Деформационный шов температурный шов: Your access to this site has been limited by the site owner

Содержание

Температурный шов, Температурно-усадочные швы

Температурный шов – это деформационный шов в бетонной конструкции или основании. Наружный температурный шов-разрез разделяет дом на расчетные секции, в целях защиты материала стен, фундаментов и т.д. от деформаций в результате изменений температур бетона. Температурные швы обычно выполняют комбинированно с усадочными и компенсирующими сдвиги отдельных участков постройки в результате подвижек грунтового основания (сезонные осадки-пучения грунтов, как известно, ни предсказуемыми, ни равномерными быть не могут). Другие комбинации деформационных швов, к которым относятся и температурные, делают в целях разгрузки монтажных стыков между отдельными сборными элементами дома. Стыки должны сопротивляться не только поперечным и продольным напряжениям, но самым опасным – скручивающим, поэтому узлы стыков разрабатывают с деформационными швами. Расположены деформационные швы монтажных стыков на участках примыканий: бетонный пол с колоннами, маршами лестниц, пандусами и бордюрными камнями. А также и на любых участках конструкции, где есть излом плоскости или «ступенька» — например, перепад высот стяжки или плиты.

Температурные швы являются компенсационными, относятся к условно-эластичным и не имеют никакого отношения к усадочным швам и рабочим (технологическим или холодным) швам бетонирования. Совмещение температурного и усадочного шва всегда индивидуально и выполняется различно для массивного монолита, плит и стяжек.

Чтобы не запутаться в обширной терминологии: для упрощения классификации швов нужно подразделять их по нагрузкам и воздействиям на конструкцию, которые эти швы должны компенсировать.

Температурно-усадочные швы

Температурно-усадочные швы – это совмещение деформационных швов различного назначения в один, когда это возможно. Все температурно-усадочные швы обязательно герметизируют.

Усадочный шов

Усадочный шов фрагментирует конструкцию (плиту), при этом разрез никогда не доводят до нижней грани плиты. Усадочные напряжения в бетоне велики, и если не разгрузить плиту, то бетон не просто растрескается, а может стать непригодным к дальнейшей эксплуатации (или потребуется сложный дорогостоящий ремонт, установка пакеров и инъекции) из-за ряда глубоких сквозных трещин в напряженных зонах. Усадочный разрез делают по расчету – на часть высоты плиты, тем самым ослабляя рабочее сечение. «Где тонко, там и рвется»: усадочная трещина пойдет предсказуемо в глубину реза и не выйдет на загерметизированную поверхность конструкции. Усадочные швы часто совмещают с другими швами, в этих случаях может не быть ни трещин, ни разломов. Усадочные швы – это компенсаторы деформаций в массивах ж/б конструкций. Благодаря усадочным швам происходит компенсация деформаций усадок. Например, когда бетонная стяжка схватывается, она в силу физических факторов не может твердеть и терять влагу совершенно равномерно. Стяжку режут на карты – квадраты расчетной площади (в самых простых случаях для армированных стяжек это карты 6*6 м, если размер стяжки меньше – шов не нужен), и предусмотренные разрезы исключают появление непредусмотренных трещин.

Усадка бетона

Усадка бетона, или изменение объема забетонированных конструкций, начинается сразу же после завершения укладки бетонной смеси, продолжается в течение схватывания и твердения бетона и не всегда заканчивается после набора прочности — до нескольких месяцев и даже дольше. Потеря в объеме в результате усадки обычно находится в пределах 1-1,5%, это незаметно на глаз, но тем не менее может привести к растрескиванию бетона, отслаиванию поверхностного слоя и резкому снижению долговечности постройки — если не приняты меры по компенсации усадочных деформаций. Особенно опасны усадки бетона для несущих конструкций фундаментов, стен, перекрытий и т.д. Нормы допускают процент усадки, равный 3% для тяжелого бетона, или 0,4 мм/метр линейной конструкции. Уменьшение объема массивных конструкций вследствие усадки обязательно следует учитывать при бетонировании.

Величина усадки бетона зависит от многих факторов:

  • От количества цемента – прямая зависимость;
  • От вида цемента: высокоактивный и глиноземистый цемент даст большую усадку по сравнению с портланцементом;
  • От водоцементного отношения – чем больше воды в бетонной смеси, тем сильнее будет усадка;
  • От вида заполнителя: чем пластичнее заполнитель, тем меньше усадка;
  • От удельного веса и крупности заполнителя: чем плотнее и крупнее заполнитель – тем меньше усадка. Бетон с пористым крупным заполнителем и песком мелкой фракции даст большую усадку.
  • От качества уплотнения бетонной смеси при заливке. Вибро-уплотнение дает плотную упаковку зерен мелкого и крупного заполнителя и минимизирует пустоты, вследствие этого и усадка бетона намного меньше. Укладка с некачественным уплотнением приводит к усадочным трещинам в конструкции.

Процесс усадки бетона делится на стадии:

Первая усадка – пластическая, начинается уже при заливке смеси в опалубку и продолжается, пока вода испаряется из растворной смеси. Если не принять мер ухода за бетоном, не увлажнять и не защищать поверхности конструкций от солнца, ветра и излишнего тепла, то можно получить критическую усадку уже через 6-12 часов – до 4-5 мм/м, что приведет к образованию крупных поверхностных трещин. Что касается влаги, уходящей из жидкого бетона через неизолированную деревянную опалубку, из не укрытых грузовых и приемных емкостей, при слишком долгой перевозке смеси в жару и так далее – все эти нарушения технологии бетонирования приводят к снижению итоговой прочности конструкции, а в частности — к увеличению усадки. Компенсировать потерю воды можно пластификацией, но не превышая дозу реагента согласно инструкции. Разбавлять бетон водой для возвращения ему пластичности — значит увеличить усадку и снизить прочность. Пластическую усадку несложно уменьшить, но вторая стадия усадки необратима.

Вторая усадка – аутогенная, проходит в бетоне во время твердения и набора прочности. В защищенном бетоне величина этой усадки невелика – до 1-2 мм/м, но для массивного фундамента или стяжки — это достаточно серьезно. Чтобы предотвратить образование микротрещин, выполняют усадочные швы. Кроме того, бетонирование массивов в жару – это риск «запарить» бетон, поскольку при гидратации идет сильная экзотермия, что в итоге (если не охлаждать массив) даст внутренние напряжения в бетоне и трещины в конструкции. Снизить усадку можно и нужно, оптимизируя процесс укладки и ухода за бетоном. Оптимально — совмещать рабочие и усадочные швы.

Усадкой «при высыхании» современных бетонных конструкций обычно можно пренебречь. Но старое правило – заливать фундаменты и давать им выстояться около года – вовсе не архаизм, многие частные строители так и делают: заливают ленту или плиту весной, зимой бетону уже не грозят деформации и следующей ранней весной удобно начинать кирпичную кладку. Снижает усадку и армирование, и точный подбор состава бетона, и грамотное введение пластификаторов одновременно с уменьшением количества воды в бетоне.

Несколько «усадочных» нюансов:

  • Если в составе вяжущего много извести, то сильную поверхностную усадку может дать карбонизация.
  • Тяжелые бетоны дают меньшую усадку, чем легкие и пористые.
  • При зимнем бетонировании не обойтись без антиморозных добавок, и нельзя забывать, что они могут способствовать увеличению усадки. Бесконтрольно пластифицировать бетон тоже нельзя, любая присадка должна быть в нормативных пределах по технической характеристике.
  • Укладка смеси с тщательным вибрированием или штыкованием смеси значительно уменьшает усадку бетона. Уплотнять бетон можно любым способом: вибратором или садовой лопатой – главное эффективно выгнать воздух из смеси. Уплотнять заканчивают не раньше, чем прекратится появление воздушных пузырьков и на поверхности не появится цементное молочко.
  • Уход за бетоном: уложенный бетон должен быть влажным, оптимально 70-75% влажности, это снижает усадку.
  • Чем больше массив конструкции, тем больше значение усадки. На малых формах усадка незаметна и практически безвредна.
  • Усадка неармированных конструкций больше, чем усиленных армокаркасами.
  • Вовремя (при замесе) введенная пластификация снижает усадку, добавка пластификатора при форс-мажоре, например, чтобы реанимировать бетон на четвертом часу его жизни в миксере – увеличивает усадку и снижает прочность итогового бетона.

Экстремальные условия работ, зимнее и летнее (в жару) бетонирование, пренебрежение технологией приготовления, укладки и уплотнения бетонной смеси приводят к увеличению усадки и снижению прочности бетона.

Конструкция температурного шва

Устройство и конструкция температурных швов имеют свои особенности, отличающие эти швы от деформационных швов других видов. Например, в здании температурный шов делит весь надземный объем, но «не трогает» фундаментную часть: в грунте сооружение защищено от резких температурных перепадов. В бетонных полах и стяжках температурный шов оптимально совмещать с усадочным, а если технология и процесс частной стройки на нужном уровне – то и с конструкционным (рабочим) швом бетонирования.

Расстояние между температурными швами

Шаг температурно-усадочных швов рассчитывают исходя из вида бетона, массивности и протяженности конструкций, климата и условий работы и еще многих факторов. Этот шаг может быть меньше 0,5 м в бетонной стяжке узкого коридора, и до десятков метров в сборной ж/б конструкции. Таблица 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции, исключительно для примера:

Температурный шов в бетоне

Для того, чтоб компенсировать нагрузки от подвижек грунтового основания и постройки относительно отмостки, делают температурный шов. Например, разделение отмостки и ее гибкая привязка с фундаментом будут демпфировать нагрузки, и отмостка не будет подвергаться критическим деформациям и прослужит долго. Пример: классический температурно-усадочный шов в бетоне:

Дома и коттеджи|10 февраля 2020 в 06:35| Температурный шов, Температурно усадочные швы

Температурные швы в бетонных конструкциях: назначение и виды

Любые строительные конструкции, независимо от того из какого материала они изготовлены (кирпич, монолитный железобетон или строительные панели) при изменении температуры меняют свои геометрические размеры. При понижении температуры они сжимаются, а при повышении, естественно, расширяются. Это может привести к появлению трещин и значительно снизить прочность и долговечность как отдельных элементов (например, цементно-песчаных стяжек, отмосток фундаментов и так далее), так и всего здания в целом. Для предотвращения этих негативных явлений и служит температурный шов, который необходимо обустраивать в соответствующих местах (согласно нормативным строительным документам).

Вертикальные температурно-усадочные швы зданий

В зданиях большой протяженности, а также строениях с разным количеством этажей в отдельных секциях СНиП-ом предусмотрено обязательное обустройство вертикальных деформационных зазоров:

  • Температурных – для предотвращения образования трещин из-за изменения геометрических размеров конструктивных элементов здания вследствие перепадов температур (среднесуточных и среднегодовых) и усадки бетона. Такие швы доводят до уровня фундамента.
  • Осадочных швов, препятствующих образованию трещин, которые могут образовываться из-за неравномерной осадки фундамента, вызванной неодинаковыми нагрузками на его отдельные части. Эти швы полностью разделяют строение на отдельные секции, включая фундамент.

Конструкции обоих видов швов одинаковы. Для обустройства зазора возводят две спаренные поперечные стены, которые заполняют теплоизолирующим материалом, а затем гидроизолируют (для предотвращения попадания атмосферных осадков). Ширина шва должна строго соответствовать проекту здания (но быть не менее 20 мм).

Шаг температурно-усадочных швов для бескаркасных крупнопанельных зданий нормируется СНиП-ом и зависит от материалов, примененных при изготовлении панелей (класса прочности бетона на сжатие, марки раствора и диаметра продольной несущей арматуры), расстояния между поперечными стенами и годового перепада среднесуточных температур для конкретного региона. Например, для Петрозаводска (годовой перепад температур составляет 60°С) температурные зазоры необходимо располагать на расстоянии 75÷125 м.

В монолитных конструкциях и зданиях, построенных сборно-монолитным методом, шаг поперечных температурно-усадочных швов (согласно СНиП) варьируется в пределах от 40 до 80 м (в зависимости от конструкционных особенностей здания). Обустройство таких швов не только повышает надежность строительной конструкции, но и позволяет поэтапно отливать отдельные секции здания.

На заметку! При индивидуальном строительстве обустройство таких зазоров применяют крайне редко, так как длина стены частного дома обычно не превышает 40 м.

В кирпичных домах швы обустраивают аналогично панельным или монолитным постройкам.

Температурные швы перекрытий

В железобетонных конструкциях зданий размеры перекрытий, как и размеры остальных элементов, могут меняться в зависимости от температурных перепадов. Поэтому при их монтаже необходимо обустройство компенсационных швов.

Материалы для их изготовления, размеры, места и технология укладки заранее указывают в проектной документации на строительство здания.

Иногда такие швы конструктивно делают скользящими. Для обеспечения скольжения в тех местах, где плита перекрытия опирается на несущие конструкции, под нее укладывают два слоя оцинкованного кровельного железа.

Температурно-компенсационные швы в бетонных полах и цементно-песчаных стяжках

При заливке цементно-песчаной стяжки или обустройстве бетонного пола необходимо изолировать все строительные конструкции (стены, колонны, дверные проемы и так далее) от соприкосновения с заливаемым раствором по всей толщине. Этот зазор выполняет одновременно три функции:

  • На этапе заливки и схватывания раствора работает как усадочный шов. Тяжелый мокрый раствор сжимает его, при постепенном высыхании бетонной смеси размеры залитого полотна уменьшаются, а материал заполнения зазора расширяется и компенсирует усадку смеси.
  • Он препятствует передаче нагрузок от строительных конструкций бетонному покрытию и наоборот. Стяжка не давит на стены. Конструктивная прочность здания не изменяется. Сами конструкции не передают нагрузки на стяжку, и она не растрескается в процессе эксплуатации.
  • При перепаде температур (а они обязательно происходят даже в отапливаемых помещениях) этот шов компенсирует изменения объема бетонной массы, что препятствует ее растрескиванию и увеличивает срок эксплуатации.

Для обустройства таких зазоров обычно используют специальную демпферную ленту, ширина которой несколько больше, чем высота стяжки. После отвердевания раствора ее излишки обрезают строительным ножом. Когда обустраивают в бетонных полах усадочные швы (в случае, если финишное напольное покрытие не предусмотрено), полипропиленовую ленту частично удаляют и производят гидроизоляцию паза при помощи специальных герметиков.

В помещениях значительной площади (либо когда длина одной из стен превышает 6 м) согласно СНиП необходимо производить нарезку продольных и поперечных температурно-усадочных швов глубиной ⅓ от толщины заливки. Температурный шов в бетоне производят с помощью специального оборудования (бензинового или электрического швонарезчика с алмазными дисками). Шаг таких швов не должен быть более 6 м.

Внимание! При заливке раствором элементов теплого пола усадочные швы обустраивают на всю глубину стяжки.

Температурные швы в отмостках фундаментов и бетонных дорожках

Отмостки фундаментов, предназначенные для защиты основания дома от вредоносного влияния атмосферных осадков, также подвержены разрушениям вследствие значительных перепад температур в течение года. Чтобы этого избежать обустраивают швы, компенсирующие расширение и сжатие бетона. Такие зазоры изготавливают на этапе строительства опалубки отмостки. В опалубке по всему периметру крепят поперечные доски (толщиной 20 мм) с шагом 1,5÷2,5 м. Когда раствор немного схватится, доски извлекают, а после окончательного высыхания отмостки пазы заполняют демпфирующим материалом и гидроизолируют.

Все вышеперечисленное относится и к обустройству бетонных дорожек на улице или парковочных мест возле собственного дома. Однако шаг деформационных зазоров можно увеличить до 3÷5 м.

Материалы для обустройства швов

К материалам, предназначенным для обустройства швов (независимо от вида и размеров), предъявляют одинаковые требования. Они должны быть упругими, эластичными, легко сжимаемыми и быстро восстанавливающими форму после сжатия.

Демпферная лента

Она предназначена для предотвращения растрескивания стяжки в процессе ее высыхания и компенсации нагрузок от строительных конструкций (стен, колонн и так далее). Широкий выбор размеров (толщиной: 3÷35 мм; шириной: 27÷250 мм) этого материала позволяет обустроить практически любые стяжки и бетонные полы.

Уплотнительный шнур

Популярным и удобным в применении материалом для заполнения деформационных зазоров является шнур из вспененного полиэтилена. На строительном рынке представлены его две разновидности:

  • сплошной уплотнительный шнур Ø=6÷80 мм,
  • в виде трубки Ø=30÷120 мм.

Диаметр шнура должен превышать ширину шва на ¼÷½. Шнур устанавливают в паз в сжатом состоянии и заполняют ⅔÷¾ свободного объема. Например, для заделки пазов шириной 4 мм, нарезанных в стяжке, подойдет шнур Ø=6 мм.

Герметики и мастики

Для заделки швов применяют различные герметики:

  • полиуретановые;
  • акриловые;
  • силиконовые.

Они бывают как однокомпонентные (готовые к применению), так и двухкомпонентные (их готовят путем смешивания двух составных частей непосредственно перед применением). Если шов небольшой ширины, то достаточно заполнить его герметиком; если ширина зазора значительная, то этот материал наносят поверх уложенного шнура из вспененного полиэтилена (либо другого демпфирующего материала).

Разнообразные мастики (битумные, битумно-полимерные, составы на основе сырой резины или эпоксидные с добавками для придания эластичности) используют в основном для герметизации наружных деформационных зазоров. Их наносят поверх уложенного в паз демпфирующего материала.

Специальные профили

В современном строительстве температурные швы в бетоне с успехом заделывают, применяя специальные компенсационные профили. Эти изделия имеют самые различные конфигурации (в зависимости от области применения и ширины шва). Для их изготовления применяют металл, пластик, резину или комбинируют несколько материалов в одном устройстве. Некоторые модели данной категории необходимо устанавливать уже в процессе заливки раствора. Другие же можно устанавливать в паз уже после окончательного затвердевания основания. Производители (как иностранные, так и отечественные) разработали широкий модельный ряд таких приспособлений, как для наружного применения, так и для установки внутри помещений. Высокая цена профилей компенсируется тем, что такой метод заделки зазоров не требует их последующей гидроизоляции.

В заключении

Правильное обустройство температурных, компенсационных, деформационных и осадочных швов значительно повышает прочность и долговечность любого здания; парковочных мест или садовых дорожек с бетонным покрытием. При использовании высококачественных материалов для их изготовления они прослужат без ремонта долгие годы.

производителей компенсаторов | Proco Products Inc.

Proco Products является ведущим производителем компенсаторов с обширным ассортиментом компенсаторов для систем трубопроводов и воздуховодов. Наши деформационные компенсаторы изготавливаются таким образом, чтобы защитить ваше оборудование от различных факторов стресса, а также требуют минимального обслуживания и долговечны для максимальной эффективности.

Proco Products производит компенсаторы для промышленных и коммерческих установок, использующих насосы, трубопроводы или воздуховоды, для которых требуются компенсаторы или деформационные швы, чтобы справиться с тепловым расширением, вибрацией или движением грунта. Наши высокопроизводительные компенсаторы с различными конструкциями из резины, нержавеющей стали или политетрафторэтилена (ПТФЭ) обеспечивают безопасную и надежную работу, поддерживая целостность системы, уменьшая усталость и сокращая время простоя на техническое обслуживание.

Ознакомьтесь с нашим широким ассортиментом компенсаторов ниже.

  • Резиновые компенсаторы

    Резиновые компенсаторы

    Proco обладают присущей им гибкостью и прочностью и предназначены для удовлетворения самых жестких требований к температуре и давлению. Известные своей способностью выдерживать экстремальные условия, наши резиновые компенсаторы обычно используются в суровых условиях, таких как водоснабжение и сточные воды, целлюлозно-бумажная промышленность, химическая обработка, горнодобывающая промышленность, металлургия и насосное оборудование.

  • Компенсаторы из ПТФЭ

    Наши компенсаторы из ПТФЭ обладают полезными свойствами для химической промышленности по защите от коррозионно-активных веществ. Будучи нереакционноспособным синтетическим материалом, политетрафторэтилен создает высокоэффективные компенсаторы, работающие в экстремальных промышленных условиях.

  • Компенсаторы воздуховодов

    В наших компенсаторах используется комбинация армирования резиной и тканью, чтобы повысить гибкость промышленных систем воздуховодов / соединений вентиляторов. Компенсаторы воздуховодов усилены вулканизированной армированной тканью, чтобы выдерживать большие перемещения и изолировать вибрацию и шум.

  • Плетеные соединители для труб

    Наши высококачественные трубные соединители в оплетке изготовлены из нержавеющей стали и предназначены для подавления вибрации насоса, снижения уровня шума, снятия напряжения и уменьшения несоосности. Трубные соединители с оплеткой Proco идеально подходят для применения при более высоких температурах и не требуют блоков управления или стяжек. Мы производим различные разъемы с оплеткой «папа» и «мама», включая фланцы из углеродистой стали, фланцы из нержавеющей стали или медные наконечники.

  • Прочие резиновые изделия

    Наши фланцевые резиновые соединители для труб предназначены для тяжелых условий эксплуатации; Наши прочные резиновые соединители трубного типа изготовлены из неопреновой резины, армированной нейлоном, и предназначены для использования рядом с системами трубопроводов механического оборудования. Наши прокладки из резины и ПТФЭ с низким крутящим моментом специально разработаны с двойными, концентрическими, выпуклыми формованными уплотнительными кольцами, которые обеспечивают легкое уплотнение как для газов, так и для жидкостей.

  • Уплотнение проходки трубы

    Если вам требуется прочное газо- или водонепроницаемое уплотнение проходки трубы, то уплотнения Proco для проходки трубы испытаны на способность выдерживать давление до 20 фунтов на кв. дюйм или 40 футов напора и температуры до 250 °F. Наши уплотнения для проходки труб создают эффективное, действенное и недорогое уплотнение для труб, проходящих через стены, полы, резервуары и т. д. Простота установки, вставьте уплотнение ручки для труб в нужное положение и затяните.

ШВ АСФАЛЬТА — Компенсатор расширения/сжатия

Компенсатор расширения/сжатия

  • Описание продукта
  • Техническая литература
  • Спецификации и детали

Описание продукта

АСФАЛЬТНЫЙ КОМПЕНСАТОР – это «оригинальный» заполнитель компенсатора. Он состоит из смеси битумов и минеральных наполнителей, образующихся под действием тепла и давления между двумя пропитанными асфальтом футеровками. Он водонепроницаемый, постоянный, гибкий и самоуплотняющийся.

Постановите дистрибьютор

Образец запроса

Литература по запросу

Техническая литература

Спецификации и детали

Лист данных о продукте

Объединение Asphalt Depans
.

ASPHALT COMPANSION JOINT – это «оригинальный» заполнитель компенсаторов. Он состоит из смеси битумов и минеральных наполнителей, образующихся под действием тепла и давления между двумя пропитанными асфальтом футеровками. Он водонепроницаемый, постоянный, гибкий и самоуплотняющийся.

ИСПОЛЬЗОВАНИЕ
АСФАЛЬТОВЫЙ КОМПЕНСАТОР можно использовать в 80% всех применений регулирующего шва. Идеально подходит для швов тротуаров, проездов, улиц, а также одно- и многоуровневых плит перекрытий. Благодаря своей уникальной самогерметизирующей способности последующая герметизация швов не требуется.

ОСОБЕННОСТИ/ПРЕИМУЩЕСТВА

  • Не впитывает влагу.
  • Используется в 80% всех ситуаций с регулирующим шарниром.
  • Защищает от проникновения мелких частиц и воды.
  • Самоуплотняющийся; не требуется дополнительный герметик для швов.
  • Постоянный.

УПАКОВКА

Толщина Ширина Плита
Ширина
Стандартные длины
¼” (6,35 мм)
3/8″ (9,53 мм)
½” (12,7 мм)
¾” (19,05 мм)
1″ (25,4 мм)
36″
(914,4 мм)
5 футов (1,52 м)
6 футов (1,83 м)
10 футов (3,05 м)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

  • ААШТО М 33
  • АСТМ Д994
  • Департамент транспорта Калифорнии (Caltrans)
  • Спецификация FAA, пункт P-610-2. 7
  • Федеральная спецификация HH-F-341 F

ПРИМЕНЕНИЕ
Тип используемого контрольного шва и интервалы зависят от типа конструкции, климатических условий и ожидаемых напряжений в бетоне. Более тонкие соединения 1/4″ (6,35 мм), 3/8″ (90,53 мм) или 1/2″ (12,7 мм), расположенные через большие промежутки, обеспечивают больший контроль, чем более толстые соединения, расположенные через большие промежутки. Основная цель состоит в том, чтобы обеспечить достаточное пространство для расширения или сжатия бетона без создания разрушающих напряжений. Компенсационные швы должны располагаться у опалубки на прерывающих объекты или колонны и у примыкающих конструкций до укладки бетона. ШВ АСФАЛЬТА должен быть заглублен на 1/4″ (6,35 мм) ниже поверхности бетона. Герметик не нужен. Однако, если желательны дополнительные герметики для швов, изолируйте наполнитель от герметика с помощью SNAP-CAP 9.0159®

от W. R. MEADOWS. SNAP-CAP следует устанавливать заподлицо с поверхностью.