График набора прочности бетона в зависимости от температуры воздуха: График твердения бетона в зависимости от температуры

Содержание

График твердения бетона в зависимости от температуры

Главная » Статьи » График твердения бетона в зависимости от температуры

От чего зависит и как быстро происходит набор прочности бетона

Изготовление различных конструкций предполагает заливку бетона, главной характеристикой которого является прочность на сжатие. При этом нагружать конкретный элемент нельзя, пока не завершится набор прочности бетона. Данный процесс зависит от ряда факторов, к которым относятся не только внешние условия, но и состав самой смеси.

Для достижения марочного значения, как правило, требуется четыре недели (28 дней). Чтобы будущая конструкция прослужила достаточно долго, необходимо ясно представлять, как осуществляется сам процесс, и сколько времени требуется для его завершения. Процесс включает две стадии. На первой происходит схватывание бетона. На второй он твердеет и набирает прочность.

Стадия схватывания

Схватывание происходит в течение первых суток с момента его приготовления. Сколько времени потребуется для завершения первой стадии напрямую зависит от температуры окружающей среды.

Теплая погода

В летний период, когда температура 20 °C и выше, на схватывание может потребоваться около часа. Процесс начнется приблизительно через два часа после приготовления смеси и завершится, следовательно, через три.

Прохладное время года

При похолодании время начала и завершения стадии сдвигается. Для схватывания требуется больше суток. При нулевой температуре процесс начинается, как правило, только через 6 – 10 часов после приготовления раствора и может длиться до 20 часов после заливки. В жаркую погоду время, наоборот, уменьшается. Иногда для схватывания достаточно 10 минут.

Уменьшение вязкости раствора

На первой стадии приготовленная смесь остается подвижной. В этот период еще можно оказать механическое воздействие, придав изготавливаемой конструкции требуемую форму.

Продлить стадию схватывания позволяет механизм тиксотропии, способствующий уменьшению вязкости смеси при оказании механического воздействия. Именно поэтому перемешиваемый в бетономешалке раствор намного дольше может находиться на первой стадии.

Однако следует учесть, что ряд процессов вызывает необратимые изменения в смеси, что негативно отражается на качестве затвердевшего бетона. Особенно быстро «сваривание» происходит в летний период.

Стадия твердения

После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.

Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.

В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.

Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.

От чего зависит набор прочности?

На процесс набора прочности влияет множество факторов. Однако основными можно считать:

  • температуру;
  • влажность;
  • марку бетона;
  • время.
Температура

Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.

При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.

Потепление способствует ускорению процесса созревания бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.

Зимой может потребоваться подогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.

Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.

График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.

Время

Для определения нормативно-безопасного срока начала работ часто используется следующая таблица. В ней в зависимости от марки бетона и его среднесуточной температуры приведена информация о наборе прочности через определенное количество суток:

Марка бетонаСреднесуточная температура бетона в °CСрок твердения в сутках
123571428
Прочность бетона на сжатие (процент от марочной)
М200–300, замешанный на портландцементе М 400–500-336812152025
05121828355065
+59192738486277
+1012253750587285
+20234050657590100
+303555658090100

Если нормативно-безопасный срок установлен на уровне приблизительно 50%, то безопасным сроком начала работ можно считать 72 – 80% от марочного значения.

В зависимости от времени выдержки искомое значение можно определить по следующей формуле:

прочность на n-ый день = марочная прочность *(lg (n) / lg (28)). Причем n не может быть меньше 3-х дней.

Состав и характеристики цемента

Если сразу после заливки цемент способен набирать прочность благодаря своему тепловыделению, то после замерзания воды процесс неизменно остановится. Именно поэтому при выполнении работ в зимний и осенне-весенний период предпочтительно использовать смеси с противоморозными добавками.

Глиноземистый цемент после укладки способен выделить в семь раз больше тепла, чем обычный портландцемент. Именно поэтому приготовленная на его основе смесь набирает прочность даже при отрицательной температуре.

Марка также оказывает влияние на скорость процесса. Чем ниже марка, тем выше критическая прочность. Таблица наглядно отражает такую зависимость:

Марка бетона (по прочности на сжатие)Критическая прочность (процент от марочной), минимум
для предварительно напряженных конструкций70
М15 – 15050
М200 – 30040
М400 – 50030
Влажность

Пониженная влажность негативно отражается на процессе. При полном отсутствии влаги гидратация цемента становится невозможной, и твердение практически останавливается.

При максимальной влажности и высокой температуре (70 – 90 °C) скорость нарастания прочности значительно повышается. В таком режиме осуществляется пропаривание состава в автоклавах паром высокого давления.

Нагрев до столь высоких температур при минимальной влажности неизбежно приведет к высыханию залитого раствора и снижению скорости набора. Чтобы этого не произошло, следует своевременно производить увлажнение. В таком случае в жаркую погоду прочность будет набрана в минимально возможные сроки.

tehno-beton.ru

Время застывания бетона в зависимости от температуры окружающего воздуха

Процесс твердения бетонного раствора относится к значимым этапам производства строительных работ. От его продолжительности, в конечном итоге, зависит прочность монолитной конструкции. После заливки смеси в опалубку, по графикам или таблицам устанавливается приблизительное время застывания бетона, в зависимости от температуры и влажности окружающего воздуха. Также учитывается проектная марка искусственного камня.

Что влияет на сроки твердения бетонной массы

Температурно-влажностный режим играет огромную роль в процессе схватывания и отверждения бетона. В жаркие дни поверхность монолита смачивают водой, чтобы цементному порошку хватило жидкой составляющей для полноценного завершения химических реакций. В таких условиях схватывание камня происходит гораздо быстрее, чем при низких температурах. Следует принимать во внимание тот факт, что минусовые значения и недостача воды способны даже остановить застывание растворной массы.

Лабораторные исследования показали, что оптимальной температурой окружающего воздуха для начала и продолжения процесса твердения бетона является 20-30 градусов. При этом влажность на его поверхности должна составлять не менее 90 процентов, что достигается путем полива и накрытия глыбы полиэтиленовой пленкой или рубероидом. Описанные условия позволят камню набрать 70-типроцентную прочность в течение первых пяти-семи дней после заливки опалубки. Марочные же показатели достигаются через две-четыре недели.

Конечно же, лабораторные условия перенести в реальность не представляется возможным. На открытых площадках температура и влажность постоянно меняются в зависимости от:

  • времени суток;
  • сезонных изменений;
  • климатических особенностей;
  • наличия атмосферных осадков и т.д.

Фактически, набор бетоном прочности на сжатие происходит намного дольше 28 суток, но последующий процесс твердения продвигается настолько медленно по сравнению с первой семидневкой, что после четырех недель его в большинстве случаев не принимают во внимание. Хотя при неблагоприятных условиях, спровоцированных низкой температурой, сроки застывания увеличивают на несколько дней, а то и недель.

В промышленных условиях заливку бетона допускается выполнять при минусовых температурах. Для предотвращения замерзания воды в растворе и для ускорения отверждения бетонной массы, производится ее принудительный прогрев. Нередко в раствор подмешивают специальные добавки.

Частным застройщикам рекомендуется заливать монолитные конструкции в летний период года, когда среднесуточная температура не опускается ниже 15-20 градусов.

Проведение работ следует планировать заранее. Важно позаботиться о том, чтобы срок застывания бетона закончился раньше наступления холодных ночей. В случае понижения среднесуточной температуры до уровня +5 градусов, находящийся в процессе твердения камень накрывают теплоизолирующими материалами, а при угрозе появления заморозков – над монолитной глыбой устанавливают парник.

Как упоминалось выше, продолжительность застывания бетонной массы увеличивается по мере снижения температуры окружающего воздуха. В идеале, бетон марки М300 набирает стопроцентную прочность на сжатие при +20 градусах через 28 суток, тогда как при среднесуточных показателях температуры в пределах +5 градусов прочность за четыре недели сможет достичь лишь 77 процентов. Рассматривая графики твердения бетонного камня, представляющие собой выгнутые линии, можно с уверенностью сказать, что в последнем случае срок набора проектной прочности увеличится вдвое по сравнению с предыдущим вариантом.

В определенных случаях пригрузка бетонных конструкций разрешается после 50-процентного отверждения монолита. Здесь зависимость прочности от температуры выглядит следующим образом:

  • при +20 градусах должно пройти более 3 суток после заливки опалубки;
  • при +10 градусах – не менее 5 суток;
  • при +5 – 8 дней и более.

В жаркую погоду, когда столбик термометра поднимается выше 30 градусов, для набора 55-процентной прочности может понадобиться всего лишь 48 часов. Но при столь быстром застывании бетона нагружать конструкцию рекомендуется, все же, не раньше чем через 4-5 суток. В таком случае лучше будет перестраховаться, чем переделывать работу.

semidelov.ru

Набор прочности бетона в зависимости от температуры: график

Одним из значимых показателей качества бетона является его прочность. Если заглянуть в государственные стандарты, то в них можно отыскать условия сжатия. Согласно им, прочность может быть равна пределу от М50-800. В качестве одних из наиболее часто используемых выступают марки цемента до М-500. Многие профессиональные строители и частные застройщики учитывают график набора прочности материала. О нём и пойдет речь ниже.

Для вас данная информация тоже может оказаться полезной, ведь из неё вы сможете узнать, через какой период времени после затворения раствора можно начинать дальнейшую работу. Это обусловлено тем, что манипуляции по проведению строительства могут предполагать нагружение конструкций из бетона. Наиболее часто в связке с этим речь идет о фундаментах, которые обязательно должны быть выдержаны в течение 28 дней перед началом возведения стен.

Набор прочности по графику

Набор прочности бетона в зависимости от температуры определяется графиком, который представляет собой временной интервал. В процессе этого раствор обретает эксплуатационные свойства, после чего можно проводить формирование финишного слоя. График набора прочности – это время, которое необходимо бетону для достижения нужного значения прочности. Если поддерживаются нормальные условия, то состав созреет за 28 дней.

В течение 5 дней можно наблюдать наиболее быстрое твердение. По истечении этого времени материал достигнет 70-процентной прочности. Последующие работы следует продолжать лишь через 28 дней, ведь только тогда материал достигнет 100-процентного уровня прочности.

Твердение и набор прочности бетона происходят по-разному для каждого конкретного случая. Для того чтобы определить сроки, проводятся испытания образцов. В теплое время в монолитном домостроении для обретения составом оптимальных свойств осуществляются некоторые операции. Например, материал выдерживается в опалубке, его оставляют дозревать и после удаления ограждений. Набор прочности бетона в зависимости от температуры будет происходить за разный период времени. Это объясняется еще и тем, что мероприятия могут проводиться в холодное время года. В этом случае для достижения марочной прочности необходимо обеспечить обогревание материала и гидроизоляцию бетона. Это обусловлено тем, что снижение температуры замедляет процесс полимеризации.

Рекомендации по ускорению процесса

Для того чтобы ускорить набор прочности и снизить время выдержки материала, необходимо использовать пескобетон, в котором низкое соотношение воды и цемента. Если это соотношение выглядит как 1 к 4, то сроки будут сжаты в два раза. Для того чтобы добиться такого результата, состав следует дополнить пластификаторами. Сократить срок созревания материала можно и искусственным способом, увеличив температуру.

Зависимость уровня набора прочности от показателей температуры материала

Набор прочности бетона в зависимости от температуры материала будет происходить по-разному. В качестве примера можно рассмотреть марки бетона в пределах от М-200 до М-300, которые были затворены на портландцементе с маркировкой в пределах от М-400 до М-500. За сутки материал достигнет трехпроцентной прочности на сжатие, если его температура будет равна -3 °C. При условиях, что смесь будет иметь температуру в +30 °C, прочность за сутки составит 35%.

За трое суток прочность достигнет 8%, если температура материала будет равна -3 °C. 60% прочности удастся добиться при +30 °C температуры за этот же период времени. Если температура материала будет равна +5 °C в течение 28 дней, то прочность материала составит 77%. Стопроцентной прочности удастся добиться за 14 дней, если температура материала будет равна +30 °C.

Контроль за процессом

Набор прочности бетона в зависимости от температуры был освещен выше. Однако важно следить за процессом в течение первой недели. Мероприятия, направленные на обеспечение условий для выдержки, выражены в:

  • электрообогреве;
  • увлажнении;
  • укрывании влагозащитными и теплоизолирующими материалами;
  • обогреве тепловыми пушками.

Нужно будет уделить внимание смачиванию поверхности. Через неделю после выработки состава конструкция может быть нагружена, это верно, если температура воздуха будет равна 25-30 °C.

Дополнительно о стадиях набора прочности

Схватывание залитого бетона происходит за первые сутки после его приготовления. Частным строителем обязательно необходимо знать, какова зависимость набора прочности бетона от температуры воздуха. Например, в теплую погоду, когда температура за окном находится в пределах 20 °C, схватывание произойдет в течение часа. Процесс начнется через пару часов, отсчет необходимо вести после соединения составляющих, а завершится через 3.

Прохладное время

При похолодании начало и завершение схватывания сдвигаются. Для схватывания будет достаточно больше суток. Если температура находится на нулевой отметке, то процесс начнется минимум через 6 часов после затворения. При таких условиях он длится до 20 часов, отсчет времени начинается после того, как раствор окажется в опалубке. В жаркий день время уменьшается. Это указывает на то, что иногда для схватывания достаточно всего лишь 10 минут.

Снижение вязкости раствора

Вами обязательно должен быть изучен процесс набора прочности бетона в зависимости от температуры. Важно знать и об уменьшении вязкости. На первой стадии смесь будет сохранять подвижность. В течение этого времени на материал может быть оказано механическое воздействие, а конструкции при этом все еще можно придать нужную форму. Продлить стадию схватывания можно тиксотропией, которая будет способствовать снижению вязкости при оказании механического воздействия.

Отличным примером может стать раствор, перемешиваемый в бетономешалке. В течение этого периода раствор дольше будет оставаться на первой стадии. Но необходимо учитывать, что многие процессы вызывают необратимые изменения в растворе, что может негативно отразиться на качестве затвердевшего бетона. Например, довольно быстро происходит «сваривание» в летний период.

Стадия твердения

Набор прочности бетона, график по времени которого описан в статье, начинается после схватывания. Этот процесс все еще не закончится и через несколько лет. Но уже через 4 недели можно определить марку бетона. Прочность материала будет набираться с разной скоростью. Максимально интенсивно этот процесс будет протекать в первые 7 дней. В первые трое суток при нормальных условиях прочность достигнет 30% от марочного значения. В течение первых двух недель раствор достигнет 70% прочности от указанного значения. Через 3 месяца этот параметр увеличится на 20%, после процесс замедлится, но не прекратится. Через 3 года показатель может повыситься в 2 раза.

Дополнительно о влиянии температуры внешней среды на твердение материала

Набор прочности бетона, особенности, график которого описаны в статье, зависит от температуры. Чем холоднее, тем медленнее будет повышаться прочность. При отрицательных температурах процесс и вовсе останавливается, так как вода замерзает, а ведь она обеспечивает гидратацию цемента. С повышением температуры набор продолжится. Но при снижении этот процесс снова остановится. Если в составе присутствуют модификаторы, время твердения уменьшается, тогда как температура, при которой процесс останавливается, снижается.

В продаже можно найти быстродействующие составы, которые имеют способность придавать бетону марочную прочность через 2 недели. Так как потепление будет способствовать сокращению процесса созревания материала, то можно утверждать, что при 40 °C марочное значение будет достигнуто через 7 дней. Поэтому заливка бетона должна осуществляться в жаркую погоду. Зимой для обеспечения нормальных условий потребуется подогрев материала, а своими силами осуществить такие работы будет проблематично, ведь потребуется специальное оборудование. Кроме того, нагревать раствор до 90 °C и выше недопустимо.

Заключение

График набора прочности бетона, условия затвердевания вами обязательно должны быть изучены перед началом работ. Таким образом, согласно графику, вы сможете определить, через какое количество времени может быть осуществлена распалубка монолитных конструкций. Демонтаж опалубки может быть осуществлён только лишь после того, как прочность материала превысит 50% от марочного значения.

При этом необходимо учитывать, что если столбик опустился ниже +10 °C, то это значение не будет достигнуто и через 2 недели после заливки. При таких условиях необходимо задуматься о подогреве раствора. Нормативно безопасный срок устанавливается на 50-процентной прочности. Тогда как приступать к дальнейшим работам можно лишь после того, как марочное значение раствора достигнет 80%.

fb.ru

Технология набора прочности бетона в процессе выполнения строительных работ

Комментариев:

Рейтинг: 57

Оглавление: [скрыть]

  • Как происходит набор прочности бетона
    • Что представляет собой процесс твердения бетона
    • Как осуществляют испытания
  • Способы заливки бетона при повышенных температурах

Главное свойство бетонной смеси определяет набор прочности бетона, отражающий качественное состояние монолитной конструкции. Поскольку она находится во взаимосвязи со структурой данного строительного материала, то набор прочности можно поделить на два шага, связанных со схватыванием и затвердеванием бетона. Для последнего характерно наличие физико-химических свойств, возникающих при взаимодействии цемента с водой. Кода идет формирование бетона, то гидратация цемента вызывает образование других соединений.

Схема приготовления бетона.

Как происходит набор прочности бетона

Схватывание состава может произойти в первые дни с того момента, как была изготовлена консистенция из цемента и воды. Время ее схватывания находится в прямой зависимости от температуры воздуха. Если она составляет 20°С, то может понадобиться около одного часа. Поскольку процесс застывания бетона не мгновенный, а достаточно долговременный, то для набора прочности материала может потребоваться несколько месяцев.

Зачастую схватывание цемента происходит приблизительно спустя около двух часов с того момента, как был затворен цементный раствор, а окончательный процесс может начаться приблизительно спустя три часа. Поэтому на данной стадии может помочь ускоритель схватывания бетона.

Изображение 1. График набора прочности бетона.

Начало данной стадии может быть отодвинуто в результате снижения температурного уровня, а ее продолжительность существенно возрастает. Если уровень температуры воздуха составляет 0°С, то начало этапа схватывания может произойти спустя от 6 до 10 часов после того, как произошло затворение смеси. При этом данный процесс способен растянуться на 15-20 часов. Если температуры завышены, то период схватывания бетона может быть сокращен, что составит около 10-20 мин.

Схватывание бетона предполагает то, что данный состав должен оставаться подвижным весь период, что позволяет оказывать влияние на смесь. Механизм тиксотропии, связанный с уменьшением вязкости субстанции в условиях механического воздействия на нее, то есть периодического смешивания бетона, который схватился не полностью, твердение и процесс высыхания бетона не начинаются. Данное свойство учитывают в процессе доставки раствора на бетоносмесителе, поскольку состав при этом должен перемешиваться в миксере, что позволяет сохранять все его важные свойства.

Вращение миксера машины препятствует высыханию цементного раствора, не позволяя твердеть смеси достаточно долго. Возможно и развитие необратимых последствий, которые называют «свариванием» бетона, а это снижает его полезные свойства. Данный процесс особенно быстро может происходить летом.

Вернуться к оглавлению

Ниже перечислены особенности, характерные для бетона:

Относительная прочность бетона в разные сроки твердения при различных температурах.

  1. Чем ниже уровень температуры внешней среды, тем медленней твердеет состав и нарастает его прочность.
  2. Если температура не превышает нулевую отметку по Цельсию, то вода в составе начинает замерзать, а твердение смеси уже не происходит. Повышение уровня температуры влечет за собой возобновление твердения.
  3. Влажность среды позволяет всей строительной массе приобретать более высокую прочность, чем в процессе затвердевания бетона вне помещения.
  4. Процесс схватывания бетона может стать замедленным и практически непрерывным при отсутствии влаги, так как именно она необходима в первую очередь при гидратации цемента.
  5. Если температура повышается до 80-90°С, то происходит значительное увеличение скорости процесса нарастания прочности в условиях максимальной влажности.

Пар высокого давления позволяет пропаривать смесь автоклавным способом, что осуществляется только при создании соответствующих условий.

Набор прочности бетона — это непостоянная величина. Если твердение бетона происходит в нормальных условиях, то набор прочности начинается через одну-две недели, что составляет от 60 до 70% от того уровня прочности, который набирается за 28 дней. Далее он продолжается, но очень медленно. С момента, когда была произведена заливка раствора, затвердевание бетона является максимальным.

При правильном течении процесса гидратации должны соблюдаться определенные условия. Уровень влажности должен составлять от 90 до 100%, а температуры — от 18 до 20°С. При нарушении данных условий может произойти изменение времени застывания состава.

Переход воды при отрицательных температурах в твердое состояние вызывает в результате промерзания бетона давление кристаллов льда на массу частиц цемента, что может снижать качество состава.

Таблица соответствия марок и классов бетона.

Смесь начинает затвердевать и при низком уровне влажности. Это вызвано прекращением поступления влаги, что требуется для гидратации цемента.

Если для конструкции характерны идеальные условия, то гидратация возобновляется. Когда подходит к концу уже вторая неделя, то смесь уже имеет прочность, составляющую 80% от основной первоначальной прочности. После этого ее набор замедляется.

На практике по истечении 28 дней завершение набора прочности не происходит, поскольку длительность данного процесса может составлять несколько лет. Когда смесь достигает трехлетнего возраста, то его прочность соответствует 200-250% от величины, характерной для возраста бетона, равного 28 суткам.

Никто не может дать однозначного ответа на вопрос о длительности процессов твердения смеси. Все зависит от той нагрузки, которая запланирована для той или иной конструкции.

Вернуться к оглавлению

Например, если планируется строительство забора из металлического сайдинга либо досок, то для его возведения будет достаточно устройства бетонного ленточного фундамента. Если требуется начать строительство дома на бетонном фундаменте, то без помощи специалиста высокой квалификации здесь не обойтись. Процесс набора прочности в зависимости от температуры показан на рисунке (ИЗОБРАЖЕНИЕ 1).

Изображение 2. Таблица набора прочности бетона.

Марочная прочность, которая набрана за 28 суток, на рисунке взята за 100%. Оценка класса бетона производится спустя 28 суток. Осуществление процесса испытаний возможно с использованием образцов, имеющих стандартную кубическую форму. Сторона куба при этом может составлять 15 см. Температура, позволяющая выдержать образец, должна достигать 20°С, а относительная влажность колебаться в пределах 95%. Хранить смесь в виде испытуемых образцов можно в камере нормального хранения в нормальных условиях.

Если уровень температуры твердения отклоняется от нормального в наибольшую сторону, то созревание бетона будет осуществляться в условиях повышенной температуры. Если происходит ее отклонение к наименьшей стороне, то твердение бетона может предполагать сниженную температуру.

В таблице (ИЗОБРАЖЕНИЕ 2) отражена информация, связанная с набором прочности бетонного состава, имеющего марку от М200 до М300, изготавливаемого на основе портландцемента, маркой М-400 или М-500, за первые прошедшие 28 суток, что определяется среднесуточной температурой.

Вернуться к оглавлению

Среди многих факторов, оказывающих влияние на набор прочности бетонного раствора, в большей степени можно отметить следующие:

  1. Соотношение воды с цементом.
  2. Уровень уплотнения смеси.
  3. Тип цемента, необходимый при производстве раствора.
  4. Определенная температура, которая характерна в процессе твердения бетона.

Таблица критической прочности для разных марок бетона.

В подавляющем большинстве случаев, связанных с осуществлением работ с использованием раствора бетона, влияние атмосферных условий может быть слишком далеким от идеальных, поэтому необходимо принятие дополнительных мер. Когда заливка раствора осуществляется в холодный период, то отрицательные температуры требуют обеспечения прогрева смеси.

С этой целью можно применять ряд различных способов. Среди них можно выделить процесс прогрева бетона с применением электрических проводов. При этом заливку раствора делают, используя теплую опалубку. Для предотвращения процесса кристаллизации воды зимой в бетон производится ввод соответствующих антиморозных присадок.

В зимних условиях иногда может быть использован способ, который предполагает гидратацию цемента. С этой целью в бетон добавляют противоморозные вещества в небольших количествах. Температура при заливке смеси должна составлять не менее -15°С. Данные условия связаны с быстрым замерзанием воды и прекращением процесса гидратации, возобновление которого происходит только в весенний период. Применение данного метода способно приводить к процессу снижения качества бетонной конструкции.

Другое экстремальное условие связано с повышенным уровнем температуры окружающего воздуха. Данный случай позволяет увлажнять застывающий раствор. При этом после поливания раствора водой бетон должен быть укрыт специальной пленкой и слоем состава, который имеет битумную основу. Созревание бетона требует осуществления контроля над изменением объема смеси. Превышение в процентах не должно составлять 1% от первоначального уровня показателя.

Отсутствие усадки при этом является идеальным моментом, хотя на практике это не всегда становится возможным. При изменении объемов, которое имеет практическое значение, возможно применение специальных мер, далеко не всегда являющихся эффективными. Если времени на процесс высыхания бетона недостаточно, то на заливке могут появиться трещины, которые способны вызвать понижение прочности всей строительной конструкции.

tolkobeton.ru

Сколько времени фундамент набирает прочность.

От чего зависит и как быстро происходит набор прочности бетона За какое время бетон набирает 70 прочности

Показатель прочности — основная характеристика бетона как конструкционного материала. Одним из его свойств является набор прочности бетона со временем. Только после полного затвердевания можно сделать оценку качества, поскольку показатель достигает максимальных значений.

После укладки в смеси начинают происходить физико-химические процессы по превращению его в прочную основу для строительной конструкции. Как только под их влиянием вода и цемент вступают во взаимодействие, раствор постепенно теряет свою подвижность и изменяет свойства. Формирование новой структуры происходит в течение определенного времени. Вызревание бетона предполагает прохождение раствором двух стадий: начальной — схватывания, и завершающей — затвердевания. Их прохождение дает возможность получить прочностные свойства соответствующие бетону определенного класса и марки.

Во время транспортировки в автобетоносмесителе смесь остается подвижной благодаря постоянному перемешиванию и тиксотропным ее свойствам. Прекращение механического воздействия на раствор после заливки увеличивает его вязкость, и он начинает схватываться. Все выявленные дефекты нужно устранять в начале первой стадии вызревания, она начинается сразу после заливки бетонной смеси и длится недолго.

Время схватывания зависит от температуры воздуха. Постоянная температура +20°С считается идеальным условием для первой стадии застывания раствора, позволяющим ему схватиться за 3 часа. При изменении этого условия длительность схватывания может уменьшиться или увеличиться. Дольше всего эта стадия длится при температурных значениях окружающего воздуха близких к 0 градусов.

Стадия твердения

После окончательного схватывания раствора начинается стадия твердения. На начальном этапе заполнитель, скрепленный кристаллизованными частицами цемента, не обеспечивает требуемую прочность. Но с началом реакции гидратации, твердение становится наиболее динамичным. Бетонная основа за 7 суток становится намного прочнее. За этот небольшой отрезок времени бетон набирает 70 процентов прочности. После происходит замедление этого процесса и еще 25% твердости набираются на протяжении трех недель. Полное затвердевание происходит через несколько лет.

Сколько бетон набирает прочность?

Если марка раствора определяется через 28 дней после заливки, то это и есть ответ на интересующий многих вопрос, за сколько бетон набирает твердость. Но не стоит забывать о некоторых особенностях набора прочности бетона в зависимости от температуры:

  • При низких температурах воздуха значения прочности растут медленнее;
  • При нулевой отметке вовсе не твердеет, поскольку гидратация цемента из-за замерзшей воды становится невозможной, потепление активизирует набор твердости;
  • Влажная среда помогает бетонному основанию становиться прочнее;
  • При пониженной влажности набор замедляется и даже может прекратиться, из-за нехватки воды, которая нужна для гидратации вяжущего.

Зависимость времени набора прочности от температуры

По приведенным в таблице данным видно, что временной показатель затвердевания бетонной основы зависит от марки и температурных условий.

Нужно иметь в виду, что скорость затвердевания раствора – величина непостоянная. На графике хорошо видно, что набранная скорость в первую пятидневку затем начинает постепенно уменьшаться. Временной интервал, в котором происходит ускоренное твердение раствора, принято называть периодом выдерживания. В это время важно обеспечить залитому раствору необходимые температурные и влажностные условия.

Хотя график набора прочности бетона составлен на месяц, данный процесс выходит за рамки этого временного периода (СП 63.13330.2012). Для окончательного затвердевания конструкции могут потребоваться годы.

От чего зависит набор прочности?

Если созданы благоприятные условия, то бетонное основание затвердевает за 28 дней. Но под влиянием некоторых факторов время набора прочности может увеличиваться или наоборот сокращаться.

Срок затвердевания бетонного камня зависит от:

  • Постоянства температурных показателей во время вызревания бетона;
  • Уровня влажности;
  • Возможных атмосферных осадков и их интенсивность;
  • Марки цемента;
  • Времени выполнения заливки.

Температура

Если говорить о влиянии температуры окружающей среды на набор прочности бетона, то здесь действует следующее правило: чем холоднее, тем больше времени займет затвердевание бетонного основания. При отрицательной температуре процесс останавливается, из-за чего время окончательного затвердевания увеличивается. Поэтому на севере, где вызревание бетонного камня проходит в условиях низких температур, процесс может длиться годами.

Такой большой срок обусловлен тем, что вода, необходимая для реакции гидратации не может испаряться, поскольку постоянно замерзает. Но при наступлении тепла и повышении температуры воздуха до положительных значений, процесс затвердевания бетонной конструкции возобновляется.

Время

При определении сроков проведения работ по бетонированию основания строительной конструкции пользуются таблицей набора твердости. В ней приведены прочностные показатели, которых достигает бетонный камень через определенный отрезок времени после заливки при разных температурных значениях.

Влажность

Понижение влажности окружающего воздуха в месте бетонирования отрицательно сказывается на процессе твердения бетонного камня. В сухом воздухе испарение воды из раствора происходит намного быстрее, поэтому скорость набора необходимой прочности бетона достаточно высокая. Но ускоренная гидратация цемента недостаточно скрепляет компоненты, и бетонная основа получается непрочной.

Оптимальный показатель влажности 66-70%.

Летом время застывания заливки зависит от влажности основы. При максимальной влажности повышается скорость нарастания твердости.

Цемент и добавки

Использование при замесе раствора портландцемента разных марок приводит к изменению времени его твердения. Поскольку, чем выше марка цемента, тем меньше дней требуется бетону, чтобы набрать марочную прочность. Существенное влияние на скорость застывания смеси оказывает ее состав и характеристики исходных материалов.

Зимой в раствор добавляют противоморозные смеси. Поскольку сразу после заливки он сможет немного затвердеть благодаря тепловыделению, а вот после замерзания воды процесс прекращается.

Летом наоборот лучше замедлить испарение влаги, чтобы защитить конструкцию от преждевременного пересыхания. Это несложно сделать с помощью специальных добавок, которые также улучшат прочностные показатели бетона.

Внимание! Если в составе будут пористые материалы, то испарение влаги будет происходить медленнее.

Для быстрого нарастания твердости бетона и получения качественной конструкции нужно обеспечить надлежащий уход. Причем начинать ухаживать следует сразу после заливки, и продолжать до момента снятия опалубки. Полная нагрузка конструкции возможна только после получения бетоном расчетной прочности.

Для твердения бетона характерны следующие особенности:

  • чем ниже температура окружающего воздуха, тем медленнее происходит твердение и нарастает прочность;
  • при температуре ниже 0°С вода, необходимая для гидратации цемента, замерзает и твердение прекращается. При последующем повышении температуры твердение и набор прочности возобновляются;
  • при прочих равных условиях во влажной среде к определенному сроку бетон приобретает прочность выше, чем при твердении на воздухе;
  • в сухих условиях дальнейшее твердение замедляется и практически прекращается, из-за отсутствия влаги, необходимой для гидратации цемента;
  • при повышении температуры до 70-90° С и максимальной влажности скорость нарастания прочности значительно увеличивается. Именно такие условия создают при пропаривании бетона паром высокого давления в автоклавах.

Заметим, что скорость набора прочности бетона – величина непостоянная. Твердение имеет наибольшую интенсивность в первые 7 суток с момента заливки бетонной смеси. При нормальных условиях твердения через 7-14 дней бетон набирает 60-70% от своей 28-дневной прочности. В дальнейшем набор прочности не прекращается, но происходит гораздо медленнее, а к трехлетнему возрасту прочность бетона может достигать 200-250% от величины, определенной в возрасте 28 суток.

От чего зависит набор прочности и твердение

На набор прочности бетона влияют множество факторов, среди них можно выделить следующие:

  • тип цемента, используемого при производстве бетонной смеси;
  • температура, при которой происходит твердение бетона;
  • водоцеметное отношение;
  • степень уплотнения бетонной смеси.

Влияние каждого из вышеперечисленных факторов на твердение и набор прочности приведено ниже в виде таблицы и графиков.

Зависимость от типа цемента и температуры твердения:

Ниже приведены данные по набору тяжелым бетоном относительной прочности в зависимости от вышеуказанных двух параметров (типа цемента и температуры твердения).

Время твердения,
суток

Тип цемента

Относительная
прочность бетона при различных температурах твердения

20 о С

10 о С

5 о С

0,45

0,42

0,26

0,16

0,37

0,34

0,21

0,12

0,23

0,19

0,11

0,06

0,58

0,58

0,37

0,22

0,52

0,32

0,19

0,38

0,34

0,21

0,12

0,65

0,66

0,43

0,26

0,38

0,23

0,47

0,45

0,28

0,17

0,78

0,82

0,54

0,33

0,75

0,78

0,51

0,31

0,67

0,68

0,44

0,27

0,87

0,92

0,61

0,38

0,85

0,37

0,81

0,85

0,56

0,34

0,93

По присвоенной марке бетона можно понять, на какую наибольшую нагрузку в кгс/см 2 рассчитано то или иное изделие. Конечно, все железобетонные изделия выпускают с производства уже с отпускной прочностью, которая в летний период должна быть не менее 70% от марочной, а зимой — не менее 90%. Поэтому строительные организации могут сразу применять изделие в эксплуатацию.

Но потребителям, которые покупают готовую бетонную смесь для заливки фундамента или хотят самостоятельно ее изготовить, будет интересно узнать, за сколько дней набирает прочность бетон и как этого добиться быстро?

28 дней для марочного контроля

Для марочного контроля технологи применяют период в 28 дней. Первую неделю, при теплой погоде, бетон интенсивно набирает свою прочность, около 70 процентов от фактической. Это происходит за счет взаимодействия цементных зерен и воды, в результате чего образуются гидросиликаты калия. Процесс может затянуться не на один год. Например, у некоторых железобетонных изделий, к которым предъявлялась марка бетона М 200 , через несколько лет прочность достигала бетона марки 400 .

Когда снять опалубку?

Если вы самостоятельно заливаете фундамент, то рекомендуется снимать опалубку фундамента через трое суток, но нагружать бетонную конструкцию лучше через неделю. При зимних условиях рост прочности значительно уменьшается. Если конструкцию не накрыть, то бетон может замерзнуть и вообще не набрать прочность. Для летнего периода также требуется особый уход, то есть постоянное увлажнение и укрытие от прямых солнечных лучей, чтобы не вызвать пересыхание бетонной поверхности.


Тепловлажная обработка ускоряет набор прочности бетона

Через сколько дней наберет прочность бетон, если он подвергается тепловлажностной обработке? Через несколько часов. Если в пропарочной камере температура 80-90 градусов, то конструкция набирает прочность до 60-70 процентов от марочной уже через 12-14 часов. Но в таких условиях бетон быстро теряет воду, и при этом начинает усыхать. Поэтому самый лучший бетон считается тот, что набирал прочность в естественных условиях.

Для скорейшего набора прочности можно использовать специальные добавки для бетона , которые применяют в процессе приготовления смеси. Дозирование производится от количества цемента. С использованием добавок бетон может набрать марочную прочность за две недели. Опять же, если твердение происходит в теплое время года. Для зимы применимы противоморозные добавки , которые поддерживают в бетоне положительную температуру на период схватывания.

При самостоятельной заливке ленточного фундамента можно приблизительно сориентироваться, за сколько дней бетон наберет прочность — за месяц. Поэтому постарайтесь выдержать этот интервал, чтобы в дальнейшем при нагрузке конструкции предотвратить неприятные последствия.

Во время строительства дома приходится пройти этап сооружения железобетонных конструкций. Узнаем все физико-химические процессы, происходящие в бетоне и можно ли на них повлиять.

После завершения монолитных работ наступает достаточно продолжительный этап выдержки и набора железобетонными конструкциями прочности. Мы расскажем, в каком уходе нуждается бетон во время твердения, как его ускорить и какие физико-химические явления сопровождают этот процесс.

Процесс твердения бетона


Химия процесса твердения

Сооружение бетонных конструкций, полностью отвечающих расчётным характеристикам — настоящее искусство, которое невозможно постичь без понимания сложной и непрерывной последовательности преобразований, происходящих в структуре материала. Прообразы строительных вяжущих, отдаленно напоминающих современный цемент, появились ещё во 3–2 тысячелетии до н.э.

Однако состав и соотношение компонентов таких смесей подбирались исключительно экспериментальным путём вплоть до конца XVIII века, когда был запатентован так называемый «романцемент». Это стало первой вехой в научном подходе к развитию строительного бетона.

Химическая природа твердения современного цемента весьма сложна, она включает длинную цепочку перетекающих друг в друга процессов, в ходе которых формируются сначала простейшие химические, а затем всё более прочные физические связи, приводящие к образованию монолитного камнеподобного материала.

Подробно рассматривать эти процессы для человека, неискушённого в химии как науке, нет никакого смысла, гораздо полезнее оценка внешних признаков таких явлений и их практического смысла.

В современном строительстве используется преимущественно портландская цементная смесь, состоящая из обожжённой глины, гипса и известняка, а с точки зрения химии — из оксидов кальция, кремния, алюминия и железа. Первичное сырье проходит термическую обработку и тонкое измельчение, после чего компоненты смешиваются в точно определённой пропорции.

Главная цель обработки в процессе производства — разрушить природные химические и физические связи веществ, которые впоследствии восстанавливаются в присутствии воды. Цемент, в отличие от необработанной глины и извести, твердеет вследствие не высыхания, а гидратации, поэтому его намокание после окончательного отверждения не приводит к размягчению и повышению вязкости.


В отличие от атмосферных вяжущих, быстро отвердевающих на воздухе, цемент твердеет практически весь срок эксплуатации бетонных конструкций. Связано это с тем, что в толще застывшего изделия остаются вещества, не успевшие вступить в реакцию с водой.

В действительности при производстве бетонной смеси воду в нее добавляют в количестве, заведомо недостаточном для реагирования всех частиц минерального вяжущего. Связано это с тем, что повышенное содержание воды в бетоне приводит к его расслоению, значительной усадке при твердении и появлении внутренних напряжений.

Тем не менее, остатки минеральных веществ продолжают реагировать, ведь в толще своей бетон имеет ненулевую влажность. Из-за этого его твердение происходит не мгновенно, а в течение продолжительного времени. Из всего срока твердения можно выделить наиболее интенсивный период, который для бетона на портландцементе составляет 28–30 дней.

Если в течение этого времени бетонное изделие находится в соответствующих условиях, оно принимает 100% расчётной прочности. При этом всего за 6–8 дней твердения прочность бетона достигает 60–70% от марочной, а треть расчётной прочности изделие приобретает уже на 2–3 сутки.

Сезонная специфика

Твердение смесей на цементном вяжущем сопровождается двумя процессами — незначительным увеличением объёма и выделением тепла. Из-за этого протекание реакций отверждения может существенно отличаться в зависимости от внешних условий.

Сначала нужно разобраться с увеличением объёма. Этот процесс имеет определённую практическую пользу: способствует более лёгкому отделению опалубки и предварительно растягивает арматуру, увеличивая качество сцепления и позволяя стали воспринимать растягивающую нагрузку практически сразу после её возникновения, минуя стадию упругой деформации.

Негативные последствия от расширения возникают в ситуациях, когда бетон стеснён формой, например при заливке бетонных стяжек, шпонок в сборно-монолитных конструкциях и производстве изделий в жёсткой несъёмной опалубке. В подобных случаях обязательно требуется устройство сжимаемой оболочки, компенсирующей линейное расширение.

Выделение тепла может иметь как положительный, так и отрицательный эффект. Для начала нужно понимать, что нагрев твердеющей бетонной массы наиболее ярко выражен в первые 50 часов после приготовления смеси. Интенсивность нагрева возрастает соразмерно габаритам изделия, ведь из толщи бетона сложнее отводить тепло. Также нужно учесть, что бетон с высоким содержанием цемента будет нагреваться сильнее низкомарочного.

При низких температурах воздуха способность бетона нагреваться в процессе твердения позволяет относительно легко поддерживать нормальный температурный режим. При том, что в обычных условиях минимальная температурная отметка для проведения бетонных работ составляет +5 °С, заливать изделия в несъёмную опалубку из пенополистирола можно даже при морозе до -3 °С: собственное выделение тепла позволит поддерживать необходимую температуру.

Даже обычные бетонные конструкции можно защищать утепляющими материалами для поддержания нужного температурного режима или обустраивать тепляки, в которых просто сохраняется плюсовая температура. Важно отметить, что после набора бетоном 50–60% прочности мороз не оказывает разрушительного воздействия по той причине, что большинство воды уже успело вступить в реакцию. Однако скорость твердения при этом падает практически до нуля, что нужно учитывать при определении сроков выдержки.

В жаркую погоду естественный нагрев бетонной смеси оказывает негативное влияние. Вода с поверхности испаряется слишком быстро, к тому же нагрев провоцирует линейное расширение, сопровождающееся раскрытием трещин, что в процессе твердения бетона недопустимо.

Поэтому массивные изделия, находящиеся под открытым солнцем, нужно постоянно увлажнять и охлаждать проточной водой хотя бы в первые 7–10 суток после заливки. Остаток срока выдержки бетон может оставаться под укрытием из полиэтиленовой плёнки.

Ускорение схватывания и набора прочности

В зависимости от марки, бетону достаточно 20–30 часов чтобы окончательно принять форму, после чего его можно обильно поливать водой, чтобы сделать процесс набора прочности более интенсивным.

Высокая температура также способствует ускоренному твердению, но только при условии, что нагрев будет однородным по всей толщине отливаемого изделия. Так, на заводах ЖБИ твердение ускоряют, обдавая изделие паром при температуре 70–80 °С, но нужно помнить, что нагрев свыше 90 °С для твердеющего бетона губителен.

Обеспечить максимальную скорость набора прочности можно правильным водоцементным отношением приготовленной смеси, установленным ГОСТ 30515 2013. Также ускорить процесс можно внесением различных добавок: хлорида кальция, сульфата и хлорида натрия, углекислого натрия (соды).

Но нужно помнить, что применение ускорителей схватывания ограничено их предельным содержанием, а также типом бетонной конструкции, маркой бетона и арматуры, типом используемого цемента. Больше ясности в этот вопрос может внести ГОСТ 30459–96.

В заключение следует отметить, что в гражданском строительстве необходимость ускорить твердение бетона возникает крайне редко. Бетон приобретает большую часть марочной прочности достаточно быстро, поэтому в случае заливки перекрытий или армированных поясов продолжать строительные операции можно уже спустя 7–10 дней после выполнения монолитных работ.

Если же речь идёт о фундаменте, то ускорять твердение не имеет практически никакого смысла: основание здания должно пройти усадку в течение года чтобы опорный слой грунта успел стабилизироваться и возможный перекос мог быть устранён корректирующим слоем или в процессе возведения коробки. опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Уход за бетоном

Стоп-халтура! Очень и очень многие дачные строители думают, что следующая важная операция после окончания укладки бетона в опалубку — это распалубка и наслаждение результатами своего труда. На самом деле это не так. После окончания укладки бетона в опалубку начинается следующий серьезный строительный технологический процесс — уход за бетоном. С помощью создания оптимальных условий для гидратации в процессе ухода за бетоном достигается планируемая марочная прочность бетонного камня. Отсутствие этапа ухода за бетоном может привести к деформациям, возникновению трещин и уменьшению скорости набора прочности бетоном.
Уход за бетоном — это комплекс мероприятий по созданию оптимальных условий для выдерживания бетона до набора установленной марочной прочности. Основные цели ухода за бетоном:

  • Минимизировать пластическую усадку бетонной смеси;
  • Обеспечить достаточную прочность и долговечность бетона;
  • Предохранить бетон от перепадов температур;
  • Предохранить бетон от преждевременного высыхания;
  • Предохранить бетон от механического или химического повреждения.

Уход за свежеуложенным бетоном начинается сразу же после окончания укладки бетонной смеси и продолжается до достижения 70 % проектной прочности [пункт 2.66 СНиП 3.03.01-87] или иного обоснованного срока распалубки .
По окончании бетонирования необходимо осмотреть опалубку на предмет сохранения заданных геометрических размеров, течей и поломок. Все выявленные дефекты следует устранить до начала схватывания бетона (1-2 часа от укладки бетонной смеси). Твердеющий бетон необходимо предохранять от ударов, сотрясений и любых других механических воздействий.
В начальный период ухода за бетоном, сразу же после окончания его укладки во избежание размыва и порчи его поверхности, бетон следует укрыть полиэтиленовой пленкой, брезентом или мешковиной.
Особенно тщательно следует сохранять температурный и влажностный режим твердения бетона. Нормальная влажность для твердения это 90-100% в условии избытка воды. Как показано выше в таблице № 52 набор прочности в условиях влажности существенно увеличивает итоговую прочность цементного камня.

При преждевременном обезвоживании (которое также может произойти при утечке цементного молока из негидроизолированной опалубки) бетон получает недостаточную прочность поверхностей, склонность к отслаиванию песка от бетона, увеличенное водопоглощение, сниженную устойчивость против атмосферных и химических воздействий. Также при преждевременном обезвоживании возникают ранние усадочные трещины, и возникает опасность последующего образования поздних усадочных трещин. Преждевременные усадочные трещины образуются в первую очередь вследствие быстрого уменьшения объема свежеуложенного бетона на открытых участках поверхности за счет испарения и выветривания воды. При высыхании бетона он уменьшается в объеме и дает усадку. В результате этой деформации возникают структурные и внутренние напряжения, которые могут привести к трещинам. Усадочные трещины появляются сначала на поверхности бетона, а затем могут проникать вглубь. Поэтому необходимо позаботиться об отсроченном высыхании бетона. Оно должно начаться только тогда, когда бетон наберет достаточную прочность, чтобы выдерживать усадочное напряжение без образования трещин. При образовании ранних трещин, когда бетон еще остается пластичным, образующиеся усадочные трещины можно закрыть с помощью поверхностной вибрации.
Высыхание бетона ускоряется на ветру, при пониженной влажности и при температуре воздуха ниже, чем температура твердеющего бетона. Поэтому поверхность бетона надо предохранять от высыхания в период ухода за бетоном. После того как бетон наберет прочность 1,5 МПа (примерно 8 часов твердения) нужно регулярно увлажнять поверхность бетона водой путем рассеянного полива (не струей!). Можно укрыть поверхность мешковиной, брезентом или опилками и смачивать их водой, укрывая сверху полиэтиленовой пленкой, создавая условия по типу влажно-высыхающего компресса. Увлажнение бетона не проводится при среднесуточных температурах ниже +5°С. При угрозе промерзания бетон можно укрыть дополнительно теплоизолирующими материалами (пенопластом, минеральной ватой, ветошью, сеном, опилками и т.п.).
Даже если постоянное увлажнение бетона водой невозможно, бетон следует укрыть полимерной пленкой толщиной не менее 0,2 мм (200 микрон). Полотнища пленки должны быть уложены максимально возможными цельными кусками с минимум швов. Соединяют полотнища пленки внахлест с перекрытием в 30 см с проклейкой клейкой лентой. Кромки пленки должны плотно прилегать к бетону, чтобы минимизировать испарение воды из-под пленки.
Во избежание повреждения свежеуложенного бетона движущими грунтовыми водами необходимо оградить его от размывания до достижения прочности не ниже 25% (1-5 суток в зависимости от условий при положительной температуре).
Срок окончания ухода за бетоном совпадает со сроком его безопасной распалубки.

Таблица №69. Относительная прочность бетона на сжатие при различных температурах твердения


Бетон

Срок
твердения,
суток

Среднесуточная температура бетона, °С

прочность бетона на сжатие % от 28-суточной

М200 — М300 на
портландцементе
М-400, М-500

*Условно безопасный строк начала работ на фундаменте.

Уход за бетоном и температурный режим

Температура свежеприготовленной бетонной смеси не должна превышать 30 °C. При бетонировании при среднесуточной температуре воздуха от + 5°C до — 3°C, температура бетонной смеси при массе цемента более 240 кг /м3 (марка бетона М200 и выше) должна быть не менее +5°C, а при меньшем количестве цемента не менее +10°C.
Безопасное бетонирование при температуре воздуха менее — 3°C и однократное замораживание бетона и его оттаивание возможно только тогда, когда температуру бетонной смеси как минимум в течение 3 дней поддерживалась на уровне не ниже + 10 °C.

Бетонирование при холодной погоде

При холодной погоде наблюдается замедление схватывания и нарастания прочности бетона. При среднесуточной температуре + 5 °C требуется в два раза больше времени, чтобы бетон достиг такой же прочности, как при температуре +20 °C. При температуре, близкой к температуре замерзания, набор прочности бетона практически прекращается. Если свежий бетон замерзает, то его структура может разрушиться. Неиспользованная при гидратации цемента избыточная вода образует в твердеющем бетоне систему капиллярных пор.
При воздействии мороза вода, находящаяся в порах, полностью или частично замерзает, а образуемый в результате замерзания лед оказывает давление на стенки пор, которые могут привести к разрушению их структуры. Замерзание бетона в раннем возрасте влечет за собой значительное понижение его прочности после оттаивания и в процессе дальнейшего твердения по сравнению с нормально твердевшим бетоном. Это происходит из-за разрыва кристаллами льда связей между поверхностью зернистого заполнителя и цементным клеем (цементным камнем).
Устойчивости свежеуложенного бетона к замерзанию можно добиться специальным составом бетонной смеси и требуемыми сроками твердения бетона при положительной температуре.

Таблица №70. Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию (директива RILEM*)

Температура бетона (среднесуточная температура)

Класс прочности цемента

5 °C

12 °C

20 °C

Необходимое время твердения (дни) для достижения устойчивости к замерзанию бетона с водоцементным отношением 0,60

М400 Д20 32,5 Н (32,5N)

32,5R (быстротвердеющий)

4 2,5N

45 ,5R (быстротвердеющий)

*Международный союз лабораторий и экспертов в области строительных материалов, систем и конструкций.

Таблица № 71 Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию *


Класс (марка) бетона

Прочность бетона монолитных конструкций к моменту замерзания, %

Количество суток выдержки бетона при температуре бетона

В7,5-В10 (М100)

В12,5-В25 (M150 — М 350)

В30 (М400) и выше

Бетон в водонасыщенным состоянии с попеременными циклами замораживания

Бетон с противоморозными добавками, рассчитанными на определенную температуру

*Адаптировано с упрощением из таблицы №6 СНиП 3. 03.01-87
К эффективным мерам для производства работ по бетонированию в зимнее время относятся:

  • использование цемента с быстрым набором прочности (литера “R” в классе прочности),
  • повышение содержания цемента в бетонной смеси,
  • снижение водоцементного отношения,
  • предварительный подогрев заполнителей (до + 35°C) и воды (до + 70°C) для бетонной смеси [таблица 6 СНиП 3.03.01-87] ,
  • использование противоморозных и воздухововлекающих добавок.

При применении подогрева бетона нельзя нагревать его до температур выше +30°C. При применении горячей воды с температурой до + 70°C ее предварительно следует смешать с зернистым заполнителем (до введения цемента в бетонную смесь), чтобы не «запарить» цемент. Для этого соблюдают следующую очередность загрузки материалов в бетоносмеситель:

  • одновременно с заполнителем подают основную часть нагретой воды,
  • после нескольких оборотов подают цемент и заливают остальную часть воды,
  • продолжительность перемешивания увеличивают в 1,25 -1,5 раза по сравнению с летними нормами для получения более однородной смеси (минимум 1,5 — 2 минуты),
  • продолжительность вибрирования бетонной смеси увеличивают в 1,25 раза.

При предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание (песчаную подушку) или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания [пункт 2.56 СНиП 3.03.01-87]. После укладки бетона и вибрирования, его необходимо укрыть полимерной пленкой и теплоизолирующими материалами (в том числе возможно использование снега), чтобы сохранить выделяющееся тепло при гидратации цемента (на протяжении 3-7 суток в нормальных условиях). При морозах следует построить над фундаментом парник и подогревать его.

Для самодеятельных дачных строителей без опыта можно рекомендовать придерживаться следующего правила: производить бетонные работы при ожидаемых среднесуточных температурах в пределах 28 суток от момента заливки фундамента ниже +5 °C не рекомендуется.
Также следует помнить, что не допускается оставлять малозаглубленные (незаглубленные) фундаменты незагруженными на зимний период . Если это условие по каким-либо обстоятельствам оказывается невыполнимым, вокруг фунда-ментов следует устраивать временно теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы и других материалов, предохраняющих грунт от промерзания [пункт 6.6 ВСН 29-85]. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

Бетонирование при жаркой погоде

Повышение температуры бетона активизирует взаимодействие воды и цемента и ускоряет твердение бетона. С другой стороны, избыточный нагрев бетонной смеси приводит к расширению, которое фиксируется при схватывании бетона и твердении цементного камня. В дальнейшем, при охлаждении бетон сжимается, однако возникшая структура препятствует этому, и в бетоне возникают остаточные напряжения и деформации. Обычно бетон сильнее нагревается с поверхности, поэтому и избыточное напряжение в первую очередь возникает у его поверхности, где могут образовываться трещины. Критический период времени, когда образуются усадочные трещины, часто начинается через час после приготовления бетонной смеси и может продолжаться от 4 до 16 часов.
При прогнозируемой среднесуточной температуре воздуха выше + 25°C и относительной влажности воздуха менее 50% для бетонирования рекомендуется использовать быстротвердеющие портландцементы, марка которых должна превышать марочную прочность бетона не менее чем в 1,5 раза. Для бетонов класса В22,5 и выше допускается применять цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза при условии применения пластифицированных портландцементов или введения пластифицирующих добавок [пункт 2.63 СНиП 3.03.01-87]. Либо использовать добавки, замедляющие сроки твердения бетона.
Также разумным может быть укладка бетона в утреннее, вечернее или ночное время при падении температуры воздуха и исключения воздействия на бетонную смесь солнечных лучей.
При бетонировании температура поверхности бетона не должна превышать + 30 +35°C. При появлении на поверхности уложенного бетона трещин вследствие пластической усадки допускается его повторное поверхностное вибрирование не позднее чем через 0,5-1 ч после окончания укладки. В особых случаях для охлаждения бетона можно использовать чешуйчатый лед.
Свежеуложенную бетонную смесь надо защищать от обезвоживания из-за воздействия температуры воздуха, солнечных лучей и ветра. После набора бетоном прочности 0,5 МПа, уход за бетоном должен заключаться в обеспечении постоянного влажного состояния поверхности путем устройства влагоемкого покрытия и его постоянного увлажнения, выдерживания открытых поверхностей бетона под слоем воды или непрерывного распыления влаги над поверхностью конструкций с помощью распылителя для газонов или перфорированного шланга. При этом только периодический полив водой открытых поверхностей твердеющих бетонных и железобетонных конструкций не допускается.
Во избежание возможного возникновения термонапряженного состояния в монолитных конструкциях при прямом воздействии солнечных лучей свежеуложенный бетон следует защищать отражающей (фольгированной) полимерной пленкой или бумагой в комбинации с теплоизолирующими материалами. При использовании деревянной опалубки, ее также нужно постоянно поливать водой.
Особенно актуальны меры по охлаждению твердеющего бетона при минимальном размере сечения фундаментной ленты 80 см и более. В этом случае при гидратации выделяется слишком много тепла и перегрев бетона и последующее образование трещин возможно даже при обычных температурных условиях.

Таблица №72. Мероприятия по уходу за бетоном в зависимости от температуры воздуха.


Мероприятия по уходу за бетоном

Температура воздуха °C

от -3°C до +5°C

от +5°C до +10°C

от +10°C до +15°C

от +15°C до +25°C

> + 2 5°C

Накрыть пленкой, увлажнять поверхность, увлажнять опалубку, покрыть бетон влагосохраняющим материалом

Да при сильном ветре

Накрыть пленкой, увлажнять поверхность.

Накрыть пленкой, положить теплоизоляцию

Накрыть пленкой, положить теплоизоляцию, устроить парник, подогревать 3 дня до T +10°C

Постоянно поддерживать тонкий слой воды на поверхности бетона

Обогрев бетона нагревательным кабелем КДБС



Бетон (англ. concrete) — составной строительный материал состоящий из трех замешанных на воде ингридиентах — песка, щебня и цемента.
Цемент — это главная составляющая бетона. Вступая в химическую реакцию с водой, он как клей связывает воедино все компоненты бетона.
Затвердевшая со временем смесь превращается в искусственный камень, который с годами становится только прочнее и приближается по этому показателю к граниту.

Зимнее бетонирование

К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже +5°С и минимальной суточной температуре ниже 0°С.

С применением электрического обогрева и теплоизоляции теоретически возможны бетонные работы при температуре воздуха до  -40°С. На практике освоено до температуры -20°С.

Для придания бетонной смеси необходимых пластических и морозоустойчивых свойств вводят пластифицирующие и противоморозные добавки, которые способствуют также экономии цемента и электроэнергии. Применяют следующие модификаторы: нитрит натрия (NaNO2), хлористый кальций (СаСl2), хлористый натрий (NaCl) и другие смеси, а также проводят утепление и прогрев бетона, залитого в опалубку.

Комбинирование методов дает наилучший результат.

Термообработка бетона

До начала работ по укладке нагревательных кабелей должны быть в основном закончены опалубочные и арматурные работы. В ряде случаев раскладку (монтаж) греющих кабелей целесообразно производить одновременно с арматурными и опалубочными работами.

Кабель при этом укладывается на глубине не более 200 мм от поверхности.

Для ускоренного отверждения бетона применяются нагревательные кабели КДБС, TXLP и SMC, а также нагревательные провода марок ПНСВ, ПОСХП, ПОСХВП, ПТПЖ.
В иностранных изданиях есть сведения о применении саморегулирующего кабеля для прогрева бетона с целью быстрого набора прочности.

Питание нагревательных кабелей КДБС, TXLP и SMC производится напрямую от электросети переменного тока 220В.

Питание нагревательных проводов ПНСВ ( и аналогов) осуществляется от сети или от дизель-генератора с понижением напряжения до рабочих значений 24-180 В (с использованием понижающих трансформаторов).

Нагревательные секции КДБС, TXLP и SMC запитываются непосредственно от сети 220 В, без использования трансформаторов — в этом их преимущество.

В качестве теплоизоляционных материалов используют: пенопласт (120 мм), опилки (150 мм), плиты минераловатные (50-60 мм), шлак и деревянные доски.


Термообработка бетона состоит из трех фаз:

Нагревание бетона на портландцементе производится до 40-50°С.
Средняя скорость нагревания бетона составляет 4,0-5,0°С/ч.

Изотермическое выдерживание зависит от температуры нагрева бетона и определяется по графику набора прочности бетона исходя из заданной по проекту нормативной прочности (как правило 70% для несущих конструкций).

Например при изотермическом выдерживании при температуре 20°С в течение 6 суток бетон наберет прочность 0,7, а в течение 22 суток наберет полную прочность (см. график вверху страницы).

Удельная мощность прогрева бетона

Таблица 1: Примерные параметры термообработки в типовых конструкциях 

Среднесуточная температура воздуха, °С

Удельная мощность нагрева Руд,
 Вт/м2

Расход кабеля КДБС,
м/ м кв

-10

230

6,2

-15

250

6,8

-20

320

8,6

Начальные условия для расчета:


Контроль за режимом термообработки производится с помощью технических термометров и (или) датчиков температуры, вставляемых в бетонную смесь.
Датчики температуры позволяют автоматически регулировать режим нагрева. Датчики устанавливают из расчета 1 шт на 6 м длины конструкции или на 50 м кв поверхности, или на 3 м куб .


Скорость остывания обычно принимают 2,0-3,0°С/ч.


После высушивания кабель отключают, обрезают концы и оставляют внутри железобетонной конструкции.

Лидеры продаж

Заказать обогрев бетона при зимнем бетонировании

Свяжитесь с нами по телефону в Москве Москве Санкт-Петербурге Омске

+7 (495) 120-70-11 +7 (812) 407-15-21 +7 (3812) 20-80-18

или оставьте заявку на обратный звонок

От чего зависит и как быстро происходит набор прочности бетона

Изготовление различных конструкций предполагает заливку бетона, главной характеристикой которого является прочность на сжатие. При этом нагружать конкретный элемент нельзя, пока не завершится набор прочности бетона. Данный процесс зависит от…

Изготовление различных конструкций предполагает заливку бетона, главной характеристикой которого является прочность на сжатие. При этом нагружать конкретный элемент нельзя, пока не завершится набор прочности бетона. Данный процесс зависит от ряда факторов, к которым относятся не только внешние условия, но и состав самой смеси.

Для достижения марочного значения, как правило, требуется четыре недели (28 дней). Чтобы будущая конструкция прослужила достаточно долго, необходимо ясно представлять, как осуществляется сам процесс, и сколько времени требуется для его завершения. Процесс включает две стадии. На первой происходит схватывание бетона. На второй он твердеет и набирает прочность.

Стадия схватывания

Схватывание происходит в течение первых суток с момента его приготовления. Сколько времени потребуется для завершения первой стадии напрямую зависит от температуры окружающей среды.

Теплая погода

В летний период, когда температура 20 °C и выше, на схватывание может потребоваться около часа. Процесс начнется приблизительно через два часа после приготовления смеси и завершится, следовательно, через три.

Прохладное время года

При похолодании время начала и завершения стадии сдвигается. Для схватывания требуется больше суток. При нулевой температуре процесс начинается, как правило, только через 6 – 10 часов после приготовления раствора и может длиться до 20 часов после заливки. В жаркую погоду время, наоборот, уменьшается. Иногда для схватывания достаточно 10 минут.

Уменьшение вязкости раствора

На первой стадии приготовленная смесь остается подвижной. В этот период еще можно оказать механическое воздействие, придав изготавливаемой конструкции требуемую форму.

Однако следует учесть, что ряд процессов вызывает необратимые изменения в смеси, что негативно отражается на качестве затвердевшего бетона. Особенно быстро «сваривание» происходит в летний период.

Стадия твердения

После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.

Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.

В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.

Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.

От чего зависит набор прочности?

На процесс набора прочности влияет множество факторов. Однако основными можно считать:

  • температуру;
  • влажность;
  • марку бетона;
  • время.

Температура

Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.

Потепление способствует ускорению процесса созревания бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.

Зимой может потребоваться подогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.

Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.

Влажность

Пониженная влажность негативно отражается на процессе. При полном отсутствии влаги гидратация цемента становится невозможной, и твердение практически останавливается.

При максимальной влажности и высокой температуре (70 – 90 °C) скорость нарастания прочности значительно повышается. В таком режиме осуществляется пропаривание состава в автоклавах паром высокого давления.

Нагрев до столь высоких температур при минимальной влажности неизбежно приведет к высыханию залитого раствора и снижению скорости набора. Чтобы этого не произошло, следует своевременно производить увлажнение. В таком случае в жаркую погоду прочность будет набрана в минимально возможные сроки.

Бетон набрал прочность что делать. От чего зависит и как быстро происходит набор прочности бетона. Бетонирование при жаркой погоде

Которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Схема возможного расслоения бетонной смеси: а — в процессе транспортирования и уплотнения, б — после уплотнения; 1 — направление, по которому отжимается вода, 2 — вода, 3, 4 — мелкий и крупный заполнители.

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Твердение

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии закономерно изменяется со временем. К примеру, для к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

Залитый в опалубку бетон может долго не схватываться и не набирать проектную прочность. Давайте определимся, почему так происходит, как этого избежать и, главное, что делать, если бетон не твердеет.

Характеристики бетона

Бетон – это смесь крупного заполнителя с вяжущим, имеющим способность переходить из жидкой к твердой фазе. В настоящее время существуют разные виды бетонов – асфальтобетоны, полимербетоны и так далее. Однако наибольшее распространение получил бетон, в котором в качестве вяжущего используется портландцемент. Портландцемент – это размолотая в определенной пропорции и обожженная смесь извести и глины, способная при затворении ее водой образовывать твёрдый и прочный искусственный цементный камень.

Портландцемент

Оказалось, что в природе часто встречаются большие залежи минерала, который называется — мергель, состоящий из глины и извести в соотношении, необходимом для изготовления цемента. При производстве цемента в заводских условиях этот минерал обжигают в специальных печах и размельчают до состояния пыли.

Для разных целей выпускаются различные марки цемента. Марка – это характеристика цементного камня после затвердения выдерживать определенную нагрузку при сжатии. При схватывании цемента, смешанного с водой, возникает химическая реакция и превращение жидкого состава в твердый. От количества воды зависит окончательная прочность материала и сроки схватывания (время течения химической реакции).

Марки и классы бетона

Существенным недостатком цементного камня является его усадка, то есть разница в объеме при переходе от жидкой к твердой фазе может составлять до 10%. Неравномерность усадки ведет к появлению, так называемых, усадочных трещин и внутренних напряжений, снижающих прочность. Добавление крупных заполнителей, таких как песок и щебень, позволяет получить бетон, в котором эти недостатки существенно снижены и не оказывают большого влияния на прочность возводимых из него конструкций. Крупный заполнитель также позволяет экономить цемент, стоимость изготовления которого значительно выше добычи песка и щебня.

Прочностные характеристики бетона характеризуются классами (изображение выше), также отражающими прочность бетона на сжатие. По старинке их иногда также именуют марками.

Важно ! Не следует путать класс бетона и марку бетона – это не одно и то же.

Опытным путем были разработаны пропорции воды и цемента, позволяющие получать , даже из цемента одной и той же марки.

Проектную прочность бетон набирает в течение первых 28 суток, затем реакция сильно замедляется, продолжаясь все время существования бетонной конструкции, то есть с течением времени бетон становится все более прочным, и при правильной эксплуатации срок его службы может составлять от 100 и более лет.

Еще один недостаток бетона – его низкая прочность на растяжение или изгиб, которая меньше прочности на сжатие в 15-20 раз. Поэтому французом Монье был придуман способ помещать в растягиваемую зону бетонной конструкции металлический (стальной) каркас, воспринимающий растягиваемые напряжения. Так появился железобетон – самый главный материал, использующийся в строительстве до настоящего времени.

Как избежать проблем с бетоном

Причины плохого схватывания бетона банальны и их рекомендуется старательно избегать, так как сделать это гораздо легче, чем мучиться с последствиями пренебрежения ими. Необходимо ответственно подойти к работам и соблюдать очень простые правила, особенно, если это касается собственного дома или строения.

  1. Перед бетонными работами заказчику необходимо ознакомиться с их основными этапами и технологией, а также свойствами и методикой выбора ингредиентов, то есть – цемента, песка, щебня. Это поможет контролировать процесс выполнения работ и вовремя его приостановить, если что-то пойдет не так, как задумано.
  1. Приглашать для работ нужно только квалифицированных опытных исполнителей, уже имеющих опыт работы с бетоном.
  1. Приобретать материалы следует только у проверенных поставщиков, и проверять наличие сертификатов качества. Лучше иметь с поставщиками заключенные договора с тем, чтобы в случае более позднего обнаружения того, что материалы были некачественные и не соответствовали ГОСТам или техническим условиям, можно было бы потребовать возмещения ущерба или причиненных убытков.

Пример сертификата на соответствие требованиями ГОСТа

  1. При приобретении цемента – самого дорогого и важного материала, нужно проявлять особую тщательность. Следует избегать покупки рассыпного цемента неизвестного происхождения у незнакомых поставщиков, лучше если он будет расфасован в мешки.

Обязательно нужно проверять надписи на мешках и их соответствие сертификатам качества, которые не должны быть ксерокопиями, а иметь настоящие «мокрые» печати.

Хорошо разыскать поблизости от места строительства действующую лабораторию по испытанию строительных материалов. Такие лаборатории обычно имеются при серьезных строительных организациях, заводах железобетонных изделий или строительных ВУЗах. Если передать такой лаборатории небольшое количество цемента из приобретаемой партии (до 0.5 кг), через 2-3 дня специалисты могут точно ответить, есть ли смысл покупать этот цемент и какова его настоящая прочность (марка), также они могут дать рекомендации по пропорциям щебня и песка для приготовления оптимального состава бетона нужного класса.

К сожалению, к поставкам цемента подключилось большое количество мошенников . Обычно они появляются в местах массового индивидуального строительства и осуществляют уличные продажи прямо с автомобилей. Так, например, заявляя, что чем цемент темнее, тем выше его прочность, они, смешивая самый низкосортный цемент с угольной пылью или сажей, пытались выдавать его за высококачественный и продавать по высокой цене.

Подделка легко определяется при смешивании небольшого количества цемента с водой. Если после этого на поверхности воды появляется пленка из плохо впитываемых воду частиц, такой цемент приобретать не рекомендуется.

Самый простой способ определения качества цемента: сжать его в кулаке. Чем меньше материала останется в кулаке, тем лучше. Если почти весь цемент «вытек» через пальцы, значит это отличный продукт. Если же весь цемент остался в руке и превратился в комок, то стоит воздержаться от работы с ним.

Также следует держаться подальше от непроверенных продавцов, заявляющих, что их цемент содержит добавки, увеличивающие прочность и сроки схватывания, скорее всего никаких добавок там нет, а если и есть, то скорее, наоборот, ухудшающие его свойства. Безусловно, различные добавки к бетону существуют, но их использование при приготовлении бетонной смеси должно быть осознанным (точно знать для чего они нужны и когда их следует применять) и строго контролируемым.

Использовать цемент, находившийся зимой в неотапливаемом помещении, категорически не рекомендуется . Активность такого цемента может быть снижена более, чем на 90% и использование его для каких-либо строительных работ бессмысленно. Иногда бывают попытки продать такой цемент. Обычно, мешки с таким мерзлым цементом более тверды и плотны на ощупь, а сам цемент содержит комки, легко разминаемые руками.

Почему не застывает бетон

Несмотря на то, что бетонные работы не представляют большой сложности, а все основные технологические процессы давно уже разработаны и применены на огромном количестве строительных объектов, исчисляющихся по всему миру сотнями тысяч, в процессе бетонирования могут возникать различные непредвиденные ситуации, самая распространенная из которых – отсутствие или замедление схватывания и набора прочности.

Среди причин того, что бетон не твердеет, можно выделить следующие:

  • Использование в растворе слишком большого количества воды;
  • Кладка бетона при температуре ниже +5°С без его прогрева;
  • Смесь замёрзла при сильных морозах;
  • Слишком долгий замес смеси автомобильным миксером;
  • Недоброкачественный цемент или бетон;
  • Несоблюдение или прочие ошибки при замешивании бетона;
  • Использование различных непроверенных или некачественных добавок для бетонной смеси;
  • Плохой уход за бетоном.

Какая бы причина не была, зачастую исправить её довольно непросто. Иногда приходится даже ломать бетон и проводить его укладку заново. Подробнее про решение таких проблем стоит почитать ниже.

Если все же случилось, что работы выполнены, а бетон не схватывается (на второй-третий день он должен уже быть достаточно твердым), в первую очередь следует разобраться в причинах происшедшего.

  1. Исполнители при изготовлении для удобства укладки использовали количество воды на много больше требуемого, тем самым нарушив водоцементное соотношение. Такой бетон так или иначе схватится, но прочность его будет низкой, а также он будет иметь сильную усадку и покрыт сетью трещин.

Для ненагружаемых конструкций это может и не иметь большого значения (дефекты и искривления поверхности могут быть впоследствии скрыты цементно-песчаной штукатуркой). При бетонировании ответственных несущих конструкций, например, фундаментов, такой бетон подлежит разборке, причем трудоемкость разборки будет тем меньше, чем быстрее эта разборка начнется. При использовании арматуры, она может быть очищена и вполне допустимо ее вторичное использование.

В идеале процент воды в бетонной смеси должен составлять около 25-30% для хорошей прочности. Однако такой раствор довольно густой и может не подойти под определённые цели.

  1. Нарушено правило, что бетонные работы не выполняются при минимальной суточной температуре меньше 5 градусов по Цельсию. Срок схватывания такого бетона сильно замедлится, однако при отсутствии отрицательных температур он в течение более длительного, чем 28 суток, периода времени наберет проектную прочность.
  1. Бетонирование в условиях отрицательных температур. Такое бетонирование может осуществляться только в условиях крайней необходимости с использованием специальных добавок, содержащих соли кальция или магния, а также с использованием специальных закрытых тепляков-тентов и воздушных тепловых пушек. Бетонирование без специальных мероприятий в зимнее время недопустимо.

В зимнее время лучше отказаться от бетонирования, либо прибегать к специальному оборудованию и добавкам в бетонный раствор.

  1. Может возникнуть ситуация, когда сразу же после бетонирования, ударил мороз и смесь замерзла. В этом случае любые бетонные работы следует немедленно прекратить, а забетонированную конструкцию, не разбирая опалубки, оставить до наступления теплого времени года.

При оттаивании бетон будет продолжать схватываться, однако его окончательная прочность будет на 10-15% ниже проектной, что следует учесть при возведении вышележащих конструкций, для которых данная конструкция будет служить опорой. Хорошо, если до наступления мороза конструкция была забетонирована полностью, в ином случае при добетонировании следует устроить соединительные закладные детали – штыри, скобы, так как при длительном перерыве в бетонировании отдельные фрагменты изделия не смогут быть связаны между собой надлежащим образом. Возможно такая конструкция потребует дополнительного усиления.

  1. Иногда бывает так, что при доставке бетона автомобильным миксером, оператор по каким-то причинам длительное время не отключает функцию перемешивания смеси (время которой должно быть строго ограничено), что крайне негативно сказывается на начинающейся химической реакции между цементом и водой, в результате чего реакция прекращается, залитая в опалубку смесь не схватывается, а после испарения воды состав легко разбирается руками. Такой бетон подлежит разборке, а работы – переделке. При этом ответственность и возмещение убытков целиком накладывается на поставщика бетона.

  1. Использование недоброкачественного или поддельного цемента. О том, как максимально попытаться избежать такой ситуации уже было написано выше. Бороться с такой проблемой, если материалы уже уложены, практически невозможно, поэтому есть два выхода — ждать и надеяться, что бетон всё-таки затвердеет (только для ненагружаемых конструкций), но при этом помнишь, что долго такой бетон не продержится в любом случае. Либо всё сломать и уложить качественный раствор (если бетонная конструкция − опорная, то это единственный вариант).
  1. Неправильно запроектированная бетонная смесь при самостоятельном изготовлении, несоблюдение пропорций используемых материалов. Такой бетон через длительное время может начать схватываться, однако его прочность будет недостаточна для требуемого дальнейшего использования. Конструкция должна быть подвергнута разборке или усилению, которое может значительно увеличить ее стоимость.

  1. Песок и щебень могут иметь включения минералов, которые при воздействии воды выделяют химические вещества, неблагоприятно влияющие на реакцию схватывания цемента. Эти заполнители для бетона также должны приобретаться у проверенных поставщиков и не содержать вредных химически активных компонентов.
  1. Использование непроверенных разрекламированных, якобы улучшающих добавок, выпускаемых как в сухом, так и в жидком виде. В лучшем случае такие добавки могут быть нейтральны, а в худшем вредны для бетона и влиять на его схватывание. Любители экспериментов всегда могут попробовать предварительно вручную изготовить небольшое количество бетона с такими добавками и посмотреть, что из этого получится.
  1. Отсутствие или недостаточность мероприятий по уходу за бетоном. Если после окончания бетонирования не компенсировать потерю бетоном влаги вследствие естественного испарения (высыхания), нарушается водоцементное соотношение и реакция в наружном слое становится либо крайне замедленной или полностью останавливается.В этом случае в этих местах бетон либо не набирает нужной прочности, либо пересыхает и рассыпается при самом незначительном механическом воздействии. Именно поэтому после бетонирования, конструкции обычно оборачивают паронепроницаемыми пленками – полиэтиленовой или полипропиленовой, покрывают ветошью и в течение 10-14 дней несколько раз в день регулярно поливают водой.

В большинстве случаев проблем со схватыванием бетона удается избежать. Но если не повезло, и Вы столкнулись с такой ситуацией, не предпринимайте ничего сгоряча, но и не затягивайте решение этого вопроса на долгий срок.

Если бетон подлежит разборке – сразу же, не откладывая на потом, приступайте к этим работам. Если бетон в течение длительного периода не набирает нужную проектную прочность – посоветуйтесь со специалистами о возможности дальнейшего использования такой конструкции и о дополнительном усилении ее несущей способности.

Не сожалейте о потерянных средствах и решительно избавьтесь от недоброкачественных строительных материалов без всяких попыток их использования в дальнейшем строительстве. Детально проанализируйте свои действия и действия исполнителей для того, чтобы в будущем не повторять таких ошибок.

Бетон не застывает: причины, что делать, как избежать проблем


Изготовление различных конструкций предполагает заливку бетона, главной характеристикой которого является прочность на сжатие. При этом нагружать конкретный элемент нельзя, пока не завершится набор прочности бетона. Данный процесс зависит от ряда факторов, к которым относятся не только внешние условия, но и состав самой смеси.

Для достижения марочного значения, как правило, требуется четыре недели (28 дней). Чтобы будущая конструкция прослужила достаточно долго, необходимо ясно представлять, как осуществляется сам процесс, и сколько времени требуется для его завершения. Процесс включает две стадии. На первой происходит схватывание бетона. На второй он твердеет и набирает прочность.

Стадия схватывания

Схватывание происходит в течение первых суток с момента его приготовления. Сколько времени потребуется для завершения первой стадии напрямую зависит от температуры окружающей среды.

Теплая погода

В летний период, когда температура 20 °C и выше, на схватывание может потребоваться около часа. Процесс начнется приблизительно через два часа после приготовления смеси и завершится, следовательно, через три.

Прохладное время года

При похолодании время начала и завершения стадии сдвигается. Для схватывания требуется больше суток. При нулевой температуре процесс начинается, как правило, только через 6 – 10 часов после приготовления раствора и может длиться до 20 часов после заливки. В жаркую погоду время, наоборот, уменьшается. Иногда для схватывания достаточно 10 минут.

Уменьшение вязкости раствора

На первой стадии приготовленная смесь остается подвижной. В этот период еще можно оказать механическое воздействие, придав изготавливаемой конструкции требуемую форму.

Продлить стадию схватывания позволяет механизм тиксотропии, способствующий уменьшению вязкости смеси при оказании механического воздействия. Именно поэтому перемешиваемый в бетономешалке раствор намного дольше может находиться на первой стадии.

Однако следует учесть, что ряд процессов вызывает необратимые изменения в смеси, что негативно отражается на качестве затвердевшего бетона. Особенно быстро «сваривание» происходит в летний период.

Стадия твердения

После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.

Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.

В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.

Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.

От чего зависит набор прочности?

На процесс набора прочности влияет множество факторов. Однако основными можно считать:

  • температуру;
  • влажность;
  • марку бетона;
  • время.

Температура

Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.

При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.

Потепление способствует ускорению процесса созревания бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.

Зимой может потребоваться подогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.

Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.

График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.

Время

Для определения нормативно-безопасного срока начала работ часто используется следующая таблица. В ней в зависимости от марки бетона и его среднесуточной температуры приведена информация о наборе прочности через определенное количество суток:

Уход за бетоном

Стоп-халтура! Очень и очень многие дачные строители думают, что следующая важная операция после окончания укладки бетона в опалубку — это распалубка и наслаждение результатами своего труда. На самом деле это не так. После окончания укладки бетона в опалубку начинается следующий серьезный строительный технологический процесс — уход за бетоном. С помощью создания оптимальных условий для гидратации в процессе ухода за бетоном достигается планируемая марочная прочность бетонного камня. Отсутствие этапа ухода за бетоном может привести к деформациям, возникновению трещин и уменьшению скорости набора прочности бетоном.
Уход за бетоном — это комплекс мероприятий по созданию оптимальных условий для выдерживания бетона до набора установленной марочной прочности. Основные цели ухода за бетоном:

  • Минимизировать пластическую усадку бетонной смеси;
  • Обеспечить достаточную прочность и долговечность бетона;
  • Предохранить бетон от перепадов температур;
  • Предохранить бетон от преждевременного высыхания;
  • Предохранить бетон от механического или химического повреждения.

Уход за свежеуложенным бетоном начинается сразу же после окончания укладки бетонной смеси и продолжается до достижения 70 % проектной прочности [пункт 2.66 СНиП 3.03.01-87] или иного обоснованного срока распалубки .
По окончании бетонирования необходимо осмотреть опалубку на предмет сохранения заданных геометрических размеров, течей и поломок. Все выявленные дефекты следует устранить до начала схватывания бетона (1-2 часа от укладки бетонной смеси). Твердеющий бетон необходимо предохранять от ударов, сотрясений и любых других механических воздействий.
В начальный период ухода за бетоном, сразу же после окончания его укладки во избежание размыва и порчи его поверхности, бетон следует укрыть полиэтиленовой пленкой, брезентом или мешковиной.
Особенно тщательно следует сохранять температурный и влажностный режим твердения бетона. Нормальная влажность для твердения это 90-100% в условии избытка воды. Как показано выше в таблице № 52 набор прочности в условиях влажности существенно увеличивает итоговую прочность цементного камня.

При преждевременном обезвоживании (которое также может произойти при утечке цементного молока из негидроизолированной опалубки) бетон получает недостаточную прочность поверхностей, склонность к отслаиванию песка от бетона, увеличенное водопоглощение, сниженную устойчивость против атмосферных и химических воздействий. Также при преждевременном обезвоживании возникают ранние усадочные трещины, и возникает опасность последующего образования поздних усадочных трещин. Преждевременные усадочные трещины образуются в первую очередь вследствие быстрого уменьшения объема свежеуложенного бетона на открытых участках поверхности за счет испарения и выветривания воды. При высыхании бетона он уменьшается в объеме и дает усадку. В результате этой деформации возникают структурные и внутренние напряжения, которые могут привести к трещинам. Усадочные трещины появляются сначала на поверхности бетона, а затем могут проникать вглубь. Поэтому необходимо позаботиться об отсроченном высыхании бетона. Оно должно начаться только тогда, когда бетон наберет достаточную прочность, чтобы выдерживать усадочное напряжение без образования трещин. При образовании ранних трещин, когда бетон еще остается пластичным, образующиеся усадочные трещины можно закрыть с помощью поверхностной вибрации.
Высыхание бетона ускоряется на ветру, при пониженной влажности и при температуре воздуха ниже, чем температура твердеющего бетона. Поэтому поверхность бетона надо предохранять от высыхания в период ухода за бетоном. После того как бетон наберет прочность 1,5 МПа (примерно 8 часов твердения) нужно регулярно увлажнять поверхность бетона водой путем рассеянного полива (не струей!). Можно укрыть поверхность мешковиной, брезентом или опилками и смачивать их водой, укрывая сверху полиэтиленовой пленкой, создавая условия по типу влажно-высыхающего компресса. Увлажнение бетона не проводится при среднесуточных температурах ниже +5°С. При угрозе промерзания бетон можно укрыть дополнительно теплоизолирующими материалами (пенопластом, минеральной ватой, ветошью, сеном, опилками и т.п.).
Даже если постоянное увлажнение бетона водой невозможно, бетон следует укрыть полимерной пленкой толщиной не менее 0,2 мм (200 микрон). Полотнища пленки должны быть уложены максимально возможными цельными кусками с минимум швов. Соединяют полотнища пленки внахлест с перекрытием в 30 см с проклейкой клейкой лентой. Кромки пленки должны плотно прилегать к бетону, чтобы минимизировать испарение воды из-под пленки.
Во избежание повреждения свежеуложенного бетона движущими грунтовыми водами необходимо оградить его от размывания до достижения прочности не ниже 25% (1-5 суток в зависимости от условий при положительной температуре).
Срок окончания ухода за бетоном совпадает со сроком его безопасной распалубки.

Таблица №69. Относительная прочность бетона на сжатие при различных температурах твердения


Бетон

Срок
твердения,
суток

Среднесуточная температура бетона, °С

прочность бетона на сжатие % от 28-суточной

М200 — М300 на
портландцементе
М-400, М-500

*Условно безопасный строк начала работ на фундаменте.

Уход за бетоном и температурный режим

Температура свежеприготовленной бетонной смеси не должна превышать 30 °C. При бетонировании при среднесуточной температуре воздуха от + 5°C до — 3°C, температура бетонной смеси при массе цемента более 240 кг /м3 (марка бетона М200 и выше) должна быть не менее +5°C, а при меньшем количестве цемента не менее +10°C.
Безопасное бетонирование при температуре воздуха менее — 3°C и однократное замораживание бетона и его оттаивание возможно только тогда, когда температуру бетонной смеси как минимум в течение 3 дней поддерживалась на уровне не ниже + 10 °C.

Бетонирование при холодной погоде

При холодной погоде наблюдается замедление схватывания и нарастания прочности бетона. При среднесуточной температуре + 5 °C требуется в два раза больше времени, чтобы бетон достиг такой же прочности, как при температуре +20 °C. При температуре, близкой к температуре замерзания, набор прочности бетона практически прекращается. Если свежий бетон замерзает, то его структура может разрушиться. Неиспользованная при гидратации цемента избыточная вода образует в твердеющем бетоне систему капиллярных пор.
При воздействии мороза вода, находящаяся в порах, полностью или частично замерзает, а образуемый в результате замерзания лед оказывает давление на стенки пор, которые могут привести к разрушению их структуры. Замерзание бетона в раннем возрасте влечет за собой значительное понижение его прочности после оттаивания и в процессе дальнейшего твердения по сравнению с нормально твердевшим бетоном. Это происходит из-за разрыва кристаллами льда связей между поверхностью зернистого заполнителя и цементным клеем (цементным камнем).
Устойчивости свежеуложенного бетона к замерзанию можно добиться специальным составом бетонной смеси и требуемыми сроками твердения бетона при положительной температуре.

Таблица №70. Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию (директива RILEM*)

Температура бетона (среднесуточная температура)

Класс прочности цемента

5 °C

12 °C

20 °C

Необходимое время твердения (дни) для достижения устойчивости к замерзанию бетона с водоцементным отношением 0,60

М400 Д20 32,5 Н (32,5N)

32,5R (быстротвердеющий)

4 2,5N

45 ,5R (быстротвердеющий)

*Международный союз лабораторий и экспертов в области строительных материалов, систем и конструкций.

Таблица № 71 Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию *


Класс (марка) бетона

Прочность бетона монолитных конструкций к моменту замерзания, %

Количество суток выдержки бетона при температуре бетона

В7,5-В10 (М100)

В12,5-В25 (M150 — М 350)

В30 (М400) и выше

Бетон в водонасыщенным состоянии с попеременными циклами замораживания

Бетон с противоморозными добавками, рассчитанными на определенную температуру

*Адаптировано с упрощением из таблицы №6 СНиП 3. 03.01-87
К эффективным мерам для производства работ по бетонированию в зимнее время относятся:

  • использование цемента с быстрым набором прочности (литера “R” в классе прочности),
  • повышение содержания цемента в бетонной смеси,
  • снижение водоцементного отношения,
  • предварительный подогрев заполнителей (до + 35°C) и воды (до + 70°C) для бетонной смеси [таблица 6 СНиП 3.03.01-87] ,
  • использование противоморозных и воздухововлекающих добавок.

При применении подогрева бетона нельзя нагревать его до температур выше +30°C. При применении горячей воды с температурой до + 70°C ее предварительно следует смешать с зернистым заполнителем (до введения цемента в бетонную смесь), чтобы не «запарить» цемент. Для этого соблюдают следующую очередность загрузки материалов в бетоносмеситель:

  • одновременно с заполнителем подают основную часть нагретой воды,
  • после нескольких оборотов подают цемент и заливают остальную часть воды,
  • продолжительность перемешивания увеличивают в 1,25 -1,5 раза по сравнению с летними нормами для получения более однородной смеси (минимум 1,5 — 2 минуты),
  • продолжительность вибрирования бетонной смеси увеличивают в 1,25 раза.

При предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание (песчаную подушку) или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания [пункт 2.56 СНиП 3.03.01-87]. После укладки бетона и вибрирования, его необходимо укрыть полимерной пленкой и теплоизолирующими материалами (в том числе возможно использование снега), чтобы сохранить выделяющееся тепло при гидратации цемента (на протяжении 3-7 суток в нормальных условиях). При морозах следует построить над фундаментом парник и подогревать его.

Для самодеятельных дачных строителей без опыта можно рекомендовать придерживаться следующего правила: производить бетонные работы при ожидаемых среднесуточных температурах в пределах 28 суток от момента заливки фундамента ниже +5 °C не рекомендуется.
Также следует помнить, что не допускается оставлять малозаглубленные (незаглубленные) фундаменты незагруженными на зимний период . Если это условие по каким-либо обстоятельствам оказывается невыполнимым, вокруг фунда-ментов следует устраивать временно теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы и других материалов, предохраняющих грунт от промерзания [пункт 6.6 ВСН 29-85]. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

Бетонирование при жаркой погоде

Повышение температуры бетона активизирует взаимодействие воды и цемента и ускоряет твердение бетона. С другой стороны, избыточный нагрев бетонной смеси приводит к расширению, которое фиксируется при схватывании бетона и твердении цементного камня. В дальнейшем, при охлаждении бетон сжимается, однако возникшая структура препятствует этому, и в бетоне возникают остаточные напряжения и деформации. Обычно бетон сильнее нагревается с поверхности, поэтому и избыточное напряжение в первую очередь возникает у его поверхности, где могут образовываться трещины. Критический период времени, когда образуются усадочные трещины, часто начинается через час после приготовления бетонной смеси и может продолжаться от 4 до 16 часов.
При прогнозируемой среднесуточной температуре воздуха выше + 25°C и относительной влажности воздуха менее 50% для бетонирования рекомендуется использовать быстротвердеющие портландцементы, марка которых должна превышать марочную прочность бетона не менее чем в 1,5 раза. Для бетонов класса В22,5 и выше допускается применять цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза при условии применения пластифицированных портландцементов или введения пластифицирующих добавок [пункт 2.63 СНиП 3.03.01-87]. Либо использовать добавки, замедляющие сроки твердения бетона.
Также разумным может быть укладка бетона в утреннее, вечернее или ночное время при падении температуры воздуха и исключения воздействия на бетонную смесь солнечных лучей.
При бетонировании температура поверхности бетона не должна превышать + 30 +35°C. При появлении на поверхности уложенного бетона трещин вследствие пластической усадки допускается его повторное поверхностное вибрирование не позднее чем через 0,5-1 ч после окончания укладки. В особых случаях для охлаждения бетона можно использовать чешуйчатый лед.
Свежеуложенную бетонную смесь надо защищать от обезвоживания из-за воздействия температуры воздуха, солнечных лучей и ветра. После набора бетоном прочности 0,5 МПа, уход за бетоном должен заключаться в обеспечении постоянного влажного состояния поверхности путем устройства влагоемкого покрытия и его постоянного увлажнения, выдерживания открытых поверхностей бетона под слоем воды или непрерывного распыления влаги над поверхностью конструкций с помощью распылителя для газонов или перфорированного шланга. При этом только периодический полив водой открытых поверхностей твердеющих бетонных и железобетонных конструкций не допускается.
Во избежание возможного возникновения термонапряженного состояния в монолитных конструкциях при прямом воздействии солнечных лучей свежеуложенный бетон следует защищать отражающей (фольгированной) полимерной пленкой или бумагой в комбинации с теплоизолирующими материалами. При использовании деревянной опалубки, ее также нужно постоянно поливать водой.
Особенно актуальны меры по охлаждению твердеющего бетона при минимальном размере сечения фундаментной ленты 80 см и более. В этом случае при гидратации выделяется слишком много тепла и перегрев бетона и последующее образование трещин возможно даже при обычных температурных условиях.

Таблица №72. Мероприятия по уходу за бетоном в зависимости от температуры воздуха.


Мероприятия по уходу за бетоном

Температура воздуха °C

от -3°C до +5°C

от +5°C до +10°C

от +10°C до +15°C

от +15°C до +25°C

> + 2 5°C

Накрыть пленкой, увлажнять поверхность, увлажнять опалубку, покрыть бетон влагосохраняющим материалом

Да при сильном ветре

Накрыть пленкой, увлажнять поверхность.

Накрыть пленкой, положить теплоизоляцию

Накрыть пленкой, положить теплоизоляцию, устроить парник, подогревать 3 дня до T +10°C

Постоянно поддерживать тонкий слой воды на поверхности бетона

Марка бетона Среднесуточная температура бетона в °C Срок твердения в сутках
1 2 3 5 7 14 28
Прочность бетона на сжатие (процент от марочной)
М200–300, замешанный на портландцементе М 400–500-336812152025
051218283550 65
+5919273848 6277
+1012253750 5872 85
+20234050 6575 90100
+303555 6580 90100

Если нормативно-безопасный срок установлен на уровне приблизительно 50%, то безопасным сроком начала работ можно считать 72 – 80% от марочного значения.

В зависимости от времени выдержки искомое значение можно определить по следующей формуле:

прочность на n-ый день = марочная прочность *(lg (n) / lg (28)). Причем n не может быть меньше 3-х дней.

Состав и характеристики цемента

Если сразу после заливки цемент способен набирать прочность благодаря своему тепловыделению, то после замерзания воды процесс неизменно остановится. Именно поэтому при выполнении работ в зимний и осенне-весенний период предпочтительно использовать смеси с противоморозными добавками.

Глиноземистый цемент после укладки способен выделить в семь раз больше тепла, чем обычный портландцемент. Именно поэтому приготовленная на его основе смесь набирает прочность даже при отрицательной температуре.

Марка также оказывает влияние на скорость процесса. Чем ниже марка, тем выше критическая прочность. Таблица наглядно отражает такую зависимость:

Влажность

Пониженная влажность негативно отражается на процессе. При полном отсутствии влаги гидратация цемента становится невозможной, и твердение практически останавливается.

При максимальной влажности и высокой температуре (70 – 90 °C) скорость нарастания прочности значительно повышается. В таком режиме осуществляется пропаривание состава в автоклавах паром высокого давления.

Нагрев до столь высоких температур при минимальной влажности неизбежно приведет к высыханию залитого раствора и снижению скорости набора. Чтобы этого не произошло, следует своевременно производить увлажнение. В таком случае в жаркую погоду прочность будет набрана в минимально возможные сроки.

Выступает прочность. Если ознакомиться с требованиями государственных стандартов, то можно найти информацию о том, что прочность может изменяться в пределах от М50 до 800. Однако одними из самых популярных выступают марки бетона от М100 до 500.

График набора прочности

Раствор бетона в течение определённого времени после заливки будет обретать нужные эксплуатационные свойства. Этот временной интервал называется периодом выдерживания, после него можно осуществлять нанесение защитного слоя. График набора прочности бетона отражает время, в течение которого материал будет достигать наивысшего уровня прочности. Если сохраняются нормальные условия, то на это уйдет 28 дней.

Первые пять суток — это время, в течение которого будет происходить интенсивное твердение. А вот через 7 дней после завершения работ материал достигнет 70% прочности. Дальнейшие строительные работы рекомендуется начинать после достижения стопроцентной прочности, что произойдет через 28 дней. График набора прочности бетона по времени может отличаться для отдельных случаев. Для того чтобы определить сроки, проводятся контрольные испытания над образцами.

Что еще необходимо знать

Если работы по монолитному домостроению осуществляются в теплое время, то для оптимизации процесса выдерживания смеси и обретения ею физических и механических свойств нужно будет выдержать конструкцию в опалубке и оставить дозревать после демонтажа ограждения. График набора прочности бетона в холодное время будет отличаться. Для того чтобы добиться марочной прочности, нужно обеспечить обогревание бетона и гидроизоляцию. Это обусловлено тем, что пониженные температуры способствуют замедлению полимеризации.

Для того чтобы набор прочности произошел как можно быстрее, а выдержка бетона по времени была минимизирована, необходимо добавлять к ингредиентам пескобетоны, у которых водопроцентное соотношение минимально. Если цемент и вода добавляются в пропорции четыре к одному, то сроки будут сокращены в два раза. Для получения такого результата состав должен быть дополнен пластификаторами. Смесь может созревать быстрее, если искусственно повысить ее температуру.

Контроль за набором прочности

Для того чтобы график набора прочности бетона был соблюден, в течение некоторого времени — до недели — необходимо осуществлять мероприятия, обеспечивающие условия для выдержки раствора. Его необходимо обогревать, увлажнять, а также укрывать влаго- и теплоизолирующими материалами.

Для этого довольно часто используются тепловые пушки. Особое внимание специалисты рекомендуют уделять увлажнению поверхности. Через 7 дней после завершения заливки при таких условиях, если температура внешней среды будет изменяться в пределах от 25 до 30 °С, конструкция может нагружаться.

Классификация бетонов

Если в процессе затворения раствора используется цемент и традиционные плотные заполнители, которые позволяют получать тяжелые составы, то данные смеси относятся к маркам М50-М800. Если перед вами то для его приготовления использовались пористые заполнители, позволяющие получать лёгкие составы. Бетон имеет марку в пределах М50-М150, если он является особо легким или легким, а также ячеистым.

Проектная должна быть определена ещё на этапе составления документации по возведению объекта. Эту характеристику дают, основываясь на сопротивлении осевому сжатию в образцах-кубах. В строящихся конструкциях основным является осевое растяжение, марка цемента при этом определяется по нему.

Набор прочности бетона (график набора по времени на растяжение) будет длиться дольше, когда повышается марка по прочности на сжатие. Но в случае с высокопрочными материалами рост сопротивления растяжению замедляется. В зависимости от того, каков состав и область использования смеси, определяется класс и марка по прочности.

Наиболее прочными считаются материалы со следующими марками:

Их применяют в строительстве ответственных конструкций. Когда возводятся сооружения и здания, требующие большой прочности, используется бетон марки М300. А вот при обустройстве стяжки лучше всего использовать состав марки М200. Наиболее крепкими являются цементы, марка которых начинается с М500.

Зависимость набора прочности от температуры

Если вы собираетесь использовать раствор в строительстве, то вам должен быть известен график зависимости набора прочности бетона от температуры. Как было упомянуто выше, схватывание происходит в течение первых нескольких суток после затворения раствора. А вот для завершения первой стадии будет необходимо время, на которое влияет температура внешней среды.

Например, когда столбик термометра удерживается на отметке в 20 °С и выше, на схватывание уходит час. Процесс начинается через 2 часа после того, как смесь будет приготовлена, а завершится через 3 часа. Время и завершение стадии при похолодании сдвинется, для схватывания будет необходимо больше суток. Когда столбик термометра удерживается на нулевой отметке, процесс начинается через 6-10 часов после приготовления раствора, а длится он до 20 часов после заливки.

Важно знать ещё и об уменьшении вязкости. На первой стадии раствор остается подвижным. В этот период на него можно оказывать механическое воздействие, придавая конструкции требуемую форму. Этап схватывания можно продлить, используя механизм тиксотропии, оказывая механическое воздействие на смесь. Перемешивание раствора в бетономешалке обеспечивает продление первой стадии.

Процент прочности бетона от марочной в зависимости от температуры и времени

Начинающих строителей обычно интересует график набора прочности бетона в25 °С. В этом случае всё будет зависеть от марки бетона и срока твердения. Если использовать при замешивании портландцемент марки в пределах до 500, в итоге удастся получить бетон М200-300. Через сутки при указанной температуре его процент прочности на сжатие от марочный составит 23. Через двое, трое суток этот показатель увеличится до 40 и 50% соответственно.

Через 5, 7 и 14 суток процент от марочной прочности будет равен 65, 75 и 90% соответственно. График набора прочности бетона в30 °С несколько изменяется. Через сутки и двое прочность составит 35 и 55% от марочной соответственно. Через трое, пять и семеро суток прочность будет равна 65, 80 и 90% соответственно. Важно помнить, что нормативно-безопасный срок равен 50%, тогда как начинать работы можно лишь тогда, когда прочность бетона достигла отметки в 72% от марочного значения.

Критическая прочность бетона в зависимости от марки: обзор

Сразу после заливки раствор наберет прочность благодаря тепловыделению, а вот после замерзания воды процесс остановится. Если работы предполагается выполнять зимой или осенью, то важно добавлять к раствору противоморозные смеси. После укладки выделяет больше тепла в 7 раз, чем обычный портландцемент. Это указывает на то, что приготовленная на его основе смесь будет набирать прочность и при пониженных температурах.

На скорость процесса оказывает влияние ещё и марка. Чем она ниже, чем выше окажется критическая прочность. График набора прочности бетона, обзор которого представлен в статье, указывает на то, что критическая прочность для бетона марок от М15 до 150 составляет 50%. Для предварительно напряженных конструкций из бетона марки от М200 до 300 это значение составляет 40% от марочной. Бетон марок от М400 до 500 имеет критическую прочность в пределах 30%.

Твердение бетона в перспективе

График набора прочности бетона (СНиП 52-01-2003) не ограничивается месяцем. Для завершения процесса набора прочности может потребоваться несколько лет. Но определить марку бетона можно через 4 недели. Прочность конструкция будет набирать с разной скоростью. Наиболее интенсивно этот процесс протекает в первую неделю. Через 3 месяца прочность увеличится на 20%, после процесс замедляется, но не прекращается. Показатель может увеличиться в два раза через три года, на этот процесс будут влиять:

  • время;
  • влажность;
  • температура;
  • марка бетона.

Довольно часто начинающие строители задаются вопросом о том, в каком ГОСТе график набора прочности бетона можно отыскать. Если вы заглянете в ГОСТ 18105-2010, то более подробно сможете узнать об этом. В этих документах упомянуто, что температура напрямую влияет на длительность процесса. Например, при 40 °С марочное значение достигается уже через неделю. Поэтому зимой работы осуществлять не рекомендуется. Ведь подогревать бетон своими силами проблематично, для этого нужно использовать специальное оборудование и предварительно ознакомиться с технологией. А вот нагревать смесь больше, чем на 90 °С и вовсе недопустимо.

Заключение

Ознакомившись с графиком набора прочности, вы сможете понять, что распалубка осуществляется, когда прочность конструкции превышает 50% от марочного значения. Но если температура внешней среды опустилась ниже 10 °С, то марочное значение не будет достигнуто и через 2 недели. Такие погодные условия предполагают необходимость подогрева заливаемого раствора.

Прогноз прочности монолитного бетона экстрадозированного мостового полотна на основе мониторинга температуры и численного моделирования

https://doi.org/10.1016/j.conbuildmat.2020.119224Получить права и содержание

Метод расширенной зрелости с использованием численных тестов на основе FEM в дополнение к обычной методологии лабораторных и полевых экспериментов.

Рекомендации по эффективной программе лабораторных исследований и надежной системе измерения температуры.

МКЭ анализ распределения прочности на сжатие в бетонном покрытии экстрадозированного моста.

Комплексная система мониторинга бетона повышает достоверность решений о предварительном напряжении арматуры или демонтаже опалубки и дает экономический эффект.

Abstract

Работа посвящена внедрению системы мониторинга высокоэффективного бетона, залитого в пролет пролета экстрадозированного мостового полотна, с использованием модифицированного метода зрелости, дополненного численным моделированием, проведенным авторским кодом FEM.В работе представлены все этапы исследований мостостроения и рассмотрены выводы, сделанные по результатам лабораторных испытаний, натурных измерений и численных расчетов. Наблюдаемое сооружение является крупнейшим экстрадозным мостом в Европе по длине пролета. Из-за значительного размера и длительности инвестиций было выгодно использовать альтернативный метод для оценки прочности бетона на сжатие на основе функции зрелости. Участки моста исследовались в три этапа: летом, осенью и ранней весной (июнь, сентябрь, март).Мониторинг бетона на месте предоставил информацию о фактической температуре бетона и ее градиентах. На основе зарегистрированных температур и предложенных численных процедур были определены фактическая прочность монолитного бетона и оптимальные сроки предварительного напряжения. Это способствовало сокращению рабочего цикла и ускорению графика работ.

Ключевые слова

Ключевые слова

Температура бетона

Температура бетона

Прочность раннего возраста

Дополненный сожаренный метод

Численное моделирование

Выделенный мост

Рекомендуемые статьи Статьи (0)

© 2020 Авторы .Опубликовано Elsevier Ltd.

Рекомендованные статьи

Ссылки на статьи

Влияние температуры смешивания и отверждения на увеличение прочности и пористую структуру бетона с добавлением золы-уноса

Целью данной работы является четкое понимание влияния температуры на реакция на условия отверждения, теплоту гидратации и внешние погодные условия на набор прочности высокопрочного бетона. Бетонные стены были спроектированы с использованием трех разных размеров и трех разных типов бетона.Эксперименты проводились в типичных летних и зимних погодных условиях. Были записаны температурные режимы в разных местах стен и измерены изменения прочности бетона в этих местах. Основными исследованными факторами, влияющими на прирост прочности полученных образцов, были содержание связанной воды, продуктов гидратации и структура пор. Результаты испытаний показали, что повышенные летние температуры не повлияли на прирост прочности в раннем возрасте бетона, изготовленного с использованием обычного портландцемента.Набор прочности был значительно увеличен в раннем возрасте в бетоне, изготовленном с использованием богатого белитом портландцемента или с добавлением летучей золы. Повышенные температуры привели к долговременной потере прочности как бетона с высоким содержанием белита, так и бетона, содержащего летучую золу. Длительная потеря прочности была вызвана снижением степени гидратации и увеличением общей пористости и количества более мелких пор в материале.

1. Введение

Бетон с высокими эксплуатационными характеристиками все чаще используется при строительстве высотных зданий, мостов и морских сооружений.Если высокопрочный бетон используется для колонн или других элементов массивных бетонных конструкций большого сечения, температура в центре элементов будет быстро повышаться в раннем возрасте из-за теплоты гидратации, и высокие температуры будут сохраняться в элементе в течение относительно длительного периода времени. из-за низкой теплопроводности бетона. Высокие температуры, как правило, ускоряют набор прочности бетона в раннем возрасте, снижая при этом набор прочности в долгосрочном периоде. Эти повышенные температуры приведут к физическим и химическим превращениям в бетоне [1–7].Различные исследователи изучали микроструктуру и гидратацию, чтобы объяснить эти эффекты. Сообщалось, что потеря длительной прочности вызывается как физическими, так и химическими воздействиями. Физические эффекты заключаются в увеличении пористости и учащении микротрещин в цементном тесте, последнее вызвано большими различиями в коэффициентах теплового расширения бетона [8-18]. Химические эффекты включают изменение структуры продуктов гидратации и потери воды в бетоне [19–24].Большая часть исследований цементного теста, раствора и бетона проводилась с образцами, гидратированными при комнатной температуре, на ровной поверхности и на ранних стадиях гидратации. Недостаточно информации о высокоэффективных бетонных сырках при повышенных температурах в массивных конструкциях. В технической литературе исследований влияния внешних погодных условий на набор прочности высокопрочного бетона в массивных конструкциях очень мало.

Это исследование предоставило данные, необходимые для установления ограничения на максимально допустимую внутреннюю температуру массивной конструкции, такой как конструкция ядерной установки, фундамент моста или морская конструкция, чтобы обеспечить прочность и долговечность конструкции.В этой статье мы сообщим о некоторых экспериментальных работах по изучению увеличения прочности на сжатие при различных температурах во время смешивания, укладки и отверждения бетона в массивных конструкциях. Бетонные стены были спроектированы с тремя различными глубинами: 1,5 м, 0,8 м и 0,3 м, состоящими из трех разных типов бетона и обработанными в двух разных климатических условиях. Были записаны температурные режимы в разных местах стен, и представлены прочность на сжатие, степень продуктов гидратации и микроструктура бетона в этих местах.

2. Экспериментальный проект
2.1. Смеси и материалы

В этом исследовании использовались три типа бетона: бетон, изготовленный из обычного портландцемента (OPC), из портландцемента с высоким содержанием белита (BPC) и из обычного портландцемента с добавлением 40% летучей золы (FPC). Этот уровень летучей золы все чаще используется для высокоэффективного бетона в массивных конструкциях. Свойства цемента показаны в Таблице 1. Летучая зола, соответствующая стандарту JIS A 6201, имела свойства, указанные в Таблице 2.Заполнитель состоял из дробленого песчаника (максимальный размер: 20 мм, плотность: 2,65 г/см 3 , абсорбция: 0,72%, модуль крупности: 6,0) и строительного песка (плотность: 2,58 г/см3, абсорбция: 2,07%, и модуль крупности: 2,69). В качестве добавок использовали восстановитель воздуха и восстановитель воды высокого диапазона. Их количества приведены в табл. 3. Бетон замешивали в двухвальном смесителе (200 л). После первого перемешивания раствора в течение 50 секунд добавляли крупный заполнитель, и полученный бетон перемешивали еще 90 секунд.Смешивание проводилось летом и зимой для обеспечения двух типов погодных условий. В таблице 3 представлены состав и свойства свежего бетона.


Cement Blaine
(CM
BLAINE
(CM 2 / G)
Плотность
(G / см 3 )
Минералогические свойства (%)
C 3 S C 2 S C 3 A C 4 AF

OPC 3280 3.16 52 24 9 9
БКК 4080 3,20 29 54 3 8

2 (%)

Иг. Потеря (%) Удельный гравитация Процент потока (%) SIO CAO (%) AL 2 O 3 (%)
45  мкм м остаточное количество на сите (%)9 2,27 2,3 3890 110 33,2 42,3 14,1

3 )

.Восстановитель воздуха, MA404.

Бетон В / Ц S / A S / A S / A С /
Water Cement Fly Bley Sand Gravil
OPC-S 0 .33 0,49 170 516 787 840
БКК-S 0,33 0,53 170 516 854 776
FPC-S 0,33 0,50 170 310 206 774 776
ОРС-З 0,33 0,49 170 516 787 840
БПЦ-В 0.33 0,53 170 516 854 776
FPC-W 0,33 0,50 170 310 206 774 776
0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49

Бетон S / A Химический
агент
Химическая
агент
Осадка
(см)
Поток
(см)
Воздух
(%)
Темп.
(° C)
0.49 C × 1,001% C × 0,001% 22,0 38,5 4,9 31
BPC- S 0,53 C × 1,3% 63,5 4,8 30
FPC-S 0,50 С × 1,0% 63,0 4.4 30,5
ОРС-З 0,49 C × 1,2% С × 0,001% 23,5 42,0 4,1 8,5
БКК-З 0,53 С × 1.3% 61,5 4,2 10
FPC-W 0,50 C × 1,0% 61,2 4,2 8,5
2.2. Проектирование модельных стен и отверждение

Для исследования изменения длительной прочности реальных бетонных стен при различных температурах отверждения были спроектированы три модели стен. Стены модели показаны на рис. 1. Глубина стен была аналогична глубине реальной атомной электростанции, а именно 1,5 м, 0,8 м и 0,3 м. Чтобы смоделировать реальную длинную стену, окружность в направлении глубины стены была изолирована слоем полистирола толщиной 200 мм, а квадратные поверхности стены были выставлены на открытый воздух.Стены отлиты в опалубку из фанеры толщиной 20 мм. Опалубку сняли через 72 часа после заливки. Стержневые цилиндры (100 × 200  мм) снимали со стенок на 3, 7, 28 и 91 день и использовали для измерения прочности на сжатие, пористой структуры и продуктов гидратации. Для сравнения, бетонные цилиндры также отливали в стальных формах. Все цилиндры извлекали из стальных форм через 24 часа после литья. Герметичные цилиндры запечатывали полиэтиленовой пленкой и затем хранили в камере для отверждения при 20°С.Стандартные отвержденные цилиндры хранили в воде при 20°С.


2.3. Процедура испытаний

Динамика температуры в различных местах стен регистрировалась с помощью термопар, показанных на рис. 1. Сердечники, стандартные и герметичные цилиндры были испытаны на прочность на сжатие через 3, 7, 28 и 91 день. Часть бетонных цилиндров была разрезана на кубики примерно 5  мм с помощью алмазной пилы. Эти фрагменты сразу погружали в ацетон для предотвращения дальнейшей гидратации.После этого все фрагменты подвергали D-сушке в течение примерно 2 недель. Затем фрагменты тщательно измельчали ​​вручную до получения порошка образца, который мог пройти через сито 45  мкм мкм и был пригоден для определения содержания гидроксида кальция (СН) и содержания связанной воды. Количество гидроксида кальция определяли с помощью дифференциального сканирующего калориметра (ДСК). Количество гидроксида кальция определяли в экспериментах по потерям при прокаливании. Пористость и распределение пор по размерам определяли с помощью ртутной порометрии (MIP).Прикладываемое давление варьировалось от нуля до 240 МПа. 5-миллиметровые кубики для измерений MIP также подвергались D-высыханию в течение примерно 2 недель перед испытанием.

3. Результаты испытаний и обсуждение
3.1. Изменение температуры

Динамика изменения температуры в бетонных стенах показана на рис. 2. Летом (температура 32°C) максимальная температура в центре стен глубиной 1,5 м, изготовленных из OPC, BPC и FPC, составляла 94°. C, 78°C и 80°C соответственно. Максимальная температура была достигнута через 22 часа после литья в ОПЦ и через 31 час после литья в БПК, а ФПК – через 34 часа.Максимальная температура на поверхности этих же элементов составила 74°С, 60°С и 55°С соответственно. Разница температур между центром и поверхностью бетона была наибольшей в смеси FPC. Повышение температуры в стенах ФПК было меньше, чем в стенах БПК, за исключением центра стены глубиной 1,5 м. В стенках ФПК толщиной 1,5 м наблюдалось значительное повышение температуры за счет увеличения скорости пуццолановой реакции золы-уноса. Это можно объяснить скрытыми гидравлическими свойствами, присущими летучей золе.Согласно Fraay et al. [25], стеклянный материал в летучей золе разрушается, когда значение рН поровой воды составляет не менее 13,2. Увеличение щелочности, необходимое для реакции с летучей золой, достигается за счет реакции портландцемента. Соответственно, более медленная гидратация приводит к более плавному изменению температуры. Кроме того, относительно длительный период времени поддерживалась высокая повышенная температура в стенке ФПК. В зимних условиях (температура 9°C) история температуры, полученная в месте расположения каждой стены, отражала разницу наружной температуры между летом и зимой.Начальная температура смешения существенно влияла на максимальную пиковую температуру и период замедления.


3.2. Развитие прочности на сжатие

Прочность на сжатие среднего, стандартного и герметизированного образцов бетона, изготовленных в летних и зимних условиях, указана в таблице 4. Прочность на сжатие стандартного образца, отвержденного в воде при 20°C, была выше, чем у стандартного образца. герметичный образец. Общеизвестно, что низкое соотношение воды и бетона в бетонной смеси приводит к возможности самовысыхания и ограничению продолжительной гидратации цемента, что объясняет различную прочность между образцами.Таким образом, наличие внешней воды необходимо для того, чтобы гидратация могла продолжаться беспрепятственно. Набор прочности бетона, изготовленного в зимних погодных условиях, был быстрее, чем у бетона, изготовленного в летних условиях, как для стандартных, так и для герметичных образцов. Эти результаты очень интересны, потому что мы обычно думали, что высокая температура смешивания увеличивает прочность на сжатие в раннем возрасте. Прочность на сжатие образца керна была выше, чем у стандартного образца в раннем возрасте из-за более высоких температур, достигаемых в керне.Однако стенка глубиной 1,5 м, изготовленная в летних условиях с использованием ОПЦ, вела себя иначе. В данном образце повышенная температура не влияла на развитие силы ни в каком возрасте. В OPC прочность образца керна, изготовленного в зимних условиях, была значительно выше, чем у аналогичного образца, изготовленного в летних условиях. Это не относится к бетону, изготовленному из BPC и FPC. В этих образцах прочность образцов керна, изготовленных в зимних условиях, была ниже, чем изготовленных в летних условиях.В летний период прочность ядра образцов БПК значительно увеличивалась во всех возрастных группах независимо от размеров стенок. Однако в зимнее время набор прочности БПК был ниже, чем у ОПК, за исключением образца керна в центре стены глубиной 1,5 м в наиболее длительном возрасте.



91 день

7


1 OPC-S

7


1 BPC-S BPC-W FPC-W

9
бетона (лето) Clearing
Studds
прочность на компрессию (МПа) бетона (зима) Clearing
Studds
прочность на компрессию (МПа)
3 дня 7 дней 28 дней 91 дней 91 день 3 дня 7 дней 28 дней 91 день
Стандартный 47.9 59,2 69,7 78,9 ОРС-W Стандартный 51,4 65,5 78,8 82,4
Запечатанный 43,8 54,6 60,5 69,7 Запечатанный 46.0 57.7 68.4 68.4 74.4 74.5
1,5 мка 51.7 55.8 55.8 60.3 60.9 1,5 мка 64.0 71,7 73,7 74,0
1,5 мСм 47,9 49,2 59,2 60,3 1,5 мСм 56,7 58,3 72,1 72,9
0,8 мК 54.9 58.9 58.7 0,8 мк 72.1 74.6
0,8 мс 56.3 59,5 0,8 мСм 70,3 74,0
0,3 MC 57,8 62,6 0,3 мК 67,8 69,8
стандарт 33.9 43.9 45.8 74.4 74.59 87,5 Standard 34.6 49,4 81,2 90,1
Запечатанный 33,8 41,0 63,9 81,0 Запечатанный 33,3 43,0 66,6 77,2
1,5 мК 60.7 63.8 64.8 64.6 69.3 69.3 56.2 56.2 64,4 75,4 75.1 78.6
1,5 мс 48.5 58,0 62,6 65,7 1,5 мСм 37,0 44,4 61,5 73,0
0,8 MC 67,5 70,1 0,8 MC 6681 66.8 70.1 70.1
0,8 мс
64.2 69,4 0,8 мс 60.6 73,8
0,3 мК 67,7 70,4 0,3 мК 58,7 72,2

FPC-S Стандартный 26.6 38.7 55.0 55.0 70,1 стандарт 28.4 42.59 59,1 75.7
Sealed 22.8 34,5 48,9 65,4 Запечатанный 28,3 35,2 47,7 59,6
1,5 мК 46,9 52,7 55,5 54,0 1,5 мК 38,3 55.9 57.9 57.6 62.7 62.7
1,5 мс 39,9 39,9 46.8 52.3 55,5 1,5 мс 26.8 39.7 47,7 57,8
0,8 мК 50,8 56,1 0,8 MC 51,2 64,3
0,8 мСм 53,5 58.7 0,8 мс 48.3 56.1 56.1
0,3 мка 55,0 59.2 0.3 MC 46.0 64.6 64.6 64.6

Влияние температуры на прочность на сжатие можно четко описать в терминах относительного соотношения прочности, определенного против прочности стандартного образца, отвержденного в воде при 20°С. Используя эту меру, на рис. 3 показано влияние температуры на все данные о прочности на сжатие для трех типов бетона.Как показано на Рисунке 3, центр стены глубиной 1,5 м, изготовленной в летних условиях с OPC, имеет прочность на сжатие через 3 дня, которая составляет 108% от прочности при отверждении в стандартных условиях. Напротив, образцы из центра 1,5-метровой стены, изготовленные из BPC и FPC, имеют 3-дневную прочность на сжатие, которая составляет 180% и 176% от стандарта. Однако через 91 день показатели прочности упали до 77%, 79% и 77% от стандарта соответственно для образцов OPC, BPC и FPC. Нарастание прочности образца керна, изготовленного из ОРС, не было связано с максимальной внутренней температурой в раннем возрасте.Однако использование богатого белитом портландцемента и летучей золы значительно увеличило набор прочности при высоких температурах. На рис. 4 представлены результаты испытаний на прочность на сжатие бетона, отвержденного в зимних погодных условиях. Трехдневная прочность на сжатие в центре стены глубиной 1,5 м, изготовленной с использованием OPC, составляет 125% от прочности бетона, полученного при стандартных условиях отверждения. Центр 1,5-метровой стены, изготовленной из BPC и FPC, имел 3-дневную прочность на сжатие, которая составляла 162% и 135% по сравнению со стандартным образцом.В 91 день. Однако соотношение прочности составляло 90%, 87% и 83% для OPC, BPC и FPC соответственно. Прочность зимнего бетона впервые упала ниже прочности стандартных образцов через 7 суток.



3.3. Продукты гидратации

На рис. 5 показано изменение количества связанной воды в продуктах гидратации материала, полученного в летних погодных условиях. Количество связанной воды в образце керна, отвержденном при высокой температуре, было больше, чем в стандартном образце раннего возраста.Однако через 7 сут в образце ФПК и через 28 сут в образцах БПК и ФПК содержание связанной воды в этих образцах керна было ниже, чем в стандартном образце. Rodger и Groves [21] предположили, что гидратация при нормальных температурах обеспечивает достаточное время для того, чтобы продукт гидратации диффундировал и осаждался относительно равномерно по промежуточному пространству между зернами цемента. Но ускоренная гидратация за счет повышенной температуры отверждения не дает времени для диффузии гидратов.Следовательно, это приведет к сильному неравномерному распределению гидратированных продуктов в пасте. Неравномерность вызывает снижение прочности при длительном времени отверждения. Добавление летучей золы увеличивает содержание связанной воды в начальном возрасте для образца керна, отвержденного при высокой температуре, возможно, потому, что повышение температуры отверждения ускоряет скорость гидратации цемента и пуццолановых реакций. Пуццолановая реакция способствует снижению концентрации ионов кальция в жидкой фазе за счет ускорения растворения кальция из зерен цемента [26].


Изменение количества гидроксида кальция показано на рисунках 6(a) и 6(b). Количество гидроксида кальция в керне, изготовленном с использованием ОПК, выше, чем в стандартном образце, поскольку оно напрямую связано со степенью гидратации. В массовой структуре более высокая температура приводит к увеличению степени гидратации. Однако не было обнаружено существенной разницы в содержании гидроксида кальция ни в одном из образцов БПК. Использование летучей золы снижает количество гидроксида кальция из-за пуццолановой реакции, поэтому в образцах, изготовленных из FPC, содержится меньше гидроксида кальция, чем в стандартном образце.Пуццолановая реакция в FPC ускоряется с повышением начальной внутренней температуры, поэтому более толстая стенка содержит меньше гидроксида кальция, чем более тонкая.

3.4. Структура пор

На рисунках 7(a) и 7(b) показаны результаты пористости, определенные методом MIP. Общая пористость образцов на основе ФОС в центре стены глубиной 1,5 м, отвержденных в летних условиях, была на 2,3 % меньше, чем у стандартного образца через 3 дня. Сопоставимые значения для образцов BPC и FPC показали 5.0% и 2,0% скидки соответственно. Через 7 дней общая пористость образцов керна начала увеличиваться с повышением температуры бетона. Общая пористость материалов BPC и FPC незначительно увеличилась через 28 дней и значительно увеличилась через 91 день. Добавление пуццолановых материалов увеличивает общую пористость. Паларди и др. [18] объяснили, что растворение при выщелачивании кальция происходит в основном из-за гидроксида кальция и разложения эттрингита при высокой температуре, что будет способствовать увеличению пористости.

Общая пористость бетона, приготовленного в зимних условиях, была меньше, чем пористость бетона, приготовленного в летних условиях. В частности, для образцов OPC и BPC количество более крупных пор, превышающих 100 нм, было заметно уменьшено по сравнению с образцами, отвержденными летом. Как показано на рис. 7, распределение пор по размерам также менялось по мере повышения температуры бетона. С повышением температуры количество более крупных пор уменьшалось, а количество более мелких пор увеличивалось, особенно для пор в диапазоне размеров от 5 до 50 нм, измеренных с помощью MIP.Это свидетельствует о том, что по мере протекания процесса гидратации размеры пор уменьшаются, а пик кривой распределения смещается в сторону мелких пор.

4. Выводы

Основные выводы этой статьи можно резюмировать следующим образом.

(1) Было показано, что тип вяжущего материала, размер элемента конструкции и климат отверждения существенно влияют на начальную внутреннюю температуру конструкций из массивного бетона. Повышенные температуры не повлияли на прирост прочности в раннем возрасте бетона, изготовленного из обычного портландцемента, отвержденного в летних погодных условиях, но бетон, изготовленный из портландцемента с высоким содержанием белита или летучей золы, показал значительное увеличение набора прочности в раннем возрасте.Повышенные температуры привели к длительной потере прочности всех материалов.

(2) Содержание связанной воды в образцах керна, отвержденных при повышенных температурах, было больше, чем в стандартных образцах раннего возраста. Однако содержание связанной воды было ниже, чем у стандартного образца через 7 дней для образца OPC и через 28 дней для образцов BPC и FPC. Эта тенденция может быть соотнесена с аналогичной тенденцией прочности на сжатие.

(3) Использование летучей золы в конструкциях из массивного бетона снижает количество гидроксида кальция за счет пуццолановой реакции.Пуццолановая реакция ускоряется с повышением начальной внутренней температуры, и, следовательно, в летних условиях отверждения присутствует меньше гидроксида кальция.

(4) Общая пористость образцов керна, отвержденных при повышенных температурах, была выше, чем у стандартного образца. Пористость увеличилась через 7 дней в материале OPC и через 28 дней в материалах BPC и FPC. Общая пористость бетона, изготовленного в зимних погодных условиях, была меньше, чем в летних погодных условиях.Из-за повышенных внутренних температур в структурах пик кривой распределения пор по размерам смещался в сторону более мелких пор и увеличивалось количество более мелких пор.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Эта работа была проведена в рамках проекта Японской спецификации архитектурного стандарта 5 N. Это исследование было частично поддержано Канвонским национальным университетом (грант №.120131429) в Южной Корее.

(PDF) Влияние температуры на скорость набора прочности бетона

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-8 Issue-6, August, 2019

3906

Опубликовано:

Blue Ease Intelligence Engineering

и Науки Издательства

И Науки Издательства

Избрания

© Beiesp

/2019 © Beiesp

/2019 © BeieSP

DOI: 10.35940 / IJEAT.F9041.088619

Аннотация: Эта статья представляет эффект температуры на

норма набора прочности бетона.Различные образцы бетона

были отлиты при различных температурах и определены различные свойства бетона

в свежем и затвердевшем состоянии. Было

замечено, что три параметра прочности, а именно. на прочность на сжатие

, прочность на разрыв при разделении и прочность на изгиб бетона

отрицательно влияет, если температура в течение первых

24 часов меньше или равна нулю градусов Цельсия.Прочность бетона на сжатие

была определена с использованием кубов 100 мм

и 150 мм, и было проведено сравнение между ними.

Было замечено, что прочность 100-мм кубов была выше, чем у 150-мм кубов. Позже были разработаны отношения

между 7 днями, 14 днями и 28 днями силы.

Ключевые слова: возраст бетона, холодная погода, зрелость бетона

, прочность, температура.

I. ВВЕДЕНИЕ

Бетон широко используется из-за его прочности на сжатие. Прочность на сжатие бетона

дает общее представление о качестве бетона

, поскольку оно связано со структурой гидратированного цементного теста

(Neville, 1997). Эта прочность может быть достигнута бетоном

только тогда, когда протекает реакция гидратации. место. Для этого

температура реакции гидратации действует как катализатор.Так выше

температура быстрее идет реакция гидратации и наоборот.

Температура бетона влияет на его различные свойства

и эта тема остается предметом исследований многих

исследователей. На гидратацию портландцемента влияют многие переменные, например, удельная площадь поверхности, тонкость помола, химический состав цемента, марка, температура и относительная влажность в условиях смешивания и твердения (Garcia and Sharp, 1998).Разные исследователи по-разному работали с

и исследовали влияние температуры на свойства бетона

. Из литературы ясно, что изменение температуры

оказывает как положительное, так и отрицательное влияние на свойства бетона. Согласно Невиллу, повышение температуры отверждения

увеличивает скорость реакции гидратации

и продукты гидратации образуются раньше.Хотя более высокая температура

литья увеличивает начальную прочность бетона

, это может неблагоприятно повлиять на его долговременную прочность

(Neville, 1997).

Пересмотренная рукопись Получена 22 августа 2019 г. Технологии, Авантипора J&K

Рияз Ахмад Касаб, доцент кафедры гражданского строительства

Инженерия, Исламский университет науки и технологий, Авантипора J&K

J.А. Накаш, доцент кафедры гражданского строительства,

Национальный технологический институт, Сринагар.

Икра Шафи, младший инженер PWD R&B Кашмир

Хуршид Якуб, младший инженер PWD R&B Кашмир не младший

инженер JKSPDC, Кашмир

Мудасир Ахмад Бхат, младший инженер JKSPDC, Кашмир

90 90

реакция будет быстрой, что приведет к неравномерному распределению

продуктов гидратации с более бедной физической структурой,

состоящих из большего количества незаполненных пор.Поскольку пустоты

не влияют на прочность бетона, низкая температура с

вызывает гидратацию с медленной скоростью, что приводит к равномерному

распределению продуктов гидратации в промежуточном пространстве

и высокой прочности в более поздних возрастах .

Прайс (1951) и Клигер (1958) отдельно исследовали, что бетон

, залитый при 4°C, имел 28-дневную прочность на сжатие на 22%

ниже, чем бетон, залитый при 21°C.

При экстремально низких температурах прочность бетона

снова снижается, так как вода, добавленная для гидратации цемента

, замерзает. При низкой температуре вода превращается

в ледяные линзы, которые, в свою очередь, создают некоторое давление внутри бетона

, что приводит к образованию трещин. Последующее таяние этих ледяных линз

приводит к образованию пор внутри бетона

, что еще больше снижает его прочность.Таким образом, для того, чтобы избежать негативного воздействия очень высокой температуры или

чрезвычайно низкой температуры, бетон должен быть залит при температуре окружающей среды

.

II. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОГРАММА

В этом экспериментальном исследовании было проведено девять отливок при

различных температурах с интервалом почти в одну неделю. В

для каждой отливки использовались четыре различных типа форм, а именно кубы 100 мм, кубы

150 мм, цилиндры 150 мм X 300 мм и призмы 100 мм X

100 мм X 500 мм.Для всей отливки пропорция смеси различных ингредиентов

поддерживалась постоянной.

Испытания на оползание и коэффициент уплотнения были проведены для

исследования влияния температуры заливки на свойства свежего бетона

. Различные образцы бетона отверждались в

резервуаре для отверждения. Испытания на прочность при сжатии, испытания на прочность при разделенном растяжении

и испытания на прочность при изгибе были выполнены в

разных возрастов на затвердевшем бетоне, чтобы исследовать влияние температуры

на скорость набора прочности бетона.Далее

было проведено сравнение между прочностью на сжатие

150-мм кубов и 100-мм кубов, и была установлена ​​взаимосвязь между

прочностью на сжатие, прочностью на растяжение при разделении и изгибом.

прочность) бетона.

Мисба Гул, Рияз Ахмад Касаб, Дж.А. Накаш, Икра Шафи, Хуршид Якуб, Мудасир Ахмад

Бхат

Влияние температуры на коэффициент прироста

Прочность бетона

Глава 2.Общие испытания, анализ и планирование перед строительством — Руководство по отверждению бетонных покрытий на портландцементе: Заключительный отчет, январь 2005 г.

Предыдущий | Содержание | Далее

Многие проблемы, связанные с отверждением бетонных покрытий на портландцементе (PCCP), можно предвидеть, зная бетонные материалы, пропорции смеси и свойства на раннем этапе старения, а также зная вероятные климатические условия во время укладки и в течение нескольких дней после укладки.Рисунок 1 суммирует основные действия.


Рис. 1. Диаграмма. Основные моменты предстроительного планирования.

 

БЕТОННЫЕ МАТЕРИАЛЫ И ПРОПОРЦИИ СМЕСИ – ВЛИЯНИЕ НА ОТВЕРЖДЕНИЕ

Общий комментарий

Свойства вяжущих материалов (цемент и пуццолан) и химических добавок важно учитывать при прогнозировании проблем с отверждением. Изменение свойств заполнителя, вероятно, менее важно (за исключением, возможно, легкого заполнителя, который обычно не используется в дорожном покрытии), хотя могут быть незначительные эффекты.Ни одно из свойств, описанных в этом разделе, не требует специальных действий, когда значения отклоняются от допустимых пределов, но знание последствий может помочь предвидеть проблему.

Типы цемента

Свойства цемента, которые наиболее важны для определения требований к отверждению, включают увеличение прочности, время схватывания и тонкость помола. Большая часть дорожного покрытия изготавливается из портландцемента типов I, II или I/II; руководство можно найти в публикациях Американской ассоциации государственных служащих автомобильных дорог и транспорта (AASHTO M 85) (6) и Американского общества по испытаниям и материалам (ASTM C 150). (7) Тип V используется в почвах с высоким содержанием сульфатов. Скорость прироста силы среди типов I, II и I/II, как правило, сходятся в пределах данной географической области, поэтому у пользователя действительно очень мало выбора в этом свойстве. Смешанный цементы, указанные в стандартах AASHTO 240 (8) и ASTM C 595 (9) , имеют характеристики прироста прочности, практически эквивалентные цементам M 85/C 150. ASTM C 1157, не имеющий эквивалента AASHTO, является общей спецификацией для гидравлического цемента (портландцемента и цемента с добавками). (10) Требования основаны на эксплуатационных характеристиках, практически без предписывающих спецификаций. Развитие прочности различных марок по существу эквивалентно типам C 150 (например, тип O примерно эквивалентен C 150 типа I по своим характеристикам).

Повышение прочности цемента

Продолжительность требуемой выдержки бетонной конструкции иногда напрямую связана со скоростью набора прочности вяжущих материалов. В большинстве руководств продолжительность отверждения представляет собой либо предписанное количество времени, либо время, необходимое для достижения заданной прочности бетона.Скорость увеличения прочности цементных материалов может влиять на увеличение прочности бетона, но также участвуют и другие переменные, в первую очередь водоцементное отношение. На скорость набора прочности цемента также влияет количество цемента, необходимое в бетонной смеси для получения заданной прочности в требуемый интервал времени. Высокое содержание цемента может привести к значительной длительной усадке при высыхании, особенно если цемент хорошо гидратирован. Гидратированное цементное тесто сильно способствует усадке при высыхании.

Прочность раствора около 24 МПа через 3 дня и 31 МПа через 7 дней наиболее характерна для цементов типов I, II и I/II. Прочность цементов типа V обычно составляет около 21 МПа через 3 дня и 28 МПа через 7 дней. Прочность доступных цементов может варьироваться от примерно 3,5 МПа меньше этих значений примерно на 7 МПа выше, но такие встречаются реже. В пределах одного географического района показатели прочности цемента у производителей, как правило, сходятся на одинаковых значениях. Некоторые спецификации, основанные на требованиях к фиксированному времени отверждения, указывают на необходимость дополнительного времени отверждения бетона, изготовленного из цемента типа II.До 1980 года цемент типа II обычно производился с составом, который набирал прочность значительно медленнее, чем цемент типа I. Типичная 3-дневная прочность раствора составляла около 14 МПа. В настоящее время это редко бывает так, за исключением цементов, изготавливаемых на заказ, которые обычно производятся для массового бетона. За исключением случаев, когда упоминается необязательная потребность в теплоте гидратации, единственное практическое различие между цементом типа I и типа II связано с устойчивостью к сульфатам.

Тонкость

Основное прямое влияние тонкости помола связано с ее влиянием на кровотечение и, в бетонах с очень низким водоцементным отношением (В/Ц) при развитии внутренних высыхание из-за раннего расхода воды для затворения.Умеренное кровотечение имеет тенденцию к буферизации последствия высыхания в раннем возрасте и помогают предотвратить ПСХ. Поскольку более мелкие цементы склонны к гидратации быстрее, они также генерируют больше тепла и потенциально вызывают температурные градиенты в бетона в зависимости от условий окружающей среды и применяемых процедур отверждения (см. обсуждение HIPERPAV TM в главе 4.

Значения крупности по Блейну для портландцемента, как правило, находятся в диапазоне от 325 до 375 кв. метров на килограмм (м 2 /кг).Значения выше 400 м 2 /кг могут указывать на проблему с образование слишком малого количества сбрасываемой воды при высоких условиях сушки и/или внутренних высыхание, если водоцементное отношение меньше примерно 0,40. Поццоланы иногда очень хорошо и может внести значительный вклад в эту проблему. Кремнеземные пары особенно отмечен этим свойством, но редко используется при укладке скользящей опалубки из-за удобоукладываемости и вопросы стоимости. Шлак также может быть достаточно мелким, особенно марки 120, чтобы его можно было обнаружить. влияние на потребность в воде.Летучая зола обычно не настолько мелкая, чтобы создавать проблемы, хотя ультрадисперсные продукты, которые могут иметь заметный эффект, вводятся в рынок.

Пуццолан
Пуццолан класса F

(AASHTO M 295, (11) ASTM C 618 (12) ) до недавнего времени был основным типом пуццолана, используемого в дорожном покрытии. Основным эффектом этого класса пуццолана является то, что время схватывания обычно задерживается на 1 или несколько часов, а набор прочности может быть замедлен по сравнению с бетоном, изготовленным без пуццолана.Основным эффектом замедленного времени схватывания является то, что оптимальное время для нанесения окончательного отверждения также задерживается, следовательно, больше времени для возникновения PSC. Медленное увеличение прочности может привести к увеличению времени отверждения, если температура бетона не высокая. Эти свойства обычно ограничивают количество используемого в дорожном покрытии до примерно 20 по массе всех вяжущих материалов.

За последние 10 лет летучая зола класса C стала массовым продуктом в бетонном строительстве. Этот класс летучей золы часто используется в бетоне для мощения, потому что прирост прочности выше, чем у пуццолана класса F; однако время схватывания может быть отложено на время, аналогичное классу F.Некоторые из этих материалов содержат химические фазы, которые очень быстро гидратируются при контакте с водой и могут связывать воду в бетоне в течение нескольких минут после смешивания. Это свойство обычно вызывает некоторую раннюю жесткость.

Пуццолан класса N

не является общедоступным, но некоторые из продуктов, доступных в прошлом, были очень тонко измельчены, что давало хорошую начальную прочность, но серьезно влияло на потребность в воде.

Химические добавки

Водоредуцирующие добавки (WRA) могут иметь два эффекта при отверждении.Одним из эффектов является то, что они облегчают снижение рейтинга в/ц, что влияет на требования к отверждению, как обсуждается ниже. Другой эффект связан с редким случаем взаимодействия цемента с добавкой. Иногда некоторые цементы и определенные WRA плохо взаимодействуют, что приводит к очень быстрой ранней гидратации цемента. Это может привести к быстрому потреблению значительного количества свободной воды для затворения и значительному уменьшению или устранению кровотечения. При определенных условиях сушки (описанных ниже) это делает бетон более восприимчивым к растрескиванию при пластической усадке.

WRA

иногда рекламируются как полезные для уменьшения растрескивания при усадке при высыхании. Этот эффект связан с тем, что если соотношение вода-цементные материалы (вес/см) достаточно низкое, большая часть воды затворения либо химически связана, либо прочно связана в виде поверхностной воды в порах геля и не может испаряться и вызывать усадку. . К сожалению, в крайних случаях такое чрезмерное потребление воды для смешивания приводит к внутреннему обезвоживанию, которое по эффекту аналогично атмосферному высыханию.

Пропорции смеси

Соотношение вес/см, общее содержание вяжущих материалов и процентная доля цемента, замененного пуццоланом, являются тремя наиболее важными переменными состава смеси, влияющими на требования к отверждению, как описано в следующих параграфах.

Соотношение водоцементных материалов

Объем кровотечения сильно зависит от соотношения в/см. Утечка от небольшой до умеренной эффективна для буферизации чрезмерного высыхания, когда бетон находится в пластичном состоянии и восприимчив к PSC.Чрезмерное просачивание может быть вредным, поскольку оно приводит к отложению слоя непрочного материала на поверхности бетона. Соотношение вес/см бетонных смесей для дорожного покрытия редко бывает достаточно высоким, чтобы вызвать эту проблему.

Зависимость между скоростью уноса и водоцементным отношением приблизительно линейна. Эмпирически разработанное уравнение, показанное на рисунке 2, приблизительно связывает среднюю скорость кровотечения в килограммах на квадратный метр в час (кг/м 2 /ч) с отношением массы тела к см. (13) T – толщина покрытия в сантиметрах.


Рис. 2. Уравнение. Скорость кровотечения из водоцементного отношения.

 

Бетоны для мощения, как правило, имеют вес/см отношение от 0,38 до 0,48. Для дорожного покрытия толщиной 30 см водоотлив составит примерно от 0,13 до 0,28 кг/м 2 /ч. Это более низкие средние скорости утечек, чем в бетонах более общего назначения, которые колеблются от 0,5 до 1,5 кг/м 2 /ч. В результате бетоны для мощения более подвержены потерям чрезмерного или небезопасного количества сбрасываемой воды в результате испарения.В ACI 308 (4) указано, что условия сушки менее 0,5 кг/м 2 /ч представляют умеренную угрозу для большинства бетонов. Более безопасным верхним пределом для мощения будет около 0,3 кг/м 2 /ч. Рекомендации по оценке опасности чрезмерного высыхания описаны ниже.

Содержание вяжущих материалов

Содержание вяжущих материалов в бетоне для дорожного покрытия обычно составляет от 325 до 385 кг/м 3 . Относительно распространенной практикой является компенсация медленного набора прочности, особенно при использовании прочности на изгиб в качестве расчетного свойства, путем добавления большего количества цемента.Высокое содержание вяжущих материалов, особенно если вяжущие материалы очень мелкодисперсны, способствует уменьшению кровотечения.

Основным эффектом высокого содержания вяжущих материалов является долговременная усадка при высыхании, даже если бетон хорошо затвердел. Поскольку гидратация связывает свободную воду и приводит к уменьшению объема, гидратированное цементное тесто является основным компонентом бетона, вызывающим усадку при высыхании. Длительная усадка при высыхании почти полностью зависит от доли гидратированного цемента в бетоне.

Высокое содержание цемента также может способствовать значительной теплоте гидратации, особенно если бетон укладывается за несколько часов до самого жаркого времени дня. Портландцемент обычно достигает наиболее интенсивного периода гидратации (и, следовательно, нагревания) через 2-4 часа после первоначального схватывания. Учитывая, что время схватывания обычно составляет 2-4 часа после смешивания, период пикового выделения тепла составляет примерно 4-8 часов после укладки. Проблемы, связанные с температурой, начинаются после того, как бетон достигает максимальной температуры.Когда бетон начинает остывать, температурные напряжения переходят от сжимающих к растягивающим (ситуация, когда бетон относительно слаб).

В целом, минимальное содержание цемента, совместимое с адекватным увеличением прочности и долговечности, способствует уменьшению эффектов усадки при высыхании и эффектов теплового нагрева.

Пуццолан Содержимое

Замедление раннего набора прочности сильно зависит от количества пуццолана, заменяющего портландцемент, особенно если используется пуццолан класса F.Пуццолан класса C имеет тенденцию вносить вклад в силу в более раннем возрасте, чем пуццолан класса F. В Руководстве по строительству автомобильных дорог AASHTO рекомендуется дополнительное отверждение на 3 дня, если используется значительное (более 10) количество замены пуццолана. (14) Тем не менее, для проверки этого эффекта следует использовать проверочные исследования смеси перед строительством. Расчеты, основанные на концепциях зрелости, могут помочь предсказать необходимое время отверждения. Сообщается, что скорость набора прочности пуццолановых бетонов более чувствительна к температуре, чем чистые ППК. (15) Если предполагается, что температура будет находиться в диапазоне 5–15 °C, то некоторые предварительные исследования прироста прочности с использованием расчетов зрелости могут помочь количественно определить потенциальные задержки прироста прочности. См. главу 5 для обсуждения метода зрелости.

ОПРЕДЕЛЕНИЕ УТЕЧКИ ДЛЯ РАБОЧЕГО БЕТОНА

Важно определить водоотделяемость бетона, предназначенного для использования в дорожном покрытии, потому что это указывает на количество воды, которое может быть безопасно потеряно при испарении.График кровотечения во времени позволяет определить потенциально критические интервалы в течение периода кровотечения, которое происходит между размещением и начальным временем схватывания. Бетон перестает кровоточить по истечении времени начального схватывания.

Вытекание бетона из рабочего бетона легко измерить во время проверочных испытаний смеси. Основной метод описан в AASHTO T 158 (2) и ASTM C 232, (16) , но несколько модификаций делают данные более полезными для настоящих целей. Стандартный метод испытаний предусматривает использование в качестве испытательного приспособления ковша единичного веса.

Процедура требует изготовления испытательного образца из рабочего бетона с использованием тех же процедур, которые используются при изготовлении прочностных цилиндров (AASHTO T 23, (17) ASTM C 31 (18) ). Сделайте образец примерно такой же высоты, как и толщина дорожного покрытия. Если дорожное покрытие должно быть уложено на пористое основание, то можно использовать слой песка на дне формы для имитации этого дренажного потенциала. Контролируйте потери от испарения, оставляя контейнер закрытым, за исключением случаев проведения измерений.Примерно каждые 30 минут между изготовлением и начальным отверждением слегка наклоняйте цилиндр в одну сторону и дайте воде собраться в течение примерно 5 минут. Отберите стравливающую воду шприцем или пипеткой и измерьте либо по объему, используя небольшой градуированный цилиндр (5-10 миллилитров (мл)) либо путем взвешивания. Небольшое углубление на нижней стороне поверхности образца облегчит сбор и отвод сбрасываемой воды.

Рассчитайте среднюю скорость кровотечения за каждый временной интервал, используя уравнение, показанное на рис. 3.


Рис. 3. Уравнение. Усредненная по времени скорость кровотечения.

 

где:
V = количество сбрасываемой воды (в кг)
A = площадь поверхности образца (м 2 )
t = время (ч)
Единицы продувки: кг/м 2 /ч для данной толщины дорожного покрытия

График объема кровотечения в течение каждого временного интервала дает временной профиль кровотечения.Периоды, когда кровотечение менее 0,3 кг/м 2 /ч, могут быть потенциально критическими периодами. Однако уровень критичности зависит от условий сушки. На рис. 4 с использованием данных, найденных в томе II, (13) , показан такой график для дорожной смеси.


Рис. 4. График. График зависимости образования сточной воды от времени для типичной дорожной смеси.

 

Для этого бетона скорость выделения низкая в течение первого часа и непосредственно перед временем схватывания, которое произошло через 5 часов.Даже на пике скорость кровотечения была ниже 0,5 кг/м 2 /ч, указанной в ACI 308 (4) в качестве предела, ниже которого следует соблюдать осторожность. Дополнительная информация по интерпретации таких данных и учету условий сушки находится далее в этой главе.

ВАЖНОСТЬ ВРЕМЕНИ НАЧАЛЬНОЙ НАСТРОЙКИ

Время начального схватывания является важным свойством при укладке дорожного покрытия, поскольку оно указывает на то, что продувка завершена и можно начинать процедуры окончательного отверждения.Эта деталь обычно не является частью стандартного руководства по началу окончательного отверждения. Применение окончательного отверждения обычно рекомендуется начинать, когда окончательная отделка завершена и поверхностный блеск исчез. При обычном бетонировании окончательная отделка обычно не выполняется примерно до момента первоначального схватывания. При укладке скользящей опалубки окончательная отделка обычно завершается в течение нескольких минут после укладки бетона, задолго до времени первоначального схватывания и окончания периода стекания. Если скорость кровотечения низкая по сравнению со скоростью испарения, то потеря блеска поверхности произойдет вскоре после укладки, что предполагает начало окончательного отверждения, даже если кровотечение продолжается.

Начало окончательного отверждения до начала схватывания может привести к ряду проблем. При водяном и листовом отверждении поверхность может быть повреждена из-за недостаточной прочности. Вода имеет тенденцию вымывать мелкие частицы, а листовые материалы могут повредить поверхность. При использовании отвердителей продолжающееся кровотечение под нанесенной мембраной может привести либо к плохому формированию мембраны (и потере критической воды для затворения), либо к отслаиванию поверхностного раствора. См. главу 4 для обсуждения этого явления.

Время схватывания измеряется, как описано в AASHTO T 197(3) и ASTM C 403,(19), и его удобно проводить во время проверки смеси перед началом строительства.На время схватывания сильно влияет температура бетона, поэтому время схватывания в полевых условиях будет отличаться от установленного в лаборатории времени, если две температуры различаются. Это важно при применении в полевых условиях, поскольку температура бетона на месте может значительно отличаться от температуры лабораторного бетона, и эффект может быть значительным. Лабораторные значения можно скорректировать для фактической температуры бетона с помощью следующего уравнения. (13)


Рис. 5.Уравнение. Время схватывания-подгонка под температуру бетона.

 

где:
TOS = время схватывания при температуре монолитного бетона, те же единицы, что и при стандартном испытании
TOS StdTemp = время схватывания при стандартных условиях, любые единицы
CT = температура монолитного бетона, K
StdTemp = температура бетона во время лабораторных испытаний, K
R = константа

Константа R может быть определена эмпирически, но хорошо подходит значение 5000 Кельвинов (К).Это уравнение можно запрограммировать в виде электронной таблицы, чтобы упростить вычисления для использования в исследовательской работе.

ПРЕДПОЛАГАЙТЕ ВОЗМОЖНЫЕ УСЛОВИЯ СУШКИ И ТЕРМИЧЕСКОГО НАПРЯЖЕНИЯ НА РАБОТЕ

Важно иметь возможность предвидеть вероятные условия высыхания сразу после укладки, чтобы определить, есть ли вероятность потери воды в избытке, что делает бетон уязвимым для PSC.

Было установлено, что номограмма ACI достаточно точна при оценке условий осушения при вводе скорости ветра (0.5 м над поверхностью бетона), температура бетона, температура воздуха и относительная влажность воздуха над бетоном.

Диапазон вероятных условий высыхания можно спрогнозировать для данного места на основе типичного диапазона погодных условий и прогнозируемых температур бетона. Скорость высыхания более 0,3 кг/м 2 /ч может представлять проблему для дорожного бетона, в зависимости от скорости просачивания в течение того же времени (см. ниже).

Информация в номограмме может быть представлена ​​уравнением, показанным на рисунке 6.Это уравнение можно запрограммировать в виде электронной таблицы, чтобы упростить вычисления. Номограмма от ACI 308 представлена ​​на рисунке 7. (4)


Рис. 6. Уравнение. Скорость испарения сбрасываемой воды — влияние условий окружающей среды.

 

где:
ER = скорость испарения (кг/м 2 /ч)
WS = скорость ветра (м/с)
CT = температура бетона (°C)
AT 9 = воздух температура (°C)
относительная влажность = относительная влажность (%)


Рис. 7.Диаграмма. Номограмма скорости испарения из ACI 308. (4)

 

Очень поучительно исследовать влияние ряда условий окружающей среды, ожидаемых в данном месте строительства, на испарение отбираемой воды. Эта информация, наряду с данными о прокачке и временем схватывания, позволяет инженеру предвидеть критические состояния. Ветер и температура бетона обычно оказываются наиболее важными переменными. Температура свежеуложенного бетона — это свойство, над которым производитель имеет некоторый контроль, регулируя температуру материалов для изготовления бетона.ACI 305 R содержит уравнения, связывающие температуру материалов с температурой бетона. (5)

Прогнозирование условий теплового стресса на рабочем месте может быть сложным из-за множества задействованных переменных. Федеральное управление автомобильных дорог (FHWA) разработало программу под названием HIPERPAV TM , которая позволяет пользователю вводить достоверные данные о состоянии бетона и площадки и получать данные о тепловом напряжении в виде предупреждений о критических моментах времени после образования трещин. может развиться (см. главу 4).Эта программа также включает калькулятор скорости испарения, аналогичный результатам, полученным из уравнения, показанного на рисунке 6.

АНАЛИЗ МНОЖЕСТВЕННЫХ ФАКТОРОВ, ВЛИЯЮЩИХ НА РАННЕЕ УПРАВЛЕНИЕ ПОТЕРЕЙ ВЛАГИ

Сравнение характеристик просачивания с вероятными условиями высыхания позволит определить потенциальные критические точки во время строительства. Время начального схватывания указывает на окончание этого критического периода. На рис. 8 показана кумулятивная скорость стравливания, рассчитанная на основе данных, показанных на рис. 4, вместе с кумулятивной скоростью испарения, при условии, что скорость испарения постоянна, равная 0.30 кг/м 2 /ч.

В этом примере скорость испарения превышает скорость кровотечения в течение первого часа после установки и снова примерно через 3,5 часа. Время схватывания около 5,2 часов. Эти два периода представляют собой критические периоды с точки зрения PSC. Иногда бетон выдерживает первый критический период, потому что смесь достаточно пластична, чтобы приспособиться к потерям на испарение, просто усаживаясь в более тонкую укладку. Однако период примерно через 3,5 часа может привести к растрескиванию, потому что в этот момент бетон может приобрести некоторую жесткость и не может приспособиться к потере воды, просто уменьшив объем.


Рис. 8. График. График кумулятивного слива и кумулятивного испарения в зависимости от времени.

 

ПЛАНИРОВАНИЕ ВОЗМОЖНЫХ КОРРЕКТИРУЮЩИХ ДЕЙСТВИЙ

Стандартное руководство

рекомендует, чтобы, когда испарение превышало кровотечение, необходимо было что-то делать, чтобы уменьшить скорость испарения. Стандартные средства защиты включают использование тумана и ветрозащиты. Ни один из этих методов не особенно полезен для крупных проектов мощения. Три метода потенциально полезны при мощении больших площадей.Один из них заключается в переносе работ по укладке дорожного покрытия на время суток, когда условия сушки менее суровы. Ночное размещение часто бывает привлекательным, поскольку относительная влажность обычно выше, чем днем.

Другим эффективным вариантом является снижение температуры бетона при укладке. Это очень сильная переменная, влияющая на скорость испарения. ACI 305 R дает руководство по расчету температуры укладки (также обсуждается в главе 3). Этот расчет можно использовать для изучения ожидаемой выгоды от охлаждения компонентов бетона.Например, на рис. 9 показано влияние снижения температуры бетона на 5 °С (с использованием данных номограммы на рис. 3) на скорость испарения. Скорость испарения становится менее критической в ​​результате этой корректировки.


Рис. 9. График. Эффект снижения температуры укладки бетона с 30 °C до 25 °C.

 

Еще один подход заключается в использовании понизителей испарения. Понизители испарения могут снизить скорость испарения на целых 65 процентов.(13) На рис. 10 показан эффект снижения испарения на 50% с использованием данных, показанных на рис. 4. Кумулятивный эффект аналогичен снижению температуры укладки бетона на 5 °C. В настоящее время не существует методов испытаний или спецификаций для понизителей испарения, и пользователь должен полагаться на рекомендации производителя.


Рис. 10. График. Эффект снижения испарения на 50 процентов за счет использования понизителя испарения.

 

Ограниченное лабораторное исследование показало, что понизители испарения могут снизить скорость испарения в диапазоне от 0 до 65 процентов.Понизители испарения необходимо наносить повторно, если время схватывания увеличивается, а скорость высыхания высока. Примерный интервал применения обсуждается в главе 3.

В заключение следует отметить, что снижение температуры укладки бетона и использование понизителей испарения могут иметь относительно сильное влияние на возможность образования трещин при пластической усадке.

Аманда, Автор в COMMAND Center

При укладке бетона в холодную погоду необходимо принять дополнительные меры предосторожности, чтобы обеспечить правильное схватывание бетона и набрать достаточную прочность.Первые несколько дней после укладки являются наиболее важными, потому что именно тогда реакция гидратации цемента протекает быстрее всего и бетон набирает большую часть своей общей прочности. Однако низкие температуры замедляют процесс гидратации, а это означает, что бетон, помещенный при низких температурах, набирает меньшую прочность, чем та же смесь при более высоких температурах в течение того же периода времени. Если вода в бетонной смеси замерзает, процесс гидратации прекращается полностью. Даже если он оттает, прирост прочности может не восстановиться.

Таким образом, регулирование температуры бетона в холодную погоду имеет важное значение для его надлежащего набора прочности. Американский институт бетона (ACI) указывает в ACI 306R-16 Руководство по бетонированию в холодную погоду рекомендуемую температуру бетона в зависимости от температуры воздуха. Рекомендована минимальная температура при укладке, минимальная температура при смешивании и максимально допустимое плавное снижение температуры в течение 24 часов после окончания защиты от холода.Эти рекомендации часто отражаются как требования в должностных инструкциях.

Как ты можешь следить за внутренней температурой бетона?

Чтобы внутренняя температура бетона не опускалась ниже точки замерзания и находилась в пределах установленных требований согласно ACI и/или спецификациям проекта, в бетон можно встроить датчики для непрерывного мониторинга и записи температуры бетона через равные промежутки времени. Эти данные информируют пользователя об истории температуры бетона, поэтому пользователь может проверить соответствие спецификациям проекта.

Почему мониторинг температуры используется при бетонировании в холодную погоду?

Есть три Основные причины, по которым мониторинг температуры используется подрядчиками в холодное время года. атмосферостойкие бетонные укладки:

  • Непрерывный мониторинг потенциального раннего замерзания и теплового удара
  • Оптимизация процедуры отверждения
  • Повышение безопасности конструкции

Непрерывный мониторинг потенциального раннего замерзания и теплового удара

Температура Мониторинг может помочь пользователю сохранить свежий и ранний бетон в пределах заданный проектом диапазон температур в процессе отверждения для обеспечения чтобы не было замерзания и теплового удара.

Как упоминалось ранее, замерзание воды внутри бетона остановит увеличение прочности бетона и не допустить его достижения необходимого уровня прочности. прочность для строительного проекта. Поэтому бетон должен оставаться выше температура замерзания, чтобы должным образом набрать прочность при отверждении.

В в дополнение к обеспечению того, чтобы бетон не замерзал, когда защита отверждения удалены, бетон подвергается риску теплового удара. Тепловой удар возникает, когда отверждение удаляется слишком внезапно и имеет место большая температура перепад между бетоном и окружающей средой, ведущий к поверхности охлаждение значительно быстрее, чем в центре.Холодная поверхность сжимается больше чем более теплый центр, вызывая напряжение растяжения и растрескивание бетона. От с помощью системы контроля температуры, чтобы убедиться, что температура разница между бетоном и окружающей средой остается в пределах спецификации, тепловой удар можно предотвратить.

Оптимизация процедура отверждения

Температура системы мониторинга часто также могут действовать как системы мониторинга зрелости, используя температурная история для расчета зрелости и использование зрелости для оценки прочность бетона на месте.Зная как температуру, так и расчетную прочность укладки бетона может позволить пользователю оптимизировать отверждение.

Использование температуры данные, пользователь может определить, когда следует изменить температуру бетона, увеличение или уменьшение теплового контроля (использование обогревателей, брезента, одеяла и др.). Используя данные о зрелости, пользователь может узнать, когда бетон набрал достаточную прочность в раннем возрасте, чтобы полностью снять защиту от отверждения. Мониторинг как температура, так и зрелость позволяют пользователю адекватно вылечить бетон при рабочих температур до необходимой прочности без потери времени или деньги на ненужное лечение.

Обеспечение безопасность конструкции

Отслеживание Развитие ранней прочности бетона в зависимости от температуры и зрелости мониторинг имеет важное значение для безопасности конечной конструкции. Потому что холодно погода замедляет процесс развития силы, используя систему зрелости для оценка прогресса набора прочности бетона на месте может быть хорошей практике, чтобы убедиться, что бетон достиг достаточной прочности для в процессе строительства, снижая риск преждевременного структурный отказ.

Использование COMMAND Центр бетонирования в холодную погоду

Непрерывный Мониторинг температуры необходим для бетонирования в холодную погоду. Используя неразрушающая система контроля температуры и прочности, такая как COMMAND Center — лучший выбор для пользователей, чтобы знать, в течение всего процесса отверждения, если их бетон соответствует тепловым спецификациям проекта.

Система COMMAND Center является оптимальным выбором для мониторинга, поскольку она доступна по цене, проста в использовании и доказала свою надежность в полевых условиях.Система включает в себя датчики и мощное программное обеспечение для просмотра, анализа и представления данных. Датчики поставляются предварительно запрограммированными и не требуют инициализации в полевых условиях, и те же датчики, которые собирают данные о температуре, также могут использоваться для измерения зрелости. Программное обеспечение COMMAND Center является бесплатным и позволяет пользователю переключаться между градусами Цельсия и Фаренгейта, а также просматривать и анализировать данные о температуре для отдельных датчиков или сравнивать данные с нескольких датчиков одновременно — идеально подходит для мониторинга разницы температур между бетоном и окружающей средой для предотвращения теплового удара. .

Заключение

Мониторинг температуры и зрелости бетона для холодной погоды требуется в большинстве случаев бетонирования в холодную погоду и имеет важное значение для выявления возможности замерзания и теплового удара, оптимизации отверждения и обеспечения безопасности конструкции. Система COMMAND Center предлагает удобный и доступный вариант для этой цели. Непрерывно собирая данные о температуре, пользователи могут оптимизировать процедуры отверждения в холодную погоду и терморегуляцию на основе спецификаций проекта, чтобы обеспечить структурную безопасность и сэкономить деньги на методах отверждения.

Затвердевание бетона: какое оборудование вам подходит?

Отверждение бетона

Отверждение и повышение прочности бетона представляет собой сложный процесс химической гидратации, который начинается в момент контакта воды с ингредиентами цемента. Успешный отбор проб, отверждение и испытание бетона на прочность зависят от соблюдения правил, установленных самим процессом.

Ранний (зеленый) бетон очень чувствителен к возмущениям и колебаниям температуры. В результате отверждение образцов осуществляется в два этапа:

  • Первичное отверждение в первые сутки-двое происходит на строительной площадке.Сразу после формовки свежие образцы бетона помещаются в защищенную среду, где они набирают достаточную прочность, чтобы их можно было транспортировать в испытательную лабораторию.
  • Попав в лабораторию, образцы извлекаются из форм и начинают более длительную фазу окончательного отверждения.

Начальная или полевая обработка

Это просто еще один день в офисе. Или, в данном случае, рабочая площадка и образцы прочности бетона, которые вы только что изготовили, начали свое первоначальное отверждение.ASTM C31 и AASHTO T 23 «Практика изготовления и отверждения образцов для испытаний бетона в полевых условиях» четко определяют, что необходимо для этого периода менее 48 часов, когда образцы достигают окончательного схватывания и начинают набирать прочность:

  • Необходимо предотвратить потерю влаги.
  • Температура окружающей среды должна поддерживаться в пределах от 60°F до 80°F (от 16°C до 27°C) для большинства типов бетона.

Хотя на практике это не так четко указано, также известно, что удар, вибрация или другие нарушения на этом этапе напрямую влияют на набор прочности бетона, поэтому образцы также должны быть защищены от физических воздействий.

Контейнеры для выдерживания бетона созданы для удовлетворения потребностей в начальном выдерживании и повышения эффективности ваших полевых работ благодаря мобильности и удобству. Доступны опции для нагрева, нагрева и охлаждения или контроля температуры и влажности образца путем погружения в циркулирующую воду. Блоки легко транспортируются между проектами или хранятся в лаборатории между использованиями.

Окончательное отверждение в лаборатории

По окончании периода первоначального отверждения в полевых условиях образцы готовы к отправке обратно в испытательную лабораторию.Там они начинают заключительную фазу отверждения, пока не достигнут возраста 7 дней, 28 дней или более, прежде чем они будут проверены на прочность на сжатие или изгиб. Но как их хранить, чтобы они правильно вылечились и продолжали набирать силу, пока не будут проверены? Все это может быть очень сложным.

Адекватная защита образцов бетона от вибрации, толчков и экстремальных температур во время транспортировки имеет решающее значение и может повлиять на результаты испытаний на прочность, если ее не принять во внимание. Стойки Gilson для полимеризации в полевых условиях и стойки для транспортировки цилиндров защищают образцы и обеспечивают надежные результаты испытаний.

Точные испытания на прочность образцов бетона, цементного раствора и кирпичной кладки в форме цилиндров, балок или кубов начинаются с надлежащего отверждения в соответствии с требованиями соответствующих стандартов ASTM и AASHTO, однако одна из наиболее распространенных ошибок, обнаруженных в CCRL (Цемент и Референс-лаборатория бетона) — это невозможность поддерживать заданные температуры твердения и уровень влажности в лаборатории. Неправильные условия отверждения непосредственно препятствуют оптимальному набору прочности образцов бетона.

Влажные камеры или резервуары для выдержки бетона представляют собой два приемлемых и широко используемых метода выдерживания образцов для испытаний на прочность бетона. Конкретные требования для каждого из них изложены в стандартных спецификациях ASTM C511 и AASHTO M 201.

Какой метод отверждения бетона лучше?

Неофициальный опрос, проведенный Справочной лабораторией материалов AASHTO (AMRL), показал, что количество лабораторий с влажными камерами и резервуарами для отверждения распределено поровну, поэтому обе они одинаково популярны и предлагают жизнеспособное решение.В этом посте мы расскажем вам о плюсах и минусах каждого метода, чтобы помочь вам определить, какая процедура подходит для вашей лаборатории.

Влажная комната

Влажная комната Похожи на сауны или встроенные холодильники, наполненные туманом. Размером от небольшого шкафа до большой комнаты они могут быть сборными модульными блоками или сооружаться на месте с использованием каменных блоков или других влагостойких материалов. Они герметичны и часто имеют внешнюю панель с приборами контроля температуры и влажности.

Для поддержания требуемой температуры и уровня влажности в помещении используются различные методы, от простых увлажнителей тумана до систем, которые смешивают подачу горячей и холодной воды и распределяют воду с регулируемой температурой через систему распыляющих головок. В помещениях, где используются автономные генераторы тумана, требуется отдельный метод регулирования температуры до заданных 23,0±2,0°C (73,4±3,5°F). Хранение образцов осуществляется на стеллажах или стеллажах, приспособленных для максимального воздействия на образцы влажного воздуха.Спецификации требуют, чтобы относительная влажность поддерживалась на уровне не менее 95%, чтобы поверхности образцов выглядели и ощущались влажными. Уровни температуры и влажности также должны быть зарегистрированы.

Плюсы:

  • Лучший выбор для больших количеств крупных образцов
  • Легко систематизировать образцы по возрасту и типу
  • Образцы легче достать и при необходимости переместить с помощью домкратов для поддонов и тележек
103098 9 Минусы:

  • Дорогие в сборке или покупке
  • Сложная установка иногда требует интеграции другого оборудования и систем
  • Техническое обслуживание может быть дорогим и длительным размеры комнаты.Особенности этой настенной панели управления:
    • Полностью автоматизированное решение для управления, смешивающее подачу горячей и холодной воды для распределения через распылительные головки. Требуется установка линий подачи и распределения.
    • Легко читаемый цифровой дисплей контроллера для удобного ввода температуры.
    • Ручная байпасная система для непрерывного поддержания заданных уровней температуры и влажности при отключении электроэнергии.
    • Место для установки самописца температуры или регистратора данных
    Вентиляторы туманообразования Aquafog® GT 500 для увлажнения помещений площадью до 1 600 футов² (149 м²).
    • Водопроводная вода из обычного водопровода нагнетается через высокоскоростные лопасти вентилятора
    • Центробежная сила и высокоскоростной воздушный поток распыляют капли воды для обеспечения равномерного распределения
    • Конструкция из нержавеющей стали, полиэтилена и анодированного алюминия означает длительную коррозию -бесплатный срок службы
    • Доступны устройства с производительностью до 15 галлонов (57 л) в минуту

    Отслеживание температуры и влажности

    Влажные помещения для отверждения бетона должны регистрировать температуру один раз каждые 15 минут, и данные должны оцениваться минимум раз в неделю.Приборы для регистрации уровней влажности необязательны, но Гилсон рекомендует частые наблюдения и измерения в качестве хорошей практики.

    • Регистраторы температуры и регистраторы данных предлагают различные способы контроля температуры влажного помещения или резервуара для отверждения и регистрации данных для постоянной записи. Удобными решениями являются модели с выносными датчиками термопар, погружные регистраторы и устройства, записывающие чернилами на бумажные карты.
    • Влагомеры контролируют относительную влажность во влажных помещениях как надежный способ визуального подтверждения наличия свободной влаги в образцах.Доступны как аналоговые/ручные или цифровые инструменты.

    A Резервуар для затвердевания

    Резервуары для затвердевания бетона и другие резервуары с открытой водой создают идеальную среду для затвердевания бетона для ограниченного количества образцов. Простой и не требующий особого ухода метод соответствует требованиям спецификации, предлагая хорошую альтернативу влажным помещениям, особенно для временного или полевого применения. В воду необходимо добавлять гидроксид кальция (гашеную известь), чтобы предотвратить вымывание минералов из образцов бетона.Дополнительные резервуары могут быть добавлены или удалены по мере необходимости и даже соединены между собой для увеличения емкости образца и эффективности нагрева/охлаждения.

    Плюсы:

    • Идеально подходит для краткосрочного применения в условиях ограниченного пространства
    • Простое оборудование, быстро настраиваемое и недорогое
    • Предлагается в различных объемах и размерах
    • Достаточный уровень влажности не вызывает сомнений
    • Mini требуется техническое обслуживание (очистка и повторное наполнение резервуаров каждые 24 месяца)

    Минусы:

    • Резервуары не занимают много места для большого количества образцов
    • Работа с образцами требует водонепроницаемых перчаток Поверхность воды может увлажнять помещения

    Наши рекомендации:

    Стальные полимеризационные резервуары выпускаются в трех моделях емкостью от 100 галлонов (379 л) до 300 галлонов (1136 л).Особенности стальных блоков:
    • Верх, армированный трубой, для сверхпрочного, устойчивого к смятию обода
    • Прочный фальц с уплотнителем для предотвращения утечек
    • Оцинкованная оцинкованная сталь толщиной 22 калибра с диагональными и горизонтальными гофрами для прочности
    • Сливная пробка для простоты обслуживания
    Пластиковые резервуары для отверждения доступны в трех моделях емкостью от 40 галлонов (151 л) до 180 галлонов (681 л), включая:
  • Гибкие, со скошенными сторонами для частичного размещения при хранении

Контроль и отслеживание температуры

Температура воды в резервуарах для отверждения должна поддерживаться на одном уровне 23.0 ± 2,0 ° C (73,4 ± 3,5 ° F) на уровне влажных помещений и регистрируется с теми же 15-минутными интервалами. Сезонные колебания и расслоение воды могут привести к отклонению температуры резервуара от установленных требований. К счастью, есть несколько простых решений, позволяющих гарантировать, что ваша программа лечения и тестирования не будет отклоняться от намеченного пути.

  • Нагреватели резервуаров для отверждения регулируют температуру воды в ограниченном диапазоне в больших резервуарах и являются экономичным и популярным способом обеспечения соответствия техническим условиям. Эти погружные нагреватели монтируются непосредственно на стенки резервуара и включают в себя кабель питания с заземлением и встроенный предохранитель.
  • Нагреватели/циркуляторы отличаются высокой точностью и обеспечивают точный контроль температуры и постоянную циркуляцию жидкости в резервуарах меньшего размера. Точность до ±0,09°F (0,05°C).
  • Циркуляционные насосы для резервуаров для полимеризации представляют собой простые и экономичные погружные насосы, обеспечивающие равномерную температуру во всех точках резервуаров для полимеризации. Работа в водонепроницаемом корпусе из нейлонового пластика бесшумна.
  • Регистраторы температуры и регистраторы данных относятся к той же линейке продуктов, которые рекомендованы для использования во влажных помещениях и являются удобным способом контроля температуры в резервуарах для твердения бетона и их регистрации для постоянной записи.Удобными решениями являются модели с выносными датчиками термопар, погружные регистраторы и устройства, записывающие чернилами на бумажные карты.
  • Эталонные термометры для бетона необходимы для проверки точности других температурных приборов, используемых в лабораториях по испытанию цемента и бетона. Эти стеклянные термометры соответствуют стандарту ASTM E77 и снабжены сертификатом прослеживаемости NIST. Доступны модели с ртутной или безртутной индикаторной жидкостью.

Какие бы методы и оборудование вы ни предпочли, помните, что правильное отверждение необходимо для оптимального набора прочности образцов бетона.Без него любые результаты испытаний бетона на прочность вызывают сомнения. Для получения экспертной помощи по вашему приложению обратитесь к экспертам по тестированию в Gilson.

Факторы, влияющие на прочность бетона

🕑 Время чтения: 1 минута

Факторы, влияющие на прочность бетона На прочность бетона влияют многие факторы, такие как качество сырья, водоцементное соотношение, соотношение крупного и мелкого заполнителя, возраст бетона, уплотнение бетона, температура, относительная влажность и отверждение бетона.

Качество сырья Цемент: При условии, что цемент соответствует соответствующему стандарту и правильно хранился (т.е. в сухих условиях), он должен быть пригоден для использования в бетоне. Заполнители: Качество заполнителей, их размер, форма, текстура, прочность и т.д. определяют прочность бетона. Наличие солей (хлоридов и сульфатов), ила и глины также снижает прочность бетона. Вода: часто качество воды регулируется пунктом «..вода должна быть пригодна для питья…». Этот критерий, однако, не является абсолютным, и следует ссылаться на соответствующие нормы для испытаний водохозяйственного назначения.

Соотношение вода/цемент Связь между водоцементным отношением и прочностью бетона показана на графике, как показано ниже: Чем выше водоцементное отношение, тем больше начальное расстояние между зернами цемента и больше объем остаточных пустот, не заполненных продуктами гидратации. На графике чего-то не хватает.При заданном содержании цемента удобоукладываемость бетона снижается, если уменьшается водоцементное отношение. Более низкое водоцементное отношение означает меньше воды или больше цемента и более низкую удобоукладываемость. Однако, если удобоукладываемость становится слишком низкой, бетон становится трудно уплотнить, и его прочность снижается. Для данного набора материалов и условий окружающей среды прочность в любом возрасте зависит только от водоцементного отношения, при условии достижения полного уплотнения.

Соотношение крупного и мелкого заполнителя F Для соотношения крупного и мелкого заполнителя необходимо учитывать следующие моменты:
  • Если доля мелких частиц увеличивается по отношению к крупному заполнителю, общая площадь поверхности заполнителя увеличивается.
  • Если площадь поверхности заполнителя увеличилась, потребность в воде также увеличится.
  • Если предположить, что потребность в воде увеличилась, водоцементное отношение увеличится.
  • Поскольку водоцементное отношение увеличилось, прочность на сжатие уменьшится.

Соотношение заполнителя и цемента Следующие моменты должны быть отмечены для соотношения заполнителя и цемента:
  • Если объем остается прежним, а пропорция цемента по отношению к песку увеличивается, площадь поверхности твердого тела увеличивается.
  • Если площадь поверхности твердых частиц увеличилась, потребность в воде останется прежней для постоянной удобоукладываемости.
  • При условии увеличения содержания цемента без увеличения потребности в воде водоцементное отношение уменьшится.
  • При снижении водоцементного отношения прочность бетона увеличивается.
Важно помнить о влиянии содержания цемента на удобоукладываемость и прочность, которое можно резюмировать следующим образом:
  1. Для заданной удобоукладываемости увеличение доли цемента в смеси мало влияет на водопотребность и приводит к снижению водоцементного отношения.
  2. Уменьшение водоцементного отношения приводит к увеличению прочности бетона.
  3. Таким образом, при заданной удобоукладываемости увеличение содержания цемента приводит к увеличению прочности бетона.

Возраст бетона Степень гидратации является синонимом возраста бетона при условии, что бетон не высыхал или температура была слишком низкой. Теоретически, если бетону не дают высохнуть, он всегда будет увеличиваться, хотя и с постоянно уменьшающейся скоростью.Для удобства и для большинства практических применений обычно считается, что большая часть прочности достигается к 28 дню.

Уплотнение бетона Любой захваченный воздух в результате недостаточного уплотнения пластичного бетона приведет к снижению прочности. Если в бетоне было 10% захваченного воздуха, прочность упадет в пределах от 30 до 40%.

Температура Скорость реакции гидратации зависит от температуры.При повышении температуры реакция также усиливается. Это означает, что бетон, выдержанный при более высокой температуре, наберет прочность быстрее, чем аналогичный бетон, выдержанный при более низкой температуре. Однако конечная прочность бетона, выдерживаемого при более высокой температуре, будет ниже. Это связано с тем, что физическая форма затвердевшего цементного теста менее хорошо структурирована и более пористая, когда гидратация протекает с большей скоростью. Это важно помнить, потому что температура оказывает аналогичное, но более выраженное вредное воздействие на проницаемость бетона.

Относительная влажность Если дать бетону высохнуть, реакция гидратации прекратится. Реакция гидратации не может протекать без влаги. Три кривые показывают развитие прочности аналогичных бетонов в различных условиях.

Отверждение Из того, что было сказано выше, должно быть ясно, что пагубные последствия хранения бетона в сухой среде могут быть уменьшены, если бетон надлежащим образом выдержан для предотвращения чрезмерной потери влаги. Подробнее: Прочность бетона на сжатие – кубический тест, процедура, результаты Испытание бетонных стержней на прочность — отбор проб и процедура Неразрушающий контроль бетона и его методы Влияние воздухововлекающего бетона на прочность бетона Факторы, влияющие на реологические свойства свежего бетона .