Что лучше газобетон или пенобетон для строительства: Газоблок или пеноблок: что лучше для строительства

Содержание

Газоблок или пеноблок: что лучше для строительства

В последнее время в строительной среде распространилась сильная путаница по поводу названий блоков из ячеистого бетона. Часто разными словами называют один материал, а иногда объединяют под одним названием материалы совсем с разными свойствами. В этой статье разберемся, чем газобетон отличается от пеноблока, пенобетона, газосиликата и др.

Основные отличия пеноблока от газоблока


Для понимания вопроса нужно обратиться к нормативным документам, которые регулируют производство вышеупомянутых материалов.

Оба вида блоков имеют схожие свойства, похожи внешне и относятся к одному типу материалов – ячеистому бетону. Изделия из такого бетона имеют пористую структуру, что делает их более «теплыми» (низкая теплопроводность), но при этом они сохраняют достаточную прочность для строительства несущих стен.

Слова «пенобетон» и «газобетон» давно вошли в употребление, но фактически эти названия никак не отражают состав материала, потому что эти изделия не являются бетоном. Бетон – это составной материал, в состав которого входит заполнитель и вяжущее. Первая часть названия обычно обозначает заполнитель (железобетон). Части «пено-» и «газо-» тут обозначают способ порообразования. В одном случае — пена, в другом — газ.

Пенобетон


Производство этого материала регулируется двумя ГОСТами: «25820-2014 Бетоны легкие. Технические условия» (вступает в силу с 1 января 2020) и «25485-2012 Бетоны ячеистые. Общие технические условия». Из пенобетона изготавливаются пеноблоки, которые используют в качестве строительного стенового материала. Основные компоненты: цемент, вода, песок и пенообразователь.

Пенобетон от газобетона отличается по двум основным признакам.

По способу твердения – все ячеистые бетоны подразделяются на автоклавные и неавтоклавные. Пенобетон относится к последней категории, т.е. он твердеет естественным путем на воздухе (гидратационное твердение) в съемной опалубке. В некоторых случаях опалубка сразу разделяет материал на блоки, иногда пенобетон заливают одним большим блоком, а потом нарезают на части.

Автоклав – герметичная емкость для нагрева под давлением, на изделия внутри воздействует пар и высокая температура, поэтому газобетон сразу после производства получается влажным (влажность по массе у изделий низкой плотности может достигать 50%).

По способу пенообразования – пористой структуры в пенобетоне добиваются путем добавления специальных пенообразователей. В жидком виде материал вспенивают, а после затвердения у него остается пористая структура. В качестве пенообразователей могут использоваться костный клей, скрубберная паста и др.

В ГОСТе, который действовал до 2019 года пенообразователи нормировались, в новом нормативе пенообразователи не указываются.

Газобетон


Правильнее называть газобетон автоклавным ячеистым бетоном. Изготовление регулируется ГОСТом 31359-2007 «Бетон ячеистый автоклавного твердения. Технические условия». Газобетон делают из цемента, песка, воды, извести и газообразователя. Компоненты схожие, но остановимся на отличиях от пенобетона.

Песок измельчается до мелкой фракции (2000 – 3000 см.кв/кг), это необходимо для формирования единой с цементом массы. Песок для пенобетона не измельчают.

Материал нарезается еще до застывания, для этого не используется опалубка. Газоблоки продавливаются через стальные струны.

Застывание происходит за 12 часов в автоклаве. Благодаря этому порообразование происходит более предсказуемо, и блоки получаются более однородными.

Образование ячеек происходит при взаимодействии газообразователя (алюминиевая пудра ПАП-1 и ПАП-2) с известью и водой. В результате этого выделяется водород, который и формирует поры внутри материала.

Газобетон в некоторых регионах называют газосиликатом, но на самом деле это разные материалы. Когда производство ячеистых бетонов только началось, практиковались разные составы: на основе цемента, на основе извести и смешанные. Изделия на основе извести назывались газосиликатными блоками, сейчас такая рецептура практически не применяется.

Рассмотрим достоинства и недостатки каждого из материалов

Как понятно из описания процедуры производства, газобетонный блок изготовить кустарными методами практически невозможно, чего нельзя сказать о пенобетоне. Конечно, такие изделия имеют непредсказуемые физико-технические параметры, поэтому сравнивать их не имеет смысла. Для сравнения мы возьмем усредненные параметры пенобетона, который производится с соблюдением требований нормативов.

Что прочнее?


Марка прочности ячеистых бетонов обозначается буквой B (прочность на сжатие) и выражается в МПа (Н/м.кв). От этого параметра зависит усилие, после которого блок разрушится и потеряет свою несущую способность. Характеристика прочности обычно влияет на плотность. Повышение прочности приводит к повышению плотности, что снижает тепловые характеристики материала, поэтому прочность должна быть рассчитана в соответствии с требованиями конкретной конструкции.

Прочность пенобетона обычно не превышает B1,5, газобетон может иметь марку B1,5 – B7,5. Что позволяет использовать газобетон для более нагруженных конструкций, пенобетон можно использовать для ненагруженных конструкций (перегородки, хозяйственные конструкции) или в качестве теплоизоляционной прослойки.

По ГОСТам ячеистые бетоны подразделяются на теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.

B0,5 – B1,5 – теплоизоляционные

B1 – B10 – конструкционно-теплоизоляционные

B7,5 – B12,5 – конструкционные

Это разделение достаточно условно, потому что выбор прочности должен быть продиктован расчетами для конкретного проекта. Раньше эта классификация была привязана к плотности материала, поэтому до сих пор ошибочно её продолжают приводить. В ГОСТе 2009 года для автоклавных газобетонов приводились только предельные значения по прочности, с 2020 года классификацию по прочности распространили на все ячеистые бетоны.

Что легче?


Газобетон имеет меньший вес за счет большего количества пустот и более однородной структуры (вес блока 300 мм – 18,5 кг). В пенобетоне (вес блока 300 мм от 35 кг) песок является заполнителем, который не участвует в синтезе, к тому же часто для кладки пенобетона нельзя использовать кладку с тонким швом. Увеличение шва способствует повышению веса всей конструкции.

Что теплее?


Низкая теплопроводность обусловлена количеством пор и их структурой. Плотный материал обладает более высокой теплопроводностью, соответственно постройки из него получаются менее «теплыми». Фактическая плотность пенобетона превышает марку D600, плотность газобетона D300 – D600. Это позволяет использовать последний для возведения однослойных стен с достаточно для средней полосы России тепловым сопротивлением.

Марка плотности блоков обозначается буквой D и цифровым значением (D200 – D700).


Порообразование в газобетоне происходит более равномерно, большинство пор получается закрытыми и маленькими. В пенобетоне больше открытых пор и они более крупные, а соответственно материал имеет более высокую теплопроводность.

Теплопроводность газобетона – 0,05 – 0,2 Вт/(м*С)

Теплопроводность пенобетона начинается от 0,18


Водопоглощение


Главная проблема газобетона заключается в изначально высокой влажности, после обработки в автоклаве она может достигать 50%. В процессе работы на строительной площадке и из раствора материал может дополнительно увлажняться. После возведения здания за 3 – 6 месяцев стены выходят на равновесную с окружающей средой влажностью (5%). До этого момент дом из газобетонных блоков не рекомендуется утеплять и отделывать.

Особенно важно выждать срок высушивания блоков при утеплении с помощью пенополистирола. В противном случае в стене может происходить влагонакопление с последующим разрушением стенового материала при пониженных температурах.

Когда влажность газоблоков выходит на 5 – 8%, то здание может эксплуатироваться в обычном режиме. Для влажных помещений (баня, отапливаемые помещения для домашних животных) на газобетонной стене надо сделать гидро- и пароизоляцию.

Пенобетон в этом отношении более практичен, так как он высыхает в процессе своего изготовления и увлажняется только осадками или раствором.


Что экологичнее?

Оба материала изготавливаются на основе минеральных компонентов (цемент, песок, известь). В изделиях не используются полимерные компоненты. Газобетон и пенобетон не вызывают аллергических реакций и не являются благоприятной средой для распространения плесени. Показатели радиоактивности у ячеистых бетонов тоже ниже, чем у других строительных материалов.

Какие размеры?


Газоблоки могут иметь различную форму и размеры. Максимальный размер крупного блока – 1500 мм, мелкого – 625 мм. Ширина соответственно – 600 и 400 мм, высота 1000 – 300 мм. Пеноблоки могут иметь схожие размеры, но встречаются и изделия большего размера.

Также пеноблоки и газоблоки могут иметь разнообразную форму. Например, из газобетона делают цельные перемычки для оконных и дверных проемов. По форме тычковой плоскости изделия подразделяют на блоки паз-паз, паз-гребень, плоскость-паз.
По этим параметрам пеноблоки и газоблоки находятся примерно на одном уровне, но пенобетонные изделия существенно проигрывают газобетону по точности размеров. Если у газоблоков первой категории отклонения от вертикалей и горизонталей обычно не превышают +-1 мм, то у пенобетонных блоков отклонения могут быть практически любыми.

Удобство в строительстве


Из прошлого пункта следует, что геометрия пеноблока хуже, чем у газоблока. Кладка с тонким швом (2-3 мм) при больших перепадах становится невозможной. Толстый растворный шов требует использования цементно-песчаных растворов, работа с ними требует определенного опыта каменщика.
Во вставке: Увеличение толщины шва ведет к снижению прочности кладки. С 10 мм до 20 на 20%, с 20 до 30 на 30%. Кладка с тонким швом прочнее на 20 – 30%.

Пенобетонные блоки нельзя класть на клей-пену из-за недостаточно ровной геометрии. Этот простой способ укладки, который используют при строительстве из газоблоков с тонким швом.
Еще одним негативным фактором является больший вес блоков. Из-за этого материал сложнее переносить, поднимать на объект. Это влияет на увеличение транспортных издержек.

Пенобетон более неоднородный, поэтому дает большую усадку 1-3 м/мм, усадка газобетона меньше и составляет 0,4 м/мм.
Вывод
По соотношению прочности и низкой плотности газобетон лучше пенобетона. Пенобетон больше подойдет для хозяйственных построек и зданий, в которых тепловое сопротивление стен не играет принципиальной роли.

Пеноблок или газоблок – что выбрать для строительства дома?

Нередко при строительстве частных домов используется пенобок или газобетон. Причинами тому служат их особенные характеристики и бюджетная цена. Но что лучше — пеноблок или газоблок для дома? В этой статье мы рассмотрим их свойства, что позволит нам ответить на такой вопрос. А также расскажем, что представляет собой шлакоблок и керамзитобетон.

Пеноблок и газобетон – это ячеистый бетон, имеющий пористую структуру. Относятся они к классу легких бетонов. Внешне очень легко различаются. У пеноблоков более крупная пористость. Как правило, они гладкие и имеют серый цвет. Поры у газоблоков более мелкие. Цвет материала белый, поверхность – рельефная. Изготавливаются разными способами.

  • При производстве пеноблоков в смесь из цемента/извести добавляется пенообразователь. Затем компоненты перемешиваются. Смесь разливается в формы, где и затвердевает. Для изготовления материала требуется совсем нехитрое оборудование. Для его производства не нужно создавать какие-то специальные условия.
  • Газоблок делается из смеси цемента/кварцевого песка/извести с добавлением алюминиевой пасты. Для обработки материала используется автоклавная установка, другое дорогое оборудование. Производится в специальных условиях, которые повышают качество выпускаемого ячеистого бетона.

Чем отличается газоблок от пеноблока, что лучше? Так как последний часто производится в кустарных условиях, то получается он достаточно неровным. Газоблок имеет более ровную поверхность, что обуславливает легкость его кладки, по сравнению с его «конкурентом».

Отличие пеноблока от газоблока: что лучше? Сравнение характеристик

Плотность рассматриваемых нами материалов различная. У пеноблоков она равняется 650-700, а у газоблоков – 450 килограмм на кубический метр. Судя по показателям, первый намного прочнее второго. Однако, как показывает практика,

ячеистые бетоны обоих видов выдерживают одинаковую нагрузку. Этому способствуют современные технологии, используемые в процессе изготовления газобетона.

Пеноблок или газоблок — что лучше для строительства? Если говорить о сохранении тепла, то лучше эту функцию выполняет именно газобетон, так как он известен своей высокой морозостойкостью. Поэтому его потребуется меньше для возведения дома, чем пеноблоков, чтобы сохранить тепло в помещениях здания. 

В остальном же различий у таких материалов практически не существует:

  • Ячеистые бетоны просто и быстро позволяют строить дома;
  • Их можно резать, придавать им разную форму;
  • Оба очень хрупкие, желательно их не ронять;
  • Поверхность легких бетонов можно отделывать разными способами, в том числе наносить фасадную декоративную штукатурку.

Газоблоки, пеноблоки, шлакоблоки — что лучше?

Нередко конкуренцию газо- и пеноблокам составляют шлакоблоки. Многие думают, что шлакоблок – это то же самое, что и пенобетон. Однако это совершенно не так. В составе шлакоблока присутствует шлак. Такие блоки бывают пустотелым или полнотелым. Их плотность превышает 750 кг на куб. метр. Способность удерживать тепло достаточно высокая, чтобы шлакоблок можно было назвать теплым материалом. К тому же он стоит недорого, даже если сравнивать его с пено- и газоблоками.

ВАЖНО! Шлакоблок не подвержен усадке. Про ячеистые бетоны, увы, такого сказать нельзя. Но газобетон менее подвержен усадке, чем пеноблок.

Что лучше пеноблок или газоблок или керамзитобетон?

Еще одним конкурентом ячеистых бетонов по праву считается керамзитобетон. Это монолитный материал. В его составе присутствует керамзит. В 1,5 раза ниже по теплопроводности, чем газобетон. Но требует дополнительной теплоизоляции, то есть дом из керамзитобетона придется обязательно утеплять с использованием утепляющих материалов.

 

Преимущества:

  • Керамзитобетон характеризуется отличной шумоизоляцией;
  • Не понадобится массивный фундамент;
  • Простое и быстрое строительство из керамзитных блоков.

Что лучше пеноблок или газоблок: отзывы

Отзывы о пеноблоках и газоблоках, как о стройматериале для частных домов, самые разные. Кто-то предпочел пенобетон и совершенно об этом не жалеет. Кто-то выбрал газоблок и считает свое решение наиболее верным. Дома из таких материалов получаются более выгодными по цене, что в большинстве случаев оказывается самым главным преимуществом, по сравнению с тем же кирпичом.

Некоторые говорят, что стены из таких материалов часто промерзают. Это факт, но основанный не на том, что пено- и газоблоки имеют недостатки, способные приводить к указанной проблеме. Как правило, причиной тому служит неправильная кладка, когда швы между блоками получаются слишком большими.

Выводы

Газоблоки, пеноблоки, керамзитоблоки — что лучше? А может быть предпочесть шлакоблок? Выбор остается за вами. Но прежде оцените не только свои финансовые возможности с учетом размеров будущего дома. Необходимо учесть климатические условия региона, на территории которого вы станете строить, так как для более теплого района можно выбрать материал средней теплопроводности. 

Соответственно, подумайте над тем, кто и как станет строить ваш дом. Если вы самостоятельно решите это сделать, рекомендуем тщательно ознакомиться с процессом строительства. «Газоблоки или пеноблоки — что лучше?» — видео на такую тему тоже полезно просмотреть, прежде чем выбирать стройматериал. Кроме того, на нашем сайте вы найдете много полезных статей на тему утепления, сравнения различных материалов, нанесения декоративной штукатурки и т.д. Прочитав их, вы получите важные знания, которые помогут вам в процессе строительства. 

Прочность пенобетона | Энциклопедия MDPI

Пенобетон представляет собой тип бетона, который производится путем блокировки воздушных пустот в растворе с помощью подходящего пенообразователя и классифицируется как легкий бетон. Обладает малым собственным весом, минимальным расходом заполнителя (не используется крупный заполнитель), высокой текучестью, контролируемой низкой прочностью и теплоизоляцией. На свойства пенобетона влияет способ производства и используемые материалы. В отличие от других пористых легких бетонов, сборные пены с пенообразователями добавляются к свежему цементному тесту и раствору. Воздушные поры, приносимые пенами, составляют 10–90% от объема закаленного тела. Эта пористая структура лежит в основе механических свойств, теплопроводности, акустических и прочностных свойств пенобетона. Одним из преимуществ пенобетона является его снижение веса (до 80%) по сравнению с обычным бетоном. Пузырьки воздуха равномерно распределяются в теле пенобетона. Пористая структура может быть нарушена при смешивании, транспортировке и укладке свежего бетона, поэтому он должен иметь неподвижные стенки. Пузырьки воздуха имеют размер примерно от 0,1 до 1 мм. Плотность пенобетона в основном зависит от количества пены и колеблется в пределах от 400 до 1600 кг/м 9 .

0003 3 . Его можно использовать для структурных, перегородочных, изоляционных и заполняющих работ с превосходной акустической/тепловой изоляцией, высокой огнестойкостью, более низкими затратами на сырье, более легкой перекачкой и, наконец, отсутствием уплотнения, вибрации или выравнивания.

пенобетон физико-механические свойства дизайн смеси теплопроводность микроструктура

1.

Морозостойкость

ASTM C666 определяет способность бетона нормальной массы противостоять циклам быстрого замораживания и оттаивания и приводит к разрушению типа микротрещин и отложений при проводке по пенобетону [1] [2] . Тикальский и др. [1] разработала модифицированную процедуру испытания на замораживание-оттаивание на основе ASTM C666. Прочность на сжатие, начальная глубина проникновения, переменные скорости впитывания оказывают важное влияние на производство морозостойкого пенобетона. Сообщалось, что плотность и проницаемость не являются важными переменными.

Вода, попадающая в бетон, расширяется во время замерзания и создает напряжения. Пористая структура пенобетона обеспечивает хорошую устойчивость к замораживанию и оттаиванию за счет дополнительного пространства, в котором вода может расширяться [3] . Пенобетоны обычно обладают хорошей устойчивостью к FT по сравнению с негазобетоном. Шон и др.

[4] показали в результате своей работы, что пенобетоны с высокой пористостью не всегда обеспечивают более высокое сопротивление FT. Было обнаружено, что на сопротивление FT пенобетона влияет больше, чем размер воздушной полости, и сообщалось, что количество воздушных пустот менее 300 мкм играет решающую роль в уменьшении повреждения FT в пенобетоне. В связи с увеличением количества циклов замораживания-оттаивания на поверхности образцов пенобетона увеличиваются потери массы и появляются сколы [5] . Тип пены, используемой в пенобетоне, влияет на потерю массы и потери прочности [6] . Разница в плотности влияет на сопротивление FT пенобетонов. Сообщалось, что пенобетоны с низкой плотностью испытывают большее расширение и большую потерю массы и прочности. Эта ситуация была связана с более крупной и взаимосвязанной структурой пор пенобетонов низкой плотности. Такая пористая структура позволит большему поглощению воды бетоном, в результате чего пенобетон будет демонстрировать более низкую устойчивость к FT 9.0003 [7]
.

2. Стойкость к повышенным температурам

При воздействии высоких температур пенобетон сильно дает усадку из-за высокой скорости испарения. Однако по сравнению с обычным бетоном пенобетон имеет приемлемое значение FR [8] . ТР связана с изменением механических свойств пенобетона при воздействии высоких температур [9] . Как правило, предел прочности при сжатии пенобетона увеличивается до 400 °С. Причина в том, что высокая температура стимулирует реакционную способность вяжущих. Однако после этого прочность постепенно снижается [10] [11] [12] .

При повышении температуры, которой подвергается пенобетон, происходит потеря твердости. Сообщалось, что эта потеря твердости начинается после 90 °C независимо от плотности [13] . Сообщалось, что пенобетоны плотностью 950 кг/м 3 выдерживают горение до 3,5 ч, а бетоны плотностью 1200 кг/м 3 — до 2 ч [9] . Полые конструкции помогают уменьшить воздействие высокой температуры на пенобетон [14] . Пористая структура пенобетона обычно связана с плотностью, и сообщалось, что на нее не влияют высокие температуры. По этой причине потеря прочности при высоких температурах обусловлена ​​изменением химических компонентов пенобетона [13] .

Минеральные добавки и заполнители влияют на свойства пенобетона после воздействия высоких температур. Пуццолановые добавки могут обеспечить увеличение прочности при повышении температуры. Прочность на сжатие увеличилась после того, как пенобетон, содержащий РГК и ВМФ, выдержали при температуре 200–400 °С. При температуре выше 400 °С из-за потери воды при кристаллизации происходит изменение концентрации Ca(OH) 2 , а также изменение морфологии и образование микротрещин вызывают снижение прочности на сжатие [11] . Теплостойкость геополимерного пенобетона оценивают по изменению прочности на сжатие и объема после воздействия высоких температур. Чжан и др. [10] полностью работал на пенобетоне, произведенном с комбинацией FA и FA-шлака. 100-процентное увеличение прочности на сжатие до 800 ° C было испытано в геополимерном пенобетоне (GFC) с FA. Однако в ГПК, приготовленных с комбинацией ТВС и шлака, наблюдалось повышение прочности на сжатие до 100 °С, а затем прочность на сжатие снижалась. Потому что он гораздо сильнее разлагается с потерей химически связанной воды, чем гели, богатые кальцием, образованные комбинацией ТВС и шлака.

Трещины появляются в пенобетоне при повышении температуры. Сообщалось, что трещины появляются на поверхности пенобетона после 400 °С и увеличиваются с повышением температуры. В то же время трещины, наблюдаемые в пенобетонах высокой плотности, более многочисленны [15] . Кроме того, на образование трещин влияют способы охлаждения образцов (воздухом или водой). Было замечено, что медленно охлаждающиеся (на воздухе) образцы имели большую склонность к растрескиванию. Увеличение количества трещин увеличивает потерю прочности [11] .

3. Акустические

Наименее изучены акустические свойства пенобетона. На звукоизоляцию пенобетона могут влиять такие факторы, как содержание пены, количество, размер и распределение пор и учет их однородности. По сравнению с обычной бетонной стеной пенобетонные ячеистые стены пропускают звуковую частоту с более высоким значением до 3%, а пенобетон имеет коэффициент звукопоглощения в 10 раз выше, чем плотный бетон [8] . Сообщалось, что в пенобетоне, содержащем ФА, звукопоглощение увеличивается в диапазоне частот 800–1600 Гц. Это было связано с изменением свойств пор при добавлении FA. Кроме того, увеличение дозировки пены оказывает меньшее влияние на низких частотах. Сообщается, что среднечастотные пенобетоны (600–1000 Гц) являются более эффективным материалом [10] .

Чжуа и др. [10] сообщают, что тонкие образцы ГПЦ толщиной 20–25 мм демонстрируют впечатляющий показатель звукопоглощения (α = 0,7–1,0) в области низких частот 40–150 Гц, а среднее звукопоглощение ГПЦ лучше чем плотный бетон. Мастали и др. [16] показали, что щелочно-активные шлаковые пенобетоны, разработанные с содержанием пены 25–35%, в своих исследованиях показали отличные максимальные коэффициенты звукопоглощения (0,8–1) в области средних и высоких частот. Сообщалось, что существует линейная корреляция между плотностью и акустическими свойствами щелочно-активных шлаковых пенобетонов, использованных в исследовании. Другими словами, акустические свойства улучшаются за счет уменьшения плотности.

4. Теплопроводность

Пористость и плотность бетона являются двумя основными параметрами, влияющими на значение теплопроводности [17] . Изменение доли пены влияет на плотность в сухом состоянии, изменение плотности в сухом состоянии влияет на теплопроводность [18] . По мере увеличения плотности в сухом состоянии теплопроводность увеличивается.

Чжан и др. [10] , при исследовании механических, теплоизоляционных и акустических свойств геополимерного пенобетона установили, что при повышении плотности в сухом состоянии с 585 до 1370 кг/м 3 теплопроводность увеличилась с 0,15 до 0,48 Вт/мК. Количество пористости увеличивается по мере уменьшения плотности в сухом состоянии. Увеличение пористости снижает теплопроводность. Точно так же увеличение В/Ц снижает теплопроводность за счет увеличения пористости [19] . Другими словами, теплопроводность увеличивается с увеличением плотности в сухом состоянии. Сообщалось, что GFC обладает лучшими теплоизоляционными свойствами, чем пенобетон на портландцементе (такая же плотность и/или прочность).

Теплопроводность зависит от типа используемого цемента и вспенивающего газа. Чем ниже теплопроводность используемого цемента и пенообразователя, тем ниже теплопроводность пенобетона [18] [20] [21] . Ли и др. [20] исследовали влияние вспенивающего газа и типа цемента на теплопроводность пенобетона. Для исследования был приготовлен пенобетон с использованием четырех различных вспенивающих газов (воздух, водород, кислород, углекислый газ) и трех различных видов цемента (ПДК, ПАК, ОПЦ). Теплопроводность пенобетона на основе ПДК выше, чем у других цементов. Теплопроводность пенобетона при использовании вспенивающего газа водорода была самой высокой, а при использовании вспенивающего газа углекислого газа – самой низкой. Это связано с тем, что газообразный диоксид углерода имеет значительно меньшую теплопроводность (0,014 Вт/мК), чем атмосферный (0,025 Вт/мК) и аммиачный газы (0,025 Вт/мК). Поэтому использование пенообразователя углекислого газа является эффективным методом улучшения теплоизоляции [22] . Частичная (30%) замена ТВС на цемент позволила снизить теплоту гидратации. Использование легких заполнителей с низкой плотностью частиц среди воздушных пустот, искусственно введенных в матрицу строительного раствора, способствовало снижению теплопроводности [23] . В исследовании, проведенном Gencel et al. [17] теплопроводность пенобетона уменьшалась с RCA. Это происходит благодаря повышенной пористости при использовании RCA. Увеличение пористости снижает теплопроводность. Точно так же теплопроводность снизилась при использовании геополимера RCA в пенобетоне. Равномерное и увеличенное количество воздушных пустот при использовании RCA могло обеспечить это [24] . SF улучшает распределение отверстий, делая поры более однородными и закрытыми круглыми, что повышает эффективность изоляции [25] . Использование кокосового волокна снизило теплопроводность пенобетона. Кокосовое волокно имеет низкую теплопроводность благодаря высокой термостойкости. Это можно показать как еще один пример, доказывающий, что материалы с низкой теплопроводностью снижают теплопроводность пенобетона. Кроме того, образование равномерных воздушных пустот в бетоне за счет добавления фибры является еще одним фактором, снижающим теплопроводность [26] . Результаты различных исследований теплопроводности приведены в Таблице 1 .

Таблица 1. Результаты различных исследований теплопроводности.

Каталожные номера Цемент и добавки Вспенивающийся материал Плотность (кг/м 3 ) Теплопроводность (Вт/мК)
[27] ПК + ГГБФС Н 2 О 2 150–300 (сухой) 0,05–0,070
[21] ПДК Н 2 О 2 300–1000 (сухой) 0,136–0,347
[19] ПК + ФА Белок 975–1132 (оптом) 0,225–0,264
[28] ПК + ФА Белок 970–1307 (сухой) 0,24
[29] ПК + ФА Синтетика 860–1245 (сухой) 0,021–0,035
[30] ПК + ФА + СФ Синтетика 11:00–16:00 (сухой) 0,40–0,57
[31] ПК Белок 650–1200 (сухой) 0,23–0,39
[10] ГФК 585–1370 0,15–0,48
[17] ПК + ФА Белок 594–605 (вес шт. ) 0,154–0,162
[32] ПК + БТ 300–600 0,06–0,15

Расчеты и экономика смесей — Richway Industries

Расчет ячеистых бетонных смесей

Работа с ячеистым бетоном

делает прочность . В некоторых случаях, например, когда материал необходимо выкопать в более позднее время, потеря прочности является преимуществом. Дополнительным преимуществом является то, что по мере того, как материал становится легче, его тепло- и звукоизоляционные свойства также улучшаются. очень 9Базовая ячеистая бетонная смесь 0123 будет состоять просто из портландцемента , воды и внешней пены , которую также иногда называют предварительно сформированной пеной.
Водоцементное отношение обычно может варьироваться от 0,40 до 0,80, а содержание пены обычно достигает 80%, в зависимости от желаемой плотности. Обычно используется Portland типа 1, однако могут использоваться и другие типы Portland. При использовании других типов портландцементов преимущества, для которых они используются в других материалах, также распространяются на ячеистый бетон.

Альтернативные материалы

Помимо портландцемента существует множество других вяжущих материалов, которые можно использовать в ячеистых бетонах. Летучая зола очень распространена, но метакаолин , шлак и микрокремнезем — это несколько других, которые также использовались в производстве ячеистого бетона. В зависимости от применения эти альтернативные материалы могут использоваться, среди прочего, для увеличения прочности материала или для дальнейшего улучшения экономических показателей ячеистого бетона. Помимо вяжущих материалов можно использовать и другие материалы, например волокно.

Плотность

Обычно при плотности ниже 50 фунтов на кубический фут (PCF) (800,92 кг/м³) не используются мелкие или крупные заполнители, так как они имеют тенденцию к дальнейшему снижению прочности. Когда содержание песка превышает 50 PCF (800,92 кг/м³), можно вводить песок, в первую очередь в целях экономии. Портланд является самым дорогим компонентом ячеистого бетона, и когда требуется более высокая плотность, например, для вытеснения воды, но не требуется более высокая прочность, это создает хорошую возможность и причину для использования дешевого наполнителя, такого как песок.
Крупные заполнители обычно не вводятся до тех пор, пока плотность не превысит 100 PCF (1601,85 кг/м³). В приложениях, где ячеистый бетон используется в этом диапазоне плотности, это, скорее всего, будет структурным или сборным приложением. Как и в случае с любым другим бетонным продуктом, составы ячеистых бетонных смесей особенно важны, поскольку состав смеси имеет решающее значение для характеристик материала в зависимости от области применения. После принятия решения о дизайне смеси также важно внимательно следить за плотностью при производстве.

Если производимый материал слишком тяжелый, производительность и деньги теряются. Если материал слишком легкий, он может не обладать необходимой прочностью для применения.

Водоцементное отношение

Водоцементное отношение ячеистого бетона может варьироваться в широких пределах. Хотя большинство людей не обращают на это особого внимания, следует отметить, что водоцементное отношение ячеистого раствора действительно увеличивается по сравнению с соотношением В/Ц базового раствора из-за воды в добавляемой пене. Как и в случае любого цементного продукта, прочность ячеистого бетона будет увеличиваться при любой заданной плотности, когда используется более низкое соотношение В/Ц. Общий диапазон составляет от 0,40 до 0,80, при этом многие конструкции смесей чаще попадают между 0,50 и 0,65.
Обычно водоцементное отношение не должно быть ниже 0,35 . Когда отношение В/Ц падает ниже 0,35, суспензия может вытягивать воду из пены при ее добавлении, вызывая схлопывание пузырьков пены. Тем не менее, смесители с высокими сдвиговыми усилиями , такие как коллоидные смесители и/или использование понизителей воды и суперпластификаторов , могут эффективно использоваться, чтобы помочь избежать этой проблемы и позволить использовать более низкие водоцементные отношения с хорошей успех.
При использовании водоразбавителей или любого типа добавок с ячеистым бетоном необходимо провести испытания, чтобы убедиться в отсутствии неблагоприятных реакций между пеной и добавкой. Типичным результатом реакции может быть примесь, вызывающая схлопывание пузырьков пены.

Ожидаемые прочности и изолятивные значения клеточного бетона

ИЗВЕРДЕННАЯ Плотность
PCF (KG/M³)
Прочность
PSI (KG/Mā) 9013. 76 m³) of Slurry
Insulative Value
R value per inch
(Metrix R Value)
Mix Design
Low Density
20 (320. 37)
30 (480.55)
40 (640,74)
50 (800,92)
30–900 (от 2,07 до 62,05) 12–25 (.34 до .71) .75 до 1,85 (.
Medium Density
80 (1281.48)
90 (1441.66)
100 (1601.85)
400 to 1500 (27.58 to 103.42) 6 to 10 (.17 to .28) .25 to 0,30 (от 0,045 до 0,054) Песчаная смесь
Высокая плотность
105 (1681,94)
115 (1842.12)
125 (2002.31)
1500 до 4000 (103,42 до 275,79) 3–6 (.08 до .17) . Песчаная смесь

Примечание. Приведенные выше данные по ячеистому бетону взяты из отраслевых публикаций.

Это общие значения, которые должны быть проверены путем испытаний с использованием местных материалов и оборудования для любого данного проекта. Местные материалы, оборудование и подготовка навозной жижи, наряду с обработкой и контролем качества, могут привести к большим расхождениям в результатах для любого заданного состава смеси. Прочность на сжатие для любой заданной плотности является одной из общих тем, которые интересуют людей. Выше показана таблица с ожидаемой прочностью и изоляционными значениями для различных плотностей ячеистого бетона.
Прочность будет варьироваться в зависимости от множества факторов, включая конечный состав смеси, пенообразователь, пеногенератор и приготовление базовой суспензии. Как и в случае с другими цементными материалами, ячеистый бетон обычно проходит испытание на сжатие через 28 дней.

Составы смесей Экономика

Доля ячеистой бетонной смеси

Одной из самых больших проблем при составлении ячеистых бетонных смесей является расчет пропорций как основного раствора, так и необходимого количества пены для достижения заданной плотности. Опытный практикующий врач может сделать большую часть расчетов в уме и точных расчетов с помощью бумаги для заметок и калькулятора. С годами Компания Richway разработала Калькулятор состава смеси, который делает расчеты состава смеси и пропорции довольно простым процессом . В дополнение к расчету необходимого веса и объема партии, еще одной чрезвычайно полезной функцией калькулятора является возможность анализа затрат.

Определение стоимости

Ниже приведен простой пример расчета стоимости ячеистого бетона. Грубо говоря, один ярд³ (0,76 м³) готовой пены может стоить от 10 до 15 долларов США, в зависимости от соотношения концентрата воды, плотности пены и стоимости галлона пенообразователя. Если материал 30 PCF (480,55 кг/м³) начинается с одного ярда чистого цемента и имеет водоцементное отношение 0,50, для этого потребуется 2060 фунтов (934,4 кг) портленда и 1030 (467,22 кг) фунтов воды. К этому мы добавим 80 кубических футов (22,65 м³) пены, чтобы получить ячеистый бетон с плотностью 30 PCF (480,55 кгм³) (плотность во влажном состоянии). Общий выход тогда составит 3,75 кубических ярда (2,87 м³) материала.
Если бы стоимость базовой навозной жижи составляла 175 долларов США за ярд (доставляемой местной готовой смесью), мы бы добавили 36 долларов США пены [из расчета 50 долларов США за галлон (3,79 л) пены, 3 PCF (48,06 кг/м³) плотность пены и соотношение концентрата воды 40:1].