Общая площадь поперечного сечения сваи
A st = Общая площадь продольных стальных стержней
f y = предел текучести стальных стержней
Номинальная прочность на изгиб (øM N )Построение диаграммы взаимодействия для столбца включает построение ряда значений P N и M N .Значения для P N должны быть эквивалентны сумме сил растяжения и сжатия, как показано на рисунках 2a и 2b, в то время как соответствующее значение M N рассчитывается путем разрешения этих сил относительно нейтральной оси. Эти силы включают в себя сжимающую силу, действующую на зону сжатия, и силы, оказываемые каждым из арматурных стержней, которые могут быть как сжимающими, так и растягивающими. Ниже предлагается общая процедура построения диаграммы взаимодействия с использованием представленных уравнений.
Рисунок 2а: Поперечное сечение прямоугольной колонны
Рисунок 2b: Круглое поперечное сечение колонны
(1) Вычислите значение P o и P N (уравнения 8a и 8b).
(2) Определите c и деформации арматуры.
\ (c = 0,003 × \ frac {{d} _ {1}} {0,003 + (Z + {ε} _ {y})} \) (9)
c = Глубина нейтральной оси
ε y = Деформация стали = f y / E s
Z = Произвольное значение (0, -0.5, -1,0, -2,5)
Следует рассмотреть ряд случаев, выбрав различные положения нейтральной оси, c. Чтобы установить положение нейтральной оси, необходимо выбрать различные деформации стали путем умножения произвольного значения Z на предел текучести стали. Для Z существует широкий диапазон значений. Однако есть только четыре обязательных точки, которые следует использовать для диаграммы взаимодействия.
- Z = 0: в этот момент деформация в крайнем растянутом слое равна нулю. Эта точка отмечает переход от стыковки внахлест со сжатием, разрешенной на всех продольных стержнях, к стыковке внахлест с натяжением.
- Z = -0,5: это распределение деформации влияет на длину стыка внахлест при растяжении в колонне и обычно отображается на диаграмме взаимодействия.
- Z = -1: отмечает точку сбалансированного состояния. Это распределение деформации отмечает переход от отказов сжатия, возникающих в результате раздавливания сжатой поверхности секции, до отказов при растяжении, вызванных выходом продольной арматуры.
- Z = -2,5: эта точка соответствует пределу управляемой деформации, равному 0.005.
(3) Вычислить напряжения в армирующих слоях.
\ ({f} _ {si} = {ε} _ {si} × {E} _ {s} \) (10)
f si = напряжение в стали
ε si = деформация в стали
\ ({ε} _ {si} = \ frac {c — {d} _ {i}} {c} × 0,003 \) (11)
E s = Модуль упругости стали
(4) Определите высоту блока напряжения сжатия, a.
\ (a = {β} _ {1} × c \) (a ≤ h) (12)
Для f’c ≤ 4000 фунтов на кв. Дюйм (28 МПа):
β 1 = 0,85
Для f’c> 4000 фунтов на кв. Дюйм (28 МПа):
\ ({β} _ {1} = 0,85 — \ frac {0,05 × (f’c — 4000)} {1000} \) (дюймовые)
\ ({β} _ {1} = 0,85 — \ frac {0,05 × (f’c — 28)} {7} \) (метрическая система)
(5) Вычислить силы в бетоне и стали. {2} × \ frac {θ — sinθ cosθ} {4} \) (Круговое поперечное сечение)
Сила сжатия в бетоне:
\ ({C} _ {c} = (0.85 × f’c) × {A} _ {c} \) (14)
Сила растяжения в стали (d i ≤ a ):
\ ({F} _ {si} = {f} _ {si} × {A} _ {si} \) (15)
Сила сжатия в стали (d i > a ):
\ ({F} _ {si} = [{f} _ {si} — (0,85 × f’c)] × {A} _ {si} \) (16)
(6) Рассчитайте осевую нагрузку (P N ).
\ ({P} _ {N} = {C} _ {c} + Σ {F} _ {si} \) (17)
(7) Рассчитайте прочность на изгиб (M N ).
\ ({M} _ {N} = [{C} _ {c} × (\ frac {h} {2} — \ frac {a} {2})] + Σ [{F} _ {si } × (\ frac {h} {2} — {d} _ {i}) \) (18)
(8) Вычислите значение коэффициента снижения прочности (ø).
Как показано в таблице 1, коэффициент снижения прочности как для осевого, так и для изгиба варьируется от 0.60 до 0,90. Раздел 21.2 ACI 318-14 демонстрирует его значение для момента, осевой силы или комбинированного момента и осевой силы, как показано в таблице 2 ниже.
Классификация | Спираль | Связанные |
---|---|---|
Контролируемое сжатие | 0,75 | 0,65 |
Переход от сжатия к растяжению | 0,75 + [50 × ( ε т — 0.003)] | 0,65 + [(250/3) × ( ε т — 0,003)] |
Контроль натяжения | 0,90 | 0,90 |
Таблица 2: Коэффициенты снижения прочности для осевого, моментного или комбинированного осевого и моментного (таблица 21.2.2, ACI 318-14)
(9) Повторите шаги 2-8 с различными значениями для Z.
(10) Нанести на диаграмму значения øP N и øM N.
Список литературы
- Строительные нормы и правила для конструкционного бетона (2014) .AC! 318-14 Американский институт бетона.
- Сяо, J.K. (2012). Влияние оси изгиба на диаграммы взаимодействия «нагрузка-момент» (P-M) для круглых бетонных колонн с использованием ограниченного количества продольных арматурных стержней. Электронный журнал структурной инженерии 12 (1). Получено с http://www.ejse.org
Определение эффективной длины буронабивной сваи большого диаметра на основе решения Миндлина
Аннотация
Уравнение расчета эффективной длины буронабивной сваи большого диаметра связано с ее распределением сопротивления ствола сваи.Таким образом, существует большая разница между результатами расчета при разных распределениях сопротивления ствола сваи. В первую очередь, эта статья суммирует концептуальный режим сопротивления ствола сваи при том обстоятельстве, что грунт, окружающий сваи, имеет различное распределение слоев. Во-вторых, на основе решения Миндлина по перемещению и с учетом влияния диаметра сваи расчетное уравнение оптимизировано с предположением, что сопротивление вала сваи имеет параболическое распределение.Факторы влияния анализируются в соответствии с результатом расчета эффективной длины сваи. Наконец, в сочетании с инженерным примером, расчетное уравнение, выведенное в этой статье, анализируется и проверяется. Результат показывает, что коэффициент Пуассона грунта и диаметр сваи повлияли на эффективную длину сваи. По сравнению с коэффициентом Пуассона грунта влияние диаметра сваи более значимо. Если диаметр сваи остается неизменным, влияние коэффициента Пуассона грунта на эффективную длину сваи уменьшается по мере увеличения отношения модуля упругости сваи и модуля упругости грунта.Если коэффициент Пуассона грунта остается прежним, влияние диаметра сваи на эффективную длину сваи возрастает по мере увеличения отношения модуля упругости сваи и модуля упругости грунта. Таким образом, оптимизированный результат расчета эффективной длины сваи с учетом влияния диаметра сваи более близок к реальной инженерной ситуации и практически осуществим.
Ключевые слова
Буронабивные сваи большого диаметра
Сопротивление ствола сваи
Параболическое распределение
Решение Миндлина
Влияние диаметра сваи
Эффективная длина сваи
Рекомендуемые статьи Цитирующие статьи (0)
Changiodical Offices © 2015 ‘университет.Производство и размещение компанией Elsevier BVРекомендуемые статьи
Цитирующие статьи
Расчет бокового трения сваи с помощью многопараметрического статистического анализа
В этой статье для изучения значения стороны сваи используются испытание на статическую нагрузку и метод многопараметрического статистического анализа. трение в разных слоях почвы в лёссовой области. В настоящее время испытание на статическую нагрузку является наиболее часто используемым методом определения несущей способности свайного фундамента. Во время испытания вертикальная нагрузка прикладывается к верхней части сваи, данные для каждого уровня нагрузки записываются и строится кривая Q-S для определения предельной несущей способности одиночной сваи.На разных участках тела сваи устанавливаются датчики напряжения арматуры, после чего рассчитываются осевая сила и боковое трение сваи каждой секции. Несколько исследований посвящены расчету бокового трения сваи в различных слоях грунта с использованием метода многопараметрического статистического анализа. Получение точных результатов с помощью этого метода станет важным дополнением к расчету бокового трения сваи, а также будет способствовать развитию теоретических расчетов бокового трения сваи.Поэтому, взяв в качестве примера проект Wuding Expressway в районе лёсса, сопротивление боковому трению шести испытательных свай изучается с помощью испытаний на статическую нагрузку и многопараметрического статистического анализа. Метод многопараметрического статистического анализа сравнивается с результатами испытаний на статическую нагрузку, и погрешность контролируется в пределах 20%. Результаты показывают, что результаты расчетов многопараметрического статистического анализа в основном соответствуют техническим требованиям.
1. Введение
Лессовые отложения покрывают большую часть земного шара, составляя одну десятую площади суши во всем мире.В Китае преобладает лесс со сплошными слоями и большой мощностью, занимающий площадь примерно 630 000 км 2 [1, 2]. Лесс — это желтые иловые отложения, которые в четвертичный период переносились в основном ветрами. Он богат карбонатом, с большими пустотами, явными вертикальными трещинами и в целом низким уровнем грунтовых вод [3, 4]. В условиях непрерывного развития экономики Китая движение в лессовых районах быстро развивается, наряду с увеличением строительства крупных автомагистралей и мостов [5–10].
В настоящее время свайный фундамент является наиболее часто используемой формой фундамента при строительстве автомобильных мостов, а также прочной и эффективной инфраструктурой [11–15]. В лессовом районе провинции Шэньси широко используются буронабивные сваи из-за развитой технологии строительства и высокой несущей способности [16–21]. Большинство свай имеют длину 30–70 м и диаметр более 1 м. Также широко используются фрикционные сваи или сваи трения с торцевыми опорами. Для длинных свай сопротивление трению стороны сваи составляет более 80% несущей способности свай, а для коротких свай сопротивление обычно составляет более 60% [22–26].Поэтому расчет бокового сопротивления в лессовых районах имеет большое значение при строительстве автомобильных мостов в таких районах Китая [27, 28].
В настоящее время метод испытания на статическую нагрузку является одним из наиболее широко используемых методов для определения бокового трения сваи [29–31]. Был проведен большой объем исследований по статическому нагрузочному тестированию. Испытания статической нагрузкой двух стальных трубных свай толщиной 0,45 м для анализа закона распределения бокового трения сваи показали, что метод эффективного напряжения может быть использован для выражения сопротивления трению вокруг свай [32].На основе испытания на статическую нагрузку двух забивных свай, была также предложена формула для расчета бокового трения сваи связного грунта и восстановленного грунта [33]. Путем испытания статической нагрузкой свай большого диаметра и сверхдлинных свай в мягком грунте вокруг озера Дунтин было обнаружено, что сваи демонстрируют очевидные характеристики фрикционных свай, и была разработана формула для расчета модели передачи поперечной нагрузки линейных упруго-полностью пластичных свай. представлены [34]. Испытания статической нагрузкой свай большого диаметра и сверхдлинных буронабивных свай на участках с мягким грунтом были предприняты для анализа закона передачи нагрузки и несущих характеристик этих свай, а также относительного смещения свай и грунта, когда боковое трение свай различных слоев грунта достигло предельного значения. был представлен [35].Путем испытания статической нагрузки концевой сваи был сделан вывод, что боковое трение сваи повлияло на несущую способность концевой сваи в определенной степени, а несущая способность превысила расчетную несущую способность одиночной сваи [36]. Взаимосвязь между общим поперечным сопротивлением свай и осадкой на концах свай под разными уровнями опоры была получена путем испытания на статическую нагрузку буронабивных набивных свай, что показало, что общее поперечное сопротивление свай может быть увеличено за счет увеличения прочность камня или грунта на конце сваи [37].Были также проведены полевые испытания под нагрузкой на сверхдлинные монолитные сваи, и были получены кривые осевого усилия испытательных свай при различных уровнях нагрузки, а также взаимосвязь между трением агрегата и относительным смещением сваи и грунта. В ходе этого эксперимента было показано, что единичное сопротивление трению при сжимающей нагрузке можно рассчитать путем деления разницы двух непрерывных осевых сил на площадь тела сваи между тензодатчиками [38].
Метод многопараметрического статистического анализа собирает данные по множеству испытательных свай и устанавливает взаимосвязь между боковым трением сваи, сцеплением и углом внутреннего трения слоя почвы [39, 40].Однако было проведено несколько исследований для расчета бокового трения сваи методом многопараметрического статистического анализа. Поэтому, взяв в качестве примера шоссе Вудинг на Лессовом плато, в этой статье проводятся испытания статической нагрузки на шести испытательных сваях и измеряются размер и распределение бокового трения сваи. Боковое трение сваи в различных слоях грунта затем рассчитывается с использованием метода многопараметрического статистического анализа. Наконец, сравниваются два результата. Получение разумного результата с помощью этого метода станет важным дополнением к расчету бокового трения сваи, а также будет способствовать развитию теоретических расчетов бокового трения сваи.
2. Проектирование испытательного полигона
Скоростная автомагистраль Удин находится в городах Яньань и Юйлинь в провинции Шэньси, Китай (рис. 1). Он начинается на востоке округа Уци, заканчивается в Шицзинцзы, к юго-востоку от округа Динбянь, и имеет длину примерно 922,17 км. Примыкания с обеих сторон расположены в подобласти Лёсс-Лянхэ, и топография области прилегания относительно небольшая. Высота уровня земли составляет от 1629,60 м до 1644,59 м, а относительный перепад высот составляет примерно 14 метров.99 м. Испытательный полигон, показанный на Рисунке 1, расположен на разделенном пересечении деревни Сункелан, города Янцзин и округа Динбянь. Топографические колебания тестовой площадки небольшие, поверхностные воды отсутствуют, грунтовые воды очень глубокие, и в процессе бурения грунтовые воды отсутствуют. Слои испытательной площадки состоят из следующего: (1) Лессовая почва (): почва коричнево-желтая, относительно однородная, содержит макропоры, червоточину, корневище растений и небольшое количество гравия и твердого пластика.(2) Старый лёсс (): почва коричнево-желтая и относительно несложная. В почве присутствует небольшое количество гиф, а также червоточины, точечные отверстия, некоторые моллюски и твердый пластик.
3. Содержание теста
3.1. Испытание в помещении
Лабораторные испытания грунтов на испытательной территории в основном состояли из испытания на содержание влаги (рис. 2 (а)), испытания на сжатие (рис. 2 (b)) и испытания на прямой сдвиг (рис. 2 (с). ). Метод сушки использовался в тесте на содержание влаги в почве, а коэффициент пустотности почвы был получен с помощью теста на сжатие.Путем анализа данных испытаний на влагосодержание и сжатие были получены характеристики пласта и основные физические свойства слоя почвы на испытательной территории, как показано в таблице 1.
|
Угол сцепления и внутреннего трения — важные параметры, используемые в этой статье. Таким образом, методом прямого сдвига были испытаны 34 группы образцов, в том числе восемь групп образцов лессовых почв и 26 групп старых образцов лёсса.В испытании на прямой сдвиг верхняя и нижняя коробки были выровнены, были вставлены фиксированные штифты, а проницаемые камни и фильтровальная бумага были помещены в нижние коробки. Кромки кольцевого ножа с образцами располагались вверх, задняя часть ножа — вниз, а горловина секции для резки выровнена. Затем помещали фильтровальную бумагу и верхние проницаемые камни, и образцы медленно вставляли в коробку для сдвига. После этого кольцевой нож был удален, и была добавлена крышка для передачи усилия.Затем были установлены скользящие стальные шарики, а также коробка для сдвига и кольцо для измерения усилия. Был приложен предварительный натяг 0,01, маховик вращался, и показание шкалы кольца измерения силы было обнулено. После приложения вертикального давления фиксированный штифт немедленно вытащили, секундомер включили, и маховик вращался с постоянной скоростью 0,8 мм / мин (смещение сдвига составляло 0,2 мм за цикл вращения), так что образец срезался и разрушается в течение 3–5 мин. При каждом повороте маховика показания шкалы на измерительном кольце записывались один раз до разрушения образца грунта при сдвиге.Расчетная сила сцепления и угол внутреннего трения представлены в таблице 2.
|
3.2. Испытание на статическую нагрузку
Для испытания на статическую нагрузку анкерные сваи и испытательные сваи были расположены в виде четырех анкерных свай, окружающих одну испытательную сваю.Расстояние между анкерной сваей и испытательной сваей показано на рисунке 3. Шесть испытательных свай диаметром 1,5 м и длиной 25 м были установлены в зоне испытаний, а также анкерные сваи диаметром 1,5 м и длиной 30 мин. Тело сваи было построено из бетона C30, а бетон C40 использовался для армирования части на расстоянии 1,5 м от верха сваи. По данным предварительных полевых исследований, грунтовые воды на этой территории глубоко залегают, поверхностные воды отсутствуют. Таким образом, метод сухого вращательного бурения был использован для бурения испытательных и анкерных свай.После проверки качества отверстия каркас арматурного каркаса был поднят и сваи залиты в сваю. Весь процесс тестирования состоял из трех частей: установка и расположение тестовых элементов перед тестированием, строительство тестовых свай и анкерных свай, а также тестовое нагружение и сбор данных. Конкретный процесс для каждого соответствующего компонента подробно описан следующим образом: (1) В соответствии с требованиями к испытаниям необходимо было измерить осевое усилие и поперечное сопротивление сваи при различных нагрузках во время процесса испытания.Поэтому перед сооружением анкерных свай и испытательных свай в сваю было заложено определенное количество датчиков напряжения арматуры. Учитывая целостность сбора данных испытаний, семь секций были выбраны вдоль основной арматуры в свае для размещения датчика напряжения арматуры. Поскольку при нагружении верхняя часть сваи находилась в непосредственном контакте с домкратом, деформация была большой, поэтому первый слой измерителя напряжения был размещен на 0,5 м ниже вершины сваи, а глубина укладки составила 3.5 м, 6,5 м, 11 м, 15,5 м, 20 м и 24,5 м по очереди (Рисунок 4), при этом каждая секция соединена с тремя датчиками напряжения арматуры. Измерители напряжения на дне 24,5 м были расположены в конце испытательной сваи и использовались для измерения внутренней силы в нижней части сваи и сопротивления в конце сваи. Измерители напряжения арматуры в средней части измеряли внутреннюю силу сваи в каждом слое почвы и на границе слоя почвы. В прошлом измерители напряжения арматуры приваривались последовательно к основной арматуре сваи.Однако высокие температуры, возникающие во время сварки, могут легко повредить датчик напряжения арматуры, что повлияет на результаты испытаний. Следовательно, при укладке стальных стержней необходимо избегать повреждения стальных стержней, чтобы не повлиять на датчики напряжения. В этом эксперименте арматура, соединяющая два конца датчика напряжения, была обработана, а затем гайки цилиндра из высокопрочной углеродистой стали на двух концах датчика напряжения были соединены с арматурой для защиты датчика напряжения арматуры, и он был удостоверился, что он может легко собрать соответствующие данные.(2) С развитием техники и оборудования буронабивные сваи для вращательного бурения часто используются при сооружении свайных оснований (фрикционных свай) на лёссовых участках. По сравнению с ручным бурением и ударным бурением роторное бурение имеет положительные характеристики, включая высокую эффективность бурения при средней скорости бурения 10 м / ч. Если уровень грунтовых вод в области лёсса относительно низкий, можно использовать сухое бурение, чтобы предотвратить потерю лёссового слоя вокруг сваи или увеличение силы тяжести при контакте с водой.Строительство роторного бурения в лессовых областях не требует сооружения защиты стенок из бурового раствора, поскольку долото для вращательного бурения будет производить буровой раствор в процессе бурения, который будет поддерживать стабильность стенки скважины и обеспечивать защиту стенок, образующих отверстия. По сравнению с ударным бурением роторное бурение меньше влияет на уплотнение почвы со стороны ствола скважины. При вращательном бурении долото перемещается вперед и назад по дну скважины и земле, что делает стенку скважины более шероховатой. Более высокая неровность почвы вокруг вращающейся сваи для выемки грунта может лучше отражать взаимодействие между сваей и почвой.Согласно китайским нормам [41], при бурении роторным бурением в сухом режиме (рис. 5 (а)) толщина донных отложений фрикционных свай диаметром менее 1,5 мм должна быть менее 300 мм, а наклон сваи дырки не должны быть менее 1%; диаметр не должен быть меньше проектного значения диаметра сваи; а глубина отверстия не должна быть меньше проектной. Таким образом, после проверки качества формирования отверстий на соответствие требованиям, каркас стального каркаса был поднят (рис. 5 (б)) и залит в сваи (рис. 5 (в)).При сверлении отверстий роторным бурением используется защитный ствол. Защитная бочка поднимается на 1,5 м над землей в процессе бетонирования каждой испытательной сваи. После завершения заливки бетоном защитный ствол каждой испытательной сваи не вынимается для последующего нагружения, чтобы предотвратить повреждение верхнего бетона сжатием из-за большой нагрузки в процессе нагружения. (3) Испытание на статическую нагрузку было проведено. выполняется с использованием устройства противодействия якорной свае, как показано на Рисунке 6 (а).Сначала восемь гидравлических домкратов (рис. 6 (b)) были равномерно размещены на стальной подушке с достаточной прочностью и жесткостью, а затем основная балка и вспомогательная балка (рис. 6 (c)) были подняты, соответственно, со средней главной балки расположить на гидравлическом домкрате как можно дальше. При подъеме вспомогательной балки необходимо было убедиться, что два конца вспомогательной балки находятся в соответствии с положением анкерной сваи. После того, как опорная балка была установлена на место, стрелочный индикатор смещения (рис. 6 (d)) был установлен на стальном листе с рамкой магнитного измерителя, и оседание вершины сваи было измерено в режиме реального времени.
Погрузка производилась тихоходным способом. Для этого эксперимента одноступенчатое нагружение составляло 1000 кН, максимальная нагрузка составляла 12000 кН, а стадия нагружения составляла 11. Согласно китайским нормам [42], когда изменение осадки за один час составляет менее 0,1 мм под действием различных нагрузок и происходит неоднократно, оседание тестовой сваи можно считать относительно устойчивым. Когда сваи находится в процессе испытания, нагружение может быть остановлено при возникновении одного из следующих условий [42]: (1) когда оседание верха сваи под нагрузкой более чем в пять раз больше, чем при предыдущей нагрузке, общая осадка вершины сваи составляет более 40 мм и (2) при достижении максимального значения нагрузки, требуемого проектом, оседание вершины сваи достигает относительно стабильного стандарта.
В этом исследовании разгрузочная нагрузка испытательной сваи была вдвое больше, чем у градуированной нагрузки, когда процесс загрузки был завершен, и разгрузочная нагрузка длилась в течение одного часа на каждом этапе. В то же время были измерены осадки в верхней части сваи и толщины стержня. После завершения процесса разгрузки остаточная осадка была измерена в течение трех часов.
4. Анализ результатов статических нагрузочных испытаний
4.1. Расчет осадки верхушки сваи
Несущая способность нескольких испытательных свай одной конструкции испытательного полигона и одинакового размера варьировалась, и для анализа результатов испытаний статической нагрузкой было взято среднее значение [39, 40].Были установлены четыре измерителя смещения для измерения осадки вершины сваи при различных нагрузках в режиме реального времени, а затем средняя осадка четырех вершин сваи была принята как оседание вершины сваи при различных нагрузках.
Результаты расчетов представлены в таблице 3. Кривая Q-S построена путем расчета значения осадки верхушки сваи. Кривая Q-S является интуитивно понятным проявлением процесса нагружения при испытании сваи статической нагрузкой, как показано на Рисунке 7. Анализ Рисунка 7 показывает, что оседание испытательной сваи внезапно увеличивается во время процесса нагружения.Кривая Q-S показывает точку резкого падения, которая может иллюстрировать предельную несущую способность сваи. Предел несущей способности испытательной сваи составляет 9000 кН.
|
При расчете осевой силы тела сваи предполагается, что тело сваи имеет одинаковое поперечное сечение и что тело сваи выполнено из линейно упругого материала. Под действием произвольной нагрузки первого порядка напряжение каждого участка сваи может быть получено путем измерения значения частоты датчиков напряжения в основной арматуре и расчета значения напряжения [27, 43, 44] с использованием соответствующая формула.Затем значение деформации тела сваи на каждом участке можно получить по соответствующей формуле. Осевое усилие стального стержня на каждом участке тела сваи можно определить по следующей формуле: где p si — осевое усилие стальных стержней, K — калибровочный коэффициент, F i — частота колебаний стальной колонны на участке — под нагрузкой, F 0 — начальная частота колебаний стальной колонны, а B — расчетное значение поправки, которое составляет 0 в этой статье.Значения деформации соответствующих сечений задаются по следующей формуле: где ε si — деформация стального стержня, а E s — модуль упругости стального стержня, который в данном случае составляет 200 ГПа. контрольная работа. Кроме того, A s — это площадь сечения стального стержня, которая составляет 0,0004909 м 2 . В процессе расчета, если предполагается, что деформации бетонных и стальных стержней находятся в гармонии друг с другом, осевое усилие сваи в сечении может быть получено следующим образом: где Q i — Осевая сила тела сваи в сечении i и E c — модуль упругости бетона.Поскольку класс прочности свайного бетона составляет C30, согласно китайским нормам [45], значение E c в этом испытании составляет 30 ГПа, а A c — это площадь сечения бетона. Используя приведенные выше формулы (1) — (3), формулируется кривая осевой силы тела сваи, которая представлена на рисунке 8. Наблюдая за рисунком 8, можно увидеть, что во время процесса передачи верхней нагрузки сваи сваи Сопротивление наконечника очень мало и медленно увеличивается при нагрузках первых пяти ступеней, что указывает на то, что вертикальная нагрузка на верх сваи в основном распределяется на почву вокруг сваи, поэтому сопротивление со стороны сваи начинает играть роль до сопротивления наконечника сваи.По мере увеличения нагрузки сопротивление кончика сваи значительно увеличивается. Если нагрузка продолжает увеличиваться, кривая изменения верхней части сваи почти параллельна, что указывает на полное проявление бокового трения сваи. Как показано на Рисунке 8, когда испытательная свая нагружена до 9000 кН, сопротивление вершины сваи составляет 1708 кН, а коэффициент сопротивления вершины сваи составляет 18,98%. Следовательно, свая относится к свае трения с торцевым подшипником [46].
4.3. Расчет бокового трения сваи
В ходе испытания сопротивление боковому трению между двумя соседними секциями можно считать приблизительно равным изменению осевой силы тела сваи между секциями [27, 47–50].Поэтому формула для расчета сопротивления сваи боковому трению выглядит следующим образом: где U — периметр тела сваи, Q i −1 — значение осевой силы на участке i — 1, Q i — значение осевой силы на участке i , а l i — высота между верхней и нижней секциями. Кривая бокового трения сваи построена и представлена на рисунке 9.Как показано на Рисунке 9, трение на стороне сваи постепенно увеличивается в диапазоне от 0 до 11 м, достигает максимального значения на 11 м, а затем постепенно уменьшается. Это связано с тем, что в процессе передачи нагрузки по мере увеличения глубины сопротивление трения со стороны сваи постепенно увеличивается и достигает предельного значения на 11 м. Затем нагрузка на верх сваи в основном ложится на сопротивление вершины сваи, и сопротивление трения со стороны сваи постепенно уменьшается.
5. Многопараметрический статистический анализ
Методы статистического анализа бывают двух видов.Первый — это пробный алгоритм (метод интерполяции), в котором максимальное и минимальное значения, заданные исходным кодом, используются для пробного расчета, а значение бокового трения сваи корректируется в соответствии с результатами пробного расчета. Существующий код в Китае [51] использует этот пробный алгоритм для анализа [40, 52]. Второй используемый метод — это статистический анализ методом наименьших квадратов, в котором количество классифицированных слоев почвы со схожими геологическими характеристиками (возраст, пласт и генезис) принимается за количество неизвестных параметров.Поскольку общее боковое трение каждой испытательной сваи может быть выражено поперечным трением каждой слоистой почвы, каждую испытательную сваю можно перечислить в виде уравнения. Когда количество тестовых свай равно количеству слоев, система уравнений может быть решена. Когда количество тестовых свай больше, чем количество слоев, можно использовать метод наименьших квадратов для упрощения системы уравнений, чтобы количество уравнений было таким же, как количество слоев, и можно было получить неизвестное значение, а затем заменить .Боковое трение свай можно рассчитать по формуле (6) [40].
5.1. Основные уравнения
В соответствии с распределением слоев грунта и общим сопротивлением каждой сваи, равным сумме бокового сопротивления каждого слоистого грунта, можно определить уравнение бокового сопротивления каждой испытательной сваи [39, 40]: где Q f — полное сопротивление трению стороны сваи, U — окружность сваи, q si — единица сопротивления трению поверхности в слое грунта, l i — длина сваи каждого слоя грунта, а м — номер слоя грунта.
В соответствии с соотношением между силой сцепления, углом внутреннего трения, показателем прочности на сдвиг и сопротивлением трения можно сформулировать следующее уравнение [40]: где a и b — эмпирические коэффициенты, основанные на существующих результатах [ 39, 40], a и b должно быть между 0 и 1. σ i — средний эффективный вес каждого слоя почвы, а F i — эмпирический коэффициент бокового трения сваи в разных слоях грунта.
Подставьте уравнение (6) в (5) и получите
Уравнение (7) можно упростить следующим образом [39, 40]:
Предположим, что в проекте имеется n пробных свай, слой грунта разделен на м и слоев. Если n > m , уравнение может быть решено. Таким образом, из формулы (9) [39, 40] может быть получена следующая формула:
В этой статье принцип метода наименьших квадратов применяется к расчету бокового трения свай.Используя принцип метода наименьших квадратов, уравнения в (10) могут быть оптимизированы до м стандартных уравнений (13) [39, 40]. Конкретный процесс оптимизации выглядит следующим образом: (1) Постройте функцию ошибок (2) Чтобы минимизировать значение ошибки, составьте (3) Оптимизированные стандартные уравнения выглядят следующим образом:
Решая формулы в (13), эмпирические коэффициенты различных слоев почвы F i . Однако два неизвестных эмпирических коэффициента a и b остаются в формуле (13).Согласно существующим результатам [39, 40], a и b находятся между 0 и 1. Следовательно, необходимо предположить, что существуют различные комбинации a и b для получения различных комбинаций F и . Среди значений F i различных комбинаций набор значений должен быть выбран в качестве оптимального решения для формулы (13), поэтому стандартное отклонение σ формулы должно быть рассчитано по следующей формуле [39, 40].Когда стандартное отклонение σ является минимальным, a и b являются наиболее подходящими значениями для получения оптимального решения F i [39, 40]:
6. Анализ результатов мультипараметра Статистический анализ
В соответствии с основным принципом многопараметрической статистики и данными испытаний сваи, собранными выше, на стороне сваи имеется шесть испытательных свай и два слоя грунта. Шесть условных уравнений (15) могут быть перечислены из формулы (10):
В этой системе шесть уравнений и два неизвестных параметра.Количество уравнений больше неизвестного, поэтому его можно решить методом наименьших квадратов. Используя принцип наименьших квадратов, уравнения в (15) могут быть оптимизированы до двух стандартных уравнений следующим образом:
Уравнения в (16) относятся к уравнениям F 1 и F 2 . F 1 и F 2 — эмпирические коэффициенты бокового трения сваи в различных слоях грунта. В процессе решения необходимо принять различные комбинации a и b , чтобы получить разные F i .Затем их стандартные отклонения можно рассчитать по формуле (14), а оптимальное решение F i можно определить, взяв значения a и b , когда стандартное отклонение σ является самый маленький. Изменяя комбинации a и b , вышеуказанные методы расчета стандартного отклонения компилируются в программу MATLAB, и получается стандартное отклонение σ при различных комбинациях a и b , как показано на Таблица 4.
|
Поскольку размер шести испытательных свай одинаковый и они расположены в одном проекте, взвешенные Среднее значение бокового трения сваи различных слоев грунта при максимальном значении нагрузки 12000 кН при испытании на статическую нагрузку принимается в качестве измеренного значения, и процесс расчета выглядит следующим образом: (1) Лессовый грунт () 🙁 2) Старый лёсс ( ):
Аналогичным образом расчет сопротивления трения со стороны сваи каждого слоя грунта также является средневзвешенным.Рассчитанные значения сравниваются с измеренными значениями различных слоев почвы при испытании на статическую нагрузку, и ошибка представлена в таблице 5. Согласно таблице 5 делается вывод, что ошибка между двумя методами находится в пределах 20%. Если параметры приемлемы, результаты расчетов методом многопараметрического статистического анализа могут в значительной степени соответствовать техническим требованиям.
|
7. Выводы
В этой статье испытание статической нагрузкой было проведено на шести испытательных сваях, а также измерены размер и распределение бокового трения сваи. Боковое трение сваи в различных слоях грунта было затем рассчитано с использованием метода многопараметрического статистического анализа. Основные результаты резюмируются следующим образом: (1) Результаты испытаний на статическую нагрузку показывают, что сопротивление со стороны сваи и сопротивление вершины сваи не полностью синхронизированы с максимумом. В процессе передачи нагрузки на вершину сваи сопротивление стороны сваи возникает раньше, чем сопротивление вершины сваи.По мере того, как нагрузка продолжает увеличиваться, сопротивление со стороны сваи полностью проявляется, сопротивление торца сваи значительно увеличивается, а сопротивление трения со стороны сваи сначала увеличивается, а затем уменьшается сверху вниз. (2) Метод многопараметрического статистического анализа, основанный на сдвиге. Индекс прочности позволяет рассчитать боковое трение сваи различных слоев почвы на лессовых участках. Если параметры приемлемы, ошибку между расчетным значением и измеренным значением метода испытания статической нагрузкой можно контролировать в пределах 20%.(3) В существующем китайском кодексе [51] величина бокового трения сваи определяется типом сваи и индексом параметров грунта (коэффициент пустотности и индекс жидкости). В данной статье рассчитано боковое трение сваи методом многопараметрического статистического анализа. Было обнаружено, что боковое трение сваи связано не только с типом сваи и параметром грунта, но и с показателем прочности на сдвиг.
Доступность данных
Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.
Благодарности
Это исследование финансировалось Национальной программой ключевых исследований и разработок Китая (№ 2018YFC0808606) и Проектом социального развития науки провинции Шэньси (№№ 2018SF-378 и 2018SF-382).
(PDF) Оценка оседания фундамента буронабивных свай
289
Linas Gabrielaitis et al./ Procedure Engineering 57 (2013) 287 — 293
Поскольку основное назначение фундамента — принимать нагрузки от оборудования и передавать эти нагрузки на сваи,
он должен удовлетворять критериям осадки и динамики. Согласно анализу напряжений, вызванных нагрузками, газовое и паротурбинное оборудование
требовало глубокого свайного фундамента. Проектирование глубокого свайного фундамента состоит из трех основных этапов, заказываемых
следующим образом:
1.Определение DWL (расчетной рабочей нагрузки) и SWL (безопасной рабочей нагрузки) для одиночной сваи на основе конструктивных характеристик
(SWL — основная расчетная нагрузка)
2. Получение несущей способности и соответствующих оседаний для нескольких длин сваи , согласно геотехническим параметрам недр
на участке (исходя из всех грунтовых и лабораторных испытаний, не только CPT). Здесь выбирается наименьшая требуемая длина сваи,
для оптимальной несущей способности (ближайшая выше SWL) с приемлемой осадкой
Для проверки фактического поведения нескольких решеток свай под фундаментной плитой, чтобы получить наиболее равномерную Распределение нагрузки
в головах свай, ближайшем ниже SWL, сводя к минимуму количество свай, но также гарантируя равномерную осадку плиты
, минимальные дифференциальные осадки между сваями и, следовательно, минимизирующие напряжения, вызванные оседанием в плите
.
При проектировании глубокого свайного фундамента требуемая длина сваи (для данного диаметра сваи) была оценена из
нагрузок надстройки, допустимого напряжения в материале сваи и свойств грунта на месте. Он был основан на следующих этапах
[11–12]:
1. Свойства грунта были определены на основе исследования участка и программы разведки грунта в соответствии с IEC [10] и
Литовские правила
2. Нагрузки на надстройку были получены из производитель газовых и паровых трибун, описанный в публикации [12]. Он
включал расчетную контрольную нагрузку 2500 кН и рабочую рабочую нагрузку 2239 кН
3.Были приняты буронабивные сваи диаметром 880 мм, которые лежали на очень плотном песчаном дне. На основе данных
из предыдущих двух шагов, оценка длины сваи была выполнена по несущей способности сваи и осадки
Этапы 1 и 3 описаны в следующих разделах, так как расчет осадки фундамента буронабивных свай
из надстройка — основная цель этой работы. При этом расчет несущей способности буронабивных свай составил
, комплексно проанализировано в предыдущих работах [11–12].
3. Физико-механические свойства почвы
Свойства почвы были определены в результате исследования участка и программы исследования почвы на площадке Электренайской электростанции,
Литва. Геологические исследования включали скважины (BH), конусные и динамические испытания (PT) и пробные карьеры (TP).
Всего пробурено 8 скважин глубиной 30 м и глубиной 45 м. Для определения гранулометрического состава, пластичности и плотности по Проктору из пробных карьеров были взяты образцы грунта по заказу
.Проведено 21 испытание конусного зондирования (КЗП) глубиной от
до 15 м. В 4 точках ниже 15 м были проведены точные измерения порового давления (CPTu).
Было проведено 16 испытаний на динамическое проникновение (DPSH) на глубину до 25–35 м. XIII инженерно-геологические
пластов (ЭГЛ) определены на исследуемой территории на основании данных обследования скважин, раскопок
и грунта, а также лабораторных исследований.
Поверхность исследуемого участка выровнена и большая часть площади заменена техногенным грунтом (tplIV), состоящим из
илистого песка (SU, SUo), глины низкой пластичности (TL), глины средней пластичности (TM), илистой глины. (ТУ) и гравийный песок (ГУ). Мощность искусственного слоя почвы
колеблется от 0,5 м до 2,20 м с высотами от 96,0 до 97,9 м. Глубина
лимногляциальных отложений колеблется от 13,20 м до 15,80 м. Высота подошвы слоя колеблется от 82.От 14 м до 84,93 м
высоты. Ниже илистый песок (СУ, СУо) присутствовал до 67,7 м над уровнем моря.
Из исследования инженерно-геологических слоев были обобщены четыре геологических слоя:
1. Глинистые отложения от средних до твердых, TU, TL, TM (глубина этого слоя до 15 м от поверхности)
2. Средняя до крупного илистого песка, плотного (глубина этого слоя до 19 м от поверхности)
3. Песок пылеватый от среднего до крупного, среднеплотный (глубина этого слоя до 25 м от поверхности)
4.Песок алевритовый от среднего до крупного, очень плотный (глубина этого слоя до 30 м от поверхности)
5. Эти четыре слоя использовались при проектировании и расчетах свайного фундамента [11]
Эти четыре слоя использовались в конструкция и расчеты свайного фундамента. Описание этих слоев представлено
на рис. 1.
В нашем случае φ ‘выводится из результатов SPT, которые были получены из теста DPSH и описаны в таблице 1. Чтобы применить данные
DPSH, данные N20 DPSH были преобразованы до значений N30 SPT, где N — количество ударов, зарегистрированное в стандартном тесте на проникновение
[9].Согласно Еврокоду 7, N30 был исправлен на (N1) 60. Хотя SPT не рассматривается как усовершенствованный и полностью надежный метод исследования
, значения N дают полезную информацию относительно плотности связных грунтов
и относительной плотности несвязных грунтов. Принятые значения сопротивления сдвигу φ ’вместе со значениями
удельного веса для активной зоны представлены в таблице 1.
Как рассчитать несущую способность грунта
Обновлено 28 декабря 2020 г.
Автор: S.Hussain Ather
Несущая способность грунта определяется уравнением
Q_a = \ frac {Q_u} {FS}
, в котором Q a — допустимая несущая способность (в кН / м 2 или фунт / фут 2 ), Q u — предельная несущая способность (в кН / м 2 или фунт / фут 2 ), а FS — коэффициент безопасности. Предел несущей способности Q и является теоретическим пределом несущей способности.
Подобно тому, как Пизанская башня наклоняется из-за деформации почвы, инженеры используют эти расчеты при определении веса зданий и домов. Когда инженеры и исследователи закладывают фундамент, они должны убедиться, что их проекты идеально подходят для той почвы, которая поддерживает их. Несущая способность — это один из методов измерения этой прочности. Исследователи могут рассчитать несущую способность почвы, определив предел контактного давления между почвой и помещенным на нее материалом.
Эти расчеты и измерения выполняются на проектах, касающихся фундаментов мостов, подпорных стен, плотин и подземных трубопроводов. Они опираются на физику почвы, изучая природу различий, вызванных давлением поровой воды материала, лежащего в основе фундамента, и межкристаллитным эффективным напряжением между самими частицами почвы. Они также зависят от жидкостной механики пространства между частицами почвы. Это объясняет растрескивание, просачивание и сопротивление сдвигу самой почвы.
В следующих разделах более подробно рассматриваются эти вычисления и их использование.
Формула несущей способности грунта
Фундаменты мелкого заложения включают ленточные, квадратные и круглые фундаменты. Глубина обычно составляет 3 метра, что позволяет получить более дешевые, реалистичные и легко переносимые результаты.
Теория предельной несущей способности Терзаги диктует, что вы можете рассчитать предельную несущую способность для неглубоких сплошных фундаментов Q u с
Q_u = cN_c + gDN_q + 0.5gBN_g
, где c — сцепление почвы (в кН / м 2 или фунт / фут 2 ), г — эффективный удельный вес почвы (в кН / м 3 или фунт / фут 3 ), D — это глубина опоры (в м или футах), а B — ширина опоры (в м или футах).
Для неглубоких квадратных фундаментов уравнение: Q u с
Q_u = 1,3cN_c + gDN_q + 0,4gBN_g
, а для неглубоких круглых фундаментов уравнение:
Q_u = 1.{2 \ pi (0,75- \ phi ‘/ 360) \ tan {\ phi’}}} {2 \ cos {(2 (45+ \ phi ‘/ 2))}}
N c Равно 5,14 для ф ‘= 0 и
N_C = \ frac {N_q-1} {\ tan {\ phi’}}
для всех других значений ф ‘, Ng равно:
N_g = \ tan {\ phi ‘} \ frac {K_ {pg} / \ cos {2 \ phi’} -1} {2}
K pg получается из графического представления величин и определение того, какое значение K pg учитывает наблюдаемые тенденции.Некоторые используют N г = 2 (N q +1) tanф ‘/ (1 + .4sin4 ф’) в качестве приближения без необходимости вычислять K пг. .
Могут быть ситуации, в которых почва проявляет признаки местного разрушения сдвигом . Это означает, что прочность грунта не может показать достаточную прочность для фундамента, потому что сопротивление между частицами в материале недостаточно велико. В этих ситуациях предельная несущая способность квадратного фундамента составляет Q u =.867c N c + g DN q + 0,4 g BN g , непрерывный фундамент i s Qu = 2 / 3c Nc + g D Nq + 0,5 g B Ng и круглый фундамент равен Q u = 0,867c N c + g DN q + 0,3 г BN g .
Методы определения несущей способности грунта
Фундаменты глубокого заложения включают фундаменты опор и кессоны.Уравнение для расчета предельной несущей способности этого типа грунта: Q u = Q p + Q f , где Q u — предельная несущая способность (в кН / м 2 или фунт / фут 2 ), Q p — теоретическая несущая способность конца фундамента (в кН / м 2 или фунт / фут 2 ) и Q f — теоретическая несущая способность из-за трения вала между валом и почвой.Это дает вам другую формулу для несущей способности грунта
Вы можете рассчитать теоретическую концевую несущую способность фундамента Q p как Q p = A p q p Где Q p — теоретическая несущая способность концевого подшипника (в кН / м 2 или фунт / фут 2 ) и A p — эффективная площадь наконечник (в метрах 2 или в футах 2 ).
Теоретическая единица несущей способности несвязных илых грунтов q p составляет qDN q , а для связных грунтов — 9c, (оба в кН / м 2 или фунт / фут 2 ). D c — критическая глубина для свай в рыхлом иле или песках (в метрах или футах). Это должно быть 10B для рыхлых илов и песков, 15B для илов и песков средней плотности и 20B для очень плотных илов и песков.
Для фрикционной способности обшивки (вала) свайного фундамента теоретическая несущая способность Q f составляет A f q f для одного однородного слоя грунта и pSq f L для более чем одного слоя почвы. В этих уравнениях A f — эффективная площадь поверхности ствола сваи, q f — kstan (d) — теоретическая единица трения для несвязных грунтов. (в кН / м 2 или фунт / фут), где k — боковое давление грунта, с, — эффективное давление покрывающих пород, а d — угол внешнего трения (в градусах). ). S — это сумма различных слоев почвы (т.е. a 1 + a 2 + …. + a n ).
Для илов эта теоретическая емкость составляет c A + kstan (d) , где c A — адгезия. Он равен c, — сцепление грунта для грубого бетона, ржавой стали и гофрированного металла. Для гладкого бетона значение .8c от до c , а для чистой стали — от . 5c до .9c . p — периметр поперечного сечения сваи (в метрах или футах). L — эффективная длина сваи (в метрах или футах).
Для связных грунтов: q f = AS u , где a — коэффициент сцепления, измеряемый как 1 — 0,1 (S uc ) 2 для S uc менее 48 кН / м 2 , где S uc = 2c — прочность на неограниченное сжатие (в кН / м 2 или фунт / фут 2 ) .Для S uc больше, чем это значение, a = [0,9 + 0,3 (S uc — 1)] / S uc .
Что такое фактор безопасности?
Коэффициент безопасности колеблется от 1 до 5 для различных применений. Этот фактор может учитывать величину повреждений, относительное изменение шансов, что проект может потерпеть неудачу, сами данные о грунте, построение допусков и точность расчетных методов анализа.
Для случаев разрушения при сдвиге коэффициент запаса прочности изменяется от 1.2 к 2,5. Для плотин и насыпей коэффициент запаса прочности составляет от 1,2 до 1,6. Для подпорных стен — от 1,5 до 2,0, для шпунтовых свай — от 1,2 до 1,6, для раскосных котлованов — от 1,2 до 1,5, для опор с разбросом по сдвигу — от 2 до 3, для опор из матов — от 1,7 до 2,5. Напротив, в случаях нарушения просачивания, когда материалы просачиваются через небольшие отверстия в трубах или других материалах, коэффициент безопасности колеблется от 1,5 до 2,5 для подъема и от 3 до 5 для трубопроводов.
Инженеры также используют практические правила для коэффициента безопасности как 1.5 для опорных стен, которые переворачиваются гранулированной засыпкой, 2,0 для связной засыпки, 1,5 для стен с активным давлением грунта и 2,0 для стен с пассивным давлением грунта. Эти факторы безопасности помогают инженерам избежать отказов, связанных со сдвигом и просачиванием, а также тем, что почва может смещаться в результате нагрузки на нее.
Практические расчеты несущей способности
На основании результатов испытаний инженеры рассчитывают, какую нагрузку может выдержать почва. Начиная с веса, необходимого для срезания почвы, они добавляют коэффициент безопасности, поэтому конструкция никогда не прикладывает достаточный вес для деформации почвы.Они могут регулировать площадь основания и глубину фундамента, чтобы оставаться в пределах этого значения. В качестве альтернативы они могут сжимать почву для увеличения ее прочности, например, используя каток для уплотнения рыхлого насыпного материала для дорожного полотна.
Методы определения несущей способности грунта включают максимальное давление, которое фундамент может оказывать на грунт таким образом, чтобы приемлемый коэффициент безопасности против разрушения при сдвиге находился ниже основания и соблюдались допустимые общие и дифференциальные осадки.
Предельная несущая способность — это минимальное давление, которое может вызвать разрушение опорного грунта при сдвиге непосредственно под фундаментом и рядом с ним. Они учитывают прочность на сдвиг, плотность, проницаемость, внутреннее трение и другие факторы при строительстве конструкций на грунте.
Инженеры руководствуются этими методами определения несущей способности почвы при выполнении многих из этих измерений и расчетов. Эффективная длина требует от инженера выбора того, где начать и где прекратить измерения.В качестве одного из методов инженер может выбрать использование глубины сваи и вычесть любые нарушенные поверхностные почвы или смеси грунтов. Инженер также может измерить ее как длину сегмента сваи в одном слое почвы, состоящем из многих слоев.
Что вызывает напряжение в почвах?
Инженеры должны учитывать почвы как смеси отдельных частиц, которые перемещаются относительно друг друга. Эти единицы грунта можно изучать, чтобы понять физику этих движений при определении веса, силы и других величин по отношению к зданиям и проектам, которые инженеры строят на них.
Разрушение при сдвиге может возникать в результате воздействий на грунт напряжений, которые заставляют частицы сопротивляться друг другу и рассеиваться таким образом, что это вредно для здания. По этой причине инженеры должны быть осторожны при выборе конструкций и грунтов с соответствующей прочностью на сдвиг.
Круг Мора может визуализировать напряжения сдвига на плоскостях, относящихся к строительным проектам. Круг напряжений Мора используется в геологических исследованиях испытания грунтов. Он предполагает использование образцов грунта цилиндрической формы, в которых радиальные и осевые напряжения действуют на слои грунта, рассчитанные с использованием плоскостей.Затем исследователи используют эти расчеты для определения несущей способности грунта в фундаменте.
Классификация почв по составу
Физики и инженеры могут классифицировать почвы, пески и гравий по их размеру и химическому составу. Инженеры измеряют удельную поверхность этих компонентов как отношение площади поверхности частиц к массе частиц, что является одним из методов их классификации.
Кварц является наиболее распространенным компонентом ила, а также песка и слюды и полевого шпата.Глинистые минералы, такие как монтмориллонит, иллит и каолинит, образуют листы или структуры пластинчатой формы с большой площадью поверхности. Эти минералы имеют удельную поверхность от 10 до 1000 квадратных метров на грамм твердого вещества.
Эта большая площадь поверхности допускает химические, электромагнитные и ван-дер-ваальсовы взаимодействия. Эти минералы могут быть очень чувствительны к количеству жидкости, которая может проходить через их поры. Инженеры и геофизики могут определять типы глин, присутствующих в различных проектах, чтобы рассчитать влияние этих сил и учесть их в своих уравнениях.
Почвы с высокоактивными глинами могут быть очень нестабильными, поскольку они очень чувствительны к жидкости. Они набухают в присутствии воды и сжимаются в ее отсутствие. Эти силы могут вызвать трещины в физическом фундаменте зданий. С другой стороны, с материалами, представляющими собой глины с низкой активностью, которые образуются при более стабильной активности, гораздо проще работать.
Таблица несущей способности почвы
Geotechdata.info содержит список значений несущей способности почвы, которые вы можете использовать в качестве диаграммы несущей способности почвы.
% PDF-1.5 % 12 0 объект > эндобдж 13 0 объект [762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 227 290 362836 454 616 524 246 338 338 430 708 258 186 234 336 314 418 418 442 418 418 430 418 418 234 246 684 708 684 512 995 476418 418 418 454 350 418 418 222418 442 350 626 454 454 406418 430 418 408 454 454 66246 454 372 326 326 326 995 522 196 396 396 396 396 396280 396 396210 210 396210 568 396 396 396 396 396280 396 406 626418 408 326 507 507 507 995 227 762 227 227 227 227 227 227 227 227 227 684 40 227 762 227 227 246 246 362 362 227 546 1047 227 750 227 684 40 227 762 454 227 220 373 373 598 373 507 397 227 818 624 3738181818 507 882 818 263 263 227 617 507 227 227 227 664 373 598 598 598 373 40 40 40 40 40 234 227 40 40 40 40 234 234 454 40 227 476 234 234 454 40 430 227 40 40 40 40 40 488 373 330 40 40 40 40 40 40 210 227 40 40 40 40 210 210 408 40 227 396210 210 379 40 396227 40 40 40 40 40 507 330 408] эндобдж 11 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект [778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 778 250 333 408 500 500 833 778 180 333 333 500 564 250 333 250 278 500 500 500 500 500 500 500 500 500 500 278 278 564564 444 921 722 667 667 722 611 556722 722 333 389 722 611 889 722 722 556 722 667 556611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444500 444 333 500 500 278 278 500 278 778 500 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 350 500 350 333 500 444 1000 500 500 333 1000 556 333889 350 611 350 350 333 333 444 444 350500 1000 333980389333722350444722250 333500500500500200500 333760 276 500 564 333760500 400 549 300 300 333 576 453 333 333 300 310 500 750 750 750750 444722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 722 722 722 722 722 722 722 564722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500500 500 500 500 500 500 500] эндобдж 14 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект [762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 762 260 394 406880 544 718 684 302394 394 464730 302382 278 396 512 372512 512 534 512 512 512 512 512 258 302 706 718 706534 995570 512 512 512 558 430 512 512 256 512 512 430 730 558 558 512 512 512 512 488 558 524 788 546570 454 338 372 350 99552 2435 476 476 476 500 326 476 476 246 246 488 246 696 476 500 47647647647 360 500 488 754 500 512 406 507 507 507 995 382 762 382 928 818 382 382 382 382 382 382 382 382 40 382 762 382 382 302 302 406 406 382 382 382 382 382 382 382 40 382 762 558 260 263 464 464 598 464 507 464 382 818 624 397 818 382 818 507 882818 310 310 507 641 507 382 382 382 664 397 751 751 751440 40 40 40 40 40 40 246 382 40 40 40 40 246 246 558 40 382 558 246 246 546 40 558 382 40 40 40 40 40 641464421 40 40 40 40 40 246 382 40 40 40 246 246 512 40 382476 246 246 500 40 500 382 40 40 40 40 40 641 382 512] эндобдж 17 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект [750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 58458458456 1015 667 667 722 722 667 611 778722 278 500 667 556833 722778 667 778722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 500556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 350 556 350 222 556 333 1000 556 556 333 1000 667 333 1000 350 611 350 350 22 22 22 23 33 333 350556 1000333 1000500333944350500 667 278 333 556 556 556 556260 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 537 333 333 333 365 556834 834 834 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 549 611 556 556 556 556 500 556 500] эндобдж 20 0 объект > эндобдж 26 0 объект > ручей x: = cn0
Проектирование свай [разработать подробное руководство]
В статье рассматривается конструкция свай (одинарные набивные буронабивные сваи).Буронабивные сваи чаще используются в мире в качестве глубокого фундамента, когда осевая нагрузка не может быть достигнута за счет фундаментов мелкого заложения.
Существуют различные методы проектирования свай. Во всех методах расчет поверхностного трения и концевых опор выполняется при расчете свай. Если мы сможем рассчитать вышеуказанные параметры, мы легко сможем оценить вместимость сваи.
Расчет отрицательного поверхностного трения и нормального поверхностного трения грунта в этой публикации не рассматривается.
Однако эффект поверхностного трения грунта можно учесть при оценке несущей способности сваи.
Особенно, когда есть отрицательное поверхностное трение, которое снижает несущую способность сваи, это следует учитывать при расчетах. Влияние трения кожи о землю о кожу будет рассказано в другой статье на этом сайте.
Обычно допустимые значения торцевого подшипника и поверхностного трения получают в результате геотехнических исследований.
В отчете указаны допустимые чистые значения концевого подшипника и допустимое поверхностное трение.
Если в отчете о инженерно-геологических изысканиях указаны предельная нагрузка на концевую опору и предельное поверхностное трение, они должны быть преобразованы в допустимые нагрузки, поскольку мы сравниваем их с рабочими нагрузками (эксплуатационными нагрузками) конструкции.
Уравнения для оценки концевого подшипника и трения обшивки
Допустимая нагрузка на концевую опору = (допустимая конечная опора) x (площадь поперечного сечения основания сваи) сваи в длине раструба)
Площадь поверхности сваи в длине раструба рассчитывается путем умножения длины раструба (длины сваи в свежей породе) на длину периметра сваи.Обычно сваи имеют глубину забивки вокруг диаметра сваи, если это не указано в геотехническом отчете.
Геотехническая способность сваи = Концевая несущая способность + Допустимая сила трения обшивки
Геотехническая способность сваи сравнивается со структурной способностью сваи для получения несущей способности сваи.