Чему равна удельная теплоемкость кирпича: Удельная теплоемкость кирпича разных видов в таблице

Удельная теплоемкость кирпича разных видов в таблице

Количество тепловой энергии, которая понадобится, чтобы нагреть один кг того или иного вида кирпичей на один градус, называют удельной теплоемкостью кирпича. Эта физическая величина напрямую зависит от плотности изделий: чем она ниже, тем ниже теплоемкость, а значит, тем меньше средств уйдет на отопление дома – при прочих равных условиях.

Ориентироваться в значениях этого параметра важно при выборе стройматериала для жилых или технических построек. Эти знания помогут правильно рассчитать теплоизоляцию и отопление.

Разные виды кирпичей имеют разную плотность. А значит, логично говорить и о разной общей и удельной теплоемкости кирпича. Рассмотрим основные разновидности этих материалов более подробно.

Группы и виды кирпича

Все изделия этого типа можно разделить на две большие группы – керамический и силикатный кирпич. В изготовлении силикатных блоков используются кварцевый песок, сырьем же для керамических изделий является специальная глина.

Однако эта классификация слишком общая – в каждой из групп есть несколько разновидностей кирпичей. Мы можем однозначно утверждать, что теплоемкость керамического кирпича в целом выше, нежели силикатного, то есть, прогревается он медленнее, а значит, строения из керамики менее теплые, чем объекты, имеющие стены из силикатных изделий. А вот для конкретики потребуется рассмотреть основные подвиды этого строительного материала более подробно.

Классический керамический кирпич

Его удельная теплоемкость колеблется в пределах от 840 до 479 Дж/(кг х град) – если речь идет о привычном нам всем красном одинарном рядовом кирпиче, который широко используется для возведения стен в малоэтажных и даже высотных постройках.

У более рыхлого желтого керамического кирпича, который применяется, в основном, в наружной облицовке фасадов, этот показатель составляет 728 единиц. То есть, такая отделка может выполнять еще и роль утеплителя.

Динасовый кирпич является огнеупорным, в него, помимо глины, входит значительная доля кремнезема. Его теплоемкость намного больше ходового керамического материала – целых 1243 единицы. Для того, чтобы нагреться, ему необходимо аккумулировать достаточно много тепловой энергии, то есть, нужны экстремально высокие температуры. Поэтому такой кирпич хорошо подходит для обустройства печей, каминов и мангалов: даже когда внутри будет полыхать пламя, риск обжечься о стены очага снаружи почти нулевой. То же самое касается и других видов огнеупорного кирпича.

Узнать о показателях разных видов керамических стройматериалов можно в соответствующих таблицах теплоемкости кирпича. В них же, как правило, имеются и другие важные значения, такие как плотность и теплопроводность.

Силикатный кирпич

Показатель аккумуляции тепла этой разновидности кирпичных блоков имеет диапазон от 754 до 837 Дж/(кг х град). Как видим, теплоемкость силикатного кирпича имеет более скромные значения, нежели аналогичные показатели обычного красного кирпича из глины.

При этом, к примеру, трепельный кирпич, который, помимо кварцевого песка, содержит также полевой шпат и небольшие примеси глины, имеет более рыхлую структуру, а его теплоемкость на единицу массы составляет 712 Дж/(кг х град). Из такого материала рекомендуется возводить объекты в суровых климатических условиях.

Структура и размеры материала и их связь с параметрами теплоемкости

По структуре различают кирпич следующих видов:

  • полнотелый;
  • с технологическими пустотами;
  • щелевой.

Керамический кирпич бывает еще и поризованным – с внушительным количеством маленьких отверстий, а также клинкерным, без пустот, более плотным, нежели рядовой.

Удельная теплоемкость красного кирпича, как, впрочем, и аналогичная характеристика у белых либо окрашенных силикатных блоков, напрямую зависит от его вида. Общий принцип таков: чем ниже плотность и чем больше пористость изделия, тем умереннее его теплоемкость. То есть, дом из поризованной разновидности, которую относят к теплой керамике, будет более комфортным и экономичным с точки зрения обогрева, нежели постройка из классических полнотелых изделий.

Очень плотный клинкерный кирпич не слишком подходит для постройки жилых зданий в принципе. У него другие положительные характеристики – прочность, твердость, гладкость и внешняя привлекательность. Клинкер отлично показывает себя как облицовочный материал, широко применяется в строительстве заборов, укладке тротуаров, дорожек, площадок. Кроме того, из него можно сооружать печи и камины: ведь основный сырьем в этом случае является специальная огнеупорная глина – шамот.

Для сравнения с обычными блоками – удельная теплоемкость шамотного кирпича при определенных температурных режимах может превышать 1000 единиц, что, согласитесь, не способствует быстрому нагреву помещений и сохранению оптимального уровня тепла в них с минимальными затратами.

В современном строительстве используются следующие стандартизированные размеры керамических и силикатных формованных стройматериалов:

  • одинарный;
  • полуторный;
  • двойной;
  • евро;
  • брусок;
  • модульный.

Ответ на вопрос о том, какая теплоемкость кирпича того либо иного размера, следующий: чем меньше габариты изделия, тем ниже его теплоемкость. Но только в том случае, если мы ведем речь об общем показателе. Удельная же теплоемкость не зависит от размерных значений блоков, поскольку рассчитывается на единицу массы. Соответственно, в этой связи на размеры кирпича можно не обращать внимания.

Итак, мы попытались рассказать о том, что собой представляет удельная теплоемкость описываемого стройматериала и в какой степени она влияет на комфортный здоровый микроклимат в помещениях. Важно понимать, что, в принципе, возводить жилые, коммерческие и технические сооружения можно практически из любых разновидностей кирпичей. Вопрос в том, сколько средств придется выделить на качественную теплоизоляцию и какие затраты нужно будет нести в будущем для того, чтобы обогреть помещения до приемлемых температур.

Особенно важно учесть данный параметр для жилых домов временного проживания, которые отапливаются нерегулярно. А вот для хозяйственных построек, например, кирпичного сарая на даче, в котором вы храните садовый инвентарь, показатель теплоемкости материала не так уж и важен – можно строить из любого, оказавшегося под рукой.

И последнее: чтобы среди разнообразных предложений современного рынка стройматериалов четко определиться, какая удельная теплоемкость кирпича нужна вам для возведения того или иного объекта, не забудьте учесть особенности местного климата: требования к домам в южных регионах значительно отличаются от значимых условий для возведения объектов в местностях с холодным климатом.

Плотность и удельная теплоемкость кирпича: таблица значений

Кирпич — ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич, но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость.

Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться.

Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу.  Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м3. Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м

3. Чем выше пористость, тем меньше плотность кирпича.

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м3. Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича
Вид кирпичаТемпература,
°С
Плотность,
кг/м3
Теплоемкость,
Дж/(кг·град)
Трепельный-20…20700…1300712
Силикатный-20…201000…2200754…837
Саманный-20…20 —753
Красный0…1001600…2070840…879
Желтый-20…201817728
Строительный20800…1500800
Облицовочный201800880
Динасовый1001500…1900842
Динасовый10001500…19001100
Динасовый15001500…19001243
Карборундовый201000…1300700
Карборундовый1001000…1300841
Карборундовый10001000…1300779
Магнезитовый1002700930
Магнезитовый100027001160
Магнезитовый150027001239
Хромитовый1003050712
Хромитовый10003050921
Шамотный1001850833
Шамотный100018501084
Шамотный150018501251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град)

. Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м3.

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м3.

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры.

Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

Источники:

  1. Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  3. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи.

термодинамика — Почему в накопительных нагревателях вместо воды используются кирпичи?

спросил

Изменено 8 месяцев назад

Просмотрено 1к раз

$\begingroup$

Я заметил, что удельная теплоемкость кирпича составляет около $(900-1000)~\rm\frac{J}{kg~K}$, тогда как вода стоит $4180~\rm\frac{J}{kg~K}$.

Если я правильно понимаю, то водонагреватель будет хранить больше тепла при той же температуре, чем кирпичный нагреватель. По факту примерно в 4 раза больше.

Так почему же вместо водонагревателей используются кирпичные накопительные нагреватели?

Кирпич плотнее воды, а это означает, что нагреватель будет тяжелее, что является еще одной причиной для выбора воды, а не кирпича.

Хотя водонагреватель может быть склонен к протечкам и возможной поломке из-за теплового расширения, что является как минимум одним недостатком водонагревателя. 9\circ C$. Эти температуры намного выше точки кипения воды, поэтому накопительный нагреватель, использующий воду, должен быть либо огромным (что противоречит цели использования воды), либо выдерживать огромное давление.

Хотя вы, вероятно, могли бы сделать устройство под давлением, которое все еще работало бы нормально, оно, по-видимому, было бы более дорогим и намного, намного более опасным, поскольку при таком давлении оно фактически превращается в бомбу, как только что-то пойдет не так.

$\endgroup$

$\begingroup$

В дополнение к указанным выше пунктам, резервуар для воды может протекать, но подвал, полный сложенных друг на друга кирпичей, не будет, а кирпичи не будут поддерживать рост плесени, бактерий или водорослей. кирпичи можно легко складывать с промежутками для доступа воздуха, но с водой это сделать труднее. кирпичи обладают структурной прочностью, но для воды требуется контейнер, чтобы выдерживать нагрузки.

$\endgroup$

$\begingroup$

И, конечно же, кирпичи плотнее, поэтому вода не будет удерживать примерно в 4 раза больше тепла для нагревателя того же размера, а только примерно в два раза больше.

$\endgroup$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя адрес электронной почты и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания и подтверждаете, что прочитали и поняли нашу политику конфиденциальности и кодекс поведения.

Тепловая масса — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рис. 1. Схема стены Тромба. Эта установка будет использовать тепловую массу на крайней правой стене для улавливания тепла. [1]

Термическая масса относится к материалу внутри здания, который может помочь уменьшить колебания температуры в течение дня; тем самым снижая потребность в отоплении и охлаждении самого здания. Материалы из термомассы достигают этого эффекта, поглощая тепло в периоды высокой солнечной инсоляции и выделяя тепло, когда окружающий воздух начинает остывать. При включении в технологии пассивного солнечного отопления и охлаждения тепловая масса может играть большую роль в снижении энергопотребления зданий.

Свойства тепловой массы

Идеальный материал для тепловой массы должен иметь:

  • высокая теплоемкость
  • высокая плотность материала

Теплоемкость вещества – это количество тепловой энергии, необходимое для изменения температуры объекта на заданную величину. Единицей СИ для теплоемкости является Джоуль на Кельвин ( Дж/К ). Общее количество энергии, хранимой системой тепловой массы, пропорционально размеру системы или материала, поэтому удельная теплоемкость ( Дж/м 2 K ), теплоемкость на единицу массы и объемная теплоемкость ( Дж/м 3 K ), теплоемкость на единицу объема, являются общими показателями, используемыми для определения хорошей тепловой массы. материал.

Термические массы

Ниже приведена таблица обычных строительных материалов с указанием их теплоемкости, плотности и удельной теплоемкости. Как упоминалось ранее, хороший материал для термомассы должен иметь высокую объемную теплоемкость.

Выбранная теплоемкость различных материалов [2]
Материал Теплоемкость ( Дж/К ) Плотность ( кг/м 3 ) Объемная тепловая мощность
Производительность ( МДж/м 3 K )
Вода 4,18 1000 4.18
Гипс 1,09 1602 1,746
Воздух 1.0035 1.204 0,0012
Бетон 0,88 2371 2,086
Кирпич 0,84 2301 2,018
Известняк 0,84 2611 2,193
Гранит 0,79 2691 2,125
Дерево 0,42 550 0,231

Вода обладает очень привлекательными свойствами тепломассы и может быть привлекательным материалом для пассивных солнечных конструкций; однако потенциальные проблемы с утечкой воды и повреждением обходят его широкое использование в качестве теплоносителя. Бетон и кирпич имеют относительно высокую объемную теплоемкость и являются обычными строительными материалами. При правильном использовании с солнечной стеной или стеной тромба потребление энергии для отопления и охлаждения здания может быть значительно снижено.

Материалы с фазовым переходом

Традиционные термомассовые материалы используют физическое тепло для накопления и высвобождения пассивной энергии солнечного излучения. Материалы с фазовым переходом используют накопление скрытого тепла и могут поглощать такое же количество солнечной энергии, используя гораздо меньший объем материала. [3] При повышении температуры материал переходит из твердого состояния в жидкое, это эндотермическая реакция, поэтому он поглощает тепло. Когда окружающая среда охлаждается (ночью), материал превращается из жидкого в твердое, происходит экзотермическая реакция, высвобождающая аккумулированное тепло в здание. Использование материалов с фазовым переходом является относительно новой концепцией в строительной науке, существует множество различных материалов, используемых для самых разных применений.

Тепловая масса и климат

В теплых погодных условиях термальная масса может поглощать тепло, полученное от солнечного света. Это сделает внутреннее пространство более комфортным и значительно снизит потребности в охлаждении и затраты на кондиционирование воздуха. Ночью, когда здание охлаждается, накопленная тепловая энергия высвобождается во внутреннее пространство здания, уменьшая потребность в отоплении. Тепловая масса наиболее полезна в климате, где есть большие колебания между дневной и ночной температурой окружающей среды. В районах с высокими ночными температурами все еще можно использовать тепловую массу, поэтому здание необходимо проветривать ночью более прохладным ночным воздухом, чтобы отвести накопленную тепловую энергию. [4]

Ссылки

  1. ↑ Wikimedia Commons. (6 августа 2015 г.). Стена Тромба [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/3/3d/Illust_passive_solar_d2_319pxW.gif
  2. ↑ Строить Зеленую Канаду.