Что такое эпюра и как ее построить – Построение эпюр

Построение эпюр

Определение 1

Эпюра - это графическое изображение нагрузок и напряжений по всей длине бруса, используемое для визуального анализа напряженности, а также распределения нагрузок по всей длине бруса.

Эпюру можно построить на основании следующих параметров: внутренних сил (продольных и поперечных), крутящих и изгибающих моментов, напряжений (нормальных и касательных) и перемещений.

Процесс построения эпюр

Процесс построения эпюры стандартизирован и осуществляется по определенным правилам. Это сделано для общего понимания графиков всеми участниками производственного процесса.

Сначала строится нулевая линия. С левой стороны от линии пишется символическое название эпюры: $N$ - продольные силы, $Q$ - поперечные силы, $Mиз$ - изгибающие моменты, $T$ или $Mкр$ - вращающие момент, $σ$ и $τ$ - нормальное и касательное напряжения. Название сопровождается единицей измерения в соответствии с параметром (наименованием эпюры), например, $МПа$ - мегапаскаль.

Затем определяются границы силовых участков, то есть таких участков, где силовой фактор (деформация) остается постоянным или изменяется в рамках одной закономерности. Зачастую, границы силовых участков представляют собой сечения с приложенной внешней нагрузкой. Обозначение границ на эпюре реализуется в виде тонких вертикальных линий.

Замечание 1

Если брус обладает сложной объемной формой, то границы определяют аналитически.

Далее эпюра масштабируется. Масштаб выбирается в соответствии с предварительным просчетом отображаемого фактора по всем контрольным сечениям (КС) бруса.

После выбора масштаба и построения внешнего контура эпюры КС присваиваются значения фактора без указания знака (“$+$” и “$–$”). Факторы с положительными значениями чертятся над нулевой линией, а с отрицательными под.

В области с положительными значениями на самом широком участке пишется знак “$+$” и обводится кружком, а с отрицательными выполняется также операция, но указывается знак “$–$”. Можно поставить знаки справа и слева от “$0$”, при этом кружками они обводится не будут.

Определение знака фактора

Знак фактора определяется направлением внутренних силовых факторов и действием деформации. Например, нагрузке продольного типа, направленной на сжатие присваивается знак “$–$”, а на растяжение “$+$”.

Если вращение “отсеченной” части бруса осуществляется против часовой стрелки, то крутящий момент будет со знаком “$+$”, а по часовой стрелке знаком “$–$”. При рассмотрении поперечной силы $Q$, смотрим вертикальную плоскость, если она направлена вниз, то знак “$–$” (вверх “$+$”), а также учитываем поворот балки по часовой “$+$” и против часовой “$–$” .

Пример построения

Построим эпюры для простой двухоппорной балки с распределенной нагрузкой и действующей силой $F$=$10 кН$ и длиной $8$ $м$.

Начертим расчетную схему и укажем все нагрузки и значения:

Рисунок 1. Расчетная схема двухопорной балки. Автор24 — интернет-биржа студенческих работ

Определим реакции опор ($R$) в данном случае реакция для каждой точки будет равна половине приложенной, силы, так части балки равны по длине (нагрузка распределена).

Рисунок 2. Реакции опор $Ra$ и $Rb$. Автор24 — интернет-биржа студенческих работ

Обозначаем границы участков балки.

Рисунок 3. Границы участков балки. Автор24 — интернет-биржа студенческих работ

На первом участке отметим произвольное сечение и назовем его буквой $D$. Оно расположено на расстоянии $z1$ от левого торца балки. Относительно этого сечения записываем законы, описывающие изменения поперечных сил и изгибающих моментов, в рамках участка.

Рисунок 4. Произвольное сечение D. Автор24 — интернет-биржа студенческих работ

Запишем уравнение для поперечной силы. Поворот реакции $Ra$ выполняется по часовой стрелке, поэтому уравнение имеет вид:

$Qy_1 = Ra = 10 кН$

Обозначим границы, указав значение поперечной силы на графике, и начертим эпюру.

Рисунок 5. Эпюра поперечной силы. Автор24 — интернет-биржа студенческих работ

Запишем уравнение для изгибающего момента. В данном случае момент силы направлен на растяжение, поэтому укажем знак “$+$”, поэтому уравнение имеет вид:

$Mx_1 = Ra • z_1$

Из уравнения видно, что изменения изгибающего момента будут происходить, в соответствии с линейным законом, и зависеть от координаты $z_1$.

Замечание 2

Изображение эпюров со стороны растянутых волокон (показано в примере) характерно для инженерно-строительной практики. В механике эпюра чертится со стороны сжатых волокон.

Рассчитаем эпюру этого участка, подставив в уравнение координаты $z_1 = 0$ (начало участка) и $z_2 = 4$ (конец участка), а затем построим ее.

$Mx_1(z_1 = 0) = Ra • z_1 = 5 • 0 = 0$

$Mx_1 (z_1 = 4) = Ra • z_1 = 5 • 4 = 20$

Рисунок 6. Эпюра изгибающего момента. Автор24 — интернет-биржа студенческих работ

Выполним расчеты для второго участка балки:

$Qy_2 = – Rb = –10 кН$

$Mx_2 = Rb • z_2$

$Mx_2 (z_2 = 0) = Rb • z_2 = 5 • 0 = 0$

$Mx_2 (z_2 = 4) = Rb • z_2 = 5 • 4 = 20$

Начертим окончательную версию эпюры.

Рисунок 7. Полноценная эпюра рассматриваемой балки. Автор24 — интернет-биржа студенческих работ

spravochnick.ru

16.Что такое изгибающий момент, поперечная ,продольная силы? Что такое эпюра внутренних усилий, что показывает каждая ордината на эпюре?

Изгибающий момент, поперечная сила, продольная сила- внутренние усилия возникающие от действия внешних нагрузок ( изгиб, поперечная внешняя нагрузка ,растяжение-сжатие).

Эпюры -графики изменения внутренних усилий вдоль продольной оси стержня, построенные в определённом масштабе.

Ордината на эпюре показывает значение внутреннего усилия в данной точке оси сечения.

17.Изгибающий момент. Правила (порядок) построения эпюры изгибающих моментов.

Изгибающий момент- внутреннее усилие возникающее от действия внешней нагрузки( изгиба , внецентренного сжатия –растяжения).

Порядок построения эпюры изгибающих моментов:

1.Определение опорных реакций данной конструкции.

2.Определение участков данной конструкции ,в пределах которых изгибающий момент будет изменяться по одному и тому же закону.

3.Произвести сечение данной конструкции в окрестности точки , которая разделяет участки.

4.Отбросить одну из частей конструкции, разделённой пополам.

5.Найти момент ,который уравновесит действие на одну из оставшихся частей конструкции всех внешних нагрузок и реакций связи.

6.Нанести значение этого момента, с учётом знака и выбранного масштаба, на эпюру.

Вопрос № 18.Поперечная сила. Построение эпюры поперечных сил, используя эпюру изгибающих моментов.

Поперечная сила Q –внутреннее усилие возникающее в стержне под воздействием внешней нагрузки( изгиб, поперечная нагрузка). Поперечная сила направлена перпендикулярно оси стержня.

Эпюра поперечных сил Q строится исходя из следующей дифференциальной зависимости: ,т.е. Первая производная от изгибающего момента по продольной координате равна поперечной силе.

Знак поперечной силы определяется исходя из следующего положения:

Если нейтральная ось конструкции на эпюре моментов поворачивается к оси эпюры по часовой стрелке, то эпюра поперечных сил имеет знак плюс, если против- минус.

В зависимости от эпюры M эпюра Q может принимать тот или иной вид:

1.если эпюра моментов имеет вид прямоугольника , то эпюра поперечных сил равна нулю.

2.Если эпюра моментов представляет собой треугольник , то эпюра поперечных сил имеет вид прямоугольника.

3.Если эпюра моментов имеет вид квадратной параболы , то эпюра поперечных сил имеет треугольника и строится по следующему принципу

Вопрос №19 . Продольная сила. Метод построения эпюры продольных сил используя эпюру поперечных сил. Правило знаков.

Полольная сила N- внутреннее усилие возникающее вследствие центрального и внецентренного растяжения-сжатия. Продольная сила направлена вдоль оси стержня.

Для того что бы построить эпюру продольных усилий нужно:

1.Вырезать узел данной конструкции. Если мы имеем дело с одномерной конструкцией , то сделать сечение на интересующем нас участке этой конструкции.

2.Снять с эпюры Q значения усилий действующих в непосредственной близости от вырезанного узла.

3.Дать направление векторам поперечных сил, исходя из того какой знак имеет данное поперечное усилие на эпюре Q по следующим правилам: если поперечная сила имеет на эпюре Q знак плюс , то её нужно направить так , что бы она вращала данный узел по часовой стрелке, если поперечная сила имеет знак минус –против часовой стрелки. Если внешняя сила проложена к узлу , то её нужно оставить и рассматривать узел вместе с ней.

4.Уравновесить узел продольными усилиями N.

5.Правило знаков для N:если продольная сила направлена к сечению , то она имеет знак минус ( работает на сжатие).если продольная сила направлена от сечения , она имеет знак плюс ( работает на растяжение).

Вопрос № 20.Правилаприменяемые для проверки правильности построения эпюр внутренних усилий M,Q,N.

1. В сечении, где приложена сосредоточенная сила F, на эпюре Q будет скачок, равный значению этой силы и направленный в ту же сторону (при построении эпюры слева направо), а эпюра М будет иметь перелом, направ- ленный в сторону действия силы F.

2. В сечении, где приложен сосредоточенный изгибающий момент на эпюре М, будет скачок, равный значению момента М; на эпюре Q изменений не будет. При этом направление скачка будет вниз (при построении эпюры слева направо), если сосредоточенный момент действует по ходу часовой стрелки, и вверх, если против хода часовой стрелки.

3.Если на участке, где имеется равномерно распределенная нагрузка, поперечная сила в одном из сечений равна нулю (Q=M'=0), то изгибающий момент в этом сечении принимает экстремальное значение Мэкстр — максимум или минимум (здесь касательная к эпюре М горизонтальна).

4.Для проверки правильности построения эпюры М можно использовать метод вырезания узлов. При этом момент приложенный в узле нужно при вырезании узла оставлять.

Правильность построения эпюр Q и M можно проверить, дублируя метод вырезания узлов методом сечений и наоборот.

studfiles.net

52.Основные правила построения эпюр поперечных сил и изгибающих моментов

52.Основные правила построения эпюр поперечных сил и изгибающих моментов.

1.7 ПОСТРОЕНИЕ ЭПЮР ПОПЕРЕЧНЫХ СИЛ И ИЗГИБАЮЩИХ МОМЕНТОВ В БАЛКАХ Стержень, работающий на изгиб, называется балкой. В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - поперечная сила и изгибающий момент .  Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось. Правило знаков для : условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае. Схематически это правило знаков можно представить в виде   Изгибающий момент в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение. Правило знаков для : условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае. Схематически это правило знаков можно представить в виде:   Следует отметить, что при использовании правила знаков для в указанном виде, эпюра всегда оказывается построенной со стороны сжатых волокон балки. 1.8 КОНСОЛЬНЫЕ БАЛКИ При построении эпюр и в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

studfiles.net

Пример построения эпюры Q по эпюре М

Признаки правильного вида эпюры Q

1.На прямом элементе без нагрузки по его длине поперечная сила постоянна и эпюра Q имеет прямоугольную форму.

2.В сечении, которое совпадает с действующей поперек оси стержня сосредоточенной силой, ординаты эпюры Q слева и справа от силы имеют скачок, равный величине этой силы.

3.На участке с равномерно распределенной нагрузкой эпюра Q прямолинейна и имеет наклон к оси стержня (рис. 3.11, 3), тангенс угла которого равен интенсивности нагрузки q = dQ / dx =tg β . Нулевому значению

на эпюре Q на участке с равномерно распределенной нагрузкой соответствует экстремальное значение на эпюре M .

Для построения эпюры Q на прямолинейном элементе при отсутствии на нем нагрузки и при действии по его длине равномерно распределенной нагрузки достаточно иметь соответственно одну и две ординаты по концам элемента.

В программе SCAD поперечные силы на КЭ вычисляются минимум в двух концевых сечениях. Поэтому информации для построения эпюры Q достаточно.

Однако иногда у расчетчика возникает необходимость построения эпюры Q по эпюре M вручную. Для этого можно использовать уравнение Q =dM / dx .

Отсюда следует, что на любом КЭ стержня с прямолинейной эпюрой M величина Q будет постоянной и значение Q и знак определятся из выражения (3.2).

Полагая, что на участках прямолинейных эпюр M , приведенных на рис. 3.1, местная система координат направлена так, как показано на рис. 3.2, 3.3. В соответствии с этим поставлены знаки ординат эпюр M . Тогда по формуле (3.2) получим те же величины Q, которые были получены на рис. 3.11 первым способом.

При построении эпюры Q на участках с равномерно распределенной нагрузкой

используют формулу (3.3), полученную по аналогии с формулой (3.1) на основе принципа независимости действия сил.

Поперечные силы Qн,к по этой формуле определяют для крайних сечений элемента (в

узлах «н» и «к» МСК) как сумму ординат Qo

= ±ql / 2 эпюры Qo

для балки, загруженной

н,к

 

 

равномерно распределенной нагрузкой (рис. 3.12,а), и ординат

Qн,к(лом) = (M к − M н) / l ,

вызванной опорными моментами M н и Mк, действующими

по концам элемента

(рис. 3.12, б, г):

 

 

 

Q

= ± ql

+ M к −M н .

(3.3)

н,к

2

l

 

 

 

Обратим внимание, что первое слагаемое при нагрузке направленной «вниз» всегда имеет один и тот же вид (см. 3.12,а). Второе слагаемое дает эпюру с постоянными

studfiles.net

Проверки построения эпюр Q и М по дифференциальным зависимостям

Проверка или контроль построения эпюр. Следует хорошо усвоить дифференциальные зависимости между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом, что позволит  быстро и правильно строить эпюры. Как проверить эпюры Q и М ? Необходимо запомнить следующие правила (проверки построения эпюр):

  1. На участке балки, где отсутствует распределенная нагрузка, эпюра Qy – прямая,параллельная базовой линии, а эпюра Мх — наклонная прямая.
  2. Под сосредоточенной силой на эпюре Qy наблюдается скачок, численно равный приложенной внешней силе, а на эпюре Мх – излом.
  3. В точке приложения сосредоточенной пары сил (момента) на эпюре момента происходит скачок на размер момента этой пары, а эпюра Qy не претерпевает изменений.
  4. На участке действия равномерно распределенной нагрузки эпюра Qy выражается наклонной прямой, а эпюра Мх – параболой, обращенной выпуклостью навстречу действию распределенной нагрузки.
  5. На  участках балки, где эпюра Q положительна, изгибающий момент с увеличением координаты z увеличивается, и, наоборот, там, где Q < 0, изгибающий момент уменьшается.
  6. Если на участке действия распределенной нагрузки эпюра Q пересекает базовую линию, то в этом сечении изгибающий момент принимает экстремальное значение.
  7. Если на границе действия распределенной нагрузки не приложено сосредоточенных сил, то на эпюре Qy участок, параллельный оси абсцисс, переходит в наклонный без скачка, а параболическая и наклонная части эпюры Мх сопрягаются плавно без изгиба.
  8. Изгибающий момент в концевых сечениях балки всегда равен нулю, за исключением случая, когда в концевом сечении действует сосредоточенная пара сил. В этом случае изгибающий момент в концевом сечении балки равен моменту действующей пары сил.
  9. В сечении, соответствующем заделке, Qy и Мх численно равны опорной реакции и реактивному моменту заделки.

Пример балки, на которой наглядно можно проверить правильность построения эпюр по дифференциальным зависимостям. Эпюра М построена на растянутых волокнах.

При построении эпюр изгибающих моментов рекомендуется придерживаться существующей традиции:

— если это балка является строительной конструкцией, то эпюра моментов строится на «растянутых» волокнах (положительные моменты откладываются вниз, отрицательные – вверх),

— а если балка является объектом машиностроения, то наоборот: эпюра моментов строится на «сжатых» волокнах (положительные моменты откладываются вверх, отрицательные – вниз).

Запись опубликована автором admin в рубрике Изгиб.

prosopromat.ru