Фундамент на сваях как утеплить: обзор материалов и технологии утепления свайных фундаментов.

Содержание

Утепление свайного фундамента своими руками — Блог Бауфундамент

Время чтения: 3 минуты

Свайно-винтовой фундамент признан одним из самых универсальных и практичных фундаментов 21 века. И действительно, на участках с высоким уровнем грунтовых вод, пучинистым, болотистым грунтом винтовые сваи приходятся как нельзя кстати. Монтаж свай длится обычно 1-2 дня, после чего можно сразу приступать к следующему этапу строительства. Также винтовые сваи многим пришлись по душе ввиду доступной стоимости и простоты монтажа. В некоторых случаях винтовую сваю можно закрутить своими руками, хотя наша компания настоятельно рекомендует обращаться к профессионалам.

У свайно-винтового фундамента нет недостатков как таковых, есть лишь несколько особенностей, свойственных данному виду фундамента, которые необходимо учитывать. Одна из таких особенностей – необходимость утеплять винтовой фундамент.

Прежде чем построить дом на винтовом фундаменте, учитывайте, что между грунтом и ростверком остается пространство. Если это пространство оставить открытым, то увеличатся растраты теплоэнергии, необходимой для отопления жилья. 
К сожалению, зачастую застройщики при закладке свайного фундамента не учитывают этот нюанс, и потом несут дополнительные траты чтобы утеплить фундамент на винтовых сваях.
Предлагаем вам ознакомиться с данной статьей, чтобы при закладке свайно-винтового бауфундамента учитывать все детали и знать, как и чем утеплить свайно-винтовой фундамент.


ПЕРВЫЙ ЭТАП УТЕПЛЕНИЯ ВИНТОВЫХ СВАЙ

Прежде чем начать утепление фундамента на винтовых сваях, необходимо сделать изоляционную защиту ростверка:

  • верхушка ростверка накрывается слоем рубероида, это обеспечит защиту от сырости и влаги в местах стыковки ростверка со стенами;
  • все открытые части свай необходимо покрыть плотным слоем мастики и антисептика;

Далее, приступаем к созданию искусственного цоколя и утеплению фундамента. Инструменты, которые понадобятся:

  • сантиметр;
  • бетономешалка;
  • дрель;
  • шпатель и молоток.


Второй этап

Мы приготовили необходимые инструменты и готовы обустроить фальш-цоколь, на котором закрепим утеплитель фундамента, а затем проведем отделочные работы. 

Для фальш-цоколя выкладываем тонкую стенку по толщине как ½ кирпича. Для этого между сваями вырываем траншею глубиной примерно 0,3 метра, заливаем бетоном, армируем его (как будто выкладываем мини-ленточный фундамент), и ждем пока бетон немного застынет. 

Затем возводим кирпичную стену, внутреннюю сторону которой мы будем в последствии утеплять. Самой стене необходимо придать эстетичный внешний вид, который будет гармонировать и с отделкой дома, и с окружающим дизайном. В настоящее время существует огромное количество отделочных материалов, на любой вкус и кошелек: сайдинг, шпаклевка, декоративный и натуральный камень, бут, пластиковые панели, имитирующие многие фактуры (дерево, мрамор, камень, итд), и прочие.

Вариант с укладкой кирпичной стены мы привели в пример как самый основательный и правильный с профессиональной точки зрения. 
Но важно отметить, что можно построить каркас из доски, приварив к сваям металлические направляющие и опереть на них деревянный каркас.

Чем утеплить винтовые сваи?


Самые распространенные утеплители это вата, пеноплекс, пенопласт. 
Минеральная вата отличный теплоизолятор, но придется отдельно провести работы по ее гидроизоляции, что автоматически увеличивает стоимость и трудоемкость работ. 

Пеноплекс имеет прочную структуру и также является отличным теплоизолятором, хотя стоит дороже пенопласта. 

Утепленное пространство под ростверком необходимо посыпать керамзитом, чтобы в подполе не было сильного сквозняка. Керамзит можно заменить обычным грунтом, но это будет не настолько эффективно. 

Хотя свайный фундамент имеет в отличительных способностях высокую продуваемость, все же стоит оставить несколько отдушин на стенках искусственного цоколя, что обеспечит необходимую циркуляцию воздуха.


Вывод

Комплекс работ по утеплению свайно-винтового фундамента не является трудоемким или дорогостоящим, но при этом эффективно защищает здание от холодов, а сваи делает еще более надежным и прочным фундаментом. 
Винтовые сваи от BAU сами по себе являются крепким и надежным основанием для постройки дома, но утеплить их и придать цоколю стильный внешний вид никогда не будет лишним!


Утепление свайно-винтового фундамента своими руками

Содержание статьи

В связи с тем, что под полом первого этажа в доме на винтовых сваях образуется неотапливаемое пространство, необходимо утепление свайно-винтового фундамента, которое может быть выполнено различными способами в зависимости от конструкции и материала цоколя.

Варианты утепления свайно-винтового фундамента

Утепление цоколя и других частей дома обязательно в связи с требованиями строительных нормативов, введенных в связи с необходимостью сбережения энергоресурсов и обеспечения оптимального микроклимата внутри помещений (СП 50.13330.2012 «Тепловая защита зданий», СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям»).

Теплозащита свайно-винтового фундамента не представляет особой сложности, и выполнить ее можно самостоятельно. Существуют следующие способы утепления:

  • тепловая защита цоколя снаружи по периметру дома;
  • теплозащита цоколя изнутри также по периметру;
  • полное утепление пола первого этажа дома.

Технология утепления

При любом способе утепления последовательность работ должна быть следующая:

  • Устройство цоколя из кирпича или забирка на каркасе с облицовкой.
  • Устройство наружного или внутреннего утепления цоколя, вариант – устройство полного утепления пола первого этажа.

Устройство цоколя

Устройство цоколя можно выполнить двумя основными способами:

  • выложить кирпичную стенку толщиной в полкирпича, закрывающую пространство от отмостки до нижней обвязочной балки дома или первого венца;
  • выполнить забирку – фальшцоколь на каркасе с облицовкой различными материалами на выбор заказчика.

Кирпичная цоколь можно без проблем утеплить снаружи и внутри.

Для опирания кирпичной стенки необходимо предварительно вырыть небольшую траншею глубиной 300 мм и шириной 250 мм, засыпать на дно слой песка толщиной 100 мм и уплотнить его. После этого уложить на песчаную подготовку узкую арматурную сетку из двух продольных стержней диаметром 8 мм и поперечных с шагом 400 мм из арматурной проволоки  и залить траншею бетоном класса В7,5. Через несколько дней, когда бетон наберет достаточную прочность, можно выкладывать кирпичную стенку.

Забирка из ЦСП

Совет: Кирпичный цоколь должен быть выложен из керамического кирпича, но не из силикатного, так как керамический кирпич более устойчив к воздействию влаги.

Забирка выполняется следующим образом. Сначала устраивается каркас из двух-трех металлических профилей-направляющих (это зависит от высоты цоколя), которые крепятся к оголовкам свай по периметру болтами или сваркой. К направляющим крепятся вертикальные планки с таким шагом, чтобы затем прикрепить к ним плиты ЦСП толщиной 16 мм. Нижний край фальшцоколя не должен доходить до планировочной отметки грунта, под него делают песчаную подсыпку с уклоном от стены дома. На плиты ЦСП наклеивают или наплавляют отсечную рулонную гидроизоляцию, нижний край которой должен заходить в песчаную подсыпку и под отмостку, которую необходимо устроить после завершения всех работ по гидроизоляции и утеплению.

Схема забирки

Совет! Вообще говоря утепление цоколя фундамента на винтовых сваях не имеет никакого практического значения. Так как пол дома утеплен, в подпольное пространство не будет поступать тепло из комнат, а тепла недр недостаточно для поддержания температуры под домом, оно будет улетучиваться наружу через продухи, которые нужны обязательно. Достаточно выполнить только забирку без утепления, а дополнительные средства потратить на лучшую теплоизоляцию пола.

Устройство наружного утепления

Теплозащита снаружи выполняется из плит пенополистирола или, что еще лучше, из пеноплекса. Это  тоже пенополистирол, только экструдированный, изготовленный способом экструзии. Материал имеет большую прочность, меньшую теплопроводность и не пропускает влагу в отличие от обычного пенополистирола.

Пеноплекс специально предназначен для укладки в конструкции, заглубленные в грунт, например, под отмостку или в состав подготовки дорожного покрытия. Толщина утеплителя из пеноплекса может составлять всего 30 мм вместо 50 мм из обычного пенополистирола. Кроме того, при производстве экструдированного пенополистирола в его состав включают специальные добавки, которые не позволяют материалу возгораться, а при пожаре он самозатухает.

Еще одна схема забирки.

На кирпичной стенке перед утеплением заделывают трещины с помощью цементного раствора и промазывают грунтовкой для лучшего сцепления с утеплителем.

На стенку цоколя плиты утеплителя приклеиваются с помощью специального клеевого состава, все стыки между ними пропениваются монтажной пеной, не содержащей толуол. Затем цоколь обтягивается полимерной сеткой и оштукатуривается. Дальнейшая отделка по желанию – окраска, облицовка плиткой или другими материалами.

Тепловая защита каркасного цоколя снаружи производится другим способом. Плиты утеплителя приклеиваются на листы ЦСП, после этого, в отличие от технологии утепления кирпичного цоколя, они не оштукатуриваются, а закрываются финишными облицовочными панелями, сайдингом или другой декоративной цокольной обшивкой.

Виниловая забирка под кирпич.

Утепление цоколя изнутри

Утепление цоколя дома изнутри необходимо производить до начала сборки основных конструкций дома, расположенных выше нулевой отметки.

Все операции для кирпичного и для каркасного цоколя производятся точно так же, как и при наружном утеплении. Отличие только в том, что приклеенный утеплитель не нужно штукатурить или закрывать декоративной облицовкой. Плиты утеплителя после монтажа обтягивают специальной металлической сеткой, защищающей от грызунов, затем по всему периметру делают подсыпку грунтом или, что предпочтительнее, керамзитом, который играет роль дополнительного утепления.

Утепление пола первого этажа

Пол в деревянных домах устраивается по деревянным балкам, которые служат лагами. Для утепления пола на каждую балку прибивают черепные бруски по всей длине с двух сторон. По черепным брускам делают накат из доски и сверху настилают гидроизоляцию, затем в пространство между лагами на укладывают плиты утеплителя. После этого вся площадь пола накрывается пароизоляционной пленкой, которая должна быть заведена на стены на величину толщины пола. Пароизоляция необходима для того, чтобы водяные пары из помещений не могли увлажнить утеплитель, после чего он во многом теряет свои теплоизоляционные свойства при сильных морозах. Затем настилается черновой пол из доски, а по нему устраивается чистовое покрытие пола.

Схема утепления пола

Важно! Независимо от способа утепления свайно-винтового фундамента необходимо оставить в противоположных углах цоколя вентиляционные отверстия во избежание скапливания влаги в подпольном пространстве.

Утепление фундамента из винтовых свай необходимо делать не только для соблюдения требований нормативных документов, но и для создания комфортного микроклимата в доме. В процессе эксплуатации утепленного по всем правилам жилья – помимо цоколя это стены, крыша и другие конструкции, – позволяет значительно экономить расходы на отопление, а в летнее время наоборот сохранять прохладу в помещениях, тем самым сокращая затраты на электроэнергию для кондиционирования.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Утепление пола в каркасном доме на сваях

Главной особенностью использования свай в строительстве каркасного дома является пустое пространство от ростверка до грунта. Что способствует значительным теплопотерям в холодное время года. Недостаток тепла ведет к некомфортному проживанию, возникновению неисправностей, нарушающих целостность сооружения.
Чтобы ваш дом получился теплым и долговечным, грамотно утеплите свайно-винтовой фундамент и пол в основании дома.

В этой статье вы узнаете:

  • как утеплить пол в доме на сваях;
  • как утеплить цоколь дома на винтовых сваях.

Материалы для утепления

Для утепления цоколя и пола используются различные материалы. Самыми популярными из них являются:
  • каменная (базальтовая) вата, имеет высокие звуко-, теплоизолирующие и пожаробезопасные свойства;
  • керамзит — дешевый, сыпучий материал;
  • пенопласт, надежен и прочен, но горюч;
  • пеноплекс (пенополистерол), хорошо сохраняет тепло.

Базальтовая вата

Каменная, точнее, базальтовая вата — действенный утеплитель для пола. Хаотичное расположение внутренних волокон придает ему хорошие шумоподавляющие, теплоизоляционные и ветрозащитные свойства. Базальтовая вата обладает высокой эластичностью и паропроводностью.

Керамзит

Керамзит изготавливается из глины, служит очень долго. Теплопроводность слоя керамзита в 10 см равна теплопроводности доски 25 см в толщину или кирпичной стены в 100 см.

Керамзит не подвержен воздействию кислотной среды. Устойчив к воздействию химических соединений и органических разрушителей, к сильным морозам и возгоранию.

Пенопласт

Пенопласт дешев, прост в монтаже, влагостоек, отличается низкой теплопроводностью и легкостью. Этот материал не требуют устройства дополнительных поддерживающих конструкций. Его легко обрабатывать и просто монтировать. Работы с его использованием занимают мало времени, что ускоряет ввод дома в эксплуатацию. Минусы пенопласта — хрупкость и горючесть.

Пеноплекс

Пеноплекс — усовершенствованная разновидность пенопласта — признанный лидер среди теплоизоляторов. Он имеет легкий вес, высокую прочность и низкую паропроницаемость.

Пеноплекс долговечен, устойчив к износу, влажности и перепадам температур. В отличие от пенопласта он, не крошится и не горит. Устойчив к продольным и поперечным нагрузкам. Плиты из пеноплекса монтируются так же, как из пенопласта.

Все перечисленные свойства делают пеноплекс незаменимым в утеплении цоколя и пола.

Утепление цоколя свайно-винтового фундамента

Фундамент на винтовых сваях — быстровозводимая, устойчивая и прочная конструкция. Применяется в затапливаемой, болотистой местности, а также в зонах с холодным, суровым климатом. Цоколь дома на сваях — пространство между обрешеткой каркасного дома и поверхностью грунта — следует должным образом утеплить. Термоизоляция свайного фундамента снижает расходы на отопление зимой, и летом на кондиционирование.

Термоизоляция цоколя — это не только теплый пол, но и надежность, безопасность и долговечность постройки в целом. Она не только снижает потери тепла в каркасном доме, но и утепляет почву под ним.

В зимнее время земля вокруг свай промерзает. Возникшие от холода силы пучения могут вытолкнуть сваи из грунта. В результате этого здание может получить перекос, который нарушит его устойчивость и безопасность. Утепление свайно-винтового фундамента сберегает от промерзания, подведенные к дому, коммуникации. Поэтому теплоизоляция цоколя — важный и ответственный этап строительства.

Как утеплить цоколь дома на винтовых сваях

До утепления цоколя следует произвести гидроизоляцию ростверка и свай. Для этого используйте рубероид и мастику на битумной основе. Сваи утеплять не надо.

Существует несколько способов термоизоляции фундамента на сваях. Один из них показан ниже.


Схема наружной теплоизоляции свайного фундамента.

Этот вариант предусматривает установку на сваи поддерживающей конструкции, на которую крепят облицовочный материал. Если необходимо усилить утепление, используют цементно-стружечную плиту и утеплитель (базальтовую вату или пеноплекс).

Другой вариант подразумевает использование в качестве утеплителя кирпичной кладки. Снаружи на кладку крепят облицовочные панели, декоративную обшивку или сайдинг. Если необходима термоизоляция изнутри, на внутреннюю сторону кирпичной стены наклеивают пеноплекс толщиной 3 см и укладывают его в заглубленный грунт.

Третий вариант — сооружение стен цоколя из пеноплекса. Учитывая превосходные свойства этого материала, термоизоляционные работы с его использованием проводятся быстро. Результат получается качественным и надежным. Устанавливать конструкцию для поддержания стен в данном случае не требуется.

Перед сооружением стен из пеноплекса необходимо вырыть по периметру цоколя неглубокую траншею для их заглубления. Плиты пеноплекса плотно приставляют друг к другу. Швы между ними заделывают монтажной пеной. Для дополнительного утепления делают подсыпку керамзитом. В противоположных углах цоколя для устранения влаги вырезают продухи — отверстия для вентиляции.

Стены цоколя из пеноплекса необязательно закрывать декорированной облицовкой. Но снаружи необходимо обтянуть металлической сеткой, чтобы в цоколь не проникли грызуны. В завершение утепления фундамента эту сетку закрывают облицовочным материалом.

Надо помнить, что второй и третий варианты утепления цоколя лучше реализовывать в процессе возведения дома. Так как после постройки коробки и подведения коммуникаций цоколь становится труднодоступным. Но при значительной высоте цокольного пространства утепление можно сделать и после возведения коробки.

Утепление пола в каркасном доме на сваях

Пол в основании каркасного дома утепляется в процессе строительства. Утепление пола помогает предотвратить:

  • появление конденсата на поверхности перекрытий;
  • загнивание древесины при повышенной влажности;
  • существенные потери тепла в доме.
Базовые элементы конструкции утепленного пола:
  • черновой пол;
  • гидро- и ветрозащита;
  • утеплитель;
  • пароизоляция;
  • чистовой пол.

Этот теплозащитный пирог обеспечивает комфортное проживание, и продляет срок эксплуатации отдельных конструктивных элементов дома и здания в целом.

Как утеплить пол в каркасном доме на винтовых сваях

К устройству теплого пола приступают после того, как на, вкрученные в грунт, сваи установлен брус ростверка 150×200 или 200×200 мм в сечении.

К брусу ростверка крепятся лаги из обрезной доски сечением 50×150 мм с промежутком в 50 — 60 см. К нижней стороне лаг из обрезной доски 100×25 мм пришивается черновой пол. Важно, чтобы доски чернового пола примыкали вплотную друг к другу и лагам.

Получившаяся конструкция обрабатывается антисептиком. На черновой пол между лагами, внахлест на них укладывается гидро- и ветрозащита, на которую ложится утеплитель. Утеплитель покрывают пароизоляцией и зашивают половой рейкой.


Устройство пола каркасного дома на винтовых сваях.

Если вы хотите утеплить фундамент и пол своими руками

Действия по утеплению вашего пола могут несколько отличаться от вышеприведенной схемы. Если дом одноэтажный, используйте брус ростверка меньшего сечения. Если под домом большая влажность, обшейте черновой пол со стороны цоколя влагозащитной пленкой.

От климата вашей местности будут зависеть размеры используемого утеплителя, а, следовательно, и объем пространства между лагами вашего дома. Чистовой пол может быть изготовлен не только из половой рейки, но и из ламината, который укладывается на ориентированно-стружечную плиту и подложку.

Если вы делаете утепление фундамента и пола на винтовых сваях своими руками, используйте Строительный калькулятор. Он поможет определить материалы и размеры элементов конструкции цоколя и пола первого этажа. При этом помните, что консультация со специалистом никогда не будет лишней.

Как и чем утеплить фундамент на винтовых сваях – видео, инструкция

На чтение 6 мин Просмотров 517 Опубликовано

Предисловие. В этой статье мы разберем такой вопрос, как утепление фундамента на винтовых сваях. Этот тип фундамента все больше набирает популярность из-за своей простоты и отсутствием необходимости в земляных работах. Но его применение заставляет задуматься о том, чем утеплить пространство между домом и грунтом, какой материал использовать и как правильно утеплить фундамент с применением винтовых свай.

Нужно ли утеплять фундамент на винтовых сваях?

Особенность фундаментов, смонтированных на винтовых сваях, в незакрытом промежутке между фундаментом и грунтом на участке – в этом месте должен находиться утепленный цоколь дома, в связи с этим работа по защите такой конструкции от холода отличается определенными трудностями. Все чаще при строительстве на пучинистых почвах и с высоким уровнем грунтовых вод применяют фундаменты, смонтированные на винтовых сваях, как наиболее долговечные конструкции, защищающие дом от сырости.

Утепление фундамента из винтовых свай кирпичной кладкой

Фундамент с винтовыми сваями представляет конструкцию из свай заглубленных в грунт, являющихся опорой для балок, на которые ложится вся нагрузка стен дома. Наиболее эффективно применение свайного фундамента при возведении домов из дерева, поэтому для ростверка чаще всего используют брус, хотя можно применить и металлические балки. Стоит ли утеплять фундамент из винтовых свай? Для ответа на вопрос следует подробнее рассмотреть устройство конструкции. Далее мы рассмотрим как построить дом из бруса на винтовых сваях своими руками. Видео от программы “Отличный дом” поможет в этом вопросе.

Устройство фундамента с применением винтовых свай

Устройство фундамента на винтовых сваях

Сваи состоят из металлической трубы диаметром от 100 до 300 мм и длиной до 9000 мм. Толщина стенок может составлять от 8 до 12мм. Заканчиваются сваи лопастями, при помощи которых они просверливают грунт и являются опорой трубы. С другой труба сваи имеет «шляпки», которые используются для установки ростверков (перемычек).

Перед монтажом свай следует исследовать грунт, залегающий на участке, нежелательно присутствие в грунте твердых пород, мешающих вертикальному завинчиванию свай. Следует учесть и нагрузку на винтовой фундамент стен дома, чтобы рассчитать их количество. Глубина свай зависит от глубины промерзания грунта, возможной высоты паводковых вод и глубины залегания грунтовых вод. Это также влияет и на выбор утеплителя.


При закручивании свай следует оставить запас в 15-20 см над уровнем грунта, а затем произвести подгонку уровня под укладку ростверков (перемычек), используя нивелир. Сваи после закручивания и выравнивания следует заполнить раствором, что повысит их и надежность при пучении почвы и нагрузках от стен. Затем при помощи сварки или болтов на сваи крепятся оголовки, после этого производится установка и крепление ростверков (балок), связывающих сваи по периметру.

Чем утеплить фундамент на винтовых сваях самому

В любом доме главное условие комфортного микроклимата – это теплый пол. Главной отрицательной чертой фундамента является наличие пространства под полом, что ведет к поступлению холода снизу. Учитывая поднятие теплого воздуха вверх, необходимо утепление фундамента дома, качественное утепление подвала, чтобы защитить дом от притока холодного воздуха через недостаточно утепленные полы и цоколь.

Утепление фундамента из свай минватой

Поскольку утеплитель (например, минеральная вата) будет соприкасаться с грунтом, то следует выбирать утеплитель для  фундамента с применением винтовых свай, который не боится влаги, и в котором не заведутся грызуны. Также есть необходимость создания конструкции (каркаса), заменяющей отсутствующий цоколь дома и последующее его утепление минватой или пеноплексом. Поэтому работы производятся снаружи и изнутри.

Если вы выбираете минеральную вату, то ее следует тщательно защитить от влаги слоем гидроизоляции. При использовании недорогого пенопласта, утеплитель следует дополнительно защитить от грызунов. При утеплении фундамента из винтовых свай (свайно винтового фундамента) пеноплексом эти дополнительные работы не нужны, поскольку пеноплекс не боится влаги, в нем не поселятся грызуны, а также он намного прочнее пенопласта.

Как утеплить фундамент на винтовых сваях своими руками

Процесс утепления можно разделить на этапы:

Гидроизоляция конструкции – свай и ростверка.
Изготовление каркаса, заменяющего цоколь дома.
Монтаж на «цоколь» утеплителя, пропенивание стыков.
Крепление декоративных финишных панелей на «цоколь».
Присыпка внутренней стороны грунтом или керамзитом.

1. Гидроизоляция конструкции

Независимо от того, изготовлен ростверк из бруса или из металла, необходима гидроизоляция всех стыков, через которые наверх может проникать сырость, приводящая к плесени, гниению дерева или коррозии металла. Кроме того, учитывая самостоятельное утепление винтового фундамента, необходимо защитить рулонной и жидкой гидроизоляцией все открытые части конструкции. Деревянные элементы следует обработать антисептической пропиткой, защищающую от плесени и насекомых.

Чтобы создать теплосберегающую облицовку, необходимо создать имитацию цоколя дома. Конструкцию можно сделать из легкой кирпичной стенки, которую необходимо будет утеплить снаружи слоем пенопласта и закрыть декоративными панелями. Можно использовать брус или металлические направляющие для создания каркаса.

2. Изготовление «цоколя» дома

В первом случае между сваями необходимо вырыть траншею в 15-20 см, залить армированный фундамент. После полного застывания выложить легкую стенку из красного кирпича. Последующее утепление фундамента на винтовых сваях снаружи проводится на эту кирпичную стену. На кирпич крепятся направляющие, между которыми укладывается утеплитель. На готовую стенку необходимо закрепить декоративные панели, имитирующие кирпичную или каменную кладку – очень красивый материал.

Второй метод заключается в креплении горизонтальных брусков к сваям при помощи болтов, либо металлических горизонтальных направляющих с использованием сварки. Далее как утеплить свайно винтовой фундамент своими руками деревянного дома не вызовет особых затруднений. Следует между направляющими уложить пенопластовые, или пеноплексовые плиты, а стыки обработать монтажной пеной. Далее производится гидроизоляция утеплителя и монтаж декоративных панелей снаружи.

3. Монтаж утеплителя

Утепление фундамента из свай пеноплексом

При утеплении крыши минватой или другим рулонным утеплителем следует оставлять между направляющими расстояние на 1 сантиметр меньше ширины утеплителя, чтобы минвата плотно прижималась к направляющим, и не было продухов. Также минеральную вату следует тщательно закрыть пароизоляцией от влаги и сырости.

При утеплении пенопластом фундамента на винтовых сваях или использования пеноплекса, швы следует пропенить. Если пеноплекс не впитывает влагу и не боится грызунов, то пенопласт следует тщательно закрыть гидроизоляцией и позаботиться о том, чтобы мыши не смогли построить себе дом в утеплителе.

4. Крепление декоративных панелей

Декоративные панели на цоколе дома

Облицевать утеплитель можно виниловым или металлическим сайдингом. Для этого снизу необходимо прикрепить стартовый профиль по периметру дома. А затем уже от него идти вверх, прикрепляя полосы сайдинга. В последнее время стали популярны декоративные ПВХ панели в виде кирпичной кладки или дикого камня.

Декоративные панели и сайдинг уберегут утеплитель от влаги, грызунов и механических повреждений. А чтобы дополнительно утеплить фундамент из винтовых свай зимой, то можно накидать на цоколь снега. При качественной отделке цоколя утеплитель не промокнет и не пострадает, а снег будет дополнительно сберегать тепло в лютые морозы.

5. Присыпка грунтом или керамзитом

Изнутри утепленный фундамент из винтовых свай можно подсыпать грунтом или керамзитом, что уменьшит продуваемость подпольного пространства. Обязательно в противоположных сторонах цоколя следует оборудовать вентиляционные отверстия, закрытые решетками от грызунов и насекомых. Вентиляция служит для проветривания и удаления влаги из подпола дома, на зиму вентиляционные решетки следует закрыть.

Утепление фундамента на винтовых сваях. Видео инструкция

Как утеплить свайный фундамент деревянного дома

Утепление фундамента – неотъемлемый этап строительных работ в средней полосе нашей страны. На предстоящие работы влияют разные факторы: высота свай (относительно уровня земли), материал изготовления основания, расположение дома и другие нюансы. Для того, чтобы лучше разобраться в том, как утеплить свайный фундамент, необходимо ознакомиться с содержанием данной статьи.

Содержание статьи:

Утепление свайного фундамента в домах из дерева

В отличие от ленточного или плитного фундамента, в свайном возникает определенное пространство между поверхностью земли и нижней частью здания, что влечёт за собой значительную утечку тепла, и пол начинает промерзать.

Так, при открытом подполье возникают определенные проблемы:

  • Сырость после таяния снега.
  • Риск промерзания коммуникаций, проложенных под домом.

Утепление свайно-винтового фундамента деревянного дома поможет решить большинство из перечисленных выше проблем. Кроме того, важно помнить о вентиляции, так как от качественного воздухообмена не возникает грибков и плесени.

Нужно ли это делать

Основное преимущество свайного фундамента — скорость выполнения работ и относительно низкая стоимость. Постройка дома может осуществляться на наклонной плоскости, независимо от типа грунтового основания. Однако между домом и землей остается объем открытого пространства (при отсутствии подвала), что влечёт за собой значительные теплопотери.

Важно! Теплоизоляционные материалы следует монтировать не с внутренней стороны цоколя, а снизу, с наружной части. Каркасный способ монтажа дает лучшие результаты, сохраняя эффективность и срок службы объекта. 

Теплоизоляция свайного фундамента имеет свои преимущества: сокращаются потери тепла, улучшается внешний вид строения. Если цоколь устроен без дополнительной изоляции — он будет защищать от ветра, но от потерь тепла не спасет, и его необходимо изолировать от холода.

Какой материал больше подойдет для теплоизоляции

Винтовые сваи — это стойки из металла, которые погружаются в почву. Теплоизоляция монтируется на фальш-цоколь и обвязку свай, так как данные элементы примыкают к полу жилища.

Минеральная вата или стекловата плохо зарекомендовали себя при утеплении. Такие материалы быстро намокают и портятся, а сложность монтажа требует определённых навыков и соблюдения техники безопасности. Пенопласт тоже боится влаги, так как она накапливается в структуре материала, приводя к разрушению.

Что лучше, пеноплекс или другие варианты

При выполнении работ по предотвращению теплопотерь используются следующие материалы:

  • Пенополиуретан – один из самых действенных утеплителей, обладает самой низкой теплопроводностью.
  • Пеноплекс — имеет высокие теплоизоляционные показатели, выпускается в форме плит, просто монтируется и служит долго, позволяет утеплять подземную часть здания.
  • Пенополистирол – производится в листах, для упрощения работ по его монтажу. Фундамент, который будет контактировать с пенополистиролом, должен быть изолирован от влаги. Так как на материал негативно действуют солнечные лучи — внешние участки закрываются облицовочными панелями.
  • Керамзит – популярен из-за низкой стоимости и хороших теплоизоляционных характеристик. Обладает хорошими теплотехническими показателями, имеет малый объёмный вес, удобен в транспортировке

Дополнительная информация. Пеноплекс (экструдированный пенополистирол) — это улучшенная модификация пенопласта. В его изготовлении участвуют те же составляющие, но гранулы не прессованные, а оплавленные и залитые в формы.

Варианты утепления фундамента на винтовых сваях

Существует два основных варианта утепления и облицовки цоколя: по отдельной ленточной конструкции и по обрешетке (прикрепляется к сваям).

Ленточная конструкция

Монтируется из кирпича, реже – бетона (мелкозаглубленный тип). В основном, вся строительная конструкция опирается на определенную площадь грунта или основание из монолита. Такой способ утепления не рекомендован к применению в случае, когда цоколь выполнен из кирпича, а грунт, на котором построен дом обладает пучинистыми свойствами.

Работа выполняется как с дополнительным каркасом, так и без него — алгоритм зависит от типа отделки и применяемых материалов. Утеплитель закрепляется на кирпичные (бетонные) стены.

Утепление цоколя по каркасу

Наиболее оптимальный и востребованный вариант утепления фундамента. Обрешетка может быть из металла или дерева. Неплохо зарекомендовал себя монтаж специальных кронштейнов и профилей, к которым крепится обрешетка. Если в доме в качестве основания лежит плита на сваях, то в труднодоступных местах разрешается крепиться к ней при помощи дюбелей.

Обратите внимание! Для того, чтобы грунтовые воды не разрушили теплоизоляцию и отделочный слов, цоколь приподнимается над землей, минимум на 5–15 см (соблюдение демпферного зазора).

Если шаг свай большой, то устанавливаются дополнительные вертикальные стойки. Для того, чтобы качественно выполнить утепление цоколя на винтовых сваях, изолятор крепится к тому же каркасу, что и будущая отделка.

Технология термоизоляции свайно-винтового фундамента своими руками

Для быстрого решения проблемы утепления важно правильно выбрать материал, и самым практичным из всех вариантов является пеноплекс. Он максимально упрощает работу, имея высокие теплоизоляционные свойства.

Технология утепления:

  • Гидроизоляция свай.
  • Гидроизоляция и утепление ростверка.
  • Монтаж каркаса.
  • Крепление теплоизоляционных материалов.
  • Монтаж декоративных панелей.
  • Засыпка нижней поверхности землей или керамзитом.

Обратите внимание! Если каркасная конструкция под будущую теплоизоляцию и отделку смонтирована правильно и качественно, то срок эксплуатации дома значительно увеличится.

Советы и рекомендации

В случае, если основные элементы фундамента выполнены из металла, большинство подготовительных работ, перечисленных выше не требуется, так как все крепления обрешётки каркаса производятся с помощью электро-дуговой сварки. Поверх металлического каркаса, как правило, устраиваются деревянные направляющие

Если утепление цоколя дома на винтовых сваях было сделано правильно, то облицовку крепят на обрешетку, собранную с деревянных реек и брусков, снаружи. Потребуются дополнительные закладные элементов, изготавливаемые из уголков и других прокатных профилей и фиксируемые при помощи сварки.

Независимо от выбора способа утепления, следует помнить о вентиляционных отверстиях в цоколе, которые препятствуют образованию конденсата и гниению конструкций.

Утепление свайного фундамента – это процедура, которую каждый хозяин может выполнить самостоятельно, однако для достижения гарантированного результата и повышенной энергетической эффективностью, стоит обратиться к профессионалам.

Утепление свайного фундамента самостоятельно

Утепление фундамента на винтовых сваях

Особенностью свайно-винтового фундамента является образование свободного не отапливаемого пространства между полом и поверхностью земли. Следовательно, возникает необходимость выполнить теплоизоляцию цоколя, которая может быть выполнена разными способами и материалами.

Необходимость утепления свайно-винтового фундамента

Выполнять теплоизоляцию винтового основания нужно делать обязательно, для этого существует ряд веских причин:

  • Во-первых, пол в доме будет более теплым.
  • Во-вторых, проходящие под полом коммуникации будут защищены от замерзания.
  • В-третьих, забирка предотвратит попадание осадков под строение.
  • В-четвертых, деревянный дом с обустроенным цоколем имеет более привлекательный и завершенный внешний вид.

Также советуем вам почитать про технологию утепления фундамента пеноплексом.

к оглавлению ↑

Материалы для утепления винтового фундамента

Выполнить теплоизоляцию фундамента на винтовых сваях вполне можно своими руками, главное правильно выбрать материал. Благодаря большому ассортименту товаров для теплоизоляции проблем с выбором утеплителя для цоколя не должно возникать.

Из всего разнообразия теплоизоляционных материалов для защиты винтового фундамента рекомендуется выбирать следующие варианты:

  • Жидкий пенополиуретан. Для использования этого материала необходимо создать обрешетку, расположив доски очень близко, чтобы не образовались зазоры. Теплоизоляция наносится методом распыления из баллонов с помощью специального оборудования. При застывании пены на поверхности образуется сплошное покрытие, не образующее мостиков холода.
  • Экструдированный пенополистирол. Материал характеризуется высокими теплоизоляционными свойствами, хорошей устойчивостью к влаге и приемлемой стоимостью. Сочетание таких характеристик дает большое преимущество ЭППС перед другими вариантами теплоизоляционных материалов. Крепление утеплителя может выполняться на разреженную обрешетку или сплошное основание.
  • Фасадные термопанели. Этот вариант можно назвать самым выгодным из всех современных материалов, которые можно использовать для утепления винтового фундамента деревянного дома. Преимущество термопанелей заключается в комбинации теплоизоляционного и отделочного материала, однако в связи с этим повышается стоимость такого вида утепления.
  • Блоки вспененного стекла.
  • Кирпичная кладка является одним из эффективных и одновременно дорогостоящих вариантов (читайте подробнее про фундамент из кирпича). Если выполнять кладку из обычного кирпича, то потребуется дополнительная облицовка цоколя. Использование облицовочного кирпича позволяет избежать этапа отделки и немного сократить расходы. Однако следует понимать, что свайный фундамент чаще всего возводится на слабых неустойчивых грунтах, которые могут стать причиной разрушения кирпичной кладки.

Материалы для утепления фундамента

Не рекомендуется использовать для теплоизоляции винтового фундамента деревянного дома пенопласт. Структура материала способствует накоплению влаги между стирольными шариками, которая при замерзании оказывает высокое давление на частички материала. Это становится причиной разрушения пенопласта при низкой температуре воздуха.

к оглавлению ↑

Утепление винтового фундамента своими руками

Технология теплоизоляции винтового фундамента деревянного дома зависит от выбранного утеплителя, поэтому следует рассмотреть несколько вариантов. Если вы хотите разобраться в этом вопросе, то изучите наш материал на тему: как сделать фундамент на винтовых сваях.

к оглавлению ↑

Утепленный цоколь из кирпича

Такой вариант теплоизоляции винтового фундамента является самым трудоемким, хотя в этом случае получается максимально надежная и долговечная конструкция (узнайте больше про утепление цоколя фундамента).

Технология утепления выглядит следующим образом:

  1. Под ростверком по периметру деревянного дома роют траншею шириной немного больше размера кирпича и глубиной до 30 см. Дно траншеи уплотняют и заливают бетонным раствором (ранее мы уже рассматривали пропорции бетона для фундамента в ведрах). Дополнительно, для усиления основания, можно уложить несколько прутьев арматуры диметром 10-12 мм. Конструкцию оставляют до полного затвердевания бетона. В результате получается своеобразный фундамент для цоколя из кирпича.
  2. После набора бетоном необходимой прочности приступают к укладке кирпича. Строительство кирпичного цоколя проводится небольшими участками. В этом случае можно дополнительно выполнить утепление внутренней стенки цоколя.
  3. Завершающим этапом является декоративная отделка кирпичного цоколя. Для этой цели могут использоваться различные материалы, которые одновременно украшают и защищают свободное пространство между опорами винтового фундамента.

Утепление цоколя

к оглавлению ↑

Утепление винтового фундамента с помощью декоративных панелей

Монтировать панели намного легче, чем делать кладку из кирпича, однако, не смотря на простую работу, правильное обустройство позволяет получить надежную и долговечную конструкцию. Перед началом работ полезно будет почитать, как выполнять облицовку цоколя дома.

Теплоизоляция винтового фундамента деревянного дома с использованием декоративных панелей выполняется по определенной схеме:

к оглавлению ↑
Гидроизоляция свай

На первом этапе выполняется гидроизоляция винтовых опор фундамента. Независимо от материала изготовления все сваи нуждаются в защите, в частности речь идет о защите от агрессивного воздействия влаги. Для металлических винтовых свай используется специальная грунтовка или битумная мастика, в любом случае защитное средство наносится на все открытые участки конструкции. Гидроизоляционный слой должен полностью просохнуть, для этого достаточно выждать около недели.

к оглавлению ↑
Изготовление отмостки

Дальнейшие действия подразумевают изготовление отмостки по периметру деревянного дома (узнайте больше информации о том, как правильно сделать отмостку). В этом случае фальш-цоколь нижней частью будет касаться отмостки, а не промерзающего грунта. Обустройство отмостки выполняется следующим образом:

  1. По периметру строения вынимают грунт на глубину 0,4 метра, ширина углубления может достигать 1 метра.
  2. На дно траншеи насыпают слой песка высотой примерно 0,2 метра и тщательно его утрамбовывают.
  3. Следующим слоем выступает щебень, его высота может составлять около 5 см. Щебень также хорошо разравнивают и утрамбовывают.
  4. Далее укладывают гидроизоляционный материал и теплоизоляцию.
  5. По внешнему краю отмостки обустраивают дренаж.
  6. Работы с этой конструкцией продолжатся после утепления цокольной части фундамента.
к оглавлению ↑
Изготовление обрешетки

Далее необходимо создать несущую конструкцию, на которую в дальнейшем будет крепиться декоративная панель. Для этого к стволам винтовых опор приваривают металлические направляющие, которые предварительно защищают от влаги. Количество профилей зависит от высоты винтового фундамента, но в большинстве случаев их число ограничивается тремя штуками. В качестве направляющих каркаса можно использовать деревянные бруски, предварительно обработанные антисептическими составами. Для крепления деревянных элементов к сваям приваривают металлические пластины с отверстиями для болтов.

Обрешетка для винтового фундамента

к оглавлению ↑
Утепление

На следующем этапе по периметру каркаса делают небольшую канавку, вынимая грунт примерно на 10 см. Полученное углубление больше половины засыпают керамзитовым песком, низкая теплопроводность которого не допустит промерзание навесной конструкции в холодное время года.

Далее устанавливают и фиксируют плиты подходящего теплоизоляционного материала. Чаще всего потребитель отдает предпочтение пеноплексу или экструдированному пенополистиролу. Толщина утеплителя подбирается с тем учетом, чтобы материал не выступал за пределы ростверка. В противном случае крепление декоративной панели может вызвать определенные сложности. Монтаж теплоизоляционного слоя зависит от вида утеплителя.

Теперь необходимо залить отмостку бетонной смесью и дождаться ее полного застывания.

к оглавлению ↑
Установка декоративных панелей

На следующем этапе выполняется монтаж декоративной панели. Ее верхний край следует приклеивать к ростверку, используя специальный клеевой состав для надежной фиксации. Нижняя часть должна погружаться в канавку со слоем керамзитового песка.

В готовой забирке винтового фундамента деревянного дома в обязательном порядке делают вентиляционные отверстия, которые обеспечат соответствующий уровень влажности в пространстве под домом на винтовом фундаменте. В этом случае снижается риск образования плесени и гнили, следовательно, увеличивается срок эксплуатации всего строения.

Не стоит забывать о дополнительных элементах конструкции, поэтому в завершении выполняют монтаж отливов и уголков.

Декоративные панели на фундамент

Процесс утепления винтового фундамента деревянного дома не представляет особой сложности. Главное условие – соблюдение рекомендаций опытных строителей. При правильном монтаже каркаса и расположении теплоизоляционного материала можно самостоятельно сделать надежную и долговечную конструкцию.

    Метки: Винтовые сваи     

Как утеплить дом на винтовых сваях

« Назад

01.08.2016 11:30

Свайные фундаменты широко применяются в современном малоэтажном строительстве. Они позволяют сэкономить время и трудозатраты, а также строить каркасно-щитовые дома на влажных и каменистых почвах. Однако строительство домов на сваях может поставить перед заказчиком и подрядчиком специфические проблемы, которых не бывает при устройстве классического ленточного фундамента и цоколя.

Всё дело в том, что между грунтом и основанием пола остаётся достаточно много места. Если в жарких тропиках это не беда, то в русском климате там будет циркулировать холодный воздух и скапливаться заметаемый ветром снег. Какой бы теплоизоляцией не обладал ваш пол, дом будет неизбежно быстро выстужаться. Вывод очевиден: перед монтажом пола нужно изолировать пространство под домом от внешнего мира.

Лёгкая кирпичная кладка

Это можно сделать двумя путями. Первый предполагает устройство лёгкой кладки в полкирпича. Предварительно по периметру дома выкапывается узкая канавка глубиной 15 – 20 сантиметров, которая до половины заливается бетоном. На него и укладывается кирпичная кладка. Сверху её можно обшить декоративными материалами: панелями, сайдингом, искусственным камнем, а можно оставить как есть. С внутренней стороны кирпич покрывается слоем утеплителя.

Панели с утеплителем

Второй способ заключается в круговой обшивке свайного фундамента двуслойными финишными панелями. Профиля крепления панелей могут быть деревянными и металлическими. Они соединяются со сваями надёжными саморезами. Поскольку обрешётка будет до конца своих дней находиться в тёмном сыром пространстве, дерево следует обработать антисептическим и антигрибковым составами, предотвращающими гниение и распространение плесени. Металлические элементы и крепежи покрываются антикоррозионными мастиками. Пространство между панелями заполняется утеплителем типа изовер. Полезно также оснастить конструкцию технологическим люком для проветривания, тем более, что в подполье можно хранит предметы, не боящиеся сырости и холода. Второй вариант предназначен для районов с более мягким климатом.

После того, как кирпичная или пластиковая альтернатива цоколя готова, можно начинать устройство пола – класть поперечные лаги и монтировать на них черновой фанерный пол. При этом не следует забывать, что как бы мы хорошо не утеплили пространство под домом с боков, воздух там зимой всё равно будет ненамного теплее окружающей среды. А, значит, утепление пола должно быть таким же тщательным, как утепление стен, потолка и крыши.

Изоляционные основы — passivehouseplus.ie

Подходы, основанные на использовании ткани, требуемые ужесточением строительных норм и передовых практик, таких как пассивный дом, в очень большой степени связаны с обеспечением высоких уровней непрерывной изоляции. Это означает всю оболочку — крышу, стены, окна и цокольный этаж. От шляпы до куртки и сапог.

Само собой разумеется, что одним из наиболее важных аспектов проектирования пассивного дома или любого высокоэффективного здания с низким энергопотреблением является обеспечение того, чтобы любая используемая система фундамента была хорошо изолирована и не имела тепловых мостов.

В конце концов, чем больше вы изолируете стены и пол дома, тем больше тепла может уйти от теплового моста в месте соединения стены с полом, что увеличивает риск образования конденсата и роста плесени над плинтусом. Поэтому изоляция этого перехода становится критически важной.


1 заливка бетонной плиты поверх изоляции Xtratherm с утеплителем по краям; 2 Фундамент из пассивных плит Isoquick в престижном сертифицированном пассивном центре UEA Enterprise Center; 3 вид с воздуха на систему фундамента KORE Insulation с двумя кольцевыми балками; 4 Изоляция XPS уложена на выкопанном первом этаже первого сертифицированного проекта модернизации пассивного дома в Ирландии, разработанного обозревателем PH + Саймоном МакГиннессом; 5 150-миллиметровая изоляция Xtratherm, проложенная под плитой пола первой в Ирландии аптеки пассивного дома, на узком участке в Типперэри; 6 Geocell, пеностеклянный гравий, несущий и изолирующий свойства.

Если вы не строите высотное или многоэтажное здание, выбор наиболее подходящего типа утепленного фундамента для типичного проекта выглядит просто на бумаге, при этом большая часть головной боли отводится на мельчайшие детали работы на месте.

Маловероятно, что потребуется фундамент глубокого заложения, если только грунтовые условия не являются неровными или необычными в каком-либо отношении. В большинстве случаев нагрузки, создаваемые типичной низкоэнергетической конструкцией, будут низкими по сравнению с несущей способностью поверхностного грунта, поэтому обычно выбирают между двумя типами систем фундаментов мелкого заложения.

Ленточные фундаменты являются более традиционными и широко используются в Великобритании и Ирландии, где стены поддерживаются непрерывной «полосой» фундамента непосредственно под стенами.

Плотный фундамент — это в основном железобетонные плиты одинаковой толщины, которые покрывают всю площадь (хотя и не всегда) здания. Они распределяют нагрузку, создаваемую рядом колонн или стен, по площади фундамента. Как следует из названия, этот тип фундамента по существу «плавает» по земле, как плот плывет по воде.

В большинстве зданий пассивных домов, как правило, используются утепленные фундаменты типа плота, где бетонная плита заливается в «чашу» или «ванну» теплоизоляции, которая полностью окружает ее, изолируя ее от прямого контакта с землей. Края этой «ванны» изоляции обычно непрерывны с изоляцией стены, и этот метод, как правило, более пригоден для обеспечения того, чтобы в фундаменте отсутствовали тепловые мосты.

До сих пор могло показаться, что утепленные фундаменты на плотах — это не проблема для зданий с низким энергопотреблением.Однако редко бывает так просто.


alt = 1 Фундамент Kingspan Aeroground с изоляцией из пенополистирола, вырезанный для двойных кольцевых балок для поддержки внутреннего и внешнего листа полой стены; 2 система изолированного фундамента Isoquick на пассивно сертифицированной улице Лансдаун-Драйв, Лондон.

Эта статья изначально была опубликована в 26-м номере журнала «Пассивный дом Плюс». Хотите немедленный доступ ко всем прошлым выпускам и эксклюзивному дополнительному контенту? Нажмите здесь, чтобы подписаться всего за 10 евро, или нажмите здесь, чтобы получить следующий выпуск бесплатно

Выбор системы фундамента, даже в проектах пассивного дома, часто может зависеть от внешних факторов, таких как состояние грунта.Действительно, на участках, содержащих усадочную глину, которая может подвергаться значительному перемещению из-за корней деревьев и других наростов (достаточно распространенная проблема), традиционное решение в этих случаях — это копать вниз, используя свайный фундамент.

Тем не менее, фундаменты плотного типа часто выбирают вместо ленточных, где грунтовые условия плохие или вероятна оседание, а также могут иметь преимущество с точки зрения скорости и стоимости строительства, поскольку обычно требуется меньше земляных работ и используется меньше бетона.

С другой стороны, современные ленточные фундаменты и другие традиционные типы фундаментов также могут быть приведены в соответствие со стандартами с точки зрения радоновых барьеров, надлежащей изоляции и конструкции без тепловых мостов — фактически, вплоть до уровня пассивного дома.

Чтобы продолжить этот момент, при принятии решения о системе неглубокого фундамента на основе традиционного понимания того, как плотно-ленточный фундамент должен упускать из виду тот факт, что некоторые новые системы включают аспекты как конструкции плота, так и полосы и, похоже, работают хорошо, в то время как позволяя использовать различные строительные системы — будь то деревянный каркас, ICF, пустотелая стена, внешне изолированная блочная кладка и т. д.


Монтаж системы утепленного фундамента Kore с указанием: 1 подготовительных земляных работ; 2 укладка ванны пенополистирола с трубами теплого пола и; 3 залита плита перекрытия.

Например, существует несколько вариантов утепленных фундаментов на плотах, при этом некоторые системы имеют «кольцевую балку» или две, где бетон армирован по краям, а в других нет. Действительно, некоторые утверждают, что системы, включающие кольцевые балки, на самом деле вообще не являются системами плотов, особенно если бетонная плита недостаточно толстая, чтобы считаться плотом.

Так что, возможно, различия между плотом и полосой уже не так актуальны, когда дело доходит до выбора того, как изолировать ваш дом от того, что находится под ним.

Системы утепленных фундаментов

Ирландский гигант строительных материалов Kingspan продает в Ирландии систему утепленных фундаментов под названием Aeroground, основанную на шведской системе Supergrund (компания также предлагает ряд изоляционных решений для традиционных фундаментов). Несущие стены и плита перекрытия здания располагаются поверх слоя пенополистирола, как правило, с траншеями, прорезанными в изоляции по периметру для кольцевой балки из железобетона для поддержки внешних стен, хотя весь пол способствует поддержанию вес здания.

По словам менеджера по производству Kingspan Insulation Джо Кондона, конструкция системы зависит от нагрузки на стены. Например, версия, предназначенная в первую очередь для конструкции деревянного или стального каркаса, имеет как внутреннюю, так и внешнюю кольцевую балку — одну для рамы и одну для внешнего листа из блока или кирпича, которые оба термически изолированы от плиты перекрытия.

«Хотя это выглядит как плот, это не настоящий плот, поскольку кольцевая балка, поддерживающая стены, отделена от плиты перекрытия», — сказал он.Но подготовка грунта по существу такая же, как и для фундамента на плоту, в том смысле, что участок очищается и выравнивается равномерным слоем камня по всей площади основания дома.

Еще одним ключевым игроком на рынке утепленных фундаментов является Kore, которая продает утепленную фундаментную систему, подходящую для пассивных домов, под названием Kore Insulated Foundation. Технический менеджер по продажам Стивен Маги также стремится подчеркнуть, что система в ее стандартной форме не похожа на традиционный фундамент плота, а представляет собой систему сама по себе.

«Проблема в том, что поскольку они выглядят как фундамент плота, все называют их фундаментом плота, но с чисто инженерной точки зрения это не фундамент плота. Они могут быть спроектированы как плот, но в стандартной форме они принимают элементы традиционного плота и элементы ленточного фундамента. Это система изолированного фундамента «.


1 Деталь системы утепленного фундамента Isoquick под деревянной каркасной стеной; 2 чертеж, иллюстрирующий деталь от пола до стены для системы изолированного фундамента Aeroground компании Kingspan; 3 200 мм изоляции PIR для обеспечения изоляции под первым этажом схемы пассивного дома в Эссексе, в котором использовался новаторский подход к традиционному ленточному фундаменту.

Как и версия Kingspan, EPS 300, обладающий высокой прочностью на сжатие, используется в сочетании с бетоном и сталью, а EPS 100 используется в трехслойной изоляции для пола. В зависимости от конструкции могут быть задействованы одна или две кольцевые балки, например, для крепления внутренней или внешней створки.

Существует ряд других систем, основанных на схожих принципах, например, Passive Slab от Viking House и Raft Therm от Castleform. Но еще одно нарицательное имя в системах изолированных фундаментов — Isoquick, которое без колебаний описывает свой продукт как действительно созданный на плотах.

Джонатон Барнетт из Isoquick настаивает на том, что конструктивно плот сильно отличается от кольцевой балки с соединенной плитой перекрытия. «Конструкция с кольцевой балкой переносит всю нагрузку вниз через узкую полосу по периметру с тонким слоем бетона между балками. Это концентрирует нагрузку на узкой полосе изоляции, ограничивая допустимую нагрузку ».

Он говорит, что конструкция кольцевой балки — это, по сути, ленточный фундамент с усиленной балкой, что в результате расширения означает, что земля под балкой должна быть подготовлена ​​на ту же глубину, что и ленточный фундамент, хотя Коре и Кингспан говорят, что в этом меньше необходимости. раскапывать с их системами.

«Конструкция плиты в виде плоского плота означает, что нагрузка от стен распределяется, что позволяет строить фундаменты там, где грунтовые условия более мягкие или более глинистые», — сказал Барнетт. «Это также упрощает конструкцию арматуры, устраняя или значительно сокращая потребность в трудоемких проволочных каркасах арматуры».

Настоящая конструкция плота также лучше работает в термическом отношении, говорит он, не в последнюю очередь потому, что уровень изоляции под краем плиты остается постоянным.Конструкции кольцевых балок требуют, чтобы бетонная плита была утолщена по краям, а это означает, что изоляция должна быть меньше по сравнению с серединой здания. «Все наши детали могут быть разработаны для достижения пассивного стандарта на кольцевой балке», — сказал Маги.

Помимо споров о тепловых характеристиках, возможно, выбор архитекторов в большей степени зависит от универсальности всех этих систем с точки зрения приспособления к различным типам конструкций, но для других привлекательность плоской системы плота может заключаться в присущей ей простоте. обеспечения оптимальных тепловых характеристик.

Другой фактор, конечно же, это стоимость. Системы изолированных фундаментов могут стоить дороже, но один аргумент заключается в том, что они требуют гораздо меньше грунта или земляных работ, чем традиционные фундаменты, включая необходимость рыть траншеи, что, в свою очередь, ускоряет строительство и снижает риск проблем со здоровьем и безопасностью.

«Удаление навоза происходит просто и без окопов», — сказал Барнетт. «Точно так же на подготовку основания и выравнивающего камня требуется всего день или два.После того, как камень окажется на месте, ваша площадка окажется вне грязи, что облегчит жизнь всем, кто работает на работе. От пустого участка до готового пола обычно меньше двух недель. Мы заключаем контракты только за счет сбережений, оставленных на гадости ».

Инженер-конструктор Хиллиард Таннер также считает, что в целом затраты равны между изолированными и неизолированными системами. «Мы сделали ряд утепленных фундаментов, которые в целом работают дешевле, чем традиционные ленточные фундаменты», — сказал он.Системы с изолированным фундаментом, безусловно, привлекают больше внимания со стороны крупных подрядчиков, «потому что они действительно хорошо работают с модульными корпусами, а строителям нравится идея сокращения количества квалифицированного труда, необходимого на месте», — говорит Стивен Маги из Kore.


1 Фундамент в Денби Дейл, первом сертифицированном пассивном доме с полой стеной в Великобритании, с легким изоляционным бетонным блоком на стыке стены с полом; 2 Деталь Xtratherm, показывающая выступ изоляции по краю плиты перекрытия для минимизации тепловых мостиков с внутренним листом полой стены; 3 Ленточный изоляционный фундамент Kingspan 200 мм с бортиком 70 мм под пассивный дом в Inverin, Co Galway; 4 Этот пассивный дом в Ко Мит имеет ленточный фундамент с 200-миллиметровым Xtratherm под бетонной плитой, которая также покрывает трубы теплого пола, и термоблок Quinn Lite на стыке стены с полом.

Также наблюдается сокращение использования бетона с утепленными фундаментами. «С точки зрения затрат вы используете намного больше полистирола, чем в традиционном фундаменте, но это компенсируется использованием примерно на 50% меньше бетона», — добавляет Маги.

Кроме того, существует элемент заводского изготовления таких систем, так как вы с большей вероятностью увидите точные характеристики фундамента заранее, включая количество используемой изоляции и бетона. Это может свести к минимуму вероятность ошибок и потерь материала на стройплощадке.«С точки зрения QS, это позволяет им определить точное количество материалов, которые потребуются заранее — в отличие от традиционных ленточных фундаментов, где вы копаете траншею и приблизительно определяете количество бетона, необходимое для ее заполнения». Как упоминалось ранее, условия грунта остаются самым большим фактором, а это означает, что ленточный или свайный фундамент может быть лучшим выбором, когда почва более мягкая или подвержена потенциальному нарушению со стороны ближайших корней деревьев, или если нагрузки на стены данной конструкции могут быть более высокими. слишком тяжелые по частям, или если рассматриваемый участок содержит водоносные горизонты.

Маги говорит, что систему Kore можно использовать практически в любых грунтовых условиях. «Если грунтовые условия плохие, система может быть спроектирована больше как традиционный плот, при этом балки грунта и ребра внутри плиты объединены, чтобы вся система работала монолитно. В случае очень плохого состояния грунта, например на засыпанном грунте плот может опираться на стандартные сваи, но при этом сохраняется полный тепловой разрыв между сваями (грунтом) и плотом ». В любом случае система должна быть спроектирована квалифицированным инженером с учетом условий грунта и надстройки.

Фундамент ленточный

Хотя среди сторонников плотового фундамента распространено возражение, что ленточный фундамент может привести к тепловому компромиссу по сравнению с изолированными системами фундамента, Passive House Plus за эти годы показал множество проектов различных типов строительства, которые достигли стандарта пассивного дома с традиционный ленточный фундамент.

Главное — хорошая детализация. Это может означать изоляцию стен, которая продолжается ниже уровня земли, достигая уровня ниже изоляции пола и обеспечивая достаточное перекрытие теплоизоляции между изоляцией стены и изоляцией пола.Учитывая, что температура грунта ниже определенной глубины остается относительно теплой по сравнению с внешними условиями, отсутствие изоляции под блочной кладкой, разделяющей изоляцию стены и изоляцию пола, может быть проблемой, если слой изоляции опущен ниже уровня изоляции пола. Например, ведущий ирландский производитель изоляционных материалов Xtratherm рекомендует укладывать изоляционный слой стены на глубину 225 мм ниже изоляционного слоя пола.

Foundation в проекте социального жилья с рейтингом A1 от Linham Construction в Дублине, демонстрирующий 1 пеностеклянный гравий Geocell и заполнитель под бетонной плитой; 2 с последующим выше радоновым барьером и; 3 Железобетон 225 мм с финишным покрытием Power Float.

Если есть изоляция со стороны помещения стеновой застройки — например, на внутренней стороне деревянного каркаса — тепловые мосты на этом стыке могут быть минимизированы, например, путем установки изолирующего выступа по краям пола. плиты, которые соединяются с изоляцией со стороны помещения в соответствии с ACD (допустимые конструктивные особенности).

Точно так же общая деталь для проектов кладки — это наличие блока с низкой теплопроводностью в основании внутреннего листа кладки, где стена встречается с изоляцией пола, чтобы минимизировать потери тепла через это соединение.Xtratherm сообщил Passive House Plus, что провел обширный термический анализ широкого спектра продуктов на ирландском рынке, предназначенных для эффективной изоляции полов и стыков между полом и стеной.

«Любопытно, что многие поставщики систем не указывают результирующее значение Psi для этого соединения», — сказал Марк Магеннис, старший технический советник Xtratherm. Магеннис сказал, что результирующие значения Psi для хорошо детализированных изолированных ленточных фундаментов в целом сопоставимы с изолированными системами фундаментов.

«Да, хотя может наблюдаться снижение значения Psi с некоторыми системами изолированного фундамента, детализация традиционных ленточных фундаментов с использованием блоков средней плотности и тщательная детализация традиционной изоляции также снижает значение Psi», — сказал он.

Собственная деталь компании основана на ирландских приемлемых конструктивных деталях (ACD) и учитывает типичные сжимающие нагрузки для жилых помещений и детализацию радона в соответствии с директивами Агентства по охране окружающей среды Ирландии.

«Он также может обойтись без специальных инженерных расчетов, необходимых для фундаментных систем», — сказал Магеннис.В этой детали используются плиты подступенка CavityTherm Foundation Riser в полости, простирающейся ниже гидроизоляционного слоя (DPC), обеспечивая как минимум 225 мм перекрытия от верхней части изоляции пола. Он имеет радоновый барьер, перекрывающий полость, рассекающий или переплетающийся под изоляцией, а затем проходящий под изоляцию пола.

Магеннис сказал, что для любого, кто хочет выбрать систему фундамента, ключевым моментом является то, чтобы характеристики продуктов и системы были четко определены, а заявления о производительности были опубликованы и сертифицированы соответствующим квалифицированным лицом, например, зарегистрированным NSAI тепловым мостом. оценщик моделирования — легким для понимания образом.Он также подчеркнул необходимость «лучшей и простой детализации на месте».

Другой альтернативой утепленным плотам или ленточным фундаментам является Geocell, пеностеклянный гравийный материал, который работает как легкая внешняя изоляция и располагается под плитой перекрытия. Он несущий, с прочностью на сжатие, сопоставимой с твердым сердечником, и свободный дренаж. Система сертифицирована для пассивного дома и предлагает такие же тепловые характеристики, как и обычные системы изоляции, со значением лямбда 0,08 Вт / м2К.Он полностью сделан из переработанного стекла и распространяется в Ирландии компанией Linham Construction.

Модернизация

Конечно, неудивительно, что, если не поднять все здание, практически невозможно модернизировать изолированные системы фундамента.

Но есть некоторые меры, реализация которых может быть достаточно рентабельной, например, выкопать цокольный этаж и добавить теплоизоляцию. «Что бы вы там сделали, так это выкопали бы пол до уровня, который был бы достаточно компактным, чтобы создать ровное основание, положите изоляцию, положите плиту пола и положите полоску изоляции по периметру, чтобы создать — перегородка «мост холода» между плитой перекрытия и нижней частью внутренней стены », — сказал Джо Кондон из Kingspan.

Самой большой проблемой будет гидроизоляция и удержание несущих конструкций на месте, пока вы будете рвать пол.

Еще одним шагом может стать снижение уровня внешней изоляции ниже уровня первого этажа для устранения теплового моста. Иногда достаточно просто установить внешнюю изоляцию на достаточно большую глубину под землей, поскольку, как только вы опуститесь на определенную глубину, температура грунта все равно повысится.

Радоновые барьеры

В областях, которые были перечислены как имеющие высокий уровень радона, строительные нормы Ирландии и Великобритании обычно предусматривают, что новые здания должны быть оборудованы прочным радоновым барьером и отстойником, в то время как менее затронутые территории могут по-прежнему нуждаться в некоторых основных защитных мерах.

Согласно Хиллиарду Таннеру, с изолированными системами фундамента, как он их описывает, отстойник радона входит в верхнюю часть засыпки, как обычно, а затем под изоляцией помещаются барьеры, оставляя ее за пределами изоляции. В качестве альтернативы вы можете уложить барьер поверх первого или второго (из трех) слоев утеплителя пола, а затем в контакте с кольцевой балкой.

  • Foundation в проекте социального жилья с рейтингом A1 от Linham Construction в Дублине, демонстрирующий пеностеклянный гравий Geocell и заполнитель под бетонной плитой Фундамент в проекте социального жилья с рейтингом A1 от Linham Construction в Дублине, демонстрирующий пеностеклянный гравий Geocell и заполнитель под бетонной плитой
  • Радоновый барьер Радоновый барьер
  • Заливка бетонной плиты поверх изоляции Xtratherm с изоляцией по краям Заливка бетонной плиты поверх утеплителя Xtratherm с утеплителем по краям
  • Плита перекрытия литая Плита перекрытия залита
  • Железобетон толщиной 225 мм с финишным покрытием Power Float. Железобетон 225 мм с финишным покрытием Power Float.
  • Фундамент из пассивных плит Isoquick в престижном сертифицированном пассивном центре UEA Enterprise Center Фундамент из пассивных плит Isoquick в престижном сертифицированном пассивном центре UEA Enterprise Center
  • Деталь фундамента в Denby Dale, первом в Великобритании сертифицированном пассивном доме с полой стеной, с легким изоляционным бетонным блоком на стыке стены с полом Деталь фундамента Denby Dale, первого в Великобритании сертифицированного пассивного дома с полой стеной, с легким изоляционным бетонным блоком на стыке стены с полом
  • Деталь системы утепленного фундамента Isoquick под деревянным каркасом Деталь, показывающая утепленную фундаментную систему Isoquick под стеной с деревянным каркасом
  • Вид с воздуха на фундамент системы KORE Insulation с двумя кольцевыми балками Вид с воздуха на фундамент системы KORE Insulation с двумя кольцевыми балками
  • Изолированный ленточный фундамент Kingspan 00 мм с бортиком 70 мм до краев под пассивным домом в Инверине, Колорадо, Голуэй Утепленный ленточный фундамент Kingspan 00 мм с бортиком 70 мм до краев под пассивным домом в Инверине, графство Голуэй
  • Изолированная система фундамента Isoquick на пассивно сертифицированной улице Лансдаун-Драйв, Лондон. Изолированная система фундамента Isoquick на пассивно сертифицированной улице Лансдаун Драйв, Лондон.
  • Этот пассивный дом в Co Meath имеет ленточный фундамент с 200-миллиметровым Xtratherm под бетонной плитой, которая также покрывает трубы теплого пола, и термоблок Quinn Lite на стыке стены с полом. Этот пассивный дом в Ко Мит имеет ленточный фундамент с 200-миллиметровым Xtratherm под бетонной плитой, которая также покрывает трубы теплого пола, и термоблок Quinn Lite на стыке стены с полом.
  • Изоляция Xtratherm толщиной 150 мм, проложенная под плитой пола первой в Ирландии аптеки пассивного дома, на узком участке в Типперэри Изоляция Xtratherm толщиной 150 мм, проложенная под плитой пола первой в Ирландии аптеки пассивного дома, на узком участке в Типперэри.
  • Geocell, пеностеклянный гравий, несущий и изолирующий Geocell, пеностеклянный гравий, несущий и изолирующий свойства.
  • 200-миллиметровая изоляция PIR для обеспечения изоляции под первым этажом схемы пассивного дома в Эссексе, в которой использовался новаторский подход к традиционному ленточному фундаменту 200-миллиметровая изоляция PIR для обеспечения изоляции под первым этажом схемы пассивного дома в Эссексе, в которой использовался новаторский подход к традиционному ленточному фундаменту.
  • Деталь Xtratherm, показывающая выступ изоляции по краю плиты перекрытия для минимизации тепловых мостиков с внутренним листом полой стены Деталь Xtratherm, показывающая выступ изоляции по краю плиты перекрытия для минимизации тепловых мостиков с внутренним листом полой стены
  • Система фундамента Aeroground с изоляцией из пенополистирола Kingspan, вырезанная для двойных кольцевых балок для поддержки внутреннего и внешнего листа полой стены; Система фундамента Aeroground с изоляцией из пенополистирола Kingspan вырезана для двойных кольцевых балок для поддержки внутреннего и внешнего листа полой стены;
  • Изоляция XPS уложена на вырытом первом этаже первого сертифицированного проекта модернизации пассивного дома в Ирландии, разработанного обозревателем PH + Саймоном МакГиннессом. Изоляция XPS уложена на выкопанном первом этаже первого сертифицированного проекта модернизации пассивного дома в Ирландии, разработанного обозревателем PH + Саймоном МакГиннессом.

DOE Building Foundations Section 3-1

Рисунок 3-1.Бетонная стена с наружной изоляцией

3.1 Рекомендуемые детали конструкции и конструкции

ВЕНТИРУЕМЫЕ ПРОСТРАНСТВА В ОТНОШЕНИИ ОТКРЫТЫХ ПРОСТРАНСТВ

Основное очевидное преимущество вентилируемого пространства для ползания перед невентилируемым состоит в том, что вентиляция может ограничить опасность распада, связанного с радоном и влажностью, за счет разбавления воздуха в пространстве для ползания. Кроме того, обеспечение вентилируемого пространства для обхода может иметь смысл в районах, подверженных наводнениям, таких как прибрежные зоны, подверженные ураганам.Вентиляция может дополнять другие меры по контролю влажности и радона, такие как напочвенный покров и надлежащий дренаж. Однако, хотя увеличенный поток воздуха в подвесном пространстве может иметь некоторый потенциал разбавления для влаги из наземных источников и радона, это не обязательно решит серьезную проблему. В вентилируемых ползунках часто есть работающие вентиляционные отверстия, которые можно закрывать, чтобы снизить потери тепла зимой, но также потенциально увеличивают проникновение радона. Хотя это и не является их первоначальным назначением, вентиляционные отверстия также могут быть закрыты летом, чтобы не пропускать влажный внешний воздух, точка росы которого может быть выше температуры ползания.Однако для достижения успеха этот подход требует высокого уровня информированного участия жильцов.

Невентилируемые (кондиционированные) места для прогулок обычно предпочтительны в большинстве случаев, за исключением случаев, когда риски наводнений исключительно высоки, как в прибрежных зонах, подверженных ураганным наводнениям. Основные недостатки вентилируемого подвесного пространства над невентилируемым заключаются в том, что (1) трубы и воздуховоды должны быть герметизированы и изолированы от потерь тепла (потеря охлаждения летом) и замерзания, (2) большая площадь (обычно потолок подвесного пространства (3) в жарких и влажных условиях теплый влажный воздух, циркулирующий в прохладном подвесном пространстве, может вызвать чрезмерный уровень влажности в конструкционных деревянных элементах (особенно в полах). балки), которые могут вызвать плесень и гниение, и (4) на практике очень трудно обеспечить герметичную непрерывную тепловую оболочку на потолке подполья.Нет необходимости вентилировать подвальное помещение для контроля влажности, если оно открыто в соседний подвал, а вентиляция явно несовместима с подвальными помещениями, используемыми в качестве воздухораспределительных камер с кондиционированным воздухом. На самом деле, есть несколько преимуществ в проектировании подзарядки как полукондиционных зон. Изоляция воздуховодов и труб может быть уменьшена, а фундамент утеплен по периметру подвесного пространства, а не потолка. Обычно это требует меньшей изоляции, в некоторых случаях упрощает установку и может быть детализировано, чтобы свести к минимуму опасность конденсации.

Несмотря на то, что невентилируемые помещения для подполья были рекомендованы Советом по малым домам Университета Иллинойса (Jones, 1980), «кроме условий сильной влажности», проблемы с влажностью в подпольях являются достаточно распространенным явлением, и многие агентства не желают одобрять закрытие вентиляционных отверстий в течение года. круглый. Тип почвы и уровень грунтовых вод являются ключевыми факторами, влияющими на влажностные условия. Следует понимать, что подполье может быть спроектировано как короткий подвал (с плиточным полом) и, имея более высокий уровень пола, в большинстве случаев подвергается меньшему риску влажности, чем подвал.С этой точки зрения основное различие между непроветриваемыми подвалом и подвальными помещениями заключается в доступности для владельца и вероятности обнаружения проблем с влажностью.

Рисунок 3-2. Компоненты структурной системы подполья

КОНСТРУКЦИЯ

Основными конструктивными элементами подвального помещения являются стена и основание (см. Рисунок 3-2). Стены подполья обычно строятся из монолитного бетона, бетонных блоков или альтернативных систем, таких как изолированные бетонные формы (ICF).Стены подполья должны выдерживать любые боковые нагрузки от почвы и вертикальные нагрузки от конструкции, расположенной выше. Боковые нагрузки на стену зависят от высоты засыпки, типа почвы и содержания влаги, а также от того, находится ли здание в зоне с низкой или высокой сейсмической активностью. Из-за большого количества переменных, участвующих в структурном проектировании фундамента, окончательное определение толщины стен, прочности бетона, размеров фундамента и армирования должно производиться после консультации с местными строительными нормами или проектированием лицензированным инженером-строителем.

Вместо структурной фундаментной стены и сплошного фундамента конструкция может опираться на опоры или сваи с балками между ними. Эти балки между опорами поддерживают вышеупомянутую конструкцию и передают нагрузку обратно на опоры.

Бетонные опоры служат опорой под бетонными и каменными стенами и / или колоннами. Опоры должны иметь размер, достаточный для распределения нагрузки на почву. Замерзшая вода под опорами может вздыбиться, что приведет к растрескиванию и другим структурным проблемам.По этой причине опоры должны располагаться ниже максимальной глубины промерзания, если только они не основаны на скальных породах или не подверженных промерзанию почвах или изолированы для предотвращения промерзания. Поскольку внутренняя температура вентилируемого подвесного помещения может быть ниже точки замерзания в холодном климате, опоры должны быть ниже глубины промерзания как по внутреннему, так и по внешнему уровню, если не защищены иным образом.

При наличии обширных грунтов или в районах с высокой сейсмической активностью могут потребоваться специальные методы строительства фундамента.В этих случаях рекомендуется проконсультироваться с местными строительными чиновниками и инженером-строителем.

УПРАВЛЕНИЕ ВОДОЙ / ВЛАЖНОСТЬЮ

Хотя ползунок не предназначен для проживания (например, подвала), очень важно контролировать количество влаги, которая может скапливаться в этом пространстве. Высокий уровень влажности при относительно низких температурах может вызвать конденсацию на различных поверхностях в подвесном пространстве. Эта конденсация может вызвать гниение деревянных опорных конструкций, что ухудшит их структурную целостность.Конденсация и высокий уровень влажности также создают среду, способствующую росту плесени, которая может иметь неблагоприятные последствия для здоровья жителей дома.

В общем, схемы управления влажностью должны контролировать воду в двух состояниях. Во-первых, поскольку почва, контактирующая с фундаментной стеной, всегда имеет относительную влажность 100%, фундаментные стены должны иметь дело с водяным паром, который будет иметь тенденцию мигрировать внутрь в большинстве условий. Во-вторых, необходимо предотвратить попадание жидкой воды.Жидкая вода может поступать из таких источников, как:

  • Неконтролируемые потоки поверхностных вод
  • Высокий уровень грунтовых вод
  • Капиллярный поток через подземные фундаменты

Существуют две основные конфигурации ползунков: вентилируемые и невентилируемые. Вентилируемое пространство для ползания исторически было наиболее широко используемой конструкцией. Он работает, позволяя наружному воздуху проходить через пространство для ползания, тем самым теоретически удаляя лишнюю влагу и позволяя ей высохнуть (Davis et al.2005). Невентилируемые пространства для ползания (также известные как закрытые или кондиционированные) не имеют вентиляционных отверстий наружу и полагаются на ограничение проникновения влаги из почвы, наряду с механическими механизмами сушки, такими как кондиционер или осушитель, для предотвращения накопления влаги (Дастур и др. 2005 г.). Как для вентилируемых, так и для невентилируемых конструкций существуют общие методы, которые используются для ограничения содержания влаги в пространстве для обхода. Эти методы включают в себя методы блокировки источников влаги путем обеспечения надлежащего дренажа, замедлителей образования пара и воздушных барьеров.Также используются дополнительные методы удаления влаги, скопившейся в подвесном пространстве.

Рисунок 3-3. Дренаж в ползунном пространстве: пол в ползунке класса

или выше

Следующие ниже методы строительства предотвратят попадание лишней воды в виде жидкости и пара в пространство для ползания. Эти методы показаны на рисунках 3-3, 3-4 и 3-5.

  • Управляйте внешней почвой и дождевой водой, используя водосточные желоба и водосточные трубы, а также выравнивая поверхность по периметру не менее чем на шесть дюймов при падении на десять футов пути.Установите слив в фундамент (если есть) и нанесите гидроизоляцию на стены фундамента. Если доступ в пространство для ползания осуществляется снаружи, расположите дверцу доступа на высоте не менее четырех дюймов над землей (Дастур и др., 2005).
  • Добавьте материал обратной засыпки или дренажный мат вокруг фундамента со свободным дренажем, чтобы земля или дождевая вода стекали в дренаж по периметру, если он установлен у основания фундамента. Существует множество подходов к проектированию дренажа фундамента, которые обсуждаются в следующем разделе.
  • Добавьте капиллярный разрыв (герметик для поролона с закрытыми порами или прокладка) между верхней частью бетона и пластиной порога, чтобы предотвратить миграцию влаги из бетонного фундамента в конструкцию пола выше. В непроветриваемых пространствах для лазания установите капиллярный разрыв между основанием и бетонной стеной (BSC 2006), чтобы ограничить количество грунтовой воды, поглощаемой через основание. Если пол в подвесном помещении находится выше верхней части фундамента, почва будет контактировать с внутренней стороной фундаментной стены выше этого капиллярного разрыва, позволяя влаге проникать в стену через капиллярное всасывание.Установите гидроизоляцию, чтобы устранить это капиллярное соединение (см. Рисунок 3-3).
  • Предотвратите испарение с земли во внутреннюю часть, покрывая всю землю поли-пароизоляционным агентом, притирка швов не менее шести дюймов и герметизация их канальной мастикой. Материал, замедляющий образование паров грунта, следует нанести на стену. Материал-замедлитель парообразования должен быть конструктивно прикреплен к стене с помощью планки обрешетки на верхнем крае и загерметизирован. Для вентилируемых подползников вся стена должна быть закрыта, оставляя только трехдюймовый зазор для осмотра термитов между верхней частью стены и подоконником (Marshall 2008).Для утепленных фундаментов возможна нижняя заделка. В случаях, когда пароизоляция будет последней обработанной поверхностью пола, рекомендуется армированный волокном материал толщиной 20 мил. Такой замедлитель паров обеспечивает эффективную облицовку пространства для ползания, поскольку он прочен и устойчив к разрывам / проколам, что позволяет ходить или ползать по нему, не позволяя влаге из земли распространяться в пространство для ползания (Marshall 2008).
  • Если применимо, включите каменную подушку глубиной четыре дюйма и диаметром 3/4 дюйма (без мелких частиц) над землей и прямо под замедлителем образования пара.Он функционирует как гранулированный капиллярный разрыв под замедлителем парообразования, дренажная подушка и расширитель поля давления воздуха лайнера под ползун для системы вентиляции почвенного газа.

Рисунок 3-4. Осушение ползучего пространства: ползание ниже класса

Даже после использования эффективной системы дренажа и замедления образования пара, влага все еще может проникать в пространство для ползания. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! В вентилируемом подвальном помещении более низкие температуры могут вызвать конденсацию влаги из влажного воздуха на стенах, потолке и земле.Еще один возможный источник скопления влаги внутри подвесного пространства — протечки в трубах. Эти источники могут создавать бассейны с водой, которые необходимо откачать. Это может быть достигнуто путем выравнивания пола подползания и установки дренажного или отстойного насоса в нижней точке. (Дастур и др., 2005). Важно завершить внутреннюю дренажную систему на ранних этапах строительства, чтобы предотвратить накопление влаги, которое может произойти до завершения строительства кровли.

Бетонные фундаментные стены содержат воду, оставшуюся после заливки, которую необходимо отвести, дав им высохнуть.В случаях, когда большая часть стены находится ниже уровня земли, высыхать можно только внутри. Изоляционный материал и настенные покрытия, размещенные на стенах во время строительства подвесного пространства, действуют как замедлители парообразования, не позволяя стенам высыхать изнутри. По этой причине рекомендуется устанавливать эти настенные покрытия ближе к концу строительства, чтобы обеспечить максимально возможное высыхание бетона (BSC 2006).

В невентилируемых подпольях важно не только иметь эффективный замедлитель парообразования, но и иметь полный воздушный барьер.По этой причине все зазоры между фундаментной стеной и пластиной порога, пластиной порога и ленточной балкой, а также ленточной балкой и черным полом должны быть заделаны. Все щели и проемы в фундаментной стене также должны быть должным образом заделаны. Плотный воздушный барьер предотвратит приток влажного наружного воздуха через воздушный транспорт, создавая внутреннее пространство, независимое от условий внешней влажности. Чтобы дополнительно отделить условия в подвесном пространстве от условий снаружи, следует использовать механические сушильные системы, такие как автономный осушитель (Dastur et al.2005). В качестве альтернативы, система воздуховодов может включать в себя пространство для обхода в цикле подачи / возврата, чтобы эффективно рассматривать его как внутреннее пространство.

Для дальнейшего отделения условий в подвесном пространстве от условий снаружи следует использовать механические сушильные системы, такие как автономный осушитель (Dastur et al. 2005).

  • Весь слив воды из приборов должен быть прекращен наружу или в герметичный отстойник.
  • Все вытяжные отверстия на кухне и в ванной должны выходить наружу.
  • Если используются приборы, работающие на топливе, и они расположены в непроветриваемом подвальном помещении, убедитесь, что их воздухозаборник и выхлоп направлены непосредственно наружу.

Рисунок 3-5. Осушение пространства для ползания: Осушение для ползания ниже уровня земли с двойным дренажем

ДРЕНАЖНАЯ И ГИДРОИЗОЛЯЦИЯ

Хотя фундамент для подполья не предназначен для использования в качестве жилого помещения, очень желательно, чтобы он оставался сухим. Всегда рекомендуется хороший поверхностный дренаж, и во многих случаях могут быть желательны подземные дренажные системы.Целью поверхностного дренажа является отвод воды от фундамента за счет уклона поверхности земли и использования водосточных желобов и водосточных желобов для водостока с крыши.

На рис. 3-3, 3-4 и 3-5 описаны три различных метода дренажа для подползников. Рисунок 3-3 применяется, когда пол в подполье находится на одном уровне с окружающим уклоном (или выше). В большинстве случаев этот тип подвесного пространства не требует дренажа по периметру. На особо влажных участках или на наклонных участках, где часть пола подполья находится ниже уровня земли, все же может быть целесообразно установить дренажную систему по периметру, описанную ниже.Если пол в подполье находится выше верхней части фундамента, как показано, нанесите гидроизоляцию на внутреннюю поверхность заглубленной фундаментной стены, чтобы избежать капиллярного всасывания воды в бетон.

На рис. 3-4 и 3-5 показаны дренажные системы фундамента, которые рекомендуются для всех подползников, где пол находится ниже уровня окружающего грунта. На особо засушливых участках можно исключить дренажную систему и избежать проблем с влажностью. В большинстве случаев рекомендуется подземная дренажная система по периметру, аналогичная той, что используется для подвала (см. Рисунки 3-4 и 3-5).Рисунок 3-5 описывает рекомендуемые передовые методы. Он состоит из двух независимых петель перфорированного дренажа фундамента, один внутри фундамента, а другой снаружи. Они сливаются независимо, либо на дневной свет, либо во внутренний отстойник. На рис. 3-4 показан другой вариант, который подходит при хороших дренажных условиях. Дренаж пространства внутри фундаментов не предусмотрен. Его единственная петля отвода от фундамента находится на внешней стороне основания и отводится на дневной свет или во внутренний отстойник.Следует отметить, что соединение воздуховода с внешней стороной фундамента может снизить эффективность систем подавления радона с разгерметизацией под плитой за счет снижения способности системы поддерживать достаточно низкое давление под плитой.

Последняя линия защиты — гидроизоляция — предназначена для защиты от попадания воды в стены конструкции. Во-первых, важно различать необходимость в гидроизоляции и гидроизоляции. В большинстве случаев рекомендуется использовать гидроизоляционное покрытие, покрытое слоем полиэтилена толщиной 4 мил, чтобы уменьшить передачу пара и капиллярной тяги из почвы через стену подвала.Однако влагонепроницаемое покрытие не эффективно предотвращает проникновение воды под гидростатическим давлением через стену. Гидроизоляция рекомендуется (1) на участках с ожидаемыми водными проблемами или плохим дренажем, (2) когда пространство для подполья предназначено для использования в качестве хранилища или в нем размещается механическое оборудование, или (3) на любом фундаменте, построенном там, где периодически возникает гидростатическое давление на стену подвала. из-за дождя, орошения или таяния снега. За исключением очень сухих участков, обычно рекомендуется использовать гидроизоляцию.На участках, где пол подползания может быть ниже уровня грунтовых вод, рекомендуется фундамент из плиты на уровне грунта.

Рисунок 3-6. Возможные места для изоляции подполья

РАСПОЛОЖЕНИЕ ИЗОЛЯЦИИ

Еще один важный фактор, который следует учитывать при управлении влажностью в подвальном помещении, — это способ его изоляции. Подходящие помещения могут быть изолированы на внешних стенах или вентилироваться и изолироваться на потолке подполья (рис. 3-6). Изоляция играет роль не только в тепловой эффективности дома, но и в поведении влаги.Более прохладные поверхности в подвесном помещении могут вызвать конденсацию влаги из воздуха на поверхностях. Для невентилируемых подвальных помещений лучше всего рассматривать их как короткий подвал, поместив изоляцию на внешнюю или внутреннюю поверхность стен подползников. Исследования показали, что закрытые подвальные помещения с изоляцией стен обладают лучшими энергетическими и влажностными характеристиками, чем проходы с вентилируемыми стенами и изоляцией потолка (Дастур и др., 2005).

Ключевой вопрос при проектировании невентилируемых подвесных помещений состоит в том, размещать ли изоляцию внутри или снаружи стены.С точки зрения использования энергии, нет существенной разницы между одинаковым количеством изоляции, нанесенной на внешнюю поверхность, и на внутреннюю часть бетонной или кирпичной стены. Однако стоимость установки, простота применения, внешний вид и различные технические аспекты могут быть совершенно разными.

Жесткая изоляция, размещенная на внешней поверхности бетона (рис. 3-6а) или кирпичной стены, имеет некоторые преимущества по сравнению с внутренним размещением, поскольку она может обеспечить непрерывную изоляцию без тепловых мостов, защитить несущие стены при умеренных температурах и минимизировать проблемы конденсации влаги. (Рисунок 3-7).Если внешняя изоляция простирается над балкой обода и ее коэффициент сопротивления R достаточно высок, балки и подоконники можно оставить открытыми для осмотра изнутри на предмет термитов и гниения. С другой стороны, внешняя изоляция на стене может быть путем для термитов и может препятствовать осмотру стены снаружи. При необходимости следует установить термитный барьер через изоляцию в том месте, где подоконник опирается на фундаментную стену. Этот вариант показан на всех чертежах, на которых изображена изоляция фундамента наружного подвесного пространства.Вертикальная внешняя изоляция на стене подползшего пространства может доходить до верха фундамента и, при желании, дополняться за счет горизонтального протягивания изоляции от поверхности стены фундамента. Изоляция, выходящая за пределы допустимого уровня, должна быть защищена покрытием для предотвращения физического повреждения и деградации. Такие покрытия включают фиброцементную плиту, обрезки (материал типа штукатурки), обработанную фанеру или мембранный материал (Baechler et al. 2005).

Рисунок 3-7. Подъезд с внешней изоляцией

Изоляция наружных стен должна быть одобрена для использования в грунтовых условиях.Обычно используются три продукта ниже сорта: экструдированный полистирол, пенополистирол и жесткие панели из минерального волокна. (Baechler et al. 2005). Экструдированный полистирол (номинальное сопротивление R-5 на дюйм) является обычным выбором. Пенополистирол (номинальное R-4 на дюйм) дешевле, но имеет более низкие изоляционные свойства. Пены низкого качества могут подвергаться риску накопления влаги при определенных условиях. Экспериментальные данные показывают, что это накопление влаги может снизить эффективное значение R на 35% -44%.Исследования, проведенные в Национальных лабораториях Ок-Ридж, изучали содержание влаги и термическое сопротивление пенопластовой изоляции, находящейся ниже уровня земли в течение пятнадцати лет; влага может продолжать накапливаться и ухудшать тепловые характеристики после пятнадцатилетнего периода исследования. Это возможное снижение следует учитывать при выборе количества и типа используемой изоляции (Kehrer, et al., 2012, Crandell 2010).

Жесткие панели из стекловолокна и жесткой минеральной ваты (R-4 на дюйм) не изолируют так же хорошо, как экструдированный полистирол, но являются единственными изоляционными материалами, которые могут обеспечить дренажное пространство для фундаментных стен из-за их пористой структуры.Использование этих материалов в качестве дренажного пространства работает только при наличии эффективных дренажных систем по периметру фундамента.

Изоляция стен внутреннего пространства для ползания (рис. 3-6b) более распространена, чем наружная, в первую очередь потому, что она менее дорога, поскольку не требуется никакого защитного покрытия, и может представлять меньшую опасность заражения термитами. С другой стороны, изоляция внутренней стены может считаться менее желательной, чем внешняя изоляция, потому что она (1) увеличивает подверженность стены термическому напряжению и замерзанию, (2) может увеличивать вероятность образования конденсата на плитах подоконника, ленточных балках и концы балок, (3) часто приводят к возникновению тепловых мостов через элементы каркаса, и (4) обычно требует установки огнестойкого покрытия.Внутренняя изоляция не рекомендуется на стенах из кирпичных блоков, не заполненных сердцевиной, из-за повышенного риска накопления влаги внутри конструкции. Кроме того, не следует использовать внутреннюю изоляцию, если нет положительного разрыва капилляров между верхней частью фундаментной стены и системой деревянного каркаса из-за возможности накопления влаги в материалах деревянного каркаса.

Материалы, устойчивые к воздействию влаги, рекомендуется использовать в контакте с бетонными элементами фундамента.Жесткий пенопласт или аэрозольный пенополиуретан высокой плотности — два материала, рекомендуемых для изоляции внутренней стороны стен в непроветриваемых подвесных пространствах (рис. 3-8). В местах, не подверженных заражению термитами, необходимо установить жесткий пенопласт и уплотнить балку обода, чтобы предотвратить попадание влажного воздуха в элементы деревянных конструкций. Этот воздушный барьер особенно важен в холодном климате, когда не установлена ​​внешняя изоляция. Изоляцию из войлока следует использовать только на краю балки, где требуется доступ для осмотра термитов.Утеплитель из жесткого пенополистирола из вспененного или экструдированного пенополистирола следует использовать для покрытия стен и крепить механическими креплениями. Между изоляцией стены и землей должен быть оставлен трехдюймовый зазор для капилляров, а также трехдюймовый зазор для контроля термитов или сплошной термитный щит наверху стены и подоконной пластине (Marshall 2008). Скорее всего, потребуется барьер воспламенения или противопожарный барьер, в зависимости от юрисдикции кодекса и занятости.

Рисунок 3-8. Внутренняя изоляция подпольного пространства с помощью полупроницаемой изоляции из пенополистирола или XPS на внутренней стороне стены

Требование о барьере воспламенения можно отменить.Это было сделано с использованием изоляционных панелей из полиизоцианурата, облицованных фольгой, которые в некоторых юрисдикциях рассчитаны на воздействие в подвалах и подпольях. Однако обратите внимание, что неперфорированная фольговая облицовка полностью паронепроницаема, и через нее будет происходить очень незначительное высыхание. Многие юрисдикции также разрешают пенополиуритан высокой плотности покрывать обод и подоконник (но не всю стену) без дополнительной противопожарной защиты.

Модернизация внутренней изоляции сопряжена с дополнительными рисками: могут отсутствовать капиллярные разрывы ни в верхней части стены, ни между фундаментом и каркасом; в этом случае изоляция внутри будет способствовать накоплению влаги в каркасе.Между основанием и стеной может не быть разрыва капилляров, что потенциально увеличивает присутствие влаги из-за капиллярного капиллярного капилляра. Поскольку в старых домах гидроизоляционные и дренажные системы часто отсутствуют или не работают, возможно проникновение воды в большом количестве. Описание надежной стратегии модернизации внутренней изоляции см. В Ueno (2011).

Изоляция

, размещенная горизонтально по периметру пола в подвесном помещении, может обеспечить дополнительную тепловую защиту герметизированных подвесных пространств с внутренней или внешней изоляцией на стенах фундамента.Однако он также может создавать дополнительные пути для проникновения термитов. В холодном климате может потребоваться изоляция всей площади пола для предотвращения потери тепла.

В вентилируемом подвальном помещении изоляция всегда находится в потолке (рис. 3-6e и 3-9). Есть два рекомендуемых подхода к утеплению потолка подползки:

  1. Распылительная пена с закрытыми порами, наносимая для полной герметизации конструктивных элементов потолка.
  2. Жесткая пена (предпочтительно полиизоцианурат с фольгированным покрытием), нанесенная на нижнюю поверхность балок пола, все стыки герметизированы и заклеены лентой в качестве воздушного барьера, с неплотным заполнением или изоляцией из войлока для заполнения полости выше (Рисунок 3-9).Обратите внимание, что в холодном климате непроницаемая поверхность из фольги будет служить пароизоляцией на неправильной (холодной) стороне сборки.

Рисунок 3-9. Вентилируемое подвальное помещение с изоляцией на потолке

Рисунок 3-10. Невентилируемое пространство с внутренней изоляцией — разработано для устойчивости к термитам (сильно зараженные районы)

Эти системы — единственные, способные предотвратить плесень и гниение из-за условий высокой влажности, которые могут возникать в подвальных помещениях в большинстве климатических условий (Lstiburek 2008).Следует избегать непроницаемой отделки пола, такой как виниловые полы и некоторые виды керамической плитки, чтобы позволить полу высохнуть в доме.

В дополнение к более традиционному внутреннему или внешнему размещению, описанному в этом руководстве, существует несколько систем, которые включают изоляцию в конструкцию бетонных или кирпичных стен. К ним относятся (1) изоляция из жесткого пенопласта, залитая внутри бетонных стен, (2) шарики из полистирола или гранулированные изоляционные материалы, залитые в полости обычных каменных стен, (3) системы бетонных блоков с изоляционными вставками из пенопласта, (4) формованные, взаимоблокирующие блоки из жесткого пенопласта, которые служат постоянной изоляционной формой для монолитного бетона, и (5) кирпичные блоки из полистирольных шариков вместо заполнителя в бетонной смеси, что приводит к значительно более высоким показателям сопротивления теплопередаче.Однако эффективность систем, которые изолируют только часть площади стены, следует тщательно оценивать, поскольку тепловые мосты вокруг изоляции могут значительно повлиять на общую производительность.

МЕТОДЫ КОНТРОЛЯ ТЕРМИТА И ДЕРЕВА

Методы контроля проникновения термитов через жилые фонды рекомендуются на большей части территории Соединенных Штатов (см. Рисунки 3-10 и 3-11). На рис. 3-10 показан пример районов с высокой вероятностью заражения термитами; На рис. 3-11 показана сборка для районов с низким уровнем риска.Следующие рекомендации применимы, когда термиты представляют собой потенциальную проблему. Для получения дополнительной информации проконсультируйтесь с местными строительными органами и правилами.

  1. Сведите к минимуму влажность почвы вокруг фундамента, используя желоба и водосточные трубы для отвода воды с крыши, а также установив полную систему дренажа вокруг фундамента.
  2. Удалите с участка все корни, пни и обрезки древесины до, во время и после строительства, в том числе деревянные колья и опалубку с участка фундамента.
  3. Обработайте почву термитицидом на всех участках, уязвимых для термитов.
  4. Поместите соединительную балку или ряд массивных заглушек поверх всех бетонных стен фундамента, чтобы убедиться, что не осталось открытых стержней. В качестве альтернативы, заполните все стержни верхнего слоя строительным раствором и укрепите растворный шов под верхним слоем.
  5. Поместите порог на высоте не менее 8 дюймов над уровнем земли; это должно быть обработано консервантом давления, чтобы противостоять гниению. Пластина порога должна быть видна для осмотра изнутри.Поскольку термитные щиты часто повреждаются или устанавливаются недостаточно тщательно, сами по себе они не могут считаться достаточной защитой.
  6. Убедитесь, что внешний деревянный сайдинг и отделка по крайней мере на 6 дюймов выше окончательной укладки.
  7. Конструируйте подъезды и внешние плиты так, чтобы они отклонялись от стены фундамента и находились не менее чем на 2 дюйма ниже наружной сайдинга. Кроме того, подъезды и внешние плиты должны быть отделены от всех деревянных элементов 2-дюймовым зазором, видимым для осмотра, или сплошным металлическим слоем, припаянным ко всем швам.
  8. Используйте деревянные столбы, обработанные консервантом под давлением, в подвесном пространстве или поместите столбы на гидроизоляцию или на бетонный пьедестал, приподнятый на 8 дюймов над уровнем внутренней поверхности.

Рисунок 3-11. Невентилируемый бетонный блок с внешней изоляцией — разработан с учетом устойчивости к термитам (умеренно зараженные районы)

Пенопласт и изоляционные материалы из войлока не имеют пищевой ценности для термитов, но они могут обеспечить защитное покрытие и облегчить проходку туннелей. Изоляционные установки могут быть детализированы для облегчения осмотра, хотя часто за счет снижения тепловой эффективности.

В принципе, щитки от термитов обеспечивают защиту, но на них не следует полагаться как на барьер. Термитные экраны показаны в этом документе как компонент систем внешней изоляции. Их цель — вытеснить любых насекомых, пролезающих через стену, наружу, где их можно будет увидеть. По этой причине щитки от термитов должны быть сплошными, а все швы должны быть герметизированы, чтобы не допустить обхода насекомыми.

Эти опасения по поводу изоляции и ненадежности защиты от термитов привели к выводу, что обработка почвы является наиболее эффективным методом борьбы с термитами с помощью изолированного фундамента.Однако ограничения на некоторые традиционно используемые термитициды могут сделать этот вариант либо недоступным, либо вызвать замену более дорогими и, возможно, менее эффективными продуктами. Эта ситуация должна стимулировать использование методов изоляции, которые улучшают визуальный осмотр и создают эффективные барьеры для термитов. Для получения дополнительной информации о методах борьбы с термитами см. NAHB (2006).

ТЕХНИКА УПРАВЛЕНИЯ РАДОНОМ

Строительные методы минимизации инфильтрации радона в подполье подходят, если есть разумная вероятность присутствия радона.Чтобы определить это, свяжитесь с государственным радоновым персоналом.

На рис. 3-12 показан пример вентилируемого подвесного пространства; На Рис. 3-13 показан пример вентилируемого. Общие подходы к минимизации радона включают в себя (1) удаление газа из почвы, окружающего подвал, (2) герметизацию стыков, трещин и проникновений в фундаменте и (3) вентилирование подползницы с одновременным созданием непрерывного воздушного барьера на потолке подползницы.

Для вентилируемых подвальных помещений

  1. Для вентилируемых подвальных помещений обеспечьте хорошую вентиляцию наружным воздухом.Разместите вентиляционные отверстия на всех четырех сторонах подполья. Второе более надежное решение по борьбе с радоном — это контролировать и изолировать источник, как это предлагается для строительства подвала в Главе 2.
  2. Поместите 6-миллиметровый полиэтиленовый замедлитель парообразования на все открытые участки почвы. Перекрыть края внахлест на 12 дюймов и заделать мастикой. Загерметизируйте края внутренней поверхности фундаментной стены.
  3. Стройте полы над некондиционными помещениями с помощью сплошного барьера для проникновения воздуха. Настил пола из фанеры с шипом и пазом следует укладывать стыковыми соединениями, непрерывно приклеенными к балкам пола с помощью водостойкого строительного клея.Закройте все отверстия в черновом полу герметиком. Закройте большие отверстия, такие как слив в ванне, листовым металлом или другим жестким материалом и герметиками.
  4. По возможности избегайте работы с воздуховодом в подвесном пространстве, но его можно установить при условии, что все стыки надежно герметизированы мастикой, а воздуховоды хорошо изолированы.
  5. Сделайте стены подвального помещения, отделяющие прилегающее вентилируемое подвальное помещение от подвала или жилого помещения, максимально герметичными.

Для невентилируемых подвесных помещений

Уплотнение пола в подвесном пространстве

  1. Используйте сплошные трубы для отвода сточных вод в пол к дневному свету или механические ловушки, отводящие в подземные стоки.
  2. Используйте полиэтиленовую пленку толщиной не менее 6 мил (минимум) под плитой (если таковая имеется) поверх гравийного дренажного слоя. Эта пленка служит замедлителем радона и влаги, а также предотвращает проникновение бетона в основание заполнителя под плитой во время ее заливки. Прорежьте «x» в полиэтиленовой мембране, чтобы получить проходы. Поднимите язычки и заклейте их до места проникновения герметиком или лентой. Следует проявлять осторожность, чтобы случайно не пробить барьер; по возможности рассмотрите возможность использования окатанного руслового гравия.Русловой гравий обеспечивает более свободное движение почвенного газа, а также не имеет острых краев, которые могли бы проникнуть в полиэтилен. Края пленки должны быть притерты не менее 12 дюймов. Полиэтилен должен выступать за верхнюю часть фундамента или быть уплотненным к стене фундамента.
  3. Обработайте стык между стеной и перекрытием (если есть) и заделайте полиуретановым герметиком, который хорошо прилегает к бетону и является долговечным.
  4. Избегайте создания желобов по периметру плиты, которые обеспечивают прямой выход в почву под плитой.
  5. Минимизируйте растрескивание при усадке, сохраняя содержание воды в бетоне на минимально возможном уровне. При необходимости используйте пластификаторы, а не воду, чтобы улучшить удобоукладываемость.
  6. Укрепите плиту (если имеется) проволочной сеткой или волокнами, чтобы уменьшить растрескивание при усадке, особенно возле внутреннего угла плит L-образной формы.
  7. Если используются, обработайте контрольные швы с углублением на 1/2 дюйма и полностью заполните это углубление полиуретановым или аналогичным герметиком.
  8. Сведите к минимуму количество заливок, чтобы стыки не замерзли.Начните отверждение бетона сразу после заливки в соответствии с рекомендациями Американского института бетона (1980; 1983). При температуре 70 ° F требуется не менее трех дней, а при более низких температурах — больше. Используйте непроницаемый покровный лист или влажную мешковину для облегчения отверждения. Национальная ассоциация производителей готовых смесей предлагает также использовать пигментированный отвердитель.
  9. Создайте зазор шириной не менее 1/2 дюйма вокруг всех вводов водопровода и инженерных сетей через плиту на глубину не менее 1/2 дюйма.Заполните полиуретаном или аналогичным герметиком.
  10. Не устанавливайте отстойники в местах для прогулок в зонах, подверженных воздействию радона, без крайней необходимости. Если используется, накройте поддон герметичной крышкой и выпустите наружу. Используйте погружные насосы.
  11. Установите механические ловушки на всех необходимых сточных трубах пола, выходящих через гравий под плитой.
  12. Разместите отводы конденсата HVAC таким образом, чтобы они стекали на дневной свет за пределы ограждающей конструкции или в герметичные отстойники в подвале.Отводы конденсата, которые соединяются с сухими колодцами или другой почвой, могут стать прямыми путями для почвенного газа и могут быть основным источником поступления радона. По крайней мере, убедитесь, что эти отводы конденсата должным образом закрыты, чтобы всегда был заполнен полный диаметр хотя бы части колена.

Герметизация стен пространства для ползания

  1. Укрепите стены и опоры, чтобы свести к минимуму растрескивание при усадке и растрескивание из-за неравномерной осадки.
  2. Чтобы замедлить движение радона через пустотные стены из кирпичной кладки, верхний и нижний ряды пустотных стен должны быть сплошными блоками или сплошными засыпками.Если верхняя сторона нижнего ряда ниже уровня плиты, следует заполнить ряд блока на пересечении низа плиты. При установке кирпичного шпона или другого уступа из каменной кладки, ряд непосредственно под этим выступом также должен быть сплошным блоком.
  3. Очистите и заделайте внешнюю поверхность бетонных стен ниже уровня земли, контактирующих с почвой. Установите дренажные доски, чтобы обеспечить воздуховодный канал для почвенного газа, который достигнет поверхности за пределами стены, а не будет втягиваться через стену.
  4. Установите сплошную гидроизоляционную или гидроизоляционную мембрану снаружи стены. Полиэтилен толщиной 6 мил, обернутый внахлест, заклеенный лентой и размещенный на внешней стороне поверхности стены подполья, будет препятствовать проникновению радона через трещины в стене.
  5. Герметизируйте проходы в стене вокруг сантехнических и других инженерных и служебных отверстий полиуретаном или аналогичным герметиком. Как снаружи, так и изнутри бетонные стены должны быть загерметизированы в местах проникновения.
  6. Установите герметичные уплотнения на дверях и других проемах между невентилируемым и прилегающим вентилируемым подвесным пространством.
  7. Уплотнение вокруг воздуховодов, водопровода и других служебных соединений между невентилируемым и вентилируемым пространством для ползания.
  8. Не размещайте воздуховоды подачи или возврата воздуха под плитой или в основании.

Улавливание почвенного газа

Наиболее эффективным способом ограничения поступления радона и других газов в почву является использование активной разгерметизации почвы (ASD). ASD работает за счет снижения давления воздуха в почве по сравнению с внутренним. Избегать проемов фундамента в почву или герметизировать эти проемы, а также ограничивать источники разгерметизации помещений вспомогательными системами ASD.Иногда используется система пассивной разгерметизации грунта (PSD, без вентилятора). Если тестирование на содержание радона после заселения показывает, что желательно дальнейшее снижение содержания радона, в вентиляционную трубу можно установить вентилятор (см. Рисунок 3-13).

Подземная (или подмембранная) разгерметизация оказалась эффективным методом снижения концентрации радона до приемлемых уровней даже в домах с чрезвычайно высокими концентрациями (Dudney 1988). Этот метод снижает давление вокруг оболочки фундамента, в результате чего почвенный газ направляется в систему сбора, избегая внутренних пространств и выбрасывая наружу.

В фундаменте с хорошим подземным дренажем уже есть система сбора. Подложенный (или подмембранный) гравийный дренажный слой можно использовать для сбора почвенного газа. Он должен быть не менее 4 дюймов в толщину и из чистого заполнителя не менее 1/2 дюйма в диаметре. Гравий должен быть покрыт слоем полиэтиленового радона толщиной 6 мил и замедлителем влажности.

Вентиляционная труба из ПВХ диаметром 3 или 4 дюйма должна быть проложена от слоя гравия через кондиционированную часть здания и через самую высокую плоскость крыши.Труба должна заканчиваться под плитой или мембраной тройником. Чтобы предотвратить засорение трубы гравием, к ножкам тройника можно прикрепить отрезки перфорированного дренажа длиной десять футов и загерметизировать его концы. В качестве альтернативы вентиляционная труба может быть подключена к дренажной системе по периметру, если эта система не подключена к внешней среде. Горизонтальные вентиляционные трубы могут соединять вентиляционную трубу через стены ниже уровня земли с проницаемыми участками под прилегающими плитами или мембранами.Одной вентиляционной трубы достаточно для большинства домов с площадью пола менее 2500 квадратных футов, которая также включает проницаемый подслой. Вентиляционная труба выводится на крышу через сантехнические желоба, внутренние стены или туалеты.

Система PSD требует, чтобы пол был почти воздухонепроницаемым, чтобы не возникало короткого замыкания усилий по сбору из-за втягивания чрезмерного количества воздуха в помещении через воздушный барьер в систему. Трещины, проникновения и контрольные швы должны быть заделаны. Крышки отстойников должны быть спроектированы и установлены герметично.Следует избегать сточных вод в полу, которые выходят на гравий под плитой, но при их использовании они должны быть оборудованы механической ловушкой, способной обеспечить герметичное уплотнение.

Еще одно потенциальное короткое замыкание может произойти, если в дренажной системе имеется самотечный сброс в подземный водосток. Эта напорная линия может нуждаться в механическом уплотнении. Линия для отвода подземного дренажа, если она не входит в герметичный отстойник, должна быть построена с прочно приклеенной дренажной трубой, которая выходит на дневной свет.Напорная труба должна располагаться с противоположной стороны от этого дренажного слива.

В то время как правильно установленная система пассивной разгерметизации почвы (PSD) может снизить концентрацию радона внутри помещений примерно на 50%, системы активной разгерметизации почвы (ASD) могут снизить концентрацию радона внутри помещений на 99%. Система PSD более ограничена с точки зрения вариантов прокладки вентиляционных труб и менее прощает дефекты конструкции, чем системы ASD. Кроме того, в новом строительстве можно использовать небольшие вентиляторы ASD (25-40 Вт) с минимальным энергетическим воздействием.В активных системах используются бесшумные прямые канальные вентиляторы для забора газа из почвы. Вентилятор должен располагаться снаружи, а в идеале — над кондиционируемым пространством, чтобы любые утечки воздуха со стороны положительного давления вентилятора или вентиляционной трубы не попадали в жилое пространство. Вентилятор должен быть ориентирован так, чтобы в корпусе вентилятора не скапливался конденсат. Стек ASD должен быть проложен через здание, пристроенный гараж или навес и выступать на двенадцать дюймов над крышей. Его также можно провести через ленточную балку и вверх по внешней стороне стены до точки, достаточно высокой, чтобы не было опасности перенаправления выхлопных газов в здание через вентиляционные отверстия чердака или другие проходы.Поскольку системы PSD полагаются на естественную плавучесть для работы, стек PSD должен быть проложен через кондиционированную часть дома.

Вентилятор, способный поддерживать всасывание воды в 0,2 дюйма в условиях установки, подходит для обслуживания подсобных систем сбора в большинстве домов (Labs 1988). Это часто достигается с помощью центробежного вентилятора мощностью 0,03 л.с. (25 Вт), 160 куб. Футов в минуту (максимальная мощность), способного втягивать до 1 дюйма воды перед остановкой. В полевых условиях на глубине 0,2 дюйма воды такой вентилятор работает со скоростью около 80 кубических футов в минуту.

Системы

PSD требуют почти идеальной герметизации проемов в почве, поскольку система использует 3- или 4-дюймовую трубу для более эффективной вентиляции, чем весь дом. Герметизация отверстий в почве менее критична для борьбы с радоном с помощью систем ASD, хотя это очень желательно для ограничения потерь энергии, связанных с утечкой кондиционированного воздуха в помещении в подстилку с пониженным давлением, а оттуда на улицу. Срок службы вентиляторов ASD составляет в среднем около десяти лет, при этом ожидаемый срок службы увеличивается, если вентилятор защищен от непогоды.Поскольку система ASD может быть отключена жильцами, сервисные выключатели обычно располагаются в зонах с ограниченным доступом.

Рисунок 3-12. Методы борьбы с радоном в обходном пространстве

Авторские права © 2013 Риджентс Миннесотского университета, Центр исследований в области устойчивого развития. Все права защищены.
Этот веб-сайт был разработан совместно Университетом Миннесоты и Национальной лабораторией Ок-Ридж.

Суперизолированный фундамент | Журнал Concrete Construction

Центр GridSTAR

Университета Пенсильвании, расположенный на Военно-морской верфи в Филадельфии, представляет собой новаторский новый кампус, предлагающий обучение строительной рабочей силы, ориентированное на интеллектуальные сети, тестирование производительности зданий и исследования в области управления энергопотреблением.Центр, состоящий из демонстрационного дома с нулевым энергопотреблением и учебного центра по солнечной энергии, демонстрирует некоторые из самых эффективных на сегодняшний день энергоэффективных строительных продуктов. Чтобы добиться желаемых результатов для проекта, Пенсильванский университет стал партнером нескольких ведущих производителей строительной продукции, ориентированных на устойчивое развитие.

Чтобы создать устойчивую и энергоэффективную основу для демонстрационного дома GridSTAR Center net zero, Penn State обратился за помощью в компанию North American Specialty Products (NASP, ранее CertainTeed Corporation’s Pipe and Foundations Group).NASP нанял филадельфийского архитектора Стивена Гнау для проектирования хорошо изолированного фундамента, который, наряду с одинаково хорошо изолированными надземными стенами, крышей и сборками чердачного потолка, поможет удерживать тепло и охлажденный воздух внутри дома во время любых событий интеллектуальной сети или перебои в подаче электроэнергии.

Проект

Gnau предусматривал тепловую изоляцию модифицированного пола и стен фундамента подползницы от окружающей почвы с внутренней и внешней изоляцией. Комфорт в интерьере повышается за счет тепловой массы бетонного фундамента и использования от 2 до 3 дюймов крупной гравийной засыпки.

Особое внимание в проекте было уделено эвакуации подземных вод и радона. Поскольку дома с нулевым потреблением энергии обычно имеют воздухонепроницаемую конструкцию, чтобы предотвратить утечки воздуха, расходующие энергию, они могут быть подвержены плохому качеству воздуха в помещении и проблемам с влажностью, если влажность фундамента не контролируется эффективно и не обеспечивается надлежащая вентиляция. Многофункциональная система дренажа и гидроизоляции фундамента, в том числе отстойник и вентиляция радона, имеет решающее значение для долговечности здания и качества воздуха.

Фундамент по индивидуальному проекту

Генеральный подрядчик проекта, Commercial Line & Electric Inc., Глен Миллс, штат Пенсильвания, нанял трех подрядчиков для установки высокоэффективного фундамента по индивидуальному проекту из-за различных требуемых навыков монтажа. Компания QCI Inc. из Астона, штат Пенсильвания, получила контракт на формирование и заливку фундамента, а компания Old Philadelphia Associates Inc. из Филадельфии была нанята для гидроизоляции. Завершила команду компания West Chester Insulation Inc. из Уэст-Честера, штат Пенсильвания., нанятый для установки изоляции из аэрозольной пены с закрытыми порами (SPF) по всему подъезду.

QCI выкопал от 3 до 4 футов для основания фундамента и установил микросваи и дренаж Form-A. Form-A-Drain представляет собой несъемную бетонную опору из ПВХ с прорезями, которая также служит дренажной системой фундамента и компонентом системы уменьшения содержания радона по периметру субплит. Так как он остается на месте после заливки фундамента, он избавляет подрядчиков от лишних трудозатрат на демонтаж традиционных деревянных или стальных форм и установку дренажной плитки и системы отвода радона.Команда QCI использовала стальные D-образные штифты, шурупы для гипсокартона и деревянные стойки для выравнивания системы и добавила стальные втулки Schedule 40 для переходных трубопроводов. Затем возводят фундаментные стены.

Работая с Form-A-Drain впервые, подрядчик был впечатлен тем, насколько легко он был установлен и с сохраненными шагами. «Я считаю, что это хорошая система, особенно для таких приложений», — говорит Джейсон Блоуз, менеджер проекта QCI. «Он удобен в использовании и с ним легко работать. Кроме того, нам не пришлось снимать формы, что сэкономило рабочую силу и сократило количество отходов на стройплощадке.И нам не пришлось покупать материал для водостока по периметру и снова класть ткань и камень ».

Old Philadelphia Associates установила 2 дюйма ThermaEZE в фундаментных стенах для дополнительного термического сопротивления R-10. ThermaEZE состоит из изоляционных панелей из пенополистирола, которые устанавливаются в стены перед заливкой бетона и удерживаются на месте сетчатой ​​структурой, которая переплетается по всему бетону.

Герметизация воды, перекрытие трещин

Подрядчик также установил гидроизоляционную мембрану с воздушным зазором поверх гравийной засыпки перед заливкой бетона, чтобы обеспечить влагозащитный барьер для защиты изоляции SPF.В качестве материала использовался платон NASP, который также крепился к внешней стороне фундаментных стен. Этот материал представляет собой полиэтилен высокой плотности толщиной 24 мил с ямочками, который обеспечивает контроль влажности стен и под плитами для всех типов фундаментов и изолирует жилые помещения от полов, которые в противном случае могут стать влажными. Продукт герметизирует воду и перекрывает трещины в заливном бетоне, конструкциях ICF и стенах из кирпичных блоков.

Наконец, бригада установила порог наверху внешних стен фундамента для дополнительной защиты от протечек.Накладки на пороги NASP EnergyFlash остаются на месте, обеспечивая надежную изоляцию во время и после строительства.

Как и QCI, Old Philadelphia Associates впервые работала с этими базовыми продуктами и была довольна рекомендациями, полученными командой от службы поддержки NASP. «Это была базовая инструкция, но он мне очень помог», — говорит Джим Хелвестон, менеджер проекта Old Philadelphia Associates. «Я раньше устанавливал подобные материалы, но никогда не использовал эти конкретные продукты.На самом деле они были довольно просты в установке и поэтому должны быть экономичным вариантом для большинства конечных пользователей ».

West Chester Insulation нанесла от 2 до 2-1 / 2 дюймов SPF-изоляции с закрытыми ячейками вдоль пола и стен подпольного пространства, добавив диапазон теплового сопротивления от R-13 до R-16,3.

Работа прошла гладко, и GridSTAR Center был открыт для публики в октябре прошлого года и получил восторженные отзывы. Являясь частью Центра устойчивого развития Университета Пенсильвании на факультете архитектурной инженерии школы, кампус предлагает различные кредитные и некредитные курсы для студентов колледжей, а также специалистов в области строительства, архитектуры и инженерии.

Марк ДаСильва (Mark DaSilva) — менеджер по разработке и маркетингу специализированных продуктов в Северной Америке.

Элемент изоляции фундамента на плотной основе, сборные комплекты форм ICF

Почвенные условия некоторых строительных площадок не подходят для фундаментного фундамента с утолщенным краем фундамента, если предварительно не начать обширную и дорогостоящую рекультивацию почвы. Выбор плиты-плота в таких условиях может оказаться гораздо более дешевым вариантом.

Плотная плита — это неглубокий фундамент, защищенный от замерзания, или плита на грунте, не имеющая стандартной опоры с утолщенными краями, на которую опирается вся нагрузка дома. Он разработан для равномерного распределения нагрузки по всей поверхности здания.

Строительные площадки с плохими почвенными условиями (нарушенная почва, обширные почвы, низкая несущая способность, высокий уровень грунтовых вод и т. Д.) Могут потребовать значительных инвестиций в дренаж, замену грунта и уплотнение, прежде чем инженер одобрит проект.

На фотографиях ниже показаны меры по дренажу, которые потребовались для поддержки грунтового пола с утолщенным краем, основанного на плите на площадке с высоким уровнем грунтовых вод. Изображения любезно предоставлены Янни Милоном.

Укладка дренажа для плиты на уклоне с высоким уровнем грунтовых вод Укладка дренажа с гравием и геотекстилем под плиту на горизонтальном основании Укладка гравия для дренажа плиты на уклоне с высоким уровнем грунтовых вод

Плита на плоту действует как снегоступы, поскольку равномерно распределяет вес по поверхности земли. большая поверхность.По этой причине они часто могут быть построены на почве, которая не может поддерживать другие типы конструкций.

Типичные требования к несущей способности почвы для утолщенного краевого фундамента составляют 150 кПа (3000 фунтов на квадратный фут), при этом плита плота может лежать на почве с одной третью этой несущей способности или даже меньше с дополнительными инженерными мерами. Часто это будет наиболее доступным (и, возможно, единственным) вариантом строительства на участках с особенно неподходящими почвенными условиями. Даже с домом среднего размера такие затраты могут иногда достигать десятков тысяч долларов и, возможно, останавливать строительный проект на его пути.

Также исключается риск столкнуться с плохим качеством почвы на глубине традиционного фундамента, поэтому плита на плоту на любом участке может избежать возможных дорогостоящих сюрпризов после начала земляных работ. Благодаря более прочной конструкции он менее подвержен движению и растрескиванию, чем здания, стоящие на опорах.
Вы можете найти или не добиться успеха в поиске инженера, имеющего опыт проектирования плит перекрытия, или же вы можете поискать компании, которые специализируются на изготовленных на заказ сборных плитах ICF на наборах опалубки.

Земляные работы и укладка плит

  • Удалите примерно 6 дюймов органического материала на расстоянии двух футов от места, где будет след здания.
  • Постройте подпорную стену, если необходимо, чтобы создать ровную поверхность здания.
  • Если есть большие ямы в местах удаления корней деревьев, их можно заполнить заполнителем и утрамбовать.
  • Если площадка вообще имеет уклон, выровняйте ее с помощью уплотняемой насыпи 0–2,5 дюйма, обязательно уплотняя ее пластинчатым пакером с требуемыми интервалами.
  • Положите 6 дюймов ровного чистого камня на расстоянии двух футов от периметра здания.
  • Установите штифты там, где будут углы здания.
  • Установить все водопроводные трубы, электрические трубопроводы и трубки для отвода радонового газа.

Примечание. Мы настоятельно рекомендуем поискать сантехника, имеющего опыт строительства плит на грунте. Поскольку все сантехнические работы будут залиты бетоном, важны точность расположения, высота слива и правильный уклон слива.

  • Уложить изоляционные формы для плит перекрытия, внутреннюю изоляцию пола и арматурную сетку в соответствии с техническими условиями.
  • Если вы устанавливаете внутрипольное лучистое отопление, убедитесь, что инженеры разработали его так, чтобы правильно расположить систему подачи тепла, чтобы не повлиять на структурную целостность плиты.

Установка опорной плиты

Сначала укладываются сформированные кромочные элементы, углы должны быть скруглены и закреплены на их месте.Затем следует установка внутренней теплоизоляции, радоновой газо-паровой мембраны, арматурной сетки и любых систем отопления, и все это выполняется в соответствии с инженерными планами и инструкциями по строительству. Все изображения плит любезно предоставлены Legalett.

Уплотнение гравия под плотным фундаментом Изоляционные системы формовки плит Угловая деталь для изолированной системы формовки плит Деталь юбки для неглубоких фундаментных плит с защитой от замерзания Арматурная деталь для плиточного фундамента

Плиточные перекрытия часто нагреваются, что обеспечивает очень комфортное и равномерное распределение тепла по всему дому.Большой объем нагретого бетона внутри ограждающей конструкции здания будет действовать как тепловая батарея, накапливая и выделяя тепло, что помогает сбалансировать температуру как летом, так и зимой.

Такое количество нагретой тепловой массы внутри ограждающей конструкции здания также обеспечивает тепловую безопасность в случае отключения электроэнергии, медленно выделяя тепло в течение нескольких дней. Плиты на плотах можно нагревать с помощью гидравлических систем (жидкости) или трубок с воздушным обогревом, как показано ниже.

Лучшая конструкция подвала:

Традиционные подвалы начинаются с заливного фундамента, затем фундаментной стены и, наконец, перекрытия из плит.Изоляция опор выполняется редко, и в зависимости от того, как изолированы стены, в результате может образоваться тепловой мост между опорой и стенами или полом. Это приводит к нежелательным потерям тепла, а также к большему риску образования конденсата на более холодных частях бетона.

В качестве альтернативы, подвал можно построить, начав с изолированной плиты-плота, за которой следует фундаментная стена ICF. Это обеспечивает непрерывный слой изоляции, отделяющий бетон от земли. В результате получается очень удобный и энергоэффективный подвал без тепловых мостиков и сниженный риск образования плесени.

Макет подвала с плитой-плотом и стеной ICF любезно предоставлен Treehugger. Макет плиты-плота с защитой от радона / пароизоляции между слоями пенополистирола © Legalett

Подробнее о изолированных опалубках фундаментов

для перекрытий на одном уровне можно узнать здесь , из Руководства по экологическому строительству EcoHome

Подготовка домов, пострадавших от наводнения, к зиме — Публикации

Слои льда могут образовываться в земле, когда линия промерзания проходит около уровня грунтовых вод, вызывая подъем почвы.Это называется морозным пучением. Он может поднимать фундамент и цокольный этаж и стены, повреждая их и другие части конструкции. Морозное пучение более вероятно, если уровень грунтовых вод высокий и почва представляет собой глину или ил, а не хорошо дренированный гравий.

Кроме того, очень влажные почвы расширяются при замерзании воды в почве. Это может привести к сдвигу стен подвала вбок, чтобы они взломали и повредили конструкцию дома. Опять же, это более вероятно в почвах с низкой пористостью, таких как глина или ил, и может быть более серьезной проблемой для стен из бетонных блоков, чем для стен из литого бетона.

Изоляция и тепло

Изолируйте потолок подвала и поместите изоляцию на внешнюю сторону стен подвала, чтобы снизить вероятность образования морозного пучения. Полистирол или другой утеплитель с закрытыми порами хорошо подходит для внешней изоляции.

Грунт не обеспечивает достаточной теплоизоляции, поэтому очень важно установить теплоизоляцию снаружи дома рядом со стеной подвала. Снег — отличный утеплитель, поэтому еще один вариант — укладывать его возле дома.

Однако одной только изоляции может быть недостаточно для предотвращения морозного пучения в неотапливаемом доме, поэтому добавляйте тепло, чтобы поддерживать температуру в подвале выше нуля.Чем больше утеплителя вы используете, тем меньше тепла вам понадобится. (Примечание: изоляция внутренних стен подвала снижает поток тепла к стенам и может увеличить вероятность образования морозного пучения под фундаментом.)

Вентилируемый обогреватель, отводящий пары влаги и другие продукты сгорания на улицу, является хорошим источником тепла. Невентилируемый обогреватель будет производить около ½ галлона воды на каждый галлон сожженного топлива, что выделяет большое количество влаги в обогреваемое пространство. В теплой влажной среде может развиться плесень.

Окись углерода является проблемой для обогревателей внутреннего сгорания, поэтому поместите детектор окиси углерода в отапливаемое пространство.

Также поместите замедлитель парообразования (полиэтиленовый лист) на теплую сторону изоляции внутри дома, чтобы ограничить количество влаги, которая может проходить через изоляцию и конденсироваться на холодной поверхности за изоляцией. Эта конденсация может привести к росту плесени и повреждению конструкции.

Справочник по проектированию фундаментов зданий: СШАМинистерство энергетики и Министерство торговли США

Фото Карла Педерсена, NDSU

Руководство по бытовой энергетике, Методы и советы: Информационный центр по энергетике Министерства торговли Миннесоты

Снижение влажности почвы

Один из способов снизить вероятность морозного пучения — убедиться, что в почве мало влаги. Для этого нанесите гранулированный наполнитель вдоль стен и фундамента подвала, а также под цокольным полом, затем используйте дренажную плитку и насос для удаления воды из гранулированного материала.

Удалите влагу из дома

Пары влаги из влажной почвы будут продолжать проходить через стены и пол подвала, создавая влажную среду, поэтому обеспечьте воздухообмен, например, открыв окна подвала на короткое время, чтобы удалить влагу. Многие осушители не будут работать должным образом при температурах, близких к нулю, поэтому их использование может оказаться невозможным.

Защита водопроводных труб и канализации

Мороз может заморозить воду в водопроводах под полом или у стены подвала, что приведет к разрыву труб.Вода также может замерзнуть в водопроводах в неотапливаемом подвале, поэтому поддерживайте температуру в подвале выше нуля.

Другой вариант — перекрыть воду на улице и слить воду из водопровода или добавить в водопровод антифриз для водопровода.

Также заполните водоотделители канализационных стоков, U-образные трубы, препятствующие попаданию канализационного газа в дом, антифризом RV, чтобы вода не замерзла и не повредила трубу.

Наружная обшивка

Прикрепите обшивку ко всем углам дома, если внешняя обшивка была удалена, или используйте другой метод обеспечения боковых распорок.Внешняя обшивка важна, потому что она обеспечивает структурную прочность конструкции. Шпильки обеспечивают вертикальную, но не поперечную прочность.

Не позволять снегу

Не допускать таяния снега внутри дома. Каждые 10 дюймов снега могут вместить около дюйма воды. Оберните дом полиэтиленом, чтобы не допустить попадания снега, и удалите весь снег, попавший в дом.

(май 2018 г.)

Изоляционных фундаментов в стране землетрясения

Энергетический кодекс Калифорнии (известный как Раздел 24) долгое время был одним из самых строгих в стране.Этот факт помогает объяснить, почему потребление электроэнергии на душу населения в штате остается неизменным в течение 40 лет, поскольку остальная часть страны потребляет больше энергии на человека почти каждый год с 1975 года.

Учитывая мягкий климат в наиболее густонаселенных регионах штата, Нормативные органы Калифорнии, как правило, сосредотачиваются на элементах энергопотребления, устанавливая жесткие стандарты для освещения и эффективности HVAC, но придерживаясь относительно скромных требований к воздухонепроницаемости и изоляции оболочки.

Но сейчас все меняется. В 2008 году тогдашний губернатор Арнольд Шварценеггер поставил Калифорнию на путь к нулевому энергопотреблению в новых домах к 2020 году. В ответ на эту проблему издание Title 24 2013 года повысило требуемые значения R для стен и крыш по всему штату, а в 2016 году редакция, вступившая в силу 1 января, продолжала ужесточать требования.

По мере того, как кодекс штата становится более строгим, разрыв между домами, совместимыми с кодексами, и протоколами, не относящимися к кодексу, такими как стандарт пассивного дома, сокращается.Иными словами, титул 24 штата Калифорния догоняет пассивный дом, но его еще нет.

Для публикации 2016 года под названием «Энергетическое будущее Калифорнии» дизайнер пассивного дома Грэм Ирвин смоделировал совместимые с кодексами дома (используя версию Title 24 2013 года) в сравнении с проектами, соответствующими требованиям пассивного дома, в каждой из 16 климатических зон Калифорнии, чтобы сосредоточиться на ключевых различиях между двумя подходами. Ирвин добавил меры пассивного дома к проектам, совместимым с кодом, одну за другой, чтобы изолировать дополнительный эффект.

«Снижение утечки воздуха, от предположения кода 5 ACH50 до максимума пассивного дома 0,6 ACH50, было наиболее эффективной первой мерой в любом климате», — сообщил Ирвин. Интересно, однако, что изоляция фундамента также имела большое значение. «Еще одним чрезвычайно эффективным усовершенствованием, повсеместно стало изоляция плиты», — написал Ирвин. «В некоторых случаях улучшение теплоизоляции плит превышало герметичность».

Дэн Хруби На этом рендере, выполненном калифорнийским архитектором Дэном Хруби, показана деталь утепленной опоры для проекта застройщика Тайсона Дирксена в районе Русского холма в Сан-Франциско.Сильно армированная опора поддерживает три этажа бетонных и стальных конструкций, установленных под существующим деревянным каркасным домом, который был поднят на один этаж, чтобы создать четырехквартирное многоквартирное здание. Двухдюймовая изоляция из пенополистирола изолирует нижние квартиры здания от окружающей земли.

Но изоляция фундамента в Калифорнии поднимает вопрос: как насчет сейсмического анализа? «Энергетическое будущее Калифорнии» описывает десятки проектов пассивных домов в штате, и по крайней мере в двух случаях сейсмические проблемы повлияли на процесс проектирования, когда дело дошло до изоляции фундаментов.В рамках амбициозного проекта модернизации в Сан-Франциско инженер Эреван О’Нил (onedesignsf.com) дал застройщику Тайсону Дирксену разрешение на изоляцию вокруг массивного фундамента, похороненного на склоне холма. Но для пристройки в Лос-Анджелесе архитектор Сильвия Уоллис (которая также является домовладельцем) решила отделить кондиционируемое пространство от земли, обрамив систему изолированного пола наверху не кондиционированного пространства для подполья, установленного на фундаменте из опорных балок. вместо того, чтобы бросить вызов своему инженеру с оценкой незнакомой конструкции изолированного фундамента.

ПОДЪЕМНИК И ИЗОЛЯЦИЯ

С его ограниченными доступными землями и населением богатых техническими предпринимателями, Сан-Франциско имеет одни из самых дорогих жилых помещений в стране. Для инвестиционного проекта на этом рынке девелопер Тайсон Дирксен (evolve-us.com) пошел на все, чтобы втиснуть больше жилого пространства в тесную зону, и добавил роскошные штрихи (в том числе гаражный лифт на три машины). Но он также воспользовался возможностью, чтобы изучить границу энергоэффективности, настаивая на конверте, совместимом с пассивным домом.

Дэн Хруби / Visualize It Built В витрине многоквартирного дома, который все еще строится девелопером из Сан-Франциско Тайсоном Дирксеном, будут добавлены три этажа из бетона и стали под существующий исторический дом с деревянным каркасом. Инженеры исправили изоляцию из пенополистирола вокруг усиленных опор новой нижней части.

«Там происходит много интересных вещей, — говорит архитектор проекта Дэн Хруби (visualizeitbuilt.com). «Мы там на склоне холма. А у нас пять этажей, так что половина из них, по сути, находится под землей, и открыт только один конец.У нас есть вид на мост Золотые Ворота прямо с западной стороны, с балконами на этом конце. Но вместе с видом идет прямое полуденное солнце.

Кодекс

требовал, чтобы новые нижние этажи были из негорючего бетона и стали типа I, а инженерный анализ привел к структурным требованиям для массивных железобетонных опор и бетонных стен. Консультант по пассивному дому Кэти Холлбахер (которая также является инженером-строителем) порекомендовала изолировать бетонные элементы с помощью 2-дюймового внешнего пенополистирола.

Пена вокруг фундамента может оказаться сложной задачей в сейсмической зоне. По словам Холлбахера, в предыдущем проекте пассивного дома другой инженер отказался даже рассматривать возможность установки изоляции под утолщенный край структурной плиты — даже для одноэтажного дома на ровной площадке. «Некоторым людям просто нравится иметь быстрый повод сказать« нет », — говорит Холлбахер, — потому что они к этому не привыкли».

В этом случае Hollbacher отказался от этого вопроса, несмотря на то, что неизолированный край плиты составлял 4% или 5% расчетной тепловой нагрузки одноэтажного дома.«Вы должны выбрать свои сражения», — говорит она. Но что касается проекта Тайсона Дирксена, она говорит: «Ереван просто сказал:« Хорошо, я понимаю, к чему вы стремитесь, и мы заставим это работать »».

Сама Холлбахер настаивает на изоляции фундаментов в климат Калифорнии. «Инженерная часть не должна вызывать затруднений», — говорит она. «Я думаю, что большая проблема — это конструктивность — просто поэтапная установка изоляции, чтобы грязь не попадала внутрь … это то, чего люди раньше не делали, и это утомительно.Это выполнимо, но больно. А экономия энергии небольшая, поэтому аргумент в пользу рентабельности серьезен. На самом деле, вы, вероятно, экономите всего несколько долларов в год ».

Тем не менее, говорит Холлбахер, «Что мне нравится в этом образе мышления пассивного дома, так это, эй, просто сделайте конверт с самого начала. Он будет существовать в течение длительного времени, и дополнительные затраты на выполнение некоторых из этих деталей незначительны в масштабе проекта. Не тратьте деньги даже на запуск всего этого программного обеспечения и расчет рентабельности — вместо этого потратьте деньги на снижение риска.Просто сделай это.»

ВЫХОДИ С ЗЕМЛИ

Архитектор Сильвия Уоллис выбрала другой путь для своего проекта: глубокая энергетическая модернизация с большой пристройкой к существующему дому на склоне холма Лос-Анджелеса. Уоллис, которая работает в архитектурной фирме Harley Ellis Devereaux (harleyellisdevereaux.com), узнала о пассивном доме в 2009 году, когда планировала реконструкцию, и в итоге прошла девятидневный курс консультантов организации. Она применила принципы пассивного дома в своем собственном проекте (на завершение которого потребовались годы).

«Важно понимать, что этот проект уже прошел проверку плана, прежде чем он был изменен для пассивного дома», — сказал Уоллис в электронном письме в JLC. «Если бы мы начали с чистого листа, были бы возможны более простые варианты. Но условия на участке включают сейсмические условия Калифорнии, умеренно крутой склон, обширный глинистый грунт над коренной породой и плоскости напластования, несколько параллельные склону, вызывающие тенденцию к ползучести. В результате потребовались сваи средней глубины на нижней стороне пристройки с раздвинутыми опорами, лежащими на скале на высокой стороне дома.Все опирается на скалу, а не на рыхлую почву над ней ».

Сильвия Уоллис Рабочие Фонда установили арматурные каркасы для глубоких несущих опор на склоне холма для высокоэффективного сооружения Сильвии Уоллис. Сильвия Уоллис Рабочий выкапывает траншею для опорных балок, которые будут поддерживать стену ствола для безусловного подполья под пристройкой Сильвии Уоллис.

«В отчете о грунтах содержится призыв к комбинации пассивного давления грунта и трения со стороны свай и опор для противодействия боковым силам (в первую очередь сейсмическим)», — продолжил Уоллис.«Таким образом, соединение фундамента с коренной породой было значительным. Все котлованы в фундаменте необходимо было вручную очистить от всего рыхлого материала, чтобы сохранить это соединение ».

«Стандартное решение для пассивного дома — это цоколь или перекрытие без вентиляции, каждый из которых полностью окружен изоляцией», — сказал Уоллис. «Вы можете видеть, как сложно было бы попытаться изолировать их, даже если бы инженер-строитель разрешил это».

«Вместо этого, — заключил Уоллис, — изоляцию переместили на нижнюю часть фальшпола.Таким образом, трудной деталью является соединение пола со стеной ствола (невозможно обеспечить непрерывную изоляцию и трудно сделать воздушный барьер). Но в благоприятном климате Лос-Анджелеса тепловой мост невелик и может быть рассчитан в модели без ужасных штрафов ».

Фундаментные стены | WBDG — Руководство по проектированию всего здания

Введение

Фундаментная стена здания может быть монолитной бетонной подпорной стеной или стеной подвала или несущей стеной в комплекте с несущими пилястрами.Используемые материалы могут быть бетонными или армированными. Система фундаментных стен может включать в себя систему удержания грунта из солдатских свай и деревянных утеплителей или торкретированных камней, требующих рассмотрения гидроизоляции, применяемой к системе удержания грунта. Для большинства участков фундаментной стены отвод воды и контроль над ней имеют первостепенное значение. Однако меры по удалению воды вокруг фундаментных стен ниже уровня грунтовых вод могут быть непрактичными и дорогостоящими в долгосрочной перспективе, и стратегия гидроизоляции становится критически важной.Необходимо учитывать тепловую нагрузку в верхних частях фундаментной стены.

Читателям рекомендуется получить консультацию специалиста при проектировании систем, которые находятся ниже уровня грунтовых вод или закрывают особо уязвимые помещения. При работе с полевыми условиями также может потребоваться совет специалиста.

Описание

В этом разделе дается конкретное описание материалов и систем, общих для стен фундамента и систем ограждающих конструкций зданий ниже уровня земли в целом.Описания и рекомендации представлены по следующим темам:

  • Дренажные материалы
  • Ткани для фильтров
  • Гидроизоляция
  • Гидроизоляционные мембраны
  • Защитная доска
  • Изоляционные материалы
  • Гидрошпонки
  • Дренажная труба

Дренажные материалы

Дренажные материалы для нижних ограждений включают:

  • Слои дренажного агрегата
  • Сборные синтетические дренажные слои

Агрегатные дренажные слои — Агрегатные дренажные слои включают гранулированный щебень или крупнозернистый песок.Гранулированный мелкий гравий относится к камню естественной округлости диаметром от 3/16 до 3/8 дюйма. Подходит крупный песок размером от № 30 до № 8. Сортировка песка по зазорам обеспечивает однородный размер зерен, что увеличивает скорость дренажного потока.

Сборные синтетические дренажные слои — эти изделия состоят из комбинации пластиковых композитных дренажных стержней с приклеенными геотекстильными тканями. Пластиковые композитные дренажные стержни с «углублениями» доступны в различных конфигурациях и обычно изготавливаются из полипропилена, полистирола и полиэтилена.Геотекстильные ткани удерживают песок, почву, бетон или раствор, позволяя воде мигрировать в свободную дренажную сердцевину. Ткани доступны в различных формах, в том числе нетканые для почв глинистого типа и тканые или небольшие геотекстильные материалы для песчаных или сильно илистых почв. Многие дренажные маты также включают основу из полиэтиленового листа для равномерного распределения нагрузок, действующих на мембрану, и снижения вероятности повреждения, вызванного неоднородными профилями (впадинами) в композитном сердечнике.

Конструктивные соображения включают выбор соответствующей конструкции для достижения требуемого расхода.В целом, дренажная сердцевина шириной от 1/4 до 1/2 дюйма обеспечивает скорость дренажного потока в 3-5 раз большую, чем у обычно используемых природных материалов обратной засыпки. Эти системы выгодны своей легкой конструкцией и рентабельностью. Несмотря на то, что они предназначены для использования с выкопанными грунтами во время засыпки вместо гранулированного дренажного слоя, рекомендуется использовать полный системный подход в приложениях, где утечка воды недопустима; Полный системный подход должен включать как синтетический дренажный слой, так и гранулированный дренажный слой.

Ткани для фильтров

Геотекстильные фильтрующие ткани также используются для разделения различных типов грунта в помещениях, находящихся ниже уровня грунта. Такое разделение различных типов почвы поддерживает скорость потока почвы, используемой в качестве дренажных слоев, и сводит к минимуму оседание от более мелких материалов, заполняющих более крупные материалы. Геотекстильные ткани обычно изготавливаются из полипропилена, полиэстера или нейлона и доступны в тканых или нетканых вариантах. Тканые изделия изготавливаются из отдельных нитей или нитей и обладают хорошей прочностью и жесткостью; однако материал может быть пронизан угловатым заполнителем, что снижает способность должным образом фильтровать или отделять мелкие элементы.Нетканые изделия обычно непрерывно экструдируют и прядут, а затем прошивают иглами для создания однородных отверстий, которые можно выбирать в зависимости от дизайна. Как правило, при правильной конструкции нетканые изделия обладают хорошими фильтрующими и разделяющими свойствами.

Гидроизоляция

Гидроизоляционные материалы обычно наносятся распылителем, валиком, кистью или шпателем и часто представляют собой покрытия на битумной основе; обычно наносится толщиной до 10 мил (0,25 мм). Эти материалы могут быть на основе растворителей или водными эмульсиями.Гидроизоляция всегда применяется с положительной или влажной стороны конструктивного элемента.

Гидроизоляция предназначена для контроля диффузии пара через фундамент, что может способствовать созданию влажных условий внутри. Гидроизоляция не предназначена для предотвращения утечки жидкой воды через фундаментную стену; гидроизоляция необходима для контроля протечек воды. Поскольку гидроизоляция не может выдерживать гидростатическое давление, ее не следует использовать на конструктивных элементах ниже уровня грунтовых вод, чтобы предотвратить внутреннюю утечку воды.Гидроизоляция более эффективна в устранении риска утечки и может быть не дороже, чем гидроизоляция, в зависимости от используемого материала. Большинство гидроизоляционных материалов также контролируют диффузию пара.

Другие доступные технологии гидроизоляции включают как цементные, так и химически активные продукты. Вяжущие продукты обычно основаны на портландцементе и обычно наносятся шпателем или кистью. Реактивные / кристаллические продукты, как правило, представляют собой запатентованные смеси, изготовленные из цемента, силикатов, оксидов металлов и химикатов, вводимых через добавки к бетону или нанесение на поверхность.Эти материалы требуют наличия влаги, чтобы вызвать реакцию с бетоном. Понимание конкретной химической добавки важно для определения ее потенциальной эффективности в приложениях для гидроизоляции или гидроизоляции грунтовых вод.

Гидроизоляционные мембраны

Гидроизоляционные мембранные системы доступны в виде продуктов после или перед нанесением для использования с положительной, отрицательной или слепой стороной. Системы гидроизоляции с положительной стороны наносятся после этого на поверхность элемента, которая подвергается прямому воздействию влаги, обычно на внешнюю сторону фундаментной стены.Системы гидроизоляции с отрицательной стороны наносятся после этого на поверхность элемента, противоположную поверхности, подверженной воздействию влаги, обычно на внутреннюю часть фундаментной стены. Системы глухой гидроизоляции предварительно наносятся на участок, где будет размещаться бетонный элемент, который подвергается прямому воздействию влаги. Системы положительной стороны доступны в различных материалах и формах. Отрицательные системы обычно ограничиваются цементными системами. Системы глухой стороны обычно представляют собой гидроизоляционный лист или непроницаемый материал на основе глины.

Гидроизоляционные мембраны можно разделить на четыре (4) типа:

  1. Жидкостные системы — эти системы включают уретаны, каучуки, пластмассы и модифицированные асфальты. Мембраны, наносимые жидкостью, применяются в жидкой форме и отверждаются, образуя одну монолитную бесшовную мембрану. Для стен фундамента типичные холодные системы с нанесением жидкости имеют толщину примерно 60 мил. Некоторые системы включают армирующую сетку, встроенную в жидкость. Прорезиненные асфальтовые системы горячего нанесения могут иметь толщину от 125 мил до 180 мил плюс заделанные листы неопрена толщиной 60 мил.

  2. Листовые мембранные системы. Листовые мембраны, используемые в строительстве фундаментных стен, включают термопласты, вулканизированные каучуки и прорезиненные асфальты. Толщина этих систем варьируется от 20 до 120 мил. Если используется сварка термосваркой, а незакрепленные мембраны являются прочными и защищены от повреждений защитным слоем, они могут быть эффективными гидроизоляционными материалами, но если произойдет утечка, ее будет трудно обнаружить и исправить из-за неплотного нанесения материала. гидроизоляционный слой в тех случаях.Всегда лучше иметь непрерывно приклеенный и приклеенный гидроизоляционный слой, чтобы снизить вероятность боковой миграции влаги под мембраной.

  3. Бентонитовые глины. Эти системы включают композитные натриевые бентонитовые системы с вкладышами из полиэтилена высокой плотности и геотекстильными тканями, которые являются более распространенными и более эффективными, чем традиционные системы. Бентонитовые глины действуют как гидроизоляция, набухая под воздействием влаги, становясь водонепроницаемыми. Это набухание может составлять от 10 до 15 процентов толщины основного материала.Следовательно, бентонит наиболее эффективен при надлежащем ограничении объема, так что продукт может набухать, заполняя пустоты, и его невозможно вымыть. Если бентонитовая глина не закреплена, она может дать усадку при высыхании, создавая зазоры, которые ухудшают гидроизоляционные характеристики. Глиняные панели и геотекстильные листы популярны для использования в гидроизоляции с глухих сторон, например, в системах заземления, а также в лифтах и ​​отстойниках.

  4. Цементные системы — эти системы содержат портландцемент и песок в сочетании с активным гидроизоляционным агентом.Эти системы включают в себя металлические (оксид металла), кристаллические системы, системы с химическими добавками и модифицированные акрилом. Последние два не следует использовать в качестве гидроизоляции, за исключением самых некритических условий. Первые две системы могут применяться как гидроизоляция с отрицательной или положительной стороны. Даже эти системы следует рассматривать только для использования в качестве вторичной (резервной) гидроизоляции по отношению к системе гидроизоляции с положительной стороны, если только они не используются со специальными деталями, предоставленными экспертом по гидроизоляции, которые выходят за рамки того, что обычно предоставляется системой. производители.

Гидроизоляцию следует наносить как минимум на 12 дюймов выше готовой поверхности, а затем наносить на точку на 12 дюймов ниже верхней поверхности внутренней плиты на уклоне. Как правило, гидроизоляция оборачивается поверх полки из кирпичной кладки или за отделочными материалами снаружи на определенном уровне, чтобы ее можно было закончить и перекрыть гонт погодным барьером. Когда он наматывается на выступы из каменной кладки, необходимо соблюдать осторожность, чтобы согласовать его с кладочными стяжками и окантовками между стенами. Там, где уклон идет вниз вдоль внешней стены, гидроизоляция будет постепенно понижаться, чтобы продолжать защищать занимаемое пространство ниже уровня.

Если материалы наружных стен не защищают гидроизоляцию на уровне грунта, следует использовать гидроизоляцию основания для защиты гидроизоляции от воздействия ультрафиолетового (УФ) излучения. Эти накладки обычно изготавливаются из нержавеющей стали, чтобы противостоять коррозии при контакте с грунтом и влагой.

В некоторых ситуациях может оказаться невозможным нанести гидроизоляцию непосредственно и полностью на фундаментные стены, и может потребоваться прикрепить «линзовую» мембрану к стене фундамента, чтобы улавливать сток и направлять его от фундамента.Рекомендуется использовать ПВХ-мембрану или полиолефиновую мембрану толщиной 60 мил, установить на вогнутую песчаную подушку и прикрепить к фундаментной стене с помощью соединительной планки из нержавеющей стали со стандартной гидроизоляцией, нанесенной на стену выше этой точки. Линзовая мембрана должна наклоняться в сторону от здания, собирать и перенаправлять сток в дренажную плитку или отстойник подальше от фундамента.

Доска защиты

Защитные плиты

используются для защиты гидроизоляционных мембран от повреждений конструкции, повреждений от засыпки при эксплуатации и ультрафиолетового излучения.Наиболее часто используемая защитная плита представляет собой полугибкий лист, содержащий асфальтовую сердцевину, помещенную между пропитанными асфальтом матами из стекловолокна. Материал может иметь полиэтиленовую пленку с одной стороны и поверхность из стекломата с другой стороны. Для некоторых мембранных применений, таких как системы горячего нанесения битума, защитная плита встраивается во влажную мембрану, образуя неотъемлемую часть гидроизоляционной мембраны. Доступны плиты защиты асфальта толщиной 1/16, 1/8 и 1/4 дюйма.Другими материалами, которые иногда используются в качестве защитных слоев, являются изоляция из жестких плит из экструдированного полистирола или сборные синтетические дренажные слои.

В общем, использование сборных композитных дренажных панелей непосредственно против определенных гидроизоляционных мембран в качестве защитного слоя не рекомендуется. Хотя композитная плита может иметь полиэтиленовый лист со стороны мембраны, этот лист часто разрезается, повреждается или отсутствует. В случае установки давление грунта может привести к смещению «ямок» в дренажной сердцевине или повреждению гидроизоляционной мембраны.Кроме того, композитные сердечники имеют острые углы, которые могут разрезать гидроизоляционную мембрану во время монтажа или засыпки. Поэтому рекомендуется между гидроизоляционной мембраной и дренажным слоем установить защитный слой.

Изоляционные материалы

Изоляционные материалы, используемые в корпусах ниже класса, в основном ограничиваются жесткими экструдированными полистирольными плитами из-за необходимости обеспечения высокой прочности на сжатие и устойчивости к влагопоглощению. Для оптимального дренажа и тепловых характеристик установите композитную дренажную панель со встроенной фильтровальной тканью снаружи изоляции.

Гидрошпонки

Гидрошпонки следует использовать на строительных швах в нижних стенах, фундаментах, плитах и ​​других элементах, где требуется водонепроницаемая система. Эти системы обеспечивают вторичный барьер для прохождения воды через эти строительные швы. Гидрошпонки — это производимые продукты, доступные в широком диапазоне конфигураций и размеров. Обычные материалы включают поливинилхлорид (ПВХ), неопрен, вспенивающийся бентонит натрия и термопластичный каучук.

Хотя это не так часто, можно также рассмотреть предварительно установленную гидроизоляцию для впрыска проницаемого раствора.Как правило, в конструкционных швах устанавливаются проницаемые трубки для впрыска раствора, которые обычно изготавливаются из гибкого ПВХ, и заливка раствора производится только при обнаружении утечки. В некоторых случаях трубки могут быть повторно закачаны, если утечка не исчезнет. Доступ к портам / участкам нагнетания обычно осуществляется изнутри здания.

Наиболее опасные участки гидроизоляции — углы и перегибы материалов. Эти детали должны быть правильно детализированы и установлены, чтобы быть эффективными. В общем, следует придерживаться стандартных деталей производителя.Если используется ПВХ, углы и перехлесты должны быть сварены и тщательно проверены.

Дренажная труба

Дренажные трубы, обычно диаметром 4 или 6 дюймов, используемые в системах ниже уровня земли, в основном изготавливаются из гофрированного ПВХ или полиэтилена, а в некоторых случаях из пористого бетона. Трубы из ПВХ и полиэтилена доступны в гладкой или гофрированной конфигурации и имеют прорези в нижней половине их поперечного сечения для проникновения воды. На основании обширного опыта земляных работ и гидроизоляции было обнаружено, что гофрированные дренажные трубы из ПВХ могут разрушиться под весом засыпки, поэтому предпочтительнее использовать более жесткие трубы из ПВХ, если это возможно.

Все трубопроводы дренажной плитки следует укладывать на большие, вымытые рекой камни из заполнителя, которые кладут на фильтрующую ткань, которую следует обернуть вокруг и поверх дренажной плитки, чтобы предотвратить попадание мелкой грязи в дренажную плитку. Что касается уклона к сливу, дренажная плитка предназначена для установки с некоторым уклоном, чтобы вода стекала к коллектору поддона. Розетка должна быть самой низкой точкой в ​​системе на каждом стыке.

Основы

На рисунке 2 представлена ​​общая схема, характеризующая четыре функции i.е. Структурная поддержка, экологический контроль, отделка и распределение, поскольку они относятся к элементам ограждения нижнего уровня фундаментных стен.

Рис. 2. Схема фундаментной стены

Четыре функциональные категории, то есть структурная поддержка, экологический контроль, отделка и распределение, раскрываются ниже в общих чертах для фундаментных стен.

Функции несущей конструкции — Система фундаментных стен ограждения нижнего этажа должна быть спроектирована и изготовлена ​​с учетом как вертикальных, так и поперечных нагрузок.

Вертикальные нагрузки возникают от статических, динамических и боковых нагрузок от конструкции и самой стены. Фундаментная стена может быть составной частью несущей конструкции здания, несущей нагрузки на колонну и перекрытие сверху, либо в виде распределенных нагрузок на стену, либо в виде точечных нагрузок на пилястры, являющиеся неотъемлемой частью стеновой системы. Эти стены также могут быть использованы в системе бокового сопротивления здания.

Боковые нагрузки на фундаментные стены возникают от грунта, дополнительных нагрузок и гидростатических давлений.Нагрузки на почву зависят от типа почвы и от того, считается ли почва активной или пассивной. Нагрузки гидростатического давления могут существовать в случае высокого уровня грунтовых вод или паводков. Типичное гидростатическое давление и давление грунта обычно колеблются от 30 до 62,4 фунтов на квадратный фут на фут глубины. Дополнительные нагрузки могут включать временные нагрузки от пешеходных дорожек или проезжих частей для транспортных средств. Зоны, спроектированные как пешеходные, должны также учитывать нагрузку на аварийные транспортные средства.

Во многих случаях требуется, чтобы фундаментная стена выдерживала все эти нагрузки непосредственно со стеной, спроектированной как консольная подпорная стена с большим фундаментным основанием, или как стена подвала, проходящая по вертикали между элементом фундамента и поддерживаемыми перекрытиями.Другие случаи могут включать в себя систему удержания грунта, такую ​​как сваи и деревянные утеплители, облегчающие строительство и предназначенные для противодействия боковым нагрузкам, заставляющим фундаментную стену выдерживать в основном вертикальные нагрузки.

Особые нагрузки, такие как взрывные нагрузки, учитываются при проектировании парковок под зданиями и рядом с ними. Хотя первый контроль этих аномальных нагрузок осуществляется с помощью систем контроля доступа и ограниченного доступа, при проектировании системы фундаментных стен также могут потребоваться конструктивные соображения.

Функции контроля окружающей среды — Внешняя среда, которой подвергается фундаментная стена, включает нагрузки контроля окружающей среды, такие как температура, влажность, корни деревьев, насекомые и почвенный газ. Внутренняя среда, которой подвергается фундаментная стена, включает в себя нагрузки по контролю за окружающей средой, такие как температура и влажность. Производительность системы фундаментной стены зависит от ее способности контролировать, регулировать и / или смягчать эти экологические нагрузки на каждой стороне фундаментной стены до желаемых уровней.

Вероятно, наиболее распространенной нагрузкой на окружающую среду для систем фундаментных стен является влажность. Контроль влажности решается с помощью подхода с использованием нескольких экранов / барьеров. Для нагрузок поверхностной влажности, таких как дождь и снег, первая линия контроля — это верхний экран на внешней поверхности. Этот верхний экран может состоять из относительно проницаемых участков ландшафта, от непроницаемых брусчатки, бетонных или асфальтовых поверхностей, которые будут сбрасывать большую часть поверхностной влаги.Эффективность этого начального экрана в отводе влаги может повлиять на конструкцию других компонентов системы.

Влага, которая проникает через верхний экран, должна быть направлена ​​в сливной дренаж, расположенный у основания фундаментной стены. Это достигается с помощью дренажной системы на внешней стороне стены, которая обычно представляет собой свободно дренируемый гранулированный материал. Засыпка естественным грунтом с плохим дренированием не рекомендуется, так как это будет поддерживать активную водную нагрузку на фундаментную стену и ограничивать ее способность контролировать проникновение влаги внутрь.По мере того, как влага перемещается от верхнего экрана через дренажную систему снаружи к выходному дренажу, влага неизбежно продвигается к поверхности самой фундаментной стены. В зависимости от количества воды, которая проходит через верхний экран, обычно требуется дренажная система на поверхности фундаментной стены, чтобы быстро направлять эту воду к основанию фундаментной стены и выходному дренажу.

Во многих ситуациях со стеной фундамента с низкой отметкой уровня грунтовых вод комбинация верхнего экрана, внешней дренажной системы, приповерхностной дренажной системы и выходного дренажа будет контролировать большую часть воды.Ключевой вопрос, который остается, заключается в том, следует ли обеспечивать гидроизоляцию или гидроизоляцию поверхности фундаментной стены или не делать ее вовсе. Гидроизоляция препятствует миграции пара в отсутствие гидростатического давления. Гидроизоляция противостоит миграции пара и гидростатическому давлению.

Как правило, гидроизоляцию можно устранить только на участках с очень сухой почвой. Большинство строительных норм и правил требуют гидроизоляции в качестве минимальной защиты от влаги. В этих случаях оставшаяся часть системы представляет собой гидроизоляцию, нанесенную непосредственно на внешнюю поверхность фундаментной стены.Строительные нормы и правила также обычно требуют гидроизоляции, если уровень грунтовых вод не может поддерживаться по крайней мере на 6 дюймов ниже дна плиты на земле. Это можно сделать с помощью насосных систем. В областях с повышенной влажностью от гидростатического давления из-за высоких уровней грунтовых вод или чувствительных внутренних сред, на внешнюю поверхность фундаментной стены следует наносить гидроизоляционную мембрану вместо гидроизоляции. Гидроизоляционные мембраны преимущественно наносятся на положительную (внешнюю) поверхность фундаментной стены, однако существуют системы гидроизоляции с отрицательной стороны, которые могут быть применены к внутренней части фундаментной стены, и системы гидроизоляции с глухой стороны, которые можно наносить заранее. к опорной стене котлована, что приводит к установке системы гидроизоляции с положительной стороны.В этих случаях бетонная фундаментная стена кладется напротив гидроизоляционной мембраны с глухой стороны.

Даже когда необходимо нанести гидроизоляционную мембрану, рекомендуется также использовать системный подход, включающий компоненты внешней дренажной системы, поверхностной дренажной системы и выходного дренажа. Удаление влаги наиболее полным и быстрым способом снизит вероятность проникновения воды. Однако, поскольку некоторые муниципалитеты взимают плату за перекачку воды в системы ливневой канализации, при проектировании систем гидроизоляции эти затраты необходимо взвесить с учетом срока службы конструкции.Части здания, постоянно находящиеся ниже уровня грунтовых вод, могут потребовать дополнительных систем с резервированием. Например, кристаллическая гидроизоляция часто используется для дублирования одной из других систем гидроизоляции. Некоторые муниципалитеты также ограничивают откачку грунтовых вод, поскольку это может снизить уровень грунтовых вод и повлиять на опору соседних сооружений. Когда насосы должны сбрасывать влагу, следует предусмотреть резервную систему питания на случай отключения электроэнергии.

Температурные соображения вызывают ограниченное беспокойство, так как глубже погружается в фундаментную стену, так как снаружи существует постоянное расчетное тепловое состояние.Поскольку большинство систем фундаментных стен имеют значительную массу, например Для бетона изоляция может иметь значение только для умеренных внутренних температур в верхних частях фундаментной стены, где температурные условия будут колебаться. Однако использование и расположение изоляции более важны для контроля влажности с точки зрения предотвращения конденсации на внутренних поверхностях стены по всей высоте фундаментной стены. Конденсация возможна в условиях ниже уровня земли в более теплых и влажных летних условиях, поскольку в помещениях ниже уровня земли летом обычно бывает прохладнее из-за изолирующего эффекта грунта обратной засыпки.Этот охлаждающий эффект в сочетании с общей плохой циркуляцией воздуха в подземных помещениях может привести к образованию конденсата на внутренних поверхностях стен.

Более высокие температуры почвы на внешней стороне также создают необходимость обеспечить, по крайней мере, гидроизоляцию на внешней стороне фундаментной стены, чтобы противостоять сильному внутреннему паровозу. Фактически, в некоторых ситуациях кондиционированные помещения ниже уровня земли подвергаются постоянному притоку внутрь пара летом, поскольку внутреннее пространство кондиционируется, а зимой внутреннее пространство нагревается, что приводит к более низкому давлению пара, чем внешнее состояние, поскольку почва остается относительно постоянной с точки зрения давления пара.

Функции отделки —Два участка отделки важны по отношению к фундаментным стенам. Первое направление — это отделка внутреннего пространства. Эта отделка зависит от внутреннего использования, будь то контролируемая офисная среда или неконтролируемая парковка. Типичные системы отделки могут включать краски, штукатурку или стены с каркасом из гипсокартона. Во многих случаях внутренняя отделка — это просто внутренняя поверхность материала, используемого для фундаментной стены, т.е.е. бетонные или бетонные кладочные блоки.

Вторая область — это отделка экстерьера около уровня класса. Правильная обработка этой области имеет решающее значение не только с точки зрения эстетики, но и с точки зрения долговечности.

Гидроизоляция / гидроизоляция во всех ситуациях должна быть поднята над верхним экраном и интегрирована в гидроизоляцию и гидроизоляцию фасада здания. Многие гидроизоляционные мембраны должны быть защищены от ультрафиолетового излучения, чтобы предотвратить ухудшение, и поэтому требуется какой-то тип внешней отделки.Во многих случаях элемент внешнего фасада, будь то кирпич, камень и т. Д., Опускается до уровня чуть ниже уровня, чтобы должным образом перейти и защитить эту чувствительную область.

Функции распределения —Фундаментальные стены могут содержать распределительные системы, такие как электрические и электронные участки. Иногда эти системы работают внутри системы отделки внутренней поверхности или в потолочном пространстве. К распределительным системам внутри самих фундаментных стен необходимо относиться с особой тщательностью, поскольку они также могут быть каналами, по которым воздух и влага проходят внутри конструкции.

Приложения

Рекомендации по проектированию верхнего экрана для поверхностного стока

Многие области по периметру здания на горизонтальном уровне подвергаются большому количеству поверхностного стока из-за широкого использования оконных проемов и непроницаемых материалов для фасадов стен, таких как тонкий камень и EIFS. Первой и наиболее эффективной защитой от этой воды является уклон верхней поверхности экрана от здания минимум на 5% рядом с краем здания. Правильная конструкция для подключения водосточных водостоков к системам водостока по периметру напрямую, вместо того, чтобы попадать в зону, непосредственно примыкающую к фундаментной стене, является разумной.

Важные конструктивные соображения включают наклон поверхности в сторону от конструкции, обеспечение подходящей дренажной системы от верхнего экрана через гранулированную засыпку и синтетический дренажный слой, который простирается до дренажа по периметру.

Рекомендации по проектированию выходного дренажа

Дренажная труба по периметру фундаментной стены должна быть окружена гранулированным материалом со свободным дренажем, который обернут фильтровальной тканью для предотвращения попадания мелких частиц в пористые пространства гранулированного материала.Дренажная труба должна иметь уклон не менее 0,5%, а лучше 1,0%.

Выбор гидроизоляционной / гидроизоляционной мембраны

Проектировщик должен учитывать общую систему управления водными ресурсами относительно условий и нагрузок на площадке, чтобы определить, требуется ли гидроизоляция или гидроизоляция. В случае сомнений, очевидно, будет благоразумным принять консервативную сторону и создать водонепроницаемую систему.

Для водонепроницаемых систем в первую очередь необходимо рассмотреть вопрос о том, использовать ли гидроизоляцию с положительной или отрицательной стороны.Хотя отрицательная гидроизоляция выгодна с точки зрения ремонтных возможностей, в большинстве конструкций фундаментных стен используется положительная гидроизоляция, потому что сила природы на вашей стороне, прижимая гидроизоляцию к подпорке.

В зависимости от условий площадки и глубины стены фундамента, гидроизоляция с положительной стороны может быть установлена ​​снаружи или непосредственно на утеплитель при установке с глухой стороны перед укладкой бетона. Для нанесения снаружи следующее дизайнерское решение — использовать жидкие или листовые материалы.Листовые изделия выгодны с точки зрения постоянства свойств материала продукта и толщины, но основным недостатком является необходимость в многочисленных нахлестах. Перехлесты должны быть установлены так, чтобы верхний лист перекрывал нижний, чтобы вода естественным образом проливалась по перехлесту. Если используются листовые материалы, предпочтительно, чтобы мембрана полностью и непрерывно прилегала к подложке, чтобы предотвратить боковую миграцию утечек, а также для термической сварки или прочного соединения швов внахлест.

Для жидкостных мембранных систем правильное нанесение с точки зрения покрытия и толщины имеет решающее значение для производительности, и это следует контролировать на протяжении всей установки.Ключевым преимуществом жидкостных систем является их монолитность и способность к самовоспламенению, поскольку материал применяется в жидкой форме. Одним из потенциальных недостатков является неспособность некоторых жидких продуктов перекрывать трещины или открывать строительные швы, что может произойти в новых зданиях вскоре после нанесения.

В гидроизоляционных узлах с глухой стороны (положительная сторона, без доступа из-за тесных линий участка, под плитами на уровне уклона или по другой причине) изделия могут включать листовые материалы из термоплавкого полиэтилена высокой плотности или ПВХ, бентонита или других аналогичных листовых материалов собственной разработки.Во всех случаях защита мембраны, а также надлежащая притирка и герметизация стыков имеют решающее значение. Способы укладки бетона включают заливку на месте между опалубкой и внутренними формами или торкретирование, нанесенное распылением. В бентонитовых системах притирка бентонитовых листов обычно производится внахлест снаружи, если укладка бетона включает заливку сверху стены. Бентонитовые листы также обычно покрывают черепицей с поперечным направлением укладки бетона. При использовании монолитного бетона решающее значение имеет детализация связей опалубки, а использование односторонних опалубок, прикрепленных к плите, может минимизировать эту детализацию.Детализация вокруг опорных свай и анкеров для анкеровки грунта может быть сложной задачей, и уменьшение количества или частоты таких типов проходок увеличит потенциал для хорошей работы гидроизоляционной системы. Тщательный осмотр и ремонт гидроизоляции после укладки арматуры является критическим шагом, поскольку укладка стали часто приводит к повреждению гидроизоляции, которое невозможно отремонтировать после укладки бетона. Торкретирование может привести к возникновению нежелательных условий, таких как пустоты за арматурной сталью, и в результате некоторые производители гидроизоляции не рекомендуют свою продукцию для этого применения.В сочетании с гидроизоляцией из бентонитовых листов эти пустоты могут быть вредными, поскольку бентонит может набухать в пустоты и терять свою гидроизоляционную целостность. Тщательное внимание к установке имеет решающее значение при применении как монолитного, так и торкрет-бетона в гидроизоляционных сооружениях с глухой стороны.

Защита мембраны

Лучшие дизайнерские замыслы при выборе и детализации гидроизоляционных систем могут быть подорваны повреждениями от строительства. Для положительных сторон установка защитных панелей или изоляционных слоев как можно быстрее после установки мембраны имеет решающее значение для предотвращения механического повреждения последующих слоев и засыпки и образования ультрафиолетового излучения.Готовые синтетические дренажные слои иногда используются вместо защитной плиты для защиты гидроизоляционных мембран. С осторожностью рекомендуется использовать более мягкие жидкие материалы, так как дренажный слой может врезаться в мембрану и повредить ее. С этими более мягкими гидроизоляционными мембранами рекомендуется использовать защитную плиту под синтетическим дренажным слоем или дренажные слои со встроенной полиэтиленовой подложкой.

При проектировании теплоизоляционных, защитных и дренажных элементов на внешней стороне нижних стен фундамента в сборке следует вертикально вводить плоскость скольжения.Расположение плоскости скольжения может отличаться в зависимости от конструкции; однако он должен быть включен во все сборки. Плоскость скольжения может снизить напряжения, возникающие на мембране во время операций контролируемой засыпки; эти напряжения могут вызвать повреждение мембраны, образование складок, потерю адгезии или расслоение. Изоляционные плиты из экструдированного полистирола должны быть надлежащим образом поддержаны на основании, чтобы предотвратить вертикальное перемещение. Кроме того, следует избегать механического прикрепления изоляции или других материалов, которые могут проникнуть в мембрану или создать нагрузку на нее.Если для прикрепления элемента к мембране используются клеи, рисунок клея следует наносить небольшими мазками, чтобы обеспечить вертикальный отвод воды и снизить вероятность гидростатического давления, воздействующего на гидроизоляционную мембрану.

Плоскость скольжения находится между XPS и дренажной доской. Дренажная плита должна иметь защитный лист на обратной стороне сердечника, чтобы способствовать лучшему перемещению по изоляции.

Завершение фасада здания

Решающее значение для любого здания имеет правильная детализация и интеграция вертикальной фасадной системы здания и строительной системы нижнего этажа.Интеграция двух систем требует тщательного рассмотрения, чтобы гарантировать, что все критерии влажности, воздуха и температуры для каждой системы удовлетворяются на переходной границе. На этом интерфейсе существует комбинация проектных нагрузок окружающей среды, таких как поверхностные воды, сток и дренаж стен полости.

Концевая заделка фасада часто приводит к накоплению влаги на уровне или около горизонтальной линии здания с окружающей территорией. Требуется специальная гидроизоляция за облицовочными камнями зданий или специальная гидроизоляция и обработка внешней кромки плиты там, где она примыкает к грунтовым элементам.

Также требуется особая обработка всех входных дверей. Обычной практикой для оконцевания стен или дверных проемов является обеспечение уклона от здания, как указано ранее. Ограничение прямого контакта влаги с изоляцией или мигающей деталью на уплотнении конверта — очень эффективная практика.

Проникновения

Оценка состояния и устранение неисправностей подземных сооружений выявляет общие источники утечек, которые возникают при проникновении. Проникновения — это любые отверстия в стене или конструкционной системе, которые, если они не имеют должной гидроизоляции, обеспечивают проход для проникновения влаги в здание.Проходы канализационных труб, входы в водопровод, дренажные бассейны в плите пола или рукава для электричества, газа или связи — все это обычные проходы, обычно с собственной конструкцией или детализированными характеристиками. Однако эти характеристики оставляют желать лучшего в отношении герметизации и гидроизоляции. Проникновение также может стать довольно экзотическим, например проникновение пара или другие особенности, требующие особого обращения. Из-за уникального характера проникновений и особых характеристик ни одно правило или критерий не могут регулировать или применяться к их эффективному лечению.Однако классификация общих типов и характеристик проникновения помогает обеспечить эффективное лечение и правильное функционирование.

Изоляция, изоляция и гидроизоляция определенных трубопроводов, которые претерпевают большие перепады температуры, часто недооцениваются из-за их движения. В случае расширения и сжатия трубопроводов или трубопроводов, входящих в здание, требуется втулка через стену, которая не является продолжением проходящего трубопровода. Для их герметизации обычно требуется применение эластомерных башмаков, которые плотно прилегают к корпусу и внешней трубе.Другие поверхности, такие как газовые трубы, сигнальные или электрические, обычно должны выполняться с должным учетом характера рукава через внешнюю стену и глубины ниже уровня проникновения.

Общеизвестно, что уплотнения служат резервной функцией и что предотвращение накопления влаги является основной целью создания герметичного здания при проникновении. Обратите внимание на то, что утечка может произойти при проникновении и течь за гидроизоляцией, если существует боковой путь.

Стеновые компенсаторы

Стеновые компенсаторы должны быть спроектированы с учетом предполагаемого смещения конструкции. Проконсультируйтесь с инженером-строителем относительно возможного движения. Для устранения утечек очень эффективным является усиленный внешний дренаж, аналогичный тому, который требуется на внешней стене. Особое внимание уделяется отводу воды у основания стены, чтобы избежать скопления воды в системе обратного заполнения или дренажа.

Соединения для строительства стен и пола

Строительные швы в большинстве случаев эффективно обрабатываются с помощью рекомендованных производителем гидрошпонок деталей.Для многих типов мембран многослойная детализация мембраны, надлежащая изоляция и допуск на детализацию стыков обычно эффективны для строительных швов. Брус с жидкой мембраной, покрытый эластомерным гидроизоляционным слоем, доходящим до края нижнего колонтитула и на несколько дюймов выше бруса, оказался исторически эффективным. Там, где требуется гидроизоляция фундаментной стены, рекомендуется добавить гидроизоляцию в строительный шов. Существуют и другие резервные системы, которые можно использовать в строительных швах стены / пола, в том числе инжекционные трубки, которые можно установить в швах до укладки бетона, а затем залить химическим раствором после строительства, если гидроизоляционные и гидроизоляционные линии защиты не повреждены. полностью эффективен.

Детали

Следующие детали можно загрузить в формате DWG или просмотреть в Интернете в DWF ™ (Design Web Format ™) или Adobe Acrobat PDF, щелкнув соответствующий формат справа от заголовка чертежа.

Детали, связанные с этим разделом BEDG по WBDG, были разработаны комитетом и предназначены исключительно для иллюстрации общих концепций проектирования и строительства. Надлежащее использование и применение концепций, проиллюстрированных в этих деталях, будет варьироваться в зависимости от соображений производительности и условий окружающей среды, уникальных для каждого проекта, и, следовательно, не представляют окончательное мнение или рекомендацию автора каждого раздела или членов комитета, ответственных за разработку. ВБДГ.

Детали, графики и соответствующая информация, показанные в деталях, предназначены только для иллюстрации основных концепций и принципов проектирования и должны рассматриваться вместе с соответствующими описательными разделами Руководства по проектированию всего здания (WBDG). Информация, содержащаяся в нем, не предназначена для фактического строительства и может быть пересмотрена на основе изменений и / или уточнений в местных, государственных и национальных строительных нормах, новых технологиях ограждающих конструкций зданий и достижениях в исследованиях и понимании механизмов разрушения ограждающих конструкций здания.Фактический дизайн и конфигурация будут варьироваться в зависимости от применимых местных, государственных и национальных требований строительных норм, климатических условий и экономических ограничений, уникальных для каждого проекта. Рекомендуется полное соблюдение рекомендаций производителей и признанных отраслевых стандартов, что должно быть отражено в соответствующих разделах спецификаций проекта.

Фундаментная стена — типовая система (деталь 1.2.1) DWG | DWF | PDF