Фундамент столбчатый поверхностный: Поверхностный опорно-столбчатый фундамент – цена на проект

Содержание

типы опор, инструкция по возведению, советы

Наиболее часто данный тип основания применяется для небольших легких построек. Основным преимуществом является не только то, что опорно-столбчатый фундамент своими руками построить достаточно легко, но и то, что его стоимость будет гораздо дешевле, нежели возведение ленточного основания даже мелкого заложения.

Виды опорно-столбчатых оснований

Прежде чем говорить о популярности и целесообразности применения данного типа основания для той или иной постройки вначале следует разобраться, а что такое опорно-столбчатый фундамент? Конструкция представляет собой заглубленные на определенную глубину опоры, которые впоследствии соединяются между собой ростверком.

Данный тип основания можно устраивать на любых грунтах, в том числе и на суглинистых, склонных к пучению. Несмотря на легкость возведения и меньший объем работ по сравнению с монолитной конструкцией. Такое основание обеспечивает высокую несущую прочность конструкции.

Типы опорно-столбчатого фундамента зависят исключительно от материала, который будет использован для него:

  • бетонные;
  • блочные;
  • бутовые;
  • кирпичные;
  • бутобетонные.

В редких случаях в качестве опор при этом основании может быть использована древесина, но такой фундамент подойдет только для хозяйственных построек ввиду своей малой несущей способности и небольшой долговременности.

В настоящее время большую популярность приобрели столбчатые фундаменты в качестве опор, для которых используются бетонные, кирпичные или блочные опоры.

Так, кирпичные опоры вполне могут обеспечить высокую прочность и долговременность эксплуатации, но они имеют один большой минус. Фундамент из такого материала процесс достаточно трудоемкий. Не каждый вид кирпича подойдет для этого процесса.

Опоры из блоков

Опорно-столбчатый фундамент из блоков сегодня завоевал наибольшую популярность. Это объясняется более короткими сроками возведения основы под постройку (если сравнивать с другими материалами для опорных столбов), экономичностью и высокой прочностью конструкции в результате.

У опорных столбов из блоков есть существенный недостаток. Под них необходимо сделать хорошую гидроизоляцию из бетонной смеси или положить сверху песчано-гравийной подошвы рубероид. Это обусловлено тем, что блоки ввиду своей пористой структуры впитывают воду, которая приводит к их разрушению.

Этот недостаток легко устраняется при устройстве гидроизоляции не только под опорами. После возведения столбы обмазывают битумной мастикой в 2 или 3 слоя и н покрывают сверху геотекстилем.

Специалисты крайне не рекомендуют использовать такое основание на проблемных, пучинистых грунтах, а также на почвах с высокой влажностью и сейсмически не устойчивых. На проблемных грунтах целесообразнее использовать опоры, выполненные из бетонной смеси.

Этапы возведения опорно-столбчатого основания

  1. Первоначально, как и при возведении любого основания необходимо выполнить подготовительные работы. Они заключаются в проведении изысканий для определения свойств почвы на строительном участке, расчетах конструкции и материла. После этого можно переходить к разметочным работам на участке. 
  2. Далее на участке выкапывают или пробуривают скважины для будущих опор. При этом следует учитывать, что столбы должны быть установлены не только в крайних угловых точках, но и под продольными стенами, а также в местах пересечения внутренних стен будущей постройки.
  3. Размеры скважины должны быть больше размеров будущей опоры, поскольку необходимо учитывать еще толщину опалубки и толщину слоя гидроизоляции.
  4. Для того чтобы обеспечить столбам хорошую устойчивость и минимизировать возможную просадку, на дне выкопанных ям почву тщательно трамбуют. После этого устраивают гидроизоляционную подошву. Для этого используют смесь песка и гравия. Слой такой подошвы должен быть не менее 10 см. Отсыпав материал, его увлажняют водой и тщательно утрамбовывают.
  5. Далее, в зависимости от материала выполняют непосредственно возведение столбов.

Опоры из бетонной смеси

Если в качестве основного несущего элемента будут использоваться бетонные столбы, то выполняют следующие операции.

  1. Изготавливают опалубку. Для этого вполне подойдут доски небольшой толщины – 4 см. в некоторых случаях можно сделать несъемную опалубку. Для этого целесообразно использовать трубы из железа или асбестоцемента, диаметром от 10 см.
  2. Бетонные столбы обязательно должны быть армированы. В противном случае от неукрепленного арматурой основания не будет никакого толка, а постройка вряд ли простоит без деформаций много лет. 
  3. Прутки арматуры диаметром от 2 до 14 мм скрепляют между собой вязальной проволокой, но так чтобы вертикальный размер прутков был больше глубины опоры. Это необходимо, чтобы при дальнейших работах приварить к концам вертикальных прутков металлический каркас ростверка. Достаточно будет оставить 20 см.
  4. Когда арматурный каркас подготовлен и опущен в яму, можно заливать бетонный раствор. Во время заливки необходимо тщательно штыковать его, чтобы максимально снизить образование воздушных пустот, приводящих к понижению прочности столбов.
  5. Когда опоры готовы, приступают к строительству ростверка. Этот элемент предназначен для связывания отдельных опорных элементов в одну конструкцию, которая позволит равномерно распределить нагрузки по всему основанию.
  6. Сначала к вертикальным пруткам опор приваривается арматурный каркас. Затем устанавливается опалубка, и бетонная смесь заливается в форму.

Опоры из кирпича

Когда точечный опорно-столбчатый фундамент возводится с опорамииз кирпича, необходимо позаботиться о хорошей гидроизоляции. Для этого на песчано-гравийную подошву укладывают рубероид и выкладывают кирпичи.

Опорные столбы из кирпича необходимо тщательно заизолировать от воды и влажного грунта. Для этого поверхность опоры нужно тщательно заштукатурить. Желательно в раствор цемента добавить немного жидкого стекла.

После того как штукатурка станет прочной, ее поверхность желательно обработать грунтовкой, имеющей антибактериальные свойства. Более простым вариантом гидроизоляции является битумная мастика. Ее наносят в 2-3 слоя, сверху необходимо наклеить геотекстиль, Он необходим для защиты опорных столбов от возможных механических повреждений, вызванных движением грунта.

Опорно-столбчатый фундамент поверхностного типа

Отдельно следует рассмотреть и поверхностный опорно-столбчатый фундамент. Его устраивают для небольших построек, возводимых преимущественно из дерева или бруса: бани, дачные домики и так далее.

Опоры необходимо устанавливать под углами здания, несущими конструкциями. Этот тип основания целесообразно использовать только на устойчивых, плотных грунтах, поскольку глубина заложения опорных столбов небольшая. Для суглинистых почв, грунтов с повышенной влажностью, почв с близко расположенными к поверхности грунтовыми водами, а также на участках с большими перепадами высот такой фундамент устраивать нельзя, независимо от общей массы будущей конструкции.

Как избежать типичных ошибок

Как сделать опорно-столбчатый фундамент вы знаете, но самое главное это постараться при его возведении, избежать распространенных ошибок. Зачастую, возводя основание своими силами, многие путают столбчатый и свайный фундамент и устанавливают опорные столбы по той же технологии, что и сваи. То есть в заранее пробуренные скважины забивают столбы.

На самом деле, эти два типа основания совершенно разные. Опорно-столбчатый фундамент подходит только для легких конструкций: бани, одноэтажные, небольшие по площади каркасные дома или строения из бруса.

Свайный же фундамент выдерживает достаточно большой вес постройки. Сваи, используемые в качестве столбов нельзя устанавливать в заранее пробуренные скважины большего диаметра, поскольку прочность их установки как раз и зависит от того, что их заглубляют в землю при помощи приваренных к ним лопастей.

В заключение можно сказать, что для небольших построек столбчатое основание является самым оптимальным и недорогим вариантом. Но если вы собираетесь установить такой тип фундамента под дом, то обязательно учтите, что это основание нуждается в дополнительной теплоизоляции, поскольку подвала оно не имеет. И если вы не хотите платить зимой за уходящее сквозь пол тепло об этих работах необходимо позаботиться еще на этапе подготовительных работ.

Опорно-столбчатый фундамент своими руками

При планировании сметы и конструкции будущей постройки всегда существует соблазн сэкономить на наиболее затратных этапах строительства. Достаточно разумный и эффективный вариант – использовать вместо «заморочного» малозаглубленного или дорогого точечного-винтового фундамента самый простой и доступный опорно-столбчатый фундамент. Естественно, при условии соблюдения строительных норм и технологии строительства.

Когда прибегают к использованию опорно-столбчатых конструкций фундамента

Стоит ли связываться с опорно-столбчатым типом фундамента, большинство специалистов вразумительного ответа не дадут. Строители авторитетно заявят, что опорно-столбчатый вариант, по сути, представляет собой десяток шлакоблоков, уложенных на цементный раствор, и удел такого фундамента, в лучшем случае, служить опорой для строительной времянки или дачной бани. Причиной такого отношения является простота и дешевизна конструкции, что явно снижает уровень заработков подрядчика.

Сразу подчеркнем особенности конструкции фундамента на столбчатых опорах:

  • Изготавливается конструкция опорно-столбчатого фундамента своими руками за неполные два-три дня, и несущая основа, в зависимости от способа строительства, готова к возведению стен максимум уже через пару недель;
  • При грамотной организации работ и использовании подручных материалов стоимость строительства опорно-столбчатого фундамента, даже без учета затрат на выполнение земляных работ, может составить примерно половину от цены свайно-винтового варианта или простого МЗЛФ схемы;
  • Опорно-точечная конструкция позволяет намного лучше сохранить тепло дома, особенно, если это здание, в котором хозяева бывают не очень часто.

Совет! Надежность любой конструкции фундамента можно проверить только одним методом – практикой, поэтому, прежде чем принимать решение об использовании опорно-столбчатого варианта, посмотрите на практике, как выглядят опоры свайно-винтового столбчатого фундамента реального здания через три-четыре года эксплуатации.

Понятно, что не существует универсальных опорно-столбчатых конструкций, одновременно дешевых, доступных для изготовления своими руками и способных выдержать максимальную нагрузку. Каждый вариант свайно-винтовой опорной конструкции имеет массу условий и ограничений, с которыми приходится считаться при проектировании.

Если в ваших планах построить столбчатый фундамент из готовых железобетонных блоков, ознакомьтесь с основными положениями СТО НОСТРОЙ 2.7.151-2014.

Особенности опорно-столбчатого фундамента плюсы и минусы

С правотой специалистов по обустройству фундаментных систем трудно спорить, опорно-столбчатая конструкция фундамента наилучшим образом подойдет именно для бани или небольшого каркасного дома. Из-за массы «врожденных» пороков, даже в самом усиленном варианте, столбчатый фундамент имеет существенные ограничения по использованию:

  1. Он не подойдет для тяжелого и ассиметричного по нагрузке на опоры кирпичного дома. Поперечная жесткость опорно-столбчатого фундамента даже при заглублении в грунт явно недостаточна, чтобы противостоять горизонтальным подвижкам, пучению или проседанию грунтов и появлению крена коробки здания;
  2. Неглубокая посадка столбчатых элементов фундамента в грунт не позволяет обеспечить высокую нагрузку на столбчатую опору. Первые полметра грунта обладают слабой механической прочностью и всегда подвергаются насыщению большим количеством влаги.

Важно! Столбчатая конструкция фундамента требует забыть об обустройстве подвального или полуподвального помещения. Даже при хитром расположении столбов вырыть яму и выложить коробку подвала между несущими опорами не удастся. Расстояние от ямы котлована до ствола опоры должно быть не менее метра уплотненного грунта.

Как строится опорно-столбчатый вариант фундамента

Построить своими руками полноценную опорно-столбчатую конструкцию фундамента можно по одной из следующих схем:

  • Бетонной отливкой в опалубку будущей столбчатой опоры, установленной на гравийной подушке;
  • Выполнить кладку столбов из кирпича или бутового камня;
  • Сложить столбчатые опоры из стандартных бетонных блоков;
  • Отлить готовые опоры в виде усеченной пирамиды и привязать каждый элемент конструкции к грунту.

Устройство основания незаглубленного для опорно-столбчатого фундамента

В отличие от других фундаментов, конструкция малозаглубленных столбчатых фундаментных опор позволяет очень основательно и качественно выполнить гидроизоляцию, дренаж и отчасти утепление донной части.

Глубина котлована под установку опорно-столбчатой конструкции фундамента зависит от плотности и несущей способности грунта. На мелком песке или каменистой основе можно ограничиться обустройством щебеночной отсыпки по уложенному в грунте слою песка в 10-15 см толщиной. Чем меньше соотношение высоты опорного столба к сечению, тем устойчивее будет опора. Слой гравия и песка можно переложить небольшим количеством гравийного отсева и полотном геотекстиля. Такая подошва будет хорошо освобождаться от воды, что поможет сохранить устойчивость столбчатым опорам на обводненном грунте.

Решение о глубине и мощности подушки принимается в зависимости от жесткости нижнего венца постройки и величины поперечной сдвигающей нагрузки. Для вытянутых и тонких столбов, например, из асбестоцементных труб, глубину необходимо увеличивать, в то же время для опорно-столбчатого фундамента из бетонных блоков достаточно поверхностной отсыпки слоем песка.

Сборные конструкции опорно-столбчатой фундаментной системы

Проще всего построить столбчатые опоры из обычного красного кирпича. В этом случае потребуется отрыть небольшой котлован на 20-25 см глубиной, сделать отсыпку подушки и забетонировать под установку кирпичной колонны опорную площадку в 10-15 см толщиной. Размер площадки выбирается на 30-40% больше сечения опоры.

В толщу бетона заделывается трех или четырехпрутковый арматурный каркас из 8-ми миллиметровой стали. Далее каркас опоры выкладывается из кирпича на проектную высоту. Для обычной деревянной бани 4х6 м подойдет кирпичная стойка шириной в полтора кирпича нормального размера. В процессе кладки необходимо перевязывать уложенные ряды по ложковой схеме и строго контролировать вертикальность опоры. Внутреннюю полость с каркасом заливают бетоном.

Аналогичным способом собирают опорно-столбчатую колонну для фундамента из бетонных блоков, с той только разницей, что раствор для кладки блока желательно готовить по той же пропорции цемент — песок, что и для бетона.

Отливные варианты опорно-столбчатых колонн фундамента

Отливные колонны под опорно-столбчатую конструкцию фундамента обходятся дешевле, но требуют больших затрат времени и труда из-за большого количества подготовительных работ. Технология построения опорно-столбчатых колонн мало чем отличается от способа постройки МЗЛФ:

  1. Для построения опорной колонны потребуется изготовить разборную опалубку из досок или ДСП. Форма под заливку тела колонны устанавливается на подушку из песка и гравия толщиной в 10-15 см. Глубина котлована под заливную опору может достигать 60-70 см, в зависимости от конструкции здания и рельефа участка. Внутреннюю поверхность формы выкладывают полиэтиленовой пленкой и устанавливают арматурный каркас на всю высоту опоры;
  2. Опалубку и арматуру тщательно выравнивают по вертикали и натянутым шнурам разметки положения опор, после чего аккуратно заливают тяжелым бетоном. По мере заливки бетонную массу в опалубке трамбуют ручной трамбовкой. После заполнения в верхней плоскости столбчатой опоры заделывают резьбовые шпильки или проволочную арматуру для соединения с поперечным брусом перевязки;
  3. Верхнюю часть столбчатых опор засыпают тонким слоем влажного песка и закрывают пленкой, чтобы снизить образование трещин по мере застывания отливки. Через два-три дня наружная поверхность столбчатой опоры наберет первичную прочность, а еще через неделю опалубку можно демонтировать и приступить к подрезке и выравниванию опорной поверхности.

Важно! В течение суток после снятия опалубки необходимо выполнить обмазку поверхности колонн слоем гидроизоляции, обвязать рулонной гидроизоляцией ту часть бетонной опоры, которая будет находиться ниже уровня грунта,и отсыпать пространство между бетоном и стенками котлована слоем керамзита, и далее – смесью песка и глины.

Заключение

При соблюдении технологии бетонные армированные колонны опорно–столбчатой системы фундамента позволяют обеспечить высокую жесткость всей конструкции. Если у вас есть опасения касаемо возможного опрокидывания опор, конструкцию можно усилить дополнительной связкой внешнего ряда столбов. Чаще всего связку оформляют в виде перемычки из пучка арматурных прутьев, протянутых между соседними столбчатыми опорами на ½ высоты и связанных со стальным каркасом столбов.

Опорно столбчатый фундамент из бетонных блоков


Довольно часто в индивидуальном строительстве используется ленточный фундамент. Но его использование оправдано не всегда. Например, при возведении беседок, небольших хозяйственных построек, бани или гостевого домика можно обойтись столбчатым основанием. Такая конструкция позволит вам сэкономить деньги на материалах, уменьшить объёмы земляных работ и получить прочное долговечное основание. Кроме этого опорно-столбчатый фундамент может использоваться практически на любом типе грунтов. В нашей статье мы рассмотрим разновидности таких конструкций и особенности их выполнения.

Конструктивные особенности

В некоторых случаях вместо сплошной монолитной ленты под постройку намного выгоднее сделать опорно-столбчатый фундамент

В некоторых случаях вместо сплошной монолитной ленты под постройку намного выгоднее сделать опорно-столбчатый фундамент. Это целесообразно в следующих ситуациях:

  • Если постройка отличается компактными размерами и сооружается из лёгкого штучного материала (пенобетона или газосиликатных изделий).
  • Также на таких основаниях можно строить каркасно-щитовые и каркасно-панельные дома.
  • Дома из бревна и бруса тоже могут стоять на столбчатом основании.

В таких конструкциях нагрузка от постройки передаётся на опоры, а от них на грунт. В некоторых случаях для равномерного распределения нагрузки и повышения прочности основания используется ростверк – это балка, соединяющая все опоры в одну конструкцию.

Если почитать отзывы, вы поймёте, что опорно-столбчатое основание можно делать из бетонных блоков, кирпича, брёвен, труб, бетона и железобетона, природного камня. Чаще всего делают столбы из готовых блоков.

Преимущества и недостатки

Скорость сооружения такого основания значительно выше, чем время на устройство ленточного фундамента

Опорно-столбчатый фундамент не случайно пользуется такой большой популярностью. У него есть множество достоинств:

Рекомендуем к прочтению:

  • Трудозатраты и финансовые расходы на обустройство фундамента значительно сокращаются. Также уменьшаются объёмы земляных работ, что позволяет сэкономить время и деньги.
  • Скорость сооружения такого основания значительно выше, чем время на устройство ленточного фундамента. Например, столбчатое основание для постройки размером 6х6 м можно выполнить за один день.
  • Расчёт, проектирование и монтаж основы на столбах можно выполнить своими руками без привлечения профильных специалистов.
  • Устройство такого фундамента на участке с неустойчивой верхней породой или в условиях глубокого промерзания намного выгоднее и экономичнее, чем монтаж сильно заглублённого ленточного основания.

Среди недостатков опорно-ленточного фундамента стоит перечислить следующее:

  • Такое основание не подходит для массивных тяжеловесных зданий из кирпича, железобетона и природного камня.
  • Также не стоит делать столбчатую основу под многоэтажные дома.
  • При использовании такого фундамента не получится обустроить гараж.

Разновидности

При строительстве поверхностного фундамента или в условиях горизонтальных подвижек грунта делается столбчатый фундамент с ростверком

Опорно-столбчатый фундамент подразделяется в зависимости от глубины заложения на следующие виды:

  1. Заглублённые основания. Подошва такого фундамента должна располагаться на 200-300 мм ниже точки промерзания земли. Такой вариант устройства используется при строительстве на пучинистых глинистых, суглинистых грунтах. Если в таких условиях заложить фундамент выше точки промерзания, то зимой силы пучения будут выталкивать конструкцию из земли.
  2. Мелкозаглублённый фундамент используется на песчаных, супесчаных и других грунтах, которые менее подвержены пучению. В этом случае подошву фундамента можно погрузить на 50-70 процентов от отметки промерзания. Иногда такой фундамент можно выполнить и на пучинистых грунтах, если выбрать глинистую породу до точки промерзания и засыпать треть траншеи смесью гравия и песка.
  3. Поверхностный фундамент можно использовать на прочном скалистом грунте. В этом случае подошва фундамента располагается на поверхности земли без заглубления в грунт. Такой опорно-столбчатый фундамент проще всего сделать самостоятельно, но нужно придать зданию дополнительную устойчивость.

Важно: при строительстве поверхностного фундамента или в условиях горизонтальных подвижек грунта делается столбчатый фундамент с ростверком. То есть поверх опор укладываются скреплённые между собой балки. Такой же вариант применяется при строительстве стен из штучных газобетонных блоков или других лёгких штучных материалов.

Все ростверки можно разделить на три вида:

  • высокий ростверк располагается выше поверхности земли;
  • низкий элемент делается на уровне земли;
  • заглублённая балка частично погружена в грунт.

Сборный столбчатый фундамент

Как показали отзывы, чаще всего столбы основания делают из бетонных блоков или кирпича

Как показали отзывы, чаще всего столбы основания делают из бетонных блоков или кирпича. Чтобы удобно было вести кладку из блоков или кирпича, яму под опорно-столбчатый фундамент делают как можно больше.

Дальше столбчатый фундамент из бетонных блоков сооружают в такой последовательности:

Рекомендуем к прочтению:

  1. После откапывания ямы нужной глубины на дне выполняется песчано-гравийная подушка высотой 10-15 см. Слой песка и щебня смачивается и трамбуется.
  2. Далее делается бетонная подошва. Это основание поможет защитить конструкцию от сил пучения. Габариты подошвы должны быть на 15-20 см больше сечения опоры. Высота бетонной подошвы равна 10-15 см. Вместо подошвы из бетона можно выполнить основу из трапециевидных блоков. Таким образом, вы быстро соорудите широкую подошву и можете вести дальнейшие работы.
  3. Тело столба делаем из бетонных стеновых блоков размером 20х20х40 см. Если для выполнения столба будет использоваться кирпич, то нужно брать прочный сорт, называемый железняк. Для скрепления элементов используем густой цементный раствор.

Важно: кирпичный столб из железняка можно укладывать прямо на подушку из песка и щебня. Минимальные размеры такой опоры 250х250 мм.

  1. Поскольку столб из блоков или кирпича должен быть строго вертикальным, его положение проверяют во время кладки при помощи уровня и отвеса.
  2. После завершения кладки столб из блоков или кирпича нужно защитить от влаги, поступающей из почвы. Для этого его обмазывают битумной мастикой в 2-3 слоя, оклеивают рубероидом или геотекстилем.

Железобетонный столбчатый фундамент

Чтобы выполнить опоры из железобетона, необходимо соорудить опалубку

Чтобы выполнить опоры из железобетона, необходимо соорудить опалубку. Работу по обустройству такого фундамента ведут в таком порядке:

  1. После подготовки территории и выполнения разбивки можно приступать к копанию ям под столбы. Габариты ямы зависят от характеристик грунта. В прочном грунте стенки ямы не будут обсыпаться, поэтому можно копать углубление точно по размеру опор, а в качестве опалубки использовать рубероид, который одновременно будет выполнять функции гидроизоляции. В сыпучем грунте копают яму значительно больше опор, и изготавливают опалубку из досок или щитов.
  2. На дне ямы выполняется прослойка из смеси щебня и песка, которая после смачивания водой тщательно трамбуется. Высота подушки 10-20 см, концентрация песка – 60 процентов.
  3. Поверх подушки укладывается слой рубероида или полиэтилена, чтобы предотвратить впитывание влаги из бетона в грунт.
  4. Если грунт прочный, и стенки ямы будут выполнять функции опалубки, их нужно покрыть рубероидом. В сыпучем грунте изготавливается и устанавливается деревянная опалубка с распорками.
  5. После этого на дно конструкции с опалубкой заливается бетон М 200 слоем высотой 5 см.
  6. Когда раствор схватиться, можно устанавливать арматурный каркас. В данном случае бетонная прослойка снизу обеспечит защиту арматуры от коррозии. Такое же 5-ти сантиметровое расстояние стоит соблюдать со всех сторон от арматуры до опалубки.
  7. Теперь бетонный раствор можно заливать на всю высоту столба. Вибратором удаляем пузырьки воздуха из раствора.
  8. Если яма была больше габаритов опор, то после застывания бетона и снятия опалубки выполняется обратная засыпка котлована.

В некоторых случаях целесообразно выполнить железобетонные опоры по буронабивной технологии. В этом случае роль несъёмной опалубки будут выполнять трубы из стали, пластика или асбеста. Помимо усиления конструкции трубы будут выполнять функции гидроизоляции. В этом случае работы ведут так:

  1. Бурят скважину при помощи специального бура.
  2. Устанавливают туда трубу.
  3. После этого в трубу помещают арматурный каркас и заливают бетон.

Совет: если на опоры будет укладываться ростверк, то в верхней части опор оставляют выпуски арматуры длиной 15-20 см.

Если стены постройки будут выполняться из брёвен или бруса, то выпуски арматуры должны быть полностью скрыты в бетоне, а в верхней части опор монтируется  шпилька. Длина шпильки должна быть равна высоте бруса или бревна нижней обвязки.

Варианты возведение фундамента при строительстве деревянных домов

Свайно-винтовой фундамент

Фундамент свайно-винтовой может устанавливаться на различные грунты, кроме каменистых. Он состоит из винтовой сваи, покрытой полимерным материалом для предотвращения коррозии, которая после завинчивания заполняется бетоном. Данный тип фундамента предназначен под строительство брусовых, каркасных или бревенчатых домов. Самый распространённый размер сваи длинной 2.50м. Промежуток между сваями не должен превышать более 2.50м.

Поверхностный ленточный фундамент

Фундамент поверхностный ленточный устанавливается на песчаную подушку высотой 200 миллиметров и применяется на глинистом, песчаном, супесном и суглинистом грунте. Для наибольшей прочности его армируют продольной и поперечной арматурой. Опалубка фундамента выполняется из обрезной доски, лента заливается бетоном. Применяется этот фундамент при строительстве каркасного и брусового дома. Самый распространённый размер фундамента, это высота цоколя 400мм и ширине 250-300мм.

Мелкозаглубленный ленточный фундамент

Ленточный мелкозаглубленный фундамент устраивается на песчаной подушке с высотой 200 миллиметров и применяется на глинистых, суглинистых, супесных и песчаных грунтах. Глубина его заложения – 200-500 миллиметров. Высота 400-600мм. Для максимальной прочности фундамент армируют поперечной и продольной арматурой. Его опалубка изготавливается из обрезной доски, а лента заливается бетоном. Используется при строительстве брусовых, бревенчатых или каркасных домов.

Заглубленный ленточный фундамент

Ленточный заглубленный фундамент устраивается на песчаной подушке высотой 200-300 миллиметров. Глубина его заложения – 700-1400 миллиметров. Для достижения максимальной прочности фундамент армируют поперечной и продольной арматурой, делают опалубку из обрезной доски и заливают ленту бетоном. Устанавливать фундаменты данного типа можно при строительстве брусовых, каркасных, бревенчатых домов на глинистые, суглинистые, супесные и песчаные грунты.

Ленточно-свайный фундамент

Ленточно-свайный фундамент устраивается на песчаной подушке 200-300 миллиметров высотой. Для максимальной несущей способности сваи фундамента армируют продольной арматурой с перевязкой в нескольких местах. Высота фундамента может доходить до 1800 миллиметров в зависимости от наклона участка. Ширина фундамента 250-500 миллиметров в зависимости от толщины внешних стен дома.Опалубку для него производят из обрезной доски, ленту и сваи заливают раствором бетона. Устанавливают данный фундамент на все виды грунтов, кроме каменистых. Используют его при возведении каркасных, бревенчатых и брусовых домов.

Фундамент «лента со сваями»

Данный вид фундамента обладает повышенной прочностью. При его устройстве в качестве дополнительного укрепления через каждые несколько метров устанавливают буронабивные сваи, которые заглубляют на глубину промерзания грунта. Используется этот фундамент при строительстве каркасных домов и строений из бруса.

Столбчатый фундамент

Применение столбчатого фундамента целесообразно при возведении домов, а также бань из бруса с размером не более 6х6 метров. Фундамент укладывается на песчаном основании и состоит из тумб, которые изготавливаются на основе цементных блоков, соединенных раствором бетона между собой.

Столбчатый фундамент своими руками

Если планируется построить легкую конструкцию такую как садовый дом, веранда, баня или сарай, можно остановить выбор на столбчатых фундаментах. Они бывают поверхностные, среднего заглубления и заглублённые.
Поверхностные изготавливаются из кирпича и бетонных блоков. Для изготовления таких свай нужно выкопать на месте бушующей сваи яму глубиной 10 см. Она засыпается песком и трамбуется. Сверху на песок ложится гидроизоляция, на неё выкладывается столбик из кирпича или бетонных блоков, а в середину между кирпичами заливается бетон для дополнительного скрепления конструкции.
Средне заглублённые изготавливаются из кирпича, бетонных блоков, монолитного бетона и дерева. Для их строительства копается яма глубиной 50-70 см квадратного сечения. На дно этой ямы насыпается песок толщиной 10 см и трамбуется. Делается гидроизоляция, и выкладываются столбики из кирпича или бетонных блоков на требуемую высоту во внутрь их заливается бетон для скрепления конструкции. Потом пустоты засыпаем землёй и утрамбовываем до уровня земли. Для изготовления монолитного столбика надо будет сделать квадратную опалубку на нужную высоту и залить бетон в яму 10-15 см, в залитую смесь вставить арматуру, скрепить её и продолжить заливку дальше. К деревянным столбам в нижней точке приделывается деревянная крестовина, которая будет служить опорой. Надо эту конструкцию обработать антисептическими материалами и ещё желательно покрыть битумной мастикой. Она вставляется в подготовленное углубление, засыпается землёй и все очень сильно утрамбовывается.


Заглублённые сваи бывают бетонные, сделанные из асбестовых труб и винтовые. Они заглубляющая на глубину от одного до двух метров. Для изготовления бетонных свай надо пробурить ручным или бензо буром скважину на нужную глубину, сделать на дне подушку из писка и щебня. Изготавливается и устанавливается на место сваи опалубка. Делается из арматуры каркас, который опускается в скважину, затем в неё заливается бетон. Ещё очень интересный пример применения асбестовых труб для изготовления свай. Для этого надо пробурить скважину диаметром равным диаметру асбестовой трубы, сделать подготовку дна из песка и щебня. Вставляется в скважину труба, потом в неё вставляется арматура, и внутрь заливается бетон. Ещё один вид который сейчас набирает популярность это винтовые сваи, они изготавливаются из метала и заворачиваются в землю на нужную глубину и являются надёжным основанием для любой конструкции.
Для всех фундаментов про которые было рассказано в этой статье есть одно общее требование, все сваи должны быть точно выставлены по одному уровню. На них сверху ложится брус или бревно которые являются основаниями новых строений.

Столбчатый фундамент для дома

Столбчатый фундамент представляет собой комплекс опор, служащих основанием для дома. Каждая из них устанавливается в угле здания, местах пересечения стен, а также по их линии с шагом 1,5–3,5 м.

Введение

Для его устройства может быть применен практически любой строительный материал, обладающий достаточно высокой несущей прочностью: бетон, кирпич, пилолес, металлопрокат и камень. При этом столбчатую конструкцию фундамента следует использовать только при строительстве легких домов — деревянных, модульных, щитовых или каркасных.

Помимо существенных недостатков (невозможность возведения тяжелых строений и устройства подвалов или цокольных этажей), столбчатый фундамент имеет ряд ценных преимуществ:

  • экономичность — выражается не только в экономии материалов для устройства фундамента, но и в значительном снижении расходов на  земляные работы и гидроизоляцию;
  • универсальность — заключается в выборе строительных материалов для устройства фундамента по типу конструкции стен;
  • адаптация системы опор под рельефы любой сложности и крутизны.

Нельзя не отметить главную особенность, позволяющую устраивать прочные и надежные основания под дом там, где невозможно заложить ленточный фундамент. Например, в местах регулярных приливов и отливов, в зонах с сезонным подтоплением паводковыми водами, в регионах, где толщина снежного покрова может достигать более 1 м. Даже в этих случаях дома на столбчатом фундаменте будут оставаться сухими и теплыми круглый год, если правильно учесть уровень подъема вод и объемы снегопадов.

Не менее важные достоинства столбчатого фундамента — их доступность, нетрудоемкость и эффективность устройства на пылевых и лёссовых грунтах, где поверхностный слой почвы имеет способность моментально разжижаться при обильных ливневых осадках либо во время интенсивного таяния снегов. На таких участках для закладки плитного или ленточного фундамента требуется полный комплекс земляных работ по замене на более плотный грунт и вытрамбовке места застройки.

В остальном столбчатый фундамент устраивают на любых грунтах в заглубленном или мелкозаглубленном исполнении. Исключения составляют лишь заболоченные участки, а также места, где поверхностный слой почвы подвержен горизонтальным подвижкам вследствие эрозии, оползней или землетрясений

На пучинистых грунтах глубину заложения столбов производят ниже уровня сезонного промерзания грунтов не менее чем на 30 см. При этом стоит отметить, что столбчатый фундамент испытывает меньшие нагрузки от пучения грунтов в сравнении с ленточным фундаментом.

Размещая столбчатый фундамент на участке с перепадом высот, следует учесть, что все столбы фундамента должны быть заглублены до одного и того же уровня и иметь одинаковое сечение.

Схемы расположения элементов столбчатого фундамента на:

  • а — ровных участках;
  • б — сложных рельефах;
  • в — крутых склонах.

Для устройства подобного фундамента необходимо выполнить:

  • разметку;
  • копание ям под столбы;
  • песчаную или гравийную подсыпку, где это требуется;
  • устройство опалубки, установку арматурного каркаса, замоноличивание столбов фундамента, распалубку — для монолитных столбов;
  • подготовку необходимого расходного материала — для кладочных и сборных столбов;
  • устройство гидроизоляции на влажных и пучинистых грунтах;
  • обратную засыпку пазух вокруг ям.

Разметка

Разметка для столбчатого фундамента производится немного быстрее, проще и легче, чем для ленточного фундамента, так как горизонтальный уровень устанавливается только по осевым линиям опор без предварительной планировки пятна застройки. Сначала определяют внешние границы периметра по проектным данным. Затем, учитывая сечение будущих опор и их высоту над уровнем земли, протягивают шнуры осевых линий фундамента. Для этого отступают от внешних границ периметра на значение, которое вполовину меньше ширины опор.

Аналогичным образом протягивают шнуры по центрам опор, которые будут расположены в местах пересечения внешней стены с перегородками и перегородок между собой.

Последовательность разметки под столбчатый фундамент (вид сверху):

  • а — определение внешних границ периметра;
  • б — задание осевых линий фундамента шнурами;
  • в — обозначение центров опор;
  • г — определение границ раскопок ям.

В завершение разметки определяют границы раскопок для ям, размеры которых зависят от технологии и материалов устройства фундаментных столбов. Для этого шаблон прикладывают к земле, совмещают центр шаблона с перекрестием шнуров и очерчивают его по периметру. На данном этапе определяют местоположение и границы раскопок для промежуточных опор, где протяженность линии закладки фундамента превышает 3,5 м.

Разметка границ для раскопки ям столбчатого фундамента с помощью шаблона:

  • а — из листового материала;
  • б — в виде рамки;
  • в — результат очерчивания шаблона.

Шаблон можно изготовить из любого плотного листового материала: картон, ДВП, ДСП и т. п. либо сколотить из реек в виде рамки. Он должен соответствовать планируемым размерам ямы. Центр шаблона определяют местом пересечения диагоналей: линиями или нитями. В результате очерчивания шаблона на земле остается точное местоположение опоры с границами раскопки под нее.

Устройство монолитных столбов

Технология закладки монолитного столбчатого фундамента имеет множество вариантов, но конструкционная особенность всех видов едина и заключается в организации подошвы и опоры. Размеры, форма и структура столбов определяются на стадии проектирования и рассчитываются с учетом характеристик грунта и веса будущего здания. В данном разделе рассматривается наиболее простая и самая распространенная в частном строительстве конструкция.

При закладке монолитного столбчатого фундамента предварительно выкапывают квадратную яму со сторонами 75×75 см, учитывая также глубину промерзания (рис. а). Затем организовывают песчаную или гравийную подушку (рис. б) в местах, где это необходимо по климатическим показателям и характеристикам грунта. На сухих и плотных почвах, не подверженных пучению, выполнять подсыпку необязательно.

На подготовительном этапе также собирают армированную решетку со сторонами 65×65 см и армированный каркас сечением 20×20 см, длина которого должна быть короче высоты столба на 10–15 см. Затем из щитов опалубки сколачивают короб с внутренними размерами 30×30 см и производят пробный монтаж с центрированием по месту и с устройством всех необходимых укрепляющих и крепежных элементов. После чего, не разбирая короб, освобождают его от распорок-подпорок и вынимают из ямы.

После устройства дна заливают слой бетонной смеси около 10–15 см (рис. в). Бетонную смесь готовят по тем же рецептурам, что для ленточного фундамента. Затем поверх заливки укладывают армированную решетку и устанавливают каркас (рис. г). После этого снова заливают слой бетона, достигая общей толщины в пределах 20–25 см (рис. д). Такую же процедуру проводят со всеми предварительно выкопанными ямами, тем самым давая бетону немного схватиться, но не окрепнуть.

По завершении проливки подошвы приступают к установке короба (рис. е) по заранее выставленным меткам крепежа, чтобы не сбить центровку и сохранить горизонтальность оси (ее отклонение, по строительным нормам, не должно превышать 2 см). Далее заполняют опалубку бетонным раствором и выдерживают определенное время аналогично рекомендациям для ленточного фундамента.

На завершающем этапе бетонных работ производят распалубку (рис. ж) и обратную засыпку (рис. з). Если по проекту предусмотрена гидроизоляция, то ее выполняют в промежутке между двумя последними операциями, используя способы, предложенные в предыдущем разделе.

Последовательность закладки одной опоры ленточного фундамента:

  • а — выкапывание квадратной ямы;
  • б — организация песчаной или гравийной подушки;
  • в — заливка бетонной смеси слоем около 10–15 см;
  • г — укладка армированной решетки и установка каркаса;
  • д — заливка подошвы толщиной 20–25 см;
  • е — установка короба;
  • ж — распалубка;
  • з — обратная засыпка.

Отдельное внимание следует уделить системе креплений столбов фундамента к нижней обноске основания стен. Для этого закладывают арматурный каркас длиной больше высоты столбов, тем самым обеспечив металлические выпуски для сварных соединений (рис. а), либо прикрепляют к арматурному каркасу анкерные закладные, которые впоследствии послужат основой для болтового крепления (рис. б).

Варианты соединения столбчатого фундамента с основаниями стен за счет:

  • а — выпуска арматуры;
  • б — анкерных болтов.

После окончания всех работ по установке опор и обратной засыпки производят устройство так называемых забирок: то есть заполняют пространство между столбами по линии расположения наружных стен и перегородок. Это обеспечит дополнительную теплоизоляцию дома и оградит подпол от продувания. В местах, где предусмотрено прохождение паводковых, талых и ливневых вод под домом между столбами, а также где наблюдается разжижение поверхности почвы от осадков, устройство забирок исключают.

Устраивать любые виды столбчатых фундаментов на зиму крайне нежелательно, особенно на пучинистых грунтах, иначе к весне опоры могут перекоситься и даже поменять изначальное местоположение. Тем самым нарушится их осевое, вертикальное и горизонтальное положение, что сделает невозможным возведение дома. В крайнем случае, если не удается приступить к возведению стен перед наступлением холодов, необходимо установить нижний венец или обноску основания постройки, жестко перевязав верхушки всех без исключения столбиков, включая заложенные под перегородки.

Устройство деревянных столбов

Деревянный столбчатый фундамент, сооруженный из бревен или бруса, относится к самым экономичным, нетрудоемким и простым сборным конструкциям. Правда, для продления его срока службы придется потратить некоторое время и приложить усилия. Следует добавить, что данный вид фундамента используется для возведения только деревянных домов из бревен, бруса и каркасов. Модульные и щитовые сооружения, для которых в основании предусмотрена металлическая обвязка, устанавливать на деревянные опоры не рекомендуется, так как верхняя часть деревянного столба может продавиться и лопнуть от воздействия твердой поверхности металла.

На подготовительном этапе выкапывают ямы, в том числе с учетом глубины промерзания. По их количеству нарезают столбики и элементы лап (рис. а). Для столбиков рекомендуется использовать бревна диаметром не менее 15 см и брус габаритами более 10×10 см. Высоту столбика с лапами закладывают по выпуску над уровнем земли и заглублению на 50–70 см. Лапы отрезают длиной не менее 80 см. На пучинистых грунтах заглубляют столбики так, чтобы верхняя плоскость лап находилась ниже уровня глубины промерзания на 5–10 см (рис. е) и не подвергалась напряжениям от пучения почвы.

Затем все поверхности деталей столбчатого фундамента обжигают на костре, в печке или паяльной лампой на глубину около 2–3 мм и обильно обрабатывают антисептиком (рис. б). Это предотвратит гниение древесины и вредоносное влияние насекомых. Затем каждую из деталей тщательно просмаливают или покрывают битумом, битумным лаком (рис. в) и оставляют на один–три дня до полного высыхания. В декоративных целях все эти операции проделывают только на подземной части столбиков и лап, а наземную покрывают лакокрасящим составом

Просохшие детали лап соединяют друг с другом в пазах, формируя в перекрестие, и фиксируют с помощью шурупов к нижнему основанию столбиков (рис. г). Полученную конструкцию переворачивают и закрепляют столбики к лапам с помощью металлических скоб, обеспечивая дополнительное усиление на углах (рис. д). В заключение устанавливают готовую опору на дно ямы (рис. е) и засыпают землей. Дополнительные меры по гидроизоляции не требуются.

Последовательность подготовки и монтажа деревянных столбиков для фундамента:

  • а — нарезка столбиков и лап;
  • б — обработка антисептиком;
  • в — просмаливание, покрытие битумом, битумным раствором либо лакокрасящим составом;
  • г — формирование лап и их фиксация к столбикам;
  • д — установка скоб для обеспечения дополнительного усиления;
  • е — установка опоры.

Устройство металлических столбов

Закладка фундамента на металлических опорах практически ничем не отличается от устройства подобного на деревянных столбах: ни подготовкой ям соответствующих габаритов, ни технологией установки, ни конструкцией опор, если не учитывать сам материал — его повышенную устойчивость к нагрузкам, более длительный срок эксплуатации и расширенные возможности крепления к деревянным и металлическим основам стен.

Для подготовки деталей опор желательно использовать швеллер или двутавр высотой не менее 10 см и толщиной стенок более 3 мм. При возможности стоит приобрести изношенные железнодорожные рельсы — они значительно дешевле нового заводского металлопроката, устойчивее к нагрузкам и атмосферным воздействиям.

Сборка опоры сводится к свариванию элементов лапы между собой (рис. а) и закреплению ее к нижней части стойки. Для повышения прочности и надежности металлического столба выпуски крестовины желательно перевязать со стойкой (рис. б), приварив раскосы из уголка, арматуры и прочих обрезков металла. Виды металлопроката для столбика и лапы могут быть различными (рис. в)

Последовательность сборки металлических столбиков для фундамента:

  • а — формирование лапы и крепление ее к стойке сваркой;
  • б — усиление крепления раскосами;
  • в — различные комбинации металлопроката при формировании опор.

Если основания стен каркасных, щитовых или модульных домов выполнены из металла и по проекту предусмотрено приваривание их к фундаменту, то верхушки столбиков оставляют без изменений. Если же планируется соединение болтами, то устраивают полочку из металлической пластины с соответствующими отверстиями.

Под деревянные основания готовят металлические полочки с большей площадью для соприкосновения, чтобы древесина не продавилась от нагрузки. Кроме того, пластины вырезают различной формы по месту расположения столбов на углах (рис. а), в точках ответвлений перегородок (рис. б) и по линии стен (рис. в) с выпусками не менее 40 см. Впоследствии между металлическими и деревянными частями устанавливают резиновые или пластиковые прокладки с высокой степенью эластичности толщиной около 10 мм (рис. г). Это избавит от скрипа и предотвратит изнашивание нижнего венца или обноски деревянной постройки.

Подготовка металлических столбиков для соединения с основанием деревянного дома формированием полочки:

  • а — на углах;
  • б — в местах сопряжения внешней стены с перегородкой;
  • в — по линии стен;
  • г — схема узла соединения столбика фундамента с основанием дома.

Устройство кладочных столбов

Кладочный столбчатый фундамент закладывается по технологии, рекомендованной для ленточного фундамента с использованием бута, кирпича и камней, включающей выбор прочного и не поглощающего влагу материала, межрядное армирование, сортировку по размерам и т. д. Вместе с тем имеется ряд особенностей, на которые необходимо обратить особое внимание:

  • ямы выкапывают со сторонами не менее 1×1 м, чтобы обеспечить минимально комфортные условия для работы каменщика;
  • для увеличения устойчивости конструкции и уменьшения напряжения на столбики от пучения грунтов необходимо правильно обустроить подошву — расширенное основание опорной части;
  • ввиду высоких требований к качеству кладки столбчатых опор необходимо привлекать к работам только квалифицированных специалистов.

Правильность обустройства подошвы обеспечивается кладкой опоры в виде усеченной пирамиды с основанием 75х75 см и верхней опорной площадкой не менее 35х35 см (рис. а) либо заливкой подошвы из железобетона (рис. б). Подошва закладывается так же, как для железобетонных столбов. Обустраивать кладочную подошву и сооружать на ней опору, как показано на рисунке в, нельзя — в этом случае опора просто-напросто продавит подошву, которая будет не способна обеспечить распределение нагрузки от веса дома по своей площади (направление векторов нагрузок указано стрелками).

Все условия закладки опор необходимо соблюдать независимо от выбранного материала (кирпич, бут, камень). Вместе с тем существуют требования к габаритам кладки в зависимости от места расположения столбиков. На рисунке указаны размеры для промежуточных столбиков, установленных по линии стен. На углах и в месте пересечения наружных стен с перегородками подошву обустраивают со сторонами 100х100 см, а опорную площадку — не менее 50х50 см.

Схемы закладки опор столбчатого фундамента с:

  • а — подошвой пирамидальной формы;
  • б — железобетонной подошвой;
    в — неправильной кладочной подошвой.

Обустройство подушки и гидроизоляции проводят с учетом местных климатических условий и характеристик почвы. На сухих плотных глинистых, гравелистых и песчаных грунтах проводить данные мероприятия необязательно. Исключения составляют лишь кирпичные кладки, для защиты которых от влияния поверхностных ливневых, паводковых и талых вод рекомендуется произвести оштукатуривание поверхностей и покрытие битумом.

Устройство столбов из труб

Данный вариант устройства столбчатого фундамента относится к самым современным и технологически эффективным конструкциям. У него наилучшие показатели прочности, надежности и срока эксплуатации. По части финансовых затрат фундамент из труб дороже деревянного, металлического и кладочного, но значительно дешевле железобетонного. По трудоемкости он уступает лишь столбчатым фундаментам из дерева и металлопроката.

В качестве исходного материала можно взять любые трубы с внутренним диаметром не менее 150 мм, которые применяются для прокладки коммуникаций, в том числе изношенные, так как они будут использоваться в виде несъемной опалубки. Наилучший вариант среди различных  видов труб — из ПВХ. Они самые доступные и дешевые, к тому же после установки столбов и обратной засыпки обеспечивают качественную гидроизоляцию.

Перед устройством столба из трубы откапывают яму со сторонами 75х75 см и сооружают центровочный каркас по схеме. Сначала из деревянных брусков сечением 50х25 мм сколачивают две рамки, сквозь которые могла бы свободно и плотно входить труба. Затем по четырем сторонам ямы вбивают колышки, к которым посредством распорок и подпорок крепят рамки: одну — на уровне земли, другую — ближе к верхнему концу трубы.

Центровочный каркас должен представлять собой прочную конструкцию, поэтому все его детали фиксируются друг к другу с помощью шурупов. Одного каркаса для устройства всех опор фундамента вполне достаточно. По окончании установки одного столба колышки можно выдернуть, а каркас аккуратно снять и перенести к другой яме.

Схема устройства опоры столбчатого фундамента:

  • а — вид сверху;
  • б — в разрезе, г
  • де 1 — труба; 2 — рамка; 3 — колышек; 4 — распорка.

Перед началом устройства столба трубу вынимают из каркаса и закладывают подошву под опору с соблюдением технологий, рекомендованных для монолитного столбчатого фундамента (рис. а). В заливку внедряют армированную решетку и, где необходимо, организуют песчаную или гравелистую подушку. Затем трубу вдевают в рамки и нижний конец опускают на поверхность свежей заливки так, чтобы верхний конец находился на уровне горизонтальной разметки по шнуру. Нижний усиливают бетоном, заливая его в виде конуса (рис. б), и дают немного схватиться раствору (15–30 мин). В завершение наполняют трубу доверху бетоном, тщательно уплотняя смесь вибрированием, и закладывают анкер для болтового соединения (рис. в) либо металлическую пластину для сварного соединения с основанием стен.

Последовательность устройства опоры столбчатого фундамента из труб:

  • а — организация подошвы опоры;
  • б — установка трубы;
  • в — наполнение трубы бетоном (в разрезе),
  • где 1 — подсыпка; 2 — бетон; 3 — каркас; 4 — труба; 5 — анкер

Виды фундаментов: ленточный, столбчатый, фундаментная плита

*Стоимость работ и материалов по фундаменту включает в себя все необходимые работы и затраты.

Виды часто используемого фундамента

 Строительство дома – это самый важный шаг в жизни каждого человека. Всю работу по возведению жилища можно сделать самостоятельно или воспользоваться услугами профессионалов. Однако перед тем как начать строить, важно понимать, что качество и надежность дома во многом зависит от фундамента, ведь он выдерживает максимальные нагрузки на протяжении всего срока эксплуатации. А чтобы правильно его построить, необходимо разбираться в конструкции и возможных вариантах различных фундаментов.

Учитывая природные условия, местность и нагрузки, конструкция и вид фундамента бывает разной. Вот основные виды фундаментов для строительства домов:

  1. Ленточные виды фундаментов располагаются  под самонесущими и несущими стенами, выполняются в виде сплошной непрерывной монолитной ленты.
  2. Плитным фундаментом заливают цельные монолитные плиты, которые обеспечивает равномерное распределение нагрузки.
  3. К столбчатым фундаментам относятся такие виды, которые строится из отдельных опорных конструкций, которые устраивают под стенами, колоннами. Опоры выставляют с определенным шагом.
  4. Свайные фундаменты состоят из опор и ростверка, которые хорошо заглублены в грунт. Ростверк делают в виде ленты, которая объединяет сваи.

Каждый вариант фундамента отличается глубиной заложения, способом исполнения и материалом. У каждого варианта различных фундаментов имеется своя область применения и особенности сооружения.

Ленточный фундамент

Наиболее распостроненным фундаментом, являются ленточный монолитный, это универсальный вариантов основания для возведения дома. Большинство людей строят на ленточных фундаментах, когда планируют развернуть строительство загородного дома или коттеджа.

Ленточный фундамент – это сплошная бетонная лента, которая располагается под несущими и под внутренними стенками, а также в тех участках, где будут опорные колонны. На каждом отрезке он имеет одинаковое сечение и форму. В большинстве домов он имеет прямоугольное сечение. Однако если нужно уменьшить давление на легко деформируемый и слабонесущий грунт, то в ленточном фундаменте используют дополнительную расширяющуюся к основанию форму, то есть расширяют подошву и выпоняют стенки с наклоном.

Так как любой ленточный фундамент имеет цельную конструкцию, то он отлично распределяет нагрузки, поэтому его можно выполнять практически на любом грунте. Еще ленточные фундаменты закладывают при разной глубине промерзания, при любой конфигурации и массе дома. Стоит отметить, что это довольно дорогой и непростой вариант, поэтому бывает довольно затратным. Поэтому некоторые люди заменяют ленточный на более доступный столбчатый. Однако в сложных случаях он становится единственным решением.

Например, ленточные фундаменты выполняют в таких ситуациях:

  • если возводятся тяжелые дома с массивными перекрытиями;
  • при необходимости обустройства подвала, гаража, цокольного этажа;
  • если на участке присутствует высокий уровень грунтовых вод;
  • когда дом возводится на участке с большим уклоном.

Такого рода основания бывают разных типов. Например, по способу возведения он встречается двух видов — монолитный и сборный. Монолитный  закладывают на строительной площадке в подготовленную опалубку, на дно которой укладывается арматурный пояс. Если это сборный ленточный, то его собирают из штучных элементов. В большинстве случаев сборный сооружается из бетонных блоков ФБС.

Еще разновидности ленточных фундаментов разделяют по величине нагрузки, которую они способны выдержать. Учитывая этот параметр, они бывают глубокозаглубленными и мелкозаглубленными ленточными фундаментами. Мелкозаглубленный ленточный используют в случае строительства небольших легких кирпичных или блочных домов. Закладывают мелкозаглубленный ленточный на глубину около 60-70 см в случае слабопучинистых грунтов.

Глубокозаглубленные ленточные фундаменты сооружают на пучинистых грунтах или при заложенных в проекте будущего дома тяжелых стенах, перекрытиях и других конструкциях, которые будут оказывать повышенное давление на основание. Еще этот вариант фундамента применяют при строительстве домов, в которых предусмотрен гараж или подвал. В этом случае глубокий ленточное основание становится стенами для подземных помещений. Этот тип фундамента закладывается на глубину, которая намного ниже глубины промерзания грунта, то есть, где-то на 30 см от этого уровня. Так как такой вариант фундамента глубоко заходит в землю, то он не поддается деформациям, является наиболее прочным и устойчивым. Однако из-за затрат на материалы и трудоемкости является дорогостоящим вариантом.

Разновидности столбчатых фундаментов и свайного фундамента.

Современный столбчатый фундамент – это прочная конструкция из столбов, установленных в самых сложных точках конструкции — это схождение стен и углы дома. Еще его устанавливают в домах с тяжелыми внутренними стенами. Выполняя столбчатое основание, необходима закладка армированного пояса — ростверка, который не допустит смещения фундамента по горизонтали. А еще ростверк распределяет нагрузки от дома на систему столбов, поэтому основание становится максимально устойчивым. К дополнительным плюсам, которые можно отнести к этому виду, это устойчивость грунта основания под опорами. В отличие от универсального ленточного фундамента, столбчатый садится меньше, и давление здания равномерно распределяется на все опоры. Благодаря такой конструкции появляется возможность увеличить имеющиеся нагрузки на основание еще на 25%.

Однако не во всех случаях можно использовать такой вариант оснований. Ведь существуют определенные условия, при которых категорически запрещается его устанавливать. Например, если дом сооружается на слабом и сильно подвижном грунте, то столбы на такой почве делать нельзя, так как есть вероятность проседания конструкции. Если же принято решение установить столбы на такой почве, то необходимо использовать самые мощные ростверки. Однако такая работа требует больших вложений, поэтому стоимость строительства будет неоправданно высокой и просто невыгодной. Нерационально возводить столбчатое основание на слабонесущих грунтах — торфе, просадочных породах, глинистой или насыщенной водой почве.

Помимо этого, нельзя применять столбчатый вариант фундамента для домов с тяжелыми массивными стенами, то есть, если они сделаны из железобетонных плит или блоков, а также при кирпичных стенах, толщина которых более 51 см. Если нужно обустроить подвал, то столбчатый фундамент не подходит для возведения дома. Ведь промежутки между столбами придется заделывать кладкой, а это очень затратное и трудоемкое дело. Если участок для строительства имеет большие перепады высот, то возвести эти виды фундаментов, также будет очень проблематично.

Перед тем как начать строительство столбчатого фундамента, необходимо провести расчет глубины его заложения, однако здесь нужно учитывать некоторые моменты:

  • Главный показатель расчета глубины – это уровень промерзания земли в определенной местности. Например, столбчатый фундамент нужно закладывать ниже отметки промерзания грунта, благодаря чему уменьшится действующая сила деформации.
  • Следующий показатель – это вид и состав грунта, то есть бывает глинистый и песчаный, неподвижный и подвижный грунт. Самым лучшим считается песчаный грунт, так как вода проходит сквозь него и не скапливается. Илистый и торфяной грунт – это самый плохой вариант для строительства.

Если столбчатый фундамент устанавливается на участке с высоким уровнем грунтовых вод, то дополнительно потребуется устройство гидроизоляции и дренажа. Еще очень важно учесть вес будущего дома, общую нагрузку при проживании семьи и массу опор фундамента. Поэтому для проектирования будущего дома лучше обращаться за помощью к специалистам, они смогут провести точные расчеты и вычислить возможные нагрузки. Возможно, потребуется применить для строительства другой вид фундамента, который будет более безопасным и недорогим.

Всем известно, что самую большую опасность малоэтажным домам приносит действие силы морозного пучения. Поэтому очень важно закладывать столбчатый фундамент ниже промерзания грунта, а если на участке пучинистые грунты, то это имеет очень большое значение. Если на столбчатом фундаменте возводится довольно легкое сооружение, то нагрузка будет небольшой, поэтому ее будет недостаточно для сопротивления силам пучения. И в результате столбчатый фундамент может деформироваться. В этом случае его заменяют другим, более устойчивым, например, ленточным или монолитной плитой.

Фундаментная монолитная плита, как еще один вариант фундамента.

Это железобетонная конструкция, которая укладывается или заливается по всей площади строения, и применяется на участках с высоким уровнем грунтовых вод, в сейсмически опасных районах и на участках со слабым грунтом. Этот вариант фундаментов устойчив к любым деформациям, обладает отличной несущей способностью, надежный и долговечный. Обычно плита бывает монолитной, но в некоторых случаях для ее сооружения используют сборную железобетонную конструкцию.

Фундаментная плита имеет разную глубину заложения, поэтому ее можно отнести как к малозаглубленным поверхностным конструкциям, так и к фундаментам глубокого заложения. Ее устройство не требует больших усилий, все что необходимо, это снять верхний слой земли и заложить планировку площадки под дом. Если это заглубленный вариант, то это довольно большой объем земляных работ, что существенно отразится на стоимости монолитной конструкции. Плитных фундаментов бывает два вида: со сплошной и решетчатой структурой.

Он подходит для любого типа грунтов. Когда конструкция основания мелкозаглубленная и выполняется на подвижном пучинистом грунте, то она называется «плавающей». Самая главная особенность такой конструкции — это способность перемещаться одновременно с грунтом. Благодаря этому не происходит деформации и разрушения здания, так как фундамент имеет отличное армирование. А еще она подходит для насыпного грунта и грунта, который может при определенных условиях проседать. Основание для фундаментной плиты может быть в виде подготовленного грунта или свайного поля. Для выполнения свайного поля применяют буронабивные, винтовые или забивные сваи.

Чтобы построить фундаментную плиту, очень важно выровнять поверхность под неё, поэтому если земельный участок с перепадами высоты, то такая конструкция не подходит. Еще важно знать, что стоимость такого фундамента довольно высока, однако быстро окупается отличной несущей способностью и максимальной прочностью. Только рассмотривая все возможные виды фундаментов для будущего дома, сравнивая недостатки и достоинства каждого из них, можно выбрать самый подходящий вариант и начинать строительство.

14.2 Первичные ткани животных — Концепции биологии — 1-е канадское издание

Многоклеточные сложные животные имеют четыре основных типа тканей: эпителиальную, соединительную, мышечную и нервную. Напомним, что ткани — это группы похожих клеток, выполняющих связанные функции. Эти ткани объединяются, образуя органы, такие как кожа или почки, которые выполняют определенные, специализированные функции в организме. Органы организованы в системы органов для выполнения функций; примеры включают систему кровообращения, которая состоит из сердца и кровеносных сосудов, и пищеварительную систему, состоящую из нескольких органов, включая желудок, кишечник, печень и поджелудочную железу.Системы органов объединяются, чтобы создать единый организм.

Эпителиальные ткани

Эпителиальные ткани покрывают внешние части органов и структур тела и выстилают просветы органов одним слоем или несколькими слоями клеток. Типы эпителия классифицируются по форме присутствующих клеток и количеству слоев клеток. Эпителий, состоящий из одного слоя клеток, называется простым эпителием ; Эпителиальная ткань, состоящая из нескольких слоев, называется слоистым эпителием .В таблице 14.2 приведены различные типы эпителиальных тканей.

Таблица 14.2. Различные типы эпителиальных тканей
Форма ячейки Описание Расположение
плоскоклеточный плоский, неправильной круглой формы простой: альвеолы ​​легких, многослойные капилляры: кожа, рот, влагалище
кубовидная кубическая форма, центральное ядро ​​ железы, почечные канальцы
столбчатый высокий, узкий, ядро ​​к основанию
высокое, узкое, ядро ​​вдоль ячейки
простой: пищеварительный тракт
псевдостратифицированный: дыхательный тракт
переходной круглый, простой, но многослойный мочевой пузырь

Плоский эпителий

Клетки плоского эпителия обычно круглые, плоские и имеют небольшое центрально расположенное ядро.Контур ячеек немного неправильный, и ячейки соединяются друг с другом, образуя покрытие или подкладку. Когда клетки расположены в один слой (простой эпителий), они способствуют диффузии в тканях, таких как области газообмена в легких и обмен питательными веществами и отходами в кровеносных капиллярах.

Рис. 14.7. Клетки плоского эпителия (а) имеют слегка неправильную форму и небольшое ядро, расположенное в центре. Эти клетки могут быть расслоены на слои, как в (b) этот образец шейки матки человека.(кредит b: модификация работы Эда Усмана; данные шкалы от Мэтта Рассела)

Рисунок 14.7 a иллюстрирует слой плоских клеток с их мембранами, соединенными вместе, чтобы сформировать эпителий. Изображение Рисунок 14.7 b иллюстрирует плоскоклеточные эпителиальные клетки, расположенные в многослойных слоях, где требуется защита тела от внешнего истирания и повреждения. Это называется многослойным плоским эпителием и встречается на коже и в тканях, выстилающих ротовую полость и влагалище.

Кубовидные эпителиальные клетки , показанные на рисунке 14.8, имеют форму куба с одним центральным ядром. Чаще всего они находятся в единственном слое, представляющем собой простой эпителий в железистых тканях по всему телу, где они подготавливают и секретируют железистый материал. Они также находятся в стенках канальцев и в протоках почек и печени.

Рисунок 14.8. Простые кубовидные эпителиальные клетки выстилают канальцы в почках млекопитающих, где они участвуют в фильтрации крови.

Столбчатые эпителиальные клетки больше по высоте, чем по ширине: они напоминают стопку столбцов в эпителиальном слое и чаще всего встречаются в однослойной структуре. Ядра столбчатых эпителиальных клеток пищеварительного тракта выстроены в линию у основания клеток, как показано на рисунке 14.9. Эти клетки поглощают материал из просвета пищеварительного тракта и подготавливают его для поступления в организм через кровеносную и лимфатическую системы.

Рис 14.9. Простые столбчатые эпителиальные клетки поглощают материал из пищеварительного тракта. Бокаловидные клетки секретируют слизь в просвет пищеварительного тракта.

Столбчатые эпителиальные клетки, выстилающие дыхательные пути, по-видимому, расслоены. Однако каждая клетка прикреплена к основной мембране ткани, и поэтому они являются простыми тканями. Ядра расположены на разных уровнях в слое клеток, что создает впечатление, что существует более одного слоя, как показано на рисунке 14.10. Это называется псевдостратифицированным , столбчатым эпителием.Это клеточное покрытие имеет реснички на апикальной или свободной поверхности клеток. Реснички усиливают перемещение слизистых и захваченных частиц из дыхательных путей, помогая защитить систему от инвазивных микроорганизмов и вредных веществ, которые попали в организм. Бокаловидные клетки вкраплены в некоторых тканях (например, в слизистой оболочке трахеи). Бокаловидные клетки содержат слизь, которая улавливает раздражители, которые в случае трахеи не позволяют этим раздражителям попасть в легкие.

Рисунок 14.10. Псевдостратифицированный столбчатый эпителий выстилает дыхательные пути. Они существуют в одном слое, но расположение ядер на разных уровнях создает впечатление, что существует более одного слоя. Бокаловидные клетки, вкрапленные между столбчатыми эпителиальными клетками, секретируют слизь в дыхательные пути.

Переходные или уроэпителиальные клетки появляются только в мочевыводящей системе, в первую очередь в мочевом пузыре и мочеточнике. Эти клетки расположены в слоистом слое, но они могут складываться друг на друга в расслабленном пустом мочевом пузыре, как показано на рисунке 14.11. По мере наполнения мочевого пузыря эпителиальный слой разворачивается и расширяется, удерживая объем введенной в него мочи. По мере наполнения мочевого пузыря он расширяется, а слизистая оболочка становится тоньше. Другими словами, ткань превращается из толстой в тонкую.

Рисунок 14.11. Переходный эпителий мочевого пузыря претерпевает изменения толщины в зависимости от его наполнения.

Какое из следующих утверждений о типах эпителиальных клеток неверно?

  1. Простые столбчатые эпителиальные клетки выстилают ткань легкого.
  2. Простые кубовидные эпителиальные клетки участвуют в фильтрации крови в почках.
  3. Псевдоструктурированные столбчатые эпитилии встречаются в одном слое, но расположение ядер создает впечатление, что присутствует более одного слоя.
  4. Переходный эпителий изменяется по толщине в зависимости от того, насколько заполнен мочевой пузырь.

Соединительные ткани состоят из матрицы, состоящей из живых клеток и неживого вещества, называемого основным веществом.Основное вещество состоит из органического вещества (обычно белка) и неорганического вещества (обычно минерала или воды). Основная клетка соединительной ткани — фибробласт. Эта клетка производит волокна почти во всех соединительных тканях. Фибробласты подвижны, способны выполнять митоз и синтезировать любую соединительную ткань, которая необходима. Макрофаги, лимфоциты и, иногда, лейкоциты могут быть обнаружены в некоторых тканях. В некоторых тканях есть специализированные клетки, которых нет в других.Матрица в соединительной ткани придает ткани ее плотность. Когда соединительная ткань имеет высокую концентрацию клеток или волокон, она имеет пропорционально менее плотный матрикс.

Органическая часть или белковые волокна в соединительных тканях представляют собой коллагеновые, эластичные или ретикулярные волокна. Волокна коллагена придают ткани прочность, предотвращая ее разрыв или отделение от окружающих тканей. Эластичные волокна состоят из протеина эластина; это волокно может растягиваться на половину своей длины и возвращаться к своим первоначальным размеру и форме.Эластичные волокна придают тканям гибкость. Ретикулярные волокна — это третий тип белковых волокон, содержащихся в соединительных тканях. Это волокно состоит из тонких нитей коллагена, которые образуют сеть волокон, поддерживающих ткань и другие органы, с которыми оно связано. Различные типы соединительных тканей, типы клеток и волокон, из которых они состоят, а также расположение образцов тканей приведены в Таблице 14.3.

Таблица 14.3. Соединительные ткани
Ткань Ячейки Волокна Расположение
свободный / ареолярный фибробласты, макрофаги, некоторые лимфоциты, некоторые нейтрофилы несколько: коллагеновые, эластичные, ретикулярные вокруг кровеносных сосудов; якоря эпителия
плотная волокнистая соединительная ткань фибробласты, макрофаги в основном коллаген неровная: кожа нормальная: сухожилия, связки
хрящ хондроциты, хондробласты гиалин: мало коллагена, фиброзный хрящ: большое количество коллагена Скелет акулы, кости плода, человеческие уши, межпозвоночные диски
кость Остеобласты, остеоциты, остеокласты некоторые: коллаген эластичный Скелеты позвоночных
жир адипоцитов несколько жир (жир)
кровь эритроциты, лейкоциты нет кровь

Свободная / ареолярная соединительная ткань

Рыхлая соединительная ткань , также называемая ареолярной соединительной тканью, содержит образцы всех компонентов соединительной ткани.Как показано на рис. 14.12, в рыхлой соединительной ткани есть фибробласты; макрофаги тоже присутствуют. Волокна коллагена относительно широкие и имеют светло-розовый цвет, тогда как эластичные волокна тонкие и окрашиваются в темно-синий или черный цвет. Пространство между формованными элементами ткани заполняется матрицей. Материал соединительной ткани придает ей рыхлую консистенцию, похожую на разорванный ватный диск. Рыхлая соединительная ткань находится вокруг каждого кровеносного сосуда и помогает удерживать сосуд на месте.Ткань также находится вокруг большинства органов тела и между ними. Таким образом, ареолярная ткань жесткая, но гибкая и состоит из мембран.

Рисунок 14.12. Рыхлая соединительная ткань состоит из рыхлых коллагеновых и эластичных волокон. Волокна и другие компоненты матрикса соединительной ткани секретируются фибробластами.

Волокнистая соединительная ткань

Волокнистые соединительные ткани содержат большое количество коллагеновых волокон и небольшое количество клеток или матриксного материала.Волокна могут быть расположены нерегулярно или регулярно с параллельными прядями. Неправильно расположенные волокнистые соединительные ткани находятся в областях тела, где напряжение возникает со всех сторон, таких как дерма кожи. Обычная волокнистая соединительная ткань, показанная на рисунке 14.13, находится в сухожилиях (которые соединяют мышцы с костями) и связках (которые соединяют кости с костями).

Рисунок 14.13. Волокнистая соединительная ткань сухожилия состоит из параллельных прядей коллагеновых волокон.

Хрящ — это соединительная ткань с большим количеством матрикса и различным количеством волокон. Клетки, называемые хондроцитами , составляют матрикс и волокна ткани. Хондроциты находятся в промежутках в ткани, называемых лакунами .

Хрящ с небольшим количеством коллагена и эластичных волокон — это гиалиновый хрящ, показанный на рис. 14.14. Лакуны беспорядочно разбросаны по ткани, а матрица приобретает молочный или потертый вид с обычными гистологическими окрашиваниями.У акул хрящевой скелет, как и у почти всего человеческого скелета на определенной стадии предродового развития. Остаток этого хряща сохраняется во внешней части человеческого носа. Гиалиновый хрящ также находится на концах длинных костей, уменьшая трение и смягчая суставы этих костей.

Эластичный хрящ имеет большое количество эластичных волокон, придающих ему огромную гибкость. Уши большинства позвоночных животных содержат этот хрящ, как и части гортани или голосовой ящик.Фиброхрящ содержит большое количество коллагеновых волокон, придающих ткани огромную прочность. Фиброхрящи включают межпозвоночные диски у позвоночных животных. Гиалиновый хрящ, обнаруженный в подвижных суставах, таких как колено и плечо, повреждается в результате возраста или травмы. Поврежденный гиалиновый хрящ заменяется волокнистым хрящом, в результате чего суставы становятся «жесткими».

Кость или костная ткань — это соединительная ткань, которая имеет большое количество двух различных типов матричного материала.Органический матрикс похож на матричный материал, содержащийся в других соединительных тканях, включая некоторое количество коллагена и эластичных волокон. Это придает ткани прочность и гибкость. Неорганический матрикс состоит из минеральных солей, в основном солей кальция, которые придают ткани твердость. Без адекватного органического материала в матрице ткань разрывается; без адекватного неорганического материала в матрице ткань изгибается.

В кости есть три типа клеток: остеобласты, остеоциты и остеокласты.Остеобласты активны в создании костей для роста и ремоделирования. Остеобласты откладывают костный материал в матрицу, и после того, как матрица окружает их, они продолжают жить, но в пониженном метаболическом состоянии в виде остеоцитов. Остеоциты находятся в лакунах кости. Остеокласты активны в разрушении костей для их ремоделирования и обеспечивают доступ к кальцию, хранящемуся в тканях. Остеокласты обычно находятся на поверхности ткани.

Кости можно разделить на два типа: плотные и губчатые.Компактная кость находится в стволе (или диафизе) длинной кости и на поверхности плоских костей, а губчатая кость находится в конце (или эпифизе) длинной кости. Компактная кость состоит из субъединиц, называемых остеонов , как показано на рисунке 14.15. В центре структуры внутри гаверсовского канала находятся кровеносный сосуд и нерв, вокруг которого расположены расходящиеся круги лакуны, известные как ламели. Волнистые линии между лакунами — это микроканалы, называемые canaliculi ; они соединяют лакуны, чтобы способствовать диффузии между клетками.Губчатая кость состоит из крошечных пластинок, называемых трабекул. . Эти пластины служат подпорками, придающими губчатой ​​кости прочность. Со временем эти пластины могут сломаться, из-за чего кость станет менее упругой. Костная ткань образует внутренний скелет позвоночных животных, обеспечивая структуру животного и точки прикрепления сухожилий.

Рисунок 14.15. (а) Компактная кость — это плотный матрикс на внешней поверхности кости. Губчатая кость внутри компактной кости пористая с сетчатыми трабекулами.(б) Компактная кость состоит из колец, называемых остеонами. Кровеносные сосуды, нервы и лимфатические сосуды находятся в центральном гаверсовском канале. Кольца ламелей окружают Гаверсский канал. Между ламелями расположены полости, называемые лакунами. Каналикулы — это микроканалы, соединяющие лакуны вместе. (c) Остеобласты окружают кость снаружи. Остеокласты проделывают туннели в кости, а остеоциты находятся в лакунах.

Жировая ткань или жировая ткань считается соединительной тканью, даже если она не имеет фибробластов или настоящего матрикса и имеет только несколько волокон.Жировая ткань состоит из клеток, называемых адипоцитами, которые собирают и хранят жир в форме триглицеридов для энергетического обмена. Жировая ткань дополнительно служит изоляцией, помогая поддерживать температуру тела, позволяя животным быть эндотермической, и действует как амортизатор от повреждений органов тела. Под микроскопом клетки жировой ткани кажутся пустыми из-за экстракции жира во время обработки материала для просмотра, как показано на рисунке 14.16. Тонкие линии на изображении — это клеточные мембраны, а ядра — это маленькие черные точки по краям клеток.

Рисунок 14.16. Жировая ткань — это соединительная ткань, состоящая из клеток, называемых адипоцитами. Адипоциты имеют небольшие ядра, локализованные по краю клетки.

Кровь считается соединительной тканью, потому что у нее есть матрица, как показано на рисунке 14.17. Типы живых клеток — это красные кровяные тельца (RBC), также называемые эритроцитами, и белые кровяные тельца (WBC), также называемые лейкоцитами. Жидкая часть цельной крови, ее матрица, обычно называется плазмой.

Рисунок 14.17. Кровь — это соединительная ткань, которая имеет жидкий матрикс, называемый плазмой, и не имеет волокон.Эритроциты (красные кровяные тельца), преобладающий тип клеток, участвуют в переносе кислорода и углекислого газа. Также присутствуют различные лейкоциты (белые кровяные тельца), участвующие в иммунном ответе.

Клетка, которая содержится в крови в наибольшем количестве, — это эритроциты. В образце крови эритроциты измеряются миллионами: среднее количество эритроцитов у приматов составляет от 4,7 до 5,5 миллионов клеток на микролитр. Эритроциты всегда одного и того же размера у разных видов, но различаются по размеру.Например, средний диаметр эритроцитов приматов составляет 7,5 мкл, у собаки — около 7,0 мкл, а диаметр эритроцитов кошки — 5,9 мкл. Эритроциты овцы еще меньше — 4,6 мкл. Эритроциты млекопитающих теряют свои ядра и митохондрии, когда они высвобождаются из костного мозга, в котором они образовались. Эритроциты рыб, земноводных и птиц поддерживают свои ядра и митохондрии на протяжении всей жизни клетки. Основная задача эритроцита — переносить кислород в ткани.

Лейкоциты — это преобладающие лейкоциты периферической крови.Лейкоциты в крови подсчитываются тысячами с измерениями, выраженными в виде диапазонов: количество приматов колеблется от 4800 до 10800 клеток на мкл, собаки от 5600 до 19 200 клеток на мкл, кошки от 8000 до 25000 клеток на мкл, крупный рогатый скот от 4000 до 12000 клеток. на мкл, а свиньи от 11000 до 22000 клеток на мкл.

Лимфоциты функционируют в основном в иммунном ответе на чужеродные антигены или материалы. Различные типы лимфоцитов вырабатывают антитела, адаптированные к чужеродным антигенам, и контролируют выработку этих антител.Нейтрофилы — это фагоцитарные клетки, и они участвуют в одной из первых линий защиты от микробных захватчиков, помогая удалять бактерии, попавшие в организм. Другой лейкоцит, обнаруживаемый в периферической крови, — это моноцит. Моноциты дают начало фагоцитарным макрофагам, которые очищают мертвые и поврежденные клетки в организме, независимо от того, являются ли они чужеродными или взятыми из животного-хозяина. Два дополнительных лейкоцита в крови — это эозинофилы и базофилы — оба помогают облегчить воспалительную реакцию.

Слегка зернистый материал среди клеток представляет собой цитоплазматический фрагмент клетки костного мозга. Это называется тромбоцитом или тромбоцитом. Тромбоциты участвуют в стадиях, ведущих к свертыванию крови, чтобы остановить кровотечение через поврежденные кровеносные сосуды. Кровь выполняет ряд функций, но в первую очередь она транспортирует материал по телу, доставляя питательные вещества к клеткам и удаляя из них отходы.

В теле животных есть три типа мышц: гладкие, скелетные и сердечные.Они различаются наличием или отсутствием полосок или полос, количеством и расположением ядер, независимо от того, контролируются ли они добровольно или непроизвольно, а также их расположением в теле. Таблица 14.4 суммирует эти различия.

Таблица 14.4. Типы мышц
Тип мышц Штрихи Ядра Контроль Расположение
гладкая нет одноместный, в центре непроизвольное Внутренние органы
каркас да много, на периферии добровольный скелетные мышцы
сердечный да одноместный, в центре непроизвольное сердце

Гладкая мышца не имеет бороздок в клетках.Он имеет одно ядро, расположенное в центре, как показано на рис. 14.18. Сокращение гладкой мускулатуры происходит под непроизвольным контролем вегетативной нервной системы и в ответ на местные условия в тканях. Гладкую мышечную ткань также называют без поперечно-полосатой, поскольку в ней отсутствует полосатая форма скелетных и сердечных мышц. Стенки кровеносных сосудов, трубок пищеварительной системы и трубок репродуктивной системы состоят в основном из гладких мышц.

Рисунок 14.18. Гладкомышечные клетки не имеют бороздок, в отличие от клеток скелетных мышц.Клетки сердечной мышцы имеют бороздки, но, в отличие от многоядерных скелетных клеток, имеют только одно ядро. Ткань сердечной мышцы также имеет вставочные диски, специализированные области, проходящие вдоль плазматической мембраны, которые соединяются с соседними клетками сердечной мышцы и помогают передавать электрический импульс от клетки к клетке.

Скелетные мышцы имеют бороздки на клетках, обусловленные расположением сократительных белков актина и миозина. Эти мышечные клетки относительно длинные и имеют несколько ядер по краю клетки.Скелетные мышцы находятся под произвольным контролем соматической нервной системы и находятся в мышцах, которые перемещают кости. На рисунке 14.18 показана гистология скелетных мышц.

Сердечная мышца, показанная на рисунке 14.18, находится только в сердце. Подобно скелетной мышце, она имеет поперечные бороздки в клетках, но сердечная мышца имеет одно ядро, расположенное в центре. Сердечная мышца не находится под произвольным контролем, но на нее может влиять вегетативная нервная система, ускоряя или замедляя ее.Дополнительной особенностью клеток сердечной мышцы является линия, которая проходит вдоль конца клетки, когда она примыкает к следующей сердечной клетке в ряду. Эта линия называется вставным диском: она помогает эффективно передавать электрический импульс от одной клетки к другой и поддерживает прочную связь между соседними сердечными клетками.

Лаборатория 2: Микроскопия и исследование тканей — Зоо-лаборатория

Лаборатория 2: Микроскопия и исследование тканей — Зоо-лаборатория | UW-La Crosse Перейти к основному содержанию Перейти к нижнему колонтитулу 1. Введение в гистологию (Часть 1)

Ткани состоят из клеток аналогичного типа, которые скоординированно работают для выполнения общей задачи, а изучение тканевого уровня биологической организации — это гистология. У животных обнаружены четыре основных типа тканей.

Эпителий — это тип ткани, основная функция которого заключается в покрытии и защите поверхностей тела, но также может образовывать протоки и железы или специализироваться на секреции, экскреции, абсорбции и смазке.

Эпителиальные ткани классифицируются по количеству клеточных слоев, из которых состоит ткань, и по форме клеток. Простой эпителий состоит из одного слоя клеток, а многослойный эпителий состоит из нескольких слоев.

Эпителиальные наросты могут быть плоскими (squamous = «чешуйчатый»), кубовидными (кубовидными) или высокими (столбчатыми). Итак, для правильного определения типа ткани необходимы три слова (например, простой столбчатый эпителий, многослойный, плоский эпителий и т. Д.

2. Введение в гистологию (Часть 2)

Соединительная ткань выполняет такие разнообразные функции, как связывание, поддержка, защита, изоляция и транспортировка. Несмотря на их разнообразие, все соединительные ткани состоят из живых клеток, встроенных в неживой клеточный матрикс, состоящий из внеклеточных волокон или какого-либо основного вещества. Таким образом, то, что отличает разные соединительные ткани, — это тип матрикса. Примеры соединительной ткани могут включать кость, хрящ, сухожилия, связки, рыхлую соединительную ткань, жировую (жировую) ткань и даже кровь (хотя некоторые авторитеты классифицируют кровь как сосудистую ткань).

Мышечная ткань специализируется на сокращении. Есть три вида мышечной ткани:

  1. Гладкая мышца (предназначена для медленных, продолжительных, непроизвольных сокращений) состоит из веретенообразных клеток с одним ядром на клетку.
  2. Скелетная , или поперечно-полосатая мышца , которая связана с произвольными сокращениями, содержит цилиндрические клетки с множеством ядер на клетку, расположенными в пучки.
  3. Сердечная (сердце) мышца поперечно-полосатая, как и скелетная мышца, но каждая клетка содержит только одно ядро.
3. Введение в гистологию (Часть 3)

Нервная ткань специализируется на приеме раздражителей и проведении нервных импульсов. Ткань состоит из нервных клеток (нейронов), каждая из которых состоит из тела клетки и клеточных отростков, которые переносят импульсы к (дендритам) или от (аксоны) к телу клетки. На следующих страницах этого лабораторного раздела у вас будет возможность изучить несколько (из многих) типов тканей животных.

Однако с точки зрения понимания работы многоклеточного животного тела, вы должны понимать, что ткани являются лишь одним из многих связанных уровней биологической организации.Ткани редко работают в одиночку, вместо этого они сгруппированы в органы. Органы объединяются в системы органов (например, систему кровообращения, нервную систему, скелетную систему, мышечную систему, выделительную систему, репродуктивную систему и т. Д.), Которые функционируют как единое целое, называемое организмом.

В последующих разделах веб-сайта Zoo Lab вы познакомитесь с разнообразием животного мира, которое возникает в результате взаимодействия всех этих ключевых компонентов.

4. Простой плоский эпителий (кожа лягушки).

Лаб-2 01

На этом слайде показан тонкий срез кожи лягушки.Наружная часть этой кожи состоит из одного слоя плоских (плоских) клеток неправильной формы, что и дало ткани название. Примечание: Вы просматриваете этот участок ткани сверху! На этом слайде показан тонкий срез кожи лягушки. Наружная часть этой кожи состоит из одного слоя плоских (плоских) клеток неправильной формы, что и дало ткани название. Примечание: Вы просматриваете этот участок ткани сверху!

5. Простой кубовидный эпителий (поперечный разрез почки).

Лаб-2 02

Красные и синие стрелки указывают на ткань простого кубовидного эпителия

Это слайд тонкого среза почки млекопитающего, демонстрирующий множество трубчатых протоков, составляющих большую часть этого органа.Стенки этих протоков (обозначенные красными стрелками) состоят из простых кубовидных эпителиальных клеток, которые обычно имеют шестигранную форму, но при виде сбоку могут казаться квадратными. Обратите внимание также на тонкую стенку простого кубовидного эпителия (на которую указывает синяя стрелка), которая образует верхний край этого участка.

6. Простой столбчатый эпителий (поперечный разрез тонкой кишки).

Лаб-2 03

  1. Гладкая мускулатура (длинный слой)
  2. Гладкая мышца (круговой слой)
  3. Эпителий простой столбчатый
  4. Бокал
  5. Просвет кишечника

Этот слайд представляет собой поперечный разрез тонкой кишки.В просвет (пространство) кишечника выступают многочисленные пальцевидные выступы, называемые ворсинками, которые замедляют прохождение пищи и увеличивают площадь поверхности для всасывания питательных веществ. Выстилка этих ворсинок представляет собой слой ткани, называемый слизистой оболочкой, который состоит из простых столбчатых эпителиальных клеток. Среди этих столбчатых клеток вкраплены бокаловидные клетки, которые выделяют слизь в просвет кишечника. Во время рутинной гистологической подготовки слизь теряется, остается прозрачная или слегка окрашенная цитоплазма.Под тонкой внешней оболочкой кишечника, называемой серозной оболочкой, находится толстый слой гладкомышечных клеток, называемый muscularis externa. Muscularis externa разделена на внешний продольный мышечный слой с клетками, которые проходят вдоль оси кишечника, и внутренний круговой мышечный слой, волокна которого окружают орган. Перистальтическое сокращение этих двух мышечных слоев способствует продвижению пищи по пищеварительному тракту.

1 — гладкая мышца (длинный слой) и 2 — гладкая мышца (ок.слой)

Лаборатория-2 05
  1. Продольный мышечный слой
  2. Круговой мышечный слой
  3. Клетки столбчатого эпителия

3 — простой столбчатый эпителий и 2 — бокаловидная клетка

Лаб-2 04

  1. Бокал
  2. Клетки столбчатого эпителия
  3. Ядро эпителиальной клетки
  4. Просвет кишечника
7. Многослойный плоский эпителий (поперечный разрез пищевода). Лаборатория-2 06
  1. Многослойный плоский эпителий
  2. Просвет пищевода
  3. Соединительная ткань

На этом слайде показано поперечное сечение пищевода, первой части пищеварительного тракта, ведущей к желудку.Обратите внимание, что орган выстлан множеством слоев клеток, вместе называемых многослойным плоским эпителием. По соглашению, многослойные эпителиальные ткани называют по форме наиболее удаленных от них клеток. Таким образом, хотя более глубокий и базальный слои состоят из кубовидных, а иногда даже столбчатых клеток, эти клетки на поверхности имеют плоскую (плоскую) форму, что и дало ткани такое название.

1 — Многослойный плоский эпителий

Лаб-2 07

  1. Многослойный эпителиальный слой
  2. Наружные плоскоклеточные клетки
  3. Просвет пищевода
8.Рыхлая соединительная ткань (распространенная пленка фасции)

Лаб-2 08

  1. Коллагеновое волокно
  2. Эластиновые волокна

На этом слайде показан тонкий участок рыхлой соединительной ткани (иногда называемой ареолярной тканью). Этот тип ткани широко используется по всему телу для скрепления кожи, мембран, кровеносных сосудов и нервов, а также для связывания мышц и других тканей вместе. Он часто заполняет промежутки между эпителиальной, мышечной и нервной тканями, образуя так называемую строму органа, в то время как термин паренхима относится к функциональным компонентам органа.Ткань состоит из разветвленной сети волокон, секретируемых клетками, называемыми фибробластами. Самыми многочисленными из этих волокон являются более толстые, слегка окрашенные (розовые) волокна коллагена (1). На срезе также можно увидеть более тонкие, темные эластичные волокна (2), состоящие из белка эластина. s представляет собой слайд тонкого среза, взятого из почек млекопитающих, демонстрирующий множество трубчатых протоков, которые составляют большую часть этого органа. Стенки этих протоков (обозначенные красными стрелками) состоят из простых кубовидных эпителиальных клеток, которые обычно имеют шестигранную форму, но при виде сбоку могут казаться квадратными.Обратите внимание также на тонкую стенку простого кубовидного эпителия (на которую указывает синяя стрелка), которая образует верхний край этого участка.

9. Гиалиновый хрящ (поперечный разрез трахеи). Лаборатория-2 09
  1. Просвет трахеи
  2. Псевдостратифицированный (реснитчатый) столбчатый эпителий
  3. Гиалиновый хрящ (100x)
  4. Жировая ткань

Этот слайд, показывающий поперечный разрез трахеи (дыхательной трубы) млекопитающих, содержит примеры нескольких различных типов тканей.Поддерживает трахею кольцо соединительной ткани, называемое гиалиновым хрящом. Хондроциты (хрящевые клетки), которые секретируют этот поддерживающий матрикс, расположены в пространствах, называемых лакунами.

3 — Гиалиновый хрящ (100x)

Лаб-2 10

  1. Гиалиновый хрящ (400x)
  2. Жировая ткань

1 — Гиалиновый хрящ (400x)

Лаборатория-2 11
  1. Лакуна
  2. Хондроцит (хрящевая клетка)
  3. Надхрящница
10.Псевдостратифицированный столбчатый эпителий (поперечный разрез трахеи)

Лаб-2 09

  1. Просвет трахеи
  2. Псевдостратифицированный столбчатый эпителий (крупный план)
  3. Гиалиновый хрящ
  4. Жировая ткань

Этот слайд, показывающий поперечный разрез трахеи (дыхательной трубы) млекопитающих, содержит примеры нескольких различных типов тканей. Выстилка трахеи состоит из типа ткани, называемого псевдостратифицированным (реснитчатым) столбчатым эпителием.Этот единственный слой реснитчатых клеток кажется многослойным, потому что клетки различаются по толщине и потому, что их ядра расположены на разных уровнях.

2 — Псевдостратифицированный столбчатый эпителий (крупный план)

Лаборатория-2 12
  1. Ресничный край
  2. Эпителиальный слой

11. Жировая ткань (поперечный разрез трахеи).

Лаб-2 09

  1. Просвет трахеи
  2. Псевдостратифицированный столбчатый эпителий (крупный план)
  3. Гиалиновый хрящ
  4. Жировая ткань (100x)

Этот слайд, показывающий поперечный разрез трахеи (дыхательной трубы) млекопитающих, содержит примеры нескольких различных типов тканей.Помимо псевдостратифицированного столбчатого эпителия, выстилающего трахею и гиалиновый хрящ, на этом слайде также видна обширная область жировой ткани, которая специализируется на хранении жира. На подготовленных слайдах жир был удален из клеток, придавая ткани вид рыбной сети.

4 — Жировая ткань (100x)

Лаб-2 10

  1. Гиалиновый хрящ
  2. Жировая ткань (400x)

2 — Жировая ткань (400x)

Лаборатория-2 13
  1. Жировые (жировые) клетки
  2. Ядро клетки
12.Компактная кость (поперечный разрез высушенной кости)

Лаб-2 14

На этом слайде показан участок высушенной компактной кости. Обратите внимание, что костный матрикс откладывается концентрическими слоями, называемыми ламелями. Основной структурной единицей компактной кости является остеон. В каждом остеоне ламели расположены вокруг центрального гаверсовского канала, в котором находятся нервы и кровеносные сосуды живой кости. Остеоциты (костные клетки) расположены в пространствах, называемых лакунами, которые связаны тонкими разветвляющимися канальцами, называемыми канальцами.Эти «маленькие каналы» исходят из лакуны, образуя обширную сеть, соединяющую костные клетки друг с другом и с кровоснабжением.

Гаверсовская система крупным планом

Лаб-2 15

  1. Гаверсский канал
  2. Лакуны

13. Гладкая мышца (отдельные волокна)

Лаб-2 16

Это слайд пучка гладкой мышечной ткани, который был разделен на части, чтобы обнажить отдельные клетки.Каждая из этих веретенообразных мышечных клеток имеет одно удлиненное ядро. У большинства животных гладкая мышечная ткань расположена в виде круговых и продольных слоев, которые действуют антагонистически, укорачивая или удлиняя, а также сужая или расширяя тело или орган. В качестве примера такого расположения см. Два слоя гладких мышц на поперечном сечении кишечника млекопитающего.

14. Скелетная мышца (поперечный разрез языка).

Лаб-2 17

  1. Многослойный плоский эпителий
  2. Проток, состоящий из простого кубовидного эпителия
  3. Скелетная мышца
  4. Жировая ткань
  5. Плотная соединительная ткань неправильной формы

Язык крупным планом

Лаборатория-2 18

  1. Жировая ткань
  2. Скелетная мышца (продольный вид)
  3. Эпителий простой кубовидной формы

15.Сердечная мышца (разрез, чтобы показать вставочные диски)

Лаб-2 20

На этом слайде показан участок сердечной мышцы, имеющей поперечно-полосатую форму, как скелетную мышцу, но приспособленную для непроизвольных ритмических сокращений, как гладкая мышца. Хотя миофибриллы имеют поперечную бороздку, каждая клетка имеет только одно центрально расположенное ядро. Обратите внимание на слабо окрашенные поперечные полосы, которые называются интеркалированными дисками (обозначены синими стрелками), которые отмечают границы между концами клеток.Эти специализированные соединительные зоны уникальны для сердечной мышцы.

16. Нервная ткань (мультиполярный нейрон)

Лаб-2 19

  1. Тело нервной клетки
  2. Отросток нервной клетки
На этом слайде представлен мазок спинного мозга. Обратите внимание на большой многополярный мотонейрон, окрашенный в синий цвет. От нейрона исходят клеточные отростки, называемые аксонами и дендритами, которые проводят нервные импульсы от и к телу нервной клетки соответственно. Хотя эти процессы легко увидеть на слайде, не всегда можно отличить аксон от дендритов.

17. Плотная регулярная соединительная ткань (сухожилие).

Лаб-2 21

На этом слайде показан продольный разрез сухожилия, состоящего из плотной регулярной соединительной ткани. Обратите внимание на равномерно расположенные пучки плотно упакованных коллагеновых волокон, идущие в одном направлении, что приводит к образованию гибкой ткани с большим сопротивлением силам растяжения.

18. Простая модель плоского эпителия.

Лаб-2 22

Поскольку простой плоский эпителий состоит из одного слоя чешуйчатых клеток, он хорошо подходит для быстрой диффузии и фильтрации.Эти клетки выглядят шестиугольными на виде с поверхности, но если смотреть сбоку (как показано на изображении модели выше), они кажутся плоскими с выпуклостями в местах расположения ядер. Простой плоский эпителий образует внутренние стенки кровеносных сосудов (эндотелий), стенку капсулы Боумена почек, выстилку полости тела и внутренних органов (париетальной и висцеральной брюшины), а также стенки воздушных мешков (альвеол) и дыхательных путей. легкого.

Вид поверхности

Лаб-2 23

19.Простая модель кубовидного эпителия

Лаб-2 24

Простые кубовидные эпителиальные клетки обычно имеют шестигранную форму (кубическую форму), но они кажутся квадратными на виде сбоку (как показано на изображении модели выше) и многоугольными или шестиугольными, если смотреть сверху. Их сферические ядра темнеют и часто придают слою вид бусинок. Этот тип ткани адаптирован к секреции и абсорбции. Его можно найти в таких областях, как почечные канальцы, покров яичников и как компонент протоков многих желез.

Вид сверху

Лаб-2 25

20. Простая модель столбчатого эпителия.

Лаб-2 26

Простой столбчатый эпителий состоит из высоких (столбчатых) клеток, которые плотно прилегают друг к другу. С поверхности они кажутся шестиугольными, но если смотреть сбоку (как показано на изображении модели выше), они выглядят как ряд прямоугольников с удлиненными ядрами, часто расположенными на одном уровне, обычно в нижней части клетка. Простые столбчатые эпителиальные клетки могут быть специализированы для секреции (например, бокаловидные клетки, которые секретируют защитный слой слизи в тонком кишечнике), для абсорбции или защиты от истирания.Столбчатые эпителиальные клетки выстилают большую часть пищеварительного тракта, яйцеводов и многих желез.

Вид с поверхности

Лаб-2 27

21. Модель псевдостратифицированного столбчатого эпителия.

Лаб-2 28

На изображении слева показана модель псевдостратифицированного столбчатого эпителия. Этот тип ткани состоит из одного слоя клеток, покоящихся на неклеточной базальной мембране, которая защищает эпителий. Ткань кажется стратифицированной (расположенной в несколько слоев), потому что все клетки имеют разную высоту и потому, что их ядра (показаны в виде черных овальных структур) расположены на разных уровнях.Псевдостратифицированный мерцательный столбчатый эпителий выстилает трахею (дыхательное горло) и более крупные дыхательные пути.

22. Модель скелетных (поперечно-полосатых) мышц.

Лаб-2 29

Скелетная мышца — это самый распространенный тип мышечной ткани в теле позвоночного, составляющий не менее 40% его массы. Хотя скелетная мышца часто активируется рефлексами, которые автоматически срабатывают в ответ на внешний раздражитель, ее также называют произвольной мышцей, потому что это единственный тип, подлежащий сознательному контролю.Поскольку волокна скелетных мышц имеют очевидные полосы, называемые полосами, которые можно наблюдать под микроскопом, их также называют поперечно-полосатыми мышцами. Обратите внимание, что клетки скелетных мышц многоядерные, то есть каждая клетка имеет более одного ядра.

23. Модель гладкой мускулатуры.

Лаб-2 30

Гладкая мышца — это простейший из трех видов мышц. Он встречается там, где необходимы медленные, продолжительные, непроизвольные сокращения, например, в пищеварительном тракте, репродуктивной системе и других внутренних органах.Гладкомышечные клетки длинные, веретенообразные, с одним центрально расположенным ядром. Гладкая мускулатура часто состоит из двух слоев, расположенных перпендикулярно друг другу: круглого слоя, волокна которого появляются в поперечном сечении, как показано на модели выше, и продольного слоя, волокна которого выглядят как концы перерезанного кабеля, если смотреть на него на торце.

24. Модель сердечной мышцы.

Лаб-2 31

Сердечная мышца имеет поперечнополосатую форму, как скелетную мышцу, но приспособлена к непроизвольным ритмичным сокращениям, как гладкая мышца.Миофибриллы имеют поперечную бороздку, но каждая клетка имеет только одно ядро, расположенное в центре. Обратите внимание на темно-синие поперечные полосы на модели, называемые вставными дисками, которые отмечают границы между концами мышечных клеток. Эти специализированные соединительные зоны уникальны для сердечной мышцы.

25. Компактная модель кости.

Лаб-2 32

На этой модели показано поперечное сечение компактной кости. Обратите внимание, что костный матрикс откладывается концентрическими слоями, которые называются пластинками (5).Основной структурной единицей этого типа кости является гаверсова система, или остеон. В каждом из этих остеонов ламели расположены вокруг центрального гаверсовского канала (1), в котором находятся нервы (4) и кровеносные сосуды (2, 3) в живой кости. Остеоциты или костные клетки (6) расположены в пространствах, называемых лакунами (7), которые связаны тонкими ветвящимися канальцами, называемыми канальцами (8). Эти «маленькие каналы» исходят из лакун, образуя обширную сеть, позволяющую костным клеткам общаться друг с другом и обмениваться метаболитами.

26. Модель многополярного нейрона.

Лаб-2 33

На изображении выше изображен значительно увеличенный мультиполярный нейрон, наиболее распространенный тип нейронов, встречающихся у людей. Обратите внимание, что тело клетки (1) содержит ядро ​​(2) с заметным темным ядрышком (3). От тела клетки отходят цитоплазматические отростки, называемые отростками нервных клеток. В мотонейронах (которые проводят нервные импульсы к мышечным клеткам) эти отростки состоят из одного длинного аксона (4) и множества более коротких дендритов (5).

4 — Аксон

Лаб-2 34

Обратите внимание на этом увеличенном изображении аксона, что он окружен специализированными клетками, называемыми шванновскими клетками (1), плазматические мембраны которых образуют покрытие аксона, называемое нейрилеммой (2), которое показано на модели коричневым цветом. Эти шванновские клетки секретируют жировую миелиновую оболочку (3), которая показана на модели желтым цветом, которая защищает и изолирует нервные волокна друг от друга и увеличивает скорость передачи нервных импульсов. Соседние шванновские клетки вдоль аксона не соприкасаются друг с другом, оставляя промежутки в оболочке, называемые узлами Ранвье, через равные промежутки времени (4).

Экспериментальные исследования на месте уплотнения перекрывающих пород для фундамента из колоннобазальтовой плотины

Каменный массив фундамента плотины на Байхетанской гидроэлектростанции на реке Цзиньша состоит в основном из столбчатого базальта с трещинами и трещинами. Принимая во внимание неблагоприятные факторы, такие как ослабление разгрузки или раскрытие трещин из-за взрывных работ при выемке грунта, для улучшения целостности массива горных пород основания плотины требуется затирка уплотняющего раствора.В соответствии с физико-механическими свойствами столбчатого сочлененного базальта и непрерывностью конструкции экспериментально изучается эффективность цементного раствора для уплотнения перекрывающих пород. Результаты показывают, что эта технология цементации, очевидно, может улучшить целостность и однородность массива горных пород основания плотины и снизить проницаемость массива. После цементирования среднее увеличение волновой скорости горного массива составляет 7,3%. Среднее улучшение модуля деформации после заливки раствором составляет 13.5%. После затирки проницаемость 99% контрольных отверстий в испытательной секции Lugeon имела значения Lugeon не более 3 LU. Это улучшение является значительным и служит аргументом для инженерного применения.

1. Введение

Безопасная эксплуатация арочной плотины зависит от безопасности основания плотины, конструкции плотины, гидравлического устройства и водной среды резервуара. Фундамент арочной плотины при нормальной эксплуатации испытывает огромные гидравлические нагрузки. Китай построил много плотин, но с развитием науки и техники и совершенствованием инженерных технологий многие плотины были построены в сложных геологических условиях [1].Гидроэлектростанция Сяовань, гидроэлектростанция Ксилуоду и плотина гиперболической арки Катсе высотой 180 метров в Лесото построены на базальте. Однако базальтовый участок Байхетанской арочной плотины более сложен. Базальт на участке Байхетанской плотины характеризуется неравномерными и волнистыми столбчатыми трещинами, неправильным и неполным цилиндрическим сечением, низким уровнем развития неявных трещин и низким модулем деформации, развитием поясов сдвига, низкой прочностью на деформацию и сдвиг, а также плотностью трещин в некоторых литологических сегментах [ 2].Столбчатые соединения и микротрещины в свежих столбчатых сочлененных базальтах представляют собой жесткие структурные поверхности, закрытые под ограничивающим давлением, легко открываемые и расслабляющиеся после сброса ограничивающего давления [3–18]. Он не может удовлетворить требования достаточной несущей способности и устойчивости горного массива основания плотины как арочной плотины. Для увеличения сопротивления деформации фундамента, улучшения сопротивления сдвигу и просачиванию поверхности конструкции, предотвращения релаксации разгрузки коренных пород на поверхности фундамента, уменьшения воздействия раскрытия поверхности трещин взрывных работ при земляных работах и ​​улучшения целостности горной массы фундамента плотины. , необходимо провести испытание на цементный раствор для фундамента плотины, изучить и доказать возможность и надежность горного массива в качестве основания арочной плотины после цементирования, а также предоставить рекомендации для разумного проектирования и определения параметров строительства цементного раствора консолидации горного массива в площадь плотины.Типичные базальтовые столбчатые швы типа І показаны на рисунке 1.


Некоторые ученые изучали технологию предотвращения просачивания при армировании фундамента плотины для различных массивов горных пород. Wu et al. [19] изучали деформацию базальтового фундамента арочной дамбы Ксилуоду. Деформация горного массива основания плотины во время земляных работ постоянно отслеживалась, и был сделан вывод об отсутствии длительной разгрузочной деформации горного массива основания плотины. Fan et al.[20] обнаружили, что когда дамба гиперболической арки Катсе, построенная на базальте, была выкопана до русла реки, из-за высокого горизонтального напряжения произошло коробление базальтового слоя и мягкого брекчированного слоя. Develay et al. [21] изучали строительство основной плотины проекта водного хозяйства Байсе на диабазовых дамбах и использовали цементный раствор для укрепления слегка выветриваемых горных массивов. Хомас и Томас [22] провели полевые и лабораторные испытания цементного раствора в трещиноватом массиве горных пород и получили лучшее представление о давлении затирки и затирочных материалах.Чжао [23] использовал методы химической заливки и замены бетона для обработки слабых слоев горных пород в фундаменте гидроэлектростанций Эртан и Шапай. Кроме того, Ли и Тан [24] изучали анкеровку горных пород и заливку цементным раствором. Карл [25] изучал использование чешуйчатого гранита в качестве основания плотины. Туркмен и др. [26] использовали цементный раствор для решения проблемы просачивания карстового известнякового фундамента плотины Каледжик (юг Турции) и построили цементную завесу длиной 200 м и глубиной 60 м вдоль плотины. Kikuchi et al.[27] изучили улучшение механических свойств оснований плотин за счет цементации соответствующего массива горных пород и пришли к выводу, что цементация может улучшить однородность и деформацию массивов горных пород. Salimian et al. [28] изучали влияние цементного раствора на характеристики сдвига скальных швов, и результаты показали, что цементный раствор положительно влияет на прочность горных пород на сдвиг. С уменьшением водоцементного отношения прочность цементного раствора на сжатие увеличивается, но его прочность на сдвиг не обязательно увеличивается.

В предыдущих исследованиях это может указывать на то, что столбчато-сочлененный базальт редко упоминается как инженерный случай фундамента высокой арочной плотины, а также мало ученых, которые проводят исследования по технологии армирования столбчато-сочлененного базальта в качестве основания арки. плотина. Столбчато-сочлененный базальт, использованный в качестве фундамента высокой арочной дамбы, встречается редко. Из-за наличия столбчатых швов и при совместном действии удара, падения и напряжения на месте деформация сдвига часто происходит вдоль забоя выемки с увеличением глубины выемки.Для увеличения сопротивления деформации фундамента, уменьшения воздействия взрывных работ, вызванных земляными работами, раскрытие поверхности трещины в основании плотины, а также для повышения сопротивления проницаемости структурной поверхности и целостности горного массива фундамента плотины. В соответствии с физико-механическими свойствами столбчато-сочлененного базальта, которые требуют тщательного исследования, принят метод цементации перекрывающих пород для уменьшения скального массива фундамента плотины и выемки грунта при разгрузке отскока и повреждений.Кроме того, столбчатые швы в мелком базальте открываются за счет релаксации напряжений, и это также решает проблему растрескивания при использовании цементного раствора бетонного покрытия [29–31], эффективно улучшая сопротивление деформации и сопротивление проницаемости структурной плоскости при сдвиге; кроме того, этот подход подходит для использования при непрерывном строительстве фундамента высокой арочной дамбы.

2. Обзор проекта
2.1. Краткое описание проекта

Гидроэлектростанция Байхетань расположена в округе Ниннань провинции Сычуань и округе Цяоцзя провинции Юньнань, ниже по течению реки Цзиньша, главного притока реки Янцзы.Станция связана с гидроэлектростанцией Удонгде и примыкает к гидроэлектростанции Ксилуоду. Расположение Байхетанской ГЭС показано на Рисунке 2.


Заграждение представляет собой бетонную арочную плотину с двойным изгибом с высотой верхней точки плотины 834 м, максимальной высотой плотины 289 м, толщиной арочной крыши 14,0 м, максимальная толщина торца свода 83,91 м, в том числе максимальная толщина расширенного фундамента 95 м. Длина дуги вершины плотины составляет примерно 209.0 м, разделенный на 30 поперечных стыков, и 31 участок плотины. Бетонная подушка установлена ​​выше отметки 750,0 м, основание участка дамбы расширено, но продольные швы в дамбе не устанавливаются. Нормальный уровень воды в водохранилище составляет 825 м, а общая вместимость высокого водохранилища составляет 20,627 млрд. М 3 3 . Установленная мощность электростанции — 16000 МВт, среднегодовая генерирующая мощность — 62,521 млрд кВтч.

2.2.Инженерная геология Правобережья
2.2.1. Литология формации

Коренная порода на участке плотины в основном состоит из базальта (P 2 β 3 ~ P 2 β 6 ) формации Эмейшан, которая в основном состоит из микрокристаллических и скрытокристаллических базальтов. Далее следуют порфировидные базальты с миндалевидными кристаллами, с прослоями базальтовых брекчированных лав и туфов. Столбчатые соединения в этом базальте образуют колонны разного размера и длины, которые можно разделить на три типа в соответствии с их характеристиками развития (см. Таблицу 1).Базальты и четвертичные аллювиальные слои в основном обнажаются у основания плотины ниже 600 м на правом берегу. Слои базальта с порами миндалевидной формы выходят на поверхность от Р 2 β 3 4 выше отметки 590 м; в P 2 β 3 3-4 , слои обнажения скрытокристаллического базальта на высоте 590 ~ 580 м и ниже на высоте 580 м; в P 2 β 3 3 , слои базальта столбчато-сочлененного типа I с диаметром колонн 13 ~ 25 см и микротрещинами, развитыми внутри колонн.

5.4. Обсуждение мониторинга подъема пласта

Значение мониторинга подъема является важным контрольным показателем, отражающим влияние цементного раствора на пласт во время строительства. На этой испытательной площадке расположены две подъемные смотровые скважины.Глубина отверстия 3 м больше, чем отверстие для затирки уплотняющего раствора, а его диаметр составляет Φ 91 мм. Измерительные приборы встроены для мониторинга, и они включают измерительную трубу ( Φ 25 мм) и внешнюю трубку ( Φ 73 мм). Нижний конец закрепляется в бетоне, местный слой поднимается, внутренняя труба перемещается, и индикатор часового типа будет записывать данные. Запись данных мониторинга подъема вручную используется для мониторинга подъема, и показания записываются каждые 5 ~ 10 мин.Подъемная деформация контролируется и фиксируется во время затирки швов и уплотнения воды, допускается подъем коренных пород на высоту не более 200 м. При заливке швов величина подъемной деформации варьируется от 11 до 31 мкм м, что не превышает проектных требований ТУ. На Рисунке 14 показан измеритель ручного контроля подъема, встроенный в поле.


5.5. Обсуждение керна породы и камеры для отверстий

После заливки цементным раствором керны берутся из 10 контрольных отверстий, некоторые из которых показаны на Рисунке 15.На Рисунке 15 показано, что трещины в горных породах эффективно заполняются консолидированной суспензией, а материалы для затирки плотно связаны с окружающими породами с очевидным явлением полной консолидации. Во время бурения не наблюдается обрушения, и собираются неповрежденные образцы керна длиной до 1,2 м, как показано на Рисунке 15.


Для получения изображений используется панорамный сканер JL-IDOI производства Wuhan Himalaya Digital Imaging Technology Co. контрольные отверстия, как показано на рисунках 16 и 17.На Рисунке 16 показана типичная структура трещин в некоторых испытательных отверстиях перед заливкой цементным раствором. На рис. 16 (д) видно, что некоторые трещины имеют ширину до 10 см. Некоторые породы также заполнены кварцем. Скала основания плотины содержит горизонтальную трещину, вертикальную трещину и зону разрушения. На Рисунке 17 показаны типичные примеры заполнения некоторых контрольных отверстий консолидированной суспензией после заливки цементным раствором. Рисунки 17 (a) и 17 (b) показывают, что как крутые наклонные трещины, так и отверстия заполняются эффективно, а заполнение консолидированной суспензией, а также микротрещины и нарушенные зоны можно увидеть на рисунках 17 (c) –17 (f). .

6. Полевая заявка
6.1. План строительства

Заливка перекрывающих пород используется для цементации участков фундамента плотины №19 ~ №25 (ниже платформы 590 м), в то время как покрытие не используется для цементации уплотняющего раствора секции плотины №25 (выше платформы 590 м). ~ # 31. Метод заливки цементным раствором по-прежнему представляет собой цементный раствор для уплотнения перекрывающих пород, расстояние между рядами отверстий составляет и, а глубина отверстия для входа в горную породу обычно составляет 15,00 ~ 30,00 м; площадка застройки конструктивной плоскости и прилегающая к ней зона занавеси локально заглублены соответствующим образом.Процесс строительства: подъем контрольного отверстия → контрольное отверстие перед заливкой раствора → последовательное отверстие I → последовательное отверстие II → последовательное отверстие III → контрольное отверстие после заливки раствором. Общий процесс строительства участков плотины №19 ~ №25 показан на Рисунке 18. Станции по производству и хранению жидкого навоза расположены на стороне выше по потоку от основания плотины и соединены с площадкой для цементирования посредством отвода трубопровода.


6.2. Количество закачиваемого цемента и водопроницаемость

Для определения количества закачки используется отметка основания плотины на правом берегу, на 590 м ниже цементного раствора консолидации перекрывающих пород.Последовательность затирки I ямы — 25915 м; Последовательность заливки II скважины — 50690 м; Последовательность затирки III ствола — 25045 м; Последовательность заполнения IV скважины (шифрование) цементной ямой составляет 49690 м. Средняя проницаемость отверстий для цементирования в каждой последовательности фундамента плотины и количество закачиваемого цемента на единицу показано на рисунках 19 и 20.



7. Выводы

Затирка цементного раствора перекрывающих пород решила характеристики легкого расслабления и прочности. уменьшение и увеличение проницаемости столбчато-сочлененного базальта после разгрузки.Кроме того, цементное уплотнение перекрывающих пород улучшает целостность и непроницаемость породы фундамента плотины и имеет следующие преимущества: (1) Затирка для уплотнения перекрывающих пород устраняет влияние столбчатого соединенного базальта, ограничивает релаксацию поверхностного слоя и усиливает изначально плохую целостность массива горных пород. Усиливается недостаточная несущая способность основания плотины, что вызвано деформацией. Затирка цементного раствора перекрывающего слоя через оставшийся 5-метровый защитный слой и сваю анкерных стержней после затирки снижает влияние столбчатых швов в базальте.После выемки защитного слоя эффект релаксации столбчатой ​​базальтовой поверхности снижается за счет цементации труб. Технология затирки подходит для геологических характеристик столбчатых базальтов. После строительства с цементным раствором проверка после цементации показывает, что эффект затирки соответствует требованиям несущей способности фундамента арочной плотины, обеспечивая успешную новую технологию затирки уплотняющего раствора (2). Эффект затвердевания перекрывающих пород значительный.Всего имеется 10 контрольных лунок с 50 секциями, и все 49 секций теста Lugeon имеют размер менее 3 LU. После затирки предыдущий показатель испытательного участка с водой под давлением с более чем 99% контрольных отверстий составляет не более 3 LU. Средняя скорость волны до затирки составляет 4980 м / с, средняя скорость волны после затирки составляет 5345 м / с, а увеличение скорости волны из-за затирки составляет 7,3%. Средний модуль деформации до затирки составляет 8,56 ГПа, а средний модуль деформации после затирки составляет 9.9 ГПа. Средний модуль деформации после затирки на 13,5% выше. Контрольное значение подъема колеблется от 11 до 31 мкм, м и не превышает проектный предел 200 мкм м. Образцы керна извлечены целыми и имеют длину до 1,2 м. Кроме того, во время затирки уменьшается просачивание. По сравнению с цементным раствором для уплотнения бетонного покрытия, этот новый подход позволяет избежать неблагоприятных последствий повреждения при сверлении встроенного контрольного прибора и трубы охлаждающей воды и определить влияние подъема цементного раствора на качество бетона, поэтому он имеет хорошую применимость (3) Заливка цементным раствором перекрывающих пород решает проблему непрерывного строительства.После выемки верхней поверхности защитного слоя вскрыша с затиркой уплотнения имеет большую площадь организации строительного ресурса. Строительство завершается перед заливкой бетона, и строительные ресурсы находятся на месте одновременно. После затирки уплотняющего раствора, заливки цементным раствором (по мере необходимости) и строительства испытательной скважины требуется лишь небольшое количество ресурсов для неглубокого осмотра после выемки защитного слоя породы. По сравнению с затиркой цементного раствора для бетонного покрытия, потери строительных ресурсов исключаются, а эффективность строительства высока (4) Этот новый процесс применяется к участкам плотины №19 ~ №25 правого берега Байхетанской гидроэлектростанции. станции (ниже платформы 590 м).Успешное применение технологии строительства цементного раствора с консолидацией перекрывающих пород обеспечивает мощный ориентир для большего количества проектов по цементированию уплотняющих плотин, что имеет большое значение для популяризации этого подхода.

Доступность данных

статья.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Благодарности

Это исследование было поддержано Национальным фондом естественных наук Китая (грант № 51279019). Авторы благодарны нашим партнерам Sinohydro Bureau 8 Co., Ltd. в Китае. Авторы также благодарны China Three Gorges Corporation. В этой статье суммируются результаты исследований и анализа столбчато-сочлененного базальта на Байхетанской арочной плотине за многие годы, что является мудростью всех компаний и учреждений, участвующих в этом проекте, включая проектирование, надзор за строительством и исследования, а также многие другие. эксперты и ученые как дома, так и за рубежом.Настоящим выражаем благодарность всем вовлеченным организациям и частным лицам.

Выберите деревья, растения, которые не повредят фундамент

До весны всего несколько недель, и садовники Висконсина уже планируют, как они будут украшать свои дворы в этом году. Строя свои планы, обязательно подумайте о том, чтобы сохранить фундамент в безопасности, выбирая растения и деревья и решая, где их посадить.

Когда дело доходит до деревьев, подумайте, какой они вырастут, какой ширины и где вам нужно будет поставить их, чтобы они отбрасывали тень, — советует Джим, блогер Your Garden Sanctuary.Джим работает в отделе дизайна и строительства в компании по уходу за садом и ландшафтным дизайном на юге Висконсина. Он также был садоводом и эстетическим обрезчиком в японском саду высшего качества, а также внештатным садовым консультантом.

Чтобы в доме было прохладно, прикрывайте полденное солнце, которое попадает под более низким углом. «Чтобы получить наиболее полезную тень в доме, вы должны разместить тенистое дерево примерно в 20 футах от дома», — говорит Джим.

Если посадить деревья слишком близко к дому, могут возникнуть три основные проблемы:

  1. Механическое повреждение от корней, оказывающих давление на фундамент.
  2. Колебания влажности почвы, вызывающие расширение и сжатие почвы, а также давление на фундамент.
  3. Опасности, например, падение веток на дом.

По словам Джима, у некоторых деревьев корни растут настолько агрессивно, что их не следует сажать даже в 20 футах или более от дома. В их числе:

  • Тополь, тополь и осина (Populus): Они ищут воду благодаря своей широко распространенной корневой системе. Они одни из худших, чтобы сажать их возле домов.
  • Клен серебряный (Acer saccharinum): Мелкие и плотные корни могут проникать в основания.
  • Клен обыкновенный (Acer platanoides): Поскольку их корни находятся у поверхности, эти деревья известны тем, что поднимают и перемещают бетон.
  • Ивы (Salix spp.): Корни ивы уходят глубоко, чтобы закрепить деревья и получить влагу. Они проникнут в ваш дом, в септические системы и системы водоснабжения.
  • Вяз американский (Ulmus americana): Вяз американский имеет глубокие корни, которые часто забивают канализационные линии и стоки.Их также следует держать подальше от всего, что связано с водой.

Двое других, которых следует избегать возле вашего фонда: ольха черная (Alnus glutinosa) и саранча (Robinia pseudoacacia).

Итак, теперь, когда мы знаем, что не следует сажать, какие растения рекомендуются для расположения вблизи фундаментов? Эти предложения высказывает Никки Фиппс из GarndingKnowHow.com.

  • Небольшие декоративные деревья, , такие как кизил, красный бутон, японская карта, креп мирт и звездчатая магнолия.
  • Вьющиеся растения для почвопокровных растений, такие как лириопа, плющ, можжевельник ползучий, барвинок и душистый древесный плод. Держите их на расстоянии не менее 12 дюймов от фундамента.
  • Низкорослые кустарники тис, можжевельник, самшит и падуб. Оставьте расстояние не менее 3 футов между растениями, чтобы избежать перенаселенности.
  • Древовидные вечнозеленые кустарники , такие как восковой мирт, лигустр или вишневый лавр, подходят для небольших участков. Держите их на расстоянии не менее 5 футов от дома.

Dscam1 устанавливает столбчатые единицы посредством зависящего от клонов отталкивания между сестринскими нейронами в мозге мух

Зависимое от клонов отталкивание в развивающемся мозговом веществе

NB расположены в самой внешней области зачатка мозгового вещества личинки и производят группу нейронов в направлении внутренняя область коры мозгового вещества с радиальной ориентацией, как визуализируется GFP, экспрессируемым под контролем elav-Gal4 с использованием техники MARCM, чтобы маркировать нейроны одного и того же клона (рис.1а, г). Дочерние нейроны одного и того же NB линейно расположены в головном мозге личинки, образуя радиальную единицу до начала тангенциальной дисперсии между 12 и 24 часами APF 11 . Внимательно изучив свои нейриты, мы обнаружили, что нейроны одной и той же линии широко проецируют свои аксоны, охватывая несколько столбцов (Fig. 1e). Во время поздней 3-й личиночной стадии (L3) развивающийся нейропиль, как видно с помощью антитела Ncad, содержит два отдельных слоя (Fig. 1e, f). Слой мозгового вещества способствует слоям мозгового вещества взрослых M1 – M10.Другой слой, расположенный за пределами слоя мозгового вещества, является временным слоем, который исчезает на стадии куколки 11 . Мы называем эту временную структуру слоем M0 (рис. 1a, e, f). Столбцы мозгового вещества можно наблюдать внутри слоя мозгового вещества на виде спереди (рис. 1а, ж). Обратите внимание, что расстояние между соседними столбиками составляет ~ 5 мкм, а нейриты радиальной единицы простираются на расстояние 50 мкм и более (рис. 1д, ж; n = 8).

Аксоны меняют свое направление в слое M0 и в конечном итоге проецируются в слой мозгового вещества (рис.1д). Чтобы четко различать каждый из аксонов, мы использовали технику двойных точек MARCM под контролем drf-Gal4 , которая визуализирует меньшее количество нейронов (рис. 1h – k) 27 . Во многих случаях аксоны меняют свое направление в слое M0 и проецируются в слой мозгового вещества или в другую область мозга, такую ​​как лобула, через слой мозгового вещества, что напоминает паттерны проекций в нейронах Tm-типа 11,28 .

Обычно сестринские нейроны, происходящие от одного и того же NB, не образуют проекции на одни и те же столбцы.Вместо этого они часто перенаправляются в слой M0 и образуют проекции на разные столбцы в разных областях слоя мозгового вещества (рис. 1h – j). Внутри коры мозгового вещества аксоны одной и той же радиальной единицы связаны и выступают вместе в направлении слоя M0. Однако в слое M0 они деаскикулированы и проецируются на разные столбцы в слое мозгового вещества.

Мы количественно оценили расстояние между сестринскими нейронами, происходящими из одной и той же радиальной единицы, сосредоточив внимание на образцах мозга, содержащих небольшое количество изолированных клонов (рис.1л, м). При слиянии аксонов расстояние принималось равным 0 мкм. В противном случае измеряли расстояние между валами аксонов на поверхности слоя мозгового вещества (рис. 1l). По данным окрашивания Ncad, расстояние между колонками в мозговом веществе личинок составляет около 5 мкм (рис. 1g). Среди 110 пар нейронов 11 и 37 пар находились на расстоянии 0 мкм и 2–5 мкм соответственно, а 62 пары проецировались на слой медулы, показывая расстояние> 5 мкм (рис. 1l). Обратите внимание, что расстояние 2–5 мкм не обязательно означает, что они проецируются на один и тот же столбец, потому что они все еще могут выступать на соседние домены соседних столбцов.

Распределение расстояния между парами аксонов показано на рис. 1м. Медиана и среднее расстояние составляют 5,78 и 8,50 мкм соответственно. Поведение аксонов предполагает, что сестринские нейроны очень часто отталкиваются друг от друга. Поскольку это отталкивание происходит между нейронами одной и той же линии передачи, мы называем этот процесс отталкиванием, зависящим от линии передачи.

Когда мы сосредоточились на передней части развивающегося мозгового вещества, нейроны одной и той же линии часто проецировались на отдельные части нейропиля мозгового вещества ( n = 27/32; рис.1h – j). Однако в задней части мозгового вещества терминалы сестринских нейронов часто были неразличимы ( n = 8/24; Fig. 1k). Среди 11 пар слитых аксонов 9 располагались в задней части мозгового вещества (рис. 1). Таким образом, зависящее от клонов отталкивание может быть менее выраженным в задней части продолговатого мозга. В следующих разделах мы сосредоточимся только на передней части продолговатого мозга.

Чтобы выяснить, когда происходит зависящее от клонов отталкивание на ранней стадии развития, мы исследовали мозг личинок L3 0–32 ч и 32–48 ч (рис.1н, о). В мозге 0–32 ч L3 имеется только один Ncad-позитивный слой, который, скорее всего, является слоем M0, потому что все аксоны проецируются через слой M0. Затем слой продолговатого мозга обнаруживается в 32–48 ч L3 головного мозга. Важно, что аксоны одной и той же линии уже дефаскикулированы в слое M0 на стадии 0–32 ч L3. Таким образом, зависимое от клонов отталкивание имеет место еще до образования слоя мозгового вещества (Fig. 1n).

Чтобы включить зависящее от клонов отталкивание, дочерние нейроны, происходящие от одного и того же NB, должны помнить идентичность своей общей материнской NB и аннулировать друг друга в соответствии с их происхождением. Dscam1 потенциально демонстрирует почти 20 000 вариантов сплайсинга (рис. 2a). Идентичные изоформы Dscam1 связываются друг с другом и обеспечивают сигнал отталкивания (рис. 2b). Само-избегание дендритных процессов контролируется той же изоформой Dscam1, экспрессируемой в том же нейроне 26 . Подобный механизм может регулировать зависящее от клонов отталкивание в столбе мозгового вещества. Однако в этом случае должно происходить отталкивание между группой нейронов, происходящих от одного и того же NB. Поскольку разнообразие сплайсинга Dscam1, как полагают, выбирается случайным образом 24 , мы предполагаем, что каждый NB временно экспрессирует единственный вариант Dscam1, который наследуется его дочерними нейронами.Следовательно, дочерние нейроны, которые продуцируются одним и тем же NB, вероятно, экспрессируют один и тот же вариант Dscam1 и отталкиваются друг от друга, что приводит к проецированию на разные столбцы мозгового вещества (Fig. 2c). Напротив, нейроны разных клонов, экспрессирующие разные варианты, не отталкиваются друг от друга и могут проецироваться в один и тот же столбец.

Рис. 2: Обнаружение транскрипции Dscam1 в NB и нейронах с использованием ОТ-ПЦР in situ.

a Схема структуры гена Dscam1 и альтернативного сплайсинга с указанием праймеров, используемых для ОТ-ПЦР in situ. b Гомофильное связывание идентичной изоформы Dscam1 вызывает отталкивание. c Схематическое изображение клонально-зависимого отталкивания между нейронами, происходящими от одного и того же NB, экспрессирующего одну и ту же изоформу Dscam1. d Контрольная ПЦР (зеленый), Lsc (синий) и Dpn (пурпурный) на поверхности мозга на виде сбоку, показывающем слой NB, n = 22 (см. Фиг. 1b). e Количественная оценка интенсивности сигнала в пунктирной рамке на ( d ). f Контрольная ПЦР (зеленый), Lsc (синий) и Dpn (пурпурный) на виде сверху, показывающем уменьшение сигнала мРНК в старых NB, n = 16 (та же ориентация, что и на рис.1б). g , h , j Боковые виды, показывающие нейронный слой (см. Рис. 1b). г Контрольная ПЦР (зеленый) и Dpn (пурпурный), n = 47. h Интронная ПЦР (зеленый) и Dpn (пурпурный), n = 13. i Количественная оценка интенсивности сигнала в квадратах в ( г , ч ). Фоновый сигнал вычитали для Dpn. j Dscam1 9.1 ПЦР (зеленый) и Dpn (пурпурный) на виде сбоку, показывающем нейронный слой, n = 10 (см.рис.1б). k Количественная оценка интенсивности сигнала в прямоугольниках ( j ). Каждая коробка содержит одну NB. Интенсивности в пунктирных прямоугольниках показаны пунктирными линиями. Шкала показывает 20 мкм. Исходные данные представлены в виде файла исходных данных ( e , i , k ).

Транскрипция

Dscam1 по существу происходит в NE и NB

Чтобы проверить эту гипотезу, исследовали паттерн транскрипции Dscam1 в NB и нейронах.Для обнаружения низких уровней мРНК обратно транскрибируемую кДНК амплифицировали с помощью ПЦР для проведения ОТ-ПЦР in situ для мРНК Dscam1 (рис. 2а; «Методы»). Мы разработали контрольные праймеры, которые амплифицируют фрагмент, содержащий экзоны 8-10, который является общим для всех изоформ Dscam1 (рис. 2а).

Во время развития личинок NEs последовательно становятся NBs в ориентации медиально-латерально на поверхности развивающегося мозгового вещества позади пронейральной волны (Fig. 1b). Lsc временно экспрессируется в узкой полосе из 1-2 NE клеток на волновом фронте 15 , тогда как Dpn сильно экспрессируется во всех NBs.Сильные сигналы мРНК были обнаружены в NEs и NBs, следующих за волновым фронтом пронейральной волны, на что указывает экспрессия Lsc, и они постепенно уменьшаются в более старых NBs (Fig. 2d-f), подтверждая, что Dscam1 временно транскрибируется в новорожденных NBs. Сигналы уменьшались по мере старения нейронов во внутренней части мозга (рис. 2g, i). Наблюдение за тем, что сильные сигналы мРНК Dscam1 образуют круг, охватывающий все полушарие мозга личинок (Рис. 2g, Дополнительный Рис. 1a), указывает на то, что они временно транскрибируются во всех NB мозгового вещества новорожденного и наследуются их дочерним нейронам.

Чтобы подтвердить, транскрибируется ли Dscam1 заново в нейронах мозгового вещества или нет, мы обнаружили пре-мРНК Dscam1 с помощью набора праймеров, который амплифицирует интрон между экзонами 9.33 и 10 (рис. 2a). Как мы и ожидали, интронные ПЦР-сигналы были сильно ограничены NB на поверхности полушария головного мозга (рис. 2h, i). Сигналы в нейронах практически не обнаруживались по сравнению с контрольными результатами ОТ-ПЦР (рис. 2i). Эти результаты предполагают, что мРНК Dscam1 по существу транскрибируется в NE и новорожденных NB сразу за пронейральной волной и наследуется дочерним нейронам.

Чтобы подтвердить применимость нашего метода ОТ-ПЦР in situ, мы исследовали сигнал мРНК Dscam1 в клонах, гомозиготных по Dscam 20 , нулевому мутанту Dscam1 (дополнительный рисунок 1b). По сравнению с контрольными клетками, сигналы для белка Dscam1 и мРНК Dscam1 , визуализированные с помощью ОТ-ПЦР in situ, были отменены, что позволяет предположить, что ОТ-ПЦР in situ специфически обнаруживает мРНК Dscam1 .

Мы также визуализировали мРНК Ncad с помощью ОТ-ПЦР in situ (дополнительный рис.1c – e). В соответствии с экспрессией белка Ncad в нейронах мозгового вещества, мы наблюдали сильный сигнал мРНК Ncad во внутренней области коры головного мозга. Относительно однородный сигнал мРНК Ncad во всем мозговом веществе убедительно указывает на то, что резкое уменьшение сигнала мРНК Dscam1 внутри мозга действительно повторяет экспрессию Dscam1 (Fig. 2g – i).

Нейроны одного и того же клона экспрессируют похожие изоформы Dscam1

Чтобы проверить гипотезу о том, что одна и та же изоформа Dscam1 наследуется дочерними нейронами NB, мы провели in situ ОТ-ПЦР для одного варианта экзонов 4, 6. , и 9 (рис.2a и дополнительный рис. 1f – k). Согласно результатам предыдущего исследования, один вариант сплайсинга выбирается случайным образом из альтернативного экзона 4 24 . Если такое же явление происходит для экзонов 6 и 9, ограниченное количество NB мозгового вещества должно экспрессировать один и тот же вариант экзона, который затем будет унаследован их дочерними нейронами. В самом деле, мы наблюдали кластер NBs и их дочерних нейронов, экспрессирующих один и тот же вариант экзонов 4, 6 и 9 (Fig. 2j, k и Supplementary Fig. 1f-n). Расположение 9.1-положительный кластер NB не был однородным, но изменчивым в каждом образце мозга. Во многих случаях мозг содержал один или два домена, которые экспрессируют тот или иной вариант экзона. Мы повторили тот же эксперимент для 22 вариантов сплайсинга из экзона 4 (4 варианта), 6 (10 вариантов) и 9 (8 вариантов; «Методы»). По крайней мере, десять образцов наблюдались для каждого варианта, и мы получили практически те же результаты, что и количественно указаны на дополнительном рис. 1l – n, предполагая, что альтернативный вариант сращивания выбран случайным образом.

Если стохастический выбор происходит исключительно в NB, должна появиться модель, похожая на соль и перец. Действительно, более пристальный взгляд на их паттерны экспрессии иногда обнаруживает отсутствие сигналов RT-PCR in situ в домене экспрессии (дополнительный рис. 1i). Однако это может быть связано с зависимыми от клеточного цикла изменениями в распределении мРНК. Поскольку экспрессия Dscam1 инициируется в NEs (Fig. 2d-f), которые быстро симметрично делятся, группа NBs предположительно имеет один и тот же вариант экзона. Или могут быть неизвестные механизмы, которые влияют на выбор альтернативных экзонов.

Мы предполагаем, что альтернативный сплайсинг всех альтернативных экзонов (экзоны 4, 6 и 9) независимо и стохастически определяется в соответствии с предыдущим исследованием 24 . Если это так, кластер NB, экспрессирующих один и тот же вариант экзона 9, скорее всего, содержит NB, экспрессирующие разные варианты других экзонов, и предположительно может быть дополнительно подразделен путем отбора экзонов 4 и 6. Таким образом, одна или очень небольшое количество ветвей NB могут использовать одни и те же варианты стыковки.

С другой стороны, мы также экспрессировали единственную изоформу Dscam1 в нейронах путем создания клонов клеток, содержащих единственную изоформу Dscam1 ( dscam 3.31.8 ; дополнительные рис. 2a – e). Нейроны, экспрессирующие единственную изоформу, демонстрировали нормальное радиальное расположение, и их нейриты обычно дефасцикулировались в слое M0, выступающем в широкую область нейропиля мозгового вещества, как обнаружено в контрольных клонах дикого типа (дополнительный рис. 2e).

В условиях дикого типа мы предполагаем, что экзон 9.8 выбирается стохастически при альтернативном сращивании. Напротив, у мутанта с одной изоформой, dscam 3.31.8 , отсутствуют все варианты экзона 9, кроме 9.8. Затем мы спросили, что происходит с паттерном экспрессии экзона 9.8 в этом единственном варианте мутантного фона. Удивительно, но мРНК для экзона 9.8 равномерно детектируется в мозговом веществе NBs, образуя круг, охватывающий все полушарие мозга личинок (дополнительный рис. 2f, g), предполагая, что экзон 9.8 всегда выбирается в отсутствие других вариантов экзона 9.Соответственно, мРНК для экзонов 9.1 и 9.4 не обнаруживалась на одном и том же мутантном фоне (дополнительный рис. 2h, i). Эти данные подтверждают нашу гипотезу о том, что нейроны одного и того же происхождения экспрессируют сходные изоформы Dscam1.

Белок Dscam1 стабилизирован в нейронах мозгового вещества

Затем мы исследовали паттерн экспрессии белка Dscam1 в NBs и нейронах. Мы обнаружили, что белок Dscam1 слабо экспрессируется в Lsc-положительных НЭ и 1-2 рядах Dpn-положительных НБ за пронейральным волновым фронтом и снижается в более старых НЭ (рис.3a, b, e), указывая на то, что белок Dscam1 экспрессируется во времени, сопровождая дифференцировку NB, но быстро подавляется у более старых NB.

Фиг. 3: Характер экспрессии белка Dscam1.

a , b Паттерн экспрессии белка Dscam1 (белый) в NE и NB на виде сбоку, показывающий слой NB (см. Фиг. 1b). ( a ) Lsc (синий). ( б ) Дпн (синий). c , d Паттерн экспрессии белка Dscam1 (белого или пурпурного) в нейронах на виде сбоку, показывающий нейронный слой. c Dpn (синий). d Стрелки указывают сигналы Dscam1 вдоль аксонов нейронов, экспрессирующих GFP ( Ay-Gal4 UAS-GFP ; зеленый). e , f Количественная оценка интенсивности сигнала Dscam1 в прямоугольниках ( a ) и ( c ) соответственно. г Dscam1 (белый) и Ncad (синий) визуализируют столбчатые структуры в слое мозгового вещества на виде спереди (пунктирная линия на рис. 1а). Шкала показывает 20 мкм. Исходные данные представлены в виде файла исходных данных ( e , f ).

В отличие от распределения мРНК, белок Dscam1 сильно накапливается вдоль нервных волокон, которые радиально ориентированы в коре продолговатого мозга, которые колокализуются с нейритами, выступающими из радиального кластера нейронов (Рис. 3c, d, f). Поскольку сигналы Dscam1 в NBs и нейронах элиминируются в нуль-мутантных клонах Dscam1 ( dscam1 20 ; дополнительный рис. 1b), вышеуказанные сигналы действительно отражают паттерны экспрессии Dscam1. Таким образом, мы предполагаем, что Dscam1 преимущественно транскрибируется в новорожденных NB за пронейральной волной, тогда как мРНК Dscam1 , унаследованная их дочерними нейронами, быстро деградирует.С другой стороны, белок Dscam1, который может транслироваться в NBs и нейронах, стабилизируется в нейронах и локализуется в нейритах (рис. 3d).

Временное ограничение транскрипции Dscam1 может быть существенным для зависимого от клонов отталкивания. Во время альтернативного сплайсинга аппарат сплайсосом собирается в сайтах сплайсинга, образуя комплекс, который приводит к выбору единственного варианта сплайсинга 29 . Если продолжительность транскрипции ограничена, будет выбрано небольшое количество вариантов сплайсинга.В результате NB будет производить одну или очень небольшое количество изоформ сплайсинга, которые являются общими для его дочерних нейронов. Когда группа нейронов экспрессирует идентичную изоформу Dscam1, узнавание между белками Dscam1 вызывает взаимное отталкивание, ведущее к клон-зависимому отталкиванию (Fig. 2b, c).

Сильные сигналы Dscam1, обнаруженные в слое M0 (Fig. 3c, d), согласуются с идеей, что Dscam1 регулирует распространение нейритов внутри слоя M0 в мозговом веществе личинок (Fig. 1e, h – j).Колончатый паттерн распределения Dscam1 в слое мозгового вещества, который перекрывается со столбчатым распределением Ncad, также указывает на его существенную роль в формировании колонки (Fig. 3g).

Hth регулирует временную экспрессию Dscam1 в NB

Подобно Dscam1, экспрессия Hth и Ey в NB наследуется дочерними нейронами в мозговом веществе личинки 11,16,17 . Hth — это первый фактор временной транскрипции, экспрессируемый в NE и NB. Hth активирует экспрессию Bsh и Ncad в ранних нейронах мозгового вещества, которые дифференцируются в один тип нейронов мозгового вещества, Mi1 (рис.1c) 11,30 .

Мы сравнили паттерны экспрессии Dscam1, Hth, Bsh и Ncad и обнаружили, что Dscam1 и Hth коэкспрессируются в NEs и новорожденных NBs (Fig. 4a). Напротив, Bsh и Ncad специфически экспрессируются в нейронах, а не в NE / NB 11,30 . Сильные сигналы Dscam1 были обнаружены в нейронах, расположенных во внутренней области развивающегося мозгового вещества (рис. 3c, d). Сходным образом, регулятор транскрипции Engrailed регулирует экспрессию направляющего рецептора Frazzled в NBs, чтобы контролировать ведение аксонов во время эмбрионального развития Drosophila 31 .

Рис. 4: Hth регулирует экспрессию Dscam1.

Боковые виды мозга личинок L3, показывающие NB ( a , b , d ) и нейронные слои ( c , e ; см. Рис. 1b). Dscam1 (белый в a c , пурпурный в d , e ). , экспрессия Dscam1 перекрывается с Hth (зеленый) в NE и с Hth и Dpn (пурпурный) в NB. b , c Фоновый уровень сигнала Dscam1 в мутантных клонах hth , визуализированный по отсутствию GFP (зеленый; стрелки) по сравнению с контрольными клетками (стрелки).Интенсивность пикселей сигнала Dscam1 была равномерно увеличена по всему изображению ( b ). d , e Эктопическая активация Dscam1 в клонах, экспрессирующих hth , визуализированная GFP (зеленый; стрелки) под контролем Ay-Gal4 . Ncad (синий). Области, обозначенные пунктирными прямоугольниками, увеличены на правых панелях. Шкала показывает 20 мкм. f i Количественная оценка интенсивности сигнала в прямоугольниках ( b e ).Интенсивности в пунктирных прямоугольниках показаны пунктирными линиями. f , g Сигнал Dscam1 снижен в GFP-отрицательных мутантных клонах hth ( b , c ). h , i Сигнал Dscam1 усиливается в GFP-положительных клонах, экспрессирующих hth ( d , e ). Фоновый сигнал вычитали для Dscam1 ( f , h ). Эксперимент был независимо повторен не менее трех раз с аналогичными результатами ( a e ).Исходные данные представлены в виде файла исходных данных ( e , g , h , i ).

Поскольку Hth представляет собой фактор временной транскрипции, экспрессия которого в NE и NB перекрывается с экспрессией Dscam1 и активирует экспрессию Bsh и Ncad в нейронах, он также может регулировать экспрессию Dscam1. Чтобы проверить эту возможность, мы создали мутантные клоны hth . Как и ожидалось, экспрессия Dscam1 в NE и NB продолговатого мозга автономно элиминировалась в мутантных клонах hth (17/43; рис.4б, е). Сигналы Dscam1 в нейронах мозгового вещества были снижены (рис. 4c, g). Остаточные сигналы Dscam1 могут быть следствием неспецифического фона антитела Dscam1; потому что аналогичные фоновые сигналы были также обнаружены в клонах нулевых мутантов Dscam1 (дополнительный рис. 3b). Сильные сигналы Dscam1 вдоль нейритов были полностью элиминированы в мутантных клонах hth (10/41; фиг. 3c, d и 4c, g).

Обратите внимание, что мутант hth , использованный в этом исследовании ( hth P2 ), является наиболее часто используемым аллелем, но является гипоморфным (Fly Base).Неполная потеря экспрессии Dscam1 может быть связана с его гипоморфной природой. Или могут быть дополнительные неизвестные факторы, которые частично дублируют hth .

Чтобы проверить, достаточно ли экспрессии hth для индукции экспрессии Dscam1, мы создали клоны, эктопически экспрессирующие hth (рис. 4d, e). Мы обнаружили, что эктопическая экспрессия hth в NBs эффективно усиливает экспрессию Dscam1 (11/21; Fig. 4d, h). Кроме того, экспрессия Dscam1 повышалась в нейронах и локализовалась вдоль нейритов при эктопической экспрессии hth (21/47; рис.4д, и). Повышенная регуляция Ncad, обнаруженная в клонах, экспрессирующих hth , указывает на то, что эктопическая экспрессия hth вызывает преждевременную дифференцировку нейронов, которая может косвенно повышать регуляцию Dscam1 (Fig. 4e). Однако Dpn-положительные NB также обнаруживают повышенную регуляцию экспрессии Dscam1 на поверхности мозга (дополнительный рис. 4). Взятые вместе, эти результаты показывают, что Hth действует как триггер экспрессии Dscam1 в NE и NB.

В то время как Hth широко экспрессируется в NE, экспрессия Dscam1 обнаруживается в части NE (рис.2г – е и 3а). Таким образом, экспрессии Hth в NE может быть недостаточно для индукции экспрессии Dscam1. Другой неизвестный фактор может быть необходим для полной индукции экспрессии Dscam1.

Потеря Dscam1 вызывает потерю нейронной дефасцикуляции

Белок Dscam1 экспрессируется в NB и их дочерних нейронах. Как мы продемонстрировали, нейриты сестринских нейронов, которые происходят из одного и того же NB, перенаправляются в слой M0 и проецируются в разные столбцы (Fig. 1e, h – j). Мы предполагаем, что сестринские нейроны экспрессируют одинаковые или похожие изоформы Dscam1, вызывая отталкивание между нейронами одного и того же происхождения.Чтобы проверить эту возможность, мы сравнили проекционные паттерны нейритов радиальных единиц в контроле и нуль-мутантных клонов Dscam1 ( dscam 20 ; рис. 5a – d).

Рис. 5: Потеря Dscam1 ухудшает зависящее от клонов отталкивание.

Нейроны одной и той же линии визуализируются клонами elav-Gal4 MARCM (GFP — белым). Ncad (синий) визуализирует структуру и столбцы нейропиля. Паттерны проекции нейронов одной и той же линии в контроле ( a ) и мутантных клонах Dscam1 ( b ).Боковые виды мозга личинок L3, показывающие нейронный слой (см. Рис. 1b). Широко распространенные тангенциальные выступы, обнаруженные в слое M0 в контрольных клонах ( a ), подавлены в клонах Dscam1 ( b ; стрелки). Нейроны иннервируют слой мозгового вещества, следующий за слоем M0. c Количественная оценка расстояния между нейритами одной и той же линии. Контроль: n = 8. Dscam1 мутант: n = 10, центральная линия, медиана; границы бокса, верхний и нижний квартили; усы, 1.5 × межквартильный размах. Среднее расстояние проецирования составляет 49,2 и 17,45 мкм соответственно. SD равны 14,8 и 8,09 соответственно (двусторонний тест t , P = 0,00043). d , e Морфология колонки мозгового вещества куколки 48 ч APF, показывающая слои M1–2. Контроль ( d ) и мутантных клонов Dscam1 ( e ). Регулярная морфология колонки нарушена в мутантных клонах Dscam1 и вокруг них (стрелки). f Классификация морфологии колонны.В отличие от обычных столбцов, аномальные столбцы подразделяются на неправильные, слитые и нечеткие столбцы. г Количественная оценка морфологии колонки. Контроль: 87 столбцов из 3-х мозгов. Dscam1 мутантных клонов: 136 столбцов из 3 головок (точный тест Фишера, нормальный P = 8,4 × 10 −47 , нечеткий P = 7,23 × 10 −19 , нерегулярный P = 7,18 × 10 −12 , плавленый P = 0,00046). ч , j Тангенциальная миграция тел нейрональных клеток той же линии через 24 ч APF.Спинные виды, показывающие контроль ( h ) и мутантных клонов Dscam1 ( j ). i , k Пространственное распределение клеточных тел в коре головного мозга в ( h , j ) определено количественно. Широкое тангенциальное распределение в контроле ( h , i ; SD = 42 мкм, n = 3) подавлено в мутантных клонах Dscam1 ( j , k ; SD = 24 мкм, ). n = 3, двусторонний t тест, P = 0.0022). l Схематическое изображение зрительной доли через 24 ч APF. Шкала показывает 20 мкм ( a , b , d , e , h , j ) и 5 ​​мкм ( f ). Эксперимент был независимо повторен не менее трех раз с аналогичными результатами ( a , b , d , e ). Исходные данные представлены в виде файла исходных данных ( c , g , i , k ).

В контрольных клонах нейриты радиальной единицы были дефаскикулированы и спроецированы на удаленные колонки (расстояние = 50 мкм, n = 8; рис. 5a, c). Обратите внимание, что мы измерили наибольшее расстояние между несколькими нейронами, которое больше среднего расстояния между двумя нейронами (рис. 1l). Напротив, мутантных нейритов Dscam1 были связаны в слое M0 и проецировались на те же или соседние столбцы (расстояние = 20 мкм, n = 10; рис. 5b, c), что позволяет предположить, что Dscam1 отвечает за клон-зависимое отталкивание. .

Чтобы определить, является ли зависящее от клонов отталкивание существенным для формирования столбца, мы исследовали изменения в столбчатой ​​структуре, которые были визуализированы с помощью антитела Ncad через 48 часов APF, в присутствии контрольных и нулевых мутантных клонов Dscam1 (рис. 5d, e). . Мы классифицировали морфологию колонки на нормальную, нечеткую, нерегулярную и слитую (рис. 5f; «Методы») и количественно определенную морфологию колонки (рис. 5g). Аномальные, нечеткие, нерегулярные и слитые столбцы значительно увеличивались в присутствии мутантных клонов.

Форма отдельных столбцов и их расположение сильно изменились, когда в мозговом веществе содержалось мутантных радиальных единиц Dscam1 (Рис. 5e). Неавтономные столбчатые дефекты, вызываемые мутантными клонами Dscam1 , подтверждают, что аксоны одной и той же линии должны проецироваться в широкий диапазон столбцов под контролем Dscam1-зависимого отталкивания. Т.о., Dscam1 важен для зависящего от клонов отталкивания и последующего образования столбцов.

Хотя нейриты радиальной единицы отталкиваются друг от друга, выступая в отдаленные колонны на ранней стадии личиночной стадии (рис.1д, з – к) рассеяние их клеточных тел происходит между 12 и 24 часами APF 11 . Чтобы проверить, происходит ли дисперсия в радиальных единицах мутанта Dscam1 , мы сравнили распределения тел клеток в контрольных и мутантных клонах Dscam1 ( dscam 20 ; Рис. 5h – k). В контрольных клонах клеточные тела радиальной единицы были широко распределены по всей коре головного мозга, демонстрируя тангенциальную дисперсию ( n = 3, 20 нейронов / мозг, SD = 42 мкм; рис.5h, i). Однако, когда радиальная единица лишена функции Dscam1, тела клеток остаются близко друг к другу, формируя кластер через 24 ч APF ( n = 3, 20 нейронов / мозг, SD = 24 мкм; фиг. 5j, k). Таким образом, дисперсия клеточных тел также зависит от Dscam1.

Утрата разнообразия Dscam1 приводит к столбчатым дефектам

Предыдущие исследования показали, что разнообразие изоформ Dscam1 имеет решающее значение для нейронной проводки с использованием мутантных аллелей Dscam1 , в которых количество изоформ сплайсинга снижено (рис.6а) 32 . Мы спросили, имеет ли разнообразие Dscam1 решающее значение для формирования столбцов.

Рис. 6: Потеря разнообразия изоформ Dscam1 приводит к дефектам в формировании колонки.

a Схематическое изображение гена Dscam1 в фонах дикого типа и Dscam1 с одной изоформой мутантных фонов. Морфология колонки 48-часового мозгового вещества куколки APF, визуализированная Ncad (синий) в слоях M1–2 (верхний) и M9–10 (нижний) в контроле ( b ) и фонах одиночных мутантов Dscam1 ( c ; ) Dscam1 23 / Dscam1 3.31,8 ). Шкала показывает 20 мкм. Эксперимент был независимо повторен не менее трех раз с аналогичными результатами ( b , c ). d Схематическое изображение оптической доли через 48 ч APF. ( e ) Количественная оценка морфологии колонки в верхнем слое. Контроль: 74 столбца из 5 мозгов. Мутант с одной изоформой: 143 столбца из 5 мозгов (точный текст Фишера, нормальный P = 2,11 × 10 −40 , слитый P = 5,4 × 10 −17 , неправильный P = 0.33, неясно P = 0,21). Исходные данные представлены в виде файла исходных данных.

Объединив одноизоформные мутанты Dscam 3.31.8 и нулевой аллель, Dscam 23 , мы создали мутантный фон, который продуцирует только одну изоформу Dscam1 (рис. 6а). Мы сравнили форму столбца и расположение столбцов, как это было визуализировано с антителом Ncad через 48 ч APF (рис. 6b, c). В контрольном мозге наблюдалось регулярное расположение столбиков, напоминающих пончики (рис.6б, г) 7 . Напротив, форма и расположение столбцов были значительно дезорганизованы в фонах с одной изоформой Dscam1 (рис. 6c). Дефекты в верхнем слое были количественно определены и статистически протестированы (рис. 6e). Поскольку нижний слой был слишком неорганизованным, а форма столбца у мутанта не определялась, количественная оценка морфологии столбца в нижнем слое была неприменима ( n = 5).

Патенты и заявки на патенты, расположенные в столбце (Класс 29/897.33)

Номер патента: 8434231

Abstract: Изобретение относится к способу производства металлической детали, при котором сырье (4, 34, 42, 74) предоставляется, сырье (4, 34, 42, 74) штампуется и подвергается дальнейшей обработке. после процесса штамповки для формирования компонента (90, 108, 114).Компонент (90, 108, 114) имеет, по меньшей мере, частично штампованные области (16, 36, 48, 98), а исходный материал (4, 34, 42, 74) подвергается горячей штамповке. Изобретение также относится к использованию металлической детали горячей штамповки, которая предпочтительно производится с использованием способа согласно изобретению, в кузове автомобиля, в частности, в качестве усиливающего элемента в B-стойке (114), пороге. , или продольную балку.

Тип: Грант

Подано: 16 ноября 2011 г.

Дата патента: 7 мая 2013 г.

Цессионарий: ThyssenKrupp Steel Europe AG

Изобретателей: Франц-Йозеф Ленце, Саша Сикора, Андреас Ульрихс, Лотар Патберг

Спросите эксперта: как сделать ваши осины счастливыми

В дикой природе осина — одно из самых красивых деревьев с ее почти белоснежными стволами, мерцающими листьями и желтым осенним цветом.Из-за этих качеств многие домовладельцы посадили их, но затем наблюдали, как взрослые деревья быстро умирают. К сожалению, осины часто борются и недолговечны, живя от 5 до 15 лет за пределами своей естественной среды обитания. Когда они высажены вокруг домов, они более восприимчивы к проблемам с насекомыми / болезнями и дефициту питательных веществ из-за стресса, вызванного нахождением вдали от своей родной среды обитания. Учтите эти советы по уходу за осиной.

• Осины образуют поверхностные корни и в основном размножаются, высылая корневые отпрыски, которые образуют новые деревья, связанные с материнским растением.Оба эти качества затрудняют кошение возле них. К счастью, из-за короткого срока службы осины обычно не вырастают достаточно большими, чтобы повредить фундамент или цемент. Одним из возможных решений сдерживания корней является окружение корневого кома только что посаженных деревьев цементным или нержавеющим металлическим кольцом на расстоянии 3–4 футов от корневой системы и глубиной около 2 футов. Другой пример — использование таких продуктов, как Sucker Stopper, которые распыляются на только что срезанные присоски. Они предназначены для замедления или предотвращения образования присоски на месте распыления.Однако этот метод контроля не идеален и годен только для одного сезона. Спрей может стоить от 20 до 60 долларов за флакон, в зависимости от концентрации.

• Шведская осина столбчатая похожа на наши аборигенные виды, но с возрастом она выше и уже. Это относительно ново для ландшафта и, кажется, посылает меньше корневых отпрысков. Тем не менее, он по-прежнему подвержен вредителям и болезням, как осина, и может довольно быстро исчезнуть.

• Даже с ограничениями, которые есть у aspen, они все равно могут использоваться в умеренных количествах в ландшафте при правильном управлении.Важно сажать деревья в местах, где сосание не будет проблемой, например, в ландшафтных грядках, удаленных от газонов. Осиной можно наслаждаться, пока она здорова, а затем срубить, когда она начнет увядать. Молодые деревья, образованные корневыми отпрысками, быстро созреют и выдержат древостой. Эти деревья следует поливать на глубину 2 фута каждые 2-4 недели. Не рекомендуется чрезмерно обрабатывать деревья химическими веществами, если проблемы возникают регулярно. Домовладельцы могут легко потратить на пестициды больше денег, чем закупочная цена нового дерева.

• Деревья, которые следует рассматривать как замену осине, включают грушу шантеклер / кливлендскую грушу, клен Королевы Елизаветы, клен татарский, ольху черную, различные яблони и вишню Сарджент. Эти деревья не похожи на осины, но обладают собственными декоративными качествами, обычно гораздо менее восприимчивы к вредителям и болезням и гораздо дольше живут.

 Автор: Таун Беддес, [email protected], Специалист по садоводству при расширении Университета штата Юта 
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

900 отметка 545 м, слой P 2 β 3 2-3 слой — лава брекчия.В P 2 β 3 3 столбчатые базальты с диаметром колонн 13 ~ 25 см в основном обнажаются в правом берегу основания плотины. Выше P 2 β 3 3 — слои P 2 β 3 3-4 скрытокристаллический базальт. Покрытие русла реки — песок, мелкий гравий и беленый камень. Толщина фундамента плотины составляет от 11,8 м до 26,85 м, высота самой нижней коренной крыши — 552.41 мес. Породный массив фундамента в основном состоит из столбчатого базальта первого типа в основании слоя P 2 β 3 3 и брекчированной лавы P 2 β 3 2-3 слой. Подстилающий массив горных пород — это второй тип столбчатого базальта в слое P 2 β 3 2-2 и кристаллический базальт в P 2 β 3 2-1 слой.Глубокая часть (высота до 500 м) представлена ​​брекчированной лавой в слое P 2 β 3 1 и скрытокристаллическим базальтом, порфировым базальтом и кристаллическим базальтом. Толщина брекчированной лавы в слое P 2 β 3 2-3 составляет 6,60 ~ 10,40 м, а высота дна обычно составляет 550 ~ 520 м слева направо. Толщина столбчатого базальта второго типа слоя P 2 β 3 2-2 составляет 25.70 ~ 27,70 м, а высота этажа обычно составляет 520 ~ 490 м слева направо.

2.2.2. Характеристики столбчато-сочлененного базальта

Считается, что охлаждение и сжатие магмы сформировали столбчатые сочленения в районе Байхетанской плотины. Столбчато-сочлененный базальт образован химическими реакциями хлорита, каолинита, эпидота и тремолита, а в заполнителях столбчатых трещин преобладает хлорит. На участке плотины залегает столбчато-сочлененный базальт I типа с высокой плотностью стыков, широкими отверстиями для стыков и волнистыми столбчатыми стыковочными поверхностями, которые обычно разрезают породу на полные колонны; модуль горизонтальной деформации этого базальта составляет 9 ~ 11 ГПа, а модуль вертикальной деформации составляет 7 ~ 9 ГПа.Эти породы серовато-черные и содержат непроходящие микротрещины, помимо столбчатых трещин. Столбчато-сочлененные базальты разделены на гексагональные или другие неправильные призматические формы и одновременно образуют продольные и поперечные микротрещины, а в базальтах имеется много структурных плоскостей с низким падением. Согласно классификации качества инженерно-геологических массивов, при релаксации поверхностного слоя после разгрузки целостность горного массива ухудшается из-за развития трещин.

2.2.3. Геологическое строение

F 14 и F 16 представляют собой круто падающие разломы северо-западного простирания, которые пересекают русло реки под тупым углом и обнажаются на правой стороне ниже по течению от основания русловой плотины. Русло развивается только в русле С 2 , которое глубоко залегает на 120 м ниже русла у основания плотины, на высоте ниже 430 м.

Зоны дислокации RS 331 , RS 336 , RS 3315 , VS 333 , VS 332 и т. Д.находятся в обнаженном слое фундамента плотины, а остальные зоны дислокации VS 3210 , VS 3215 , VS 3216 и др. заглублены под фундамент. За исключением RS 336 , большинство из этих зон дислокации короткие, и большинство из них распределены периодически вдоль слоя потока, что обеспечивает некоторую связь вдоль слоя потока. Распределение столбчатых базальтовых зон и зон сдвига показано на Рисунке 3.


2.2.4. Напряжение грунта

Ориентация максимального горизонтального главного напряжения близка к восточно-западному, что почти перпендикулярно потоку реки.Ориентация минимального горизонтального главного напряжения составляет приблизительно север-юг. Горный массив в диапазоне 0 ~ 40 м ниже поверхности коренных пород (глубина 20 ~ 60 м) находится в состоянии релаксации, что создает зону релаксации напряжений с максимальным горизонтальным главным напряжением 3 ~ 6 МПа. В диапазоне 40 ~ 70 м ниже поверхности коренных пород (глубина 60 ~ 90 м) наблюдается повышенное напряжение с максимальным горизонтальным главным напряжением 6 ~ 12 МПа, вызывающее явление локальной концентрации напряжений. Существует зона концентрации напряжений на 70 ~ 130 м ниже поверхности коренных пород (глубина примерно 90 ~ 150 м) с максимальным горизонтальным главным напряжением 22 ~ 28 МПа и минимальным горизонтальным главным напряжением 13 ~ 15 МПа.

На склоне правого берега залегает частично ненагруженный массив горных пород, залегающий на глубине 200 м. Ориентация максимального горизонтального главного напряжения — это север-юг, который почти параллелен потоку реки, а мелководная поверхность отклоняется к ближайшей горе с севера на северо-восток. Среднее максимальное горизонтальное главное напряжение на прибрежном склоне составляет примерно 6,0 МПа, а среднее минимальное горизонтальное главное напряжение составляет примерно 4,6 МПа. Ориентация первого главного напряжения составляет приблизительно север-юг, с умеренным углом наклона приблизительно 35 ° и величиной 7 ~ 11 МПа.Вторая основная ориентация напряжения — S20 ° в.д., а угол падения — от умеренного до крутого. Третье главное напряжение имеет следующие свойства: ориентация, N80 ° W; наклон, 21 °; магнитудой 5 ~ 7 МПа.

3. Затирочный материал
3.1. Сырье
3.1.1. Цемент

Обычный портландцемент 42,5R, производимый цементной компанией в Юньнани, используется в этом исследовании. Крупность цемента составляет менее 5% допуска на сито через сито с квадратными отверстиями 80 мкм м.Характеристики соответствуют соответствующим требованиям общего китайского стандарта на портландцемент (GBl75-2007). Химические составляющие портландцемента, использованного в этом исследовании, показаны в таблице 2. Начальное время схватывания составляет 155 мин. Время окончательного схватывания 235 мин. 28 d прочность на сжатие составляет 46,3 МПа.


Категория Длина колонны (м) Диаметр колонны (см) Фрагментация горных пород (см) Распределение Примечания

Тип І 2,0 ~ 3,0 13 ~ 25 5 P 2 β 3 2 , P 2 β 3 3
Тип II 0.5 ~ 2,0 25 ~ 50 10 P 2 β 3 2 , P 2 β 6 1 , P 2 β 7 1 , P 2 β 8 2
Тип III 1,5 ~ 5,0 50 ~ 250 P 2 β 2 2 , P 2 β 2 3 , P 2 β 4 1 Неполная резка

3

Химические составляющие SiO 2 Al 2 O 3 Fe 2 O 3 SO 9031 MgO SO 9031 MgO Потери при возгорании
Содержание (%) 22.3 7,1 4,5 2,4 56,6 2,2 2,5

3,2. Соотношение суспензии и размер частиц

В соответствии с китайским стандартом DL / T5148-2012 (Техническая спецификация на цементный раствор для строительства гидротехнических сооружений) и специалистами, затирка уплотняющего раствора в отверстии І последовательности и секции II ствола последовательности с использованием обычного портландцементного раствора, мокрого- Для ямы III последовательности используется цементный раствор.Водоцементное соотношение (массовое соотношение воды и цемента) обычного портландцементного раствора испытывается на четырех уровнях (2: 1, 1: 1, 0,8: 1 и 0,5: 1). Водоцементное соотношение влажного цементного раствора тестируется на четырех уровнях (3: 1, 2: 1, 1: 1 и 0,5: 1). Для метода мокрого измельчения цемента в соответствии с китайским стандартом SL578-2012 (Технический кодекс для экспериментов и применения тонкоизмельченного цементного цементного раствора), оборудование для мокрого измельчения от Института автоматизации Академии наук реки Янцзы Ухань, инструмент GJM– FII, использовался для мокрого измельчения.Образец был взят из цемента, который измельчали ​​три раза (каждый раз по 3 ~ 4 мин) на месте.

Размер частиц влажного цемента был проанализирован с использованием лазерного анализатора размера частиц NSKC-1, оборудование Института автоматизации Академии наук реки Янцзы в Ухане. Был проведен гранулометрический анализ цемента с влажным грунтом, результаты показаны на рисунке 4. Согласно рисунку 4,, и. Согласно требованиям технических условий, учитываемых для мокрого помола, после мокрого помола размер частиц цемента и.Таким образом, данные на Рисунке 4 показывают, что цемент после мокрого помола соответствует требованиям спецификации. После заливки швом І или II трещиноватость породы уменьшается. Согласно спецификации, ширина трещины в горном массиве составляет 0,1 ~ 0,5 мм после соответствующего использования цемента с влажным грунтом. Размер очередного отверстия III может быть уменьшен, поскольку размер зерна цементного раствора мокрого помола невелик и может улучшить способность раствора течь в очень мелкие трещины. В то же время, чтобы увеличить насыщение цементного раствора, водоцементное соотношение цемента с влажным грунтом доводят до 3: 1, а способность суспензии к впрыскиванию увеличивается за счет разжижения раствора и уменьшения размера частиц.


3.3. Характеристики суспензии
3.3.1. Плотность раствора

Плотность раствора является основой для расчета общего количества цементного раствора, а также важным показателем для корректировки водоцементного отношения цементного раствора. В соответствии с китайским стандартом DL / T5148-2012 (Техническая спецификация на цементный раствор для строительства гидротехнических сооружений), датчик плотности раствора типа 1002 используется для измерения плотности раствора. Плотности раствора для различных соотношений воды и цемента показаны в таблице 3.Таблица 3 показывает, что по мере уменьшения водоцементного отношения плотность раствора увеличивается, и раствор также загустевает. Плотность цемента увеличивается, потому что плотность воды уменьшается.


W / C 3: 1 2: 1 1: 1 0,8: 1 0,5: 1
Плотность суспензии 1,21 1,30 1,53 1,62 1.85

3.3.2. Скорость дренажа

В соответствии с китайским стандартом DL / T5148-2012 (Техническая спецификация на цементный раствор для строительства гидротехнических сооружений), цилиндр цементного раствора объемом 100 мл был измерен под массой объема воды, которая могла бы накапливаться в результате 2-часовой выдержки. осадков, и отношение этого измерения к начальному объему суспензии называется скоростью дренажа. Скорость дренажа может до некоторой степени отражать стабильность раствора.Таблица 4 показывает, что скорость осушения раствора с водоцементным соотношением 3: 1 может превышать 80 ~ 90%, тогда как скорость осушения раствора с соотношением воды и цемента 1: 1 составляет примерно 35%, что указывает на что большая часть воды в тонком растворе, который был введен в трещины или отверстия в скале во время затирки, слилась. Однако скорость осушения цементного раствора мокрого помола ниже, чем перед измельчением, и чем ниже соотношение воды и цемента, тем больше снижение из-за адсорбируемости частиц цемента.После мокрого шлифования площадь контакта цемента с водой увеличивается, что приводит к снижению скорости отвода воды. Во время фактического процесса заливки цементный раствор вводится в трещины горных пород под большим давлением. Из-за этого эффекта высокого давления период анализа воды сокращается, и выжимается больше воды, поэтому частицы уплотняются более плотно, а прочность суспензии увеличивается.


W / C 0.5: 1 0,8: 1 1: 1 2: 1 3: 1
Скорость осушения (%)
Перед шлифованием 15,3 22,5 27,2 54,1 81,2
После шлифования 1,2 18,4 21,8 50,1 79,8

3.3.3. Прочность на сжатие консолидированного раствора

Ранняя прочность на сжатие раствора в столбчатом базальте определяет способность цементного материала укреплять фундамент плотины, в то время как поздняя прочность уплотненного раствора отражает долгосрочную стабильность арматуры цементного раствора. Измеряли прочность цементного раствора мокрого грунта после 1 часа циркуляции при давлении 5 МПа и обычного цементного раствора при нормальном давлении. Сервопресс для бетона используется для проверки прочности на сжатие консолидированной суспензии размером 7 и 28 дней.Этот метод испытаний называется методом испытания на прочность цементного песка (метод ISO) (GB / T17671-1999). Из таблицы 5 можно сделать вывод, что прочность на сжатие консолидированного цементного раствора с влажным грунтом выше, чем у обычного цементного раствора того же возраста и при нормальном давлении, когда водоцементное соотношение такое же. Под высоким давлением прочность на сжатие консолидированного цементного раствора максимальна, когда водоцементное соотношение составляет 1: 1. Под высоким давлением прочность на сжатие цементного раствора влажного грунта выше, чем у обычного цементного раствора.Эти результаты показывают, что при высоком давлении характеристики цементного раствора лучше, чем при нормальном давлении, а характеристики цемента с влажным грунтом лучше, чем у обычного цемента.


Свойство Давление Разновидность цемента 3: 1 2: 1 1: 1 0,8: 1 0,5: 1

Прочность на сжатие, 7 дней (МПа) Нормальный Портландцемент 3.25 4,10 5,40 7,63 11,60
Мелкодисперсный цемент влажного помола 4,21 7,3 12,3 14,5 15,4
Высокий Портландцемент 50,4 70,8 73,5 75,5 66,2
Мелкодисперсный цемент влажного помола 70,8 94,5 95,1 93,2 69.3

Прочность на сжатие 28 d (МПа) Нормальный Портландцемент 11,3 15,1 15,9 16,8 22,6
Мелкозернистый цемент влажного помола 12,3 17,4 22,3 23,7 28,6
Высокий Портландцемент 83,4 99,6 102,2 101.6 86,5
Мелкодисперсный цемент влажного помола 105,8 108,7 111,6 109,7 95,3

4. Метод затирки
4.1. Тестовая позиция

Участок плотины № 25 на высоте 609,76 ~ 590 м включает в себя плоскость постоянного фундамента и имеет следующие характеристики: коэффициент уклона котлована 1: 0,79 ~ 1: 1,27; простирайте N49 ° ~ 52 ° W; длина верхней и нижней стороны, 92.0 м и 94,8 м соответственно; длина откоса 13,5 ~ 16,2 м; и площадью 1367,7 м. Эксперты определили, что испытание цементного раствора перекрывающих слоев основания плотины на отметке 590 м необходимо провести на участке плотины №25 на правом берегу. Участок плотины № 25 включает дорогу шириной 8 м, отметку 590 ~ 587,83 м, наклонную поверхность и каменно-защитный слой толщиной 5 м наверху, простирающийся на 49 ° западной долготы с северной широты и площадью 857,8 м 2 . Расположение участка плотины №25 показано на рисунке 5.


4.2. Процесс затирки

Блок-схема процесса показана на Рисунке 6, а некоторые процессы на строительной площадке показаны на Рисунке 7. Процессы затирки с уплотнением перекрывающих пород показаны ниже: (1) Резерв 5-метрового защитного слоя перекрывающих отложений: резерв 5-метрового защитного слоя от поверхности основания плотины для защитного слоя перекрывающего слоя с использованием метода закрытия скважины и давления 0,5 МПа для циркуляционной цементации 5-метрового защитного слоя. Когда скорость нагнетания составляет не более 1,0 л / мин, можно пробурить отверстие ниже поверхности основания плотины (2) Закрытие отверстия, заливка цементным раствором с сегментированной циркуляцией сверху вниз: для цементации уплотнения под фундаментом плотины применяется сегментное бурение сверху вниз инъекция, закрытие отверстия, ступенчатое повышение давления и заливка жидким цементным раствором по всему сечению.Когда скорость закачки составляет не более 1,0 л / мин, заливку раствора можно завершить после 30 мин непрерывной закачки. (3) Свая анкерной штанги: принятая анкерная штанга состоит из 3 анкерных стержней диаметром 32 мм и единая длина 12 м, которая размещается на 20 см ниже поверхности цементного отверстия в основании плотины (4) Вырыв грунта и снятие тяжелого покрытия: на защитном покрытии скальной породы проводится желто-струйная очистка, а также выполняются механические земляные и взрывные работы для разрыхлить породу до плоскости фундамента (5) Неглубокая труба: следующие 5 м используются для цементирования поверхности фундамента плотины между бурильными трубами, от скважин І до III последовательности; используются трубы диаметром Φ 110 мм, цементирующая труба со стальной трубой Φ 38 мм и шламовая труба со стальной трубой Φ 25 мм (6) Свяжите стальной стержень и залейте бетон на фундамент плотины (7) Заливка бетонного покрытия: давление затирки заливной трубы составляет 3.0 МПа, а скорость закачки не более 1,0 л / мин; затем можно закончить заливку раствора


Что касается технологии затирки уплотняющего раствора для создания бетонного покрытия, учитывая, что заливка раствором высокого давления приводит к поднятию пласта, растягивающему напряжению в бетоне и растрескиванию бетона, предлагается технология затвердевания перекрывающего слоя. . Во-первых, 5-метровый защитный слой горного массива создается закрытым раствором, который может улучшить давление цементного раствора в горном массиве ниже плоскости фундамента.Анкерные стержни используются для решения проблемы деформации коренных пород. После удаления защитного слоя данные мониторинга показывают, что диапазон релаксации при взрыве составляет 0,2 ~ 2,2 м, в среднем 1,09 м. Проблема релаксации поверхности решается за счет использования неглубокой грунтовочной трубы, своевременного создания бетонного покрытия и последующего заполнения цементным раствором трубы-грунтовки. Комплексно рассмотрены проблемы деформации коренных пород, релаксации поверхности, затирки уплотняющего раствора и натяжения бетонных конструкций.Завершение затирки уплотняющего раствора перед заливкой бетона обеспечивает условия для строительства заливки бетона, что позволяет избежать перекрестного вмешательства затирки уплотняющего раствора и бетонной конструкции, а также проблем, связанных с многократными входами и выходами оборудования для заливки уплотняющего раствора.

4.3. Slurry Transform

В скважинах I и II последовательности используется водоцементное соотношение (массовое соотношение) 2: 1 при начальном заполнении цементным раствором, тогда как в скважине III последовательности используется соотношение воды и цемента (цемент влажного грунта) 3: 1. при первоначальной затирке.Раствор для затирки постепенно превращается из слабого в прочный. Это преобразование следует следующим принципам: (1) Когда давление цементного раствора остается прежним, скорость закачки следует уменьшить; или при постоянной скорости нагнетания, когда давление продолжает расти, не изменять водоцементное соотношение (2) Когда количество впрыскиваемого раствора определенной марки превышает 300 л или время инфузии достигло 30 мин, и давление цементного раствора и скорость впрыска не претерпевают значительных изменений, водоцементное соотношение первого сорта раствора должно быть изменено для создания более концентрированного раствора (3) Когда скорость впрыска превышает 30 л / мин, раствор может быть с утолщением в соответствии с конкретными условиями строительства

4.4. Давление затирки

Для затирки уплотняющего раствора используется метод сортировки и повышения давления для достижения расчетного давления затирки с использованием поэтапного подхода. Соотношение между скоростью нагнетания и давлением строго контролируется во время цементирования, чтобы не происходило опасного подъема поверхности породы из-за цементного раствора и бетона. Давление затирки защитного слоя составляет 0,5 МПа, а первого участка ниже плоскости фундамента — 0,8 ~ 1,0 МПа. Позже давление затирки постепенно увеличивается на 0.5 МПа на каждую секцию. Максимальное давление затирки составляет 3,0 МПа, давление затирки бетонной направляющей трубы составляет 3,0 МПа (см. Таблицу 6). Стандарт окончания затирки: операцию затирки можно считать завершенной, когда скорость закачки участка защитного слоя не превышает 1,0 л / мин при расчетном давлении. На участках под защитным слоем скорость закачки составляет не более 1,0 л / мин при расчетном давлении, и операция цементирования может быть завершена через 30 минут непрерывной закачки.


Глубина отверстия (м)-5 ~ 0 0 ~ 5 5 ~ 10 10 ~ 15 15 ~ 20 20 ~ 25
І (МПа) 0,5 0,8 ~ 1,0 1,0 ~ 1,5 1,5 ~ 2,0 2,0 ~ 2,5 2,5 ~ 3,0
II (МПа) 0,5 1,0 ~ 1,5 1,5 ~ 2,0 2,0 ~ 2,5 2,5 ~ 3.0 2,5 ~ 3,0
III (МПа) 0,5 1,0 ~ 1,5 2,0 ~ 2,5 2,5 ~ 3,0 3,0 3,0

4.5. Расположение отверстий для цементного раствора

Расстояние между отверстиями для цементирования уплотнения составляет и. Скважина перпендикулярна плоскости фундамента и проходит на 25 м ниже плоскости фундамента. Схема расположения отверстий для затирки уплотняющего раствора в перекрывающих породах показана на Рисунке 8.Включаются подъемная скважина динамического контроля, контрольная скважина, скважина последовательности І, скважина последовательности II и скважина последовательности III. Апертура контрольного отверстия составляет Φ 76 мм; подъемное отверстие для наблюдения за динамической деформацией, Φ 91 мм. Поскольку для отверстий для цементации уплотнения требуются сваи анкерных стержней, диаметр отверстия для заливки уплотняющего раствора составляет Φ 110 мм. Заполнение трубы вводится через стальную трубу с диаметром головки Φ 38 мм, вспомогательным диаметром Φ 25 мм и толщиной стенки трубы 1.5 мм. Буровая установка QZJ-100B-J использовалась для просверливания цементного раствора. Все отверстия для затирки промывают водой под давлением 1 МПа, чтобы очистить трещины. В методе промывки используется открытая промывка, при которой смывается большое количество воды со дна отверстия в область вокруг отверстия, и промывка вращением. Условием завершения промывки бурения является то, что толщина остатков на дне отверстия не превышает 20 см после промывки, и промывка заканчивается, когда вода внутри отверстия становится чистой.


5. Результаты и обсуждение
5.1. Обсуждение количества затирки и проницаемости

Результаты затирки цементного раствора перекрывающих пород секции плотины № 25 на правом берегу показаны в Таблице 7. Испытание Lugeon не проводилось на 5-метровом защитном слое перекрывающих пород. В Таблице 7 показаны скважина І последовательности закачки цемента в 25-метровый слой коренных пород при 83,16 кг / м, закачка цемента в скважину II последовательности при 31,57 кг / м на единицу и закачка цемента в скважину III последовательности цемента при 12.92 кг / м на единицу. Таким образом, скорость закачки из скважины последовательности І в скважину последовательности II снижается на 37%, в то время как количество цементного раствора из скважины последовательности II в скважину последовательности III уменьшается на 40,9%. Как показано на Рисунке 9, количество закачиваемого цемента на единицу значительно уменьшается, что соответствует правилу уменьшения количества цементного раствора на единицу, что указывает на то, что трещины эффективно заполняются и процесс затирки имеет хороший эффект. Тест Lugeon был проведен на отверстии для цементирования перед заливкой этого 25-метрового блока коренной породы.Данные в Таблице 8 показывают, что 25-метровый слой коренных пород в среднем имеет скорость проницаемости 23,24 LU в скважине І последовательности, среднюю скорость проницаемости 9,05 LU в скважине II последовательности и среднюю скорость проницаемости 3,84 LU в скважине последовательности III. и уменьшение количества затирки на 38,9% и 42,4% соответственно. Как показано на Рисунке 9, уменьшение удельной проницаемости от ствола І к стволу III также объясняет, что пустоты породы были эффективно заполнены, блокируя каналы просачивающихся пор и уменьшая скорость проницаемости.Постепенное уменьшение водопроницаемости и закачки цемента на единицу количества перед заливкой раствора указывает на то, что метод цементации цементного раствора перекрывающих пород подходит для цементирования столбчатого базальта.


Отверстие Количество отверстий Проникновение раствора (м) Впрыск цемента (кг) Единичный впрыск (кг / м) Средняя проницаемость (LU) Примечание

І 56 140.9 13799,2 97,94/ 5 м защитный слой
II 97 270,1 4204,9 15,57/
III 40 127 70,2 0,55/
Всего 193 538 18074,3 33,6/
І 59 1475 122658.5 83,16 23,24 25 м коренная порода
II 101 2525 79721,8 31,57 9,05
III 43 1075 13890,52 3,84
Итого 203 5075 216270,84 42,61 11,41


47 Перед / после заливки Диапазон скорости (м / с) Средний минимум (м / с) Средний максимум (м / с) Средняя скорость (м / с) Статистические точки

До 3333 ~ 5970 4528 5269 4980 2105
После 3448 ~ 6061 4889 5491 5345 1253

5.2. Обсуждение теста Lugeon

Тест Lugeon может напрямую отражать проницаемость пласта, которая является основой для оценки пласта на ранней стадии проекта цементирования. Согласно китайскому стандарту DL / T5148-2012 Lugeon test (Техническая спецификация на цементный раствор для строительства гидротехнических сооружений), испытательное давление составляет 80% от давления цементного раствора соответствующей секции и составляет не более 1,0 МПа. Формула расчета теста Lugeon приведена на где — проницаемость рабочего участка, Лю; — напор, л / мин; — полное давление, действующее на рабочий участок, МПа; — длина испытательного участка, м.

Путем сравнения данных испытаний испытательной скважины перед заливкой цементным раствором и проверки качества значения Lugeon после заливки цементным раствором, получены параметры изменения проницаемости слоя породы фундамента плотины и оценен эффект цементирования. Перед заливкой цементным раствором были проведены испытания Lugeon на 17 контрольных отверстиях. Давление воды в 89 секциях было больше 4,5 LU в 69 секциях, а степень проницаемости более 3 LU составила 68,5% от всех испытательных скважин. Через 7 дней после окончания затирки были проведены испытание и осмотр Lugeon.В ходе этого процесса для проведения теста Lugeon произвольно пробурили 10 испытательных скважин глубиной 25 м (исключая 5-метровый защитный слой) и 5-метровую секцию, и в общей сложности было рассмотрено 50 секций с водой под давлением. После затирки были собраны результаты испытаний Lugeon, которые показаны на рисунках 10 и 11. Все 50 секций имеют значения Lugeon менее 3 LU, средняя проницаемость испытательной скважины G1-G5 составляет менее 1,5 LU, а средняя проницаемость контрольное отверстие G5-G6 меньше 1.2 LU. После заливки цементным раствором скорость проникновения испытательной секции воды под давлением во всех контрольных отверстиях не должна превышать 3 LU. Очевидно, что проницаемость снижается, а антисептический эффект значительно улучшается. Анализ эффектов показывает, что вес перекрывающих отложений толщиной 5 м может остановить трещинообразование и подъем поверхности основания, вызванные флюидом под высоким давлением. Давление цементного раствора очень важно для устойчивости пласта. Раствор низкого давления не может эффективно заполнить трещины горной породы, и только раствор высокого давления может заполнить небольшие трещины.Вес перекрывающего слоя гидроизоляционного шлама толщиной 5 м может обеспечить эффективное усилие для удовлетворения необходимого давления цементного раствора, чтобы ограничить нарушение пласта. Трещины эффективно заполняются под высоким давлением, что приводит к снижению проницаемости и значительному улучшению антисептических и уплотняющих эффектов.



5.3. Обсуждение результатов геофизических изысканий

Акустические испытания являются основой для определения корреляции между физическими и механическими параметрами массива горных пород и обеспечивают эффективные индексы параметров для обнаружения влияния взрывных работ на горные породы; при этом испытании учитываются коэффициент выветривания, коэффициент целостности, коэффициент анизотропии, разломы, карстификация и другие геологические дефекты.Чем выше скорость волны, тем лучше физико-механические свойства и целостность породы. Оборудование для акустических испытаний, используемое в этом исследовании, представляет собой звуковой инструмент rs-st01c, произведенный Wuhan Yanhai Engineering Development Co. Путем сравнения результатов испытаний до и после затирки получают параметры изменения целостности породы и анализируют качество затирки. Бурение смотрового отверстия под заливку проводится через 14 дней после завершения затирки.Волновая скорость свежей нетронутой породы является важным параметром для расчета коэффициента целостности и соотношения скоростей волн выветривания в массиве горных пород.

Согласно предыдущим статистическим данным акустических испытаний внутренних пород, средняя скорость волны брекчированной лавы составляет 4272 м / с, а диапазон для базальта составляет 5132 ~ 574 м / с. В таблице 8 показаны изменения скорости волны до и после заливки раствора. Таблица 8 показывает, что скорость волны в 17 испытательных скважинах перед заливкой раствора колеблется от 3333 м / с до 5970 м / с при средней скорости волны 4980 м / с.После заливки цементным раствором для акустических испытаний просверливаются 10 случайных контрольных отверстий с диапазоном скорости волны от 3448 м / с до 6061 м / с и средней скоростью волны 5345 м / с. Согласно средней скорости волны 4980 м / с до затирки и 5345 м / с после затирки, средняя скорость увеличения скорости волны после затирки составляет 7,3%. Более того, диапазон скоростей волны, средняя минимальная скорость и средняя максимальная скорость увеличиваются из-за цементации, что указывает на улучшение целостности породы.Согласно рисунку 12, до заливки раствором скорость волны составляет 79,9%, а скорость <4200 м / с составляет 8,2%. После затирки составило 94,8%, а <4200 м / с - 1,4%. Согласно нормативам акустического контроля горной массы фундамента плотины, предусмотренным в проектной документации, более 90% столбчатого базальта должны иметь скорость более 4500 м / с, а менее 5% - менее 4200 м. / с после затирки, чтобы соответствовать стандарту проверки горной массы. На рисунке 12 показано, что для начальной скорости более 5000 м / с коэффициент волновой скорости цементного раствора увеличился на 25.6%; для начальной скорости менее 5000 м / с волновая скорость степени заполнения упала примерно на 50%; а для начальной скорости менее 5000 м / с скорость волны уменьшилась после цементирования. Из-за заполнения трещин, трещин и зон разломов скорость волны увеличилась, показывая, что эффект цементирования очевиден.


Модуль деформации является важным параметром горной массы для анализа теории устойчивости и инженерного проектирования. В частности, при условии деформации в качестве стандарта контроля устойчивости определение модуля деформации напрямую определяет результаты анализа устойчивости к деформации.Дилатометр Probex-1 производства канадской компании Roctest используется для определения модуля деформации при входе в скважину. Дилатометр косвенно измеряет радиальную деформацию массива горных пород за счет гибкого повышения давления. Семь контрольных отверстий были испытаны для определения изменения модуля деформации перед заливкой цементным раствором, а 5 контрольных отверстий были испытаны после заливки раствором. Данные представлены в Таблице 9. Таблица 9 показывает, что средний модуль деформации до заливки раствором составляет 8,56 ГПа, а средний модуль деформации после заливки раствором равен 8.71 ГПа; средний модуль деформации после затирки на 1,7% выше. Как показано на Рисунке 13, коэффициент модуля деформации увеличился на 11,4% до 12 ГПа после цементирования, а отношения 8 и 10 ГПа снизились на 1,9% и 7,1% по сравнению с 6 ГПа, соответственно. Улучшение модуля деформации породы в основании плотины указывает на то, что значение сопротивления горной массы увеличивается, а деформация уменьшается, что косвенно указывает на то, что физические свойства породы улучшаются и что механические свойства улучшаются.Однако модуль деформации пласта после цементирования увеличился до 12 ГПа. Анализ показывает, что целостность породы относительно хорошая, поскольку данные модуля деформации перед заливкой раствора концентрируются в диапазоне 8 ~ 10 ГПа, поэтому увеличение модуля после заливки является относительно небольшим.


До / после заливки раствором Диапазон модуля деформации (ГПа) Средний минимум (ГПа) Средний максимум (ГПа) Средний модуль деформации (ГПа) Статистические точки

До 5.50 ~ 13,42 7,46 9,9 8,56 75
После 5,73 ~ 13,26 7,69 10,41 8,71 48
2
2