Как вязать стеклопластиковую арматуру: Как вязать стеклопластиковую арматуру — способы и особенности

Содержание

Как и чем вязать стеклопластиковую арматуру



Как связать

Правильно армировать фундамент композитной стеклопластиковой арматурой несложно. При обустройстве арматурного каркаса под фундамент любого вида, в первую очередь нужно руководствоваться проектной документацией. Так как, только проект, рассчитанный профессионалами, сможет в дальнейшем избавить Вас от возможных проблем с фундаментом. Если по каким-либо причинам проектной документации у Вас нет, то возможно самостоятельно рассчитать распределение нагрузки конструкции будущего дома на фундамент. Что называется — «на свой страх и риск». От материала, из которого будет построено здание (деревянный брус, пеноблок, кирпич), будут зависеть и нагрузки, оказываемые на фундамент. Схемы армирования любого фундамента (ленточного либо фундаментной плиты) предполагают постоянные размеры ячейки. Шаг прутьев принимается одинаковым независимо от расположения в фундаменте и направления. Обычно он находится в пределах 200—400 мм.
Чем тяжелее здание, тем шаг ячеек чаще. Для кирпичного дома рекомендуется назначать расстояние 200 мм, для деревянного или каркасного можно взять большее значение шага. При этом важно помнить, что расстояние между параллельными прутами не может превышать толщину фундамента более чем в полтора раза. Сам процесс вязки зависит от типа используемого связующего элемента.

Чем вязать

Креплениями-фиксаторами арматуры

Такой способ соединения арматуры самый простой, необходимо лишь защелкнуть арматуру в крепление фиксатора, и арматура правильно скрепится между собой. Во время укладки нижнего армирующего слоя фиксаторы помимо скрепления арматуры помогают армирующему каркасу не проседать под тяжестью раствора, и создают защитный слой из бетона нужной высоты.

Хомутом-стяжкой из пластика

Чуть менее быстрый способ – применение хомутов из пластика, они затягиваются и защелкиваются на арматуре в месте соединения. Способ снижает время на вязку арматурного каркаса по сравнению с вязкой металлической проволоки, при этом не ухудшая его характеристик.
Ведь главная задача связки арматуры заключается в том, чтобы в момент заливки бетона каркас из стержней арматуры не изменил геометрию.

Металлической проволокой

Более медленный, но более надежный способ вязки металлической (алюминиевой) проволокой. Связывать арматуру проволокой можно покупным или самодельным крючком либо специальным пистолетом. Учитывая хрупкость металлической проволоки, ее нельзя перетягивать, иначе она легко сломается. Этот способ вязки не отличается от вязки арматуры из стали.


Обвязка фундамента стеклопластиковой арматурой: как правильно, фото, видео

Новые строительные материалы, в числе которых и стеклопластиковая арматура (СПА), очень медленно вытесняют старые, проверенные десятилетиями материалы. Все привыкли, что в железобетоне должная быть стальная арматура, о полной замене которой в масштабном строительстве речь пока не идёт. Однако для строительства фундаментов малоэтажных зданий гораздо выгоднее использовать композитные стержни, так как при меньшей цене и весе они могут выдерживать те же самые нагрузки.

В чём достоинства такой замены, и как вязать стеклопластиковую арматуру для фундамента, будет рассказано в этой статье.

Стеклопластиком называется вид композиционного материала из термопластичного полимера, наполненного волокнами стекла или кварца. Основными преимуществами являются:

  • малый удельный вес;
  • высокая коррозионная стойкость;
  • прочность на разрыв, не уступающая стали.

До недавних пор стеклопластики использовались преимущественно в космической и авиационной технике, но теперь, когда создана технология пултрузии (формирование неметаллической рельефной арматуры методом протяжки), появилась возможность и для широкого применения в строительстве.

Бетонный цоколь по монолитной плите

  • Существуют различные вариации композитов, в том числе и комбинированных, но одним из самых доступных является стеклопластик. По сравнению с металлом он дороже, это если сравнивать цену за тонну. Но учитывая малый вес, погонных метров композитной арматуры в этой тонне (если сравнивать одинаковые диаметры) будет в пять раз больше. А значит, и по цене выгоднее.
  • Как и стальная, арматура из стеклопластика предлагается в виде тонких и толстых стержней, стержневых карт и кладочных сеток. Для подбора арматуры по диаметру производятся такие же расчёты, как и для стальной, но всегда получается, что диаметр СПА может быть на одну ступень ниже. То есть, вместо металлической арматуры АIIID12 можно использовать стеклопластиковые стержни диаметром 10 мм – и вот почему.
  • Модуль упругости, это усилие, которое надо приложить, чтобы растянуть материал на определённое расстояние. У композитной арматуры модуль ниже почти в 5 раз, чем у стальных стержней. Но величина эта постоянна, тогда как у стали она зависит от нагрузок и температуры окружающей среды.
  • Есть ещё такой показатель, как предел прочности. Это предельная нагрузка, после которой материал полностью разрушается. У стальной арматуры он равен 400 Мпа, а вот у композиционной – не менее 1200 Мпа. У самого бетона эти цифры несопоставимо меньше, поэтому при пиковых нагрузках он разрушается первым, после чего в работу включается предел прочности арматуры.
  • Чем он выше, тем большую нагрузку сможет выдержать тот же фундамент. Выходит, что конструкция, армированная стеклопластиком, будет держаться в три раза дольше. Но учитывая большую эластичность стеклополимерного композита, конструкция при этом существенно провиснет, из-за чего бетон будет сильнее растрескиваться.
  • Чтобы найти золотую серединку, расчёт арматуры для фундамента должен производиться специалистом. При условии правильного подбора диаметров и шага элементов каркаса, стеклопластик может служить гораздо дольше из-за отсутствия коррозии.

В случае с фундаментами способность стеклопластика к более сильному прогибу особого значения не имеет, так как лента или плита всей площадью опирается на грунт. Это не то, что плита перекрытия или балка, которая имеет всего две точки опоры. Фундамент должен продемонстрировать высокую прочность, а с этим у армированной стеклопластиком фундаментной конструкции проблем точно не будет.

Главным конкурентом стеклопластиковой арматуры является стальная, поэтому именно с ней и надо сравнивать технические характеристики:

Характеристика арматуры Ед.
изм.
Стеклопластик Металл
Максимальная прочность на разрыв (чем больше, тем лучше) МПа 1600 690
Модуль упругости (чем больше, тем лучше) МПа 56000 200000
Относительное удлинение (чем меньше, тем лучше) % 2,2 25
Коэффициент теплопроводности (чем меньше, тем лучше) Вт/м*С 0,35 46
Коррозионная устойчивость   Не подвержен коррозии Подвержен коррозии
Коэффициент теплового расширения (чем меньше, тем лучше) 10-6 С продольно 8-10 11,7
Коэффициент теплового расширения (чем меньше, тем лучше) 10-6 С поперечно 22 11,7
Устойчивость к излому   Низкая Высокая
Электропроводность   Диэлектрик Проводник
Оптимальное восприятие температур Градус Цельсия -60…. .+90 -200…..+750
Способы вязки арматуры   Хомуты, вязальная проволока, фиксаторы Сварка, вязальная проволока
Возможность изготовления гнутых элементов в условиях стройки   нет есть
Способность пропускать электромагнитные волны   Да Нет
Экологичность   Малый процент токсичности Нетоксичен

Композитная арматура может иметь различное назначение, и в том числе бывает специально предназначена для усиления бетонных конструкций. Как и стальная, она изготавливается гладкой и рифлёной, и продаётся в виде стержней или сетчатых карт. Для конструкций ленточного типа можно приобрести и готовый каркас для фундамента из стеклопластиковой арматуры.

Чтобы не нарваться на дешёвую подделку, покупать всё это нужно либо непосредственно у производителя, либо у официального дилера. У контрафактной арматуры может быть некачественная заливка витков, бывает более низкая или неравномерная плотность навивки стекловолоконного жгута (ровинга).

Но прежде, чем купить материал, нужно правильно его рассчитать, поэтому рассмотрим, как это делается на примере небольшого фундамента размером 6*6 м.

В плитном фундаменте не может использоваться арматура диаметром меньше 6 мм, если она стеклопластиковая, и она должна быть только профилированная. Ориентироваться надо на плотность грунта и вес строения. Минимальный диаметр арматуры можно взять, если постройка, к примеру, лёгкая каркасная, а грунт прочный. Если же дачный дом или гараж строится из каменных материалов, лучше взять пруты или сетку диаметром 10 мм.

При размере ячейки сетки 200 мм, количество прутков, укладываемых в одном направлении, составит 31 штуку — соответственно, 62 стержня на один уровень. Всего уровней два, поэтому нам понадобится 124 шестиметровых прутка, в метрах это будет 744.

Для соединения верхних и нижних сеток можно использовать обрезки той же арматуры.

Учитывая, что пруты укладываются 31 на 31, всего получится 961 соединение. При толщине плиты 200 мм, за минусом толщины защитных слоёв (по 50 мм с каждой стороны), длина соединительных прутков составит 100 мм, или 0,1 м. Умножив её на количество соединений, получим 96,1 метр. Чтобы получить общую длину арматуры на плиту, надо суммировать 744 и 96,1. Округляем до целого числа, и в итоге получаем 841 м.

Теперь посчитаем количество необходимой проволоки, что может зависеть от схемы вязки. Обычно сначала связывают прутки нижнего пояса, после чего к ним присоединяют вертикальные элементы, которые будут соединять нижнюю сетку с верхней.

Схемы вязки арматуры

Чтобы произвести одно соединение, в среднем требуется 0,3 м проволоки. В одном уровне у нас 961 соединение, а в двух (снизу и сверху) – 1922. Путём умножения длины одного куска проволоки на их количество, получаем общую длину 576,6 м.

Стеклопластиковую арматуру можно – и даже более удобно, вязать не проволокой, а пластиковыми стяжками, используемыми обычно для связки проводов. Так как они продаются штучно, их количество будет соответствовать количеству соединений на каркасе.

Вязка пластиковыми стяжками

Как вариант, можно использовать специальные соединительные хомуты. Есть и такие, которые одновременно выполняют функцию подставки, обеспечивающей нужную толщину защитного слоя бетона.

Хомуты для соединения композитной арматуры

Отличительным свойством ленточной конструкции является её высота, которая всегда больше ширины. Лента лучше, чем плита работает на изгиб, поэтому диаметр арматуры здесь может быть меньше. В ней тоже делается два пояса армирования, только соединяются уровни чаще не короткими прутками как в плите, а гнутыми П-образными элементами.

Расчёт армирования производится в таком порядке (просчитаем всё тот же фундамент 6х6 м с одной внутренней стеной):

  1. На подставки продольно укладывают более толстые рифлёные стержни (для одноэтажного дома можно брать диаметром 8 мм). Их при ширине ленты в 30-40 см будет всего по паре снизу и сверху.
  2. Соединяющие их вертикальные стержни нагрузку не несут, а потому могут быть гладкими, без спиральной навивки – диаметр 6 мм.
  3. При общей длине ленты 30 м, армируемой в 4 ряда, расход основной (продольной) арматуры составит 120 м.
  4. Хомуты или вертикально-поперечные прутки устанавливаются через 0,5 м. Допустим, сечение ленты составляет 0,3*0,7 м, при котором на одно соединение будет уходить 1,6 м арматуры диаметром 6 мм. Всего секций перевязки образуется 61 — умножив эту цифру на 1,6, мы получим общую длину арматуры 97,6 м.
  5. Каждая секция каркаса, связанная поперечной арматурой, имеет 4 соединения. Всего 4х61=244 соединения. Столько нужно хомутов или стяжек, если использовать для вязки их.
  6. Если 244 умножить на 0,3 м, мы получим расход проволоки — 73,2 м.

Обвязка фундамента стеклопластиковой арматурой

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

При вязке каркаса можно уменьшить диаметр арматуры, но при этом придётся увеличить количество продольных стержней. Можете просчитать оба варианта по цене и выбрать тот, который окажется наиболее выгодным.

Столбчатый фундамент работает не на изгиб, а на сжатие, так как рабочая арматура располагается не горизонтально, а вертикально. В таком положении она работает в облегчённом режиме, поэтому брать ребристые стержни можно диаметром 6 мм. По горизонтали монтируются гладкие прутки диаметром 4-5 мм, которые должны связать рабочую арматуру в пространственный каркас.

Форма каркасов для бетонного фундаментного столба

В зависимости от формы и размеров сечения столба, в каркасе могут присутствовать 2, 3 или 4 пояса рабочей арматуры. Для армирования столбов длиной 2 м и диаметром 0,2 м, обычно делают каркас прямоугольной формы из 4-х, связанных поперечной арматурой продольных прутков. Диаметры – 10 и 6 мм, с перевязкой в четырёх местах.

В таком случае, на один столб уйдёт 2*4=8 м основной арматуры, и 0,4*4=1,2 м перевязочной арматуры. Останется только умножить эти цифры на количество столбов, и вы получите общую длину стержней. На каркасе столба 4 пояса, в которых имеется по 4 соединения. Перемножив эти цифры, получаем 16 точек перевязки. Если вязать будете не стяжками, а проволокой, умножьте её расход 0,3 м на 16. Всего получится 4,8 м вязальной проволоки на один столб.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

На заметку: Арматура для ростверка считается по аналогии с конструкцией ленточного типа.

Каркас ростверка, обвязывающего столбы

Речь о том, как правильно вязать пластиковую арматуру для фундамента, пойдёт в следующей главе.

Перед тем, как вязать пластиковую арматуру для фундамента, желательно посмотреть видео. Однако это не отменяет наличия чертежа, в котором будут чётко обозначены все элементы каркаса и указаны расстояния между ними. Соответственно, на основании этого чертежа и должны отрезаться пруты рабочей и поперечной арматуры.

Вязать каркас для фундаментной ленты удобнее укрупнёнными блоками, которые затем опускаются в опалубку и привязываются друг к другу. При структурировании каркаса плиты, вяжут сначала сетку нижнего уровня, к ней фиксируют вертикальные перемычки, а затем уже приступают к формированию верхнего ряда.

  • В любом случае, вязка начинается с нижнего яруса, с продольных стержней. Их предварительно раскладывают на земле или на фиксаторах, отмечая маркером места перевязки с поперечными элементами.
  • Если вязка СПА производится проволокой, то процесс ничем не отличается от вязки обычной стальной арматуры. Для этого вам нужен крючок для вязки и ножницы по металлу.
  • Кусок проволоки длиной 30 см складывается пополам затем, чтобы образовалась петля. Огибаете ею место соединения двух прутьев, продеваете крючок в петлю и, протянув в неё свободный конец, делаете скрутку.

    Как связать стеклопластиковую арматуру для фундамента проволокой

    Мнение эксперта
    Виталий Кудряшов

    строитель, начинающий автор

    Важно: В процессе работы необходимо следить, чтобы прутья при перевязке образовывали прямой угол.

  • Особого внимания требуют углы каркаса. Гнуть стеклопластиковую арматуру в условиях стройки нельзя, поэтому нужно заранее запастись готовыми П-образными элементами (на пересечении стен могут использоваться Г-образные хомуты). Основные варианты соединений показаны ниже.

Угловое соединение

В последнее десятилетие композитная арматура стала весьма востребованной в малоэтажном строительстве. Она отлично подходит для армирования фундаментов, так как расчётное сопротивление растяжению у СПА в 3 раза выше, чем у стальных стержней. Композит лучше сохраняет свою форму при повышении температуры и практически не поддаётся деформированию, а благодаря меньшему весу стержней снижается и масса монолита. Полимеры не способны увлажняться, а потому не подвержены коррозии. Вывод напрашивается сам: конструкция, армированная стеклопластиком, прослужит гораздо дольше металлической.

Как вязать стеклопластиковую арматуру

На современных стройках для создания арматурного каркаса, при укреплении бетонных конструкций, все активнее вместо металлических прутков используют стержни из стеклопластика. Специалисты называют немало преимуществ арматуры из композита, которые делают ее не просто достойной альтернативой металлическим пруткам, но и более выгодной и эффективной в ряде случаев.

Одной из выгод стеклопластиковой арматуры называют ее простой монтаж в каркас, путем связывания. Чтобы скрепить стержни из композитного материала между собой нет необходимости использовать сварочный аппарат – прутки связываются между собой с помощью:

Наиболее традиционным и привычным для целого поколения строителей является способ связывания арматуры проволокой. Этот процесс может осуществляться:

  • с помощью простого строительного вязального крючка;
  • механизированного варианта крючка – винтового;
  • используя автоматический пистолет для связывания стержней.

Безусловно, вязка крючком не теряет своей популярности в связи с дешевизной инструмента и простотой его использования. Однако наиболее удобным, быстрым и качественным способом вязки прутков является использование пистолета.

Учитывая достаточно высокую стоимость этого инструмента, его приобретение оправдано при необходимости выполнять большие объемы работы. Но для крупных строительных компаний такая покупка дает целый ряд преимуществ при обустройстве арматурных каркасов для бетонных сооружений и конструкций.

  1. Проволока затягивается одинаково на всех узлах каркаса.
  2. Механизация труда значительно увеличивает продуктивность и результативность.
  3. Использование пистолета позволяет сэкономить, уменьшив количество рабочих выполняющих этот вид работы.
  4. Пистолет способен функционировать независимо от температурного режима.
  5. Пистолет питается от аккумулятора, способного обеспечить функционирование в течение всего рабочего дня.

В некоторых моделях пистолетов имеется удлиняющее устройство позволяющее связывать арматуру практически не наклоняясь.

Стеклопластиковая арматура для фундамента: армирование, вязка

При возведении новой постройки важно обустроить качественный и прочный фундамент. Для этой задачи могут применяться разные материалы, главное — чтобы они были надежными и могли выдерживать большие нагрузки. В современном строительстве широко распространено применение стеклопластиковой арматуры для оснований.

Что такое стеклопластиковая арматура

Стеклопластиковая арматура для фундамента производится на базе композитных материалов и продается в виде продольных стержней толщиной 4-18 мм. Их поверхность покрыта насечками или навивкой.

Для изготовления таких конструкций применяются два компонента:
  1. Волокна из разного неорганического сырья.
  2. Полимерные добавки с термопластичной или термореактивной структурой.

Прочную основу для стержней производят из вяжущих элементов, которые придают конечной продукции требуемые прочностные свойства.

Сферы эксплуатации изделий из стеклопластика достаточно обширные. Возведение фундаментов под постройки жилого и промышленного назначения — одна из них. С помощью такой арматуры можно придать основанию дополнительную прочность и надежность.

В зависимости от применяемых в процессе производства материалов, выделяют следующие виды композитной арматуры:

  1. Стеклопластиковая.
  2. Базальтокомпозитная.
  3. Арамидокомпозитная.
  4. Углекомпозитная.

Существуют комбинированные варианты, в составе которых присутствуют разные компоненты. Наибольшим спросом пользуется стеклопластиковая разновидность, которая напоминает по структуре дерево. По длине стержня расположены волокна, способствующие образованию единой основы.

Преимущества и где используется

Популярность использования стеклопластиковой арматуры для ленточного фундамента связана с массой достоинств, среди которых:

  1. Отсутствие уязвимости к коррозийным процессам. За счет этого свойства стеклопластик можно использовать в среде с высокой влажностью или другими агрессивными воздействиями.
  2. Небольшие габариты и вес. Это способствует комфортной транспортировке и использованию материала. Процесс армирования не требует больших затрат человеческой силы. Материал легко сматывается в бухты и легко доставляется на строительную площадку.
  3. Доступная стоимость. Композитные изделия намного дешевле аналогов из стали.
  4. Повышенные прочностные свойства. Арматура из стеклопластика характеризуется высокой прочностью, которая в 2-2,5 раза превышает прочность прутьев из металла с одинаковым сечением.
  5. Низкая теплопроводимость, устойчивость к электрическому току. Конструкции из бетона не способны защитить постройку от потери тепла, и их дополнительно утепляют изоляционным материалом, поэтому низкие теплопроводные свойства композита не играют большой роли. Непроводимость электричества — важный момент, который защищает постройку от разрядов.

Однако кроме положительных черт, армирование ленточного фундамента стеклопластиковой арматурой имеет и недостатки:

  1. Конструкция не обладает устойчивостью к изгибам, поэтому она не способна поглотить растягивающие нагрузки. Поскольку арматуру укладывают на бетонную поверхность, она уже подвергается предельным растяжениям.
  2. Области использования материала ограничены, поскольку его можно устанавливать только в натянутом виде.
  3. Для возведения крупногабаритных и многоэтажных построек стеклопластик не подходит. Поэтому чаще всего он востребован при решении несложных задач новичками.
  4. Невозможность использования сварочного оборудования для соединения элементов. В большинстве случаев сварку задействуют при возведении крупногабаритных каркасов. Для обустройства фундамента частного дома подходит метод пошаговой вязки прутьев.

Материал появился относительно недавно и считается не до конца изученным.

Сферы применения включают как жилищное, так и промышленное строительство. Использование стеклопластиковой арматуры в фундаменте обретает большой спрос, что связано с рядом преимуществ над бетонными конструкциями.

Сегодня такой арматурой укрепляют берега водоемов и дорожные покрытия, размещенные в проблемных зонах с постоянными агрессивными воздействиями.

При частном строительстве изделия необходимы для укрепления:

  1. Сооружений из бетона, которые выполняют ограждающие функции. При этом задействовать материал для армирования несущих конструкций запрещено.
  2. Фундаментов ленточного или другого типа.
  3. Пенобетонной или газобетонной кладки.

Расчет арматуры из стеклопластика

Чтобы рассчитать количество арматуры для ленточного фундамента, нужно учесть ряд важных нюансов и руководствоваться СП «Бетонные и железобетонные конструкции».

Расчет выполняется в два этапа:
  1. ГПС. Определение несущих способностей конструкции и оценка способности основания справляться с нагрузками.
  2. ГПС. Определение показателей жесткости. Этап подразумевает учет деформаций и величины трещин у изделий с железобетонной основой.

Большую часть сжимающих нагрузок поглощает бетон, а стеклопластиковое армирование используется для борьбы с разрушительными процессами. Ведущие производители арматуры сообщают о таком достоинстве, как прочность, но не рассказывают о модуле упругости, который влияет на деформативность сооружения.

Для получения точных результатов необходимо провести несложные математические расчеты, разделив прочность на данные модуля упругости.

Армирование фундамента

Чтобы определить, можно ли использовать стеклопластиковую арматуру для ленточного фундамента и как вязать стержни из стекловолокна с таким основанием, нужно учесть, что существует два типа основы с лентой:

  1. Прямоугольная.
  2. Т-образная.

Во втором типе монтаж арматуры выполняется без предварительных расчетов, а подошва предназначается для поглощения нагрузок на изгиб. Материал можно зашивать в стенку, но при установке в подошву нужно быть особенно осторожным.

Если фундамент обладает прямоугольным сечением, использование стеклопластикового армирования оправдывает себя, поскольку эта конструкция может воспринимать сжимающие нагрузки.

Инструменты и материалы

Перед тем как начинать вязать ленточный фундамент, нужно подготовить такие инструменты и материалы:

  1. Измерительное приспособление — рулетка.
  2. Прибор для подгона и обработки прутьев — болгарка.
  3. Средства персональной защиты.
  4. Уровень водяного типа.
  5. Хомуты из пластика для скрепления прутьев.

Земляные работы

Перед началом армирования нужно подготовить углубление, руководствуясь планировкой будущей постройки. Поверхность дна нужно выровнять и утрамбовать, затем насыпать слой песка (10-15 см), полить его жидкостью и уплотнить. Следующим слоем будет щебень с аналогичной толщиной. После уплотнения верхнего покрытия на дне образуется надежная подушка с ровной плоскостью.

Строительство опалубки

Для обустройства опалубки используются доски, которые соединяются в щиты с помощью гвоздей или саморезов. Шляпки крепежных деталей нужно устанавливать с внутренней стороны, а конструкцию нужно дополнительно укреплять с помощью распорок.

Поверхность стенок покрывается пергаментом, который фиксируется с помощью степлера. Задача этого материала заключается в сохранении чистоты досок и борьбе с вытеканием жидкости из бетонной стяжки.

Дальше на стенках размещаются метки, которые будут определять уровень заливки бетона. По этой линии стоит ориентироваться при монтаже армированных элементов. Для более точного выполнения работы следует применить водяной уровень.

Технология вязки

Чтобы разобраться с технологией вязки, следует учесть несложные советы опытных специалистов и придерживаться такого алгоритма действий:

  1. Перед началом вязки нужно подготовить чертежи каркаса и провести нарезку всех элементов, придерживаясь расчетов.
  2. Для позиционирования поперечных прутьев в нижних слоях используются фиксаторы. Они закрепляются как перед началом монтажа арматуры, так и после завершения сборки.
  3. Диаметр ячеек определяется параметрами ленты, которая подвергается укреплению. В большинстве случаев он варьируется от 15 до 30 см.
  4. Перед соединением продольных прутьев, их нужно разложить на земле и нанести на них отметки в местах крепления поперечных деталей. В процессе вязки нужно соблюдать прямой угол.
  5. Поперечные элементы фиксируются с продольными с нижней стороны. Для обеспечения надежного армирования, хомуты из пластика или проволока вяжутся как можно туже.
  6. В первую очередь необходимо подготовить горизонтальные слои армирования, а потом начинать закрепление вертикальных. Фиксация осуществляется с внутренней стороны ячеек для повышения надежности конструкции.
  7. Углам нужно уделять особое внимание. Специалисты рекомендуют не гнуть их путем температурного воздействия, поскольку это может ухудшить прочностные свойства.
  8. После завершения вязки арматурной конструкции ее нужно поместить внутрь опалубки.

Если вязка стеклопластиковой арматуры осуществляется с помощью проволоки, то, чтобы облегчить работу, лучше задействовать вязальный крючок. Его роль может выполнять старая отвертка.

Сооружение арматурного каркаса

При обустройстве каркаса нужно придерживаться ключевого требования — изделие нужно полностью заливать бетоном, выдерживая дистанцию между стенками опалубки не меньше 5 см. Чтобы армированные элементы не размещались на дне углубления, следует закрепить кирпичи, а поверх них расположить продольные прутья и горизонтальные поперечины. Эти элементы соединяются с помощью пластиковых хомутов.

Заливка фундамента

На последнем этапе нужно залить бетон в опалубку с каркасом. Важно проводить это действие с особой осторожностью, помещая его в свободные полости между частями каркаса. Также необходимо периодически протыкать бетон прутьями для удаления пузырьков воздуха.

Сравнение с арматурой из металла

При проведении сравнительных тестов арматуры из стали и композитных материалов существуют такие особенности:

  1. Стальные изделия боятся коррозийных процессов, а композит выдерживает любую агрессивную среду.
  2. Металл пропускает холод, а композитные изделия отличаются низкой степенью теплопроводности.
  3. Вес арматуры из стеклопластика в пару раз ниже веса стальных аналогов.

При выборе материала для проведения армирования нужно учитывать все факторы. При большом списке достоинств инновационные стеклопластиковые конструкции имеют и недостатки, а классический вариант из металла использовался в течение многих десятилетий.

Фундамент из стеклопластиковой арматуры — правила армирования

Технический прогресс неумолимо вторгается во всевозможные сферы современной жизни. Не смог он обойти стороной и область строительных материалов. Ежегодно рынок пополняется все новыми разработками, позволяющими облегчить и упростить процесс строительства. Именно благодаря новым технологиям сегодня появилась возможность заложить в основу малоэтажной застройки фундамент из стеклопластиковой арматуры. Этот вид строительного каркаса, появившись не так давно на рынке, уже сумел существенно потеснить привычные и популярные изделия из железа и стали. В чем же состоят основные преимущества стеклопластика? Какова область его применения?

Блок: 1/7 | Кол-во символов: 653
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Что собой представляет стеклопластиковая арматура

Арматура, для производства которой используют стеклопластиковые материалы, была разработана достаточно давно, еще в 1960-х годах. Однако из-за высокой стоимости применяли ее только в условиях сурового климата, где обычные арматурные конструкции из стали, подверженные коррозии, не могли прослужить долго. Арматурой, которая изготавливалась из стеклопластиковых материалов, укрепляли преимущественно опоры мостов и другие, не менее ответственные конструкции, эксплуатируемые в достаточно суровых климатических условиях.

Со временем развитие химпрома поспособствовало значительному снижению стоимости стеклопластиковой арматуры. Это сделало ее доступным материалом, хорошо проявляющим себя в строительных конструкциях различного назначения. Активное использование арматуры данного типа привело к тому, что в 2012 году специалисты разработали и утвердили ГОСТ 31938-2012, положениями которого оговариваются не только требования к производству данного материала, но и методы его испытания.

ГОСТ 31938-2012 Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия
Скачать

Поверхность стеклопластиковой арматуры может быть рифленой, гладкой или с посыпкой

В соответствии с государственным стандартом, арматура стеклопластикового типа производится в диапазоне диаметров 4–32 мм. Однако наиболее распространенными для изделий данного типа являются диаметры 6,8 и 10 мм. Заказчику такая стеклопластиковая арматурная продукция поставляется в бухтах.

В указанном стандарте, кроме требований к диаметру и другим геометрическим параметрам стеклопластиковой арматуры, указано, каким должно быть состояние ее наружной поверхности. Так, на поверхности арматуры не должно быть сколов, расслаиваний, а также вмятин и прочих дефектов.

Блок: 2/6 | Кол-во символов: 1844
Источник: http://met-all.org/metalloprokat/sortovoj/stekloplastikovaya-armatura-dlya-fundamenta-pravila-armirovaniya.html

Сравнительные характеристики материалов

В самом названии этого материала содержится его основная характеристика. Он производится из пластиковых или стеклянных нитей, прочно спаянных между собой в однородные стержни либо с гладкой, либо с рифленой структурой поверхности и круглым сечением. Рифленая структура способствует более качественной сцепке с бетоном и получается вследствие обвития гладких стержней стекловолокном.

Стеклопластиковая арматура

Изделия с рифленой поверхностью испытывают на себе основную тяжесть возводимого сооружения, в то время как гладкие служат для соединения отдельных частей каркаса. В отличие от привычных изделий из металла материалы нового поколения обладают рядом особенностей, благодаря которым стеклопластиковая арматура для ленточного фундамента прочно удерживает пальму первенства на рынке строительных материалов.

К основным отличиям стеклопластика по отношению к металлу можно отнести:

Блок: 2/7 | Кол-во символов: 2946
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Основные характеристики и главный недостаток

По виду используемого непрерывного армирующего наполнителя композитные изделия подразделяются на следующие

  • АСК – стеклокомпозитные;
  • АУК – углекомпозитные;
  • АКК – комбинированные;
  • другие.

При необходимости использовать стеклопластиковую арматуру для укрепления фундамента дома следует принимать во внимание следующие ее характеристики.

Верхний предел температуры при эксплуатации

Нижняя планка данного параметра для арматурных изделий стеклокомпозитного типа начинается с отметки в 60 градусов Цельсия.

Предел прочности при растяжении

Этот параметр характеризуется отношением прикладываемой силы к площади сечения изделия. Для АСК он должен составлять 800 МПа и более, для АУК – не менее 1400 МПа.

Модуль упругости при растяжении

По данному показателю арматура категории АУК превосходит АСК более чем в 2,5 раза.

Предел прочности при сжатии

Данный показатель для стеклопластиковой арматуры всех категорий должен превышать 300 МПа.

Предел прочности при поперечном срезе

Для АСК этот параметр должен составлять более 150 МПа, для АУК – 350 МПа и более.

Преимущества стеклопластиковой арматуры

Арматура из полимерных материалов имеет значительный недостаток: у нее очень низкая прочность на излом. Из-за данного недостатка область использования данной арматуры ограничена. Производители подобной продукции обязательно указывают сферу ее применения, и, если потребитель выходит за указанные рамки, он делает это на свой страх и риск.

Применение арматуры данного типа обоснованно лишь в тех случаях, когда к теплопроводности, коррозионной устойчивости и диэлектрическим характеристикам армирующих конструкций предъявляются повышенные требования.

Блок: 3/6 | Кол-во символов: 1735
Источник: http://met-all.org/metalloprokat/sortovoj/stekloplastikovaya-armatura-dlya-fundamenta-pravila-armirovaniya.html

Определение расходного количества материала

На расчет стеклопластиковой арматуры для фундамента здания в первую очередь влияет тип сооружения и его габариты. При малоэтажной застройке рекомендуется применять ребристую арматуру с диаметром не более десяти миллиметров. При расчете необходимо учесть, что основу ленточного фундамента составляет двухъярусный каркас, а шаг ячеек не должен превышать пятидесяти сантиметров. Размеры его влияют на общее количество стыков в конструкции. Расход материала зависит также и от наличия в здании несущих капитальных стен, поскольку каждая из них требует заливки основания с двухъярусным каркасом.

В случаях, когда фундамент планируется заливать своими руками, без привлечения профессионалов, очень важно сделать правильный расчет количества стройматериала. Его можно произвести в соответствии с приведенным ниже алгоритмом.

Блок: 3/7 | Кол-во символов: 865
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Достоинства стеклопластиковой арматуры

Такой вид строительного материала существенно отличается от привычной стальной и имеет массу преимуществ, по сравнению с ней:

  1. Стойкость к образованию коррозии. Стеклопластиковая арматура совершенно не боится щелочных и кислотных сред.
  2. Небольшой вес при высокой прочности. Вес такой ее на 10 раз меньше, чем у стальной.
  3. Низкая теплопроводность, что защищает стены и фундаменты от промерзания, что особо актуально в северных районах.
  4. Непроводимость тока и отсутствие помех.
  5.  Цена. За ту же цену, что и у стальной арматуры небольшого диаметра можно приобрести стеклопластиковую большего диаметра.
  6. Высокая прочность материала при растяжении. Этот показатель больше, чем у стальной арматуры в 3 раза.
  7. Отсутствие швов. Металлические прутья перед транспортировкой режутся под параметры автомобиля, в котором их перевозят. Впоследствии армированная сетка имеет множество соединений, которые являются самыми слабыми местами в фундаменте и стенах. Так как стеклопластиковая арматура поставляется бухтами до 150 м, резать ее не нужно, что приводит к минимальному количеству швов. Транспортировка может осуществляться даже в багажнике легковой автомашины.
  8. Отсутствие переплаты за количество материала. Металлическая арматура продается одинаковой длиной 12 м, меньше ее уже не приобрести, а стеклопластика можно купить то количество, которое необходимо для строительства.
  9. Отсутствие необходимости докупать дополнительные инструменты при монтаже стеклопластиковой арматуры, например, сварочный аппарат.
  10. Одинаковый с бетоном коэффициент расширения при тепловом воздействии — гарантия отсутствия трещин в готовом строении.

Блок: 3/7 | Кол-во символов: 1636
Источник: https://bouw. ru/article/kak-vyazaty-stekloplastikovuyu-armaturu-dlya-fundamenta

Подготовка материалов для сборки армирующего каркаса

Для повышения общей прочности бетонного монолита, его усиливают конструкцией из стеклопластиковой арматуры в виде плоской сетки или пространственного каркаса, которые собирают из круглых прутов переменного или постоянного сечения. Отдельные элементы таких конструкций соединяют между собой с помощью вязальной проволоки, фиксирующих хомутов или специального пистолета.

Поэтому для вязки армирующего каркаса необходимо приобрести:

  • пластиковую арматуру проектных диаметров;
  • вязальную проволоку или затяжные хомуты.

В отличие от традиционных металлических прутов, арматура из стеклопластика поставляется в виде свернутой бухты.

Поэтому перед началом сборки каркаса ее необходимо размотать и нарезать на куски необходимой длины. Резка производится ножовкой или другим инструментом, не допускающим нагрева материала. Разметку мест реза на поверхности легко сделать с помощью обыкновенного маркера.

Вязальная проволока должна быть круглого сечения и диаметром не менее 1 мм, чтобы обеспечить необходимую прочность соединения и не лопнуть при скручивании. Для быстрого получения отрезков проволоки нужной для вязки длины, всю свернутую бухту необходимо разрезать болгаркой на 3 или 4 части.

Чтобы сделать вязальную проволоку более мягкой, ее можно обжечь в пламени с помощью паяльной лампы или в костре. Необожженная проволока гнется хуже и не всегда обеспечивает плотный охват соединения. Кроме этого, неподготовленный металл обладает меньшей тягучестью и чаще рвется во время работы.

Вязка хомутами.Общая схема вязки.

Блок: 2/8 | Кол-во символов: 1564
Источник: https://FundamentClub.ru/armirovanie/stekloplastikovaya-armatura-dlya-fundamenta.html

Расчет величины продольного каркаса

  1. В первую очередь нужно определить периметр сооружения, исходя из его габаритов, затем добавить к полученному значению общий размер предусмотренных проектом капитальных стен. Если в качестве примера принять здание длиной четыре и шириной пять метров, и имеющее при этом одну несущую стену длиной четыре метра, результат вычислений будет следующим: 4*2+5*2+4 = 22 метра.
  2. Учитывая необходимость использования двухуровневого каркаса, состоящего из четырех параллельных стержней, то есть по два в каждом ярусе, нужно полученную общую длину арматуры увеличить в четыре раза. Результат будет таким: 22*4 = 88 метров.
  3. Поскольку стеклопластик не подвержен сварке, а стыковка частей каркаса производится внахлест, необходимо допустить по одному дополнительному метру каждый угол здания. Для этого нужно количество наружных и капитальных стен здания умножить на один, а затем на количество стержней, то есть на четыре. В принятом примере расчет будет выглядеть таким образом: (4+1)*1*4=20 метров.
  4. Сумма значения общей длины стен и дополнительных объемов для стыковки даст искомую величину: 88+20=108 метров.

Однако на этом расчеты не заканчиваются. Далее необходимо рассчитать количество стройматериала, требуемого для соединения стержней каркаса в единую конструкцию. Для этих целей вполне подойдут гладкие стержни с диаметром сечения порядка 8 миллиметров. Они существенно дешевле ребристых и прекрасно справляются с соединительными функциями.

Армирование фундамента

Блок: 4/7 | Кол-во символов: 1494
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Нюансы вязки конструкций под заливку плитного фундамента

Армирование монолитных опорных оснований плитного типа выполняется в виде одного или двух рядов сеток в зависимости от проектного решения. Поэтому в такой конструкции арматурные пруты не рассматриваются как продольные и поперечные. Для поднятия нижней сетки над гидроизоляционным слоем на арматуру через каждые полтора-два метра одевают вертикальные стойки фиксаторы из пластика. Это позволяет установить арматурный каркас строго в горизонтальной плоскости на заданной высоте.

Важная особенность сборки арматуры для плитного фундамента заключается в том, что она производится по месту. Это необходимо из-за больших размеров конструкции и невозможности последующего перемещения. Поэтому во время вязки необходимо быть предельно осторожным, чтобы не наступить на уложенные арматурные прутья и не повредить конструкцию.

Блок: 5/8 | Кол-во символов: 875
Источник: https://FundamentClub.ru/armirovanie/stekloplastikovaya-armatura-dlya-fundamenta.html

Расчет величины поперечных соединений

  1. Поскольку технология заливки фундамента требует, чтобы шаг между соединительными кольцами не превышал полуметра, необходимо определить количество требуемых ячеек. Для этого нужно общий размер основания разделить на пятьдесят сантиметров. В рассматриваемом примере результат будет следующим: 88:0,5=44 ячейки. Это означает, что потребуется установить 44 соединительных кольца.
  2. Для расчета расхода стройматериала на одну обвязку, нужно определить ее периметр, исходя из стандартных параметров 50 на 25 сантиметров. Периметр будет равен: 0,5*2+0,25*2=1,5 метра.
  3. Необходимое для соединительных колец количество материала можно рассчитать, умножив периметр на число колец. Искомое значение будет следующим: 1,5*44=66 метров.
  4. Учитывая, что при монтажных работах в результате резки нередко возникают различные отходы, разумно прибавить к требуемому числу некоторый процент запаса, от пяти до десяти единиц. В итоге получится искомое значение порядка семидесяти метров.

Блок: 5/7 | Кол-во символов: 1000
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Нюансы вязки стеклопластиковых каркасов для ленточных фундаментов

Особенности сборки арматуры для ленточного фундамента заключается в наличии боковых примыканий, пересечений и углов.

В местах примыкания лент под внутренние стены, соединение перпендикулярного каркаса с наружным выполняется при помощи согнутых П-образных элементов.В углах арматуру сгибают под прямым углом или привязывают подготовленные Г-образные элементы. Длина нахлеста соединяемых прутков должна быть не менее 30 см и на этом участке выполняется не менее 2-х вязок.

Изгибать арматуру из стекловолокна следует очень осторожно, не применяя термической обработки. Упругие свойства пластика делают процедуру сгибания довольно трудной. Поэтому для сборки углов и примыканий рекомендуется покупать согнутые элементы заводского изготовления.

Места пересечений стеклопластиковой арматуры под ленточный фундамент можно соединять прямыми отрезками или собирать одну из пересекающихся конструкций по месту установки.

Сборка арматурных каркасов может выполняться на открытом месте, в стороне от выкопанной траншеи. Правильная укладка уже собранной конструкции предусматривает расстояние от стенок опалубки и дна не менее 25 мм.

Блок: 6/8 | Кол-во символов: 1187
Источник: https://FundamentClub.ru/armirovanie/stekloplastikovaya-armatura-dlya-fundamenta.html

Расчет количества креплений

В последнюю очередь нужно определить количество пластиковых креплений для стыковки поперечных колец и продольных стержней арматуры. Для этого число соединительных колец нужно умножить на количество точек стыковки. Получается: 44*4=176 креплений.

Итого, армирование ленточного фундамента стеклопластиковой арматурой здания из принятого выше примера, потребует приобрести:

  • 108 метров рифленой арматуры диаметром 10 миллиметров;
  • 70 метров гладкой арматуры диаметром 8 миллиметров;
  • 176 пластиковых креплений для стыковки каркаса.

Установка армирования

Несмотря на некую кажущуюся громоздкость приведенного расчета, любой непрофессионал вполне способен выполнить его самостоятельно.

Блок: 6/7 | Кол-во символов: 706
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Создание фундамента со стеклопластиковой арматурой

После того как мастер закончил вязать арматуру, можно приступать непосредственно к армированию.

Для фундамента ленточного типа используются прутья, диаметр которых составляет 8 мм, что сопоставимо с арматурой из металла с сечением 12 мм.

Важно! Фундамент выполняют на идеально ровной поверхности.

Алгоритм действий такой:

  1. Установка обработанной пергамином опалубки
  2. Обозначение того уровня, до которого производится заливка раствора. Делается это водяным уровнем с проведением замеров в нескольких местах.

    Важно! Сетка арматуры должна быть полностью погружена в опалубку и не доходить до ее края приблизительно на 5 см.

    Если выполнить это условие не получается, то можно подложить под арматурную сетку кирпичи.

  3. Укладка стеклопластиковой арматуры на подготовленное покрытие из кирпичей.
  4. Заливка готовой конструкции качественным бетоном. При заливке бетон в обязательном порядке утрамбовывается, чтобы избежать пустых полостей.

    Важно! Подсчет количества бетона производится так: периметр ленточного фундамента умножаем на высоту и ширину.

  5. Готовый фундамент накрывается пленкой, которая фиксируется кирпичами или брусками. Через 2 — 3 недели можно производить строительные работы.

Стеклопластиковая арматура — относительно новый строительный продукт, но он уже стал довольно популярен среди тех, кто занимается частным строительством. Помимо того, стеклопластиковое армирование выполняется и в промышленных масштабах при строительстве дорог, возведении мостов, укреплении берегов, строительстве.

Вязка арматуры своими руками — это несложный процесс, который легко выполнить, имея все нужные материалы. Даже неподготовленный человек сможет это сделать, стоит только попробовать на нескольких элементах. Это выгодно отличает стеклопластиковую арматуру от стальной, для создания каркаса из которой нужен сварочный аппарат и опыт работы с ним.

Блок: 7/7 | Кол-во символов: 1874
Источник: https://bouw.ru/article/kak-vyazaty-stekloplastikovuyu-armaturu-dlya-fundamenta

В заключение

Вязка стеклопластиковой арматуры для фундамента — это технологически простой процесс, не требующий особых профессиональных навыков. Быстро научиться ему сможет даже неподготовленный человек. Нужно просто немного потренироваться.

Небольшой вес материала значительно упрощает работу, а большая длина арматурного прута в бухте позволяет нарезать стержни любой необходимой длины. Это уменьшает количество стыков в отличие от стальных материалов.

Более подробно о том, как правильно вязать стеклопластиковую арматуру, вы можете посмотреть на следующих видео.

Блок: 7/8 | Кол-во символов: 567
Источник: https://FundamentClub.ru/armirovanie/stekloplastikovaya-armatura-dlya-fundamenta.html

Порядок монтажа фундамента

Несмотря на отличия в характеристиках и особенности применения стали и стеклопластика, инструкция по монтажу фундамента остается идентичной. Этапы работ носят общий характер и не изменяются в зависимости от вида применяемого материала.

  1. В первую очередь необходимо соорудить деревянную опалубку соответствующего проекту здания размера.
  2. После подготовки основания под будущий фундамент необходимо собрать каркас из стеклопластиковой арматуры. Для этого стержни нужно надежно соединить между собой с помощью проволоки или пластиковых хомутов, соблюдая при этом требуемый нормативами шаг ячеек. Учитывая, что в противовес изделиям из стали стеклопластиковая арматура не может быть статично зафиксирована с помощью сварки, связке стержней нужно уделить особое внимание, от прочности каркаса зависит подверженность фундамента смещению. Поскольку стеклопластиковые стержни практически не гнутся, в стыках стен будущего здания можно использовать специальные углы из того же полимера.
  3. После окончания сборки каркаса опалубка заливается бетоном. Рассчитать объем раствора достаточно просто. Периметр основания нужно умножить на его высоту и ширину. После заливки дальнейшее продолжение работ возможно только после окончательного затвердевания бетона, что произойдет не раньше двух или трех недель.

Использование в строительстве изделий из материалов нового поколения, к которым смело можно отнести и стеклопластик, благодаря их легкости, прочности, надежности и долговечности позволяет существенно снизить себестоимость работ при одновременном повышении их качества.

Блок: 7/7 | Кол-во символов: 1584
Источник: https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html

Видео по теме

Блок: 8/8 | Кол-во символов: 31
Источник: https://FundamentClub.ru/armirovanie/stekloplastikovaya-armatura-dlya-fundamenta.html

Кол-во блоков: 21 | Общее кол-во символов: 24680
Количество использованных доноров: 4
Информация по каждому донору:
  1. http://met-all.org/metalloprokat/sortovoj/stekloplastikovaya-armatura-dlya-fundamenta-pravila-armirovaniya.html: использовано 2 блоков из 6, кол-во символов 3579 (15%)
  2. https://bouw.ru/article/kak-vyazaty-stekloplastikovuyu-armaturu-dlya-fundamenta: использовано 4 блоков из 7, кол-во символов 4672 (19%)
  3. https://FundamentClub.ru/armirovanie/stekloplastikovaya-armatura-dlya-fundamenta.html: использовано 7 блоков из 8, кол-во символов 7181 (29%)
  4. https://NaFundamente.ru/izgotovleniye/fundament-iz-stekloplastikovoj-armatury.html: использовано 7 блоков из 7, кол-во символов 9248 (37%)

Как вязать стеклопластиковую арматуру для фундамента: видео, фото

Популярность вопроса о том, как наиболее правильно вязать стеклопластиковую арматуру для укрепления фундамента и других конструкций из бетона, обусловлена тем, что этот материал все активнее начинает использоваться как в капитальном, так и в частном строительстве. Многих из тех, кто собирается применять этот инновационный материал, также интересует вопрос и о том, насколько эффективно его использование для армирования стен строений, возводимых из блочных строительных элементов.

Армирующий каркас плитного фундамента – одна из сфер использования стеклопластиковой арматуры

История появления стеклопластиковой арматуры в строительстве

Стеклопластиковая арматура на самом деле не является новинкой на строительном рынке, она была разработана и начала производиться еще в 60-е годы прошлого столетия. Однако ее высокая стоимость на момент начала производства способствовала тому, что ее использовали для армирования только тех конструкций, в которых стальные укрепляющие элементы подвергались активной коррозии: бетонных конструкций, эксплуатирующихся в суровых климатических условиях, опор мостов и др.

Стеклопластиковая арматура будет лучшим решением при строительстве бетонных сооружений, контактирующих с морской водой

Активное развитие химической промышленности привело к тому, что со временем себестоимость производства стеклопластиковой арматуры значительно снизилась, что и позволило начать применять ее более активно. Широкому использованию данного материала способствовал и тот факт, что в 2012 году был утвержден государственный стандарт (31938-2012), согласно которому определяются требования не только к производству, но также к методам испытаний стеклопластиковой арматуры.

Согласно требованиям вышеуказанного нормативного документа, арматура из стеклопластиковых материалов может выпускаться в интервале диаметров от 4 до 32 мм. Но наибольшее применение, особенно в малоэтажном строительстве, приобрели изделия, диаметр которых составляет 6, 8 и 10 мм. В отличие от аналогичных изделий из стали, стеклопластиковая арматура отпускается заказчику не в виде отдельных прутков, а намотанной в бухты.

Арматура СП: удобная, лёгкая, устойчивая и упругая

В нормативном документе кроме технических характеристик стеклопластиковой арматуры оговорены требования к состоянию ее внешней поверхности. Согласно этим требованиям, на поверхности таких изделий не допускается наличие сколов, расслаиваний, вмятин и других дефектов.

Характеристики материала

Арматура, изготавливаемая из композитных материалов, в зависимости от используемого для ее изготовления непрерывного армирующего наполнителя, подразделяется на несколько категорий:

  • стеклокомпозитная, которая обозначается аббревиатурой АСК;
  • углекомпозитная, обозначаемая АУК;
  • комбинированная или АКК;
  • и ряд других категорий.

Физико-механические параметры полимерной арматуры различных видов

Выбирая композитную арматуру для укрепления фундамента или стен возводимых строительных конструкций, следует учитывать ее основные характеристики:

  • предельная температура, при которой эта арматура может эффективно эксплуатироваться;
  • предел прочности изделия, измеряемый при растяжении; данный параметр рассчитывается как отношение прилагаемой силы к площади поперечного сечения арматурного прутка, для изделий категории АСК он должен быть не меньше 800 МПа, а для арматуры АУК — не менее 1400 МПа;
  • модуль упругости при растяжении; у углекомпозитной арматуры данный показатель превышает аналогичную характеристику стеклопластиковых изделий более чем в 2,5 раза;
  • предел прочности изделия, измеряемый при его сжатии; для всех типов композитной арматуры данный показатель должен составлять не менее 300 МПа;
  • предел прочности арматуры, измеряемый при поперечном срезе; для различных типов композитной арматуры данный показатель должен составлять: для арматуры АСК — 150 МПа и более; для АУК — более 350 МПа.

Арматура из металла или композитных материалов?

Принимая решение, какую арматуру использовать для укрепления фундамента или стен здания, следует сравнить характеристики традиционных изделий из металла и стеклопластика. По сравнению с металлическими, стеклопластиковая арматура обладает следующими преимуществами:

  • исключительная устойчивость к коррозии: фундаменту, для укрепления которого использована композитная арматура, не страшно взаимодействие с кислотными, солеными и щелочными средами;
  • обладая низкой теплопроводностью, стеклопластиковая арматура не создает мостиков холода, что является особенно актуальным качеством для эксплуатации зданий в климатических условиях нашей страны;
  • материалы, применяемые для изготовления стеклопластиковой арматуры, являются диэлектриками, поэтому фундаменты и стены, для укрепления которых она использована, обладают абсолютной прозрачностью для радио и электромагнитных волн;
  • вес композитной арматуры значительно ниже, чем масса изделий, изготовленных из металла;
    прочность армирующих прутков из стеклопластика практически в 2–3 раза выше, чем у арматуры, изготовленной из металла;
  • по причине того, что композитная арматура поставляется заказчику в бухтах по 100–150 метров, при укреплении фундамента с ее использованием можно минимизировать количество стыковочных соединений, которые, как известно, являются наиболее слабыми местами в любой бетонной конструкции;
  • приобретение композитной арматуры более экономически выгодно за счет того, что вы можете купить ровно такой объем, который вам необходим для укрепления фундамента или стен своего строения, не ориентируясь на фиксированную длину прутков, как в случае с изделиями из металла;
  • коэффициент теплового расширения композитных материалов почти идентичен с аналогичным параметром бетона, поэтому в конструкциях, для армирования которых они используются, практически не возникает трещин.
Если сравнивать по стоимости, то затраты на использование металлических и стеклопластиковых изделий практически одинаковые.

Сравнение металлической и стеклопластиковой арматуры (нажмите для увеличения)

Самым значимым недостатком арматуры, изготовленной из стеклопластика, является достаточно низкий показатель ее прочности на излом, что ограничивает ее применение для укрепления сильно нагруженных бетонных конструкций.

Особенности использования композитной арматуры

Арматуру, которая изготовлена из композитных материалов, преимущественно используют для укрепления ленточных или плитных фундаментов в малоэтажном строительстве. Объясняется это тем, что данная арматура по причине своего относительно недавнего появления на отечественном строительном рынке еще мало изучена и не протестирована длительной практикой своего использования.

Прежде чем приступить к монтажу арматурного каркаса, необходимо подготовить опалубку для заливки будущего фундамента. Такая процедура выполняется по стандартной схеме, как и в случае использования металлической арматуры. Для армирования ленточных фундаментов небольших строений преимущественно используют композитные прутки диаметром 8 мм, что соответствует 12-ти миллиметровым изделиям из металла. В первую очередь из таких прутков вяжут сетки, из которых затем монтируют армирующий каркас.

Скрепление арматурной сетки с помощью вязальной проволоки

При использовании прутков из композитных материалов важно знать, как вязать стеклопластиковую арматуру так, чтобы из нее получился надежный каркас, который эффективно укрепит бетонную конструкцию. Элементами, которые позволят надежно и правильно связать такую конструкцию, могут быть пластиковые хомуты или обычная вязальная проволока. Выбор того или иного варианта зависит только от личных предпочтений и наличия под рукой тех или иных приспособлений.

Как изготовить надежный каркас для фундамента

Для того чтобы правильно изготовить основу для ленточного фундамента, для которого будет использоваться стеклопластиковая арматура, можно просмотреть обучающее видео и воспользоваться несложными рекомендациями. Итак, алгоритм изготовления такого каркаса выглядит следующим образом.

  • Прежде чем вязать арматуру, необходимо составить чертеж своего будущего каркаса и нарезать все элементы для его изготовления по точным размерам.
  • Поперечные прутья нижнего слоя арматурного каркаса позиционируют при помощи специальных фиксаторов. Устанавливать такие элементы можно как до начала сборки арматурного каркаса, предварительно вымерив размер его ячеек, так и после его готовности.
  • Размер ячеек зависит в первую очередь от размеров ленточного фундамента, который вы собираетесь укреплять. Такой размер может варьироваться в достаточно широких пределах: 15–30 см.
  • Продольные прутья арматурного скелета перед тем, как вязать, лучше предварительно разложить на земле и сделать на них отметки маркером в тех местах, где к ним будут фиксироваться поперечные элементы. Начав вязать арматуру, следует следить за тем, чтобы элементы фиксировались друг с другом строго под прямым углом.
  • Поперечные перемычки нужно вязать с продольными элементами каркаса с их нижней стороны. Чтобы армирующий скелет и, соответственно, будущий фундамент получился надежным и устойчивым, пластиковые хомуты или вязальную проволоку в местах соединений следует вязать потуже.
  • Изначально изготавливаются горизонтальные слои армирующего каркаса, только потом следует вязать их между собой вертикальными перемычками. Фиксировать вертикальные перемычки также необходимо с внутренней стороны ячеек каркаса, это позволит вам получить в итоге надежную и устойчивую конструкцию, которая не разъедется в процессе заливки бетона и будет отлично выполнять свои армирующие функции.
  • Углы — это особое место армирующей конструкции, и им необходимо уделить отдельное внимание. Стеклопластиковую арматуру не рекомендуется самостоятельно гнуть под воздействием нагрева, что может самым негативным образом сказаться на ее прочностных характеристиках. Поэтому угловые элементы арматурного скелета лучше вязать из уже гнутых прутков, которые сегодня можно приобрести, либо аккуратно выполнять изгиб без теплового воздействия.
  • После того, как арматурная конструкция будет полностью готова, ее необходимо аккуратно поместить во внутреннюю часть уже подготовленной опалубки.

Схема армирования углов ленточного фундамента

Схема армирования примыканий ленточного фундамента

Если вязать элементы арматурного каркаса при помощи проволоки, то для облегчения своего труда можно изготовить вязальный крючок, для чего удобно использовать старую отвертку. Как сделать такой крючок и вязать с его помощью арматурный каркас, так же можно ознакомиться по соответствующему видео.

Изготовление армирующего каркаса из прутков, которые сделаны из стеклопластика, — несложный процесс, о чем можно судить даже по обучающему видео, где подробно показано, как его вязать. Для работы с таким материалом, как стеклопластик, вам не потребуются специальные инструменты и сложное оборудование, его легко резать и вязать, он обладает более легким весом, чем арматура, изготовленная из металла.

В любом случае, выбирая такой материал для укрепления фундамента или стен своего дома или строения любого другого назначения, следует иметь в виду, что вы поступаете на свой страх и риск, так как стеклопластиковая арматура появилась недавно на отечественном строительном рынке, и ее характеристики еще не до конца подтверждены длительностью применения на практике.

Оценка статьи:

Загрузка…

Поделиться с друзьями:

Как построить — Как вязать стеклопластиковую арматуру?



Композитная стеклопластиковая арматура – это инновационный материал, состоящий из смеси стекловолокна и термопрочной смолы.

Арматура такого типа имеет ряд преимуществ по сравнению с металлической:

  • высокая прочность, в том числе при растягивании и сжатии;

  • устойчивость к возникновению коррозии, невосприимчивость к агрессивным средам;

  • небольшой вес;

  • выгодная цена;

  • возможность нарезать прутья необходимой длины, что сокращает количество швов в сетке;

  • способность выдерживать высокие нагрузки в процессе эксплуатации;

  • низкая теплопроводность и высокая морозоустойчивость.

Ячеистый каркас, созданный из этого строительного продукта, позволит равномерно распределить бетонную смесь, не даст ей растечься и образовать пустоты. От правильной сборки сетки зависит прочность и надёжность фундамента, а также срок его службы.

Этапы выполнения работ

Этап 1. Сооружение опалубки для ленточного фундамента по стандартной схеме.

Этап 2. Создание чертежа будущего каркаса, измерение и нарезка прутьев нужной длины, подготовка всех необходимых элементов и инструментов.

Этап 3. Можно начинать вязать арматуру из стеклопластика. На ровной поверхности выкладывается первый продольный слой прутьев, соблюдая определённое расстояние между ними. Обычно оно колеблется между 15 и 35 сантиметрами. Чтобы конструкция была ровной, можно пометить места будущих поперечных креплений маркером прямо на стержнях. Далее под прямым углом устанавливаются перемычки.

Важно! Продольные стержни должны быть большего диаметра, чем вертикальные и поперечные.

На этом этапе важно укрепить каркас дополнительными элементами – фиксаторами:


Процесс вязки любым из них происходит довольно легко. 

  • Хомут нужно обернуть вокруг места крепления и туго затянуть. 
  • Клипсы просто защёлкиваются на стержнях. 
  • Металлическую проволоку следует сложить вдвое и обвязать прутья при помощи плоскогубцев или специального крючка (механического или электрического на основе шуруповёрта). 
  • Сэкономить время работ на больших площадях поможет вязальный пистолет, который автоматически подаёт проволоку из сменной катушки.

Ограничители прочно фиксируют арматуру в нужном положении и удерживают каркас от перекосов во время заливки бетона.

Отдельно стоит сказать об оформлении углов сетки. Производители стеклопластиковой композитной арматуры не рекомендуют подвергать её тепловому воздействию для увеличения пластичности, что допустимо при работе с металлическими прутьями. Следовательно, можно либо аккуратно согнуть стержень вручную, либо заранее приобрести уже готовые дополнительные детали нужной формы.


Этап 4. Подготовив первый слой сетки, можно приступать к формированию других частей армирующей конструкции. Вертикальные пруты крепятся в нижней части на готовой сетке, а затем начинается установка следующего горизонтального ряда.


Дополнительные рёбра жёсткости обеспечат конструкции ещё большую прочность. Поэтому часто используется рамка из металлической арматуры, на которую фиксируют сетку из стеклопластиковых стержней. Этот метод считается более крепким и надёжным, но требует увеличения финансовых затрат.

Этап 5. Готовый каркас аккуратно опускается в опалубку в горизонтальном положении сеток.

Важно! Между стенками опалубки и краями сетки должно быть расстояние не менее 3-5 см.


Создание каркаса из стеклопластиковой арматуры не занимает много времени и не требует от рабочих высокой квалификации и использования сложного оборудования.


Рекомендованые товары

Как связать пластиковую фурнитуру. Характеристики фундамента из стеклопластиковой арматуры, расчеты и установка

Композитная арматура относится к современным материалам, призванным заменить дорогой металл и обеспечить большую устойчивость к негативному воздействию внешних факторов. После того, как этот вид полимерной катанки с 2012 года начал производиться в России, интерес строителей к нему стал расти с каждым годом.

Применение стекловолоконных материалов для армирования монолитных бетонных конструкций особенно актуально в случаях возможного воздействия влаги, так как полимеры не подвержены коррозии.

Пластиковые стержни применяются в индивидуальных постройках, при строительстве крупных зданий и сооружений, прибрежных укреплений и автомобильных дорог. В частном строительстве из него делают арматурные каркасы для ленточных и плитных фундаментов, а также арматурную кладку из пеноблоков.

Материал, из которого изготовлена ​​пластиковая арматура, представляет собой полимерную смесь продольного стекловолокна повышенной прочности и термостойкой смолы. Стандартные диаметры изготавливаемых стержней от 4 до 32 мм.Максимальная рабочая температура 60˚C. Предел прочности на разрыв 150 МПа.

Подготовка материалов для сборки арматурного каркаса

Для повышения общей прочности бетонного монолита его армируют конструкцией из стекловолокна в виде плоской сетки или пространственного каркаса, который собирается из круглых стержней переменного или постоянного сечения. Отдельные элементы таких конструкций соединяются между собой при помощи вязальной проволоки, фиксирующих зажимов или специального пистолета.

Следовательно, чтобы связать арматурный каркас необходимо приобрести:

  • пластиковая арматура проектных диаметров;
  • вязальная проволока или длинные зажимы.

В отличие от традиционных металлических стержней, арматура из стекловолокна поставляется в виде бухты.

Поэтому перед тем, как приступить к сборке каркаса, его необходимо размотать и разрезать на куски необходимой длины. Резка производится ножовкой или другим инструментом, не допускающим нагрева материала.Отметить точки среза на поверхности несложно с помощью обычного маркера.

Проволока для вязания должна быть круглого сечения и диаметром не менее 1 мм, чтобы обеспечить необходимую прочность соединения и не порваться при скручивании. Чтобы быстро получить отрезки проволоки необходимой длины для вязания, всю свернутую катушку необходимо разрезать болгаркой на 3 или 4 части.

Чтобы сделать вязальную проволоку более мягкой, ее можно обжечь в огне паяльной лампой или в огне.Необожженный провод хуже изгибается и не всегда обеспечивает плотное покрытие соединения. Кроме того, неподготовленный металл имеет более низкую пластичность и часто ломается в процессе эксплуатации.


Вязание фиксаторами.
Общая схема вязки.

Инструмент для армирования проволочной обвязки

Использовать плоскогубцы для вязания не очень удобно. Они не обеспечивают необходимой плотности покрытия компаундом и требуют больших усилий. Поэтому стальную проволоку на арматурных стержнях скручивают с помощью специальных крючков или вязального пистолета.В инструментальных магазинах продаются два вида крючков, предназначенных для вязания фурнитуры:

  • простая рука, которую необходимо все время вращать во время работы;
  • Полуавтомат
  • , с крючком, вращающимся при нажатии на ручку;
  • пластиковые зажимы в виде колец и вертикальных стоек, надеваемых на арматуру.

Нельзя купить простой крючок, а сделать его самостоятельно (подробнее о том, как это сделать -), согнув его из толстой стальной проволоки и заточив острие. В этом случае вам будет что связать конструкцию прутьев, не покупая инструмента.

Метод использования вязального пистолета ускоряет и упрощает процесс, но этот довольно большой инструмент может не обеспечивать доступ к отдельным местам. К тому же такой инструмент приводит к перерасходу провода.


Пластиковые фиксаторы необходимы для того, чтобы зафиксировать собранный арматурный каркас в необходимом пространственном положении внутри опалубки перед подачей бетона.

Технология ручного вязания проволоки для армирования стекловолокном

Чтобы арматурный каркас или сетка приобрели необходимую пространственную форму и не изменили ее при заливке бетона, все отдельные элементы должны быть надежно соединены между собой.Чаще всего для этого используют вязальную проволоку. Вязание — это простой и быстрый способ подключения, не требующий высокой квалификации. К тому же арматуру из стекловолокна просто невозможно соединить сваркой, а потому такой вид крепления в данном случае наиболее приемлем.

Весь процесс вязания стеклопластиковой арматуры для фундамента можно разделить на следующие пошаговые этапы:

  1. арматура, свернутая в пролет, разматывается и разрезается на куски проектной длины;
  2. На поперечные стержни нижнего армирующего слоя надеты пластиковые фиксаторы
  3. ;
  4. продольных стержней уложены на разнесенные поперечные элементы на заданном расстоянии друг от друга;
  5. во всех точках пересечения арматуры соединения производятся скручиванием петель из сложенной вдвое вязальной проволоки;
  6. после сборки нижнего ряда вяжутся вертикальные армирующие элементы до пересечений внешних ячеек;
  7. к верхним концам или к середине вертикальных стоек в зависимости от расчетного количества рядов привязывают поперечные отрезки;
  8. укладывается и вяжется следующий ряд продольной арматуры;
  9. Собранный каркас переносится и устанавливается внутрь опалубки для ленточного фундамента.

Работу можно значительно упростить, совместив арматуру стекловолокном с металлом. Из стальных прутьев можно заранее подготовить прямоугольные рамки и тогда не нужно выполнять отдельную вязку вертикальных отрезков.

Нюансы вязания конструкций для заливки плитного фундамента

Армирование монолитных опорных оснований плитного типа выполняется в виде одного или двух рядов сеток в зависимости от проектного решения. Поэтому в этой конструкции арматурные стержни не считаются продольными и поперечными.Чтобы поднять сетку дна над слоем гидроизоляции на арматуре, через каждые пол-два метра надевают вертикальные стойки из пластика. Это позволяет установить арматурный каркас строго в горизонтальной плоскости на заданной высоте.

Важной особенностью сборки арматуры для плитного фундамента является то, что она производится на месте. Это необходимо в связи с большими размерами конструкции и невозможностью последующего перемещения. Поэтому во время вязания нужно быть предельно осторожным, чтобы не наступить на уложенные арматурные стержни и не повредить конструкцию.

В утепленной плите Швеции и Финляндии (подробнее об этом) необходимо предусмотреть пересечение стержней плиты с армирующим каркасом боковой опорной ленты. Для этого стержни нарезают длиннее, впускают их в вертикальные боковые арматурные обоймы и соединяют проволокой.

Нюансы вязания стеклопластиковых рам для ленточного фундамента

Особенностями сборки арматуры для ленточного фундамента является наличие боковых упоров, пересечений и углов.


В местах примыкания лент под внутренними стенами соединение перпендикулярного каркаса с наружным осуществляется с помощью гнутых П-образных элементов.
В углах арматуру загибают под прямым углом или завязывают подготовленные Г-образные элементы. Длина внахлест соединяемых стержней должна быть не менее 30 см и на этом участке делается не менее 2 петель.

Арматуру из стекловолокна следует гнуть очень осторожно, не подвергая термообработке.Эластичные свойства пластика затрудняют процедуру гибки. Поэтому для сборки уголков и стыков рекомендуется покупать сборные гнутые элементы.

Точки пересечения стеклопластиковой арматуры под ленточным фундаментом можно соединить прямыми отрезками или собрать одну из пересекающихся конструкций на месте установки.

Арматурные клетки можно собирать на открытом воздухе, вдали от вырытой траншеи. Правильный монтаж уже собранной конструкции предусматривает расстояние от стен опалубки и днища не менее 25 мм.

Наконец

Вязание стеклопластиковой арматуры для фундамента — это технологически простой процесс, не требующий особых профессиональных навыков. Его быстро выучит даже неподготовленный человек. Вам просто нужно немного попрактиковаться.

Небольшой вес материала значительно упрощает работу, а большая длина арматурного стержня в бухте позволяет резать стержни любой желаемой длины. Это уменьшает количество стыков, в отличие от стальных материалов.

Более подробно о том, как правильно связать арматуру из стекловолокна, вы можете посмотреть в следующих видео.

Похожие видео


Популярность вопроса о том, как наиболее правильно вязать для укрепления фундамента и других конструкций из бетона, связана с тем, что этот материал все чаще применяется как в капитальном, так и в частном строительстве. Многих из тех, кто собирается использовать этот инновационный материал, также интересует вопрос, насколько эффективно его использовать для усиления стен зданий, построенных из блочных строительных элементов.

История появления стеклопластиковой арматуры в строительстве

Арматура из стекловолокна

— не новинка на строительном рынке, ее разработали и начали производить еще в 60-х годах прошлого века. Однако его высокая стоимость на момент запуска производства способствовала тому, что его использовали для армирования только тех конструкций, в которых стальные арматурные элементы подвергались активной коррозии: бетонные конструкции, работающие в тяжелых климатических условиях, опоры мостов и т. Д.

Активное развитие химической промышленности привело к тому, что со временем стоимость производства стеклопластиковой арматуры значительно снизилась, что позволило нам начать ее более активно использовать. Широкому распространению этого материала способствовало также то, что в 2012 году был утвержден государственный стандарт (31938-2012), согласно которому определяются требования не только к производству, но и методам испытаний арматуры стекловолокном.

Согласно требованиям указанного нормативного документа может изготавливаться в диапазоне диаметров от 4 до 32 мм. Но наибольшее применение, особенно в малоэтажном строительстве, получили изделия диаметром 6, 8 и 10 мм. В отличие от аналогичных стальных изделий, стеклопластиковая арматура заказчику не поставляется в виде отдельных стержней, а наматывается в бухты.

В нормативном документе помимо технических характеристик стеклопластиковой арматуры указываются требования к состоянию ее наружной поверхности.Согласно этим требованиям, на поверхности таких изделий не допускается наличие сколов, отслоений, вмятин и других дефектов.

Характеристики материала

Арматура из композиционных материалов, в зависимости от используемого для ее изготовления сплошного армирующего наполнителя, подразделяется на несколько категорий:

    Стеклянный композит
  • , который обозначается аббревиатурой ASK;
  • Углеродный композит
  • , обозначенный как AUC;
  • комбинированный или ACC;
  • и ряд других категорий.

При выборе композитной арматуры для усиления фундамента или стен возводимых строительных конструкций следует учитывать ее основные характеристики:

  • экстремальная температура, при которой этот якорь может эффективно эксплуатироваться;
  • предел прочности изделия на разрыв, измеренный при растяжении; этот параметр рассчитывается как отношение приложенной силы к площади поперечного сечения арматурного стержня, для изделий категории АСК он должен быть не менее 800 МПа, а для арматуры АУК — не менее 1400 МПа;
  • Модуль упругости при растяжении
  • ; для углепластиковой арматуры этот показатель превышает аналогичную характеристику изделий из стеклопластика более чем в 2 раза.5 раз;
  • предел прочности изделия на разрыв, измеренный при сжатии; для всех видов композитной арматуры этот показатель должен быть не менее 300 МПа;
  • предел прочности арматуры при растяжении, измеренный в поперечном сечении; для различных видов композитной арматуры этот показатель должен быть: для арматуры АСК — 150 МПа и более; для AUC — более 350 МПа.

Арматура из металла или композитных материалов?

Решая, какую арматуру использовать для укрепления фундамента или стен здания, следует сравнить характеристики традиционных изделий из металла и стекловолокна.По сравнению с металлом арматура из стекловолокна имеет следующие преимущества:

  • исключительная устойчивость к коррозии: фундамент, для усиления которого используется композитная арматура, не боится взаимодействия с кислой, соленой и щелочной средами;
  • , обладая низкой теплопроводностью, арматура из стекловолокна не создает мостиков холода, что является особенно актуальным качеством для эксплуатации построек в климатических условиях нашей страны;
  • материалы, используемые для изготовления арматуры из стекловолокна, являются диэлектриками, поэтому основания и стены, для усиления которых она используется, имеют абсолютную прозрачность для радио- и электромагнитных волн;
  • вес композитной арматуры значительно меньше массы изделий из металла;
    прочность арматуры из стекловолокна почти в 2–3 раза выше, чем у арматуры из металла;
  • в связи с тем, что композитная арматура поставляется заказчику пролетами по 100-150 метров, при усилении фундамента с ее использованием можно минимизировать количество стыковых стыков, которые, как известно, являются наиболее слабыми местами в любом месте. бетонная конструкция;
  • приобретение композитной арматуры более рентабельно за счет того, что вы можете купить ровно столько, сколько вам нужно для усиления фундамента или стен вашего сооружения, не ориентируясь на фиксированную длину стержней, как в случае с металлом. продукты;
  • коэффициент теплового расширения композиционных материалов практически совпадает с таким же параметром бетона, поэтому в конструкциях, для армирования которых они используются, трещины практически не возникают.
Если сравнивать по стоимости, то стоимость использования изделий из металла и стеклопластика практически одинакова.

Самым существенным недостатком арматуры из стекловолокна является довольно низкая прочность на излом, что ограничивает ее использование для усиления высоконагруженных бетонных конструкций.

Особенности применения композитной арматуры

Арматура из композитных материалов в основном используется для усиления ленточных или плитных фундаментов в малоэтажном строительстве.Объясняется это тем, что данная арматура в связи с относительно недавним появлением на отечественном строительном рынке мало изучена и не проверена длительной практикой ее использования.

Прежде чем приступить к установке арматурного каркаса, необходимо подготовить опалубку для заливки будущего фундамента. Эта процедура выполняется по стандартной схеме, как и в случае использования металлической фурнитуры. Для усиления ленточных фундаментов небольших построек в основном используются композитные стержни диаметром 8 мм, что соответствует металлическим изделиям диаметром 12 мм.Из таких прутьев в первую очередь вяжутся сетки, из которых затем монтируется армирующий каркас.

При использовании стержней из композитных материалов важно знать, как связать арматуру из стекловолокна, чтобы из нее получился надежный каркас, который эффективно укрепит бетонную конструкцию. Элементами, которые позволят надежно и правильно связать такую ​​конструкцию, могут быть пластиковые зажимы или обычная вязальная проволока. Выбор того или иного варианта зависит только от личных предпочтений и наличия тех или иных устройств под рукой.

Как сделать надежный каркас для фундамента

Для того, чтобы правильно сделать основу под ленточный фундамент, для которого будет использовано армирование стекловолокном, можно посмотреть обучающее видео и воспользоваться простыми рекомендациями. Итак, алгоритм изготовления такой рамы следующий.

  • Перед тем, как вам нужно составить чертеж вашего будущего каркаса и вырезать все элементы для его изготовления по точным размерам.
  • Поперечные стержни нижнего слоя арматурного каркаса позиционируются с помощью специальных зажимов.Такие элементы могут быть установлены как до начала сборки арматурного каркаса, предварительно измерив размер его ячеек, так и после его готовности.
  • Размер ячеек зависит в первую очередь от размера ленточного фундамента, который вы собираетесь укреплять. Этот размер может варьироваться в широких пределах: 15–30 см.
  • Перед вязанием продольные стержни армирующего каркаса лучше уложить на землю и разметить их маркером в тех местах, где к ним будут крепиться поперечные элементы.Начиная вязать арматуру, следует следить за тем, чтобы элементы крепились друг к другу строго под прямым углом.
  • Поперечные перемычки вязать с продольными элементами каркаса с их нижней стороны. Чтобы армирующий каркас и, соответственно, будущий фундамент получился надежным и устойчивым, в местах стыков следует вязать посильнее пластиковые хомуты или вязальную проволоку.
  • Вначале делают горизонтальные слои армирующего каркаса, только потом их следует связать вместе вертикальными перемычками.Также необходимо крепление вертикальных перемычек с внутренней стороны ячеек каркаса, это позволит получить надежную и устойчивую конструкцию, которая не будет подвергаться коррозии при заливке бетона и отлично будет выполнять свои армирующие функции.
  • Уголки — особое место в армирующей конструкции, и им нужно уделять особое внимание. Арматуру из стекловолокна не рекомендуется гнуть самостоятельно под воздействием нагрева, что может самым негативным образом сказаться на ее прочностных характеристиках.Поэтому угловые элементы арматурного каркаса лучше связать из уже гнутых прутьев, которые можно приобрести сегодня, или аккуратно согнуть без нагрева.
  • После того, как армирующая конструкция будет полностью готова, ее нужно аккуратно уложить во внутреннюю часть уже подготовленной опалубки.

Схема усиления углов ленточного фундамента

Как связать арматуру из стекловолокна?

Нейлоновые стяжки или отожженная проволока диаметром 0.8-1,2 мм вручную, с помощью крючка или пистолета. Для соединения фурнитуры также можно использовать специальные пластиковые зажимы.

Какое армирование лучше металлическое или стекловолокно?

Арматура из стекловолокна превосходит металлическую при армировании конструкций, подверженных растягивающим усилиям, и уступает ей при преобладающих поперечных нагрузках.

Как гнуть (гнуть) арматуру из стекловолокна?

Невозможно гнуть арматуру с превышением минимально допустимого радиуса.Гнутые элементы могут быть изготовлены по чертежам на заводе. Формирование углов при армировании должно осуществляться вязкими отдельными прямыми стержнями или с использованием готовых элементов.

Как армировать стекловолокно?

Низкий бетонный слой армируется единой сеткой из соединенных стержней, уложенных на специальные пластиковые зажимы необходимой высоты. Для объемных конструкций перемычки образуют каркас из нескольких решеток, установленных на ребре или расположенных одна над другой.

Замена стальной арматуры на стекловолокно

Зависит от прочности на разрыв для конкретной марки композитной арматуры. Стержни из стекловолокна с предельным значением 1200 МПа могут быть заменены стальными (класс A-III), диаметром на треть больше:


Как размотать арматуру из стекловолокна?

Необходимо надежно закрепить один из концов стержня и, удерживая бухту в вертикальном положении, свернуть свернутый сегмент по прямой на ровной поверхности.

Как делают фурнитуру из стекловолокна?

Пропитывают отдельные пучки ровницы термореактивными связующими и образуют из них цилиндрический стержень. Затем они оборачивают его другим скрученным пучком и протягивают через туннельную печь, в которой полимеризуется.

Как подключить арматуру из стекловолокна?

Арматура из стекловолокна

позволяет формировать каркас из цельных стержней без компонентов. Пересекающиеся стержни соединяются между собой пластиковыми стяжками, отожженной вязальной проволокой или специальными зажимами.Если без компонентов не обойтись, они накладываются друг на друга, перекрывая примерно 100 диаметров используемой арматуры.

Как сделать теплицу из стеклопластика?

Высота теплицы должна позволять ей стоять в полный рост. Из арматуры стекловолокном практичнее делать арочные или стеновые полуарочные конструкции. Для капитальных теплиц устраивают армированный композитом ленточный фундамент, в котором перед заливкой бетона закрепляют концы арок из арматуры.Для сборно-разборных конструкций используются отрезки пластиковых или стальных труб в виде закладных деталей. Крепление к стене осуществляется при помощи деревянной балки с отверстиями для концов дуг.

Как сделать теплицу из стеклопластика?

Высота теплицы обычно колеблется от 0,5 до 1,5 метра. Концы дуг можно воткнуть прямо в землю. Для их крепления практичнее всего из деревянного бруса сделать прямоугольный каркас необходимого размера со сквозными отверстиями.

Как установить арматуру из стекловолокна?

Стержни необходимой длины отрезаются, места крепления отмечаются маркером, раскладываются на ровной поверхности и соединяются перемычками с сеткой при помощи хомутов или проволоки. Для объемных каркасов готовые сетки соединяются между собой.

Стекловолокно Arc

Радиус изгиба дуги должен быть не меньше произведения номинального диаметра стержня на отношение модуля упругости к пределу прочности.Например, для фитингов АСК-10-1200 / 55 его минимальное значение составляет 458 мм.

Сетка из стекловолокна

Арматурное изделие из одного слоя взаимно перпендикулярных арматурных стержней, соединенных между собой на заводе. Поставляется в листах или рулонах и позволяет значительно ускорить выполнение строительных работ.

Армированная стекловолокном теплица Arc

Возможно изготовление небольшой арочной теплицы из стеклопластиковой арматуры диаметром 6-8 мм.Высокий модуль упругости позволит легко изгибать стержни дуги конструкции шириной всего один метр. С учетом углубления в земле для такой конструкции потребуется 4 м длины арматуры.

Сваи из стекловолокна

В подготовленный колодец опускается пространственный каркас из стеклопластиковой арматуры. После его монтажа бетон подается слоями.

Стекловолокно Армопояс

Композитные материалы могут применяться практически во всех типах армирующих лент, кроме ростверка: цокольного, межэтажного и мауэрлата.

Дом из стекловолокна

Стеклокомпозитные материалы используются в малоэтажных домах для усиления фундаментов и ламинированной кирпичной кладки, а также в монолитном строительстве.

Изделия из стекловолокна

Представляют собой стержни мерной длины или отрезки в бухтах диаметром от 4 до 32 мм. Они могут быть предложены в виде листов или рулонов готовых арматурных сеток из соединенных между собой взаимно перпендикулярных стержней.

Купол из стекловолокна

Арочная конструкция для теплиц, теплиц, беседок или небольших ангаров.Самая простая конструкция напоминает полушар, у которого концы дуг (например, меридианов) сходятся на четырех полюсах, расположенных на одинаковом расстоянии друг от друга. Устойчивость купола повышается с увеличением числа опор, а в его основании лежит арматурное кольцо, закрепленное на колоннах фундамента.

Арматурный забор из стекловолокна

В обычном понимании арматуры забора металлокомпозитные материалы не заменят. Стеклопластиковые стержни и сетку здесь можно использовать для усиления фундамента, кирпичной кладки или при изготовлении плит забора.

Кладочная сетка для армирования стекловолокном

Готовое изделие изготовлено из взаимно перпендикулярных тонких композитных стержней. Предназначен для армирования слоистой кладки, бетонных конструкций небольшой толщины, а также для выполнения широкого спектра отделочных работ.

Гибкие соединения из стекловолокна

Благодаря чрезвычайно низкой теплопроводности и высокой коррозионной стойкости арматура из стекловолокна небольшого диаметра является отличным материалом для изготовления гибких соединений.Их можно использовать при кладке стен для соединения с внешним слоем облицовки.

Элементы, армированные стекловолокном

Предназначен для формирования уголков, жестких окончаний и кольцевых частей каркаса при армировании. Они изготавливаются на заводе в виде G-, P- и C-образных элементов разных размеров.

Арматурный каркас из стекловолокна

В зависимости от назначения каркаса арматурные сетки, расположенные горизонтально, используются с перемычками для монолитных плит или устанавливаются на кромку для ленточных фундаментов.При формировании каркаса для армирующего пояса целесообразно использовать готовые гнутые С-образные элементы, внутри которых закреплены стержни. Для выполнения угловых соединений используются стандартные Г-образные детали.

DIY Стекловолоконная беседка

Наиболее практичной является арочная конструкция, состоящая из нескольких дуг, концы которых залиты в бетонный фундамент. Его легко накрыть листом поликарбоната. Из арматуры сложнее сделать беседку купольного типа, особенно это касается кровли.

Каркас теплицы, армированный стекловолокном

Самая простая и устойчивая конструкция теплицы — конструкция арочного типа. Горизонтальные стяжки и внутренние перемычки удобно скреплять пластиковыми тройниками от оросительной системы, надеваемыми непосредственно на дуговые стержни. Из стеклопластиковой арматуры внутри теплицы также можно сделать решетки для подвязки растений.

Вес арматуры из стекловолокна

Определяется диаметром стержня и длиной сегмента.Относительная плотность стекловолокна составляет около 1,9 тонны на кубический метр. Диаметр круглого стержня одинакового размера по объему (для арматуры АКП-10) составляет примерно 9 мм, что составляет 1,2 грамма на миллиметр его длины.

Весовая катушка для усиления из стекловолокна

диаметр мм

Масса пролета 50 м, кг

Масса пролета 100 м, кг


Фитинги из стекловолокна Вес погонного метра

Представляет собой бетонную заливку в виде сплошной полосы прямоугольного сечения, повторяющей в плане форму несущих стен дома.

Получается прочная и надежная опора, выдерживающая значительные нагрузки.

По степени денежных и трудовых затрат ленточные основы — лучший вариант для получения максимального эффекта с минимумом вложений.

Эти преимущества по праву вывели ленточный фундамент на лидирующие позиции.

На основе обычной ленточной основы разработано несколько дополнительных типов, расширяющих возможности и объем конструкции.

Бетон — это особый материал, который легко выдерживает очень высокие сжимающие нагрузки, но имеет низкое сопротивление растягивающим нагрузкам.Если к бетонной ленте приложить изгибающую силу, то одна поверхность будет находиться под давлением, а противоположная поверхность — под натяжением.

В результате лента потрескается и порвется. Избежать этого поможет каркас из арматуры, прочный брус из металла или композитных материалов, поверхность которого покрыта небольшой гофрой для улучшения сцепления с бетоном.

Арматура представляет собой пространственную решетку из стержней, расположенных внутри ленты на небольшом расстоянии от внешних краев (обычно 5-10 см, в зависимости от размера), воспринимающих растягивающие нагрузки.

Без него даже относительно небольшое усилие изгиба порвет ленту, что пагубно скажется на состоянии стен дома. Без арматурного каркаса основания не производятся.

Что входит в стыковку

Основную работу выполняет продольная арматура. Чтобы удерживать их в нужном положении до момента заливки бетона, используются вертикально расположенные стержни с гладкой поверхностью и меньшего диаметра (зажимы).

Для сборки каркаса используется метод вязания, соединение стержней на проволочные скрутки.Альтернативой является сварной способ подключения, но он более дорогой, требует подключения к линии электропередачи.

Кроме того, сварные соединения не выдерживают перепадов нагрузок, которые возможны при затвердевании, и способны ломаться, в то время как скрутки проволоки имеют небольшую степень свободы, компенсируя движение материала.

Стыки сваркой обязательны только для прутков диаметром более 25 мм, не применяемых в частном домостроении.

Требования к армированию

Требования и условия выполнения работ подробно описаны в СНиП 52-01-2003.

Список условий и требований достаточно широк, но к основным относятся:

  • Форма и размер ленты должны обеспечивать стандартное геометрическое размещение стержней с заданным шагом.
  • Слишком глубокое или неглубокое погружение стержней в тело ленты не допускается. Предельные размеры и поля допусков подробно описаны в таблицах СНиП.
  • Используйте только подходящие стержни, параметры которых соответствуют расчетным показателям.
  • В местах пересечения стержней, расположенных по углам или примыкающих к решетке каркаса, необходимо предусмотреть прочные стыки. «Плавающие» стержни не допускаются.
  • Расстояние между стержнями должно соответствовать нормативным требованиям и обеспечивать свободное течение бетонной массы при. Слишком близкое расположение стержней может привести к образованию пузырьков воздуха, что снизит несущую способность ленты.

Расположение арматурных стержней необходимо тщательно проверять на соответствие требованиям СНиП. Существуют армированные методы армирования с использованием предварительно напряженных стержней или канатных систем, но они реализуются только с помощью специального оборудования и не используются в частном домостроении из-за своей избыточности.


Выбрать арматуру

Наиболее распространенные размеры бетонной полосы, применяемой в малоэтажном частном домостроении, составляют 30-40 см в высоту и 50-70 см в высоту.Оптимальный вариант — использовать продольные стержни диаметром 12-14 мм, а для прижимов использовать гладкую планку диаметром 8 мм.

Такие результаты получаются при расчете фундамента, они многократно проверены на практике и гарантированно выполняют свои функции.

Существует также композитная арматура (стекловолокно), которая имеет некоторое преимущество перед традиционными металлическими стержнями:

  • Легкий вес.
  • Полная коррозионная стойкость.
  • Высокая несущая способность.
  • Низкая цена.

К недостаткам можно отнести только невозможность изгиба, что в некоторых случаях требует дополнительных стыков, что снижает прочность каркаса и вообще не лучший вариант для бетонной ленты. Тем не менее, для оснований простой формы выбор композитной арматуры вполне оправдан и рационален.

ПРИМЕЧАНИЕ!

На рынке много некачественных стержней, изготовленных с нарушениями технологии. В частности, часто встречается отслоение спирального оребрения.При покупке нужно обратить внимание на производителя и проверить сертификаты.


Выбрать материал для вязания

Оптимальный вариант — это отожженная стальная оцинкованная проволока, обеспечивающая прочное и надежное соединение. Он практически не растягивается, устойчив к коррозии и не слишком твердый, что немаловажно при длительной работе с большим количеством стыков.

Принципиальных ограничений по толщине проволоки нет, они обычно подходят по принципу простоты использования .Для арматурных стержней диаметром 12 мм принято использовать проволоку толщиной 1,2 мм, для более толстых стержней толщина проволоки увеличивается.

Главный критерий выбора — жесткость материала, от которой зависят рабочие качества и удобство использования. Чрезмерно твердый материал вызывает быстрое утомление, что снижает производительность.

Обычно проволока продается бухтами, но есть и заготовки — отрезки проволоки с кольцами на концах, облегчающие работу.

Также есть пластиковые хомуты, которые значительно ускоряют процесс соединения каркаса.Специалисты не любят с ними работать, так как они не обладают достаточной прочностью и способны лопнуть под нагрузкой, что часто обнаруживается уже в процессе заливки.

Инструменты

Для ручного вязания используется специальный крючок. Его можно приобрести в строительном магазине или изготовить самостоятельно. Это кусок проволоки с загнутым и слегка заостренным концом, который вставляется в проволочную петлю и вращается, затягивая соединение.

Существуют механические устройства, в которых крючок вращается от ручного привода, работающего от возвратно-поступательного движения ручки.

Для больших объемов работ используются специальные вязальные пистолеты . Крюк вращается с помощью электродвигателя, установленного в устройстве. Батареи обеспечивают питание, прямое сетевое питание неудобно и используется только в определенных случаях.

Часто вязальные пистолеты заменяют обычными отвертками, зажимающими крючок в патроне устройства.

Узоры для вязания

Схемы для вязания — это практичные техники скручивания проволочной петли.Существует несколько схем, немного отличающихся друг от друга и являющихся вариантами установки крючка относительно проволоки.

Та или иная схема никоим образом не влияет на результат, являясь, по сути, наиболее удобным способом для данной моторики человека выполнить простую операцию. Если петля закручена не по часовой стрелке, а наоборот, это не может изменить качество связи, поэтому нет смысла рассматривать возможные варианты.

Как установить

Процесс вязания арматуры состоит из следующих элементов:

  • От бухты вязальной проволоки отделяется отрезок длиной 25-30 см.
  • Отрезок согнут пополам.
  • Получившаяся полупетля наматывается под перекрестья арматурных стержней и по диагонали обвивается вокруг нее.
  • Крючок входит в петлю, свободный конец удерживается рукой.
  • Свободный конец перекрывается вращающимся крючком. В результате проволочная петля скручивается и прочно соединяет стержни. Обычно хватает 3-4 оборотов.

При продольном соединении стержней выполняются аналогичные действия, только охват петли не диагональный, а поперечный. Рекомендуется устанавливать не менее 2 скручиваний на каждое продольное соединение.

Арматура из стекловолокна

Для вязания стержней из стекловолокна можно использовать как вязальную проволоку, так и пластиковые зажимы. Вес арматуры значительно ниже, чем при использовании металлических прутьев, поэтому пластиковые хомуты выдерживают нагрузки и рекомендуются неподготовленным строителям, не имеющим опыта вязания каркасов.

Все техники вязания металлических стержней используются также при изготовлении рам из стекловолокна.Принципиальных отличий нет.

Композитные разновидности арматурных стержней используются сравнительно недавно, поэтому они мало изучены. Специальных способов соединения каркасов пока не разработано; на практике используются стандартные технологические приемы.




Композитная арматура

Прежде всего, необходимо уточнить, что арматура из стекловолокна тоже относится к композитному типу, являясь одной из разновидностей. Кроме того, есть углеродное волокно и базальтопластовая арматура с аналогичными качествами.

Их отличие состоит в том, что они всегда окрашены в темный (черный) цвет, а стержни из стеклопластика имеют светло-желтоватый цвет. К этим видам применимы все техники и способы вязания традиционных металлических каркасов.

Единственное отличие всех разновидностей композитов — невозможность сварных соединений. Кроме того, существует возможность более широкого использования пластиковых хомутов вместо проводных соединений, что связано с малым весом материала.

Как установить на углы фундамента

Углы арматурного каркаса — ответственные узлы, несущие дополнительные нагрузки в поперечных плоскостях.

Для в качестве армирующих элементов используются:

  • Сетка арматурная.
  • Отдельные арматурные стержни (анкеры), изогнутые под прямым углом.

На практике чаще используются анкеры, которые можно сделать прямо на площадке из той же арматуры, которая используется для прямых участков. Обычные методы вязания используются для соединения анкеров с соседними частями каркаса.

G-образные и U-образные зажимы, специальные муфты или привариваемые угловые элементы. В частном домостроении наиболее распространены обычные угловые анкеры, доступные и позволяющие использовать ту же технику вязания.

В качестве альтернативы вместо дополнительных элементов изгибаются прямые арматурные стержни, если их длина позволяет для этого варианта использования. Это исключает дополнительное соединение, что увеличивает прочность углового узла и увеличивает надежность каркаса в целом.

Полезное видео

Из этого видео вы научитесь вязать арматуру:

Заключение

От качества соединения арматурных стержней зависит устойчивость каркаса к напряжениям, возникающим как при затвердевании бетона, так и в последующий период эксплуатации.

Поскольку долговечность и безопасность всего здания напрямую зависит от прочности и надежности фундамента, необходимо с максимальной внимательностью и аккуратностью отнестись ко всем элементам конструкции из ленты.

Привязка рамы должна выполняться с соблюдением всех требований СНиП, чтобы обеспечить достаточную жесткость и устойчивость к возможным нагрузкам. Это позволит изготовить качественный фундамент, гарантирующий надежную опору конструкции.

В контакте с

Технологический прогресс неумолимо вторгается во все сферы современной жизни. Он не мог оставить без внимания область строительных материалов. Ежегодно рынок пополняется новыми разработками, облегчающими и упрощающими процесс строительства.Благодаря новым технологиям сегодня стало возможным закладывать фундамент из стеклопластиковой арматуры как основу для малоэтажной застройки. Этот вид строительного каркаса, появившийся на рынке не так давно, уже успел существенно вытеснить привычные и популярные изделия из чугуна и стали. Каковы основные преимущества стеклопластика? Какова сфера его применения?

Сравнительная характеристика материалов

В названии материала содержится его основная характеристика.Он изготовлен из пластиковых или стеклянных нитей, прочно спаянных в однородные стержни с гладкой или гофрированной структурой поверхности и круглым поперечным сечением. Гофрированная конструкция способствует лучшему сцеплению с бетоном и получается в результате переплетения гладких стержней со стекловолокном.

Изделия с гофрированной поверхностью несут основную нагрузку возводимой конструкции, а гладкие служат для соединения отдельных частей каркаса.В отличие от обычных металлических изделий, материалы нового поколения обладают рядом особенностей, благодаря которым арматура из стекловолокна для ленточного фундамента прочно удерживает пальму первенства на рынке строительных материалов.

Основные различия между стекловолокном и металлом включают:


Определение расхода материала

На расчет арматуры из стекловолокна для фундамента здания в первую очередь влияют тип конструкции и ее размеры.Для малоэтажных домов рекомендуется использовать ребристую арматуру диаметром не более десяти миллиметров. При расчетах необходимо учитывать, что основа ленточного фундамента — двухъярусный каркас, а шаг ячеек не должен превышать пятидесяти сантиметров. Его размеры влияют на общее количество стыков в конструкции. Расход материала зависит также от наличия в здании несущих капитальных стен, так как каждая из них требует заливки основания с двухъярусным каркасом.

В тех случаях, когда планируется заливка фундамента своими руками, без привлечения профессионалов, очень важно произвести правильный расчет количества стройматериала. Его можно произвести по приведенному ниже алгоритму.

Расчет размера продольной рамы

  1. В первую очередь необходимо определить периметр сооружения исходя из его габаритов, затем прибавить к полученному значению общий размер капитальных стен, предусмотренных проектом.Если мы возьмем в качестве примера здание длиной четыре метра и шириной пять метров, имеющее одну несущую стену длиной четыре метра, результат расчета будет следующим: 4 * 2 + 5 * 2 + 4 = 22 метра.
  2. Учитывая необходимость использования двухуровневого каркаса, состоящего из четырех параллельных стержней, то есть по два в каждом ярусе, необходимо увеличить итоговую общую длину арматуры в четыре раза. Результат будет такой: 22 * ​​4 = 88 метров.
  3. Поскольку стекловолокно не поддается сварке, а части каркаса перекрываются, необходимо предусмотреть по одному дополнительному метру для каждого угла здания.Для этого нужно количество наружных и капитальных стен постройки умножить на единицу, а затем на количество стержней, то есть четыре. В принятом примере расчет будет выглядеть так: (4 + 1) * 1 * 4 = 20 метров.
  4. Сумма общей длины стен и дополнительных объемов для стыковки даст искомую величину: 88 + 20 = 108 метров.

Однако на этом расчеты не заканчиваются. Далее необходимо рассчитать количество строительного материала, необходимого для соединения жил каркаса в единую конструкцию.Для этих целей вполне подойдут гладкие стержни диаметром сечения около 8 миллиметров. Они значительно дешевле ребристых и отлично справляются с соединительными функциями.

Расчет размеров поперечных швов

  1. Поскольку технология заливки фундамента требует, чтобы шаг между соединительными кольцами не превышал полуметра, необходимо определить количество необходимых ячеек. Для этого нужно общий размер основы разделить на пятьдесят сантиметров.В этом примере результат будет таким: 88: 0,5 = 44 ячейки. Это значит, что потребуется установить 44 соединительных кольца.
  2. Чтобы рассчитать расход стройматериала на одну обвязку, нужно определить ее периметр исходя из стандартных параметров 50 на 25 сантиметров. Периметр будет: 0,5 * 2 + 0,25 * 2 = 1,5 метра.
  3. Количество материала, необходимого для соединительных колец, можно рассчитать, умножив периметр на количество колец.Искомое значение будет таким: 1,5 * 44 = 66 метров.
  4. Учитывая, что при монтажных работах в результате резки часто возникают различные отходы, разумно добавить к необходимому количеству определенный процент от резерва, от пяти до десяти единиц. В результате получается желаемое значение порядка семидесяти метров.

Расчет количества креплений

В последнюю очередь необходимо определить количество пластиковых креплений для стыковки поперечных колец и продольных стержней арматуры.Для этого количество соединительных колец нужно умножить на количество точек стыковки. Получается: 44 * 4 = 176 креплений.

Итого, для усиления ленточного фундамента стекловолокном здания из примера, принятого выше, потребуется покупка:

  • 108 метров гофрированной арматуры диаметром 10 миллиметров;
  • 70 метров гладкой арматуры диаметром 8 миллиметров;
  • 176 пластиковые крепления для стыковки рамы.

Несмотря на некоторую кажущуюся громоздкость приведенных выше вычислений, любой непрофессионал вполне способен проделать это самостоятельно.

Порядок установки фундамента

Несмотря на различия в характеристиках и особенностях использования стали и стеклопластика, инструкция по установке фундамента остается идентичной. Этапы работы носят общий характер и не меняются в зависимости от типа используемого материала.

  1. Прежде всего, необходимо построить деревянную опалубку, соответствующую проектным размерам здания.
  2. После подготовки фундамента под будущий фундамент необходимо собрать каркас из стеклопластиковой арматуры. Для этого стержни необходимо надежно соединить между собой с помощью проволочных или пластиковых зажимов, соблюдая необходимый шаг ячеек. Учитывая, что, в отличие от стальных изделий, арматура из стекловолокна не может быть статически закреплена сваркой, особое внимание следует уделить связке стержней, подверженность фундамента смещению зависит от прочности каркаса.Поскольку стеклопластиковые стержни практически не гнутся, на стыках стен будущего здания можно использовать специальные уголки из того же полимера.
  3. После завершения сборки каркаса опалубка заливается бетоном. Подсчитать объем раствора довольно просто. Периметр основания необходимо умножить на его высоту и ширину. После заливки дальнейшая работа возможна только после окончательного затвердевания бетона, которое произойдет не ранее, чем через две-три недели.

Использование в строительстве изделий из материалов нового поколения, которые смело можно отнести к стекловолокну, благодаря их легкости, прочности, надежности и долговечности, позволяет значительно снизить стоимость работ при одновременном повышении их качества.

Материалы и процессы: форматы волокна для композитов

Волокна, используемые для армирования композитов, поставляются непосредственно производителями волокна и косвенно — переработчиками в различных формах, которые различаются в зависимости от области применения.

Ровинг и буксир. Ровинг — это самый простой и распространенный вид стекловолокна. Его можно рубить, ткать или обрабатывать иным образом для создания вторичных форм волокон для производства композитов, таких как циновки, тканые материалы, тесьма, трикотажные ткани и гибридные ткани. Ровинги поставляются весовыми с указанным диаметром нити накала. Термин выход обычно используется для обозначения количества ярдов в каждом фунте ровинга из стекловолокна. Точно так же жгут является основной формой углеродного волокна.Типичный размер жгута аэрокосмического класса составляет от 1K до 24K (K = 1000, поэтому 12K означает, что жгут содержит 12000 углеродных волокон). Углеродные волокна 12K на основе PAN и пека доступны с умеренным (33-35 Msi), промежуточным (40-50 Msi), высоким (50-70 Msi) и сверхвысоким (70-140 Msi) модулем упругости. (Модуль — это математическое значение, которое описывает жесткость материала путем измерения его прогиба или изменения длины под нагрузкой.) Новые тяжелые жгутовые углеродные волокна, иногда называемые волокнами товарного сорта , с количеством нитей 48–320 тыс. доступны по более низкой цене, чем волокна аэрокосмического качества.Обычно они имеют модуль упругости 33–35 Msi и предел прочности при растяжении 550 ksi и используются, когда требуется быстрое наращивание деталей, чаще всего на рынках отдыха, промышленности, строительства и автомобилестроения. Тяжелые жгутовые волокна обладают свойствами, приближающимися к свойствам волокон аэрокосмического класса, но их можно производить с меньшими затратами из-за различий в исходных материалах и технологиях. (Высокая стоимость углеродного волокна и исторически значимые колебания его предложения и спроса вызывают неизменно высокий интерес в индустрии композитов к состоянию мирового рынка углеродного волокна, о чем говорилось в статье «Спрос и предложение: современные волокна.»)

Потенциально значительным недавним изменением является жгут из углеродного волокна, который содержит выровненных прерывистых волокон . Эти жгуты создаются с помощью специальных процессов, которые либо натягивают углеродный жгут с разной скоростью, что вызывает случайное разрушение отдельных нитей, либо иным образом разрезают или разделяют отдельные углеродные нити, так что начало и конец нити расположены в шахматном порядке, а их относительная длина примерно одинакова. так, чтобы они оставались выровненными, а жгут сохранял свою целостность.Разрывы позволяют волокнам с большей независимостью смещать положение относительно соседних волокон, делая жгут более пластичным и давая ему возможность растягиваться под нагрузкой с более высокими прочностными характеристиками, чем рубленые, беспорядочные волокна. Формы волокна, изготовленные из выровненных прерывистых жгутов (см. «Маты» ниже), более драпируемые ; то есть они более податливы и, следовательно, легче приспосабливаются к изогнутым поверхностям инструмента, чем формы волокон, сделанные из стандартного жгута (см. «Выровненные прерывистые волокна достигают зрелости.»).

Маты — это нетканые материалы, изготовленные из волокон, скрепленных химическим связующим. Они бывают двух видов: рубленая и непрерывная. Рубленые маты содержат случайно распределенные волокна, нарезанные на длину, обычно от 38 мм до 63,5 мм. Мат из непрерывных волокон состоит из завитков из непрерывных волокон. Поскольку их волокна ориентированы беспорядочно, маты изотропны — они обладают одинаковой прочностью во всех направлениях. Маты из рубленых прядей обеспечивают недорогое армирование, прежде всего, при ручной укладке, непрерывном ламинировании и некоторых применениях закрытого формования. По своей сути более прочный мат из непрерывных прядей используется в основном при компрессионном формовании, формовании с переносом смолы и пултрузии, а также при производстве преформ и штампованных термопластов. Некоторые маты с непрерывной прядью, используемые для пултрузии, и маты с иглой, используемые для формования листов, устраняют необходимость хранения шпулярников и измельчения.

Ткани изготавливаются на ткацких станках разного веса, переплетения и ширины.Тканые материалы являются двунаправленными, обеспечивая хорошую прочность в направлении осевой ориентации пряжи или ровницы (0º / 90º), и они способствуют быстрому изготовлению композитов. Однако прочность на разрыв тканых материалов в некоторой степени снижается, потому что волокна изгибаются, когда они проходят над и под друг друга в процессе ткачества. Под действием растягивающей нагрузки эти волокна имеют тенденцию выпрямляться, вызывая напряжение в матричной системе.

Для двунаправленных тканей используется несколько различных типов плетения.В полотняном переплетении каждая пряжа наполнителя (т.е. пряжа, ориентированная под прямым углом к ​​длине ткани) попеременно пересекает и под каждой основной пряжей (продольной пряжей). Другие переплетения, такие как жгут , сатин и корзина плетение, позволяют пряже или ровнице пересекать и под множеством волокон основы (например, больше двух, меньше двух). Эти переплетения, как правило, более драпируемые, чем полотняные.

Тканый ровинг относительно толстый и используется для тяжелого армирования, особенно при ручной укладке и применении инструментов.Тканый ровинг из-за относительно грубого переплетения быстро смачивается и стоит относительно недорого. Однако можно производить исключительно тонкие ткани из стекловолокна для таких применений, как усиленные печатные платы.

Гибридные ткани могут быть изготовлены из различных типов волокон, составов прядей и типов тканей. Например, высокопрочные пряди из S-стекла или волокна малого диаметра могут использоваться в направлении основы, в то время как менее дорогие пряди составляют наполнитель.Гибрид также можно создать, сшив вместе тканый материал и нетканый мат.

Мультиаксиальные ткани представляют собой нетканые материалы, изготовленные из однонаправленных волоконных слоев, уложенных друг на друга в разной ориентации и скрепленных сшиванием по всей толщине, вязанием или химическим связующим. Долю пряжи в любом направлении можно выбирать по желанию. В многоосных тканях исключается изгиб волокон, связанный с ткаными тканями, потому что волокна лежат друг на друге, а не пересекаются друг с другом.Это позволяет лучше использовать присущую волокнам прочность и создает более гибкую ткань, чем тканая ткань аналогичного веса. Доступны сверхтяжелые нетканые материалы (до 200 унций / ярд²), которые могут значительно уменьшить количество слоев, необходимых для укладки, делая производство более рентабельным, особенно для крупных промышленных сооружений. Высокий интерес к многослойной арматуре без обжима стимулировал значительный рост этой категории арматуры.

Новый стиль многоосного армирования, разработанный Dr.Стивен Цай из Стэнфордского университета вместе с Chomarat (Ле Шейлард, Франция и Андерсон, Южная Каролина, США) был представлен в 2011 году, который ориентирует волокна под очень малыми углами, такими как 0 ° / 20 °, что может заменить квазиизотропные ориентации волокон для лучшая производительность и меньший вес. Одним из результатов является продукт под названием C-PLY, который недавно использовался компанией VX Aerospace (Моргантон, Северная Каролина, США) на своем четвертомасштабном БПЛА VX-1 KittyHawk . Он имеет крылья, плавно переходящие в аэродинамический фюзеляж, и является первым самолетом, использующим анизотропные ламинаты Цая, а его полномасштабная версия предназначена для использования в качестве беспилотных гражданских или военных (см. Изображение и изображение слева).Подробнее о БПЛА KittyHawk и о том, как его создатели использовали эту новую форму волокна, читайте в статье «VX Aerospace: Маленькая компания, большая производительность».

Плетеные ткани ткутся непрерывно с наклоном и имеют по крайней мере одну осевую пряжу, которая не гофрируется в процессе ткачества. Сила тесьмы зависит от переплетения трех или более пряжи без скручивания любых двух пряжей друг вокруг друга. Эта уникальная архитектура обычно обеспечивает большую прочность по сравнению с тканью.Он также имеет естественную формуемость, что делает оплетку особенно подходящей для производства рукавов и преформ (см. «Преформы» ниже), поскольку она легко принимает форму армируемой детали, тем самым устраняя необходимость в разрезании, сшивании или манипуляциях с ней. размещение волокна. Косы также доступны в виде плоской ткани. Они могут быть изготовлены с трехосной архитектурой, с волокнами, ориентированными под углом 0 °, + 60 °, -60 ° в одном слое. Эта квазиизотропная архитектура в одном слое плетеной ткани может устранить проблемы, связанные с наложением нескольких слоев ткани 0˚, + 45˚, -45˚ и 90.Кроме того, склонность к расслоению (разделению волоконных слоев) резко снижается при использовании квазиизотропной плетеной ткани. Его архитектура 0 °, + 60 °, -60 ° придает ткани одинаковые механические свойства во всех направлениях, поэтому возможность несоответствия жесткости между слоями исключается.

Как в рукаве, так и в плоской ткани волокна сплошные и механически переплетены. Поскольку все волокна в конструкции участвуют в событии нагрузки, нагрузка равномерно распределяется по всей конструкции.Таким образом, тесьма может поглотить много энергии, если она разорвется. Ударопрочность, устойчивость к повреждениям и усталостные характеристики оплетки привлекают производителей композитов в самых разных областях, от хоккейных клюшек до корпусов вентиляторов реактивных двигателей.

Заготовки представляют собой армирующие формы почти чистой формы, предназначенные для использования в производстве конкретных деталей путем наложения и формирования слоев из рубленого, однонаправленного, тканого, сшитого и / или плетеного волокна в заданную трехмерную форму.Сложные формы деталей могут быть максимально приближены путем тщательного выбора и интеграции любого количества армирующих слоев различной формы и ориентации. В связи с их потенциалом высокой эффективности и скорости обработки был разработан ряд технологий предварительного формования с помощью специальных связующих, методов нагрева и уплотнения, а также использования автоматизированных методов распыления, ориентации и уплотнения рубленых волокон.

Недавним и необычно творческим примером , автоматизирующего производство преформ , является технология Fiber Patch Placement (FPP) компании Cevotec (Гархинг, Германия), автоматизированный способ размещения преформ из углеродного волокна в менее дорогостоящее армированное стекловолокном кайтборды, созданные North Kiteboarding (Оберхахинг, Германия), как средство удовлетворения сугубо индивидуалистических предпочтений с точки зрения «производительности доски» со стороны энтузиастов кайтбординга без радикального повышения цен на кайтборды (см. иллюстрацию / фото и подпись слева).Чтобы узнать больше об этом, нажмите «Преформы Fiber patch помогают оптимизировать характеристики кайтборда».

Препреги представляют собой пропитанные смолой волокна, изготовленные путем пропитки волокон контролируемым количеством смолы (термореактивной или термопластичной) с использованием технологий растворителя, горячего плавления или порошковой пропитки. Препреги можно хранить на «В-стадии», то есть в частично отвержденном состоянии, до тех пор, пока они не потребуются для изготовления. Лента или ткань препрега используются при ручной укладке, автоматической укладке ленты, укладке волокон и в некоторых операциях намотки волокон (см. Соответствующие заголовки в сегменте «Методы изготовления» справочника CW Sourcebook ). Однонаправленная лента (все волокна параллельны) является наиболее распространенной формой препрега. Препреги, изготовленные из тканых волокон и других плоских изделий, предлагают армирование в двух или более измерениях и обычно продаются полными рулонами, хотя некоторые поставщики доступны в небольших количествах. Изготовленные путем пропитки волокнистых преформ и оплеток обеспечивают трехмерное армирование.

Препреги

обеспечивают однородное сочетание волокна и смолы и обеспечивают полное смачивание. Они также устраняют необходимость взвешивания и смешивания смолы и катализатора для мокрой укладки.Для большинства термореактивных препрегов драпировка и липкость «обработаны» для облегчения обращения, но они должны храниться при температуре ниже комнатной и иметь ограничения по времени хранения; то есть их необходимо использовать в течение определенного периода времени после извлечения из хранилища, чтобы избежать реакции преждевременного отверждения. Термопластичные препреги не нуждаются в охлаждении и не подлежат ограничениям по сроку службы, но без специального состава они не имеют липкости или драпировки, как у термореактивных препрегов, и, следовательно, их труднее формировать.

Бесспорно, что препреги позволяют производить готовые детали с наименьшей массой, высочайшими механическими свойствами и низким содержанием пустот.Однако они также были исторически самыми дорогими, отчасти потому, что они исторически производились специалистами — производство препрега было промежуточным, дискретным этапом в цепочке поставок композитов. Недавно были предприняты усилия по устранению неэффективности и связанных с этим затрат, связанных с этим дополнительным этапом. Два интересных подхода к этой цели, оба встроенных процессов , были представлены на конференции и выставке SPE Automotive Composites 2015 в Детройте, штат Мичиган, США.Они превращают производителей композитов в препреггеры почти так же, как процесс прямого изготовления длинноволоконных термопластов (D-LFT) в конце 1990-х — начале 2000-х годов, когда работа производителей компаундов была переложена на производителей. Обе новые технологии исключают ранее необходимые и дорогостоящих, этапов замораживания и хранения препрега перед его отправкой покупателю, который затем должен также хранить и размораживать его перед использованием в процессе формования, расходы на которые несет процессор и, предположительно, заказчик процессора.

Наиболее близким к коммерциализации является поточный процесс предварительной обработки, разработанный совместно Mitsubishi Rayon Co. Ltd. (Токио, Япония) и Mitsubishi Rayon Carbon Fiber and Composites Inc. (Ирвин, Калифорния, США). Ученые Mitsubishi сокращают расходы за счет непосредственного покрытия отдельных пучков углеродного жгута, калибровки ширины и последующей перемотки продукта на катушки. Система автоматической укладки волокон (AFP) — Mitsubishi называет ее автоматизированной укладкой towpreg — затем используется для укладки стопок слоев, чтобы избежать ручной укладки.Затем стопки предварительно формируются и формуются с помощью собственного процесса компрессионного формования препрега (PCM). Другой подход — это новый процесс InPreg (встроенный препрег), разработанный Институтом химической технологии им. Фраунгофера (ICT) (F-ICT, Пфинцталь, Германия). Подобно подходу Mitsubishi PCM, препреги InPreg предназначены для формования в прессах для сжатия, а не на более экзотическом оборудовании, что открывает доступ к ламинатным композитам более широкому кругу производителей. этапы предварительного формования и формования InPreg выполняются в пресс-инструменте.Это исключает не только время, необходимое для нагрева, предварительного формования и охлаждения препрега, но также стоимость и место для станции предварительного формования. Ключом к процессу Inpreg является четырехкомпонентная система эпоксидной смолы с B-стадией от Huntsman Advanced Materials (Базель, Швейцария) и более дешевое жгутовое углеродное волокно 24-50K, которое формируется в UD-ткань без обжима (NCF). . (Подробнее об обоих поточных методах читайте в разделе «Более низкая стоимость, меньше отходов: поточное производство препрега».)

Распространенный жгут — это отдельный жгут (или нескрученная пряжа) волокна, который разложен до тех пор, пока отдельные нити не будут лежать бок о бок, образуя ультратонкую ленту.Например, жгут углеродного волокна 12K может иметь ширину от 5 до 25 мм, уменьшая его толщину на 80%. Эти расправленные жгуты могут быть вплетены в ткань, размещены для образования многоосной не изгибающейся ткани (NCF) или для приема жидкой или порошковой смолы с образованием ленты для расправленных жгутов или жгутов. Использование тканого жгутного полотна вместо более обычных армирующих материалов может привести к снижению веса композитного ламината на 20-30%. Это достигается за счет закрытия промежутков между основой и утком в основе и утке, чтобы меньше смолы задерживалось там, а также за счет уменьшения извитости волокон, в результате чего получаются более прямые волокна, что повышает прочность.Таким образом, конечный композитный ламинат может использовать меньшее количество более тонких слоев для достижения таких же или лучших характеристик.

Поставщик волокна Hexcel (Стэмфорд, Китай, США) заявляет о 5-8% сокращении зазоров в ткани и возможности достижения с использованием углеродного волокна свойств жгута 6K при поверхностном весе 3K, свойств жгута 12K при поверхностном весе 6K и т. Д. . North Thin Ply Technology (NTPT, Penthalaz-Cossonay, Швейцария) утверждает, что может быть распределено по любому волокну , и заявляет, что достижимы очень низкие поверхностные веса: 30 г / м 2 для углеродного волокна на основе PAN и 14-микронного диаметр кварцевого волокна, 35 г / м 2 для стекловолокна диаметром 9 микрон, 20 г / м 2 для арамидного волокна и 30 г / м 2 для полибензоксазола (PBO) и других синтетических волокон.Поставщиками усиленного жгута являются Hexcel, NTPT, Oxeon (Борас, Швеция), Sigmatex (Великобритания) Ltd. (Ранкорн, Великобритания), Chomarat и FORMAX (Лестер, Великобритания). Приложения включают в себя велосипеды, лыжи, хоккейные клюшки, ракетки, парусники, гоночные автомобили и самолет Solar Impulse .

Переработанное углеродное волокно (RCF) армирующие элементы доступны в различных формах, включая рубленые волокна, нарезанные на определенную длину, рубленые волокна, составленные в виде гранул из термопласта с длинными волокнами (LFT), трехмерные преформы в форме сетки и ориентированные маты из рубленого волокна — сухие или комбинированные с термопластами — включая полипропилен (PP), полиэтилентерефталат (PET), полиамид (PA или нейлон), полифениленсульфид (PPS), полиэфиримид (PEI), полиэфирэфиркетон (PEEK).Маты из рубленого волокна также можно обрабатывать, например, чесанием, чтобы добиться большего выравнивания волокон, что приводит к лучшим механическим свойствам. Это разнообразие продуктов доступно у ряда поставщиков RCF по всему миру, и они перерабатываются с помощью пиролиза, при котором смола сжигается из отходов препрега и отвержденных структур. Компания Technical Fiber Products Inc. (TFP, Скенектади, Нью-Йорк, США и Бернсайд, Великобритания) производит вуали из RCF плотностью 2 г / м 2 .

Продукция

RCF также производится собственными силами из отходов производства сухого волокна. Продукты SigmaRF повторно используют собственные сухие производственные отходы Sigmatex, комбинируя углеродные волокна диаметром от 45 до 60 мм с термопластичным носителем для образования лент, которые используются для изготовления не изгибающихся тканей, например, 220 г / м 2 Углеродное волокно ± 45 ° / двухосный ПЭТ NCF. Другие варианты включают RCF / Kevlar / PEI, RCF / PA и RCF / PES.

Институт обработки пластмасс (IKV) при RWTH Aachen University (Ахен, Германия) взял зарождающиеся волокна, не собранные роликами во время формования прекурсора углеродного волокна PAN (отходы производства углеродного волокна или побочный продукт), а затем нарезал, карбонизировал и сформировал из них однородные маты с использованием непрерывного процесса воздушной укладки.(Подробнее о технологиях регенерации углеродного волокна и рынке вторичного продукта читайте в разделе «Обновление вторичного углеродного волокна: завершение цикла жизненного цикла углепластика».)

Также разрабатываются новые методы для производства непрерывных переработанных волокон, включая сольволиз с использованием спиртов или других растворителей для удаления смол без горения или высоких температур, пиролиз и разматывание сосудов под давлением с намотанной нитью и использование эпоксидных смол, которые позволяют матрице быть переработанный как термопласт, такой как отвердители Recyclamine от Connora Technologies (Хейворд, Калифорния, США).

Формовочные смеси — еще один способ включения волокон в композит. Традиционно они были разработаны в пластмассовой промышленности и содержат короткие волокна (2-25 мм) при низком весовом процентном содержании (5-50%). Компаунд для формования массы (BMC), похожий на замазку, используется при литье под давлением, в то время как компаунд для формования листов (SMC) используется для более крупных деталей и более высоких требований к прочности, обычно в процессе компрессионного формования.

Стекломат из термопласта (GMT), также поддающийся прессованию, имеет сплошное армирование случайными волокнами.GMT был разработан в 1960-х годах как шаг вперед от короткого нейлона, армированного волокном. Он столкнулся с растущей конкуренцией со стороны армированного длинным волокном термопласта (LFRT или LFT), который производится путем разрезания пултрузионных непрерывных стекловолоконных стержней малого диаметра на гранулы. LFT имеет непрерывное однонаправленное волокно, проходящее по всей длине гранулы, и предлагает свойства между GMT и термопластами с коротким стеклом. В 1990-х годах производители оборудования разработали системы поточного компаундирования (ILC), которые объединяют ранее раздельные процессы компаундирования и формования.Эти системы прямого длинноволоконного термопласта (D-LFT) сочетают в себе смолу, арматуру и добавки на прессе, доставляя отмеренную дробь или заряд непосредственно в оборудование для литья под давлением или компрессионного формования. Это исключает запасы предварительно приготовленного продукта и позволяет выбирать длину волокна.

SMC, BMC, GMT и LFT используются в широком спектре приложений, где требуются сложные формы и формованные детали, включая автомобильные детали, бытовую технику (бак стиральной машины), медицинские приборы, потребительские товары, электронику, спортивные товары, кронштейны, корпуса. , запчасти для транспортных средств и электрооборудования.

SMC, в частности, предлагает уплотнение деталей, контур глубокой вытяжки и множество других преимуществ по сравнению со сталью и алюминием: он обычно на 40% легче металлов при сопоставимой по характеристикам геометрии. Хотя он не ржавеет и не подвергается коррозии и не требует такой обработки, он обладает термической и химической стойкостью, чтобы выдержать электрофоретическое (электронное покрытие) процессы предотвращения ржавчины на металлических компонентах шасси, поэтому детали SMC могут быть прикреплены к корпусу в белом (предпочтительный метод сборки) и не требует специальной сборки электронного покрытия.Однако до недавнего времени SMC имела преимущество в стоимости при объемах производства не более 150 000 единиц. Однако новый SMC низкой плотности от Continental Structural Plastics (CSP, Auburn Hills, MI, US) получил название TCA (жесткий класс A) Ultra Lite. При удельном весе (SG) 1,2 он обеспечивает снижение массы на 28% по сравнению с марками TCA Lite со средней плотностью CSP (1,6 SG) и на 43% по сравнению с обычными марками SMC 1,9 SG. Кроме того, он не только предлагает механические характеристики, сравнимые с TCA Lite (оба имеют матрицу из ненасыщенного полиэфира от AOC Resins, Collierville, TN, US), но также, как сообщается, более эффективно связывается с краской и клеем.Что наиболее важно, анализы жизненного цикла, проведенные CSP, как сообщается, показывают, что даже при объемах до 350 000-400 000 автомобилей в год TCA Ultra Lite стоит дешевле в расчете на одну деталь, чем алюминий (см. Фото и подпись слева). Подробнее о новом SMC см. «SMC низкой плотности: лучше жить благодаря химии».

Стекловолокно является наиболее распространенным и наименее дорогим армированием, используемым в формовочных смесях, арамидное волокно обеспечивает износостойкость, волокно из нержавеющей стали обеспечивает защиту как от электростатического рассеяния (ESD), так и от электромагнитных помех (EMI), а углеродное волокно обеспечивает более высокий модуль упругости и меньший вес. а также свойства ESD.Также были разработаны формовочные смеси, армированные натуральными волокнами (пенька, лен, сизаль и древесные волокна), в том числе. Они набирают популярность в автомобильной промышленности, спортивных товарах и потребительских товарах.

Формовочные смеси

Advanced предназначены для более эффективных применений, включая аэрокосмические и военные детали. В этих материалах используются смолы с более высокими характеристиками, такие как эпоксидная, фенольная, винилэфирная, бисмалеимидная (BMI) и полиимидная, и с содержанием волокон от 45% до 63% по весу.Волокна включают углеродное стекло и стекло E, а также стекло S2 с более высокими характеристиками. TenCate Advanced Composites BV (Нейвердал, Нидерланды) производит BMC с эпоксидной смолой, цианатным эфиром, нейлоном, смолами PPS или PEEK и углеродным или стекловолокном S2 длиной от 12 мм до 50 мм. HexMC производится Hexcel с использованием углеродных волокон длиной 50 мм и эпоксидной смолы. Множество других продуктов SMC из углеродного волокна доступны от поставщиков, включая Continental Structural Plastics, Quantum Composites Inc. (Бэй-Сити, Мичиган, США) и совместное предприятие Zoltek Corporation (Санкт-Петербург).Луи, Миссури, США) и Magna Exteriors (Париж, Франция).

В последнее время формовочные смеси позволяют армировать изделия, созданные с помощью того, что стало известно как процессы аддитивного производства, также известные как 3D-печать. Рубленое и коротковолокнистое армирование может быть адаптировано для использования в обычном типе 3D-печати, называемом моделированием наплавления. Большая часть 3D-печати из армированного пластика имеет ограниченный размер (для обзора см. «3D-печать: ниша или следующий шаг к производству по запросу?»).Но, по крайней мере, один недавний демонстрационный проект показывает, что широкоформатная печать технически практична. и экономически оправданы: Национальная лаборатория Ок-Ридж (Ок-Ридж, Теннесси, США) и производитель оборудования Cincinnati Inc. (Харрисон, Огайо, США) продемонстрировали большие размеры. возможность форматной печати с помощью системы Big Area Additive Manufacturing (BAAM) в сотрудничестве с Local Motors (Чандлер, Аризона, США) для производства первого в мире автомобильного кузова, напечатанного на 3D-принтере. Специально разработанный кузов спортивного автомобиля Strati был напечатан на полу выставки на выставке IMTS в 2014 году за 44 часа с использованием смеси акрилонитрил-бутадиен-стирола (ABS), армированной 15% углеродным волокном, поставляемой SABIC (Питтсфилд, Массачусетс, США).Подробнее о демонстрации читайте в разделе «Аддитивное производство: можно ли напечатать автомобиль

Примечание редактора: Чтобы продолжить чтение статей в «Industry Overivew, Часть I: Материалы и процессы», вы можете вернуться в главное меню SourceBook, нажав здесь .

Слабое звено в усиленном нейлоне

Этот состоящий из двух частей автомобильный впускной коллектор из нейлона 6, изготовленный методом литья под давлением, состоит из двух половин, сваренных вместе с помощью вибрационной сварки.


Волокна на линии вязания, ориентированной под углом 90 ° к приложенным нагрузкам, не добавляют прочности. Фактически, трикотажные линии имеют примерно прочность ненаполненной смолы.


Программное обеспечение

Moldflow от Moldflow Corp., Уэйланд, Массачусетс, имитирует жидкий пластик, перетекающий в форму для литья под давлением. Это помогает дизайнерам предсказать, где, скорее всего, сформируются линии вязания и соединения. Области, окрашенные в красный цвет, заполняются меньше всего, а синие — дольше всего.


Линии вязания образуются при встрече двух противоположных потоков. Линии плавления образуются на границе двух параллельных потоков.


Нейлоновые термопласты используются в самых разных областях, от автомобильных впускных коллекторов и бамперов до бытовых приборов и электроинструментов. Литые под давлением нейлоны не деформируются при сварке, что делает их идеальными для сборок со сложной геометрией. Нейлон также остается жестким при температурах, близких к температурам расплава, и имеет предсказуемую степень усадки, поэтому детали имеют тенденцию легко выбрасываться из инструмента и могут быть изготовлены с жесткими допусками.Относительно низкая вязкость позволяет ему легко течь в формы сложной формы, в том числе с более тонкими секциями. А детали с более тонкими стенками сокращают время охлаждения и цикла, а также снижают вес продукта.

Но просто иметь возможность заполнить каждый уголок пресс-формы пластиком или сварить две формованные детали вместе — недостаточно. Потоки расплава также должны быть равномерно распределены и ориентированы, особенно при использовании пластиков, армированных волокном. В этом отношении у литья под давлением и сварки есть нечто общее: трикотажные линии.Хотя механизмы, ответственные за их образование, различны, результаты аналогичны.

Линии вязания в формованных деталях
Жидкий пластик (расплав), обтекающий препятствия в формовочном инструменте, например вставки, ребра, стержни и т. Д., Дает так называемые линии вязания и соединения. Связанные линии (плоскости) образуются там, где фронты потока встречаются с противоположных направлений, и сливаются с линиями в одном направлении.

Количество линий вязания определяется по формуле:

N = G + Co — 1

, где N = количество сварных линий, G — количество ворот, а Co = количество запорных стержней или штифтов.Линии вязания обычно вызывают большее беспокойство, потому что они механически слабее, чем линии слияния, и могут быть значительно сильнее, чем объемный материал. Прочность на разрыв трикотажного полотна для нейлона без наполнителя примерно равна или примерно на 17% меньше, чем у объемного материала. Напротив, та же смола, наполненная 30% (по весу) стекловолокна, может потерять 50% или более своей прочности на линиях вязания. И механическая прочность не улучшается с дополнительными или более прочными волокнами.

Столь резкое падение прочности вокруг линий вязания происходит из-за того, что напряжение сосредоточено в острых V-образных выемках.Насечки образуются, когда волокна ориентированы перпендикулярно основному потоку расплава. Это, в свою очередь, способствует неполному переплетению или диффузии молекул и даже микропустотам. В воротах (местах инъекции) волокна располагаются случайным образом, а затем выравниваются по основному потоку. Когда фронты потока встречаются, волокна, которые поворачиваются на 90 ° к основному потоку, не добавляют прочности. Фактически, образцы для испытаний (33 мас.% Стекловолокна и нейлона 6) показывают на 50-60% меньшую прочность в поперечном направлении.

Этим трещинам способствуют также модификаторы удара.Ударно-модифицированные пластмассы при впрыскивании в форму — особенно при чрезмерно высоких температурах расплава — демонстрируют то, что называется «фонтанным потоком». В этом случае добавка не достигает непосредственно замороженного слоя стенки, а вместо этого стекает сначала по центру полости формы к фронту расплава. Это может изменить направление потока и ориентацию полимерных молекул и волокон, способствуя образованию V-образного паза.

Повышение температуры пресс-формы и плавления — ниже уровней, при которых происходит разложение полимера — способствует более медленному охлаждению и в большинстве случаев повышает прочность.Хотя влияние температуры расплава преобладает, чрезмерно холодные стенки формы могут слишком быстро затвердеть жидкий пластик, создавая корки с более низкой степенью кристалличности, чем в ядре, охлаждающемся медленнее. Повышение температуры пресс-формы, более быстрое заполнение форм, устранение разделительных агентов и сборы заправки до более высокого давления — все это может укрепить трикотажные линии.

Тем не менее, для деталей, изготовленных из термопластов с наполнителем (армирующего стекловолокна, наполнителей, модификаторов ударной нагрузки и т. Д.), Допустимое рабочее напряжение должно соответственно снижаться.Кроме того, на поверхностях, несущих более высокие нагрузки, не должно быть линий вязания. То же самое и для сварных узлов.

Формирование линии сварного шва
Линии сварного шва очень напоминают вязаные линии в том смысле, что они образуются при встрече двух потоков расплава. В этом случае плавление ограничивается границей раздела компонентов или линией сварки. Тепло для процесса происходит от трения (линейная или орбитальная вибрация, вращение или ультразвук), контакта с горячей пластиной или лазерного излучения. Сварка с пропусканием инфракрасного излучения и лазером относительно нова, но ожидается, что она будет быстро развиваться, тогда как другие методы, такие как линейная вибрационная сварка, уже широко используются.

Как и при литье под давлением, линейная вибрационная сварка имеет ряд регулируемых параметров, каждый из которых может повлиять на целостность сварного шва. К ним относятся амплитуда, давление и продолжительность зажима и удержания, а также расплавление. Увеличение амплитуды сварного шва и понижение давления увеличивает прочность на растяжение линии сварки. Увеличение толщины расплава или межфазной толщины также улучшает прочность на разрыв. Подобные улучшения происходят с более высокими температурами плавления. Однако форма и направление колебаний не оказывают заметного влияния на механические свойства сварного шва.

В большем количестве конструкций используются пластмассы на основе нейлона
Меньший вес и более низкие производственные затраты — две причины, по которым использование нейлона в автомобильных компонентах под капотом выросло с 87 500 тонн в 1999 году до 165 000 тонн в настоящее время и составляет ожидается, что к 2005 году он достигнет 230 000 тонн (Северная Америка и Европа). Стекловолокно и нейлон, армированный минеральным волокном, позволяют автопроизводителям изготавливать сварные резервуары для жидкости, резонаторы, крышки и компоненты шасси, которые могут весить на 40-55% меньше, чем штампованные стальные или литые эквиваленты.

Аналогичное снижение веса возможно для различных электроинструментов, а также оборудования для газонов и сада. Армированный стекловолокном нейлон с наполнителем также помогает сократить количество отходов, поскольку они в основном сохраняют свои механические свойства даже после нескольких циклов повторной формовки / переточки. Сегодня доступно более десятка классов нейлоновых смол (полиамидов).


4

3

9095 4

4

185.

0

Влияние наполнителей на прочность линии вязки и шва
СТЕКЛО ВОЛОКНО, мас.%

МИНЕРАЛЬНОЕ ВОЛОКНО, мас. %

МОДИФИКАТОР УДАРА, мас. %

ПРОЧНОСТЬ НА РАСТЯЖЕНИЕ ПЛАСТИКА, МПа

ПРОЧНОСТЬ НА РАЗРЫВ ВЯЗАННОЙ ЛИНИИ, МПа

ПРОЧНОСТЬ НА РАСТЯЖЕНИЕ ШВЕЙНОЙ ЛИНИИ, МПа

85,5

81,0

0

40

0

90.0

77,0

81,5

0

0

4

54,0

0

85,0

83,1

14

0

0

125.0

89,1

90,7

15

25

0

126,0

0003

126,0

0003

9039

0

0

160,0

90,2

33

0

0

89,2

85,6

33

0

5

152.0

62,0

629

0

208,0

82,1

50

0

0

220.0

83,3

80,5

63

0

0

229,0

000

229,0

000

, сухой, как формованный пластик на основе нейлона 6, и оптимизированные условия обработки. Тесты проводились в Honeywell International, Engineered Applications & Solutions, Морристаун, штат Нью-Джерси.Вал Каган, Honeywell International, Engineered Applications & Solutions, Морристаун, штат Нью-Джерси, за помощь в написании этой статьи.

Руководство по выбору стекловолокна

и стеклоткани: типы, характеристики, применение

Стекловолокно и стеклоткань состоят из объемных, рубленых волокон или непрерывных нитей стекла. Стекловолокно и стеклоткань используются для армирования пластмасс и композитов, а также для других специализированных электрических и термических применений. Ткань из стекловолокна часто используется для усиления других пластиковых материалов.Пластмасса, армированная стекловолокном (GRP) или эпоксидная смола, армированная стекловолокном (GRE), обычно называют стекловолокном.

Стекловолокно, используемое для создания стекловолокна, изготавливается путем экструзии очень тонких нитей моноволокна на основе диоксида кремния. Стекло — это уникальное аморфное твердое тело, что означает, что оно не имеет основной кристаллической структуры в твердом состоянии, а ведет себя как очень вязкая жидкость. Стекловолокно подходит для тканых тканей, потому что тонкие волокна легко сгибаются. Ткань из стекловолокна обладает высокой прочностью на разрыв, стабильностью размеров, высокой жаро- и огнестойкостью, а также стойкостью ко многим химическим соединениям.Стекловолоконная ткань также используется для рассеивания тепла и обладает электрическими свойствами, которые делают ее полезной в электронных компонентах.

Текстильный продукт Тип

Волокно / моноволокно — Объемные рубленые волокна или тонкие непрерывные волокна обычно используются в композитных армирующих материалах, текучей изоляции или как ключевой компонент тканых материалов, тесьмы, трикотажа, ровницы или других специальных тканей.

Нити / мультифиламенты — Тонкие, непрерывные, многоволоконные нити используются в композитных армирующих материалах или в качестве ключевых компонентов тканых материалов, тесьмы, трикотажа, ровницы или других специальных тканей.

Ровинг / пряжа — Ровинг изготавливается из жгутов, скрученных пучков непрерывных волокон. Пряжа изготавливается из непрерывных, часто скрученных прядей из натуральных или искусственных волокон или нитей.

Тканое изделие — Тканое изделие используется для изготовления композитной оснастки и формирования структур. Непрерывные волокна перерабатываются в двух- или трехмерные структуры путем плетения волокон на ткацком станке.

Нетканый продукт — Нетканый материал — это материалы на текстильной или волокнистой основе, сформированные в виде матов из произвольно ориентированных волокон, войлока, ткани, перфорированной иглами, спряденных или полученных выдуванием из расплава структур.

Плетеный продукт — Плетеный продукт используется для изготовления трубчатых композитных конструкций, теплоизоляционных тканей и в других областях.

Трикотажное изделие — Трикотажное изделие состоит из непрерывных волокон, которые перерабатываются в трикотажную структуру с двумя или тремя измерениями. Вязание обеспечивает более удобную структуру, чем плетение, что ценно для фигурных поверхностей.

Веревка / веревка — Изделия, сделанные из скрученной или плетеной веревки или веревки.Теплоизоляционная веревка или оплетка используются для обеспечения термосварки вокруг дверей или других отверстий в стенках печи.

Тесьма (лента / ремешок) — Изделия, включая тканые ленты, тесьму, тесьму или тесьму.

Одеяло / ватин — Одеяла или ватин (ватин) изготавливаются из толстых слоев тканых и / или нетканых полотен.

Рукава / обертка — Рукава или обертки представляют собой гибкие волокнистые огнеупорные изделия для изоляции труб, трубок, каналов и других технологических компонентов.

Нить — Тонкие непрерывные нити или нити используются для сшивания или усиления. Мононити используются для армирования. При шитье или сшивании используются многоволоконные нити.

Тип материала

Ткань из стекловолокна подразделяется на две отдельные марки: стекло и стекло.

E-glass — E-стекло — это самое дешевое стекловолокно, которое используется, когда требуются прочность и высокое электрическое сопротивление. S-стекло примерно на 30% прочнее, чем E-стекло, и имеет лучшие свойства при повышенных температурах.Стекло E имеет высокую прочность волокна по сравнению с углеродом и арамидом (~ 500 Ksi) и относительно низкий модуль упругости волокна (~ 10,5 Msi).

Стекло S — Стекло S примерно на 30% выше по прочности, значительно дороже и имеет лучшие свойства при повышенных температурах, чем стекло E. Обозначение «S», зарегистрированная торговая марка Owens Corning, означает силу. Другие аналогичные изделия обозначаются как Te-стекло или R-стекло.

Кварц / плавленый диоксид кремния — плавленый диоксид кремния представляет собой соединение кремния и кислорода.Кварц и аморфный плавленый кварц высокой чистоты обеспечивают очень низкое расширение, замечательную стойкость к тепловому удару, низкую теплопроводность, отличную электроизоляцию до 1000 ° C и отличную устойчивость к коррозии от расплавленного металла.

Стекловолокно и стекловолокно также доступны в смешанных вариантах и ​​с покрытием. Смешанные волокна производятся из смеси двух или более волокон разных типов. В то время как покрытые продукты могут быть наполнены или проклеены волокнами.

Технические характеристики

Размеры и свойства важны при выборе стекловолокна и стекловолокна.

Размеры

  • Денье волокна — Денье — единица измерения линейной массовой плотности волокон. Он определяется как масса в граммах (г) на 9000 метров (м). Денье нити определяется как масса одной нити волокна на 9000 м3. Общий денье также определяется как масса на 9000 м, но применяется к агломерациям волокон, таким как пряжа.
  • Вес ткани — Вес ткани — это вес на единицу площади тканого или нетканого материала, текстиля или ткани.Общая толщина — Общая толщина измеряется датчиком, который содержит два плоских цилиндра для соответствующей площади образца и подпружиненный механизм для постоянного приложенного давления.
  • Общая ширина / OD — Общая ширина или внешний диаметр (OD) — это ширина обрезки рулона ткани или текстильного материала.
  • Общая длина — Ткани и текстильные изделия продаются в рулонах различной длины, многие из которых превышают одну милю.

Недвижимость

  • Температура использования — Температура использования — это максимальная температура, при которой волокна могут использоваться непрерывно без ухудшения структурных или других требуемых конечных свойств.
  • Прочность ткани — Прочность ткани — это нагрузка на дюйм ширины, которую ткань может выдержать до разрыва.
  • Разрывная нагрузка (веревка / волокно) — Разрывная нагрузка — это максимальная растягивающая нагрузка или сила, которую веревка, шнур, тесьма или ткань будут удерживать перед разрывом. Прочность на разрыв умножается на коэффициент безопасности, чтобы определить фактическую рабочую или рабочую нагрузку каната или текстильного изделия.
  • Теплопроводность — Теплопроводность — это линейная теплопроводность на единицу площади через материал для заданного применяемого градиента температуры.Тепловой поток (h) = [теплопроводность (k)] x [градиент температуры (Δ T)]
  • Удельное электрическое сопротивление — Удельное сопротивление — это продольное электрическое сопротивление (Ом-см) однородного стержня единичной длины и единичной площади поперечного сечения. Удельное сопротивление — это величина, обратная проводимости.

Приложения

Стекловолокно и стеклоткань обычно используются в композитных конструкциях, включая материалы, используемые в судостроении. Легкая ткань из стекловолокна используется со смолой для создания водонепроницаемой поверхности.Для большей прочности и жесткости можно использовать более тяжелую ткань из стекловолокна.

Стекловолокно и стеклоткань также используются для создания комбинированных или специальных тканей. Стекловолокно и ткань из стекловолокна могут быть объединены с углеродным волокном или арамидным волокном для изготовления ламинатов и формованных тканей для каноэ, байдарок и других высокопрочных материалов с малым весом.

Стандарты

Стекловолокно и стекловолокно должны соответствовать определенным стандартам и спецификациям для обеспечения надлежащего дизайна и функциональности.

Delphi DX300340 — Эта спецификация охватывает свойства полиамида 6, 40% стеклонаполненного, модифицированного для литья под давлением материала ударопрочности, используемого для изготовления деталей, требующих высокой жесткости и прочности в экстремальных условиях (например, контейнеры с подушками безопасности).

GMW15890 — Эта спецификация охватывает свойства полипропилена, армированного длинными стекловолокнами. Он охватывает типы литья под давлением для изготовления технических деталей, требующих высокой жесткости конструкции.

JIS C 6832 — Этот стандарт определяет размеры, требования к пропусканию, механические требования, требования к окружающей среде и методы испытаний многомодовых оптических волокон из кварцевого стекла с использованием кварцевого стекла в качестве сердцевины и оболочки.

Изображение предоставлено:

Mid-Mountain Materials, Inc.


Георешетка из стекловолокна: Геотекстиль для сетки из асфальта

Fiberglass Geo Grid Net Fabric — это своего рода базовый инженерный материал для земляных работ для укрепления дорожного покрытия и дорожного полотна.
Георешетки из стекловолокна с покрытием обладают преимуществом высокой прочности на разрыв в направлениях основы и утка, малым удлинением, отличным температурным диапазоном, а также хорошей стойкостью к старению и щелочам. Вышеуказанные характеристики делают георешетку из стекловолокна идеальным строительным материалом для асфальтового покрытия, бетонного покрытия и дорожного полотна. Кроме того, мы также поставляем георешетки из пластика или ПП.

Мы поставляем в основном следующие типы: композитные геотекстильные полотна с георешеткой; геотекстиль клееный goegrid; основа вязаная георешетка и георешетка ПП.

Георешетка из стекловолокна Композитный геотекстиль, обеспечивающий повышенную грузоподъемность при дорожном строительстве

Композитные георешетки используются для стабилизации грунтов, где требуется как армирование, так и разделение гранулированного основания и очень мелкого грунта. Геокомпозит плотно связывается с укрепляемым грунтом, разделяет различные типы грунта и обеспечивает эффективное фильтрующее действие.

Композитные георешетки изготавливаются путем приклеивания нетканого геотекстиля к геосетке из стекловолокна.Геотекстиль полипропилен / полиэстер, склеивающий или наклеивающий георешетку из стекловолокна. Благодаря высокой прочности на разрыв и отличным характеристикам защиты от разрывов и разрывов, эти новые составные строительные материалы широко используются в водосбережении, строительство дорог, архитектура, строительство метро и тоннелей.

Типичные структуры композитных материалов из стекловолокна:
Для композитных геотекстильных материалов с георешеткой из стекловолокна используется георешетка, имеющая предел прочности на разрыв от 20 до 400 кН.
Размер ячейки: 12,7 x 12,7 мм, 25,4 x 25,4 мм, 50 x 50 мм
Относительное удлинение: <= 4% или 3%.
Геотекстиль:
Нетканый ПЭТ или геотекстиль на основе полипропилена
Вес единицы: от 25 г / м2 до 500 г / м2.


Fiber Grid удобен для строительства, с меньшими затратами, для предотвращения проседания и растрескивания дорожного покрытия, а также для обеспечения устойчивости склонов и предотвращения потери воды и почвы.

Геотекстиль на основе георешетки может предотвратить растрескивание при отражении, повреждение водой, улучшить грузоподъемность, продлить срок службы дорожного покрытия при строительстве и ремонте дорог.

Технические параметры

Технологический стандарт нетканого геотекстильного композитного листа со стекловолоконной георешеткой, технологический стандарт
Спецификация 30 × 30 50 × 50 60 × 60 80 × 80 100 × 100 120 × 120 150 × 150 200 × 200 300 × 300
Свойства георешетки из стекловолокна (GB / T 21825-2008)
Межосевое расстояние сетки (мм) MD 12.7 ± 3,8 25,4 ± 3,8 50,8 ± 3,8
TD 12,7 ± 3,8 25,4 ± 3,8 50,8 ± 3,8
Разрывная нагрузка (кн / м) MD 30 50 60 80 100 120 150 200 300
TD 30 50 60 80 100 120 150 200 300
Относительное удлинение при разрыве (%) MD 4 4 4 4 4 4 4 4 4
TD 4 4 4 4 4 4 4 4 4
Свойства обычного композитного геотекстиля (GB / T17638-1998)
Вес устройства (г / м2) 100 150 200 250 300 350 400 450 500
Разрывная нагрузка (кн / м) 2.5 4,5 6,5 8 9,5 11 12,5 14 16
CBR Mullen прочность на разрыв 0,3 0,6 0,9 1.2 1,5 1,8 2,1 2,4 2,7
Прочность на разрыв 0,08 0,12 0,16 0,2 0,24 0,28 0.33 0,38 0,42
Ширина листа (м) 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес. 1–6 ​​мес.

Трикотажная георешетка на основе стекловолокна

Георешетка из стекловолокна изготавливается из нещелочной стекловолоконной пряжи путем вязания основы.Основовязальная структура может полностью использовать прочность тканевой пряжи и улучшить механические свойства сеток из стекловолокна. Трикотажная сетка из стекловолокна обладает хорошей прочностью на разрыв и разрывом, что позволяет использовать ее для модифицированного асфальта. Ключевой изюминкой является составное исполнение асфальтобетонной смеси. Использование этой георешетки в качестве основного материала дорожного полотна значительно улучшает износостойкость основания и способность к срезанию.

Приложение

(1) Укрепление земляного полотна автомобильных и железных дорог, предотвращение трещин, повышение прочности земляного полотна;

(2) Армирование и стабилизация берега реки, насыпи и бокового откоса;

(3) Укрепление дамбы на мягком грунте для выравнивания напряжений, регулирования седиментации, повышения устойчивости и несущей способности глазного дна;

(4) Армирование поверхности дороги и моста.


По сравнению с традиционными материалами, георешетка из стекловолокна может снизить стоимость строительства, продлить срок службы дороги и предотвратить появление отражающих трещин на дорогах.

Устойчивая к щелочам георешетка из стекловолокна для строительства: Используется для армирования мягких грунтов и корней дорог для железных дорог, аэропортов, водного хозяйства, строительства плотин.


Геосетки / текстиль из полиэфирного стекловолокна с высокой прочностью на растяжение Используется для улучшения цементного и бетонного покрытия дорог.

Технические характеристики георешетки из стекловолокна :

Технические характеристики и рабочие параметры (георешетки обыкновенного типа из стекловолокна)

Свойства \ характеристики ТГС-Б-25-25 ТГС-Б-30-30 ТГС-Б-40-40 ТГС-Б-50-50 ТГС-Б-80-80 ТГС-Б-100-100
Прочность (кН / м) продольный 25 30 40 50 80 100
Поперечный 25 30 40 50 80 100
Удлинение при разрыве% ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
Сетка (мм) 12.5 × 12,5 12,7 × 12,7 25 × 25 25,4 × 25,4 25,7 × 25,7 30 × 30 40 × 40 50 × 50
Ширина (м) 1-6 1-6 1-6 1-6 1-6 1-6

Технические характеристики изделия и рабочие параметры (самоклеящаяся георешетка из стекловолокна)

Свойства \ характеристики EGA50-50
Свой —
EGA60-60
Свой —
ЭГА80-80
Свой —
ЭГА100-100
Свой —
EGA120-120
Свой —
EGA150-150
Свой —
Прочность (кН / м) продольный 50 60 80 100 120 150
Поперечный 50 60 80 100 120 150
Удлинение при разрыве% ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
Сетка (мм) 12.5 × 12,5 12,7 × 12,7 25 × 25 25,4 × 25,4 25,7 × 25,7 30 × 30 40 × 40 50 × 50
Ширина (м) 1-6 1-6 1-6 1-6 1-6 1-6

Также Поставка: Пластиковые сетчатые двухосные георешетки из полипропилена :

Пластиковая двухосная георешетка

применяется в проектах по защите автомобильных дорог, железных дорог и склонов для повышения несущей способности основания дороги и продления срока службы.

Характеристики:

1.Wth высокая прочность на разрыв в продольном и поперечном направлениях.

2. Обеспечьте цепную систему более эффективного распределения усилия по почве.

Заявка:

PP Biaxial Geogrid Fabric используется в качестве армирующей сетки для постоянных несущих оснований на больших площадях.

Технические характеристики

Элемент спецификации ППГ15-15 ППГ20-20 ППГ30-30 ППГ40-40 ППГ45-45
Предел прочности при продольном растяжении ≥ (кН / м) 15 20 30 40 45
Прочность на растяжение ≥ (кН / м) 15 20 30 40 45
Продольное удлинение≤ (%) 15
Поперечное удлинение≤ (%) 13
Продольная прочность при 2% деформации ≥ (кН / м) 5 7 10.5 14 16
Поперечная прочность при 2% деформации ≥ (кН / м) 5 7 10,5 14 16
Продольная прочность при 5% деформации ≥ (кН / м) 7 14 21 28 32
Поперечная прочность при 5% деформации ≥ (кН / м) 7 14 21 28 32
Замечание Длина рулона: 50 м Ширина рулона: 1 ~ 4 м

Номеклатура Vectorply — Vectorply

Определения

Сшитый : Один или несколько слоев однонаправленного армирования, мата или ткани, сшитых вместе полиэфирной нитью.Иногда это ткань называется прошитой, прошитой или трикотажной тканью.

Однонаправленное: однослойное армирование со всем армированием в продольном или поперечном направлении (см. Определение основы и утка). Это усиление может быть вязаным или сплетенным методом термофиксации.

Biaxial : двухслойное армирование с двумя возможными конфигурациями. Первый — двойной уклон с армированием в направлении + 45º и -45º. Вторым и наиболее распространенным является направление 0º и 90º с армированием в направлении основы и утка.

Продольное трехосное: трехслойное армирование со слоем в направлении 0º и двумя другими слоями в направлении + 45º и -45º.

Поперечный трехосный : трехслойное армирование со слоем в направлении 90 ° и двумя другими слоями в направлении + 45 ° и -45 °.

Quadraxial: четырехслойное армирование с одним слоем в каждом из основных направлений: 0º / + 45º / 90º / -45º.

Комбинация : Армирование, к которому мат был добавлен путем вязания или склеивания с термоотверждающейся полиэфирной смолой.Некоторые из наименований на рынке включают: Promat, Biply, Fabmat, Stitchmat и X-Mat.

Двойное смещение : двухосное армирование, слои которого лежат в направлении + 45º и -45º. Vectorply производит эту ткань за один шаг. Другие углы возможны благодаря нашим современным производственным возможностям.

Деформация : это продольное направление любой арматуры, которое иногда называют осью 0º или продольным направлением.

Уток : это направление по ширине любой арматуры, которое иногда называют 90º или поперечным направлением.

Курсы : Число петель пряжи на дюйм в прошитой арматуре, измеренное в продольном направлении. Это значение может варьироваться от 4 до 30 и влияет на драпировку и влажность арматуры.

Пряжа для стежков : Полиэфирная пряжа, используемая для сшивания композитной арматуры. Можно использовать и другие волокна, но наиболее практичным является полиэстер. Эта нить служит для удержания арматуры до ламинирования.

Калибр : количество петель пряжи на дюйм в прошитой арматуре, измеренное в поперечном направлении.Подкрепление Vectorply обычно 5,7,10 и 14 калибра.

Трикотажная строчка : это тип строчки, которая зигзагообразно перемещается вперед и назад на верхней части армирования. Обратите внимание, что низ выглядит как цепной стежок.

Цепной стежок : Это тип строчки, которая проходит по прямой линии по направлению основы армирования.

Китай производитель трубных шлангов, водонепроницаемые материалы, поставщик материалов для мостов

Трубчатый шланг

Видео

Цена FOB: 1 доллар США.5-5 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 2 доллара США.5-5,5 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.35-2,85 / Кусок

Мин. Заказ: 300 шт.

Связаться сейчас

Видео

Цена FOB: 0 долларов США.1-20 / Кусок

Мин. Заказ: 500 шт.

Связаться сейчас

Видео

Цена FOB: 0 долларов США.1-1,5 / Метр

Мин. Заказ: 100 метров

Связаться сейчас

Видео

Цена FOB: 1–1 доллар США.5 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.8-99,6 / Метр

Мин. Заказ: 500 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.15-0,75 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 1 доллар США.8-3,8 / Метр

Мин. Заказ: 200 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.5-2,28 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 5–45 долларов США / Метр

Мин.Заказ: 10 метров

Связаться сейчас

Видео

Цена FOB: 450-550 долларов США / Тонна

Мин.Заказ: 5 тонн

Связаться сейчас

Геосинтетика

Видео

Цена FOB: 0 долларов США.33-3,25 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.15-7,2 / Квадратный метр

Мин. Заказ: 300 квадратных метров

Связаться сейчас

Видео

Цена FOB: 1 доллар США.62-1,95 / Квадратный метр

Мин. Заказ: 5000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.33-3,25 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.49-3,5 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.49-3,5 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.7-1,2 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 1 доллар США.5-2,5 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.8-1,6 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.28-0,91 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.15–2,6 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.33-3,25 / Квадратный метр

Мин. Заказ: 1000 квадратных метров

Связаться сейчас

Материал для строительства моста

Видео

Цена FOB: 28-37 долларов США / Метр

Мин.Заказ: 500 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.01-20 / кг

Мин. Заказ: 10 кг

Связаться сейчас

Видео

Цена FOB: 8 долларов США.88 / Кусок

Мин. Заказ: 300 шт.

Связаться сейчас

Видео

Цена FOB: 0 долларов США.1-3 / Кусок

Мин. Заказ: 2000 шт.

Связаться сейчас

Видео

Цена FOB: 0 долларов США.8-2,8 / Метр

Мин. Заказ: 800 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.8-2,5 / Кусок

Мин. Заказ: 1,000 штук

Связаться сейчас

Видео

Цена FOB: 0 долларов США.98–2,98 / Метр

Мин. Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 70-120 долларов США / Кусок

Мин.Заказ: 200 шт.

Связаться сейчас

Видео

Цена FOB: 1 доллар США.8-12,6 / Метр

Мин. Заказ: 1 метр

Связаться сейчас

Видео

Цена FOB: 6 долларов США.88-8,68 / Метр

Мин. Заказ: 300 метров

Связаться сейчас

Видео

Цена FOB: 2-6 долларов США / Метр

Мин.Заказ: 1000 метров

Связаться сейчас

Видео

Цена FOB: 0 долларов США.5-5 / Метр

Мин. Заказ: 100 метров

Связаться сейчас

Профиль компании

{{util.каждый (imageUrls, function (imageUrl) {}} {{})}} {{если (imageUrls.length> 1) {}} {{}}}

Компания Nanchang Jubo Engineering Materials Co., Ltd. была основана в 2010 году и является ведущим поставщиком строительных материалов для проектов в Средней Азии.

Имея десятилетний опыт работы в этой области, мы фокусируемся на предоставлении высококачественных инженерных материалов и надежных услуг для каждого проекта и каждого клиента, поэтому наша команда включает в себя полный отдел контроля качества и отдел отслеживания отгрузки. Перед отправкой с завода качество продукции строго контролируется. JUBO MATERIALS — управляющая компания Аньхойского …

.

Добавить комментарий

Ваш адрес email не будет опубликован.

[an error occurred while processing the directive]