Бетон с фиброй: Фибра для бетона, для чего используется

Содержание

Фибра для бетона, для чего используется

Модифицирующие добавки выводят бетон в разряд наиболее востребованных материалов промышленного и индивидуального строительства. В частности, армирующая фибра снижает риск образования трещин, повышает долговечность, эксплуатационные характеристики внутренних конструкций и наружных сооружений.


Что такое фибра для бетона

Фибра — добавка, состоящая из мелких армирующих волокон. Она вводится в раствор на этапе приготовления, а после застывания бетонного камня образует внутри хаотичный каркас. Важно, что каркас занимает весь объем бетонного тела, то есть характеристики улучшаются в каждой точке сооружения.

Армирование фиброй модифицирует бетон по многим параметрам:


  • ударное сопротивление увеличивается до 5 раз, что особенно важно для несущих конструкций, объектов в промышленных, сейсмоактивных, взрывоопасных зонах;

  • количество усадочных микротрещин при отвердении снижается до 90 %, в дальнейшем в монолитной структуре не образуются крупные дефекты;

  • стойкость к атмосферным воздействиям повышается до 10 раз, соответственно, увеличивается срок службы конструкции;

  • усиливаются влагостойкие и морозостойкие качества, так как фиброволокно заполняет пустоты и снижает количество пор внутри бетонного камня.

Основные виды фибры

Производители предлагают фибру из металла, базальта, стекла, полимеров. Стальные элементы делают объект надежным и долговечным, но при этом подвержены коррозии. Полипропилен улучшает сооружение сразу по многим параметрам, от влагостойкости до прочности на изгиб.

В финансовом плане наиболее выгодна полимерная фибра для бетона — расход на 1 м³ бетонной смеси составляет примерно 600 г. Для сравнения стальные волокна добавляются из расчета 30–40 кг на 1 м³ смеси.

В процессе производства при вытягивании полимера важно получить диаметр не менее 25 микрон — при таком сечении полипропиленовая фибра получает высокий коэффициент упругости.

Перед покупкой можно визуально оценить материал. Качественная добавка в бетон для прочности имеет относительно прямые полимерные волокна. Если видите много «рожков» и «улиток», был нарушен температурный режим — такой материал будет плохо распространяться в растворе, не улучшит, а то и ухудшит бетон.

Применение фибры из полипропилена

Материал актуален для самых разных объектов. Например, 100 % полипропиленовая фибра SikaFiber® PPM-12 надежно армирует стяжки, отмостки, штукатурки.

Пользоваться материалом удобно. Фибра для раствора поставляется в специальном пакете. Вводить добавку допускается на любом этапе — к сухим компонентам или в жидкую смесь. Никакой специальной техники не нужно, подойдет обычная бетономешалка.

Фиброволокно для стяжки пола, штукатурки стен и других конструкций превосходит по удобству традиционные способы армирования. В сравнении с металлической сеткой и стальными прутками, волокна равномерно распределены по всему объему раствора. Это снижает количество внутренних усадочных микротрещин, а также предотвращает расслоение и быстрое истирание наружных слоев.

Чтобы качественно укрепить бетон, нужно использовать материалы надежных производителей. Полипропиленовая фибра Sika прошла лабораторные испытания, имеет европейские сертификаты — с такой добавкой бетонное сооружение или изделие будет служить годами даже в экстремальных условиях.


Фибра для бетона: свойства, применение

Фибра – это вспомогательный строительный материал, представляющие собой синтетические волокна, используемые для микроармирования бетонных конструкций. Зачастую фибру добавляют также в сухие смеси и растворы с целью повышения их свойств и характеристик. С появлением этого материала застройщики избавились от большой части хлопот, связанных с заливкой бетона, теперь многочисленные процессы значительно ускорились и упростились, а готовые объекты стали надежнее и долговечнее. Что же собой представляет фибра для бетона, какие виды существуют, как она правильно применяется и в чем ее преимущества?

Содержание:

  1. Зачем применяется фибра для бетона
  2. Преимущества соединения бетона с микрофиброй
  3. В каких сферах используется фибра
  4. Какие существуют разновидности фибры
  5. Как и где применяется фибра в зависимости от длины
  6. Технология замешивания фибры
  7. Дополнительная информация
  8. Купить фибру для бетона

 

Зачем применяется фибра для бетона

В современном строительстве широко применяется такой универсальный и проверенный материал, как бетон. Объясняется это свойствами бетона, такими как:

  • прочность;
  • долговечность;
  • возможность использования для возведения, монтажа и отделки самых разных объектов;
  • невысокая стоимость.

Бетон хорош во многих отношениях и аналога ему до сих пор не изобрели. Несмотря на обилие новых материалов, он все равно не выходит из употребления и будет востребован еще не одно десятилетие. Но при этом есть у бетона и свои недостатки. При постоянных и интенсивных нагрузках, под воздействием погодных факторов, ветра и влаги, при температурных перепадах и усадке этот материал подвержен механическим повреждением, таких как растрескивание и разрушение. В особенности страдают края и места соединений элементов бетонных конструкций. Чтобы повысить прочность бетона, улучшить его структуру и продлить срок эксплуатации в раствор добавляются волокна микрофибры – благодаря этому отличный строительный материал становится еще лучше.

Преимущества соединения бетона с микрофиброй

При армировании бетона фиброй получает такие ценные качества:

  • пластичность и вязкость, что делает более удобной, быстрой и легкой работу с ним;
  • морозоустойчивость;
  • водонепроницаемость;
  • отсутствие деформации после застывания;
  • устойчивость к истиранию;
  • прочность и долговечность.

В каких сферах используется фибра

Области применения фибры практически неограничены – как и бетона.

  • Она используется для сооружения бетонных дорожных покрытий и площадок, гидротехнических объектов (бассейнов, водостоков, водопроводных каналов и водохранилищ), мостов и свай для них, заливки фундамента, торкретирования и оштукатуривания, возведения монолитных конструкций и промышленных помещений (ангаров, складов, торговых залов).

  • Также применяется и при изготовлении фигурных отливаемых изделий любой формы и размеров, что позволяет создавать оригинальнее архитектурные дизайны для украшения зданий.
  • Нередко раствором, в составе которого есть полипропиленовые, стеклянные, базальтовые или другие волокна, оформляют фасады здания, так как бетон совершенно не изменяет свой внешний вид, но при этом становится пластичнее, лучше держит форму и длительное время не разрушается. Благодаря использованию фибры можно предотвратить деформацию, растрескивание и сколы на краях бетонных соединений и сборных конструкций.

Какие существуют разновидности фибры

В зависимости от сырья и размеров выделяют следующие разновидности.

  • Фибра стеклянная. Этот вид используется только для отелочных и декоративных работ, так волокна быстро становятся хрупкими и не способны выдержать большую нагрузку в бетонных конструкциях. При добавлении этих стекловолокон в раствор значительно экономится расход цемента и воды – на 15 и 20% соответственно. Расход на один квадратный метр бетона – в среднем один килограмм.

  • Фибра базальтовая. Основные преимущества этой разновидности: негорючесть материала, нетоксичность, устойчивость к агрессивным химическим веществам. Особенность волокон в том, что при соединении с цементом они полностью в нем растворяются и повышают его прочность. Благодаря своим характеристикам базальтовая фибра может применяться для возведения жаростойких бетонных конструкций. На один квадратный метр бетона расходуется от 1,5 кг материала. Расход цемента и воды снижается при использовании базальтовой фибры также на 15 и 20 %.
  • Полипропиленовая фибра для бетона. Эта разновидность материала обладает отличными техническими характеристиками, в разы повышает прочность бетона, не образует трещин и очень долговечна без снижения своих свойств и качеств. Наиболее часто применяется для сухой стяжки пола, монтажа стен и фундамента. Расход материала на один квадратный метр составляет примерно 1 кг.
  • Стальная фибра для бетона. Наиболее популярный и часто используемый вид материала, так как может обеспечить неограниченные возможности в строительстве. Придает постройкам и конструкциям высокую прочность и устойчивость к внешним воздействиям, надежность и долговечность. Расход материала на один квадратный метр – от 30 до 40 кг.

  • Фибра анкерная. Этот материал представляет собой кусочки проволоки, добавляется в бетон, если требуется оформить изгибы зданий и других сооружений, придает конструкции дополнительную прочность. На один квадратный метр бетона требуется от 20 до 40 кг материала. Расход цемента и воды снижается на 15 и 20 %.

Также фибра бывает в зависимости от предназначения и сферы использования разных размеров – 6, 10, 12, 18 и 20 мм в длину и от 0,3 до 0, 5 мм в диаметре. Для работы с различными материалами – бетоном, штукатуркой, сухими смесями и растворами – предназначены различные виды фибры.

Как и где применяется фибра в зависимости от длины

Производители не напрасно разработали несколько разных вариантов длины этого материала.

  • Фибра небольшого размера – 6 мм – применяется для повышения прочности и улучшения геометрической формы при работе с такими смесями, как цемент, песок, гипс, в штукатурных и затирочных смесях, а также при работе с пено-бетоном.
  • Фибра для бетона размером в 12 мм используются для укрепления и увеличения прочности различных плит перекрытия, неавтоклавных газо- и пенобетонов, для наливных полов из бетона и фундаментов, свай, пустотелых бетонных конструкций, гидротехнических объектов.

  • Самая крупная фибра с волокнами длиной 18-20 мм предназначена для работы с тяжелыми и особо тяжелыми бетонами, которые замешиваются с добавлением крупного наполнителя – щебня, гравия, крупнозернистого песка. Незаменима при возведении мостов, укладке дорожного покрытия и других габаритных сооружений, требующих повышенной прочности и устойчивости к механическим воздействиям.

Технология замешивания фибры

  • Для того чтобы соединить фибру с цементом, гипсом и другими смесями необходимы, помимо самих материалов, бетономешалка или растворосмеситель и вода. Есть несколько способов замешивания раствора. Как правило, используется чаще всего следующая технология.
  • Вначале в бетоносмеситель засыпается сухое сырье – цемент, песок, гравий или их смесь, фибровые волокна — затем добавляется вода в соответствии с пропорциями, указанными производителем на упаковке.

  • Нарушать эти пропорции не рекомендуется. Со слишком густым раствором будет сложно работать, а чрезмерно жидкий даст большую усадку, станет хрупким и быстро даст трещины. Для приготовления раствора требуется от 5 до 10 минут перемешивания. Если желательно увеличить эластичность материала, в смесь добавляется также пластификатор. Иногда фибру затворяют именно в пластификаторе, а не воде перед добавлением в цементную смесь.
  • Когда требуются небольшое количество материала, замешивание можно производить и с помощью миксера. Иногда применяется и другая технология приготовления строительной смеси. Вначале фибра заливается водой. После того, как волокна равномерно распределятся по всему объему, их соединяют с цементом.
  • Расход фибры для бетона зависит от того, для каких целей будет использоваться раствор. Так, для полов достаточно 30 кг/м3, а для стен порядка 50-55 кг/м3.

Дополнительная информация

  • В продаже фибра доступна потребителю в пакетах различного объема от одного до двадцати килограммов. Небольшие пакеты упакованы дополнительно в гофрированные паллеты из плотного полиэтилена. Пакеты могут быть как полиэтиленовыми, так и бумажными. Если говорить о применении материала, то гораздо удобнее использовать его в бумажной упаковке. При замешивании раствора ее необязательно вскрывать и удалять, а можно сразу же закладывать в бетономешалку. В процессе соединения сухих смесей и воды и размешивания бумажный пакет полностью растворится. Такие пакеты называются водопроницаемыми и пользуются большой популярностью у строителей.
  • Готовую смесь, в составе которой есть фибра, удобно подавать насосом. Такой способ применяется при застройке габаритных сооружений и конструкций для ускорения процесса.

  • Иногда после застывания на поверхности бетона можно заметить отдельные проступающие волоски. Если никакого финишного покрытия больше не планируется, волоски подпаливаются огнем с помощью специальной лампы. Если же сверху будет наноситься краска или другой отделочный материал, рекомендуется оставить выступающие ворсинки. Благодаря такому приему обеспечивается повышенная адгезия бетонной поверхности с наружным покрытием.
  • Для получения качественного раствора, который обеспечит после застывания требуемый эффект важно точно соблюдать дозировку, предусмотренную специальным ГОСТом. Имеет значение и продолжительность замешивания. Обычно время рассчитывается по очень простой формуле: ко времени, необходимому для смешивания в аппарате цементного раствора без фибры следует прибавить еще 15 %, если фибра добавляется. То есть, если замешивание базового раствора должно длиться десять минут, при добавлении фибры время увеличится еще на полторы минуты.
  • При застройке крупных промышленных объектов для экономии времени нередко раствор замешивается в автомобильных миксерах. В этом случае пакеты с фиброй помещаются в миксер вместе с другими составляющими. Пока автомобиль доедет до пункта назначения, смесь будет полностью готова. В том случае, если фибра добавляется в готовый цементный раствор, находящийся в автомобильном миксере, время размешивания для полного распределения составит от пяти до восьми минут.

  • Полипропиленовая фибра нередко используется архитекторами и скульпторами для создания небольших фигур и элементов декора, отливаемых в формах. С ее помощью можно придать дополнительную прочность гипсовым изделиям. Нередко ее приобретают для художественного творчества в домашних условиях.
  • Благодаря такому универсальному материалу, как фиброволокна, можно получить еще несколько преимуществ: если бетон заливался в опалубку, то не стоит переживать о его деформации или растрескивании после того, как опалубка будет удалена. Намного удобнее контролировать и корректировать растекание цементного раствора при усадке, если в него была добавлена фибра любой разновидности. А после его застывания на поверхности гарантировано никогда не появится так называемое цементное молочко.

Купить фибру для бетона

  • Многих удивляет, почему цена фибры для бетона настолько разнится. Стоимость определяется, прежде всего, исходя из того, на какой основе изготовлен материал. Самые дорогостоящие те, для производства которых использовались полипропиленовые синтетические волокна. Самые доступные – изготовленные из стали и проволоки. Но, учитывая большой расход последних, едва ли удастся что-то сэкономить. Поэтому выбирать вид фибры стоит не по цене, а по ее качествам и предназначению.

  • Не последнюю роль играет также производитель и регион. Один и тот же сорт разных марок может существенно различаться в цене. Если стройматериалы доставляются издалека, цена на них может значительно возрастать.

Фибра для бетона любого вида незаменима в современном строительстве, на сегодняшний день без этого материала не обходится ни один монтаж железобетонных и других конструкций. В качестве вывода можно сказать, что главным ее достоинством является способность придавать прочности бетону и другим материалам.

Фибра для бетона: свойства, применение

Фибра – это вспомогательный строительный материал, представляющие собой синтетические волокна, используемые для микроармирования бетонных конструкций. Зачастую фибру добавляют также в сухие смеси и растворы с целью повышения их свойств и характеристик. С появлением этого материала застройщики избавились от большой части хлопот, связанных с заливкой бетона, теперь многочисленные процессы значительно ускорились и упростились, а готовые объекты стали надежнее и долговечнее. Что же собой представляет фибра для бетона, какие виды существуют, как она правильно применяется и в чем ее преимущества?

Содержание:

  1. Зачем применяется фибра для бетона
  2. Преимущества соединения бетона с микрофиброй
  3. В каких сферах используется фибра
  4. Какие существуют разновидности фибры
  5. Как и где применяется фибра в зависимости от длины
  6. Технология замешивания фибры
  7. Дополнительная информация
  8. Купить фибру для бетона

 

Зачем применяется фибра для бетона

В современном строительстве широко применяется такой универсальный и проверенный материал, как бетон. Объясняется это свойствами бетона, такими как:

  • прочность;
  • долговечность;
  • возможность использования для возведения, монтажа и отделки самых разных объектов;
  • невысокая стоимость.

Бетон хорош во многих отношениях и аналога ему до сих пор не изобрели. Несмотря на обилие новых материалов, он все равно не выходит из употребления и будет востребован еще не одно десятилетие. Но при этом есть у бетона и свои недостатки. При постоянных и интенсивных нагрузках, под воздействием погодных факторов, ветра и влаги, при температурных перепадах и усадке этот материал подвержен механическим повреждением, таких как растрескивание и разрушение. В особенности страдают края и места соединений элементов бетонных конструкций. Чтобы повысить прочность бетона, улучшить его структуру и продлить срок эксплуатации в раствор добавляются волокна микрофибры – благодаря этому отличный строительный материал становится еще лучше.

Преимущества соединения бетона с микрофиброй

При армировании бетона фиброй получает такие ценные качества:

  • пластичность и вязкость, что делает более удобной, быстрой и легкой работу с ним;
  • морозоустойчивость;
  • водонепроницаемость;
  • отсутствие деформации после застывания;
  • устойчивость к истиранию;
  • прочность и долговечность.

В каких сферах используется фибра

Области применения фибры практически неограничены – как и бетона.

  • Она используется для сооружения бетонных дорожных покрытий и площадок, гидротехнических объектов (бассейнов, водостоков, водопроводных каналов и водохранилищ), мостов и свай для них, заливки фундамента, торкретирования и оштукатуривания, возведения монолитных конструкций и промышленных помещений (ангаров, складов, торговых залов).

  • Также применяется и при изготовлении фигурных отливаемых изделий любой формы и размеров, что позволяет создавать оригинальнее архитектурные дизайны для украшения зданий.
  • Нередко раствором, в составе которого есть полипропиленовые, стеклянные, базальтовые или другие волокна, оформляют фасады здания, так как бетон совершенно не изменяет свой внешний вид, но при этом становится пластичнее, лучше держит форму и длительное время не разрушается. Благодаря использованию фибры можно предотвратить деформацию, растрескивание и сколы на краях бетонных соединений и сборных конструкций.

Какие существуют разновидности фибры

В зависимости от сырья и размеров выделяют следующие разновидности.

  • Фибра стеклянная. Этот вид используется только для отелочных и декоративных работ, так волокна быстро становятся хрупкими и не способны выдержать большую нагрузку в бетонных конструкциях. При добавлении этих стекловолокон в раствор значительно экономится расход цемента и воды – на 15 и 20% соответственно. Расход на один квадратный метр бетона – в среднем один килограмм.

  • Фибра базальтовая. Основные преимущества этой разновидности: негорючесть материала, нетоксичность, устойчивость к агрессивным химическим веществам. Особенность волокон в том, что при соединении с цементом они полностью в нем растворяются и повышают его прочность. Благодаря своим характеристикам базальтовая фибра может применяться для возведения жаростойких бетонных конструкций. На один квадратный метр бетона расходуется от 1,5 кг материала. Расход цемента и воды снижается при использовании базальтовой фибры также на 15 и 20 %.
  • Полипропиленовая фибра для бетона. Эта разновидность материала обладает отличными техническими характеристиками, в разы повышает прочность бетона, не образует трещин и очень долговечна без снижения своих свойств и качеств. Наиболее часто применяется для сухой стяжки пола, монтажа стен и фундамента. Расход материала на один квадратный метр составляет примерно 1 кг.
  • Стальная фибра для бетона. Наиболее популярный и часто используемый вид материала, так как может обеспечить неограниченные возможности в строительстве. Придает постройкам и конструкциям высокую прочность и устойчивость к внешним воздействиям, надежность и долговечность. Расход материала на один квадратный метр – от 30 до 40 кг.

  • Фибра анкерная. Этот материал представляет собой кусочки проволоки, добавляется в бетон, если требуется оформить изгибы зданий и других сооружений, придает конструкции дополнительную прочность. На один квадратный метр бетона требуется от 20 до 40 кг материала. Расход цемента и воды снижается на 15 и 20 %.

Также фибра бывает в зависимости от предназначения и сферы использования разных размеров – 6, 10, 12, 18 и 20 мм в длину и от 0,3 до 0, 5 мм в диаметре. Для работы с различными материалами – бетоном, штукатуркой, сухими смесями и растворами – предназначены различные виды фибры.

Как и где применяется фибра в зависимости от длины

Производители не напрасно разработали несколько разных вариантов длины этого материала.

  • Фибра небольшого размера – 6 мм – применяется для повышения прочности и улучшения геометрической формы при работе с такими смесями, как цемент, песок, гипс, в штукатурных и затирочных смесях, а также при работе с пено-бетоном.
  • Фибра для бетона размером в 12 мм используются для укрепления и увеличения прочности различных плит перекрытия, неавтоклавных газо- и пенобетонов, для наливных полов из бетона и фундаментов, свай, пустотелых бетонных конструкций, гидротехнических объектов.

  • Самая крупная фибра с волокнами длиной 18-20 мм предназначена для работы с тяжелыми и особо тяжелыми бетонами, которые замешиваются с добавлением крупного наполнителя – щебня, гравия, крупнозернистого песка. Незаменима при возведении мостов, укладке дорожного покрытия и других габаритных сооружений, требующих повышенной прочности и устойчивости к механическим воздействиям.

Технология замешивания фибры

  • Для того чтобы соединить фибру с цементом, гипсом и другими смесями необходимы, помимо самих материалов, бетономешалка или растворосмеситель и вода. Есть несколько способов замешивания раствора. Как правило, используется чаще всего следующая технология.
  • Вначале в бетоносмеситель засыпается сухое сырье – цемент, песок, гравий или их смесь, фибровые волокна — затем добавляется вода в соответствии с пропорциями, указанными производителем на упаковке.

  • Нарушать эти пропорции не рекомендуется. Со слишком густым раствором будет сложно работать, а чрезмерно жидкий даст большую усадку, станет хрупким и быстро даст трещины. Для приготовления раствора требуется от 5 до 10 минут перемешивания. Если желательно увеличить эластичность материала, в смесь добавляется также пластификатор. Иногда фибру затворяют именно в пластификаторе, а не воде перед добавлением в цементную смесь.
  • Когда требуются небольшое количество материала, замешивание можно производить и с помощью миксера. Иногда применяется и другая технология приготовления строительной смеси. Вначале фибра заливается водой. После того, как волокна равномерно распределятся по всему объему, их соединяют с цементом.
  • Расход фибры для бетона зависит от того, для каких целей будет использоваться раствор. Так, для полов достаточно 30 кг/м3, а для стен порядка 50-55 кг/м3.

Дополнительная информация

  • В продаже фибра доступна потребителю в пакетах различного объема от одного до двадцати килограммов. Небольшие пакеты упакованы дополнительно в гофрированные паллеты из плотного полиэтилена. Пакеты могут быть как полиэтиленовыми, так и бумажными. Если говорить о применении материала, то гораздо удобнее использовать его в бумажной упаковке. При замешивании раствора ее необязательно вскрывать и удалять, а можно сразу же закладывать в бетономешалку. В процессе соединения сухих смесей и воды и размешивания бумажный пакет полностью растворится. Такие пакеты называются водопроницаемыми и пользуются большой популярностью у строителей.
  • Готовую смесь, в составе которой есть фибра, удобно подавать насосом. Такой способ применяется при застройке габаритных сооружений и конструкций для ускорения процесса.

  • Иногда после застывания на поверхности бетона можно заметить отдельные проступающие волоски. Если никакого финишного покрытия больше не планируется, волоски подпаливаются огнем с помощью специальной лампы. Если же сверху будет наноситься краска или другой отделочный материал, рекомендуется оставить выступающие ворсинки. Благодаря такому приему обеспечивается повышенная адгезия бетонной поверхности с наружным покрытием.
  • Для получения качественного раствора, который обеспечит после застывания требуемый эффект важно точно соблюдать дозировку, предусмотренную специальным ГОСТом. Имеет значение и продолжительность замешивания. Обычно время рассчитывается по очень простой формуле: ко времени, необходимому для смешивания в аппарате цементного раствора без фибры следует прибавить еще 15 %, если фибра добавляется. То есть, если замешивание базового раствора должно длиться десять минут, при добавлении фибры время увеличится еще на полторы минуты.
  • При застройке крупных промышленных объектов для экономии времени нередко раствор замешивается в автомобильных миксерах. В этом случае пакеты с фиброй помещаются в миксер вместе с другими составляющими. Пока автомобиль доедет до пункта назначения, смесь будет полностью готова. В том случае, если фибра добавляется в готовый цементный раствор, находящийся в автомобильном миксере, время размешивания для полного распределения составит от пяти до восьми минут.

  • Полипропиленовая фибра нередко используется архитекторами и скульпторами для создания небольших фигур и элементов декора, отливаемых в формах. С ее помощью можно придать дополнительную прочность гипсовым изделиям. Нередко ее приобретают для художественного творчества в домашних условиях.
  • Благодаря такому универсальному материалу, как фиброволокна, можно получить еще несколько преимуществ: если бетон заливался в опалубку, то не стоит переживать о его деформации или растрескивании после того, как опалубка будет удалена. Намного удобнее контролировать и корректировать растекание цементного раствора при усадке, если в него была добавлена фибра любой разновидности. А после его застывания на поверхности гарантировано никогда не появится так называемое цементное молочко.

Купить фибру для бетона

  • Многих удивляет, почему цена фибры для бетона настолько разнится. Стоимость определяется, прежде всего, исходя из того, на какой основе изготовлен материал. Самые дорогостоящие те, для производства которых использовались полипропиленовые синтетические волокна. Самые доступные – изготовленные из стали и проволоки. Но, учитывая большой расход последних, едва ли удастся что-то сэкономить. Поэтому выбирать вид фибры стоит не по цене, а по ее качествам и предназначению.

  • Не последнюю роль играет также производитель и регион. Один и тот же сорт разных марок может существенно различаться в цене. Если стройматериалы доставляются издалека, цена на них может значительно возрастать.

Фибра для бетона любого вида незаменима в современном строительстве, на сегодняшний день без этого материала не обходится ни один монтаж железобетонных и других конструкций. В качестве вывода можно сказать, что главным ее достоинством является способность придавать прочности бетону и другим материалам.

Фибра для бетона: свойства, применение

Фибра – это вспомогательный строительный материал, представляющие собой синтетические волокна, используемые для микроармирования бетонных конструкций. Зачастую фибру добавляют также в сухие смеси и растворы с целью повышения их свойств и характеристик. С появлением этого материала застройщики избавились от большой части хлопот, связанных с заливкой бетона, теперь многочисленные процессы значительно ускорились и упростились, а готовые объекты стали надежнее и долговечнее. Что же собой представляет фибра для бетона, какие виды существуют, как она правильно применяется и в чем ее преимущества?

Содержание:

  1. Зачем применяется фибра для бетона
  2. Преимущества соединения бетона с микрофиброй
  3. В каких сферах используется фибра
  4. Какие существуют разновидности фибры
  5. Как и где применяется фибра в зависимости от длины
  6. Технология замешивания фибры
  7. Дополнительная информация
  8. Купить фибру для бетона

 

Зачем применяется фибра для бетона

В современном строительстве широко применяется такой универсальный и проверенный материал, как бетон. Объясняется это свойствами бетона, такими как:

  • прочность;
  • долговечность;
  • возможность использования для возведения, монтажа и отделки самых разных объектов;
  • невысокая стоимость.

Бетон хорош во многих отношениях и аналога ему до сих пор не изобрели. Несмотря на обилие новых материалов, он все равно не выходит из употребления и будет востребован еще не одно десятилетие. Но при этом есть у бетона и свои недостатки. При постоянных и интенсивных нагрузках, под воздействием погодных факторов, ветра и влаги, при температурных перепадах и усадке этот материал подвержен механическим повреждением, таких как растрескивание и разрушение. В особенности страдают края и места соединений элементов бетонных конструкций. Чтобы повысить прочность бетона, улучшить его структуру и продлить срок эксплуатации в раствор добавляются волокна микрофибры – благодаря этому отличный строительный материал становится еще лучше.

Преимущества соединения бетона с микрофиброй

При армировании бетона фиброй получает такие ценные качества:

  • пластичность и вязкость, что делает более удобной, быстрой и легкой работу с ним;
  • морозоустойчивость;
  • водонепроницаемость;
  • отсутствие деформации после застывания;
  • устойчивость к истиранию;
  • прочность и долговечность.

В каких сферах используется фибра

Области применения фибры практически неограничены – как и бетона.

  • Она используется для сооружения бетонных дорожных покрытий и площадок, гидротехнических объектов (бассейнов, водостоков, водопроводных каналов и водохранилищ), мостов и свай для них, заливки фундамента, торкретирования и оштукатуривания, возведения монолитных конструкций и промышленных помещений (ангаров, складов, торговых залов).

  • Также применяется и при изготовлении фигурных отливаемых изделий любой формы и размеров, что позволяет создавать оригинальнее архитектурные дизайны для украшения зданий.
  • Нередко раствором, в составе которого есть полипропиленовые, стеклянные, базальтовые или другие волокна, оформляют фасады здания, так как бетон совершенно не изменяет свой внешний вид, но при этом становится пластичнее, лучше держит форму и длительное время не разрушается. Благодаря использованию фибры можно предотвратить деформацию, растрескивание и сколы на краях бетонных соединений и сборных конструкций.

Какие существуют разновидности фибры

В зависимости от сырья и размеров выделяют следующие разновидности.

  • Фибра стеклянная. Этот вид используется только для отелочных и декоративных работ, так волокна быстро становятся хрупкими и не способны выдержать большую нагрузку в бетонных конструкциях. При добавлении этих стекловолокон в раствор значительно экономится расход цемента и воды – на 15 и 20% соответственно. Расход на один квадратный метр бетона – в среднем один килограмм.

  • Фибра базальтовая. Основные преимущества этой разновидности: негорючесть материала, нетоксичность, устойчивость к агрессивным химическим веществам. Особенность волокон в том, что при соединении с цементом они полностью в нем растворяются и повышают его прочность. Благодаря своим характеристикам базальтовая фибра может применяться для возведения жаростойких бетонных конструкций. На один квадратный метр бетона расходуется от 1,5 кг материала. Расход цемента и воды снижается при использовании базальтовой фибры также на 15 и 20 %.
  • Полипропиленовая фибра для бетона. Эта разновидность материала обладает отличными техническими характеристиками, в разы повышает прочность бетона, не образует трещин и очень долговечна без снижения своих свойств и качеств. Наиболее часто применяется для сухой стяжки пола, монтажа стен и фундамента. Расход материала на один квадратный метр составляет примерно 1 кг.
  • Стальная фибра для бетона. Наиболее популярный и часто используемый вид материала, так как может обеспечить неограниченные возможности в строительстве. Придает постройкам и конструкциям высокую прочность и устойчивость к внешним воздействиям, надежность и долговечность. Расход материала на один квадратный метр – от 30 до 40 кг.

  • Фибра анкерная. Этот материал представляет собой кусочки проволоки, добавляется в бетон, если требуется оформить изгибы зданий и других сооружений, придает конструкции дополнительную прочность. На один квадратный метр бетона требуется от 20 до 40 кг материала. Расход цемента и воды снижается на 15 и 20 %.

Также фибра бывает в зависимости от предназначения и сферы использования разных размеров – 6, 10, 12, 18 и 20 мм в длину и от 0,3 до 0, 5 мм в диаметре. Для работы с различными материалами – бетоном, штукатуркой, сухими смесями и растворами – предназначены различные виды фибры.

Как и где применяется фибра в зависимости от длины

Производители не напрасно разработали несколько разных вариантов длины этого материала.

  • Фибра небольшого размера – 6 мм – применяется для повышения прочности и улучшения геометрической формы при работе с такими смесями, как цемент, песок, гипс, в штукатурных и затирочных смесях, а также при работе с пено-бетоном.
  • Фибра для бетона размером в 12 мм используются для укрепления и увеличения прочности различных плит перекрытия, неавтоклавных газо- и пенобетонов, для наливных полов из бетона и фундаментов, свай, пустотелых бетонных конструкций, гидротехнических объектов.

  • Самая крупная фибра с волокнами длиной 18-20 мм предназначена для работы с тяжелыми и особо тяжелыми бетонами, которые замешиваются с добавлением крупного наполнителя – щебня, гравия, крупнозернистого песка. Незаменима при возведении мостов, укладке дорожного покрытия и других габаритных сооружений, требующих повышенной прочности и устойчивости к механическим воздействиям.

Технология замешивания фибры

  • Для того чтобы соединить фибру с цементом, гипсом и другими смесями необходимы, помимо самих материалов, бетономешалка или растворосмеситель и вода. Есть несколько способов замешивания раствора. Как правило, используется чаще всего следующая технология.
  • Вначале в бетоносмеситель засыпается сухое сырье – цемент, песок, гравий или их смесь, фибровые волокна — затем добавляется вода в соответствии с пропорциями, указанными производителем на упаковке.

  • Нарушать эти пропорции не рекомендуется. Со слишком густым раствором будет сложно работать, а чрезмерно жидкий даст большую усадку, станет хрупким и быстро даст трещины. Для приготовления раствора требуется от 5 до 10 минут перемешивания. Если желательно увеличить эластичность материала, в смесь добавляется также пластификатор. Иногда фибру затворяют именно в пластификаторе, а не воде перед добавлением в цементную смесь.
  • Когда требуются небольшое количество материала, замешивание можно производить и с помощью миксера. Иногда применяется и другая технология приготовления строительной смеси. Вначале фибра заливается водой. После того, как волокна равномерно распределятся по всему объему, их соединяют с цементом.
  • Расход фибры для бетона зависит от того, для каких целей будет использоваться раствор. Так, для полов достаточно 30 кг/м3, а для стен порядка 50-55 кг/м3.

Дополнительная информация

  • В продаже фибра доступна потребителю в пакетах различного объема от одного до двадцати килограммов. Небольшие пакеты упакованы дополнительно в гофрированные паллеты из плотного полиэтилена. Пакеты могут быть как полиэтиленовыми, так и бумажными. Если говорить о применении материала, то гораздо удобнее использовать его в бумажной упаковке. При замешивании раствора ее необязательно вскрывать и удалять, а можно сразу же закладывать в бетономешалку. В процессе соединения сухих смесей и воды и размешивания бумажный пакет полностью растворится. Такие пакеты называются водопроницаемыми и пользуются большой популярностью у строителей.
  • Готовую смесь, в составе которой есть фибра, удобно подавать насосом. Такой способ применяется при застройке габаритных сооружений и конструкций для ускорения процесса.

  • Иногда после застывания на поверхности бетона можно заметить отдельные проступающие волоски. Если никакого финишного покрытия больше не планируется, волоски подпаливаются огнем с помощью специальной лампы. Если же сверху будет наноситься краска или другой отделочный материал, рекомендуется оставить выступающие ворсинки. Благодаря такому приему обеспечивается повышенная адгезия бетонной поверхности с наружным покрытием.
  • Для получения качественного раствора, который обеспечит после застывания требуемый эффект важно точно соблюдать дозировку, предусмотренную специальным ГОСТом. Имеет значение и продолжительность замешивания. Обычно время рассчитывается по очень простой формуле: ко времени, необходимому для смешивания в аппарате цементного раствора без фибры следует прибавить еще 15 %, если фибра добавляется. То есть, если замешивание базового раствора должно длиться десять минут, при добавлении фибры время увеличится еще на полторы минуты.
  • При застройке крупных промышленных объектов для экономии времени нередко раствор замешивается в автомобильных миксерах. В этом случае пакеты с фиброй помещаются в миксер вместе с другими составляющими. Пока автомобиль доедет до пункта назначения, смесь будет полностью готова. В том случае, если фибра добавляется в готовый цементный раствор, находящийся в автомобильном миксере, время размешивания для полного распределения составит от пяти до восьми минут.

  • Полипропиленовая фибра нередко используется архитекторами и скульпторами для создания небольших фигур и элементов декора, отливаемых в формах. С ее помощью можно придать дополнительную прочность гипсовым изделиям. Нередко ее приобретают для художественного творчества в домашних условиях.
  • Благодаря такому универсальному материалу, как фиброволокна, можно получить еще несколько преимуществ: если бетон заливался в опалубку, то не стоит переживать о его деформации или растрескивании после того, как опалубка будет удалена. Намного удобнее контролировать и корректировать растекание цементного раствора при усадке, если в него была добавлена фибра любой разновидности. А после его застывания на поверхности гарантировано никогда не появится так называемое цементное молочко.

Купить фибру для бетона

  • Многих удивляет, почему цена фибры для бетона настолько разнится. Стоимость определяется, прежде всего, исходя из того, на какой основе изготовлен материал. Самые дорогостоящие те, для производства которых использовались полипропиленовые синтетические волокна. Самые доступные – изготовленные из стали и проволоки. Но, учитывая большой расход последних, едва ли удастся что-то сэкономить. Поэтому выбирать вид фибры стоит не по цене, а по ее качествам и предназначению.

  • Не последнюю роль играет также производитель и регион. Один и тот же сорт разных марок может существенно различаться в цене. Если стройматериалы доставляются издалека, цена на них может значительно возрастать.

Фибра для бетона любого вида незаменима в современном строительстве, на сегодняшний день без этого материала не обходится ни один монтаж железобетонных и других конструкций. В качестве вывода можно сказать, что главным ее достоинством является способность придавать прочности бетону и другим материалам.

Фибра, фиброволокно — армирующие добавки в бетон


Цена на армирующие добавки указана в прайс-листе, скидки зависят от объемов, возможна доставка.


Фибра и фиброволокно — микроармирование бетона

Армирование бетона является необходимым комплексом мер, направленных на обеспечение устойчивости бетона к нагрузкам. 

Сам по себе бетон обладает довольно высокой прочностью на сжатие, но в это же время материал неустойчив к растяжению и к изгибу, в связи с этим, при небольшой нагрузке неармированный бетон подвергается риску разрушения.
Именно поэтому при бетонировании проводится в первую очередь армирование  и используются армирующие добавки в бетон. Есть несколько способов армирования — стержневое армирование и фиброармирование. Наша компания осуществляет поставки специальных армирующих добавок во все типы бетона и строительного раствора. К самым популярным фибродобавкам относятся полипропиленовая и стальная фибра. Они могут использоваться как по отдельности, так и в комплексе. Каждая из этих фибр несет свои функции: 

 

  1. полипропиленовая фибра добавляется в бетон из расчета 600-900 грамм на 1 кубический метр бетона и работает как на этапе усадки, сдерживая образование микротрещин, так и в последствии, препятствуя образованию трещин в процессе использования конструкции.
  2. стальная фибра, при расходе от 20 кг на 1 куб бетона, работает как альтернатива стержневому армированию в бетонных полах, но следует помнить что она не может заменить конструктивную арматуру в нагруженных сооружениях.
  3. базальтовая фибра добавляется в объеме от 1 кг на 1 куб бетона, особенна популярна при производстве жаропрочных бетонов и растворов
  4. стеклофибра отличается от вышеперечисленных видов фибры относительно низкой щелочестойкостью и часто используется производителями только для «начального» армирования — при изготовлении, высыхании и транспортировки изделий из пенобетона, пенополистиролбетона, газобетона, гипса.

 

Фибра для бетона. Армирование фиброй

Фибра для бетона

 Фибра — это волокна из различных материалов и конструктивных особенностей, применяемые для дисперсного (добавка в незатвердевший раствор бетона мелких компонентов) армирования бетона и раствора на цементных вяжущих. Изготавливается из высокомодульных полимеров, стали и базальта или стекла.

Применение

Применяется в строительстве для производства фибробетона. При добавлении и перемешивании в бетоне образует объемную трехмерную решетку и, неся силовую нагрузку, позволяет отказаться от армирования арматурой или арматурной сеткой. Дисперсное армирование бетона фиброй значительно увеличивает прочность бетона на растяжение. Применение дисперсно-армированного бетона при устройстве, в том числе, промышленного напольного покрытия является одним из важных направлений уменьшения их материалоемкости и улучшения таких показателей как морозостойкость, водонепроницаемость, стойкость к агрессивным воздействиям и т. д.   

Технологии производства фибры постоянно совершенствуются, появляются новые типы и виды, растет опыт ее применения в современном строительстве. Все это с уверенностью позволяет заявить о том, что фибра — действительно строительный материал XXI века. Купить бетон с применением фибры Вы можете на нашем предприятии.

Стальная фибра для бетона

Фибра стальная анкерная — это отрезки стальной проволоки диаметром от 0,30 до 1,1 мм и длиной от 30 до 60 мм определенной конфигурации с отогнутыми концами (анкерными отгибами). Данная фибра применяется для объемного армирования бетона, производства сталефибробетона. Повышает прочность и жесткость хрупкого бетонного монолита.

Дозировка на средненагруженный бетон 25кг на 1 м³

Рекомендованный класс бетона бетона – В25, В30 ,минимальный — В22,5.

Области применения стальной фибры — полы промышленных зданий и сооружений; — автомобильные дороги; — логистические центры; — резервуары и бассейны; — банковские хранилища; — оборонные, взрывозащитные сооружения; — обделка тоннелей, аэродромы; — паркинги для автомобилей, подземные и наземные стоянки; Специальная конфигурация фрез и высокая температура фрезерования позволяют получить стальную фибру с окисным слоем (синий оттенок фибры), который препятствует образованию и развитию коррозии в процессе хранения и эксплуатации фибры внутри бетонной матрицы. 

Полимерная фибра для бетона

Фибра полимерная ПОЛИАРМ — это современная альтернатива стальной сетке и металлической фибре! Данная фибра представляет собой жесткое полимерное моноволокно с профилированной поверхностью. Производится из первичного полипропилена. Характеризуется повышенной прочностью на разрыв. Улучшает физико-механические свойств бетона и торкретбетона. Применяется для армирования любого вида бетона или цементного раствора вместо стальной фибры. Особенности — способствует увеличению предела прочности при изгибе и растяжении, пластичности, усталостной прочности и ударной стойкости бетона.

Преимущества — облегчает конструкцию, не снижая их прочностных характеристик; — имеет высокую стойкость к кислотам и щелочам; — коррозионная стойкость; — легко рассредотачивается и перемешивается в замесах из цемента, не принося ущерба смешивающему и подающему бетон оборудованию; — имеет прочное сцепление с бетоном; — благодаря разнице удельного веса почти в 9 раз в сравнении с фиброй из металла, позволяет насыщать бетон в разы большим количеством волокон на единицу объема

Дозировка Полиарм на средненагруженный бетон 2,5 кг на м³

Рекомендованный класс бетона бетона – В25, В30 ,минимальный — В22,5.

Полипропиленовая фибра для бетона

Фибра для бетона полипропиленовая – фибриллированное синтетическое волокно. Производится из высокомодульного термопластичного полимера путем направленной физической, химической и композитной модификации с целью придания ему механической прочности и химической реакционной активности оболочки волокна к продуктам гидратации цемента.

Назначение Полипропиленовое армирующее волокно существенно увеличивает эксплуатационные и технические характеристики бетонов, пенобетонов, сталефибробетонов, строительных растворов и смесей. Рекомендуется для микроармирования бетонов и строительных растворов с целью предотвращения образования и развития их внутренних дефектов, уменьшения количества микропор и микротрещин. Свойства — снижает трещинообразование в процессе набора прочности бетоном и микропластическую усадку; — активно выводит воздух из бетонной смеси; — повышет адгезию бетонной основы с поверхностным слоем дорожного полотна; — значительно улучшает физико-механические свойства покрытия и продлевает срок их службы; — увеличивает стойкость бетона к замерзанию/оттаиванию; — увеличивает ударную прочность и истираемость бетона; — повышает устойчивость к проникновению воды и химических веществ. Армирование фиброй из полипропилена способствует получить существенный экономический эффект, который основан на повышении качества бетонных конструкций и изделий, увеличении срока их эксплуатации. 

Дозировка полипропиленовой фибры на средненагруженный бетон 0,9кг на 1м³

Рекомендованный класс бетона бетона – В25, В30 ,минимальный — В22,5.

Заказать бетон с фиброй

У нас Вы можете заказать бетон с добавкой фибры. Фибра будет добавлена в правильной пропорции и тщательно перемешана

Фибра для бетона: разновидности и особенности материала

Читайте в этой публикации:
Фибра для бетона: особенности и область применения
Фибра для армирования бетона: преимущества и недостатки
Разновидности фибры для стяжки и ее особенности
Как приготовить фибробетон: особенности процесса

С недавних пор в строительном лексиконе появилось такое понятие, как фибра – буквально с самого начала ее появления этот уникальные материал стал в буквальном смысле незаменимым в строительстве. Это армирующая добавка в бетон, которая в значительной мере улучшает характеристики данного материала. О ней и пойдет разговор в данной статье, в которой вместе с сайтом stroisovety.org мы разберемся с вопросами: что такое фибра для бетона, где она применяется, какой бывает и как используется в частном строительстве.

Что такое фибра для бетона фото

Фибра для бетона: особенности и область применения

Коротко на вопрос, что такое фибра для бетона, можно ответить следующим образом – это микроволокна. Хотите, назовите их волосками, но суть и принцип работы их от этого не изменится – в бетоне они играют роль дополнительной связки. Они выполняют практически ту же функцию, что и арматура, только на микроуровне – в некоторых случаях они даже полностью могут заменить арматурный каркас в бетоне и при этом его прочность ни капли не пострадает, что уже само по себе является преимуществом. Ни много ни мало, это дает существенную экономию при строительстве. Где приемлема такая экономия?

  1. В первую очередь при изготовлении бетонных полов, на которые предполагается малая и средняя нагрузка – добавленной в раствор фибры вполне хватает для того, чтобы предотвратить растрескивание поверхности и в процессе ее застывания, и в процессе эксплуатации.
  2. Монолитное строительство. Здесь фибра используется не для уменьшения себестоимости, а для улучшения характеристик конструкции – ее применяют совместно с арматурным каркасом. Таким образом возводят не только стены или железобетонный остов дома, но и его фундамент, и перекрытия, и даже сваи.
  3. Не обходится без использования фибры и процесс изготовления различного рода декоративных изделий из бетона – здесь она позволяет облегчить изделие до максимального возможного уровня. Ярким примером изделий этого типа являются фиброцементные панели для фасада, которые способны противостоять даже сейсмической активности. Кроме того, с использованием фибры создают небезызвестные еврозаборы.

    Фибра для бетона фото

В общем, область применения фибры для бетона весьма обширная – можно сказать, что в современном строительстве на сегодняшний день это незаменимый материал. Таким он стал благодаря массе своих преимуществ.

Фибра для армирования бетона: преимущества и недостатки

Уникальность фибры заключается не только в ее способности увеличивать прочность бетонных конструкций – вместе с ней она придает бетону много полезных качеств.

  1. Фибра повышает пластичность бетона – это означает качественную и, главное, плотную осадку частиц смеси – этот фактор также содействует увеличению прочности бетона. Такую смесь приходится меньше усаживать с помощью вибраций.
  2. Увеличивает вязкость. Работать с вязким и пластичным бетоном намного проще – этот момент могут оценить те, кто занимается ручным изготовлением бетонных полов.
  3. В значительной мере повышается устойчивость бетона к отрицательным температурам. Фибра не впитывает влагу, и морозостойкость бетона увеличивается ровно настолько процентов, сколько было добавлено фибры в бетон.
  4. Влагостойкость. Эта характеристика увеличивается по той же причине, что и предыдущая.
  5. Долговечность бетона. Она достигается благодаря всему перечисленному выше – все факторы в совокупности как раз и обеспечивают длительный срок эксплуатации бетонных конструкций.

    Полипропиленовая фибра для бетона фото

Мало того, все эти качества еще обеспечивают и целостность бетона на протяжении всего этого срока – с поверхности конструкций практически не откалываются кусочки бетона, что приводит к длительной сохранности внешнего вида изделия. Эта характеристика широко используется в процессе изготовления различного рода деформационных швов при создании полов высокой прочности промышленного назначения.

Разновидности фибры для стяжки и ее особенности

Существует не так уж и много разновидностей фибры – среди основных можно выделить всего четыре варианта.

  1. Фибра стеклянная. После укладки эти волокна становятся хрупкими, что для серьезных бетонных конструкций недопустимо – именно по этой причине фибра данного типа применяется в основном для отделочных работ – ее добавляют в различного рода структурную и декоративную штукатурку. В процессе приготовления раствора для ненагружаемых поверхностей фибра из стекла позволяет сэкономить до 15% цемента и до 20% снизить содержание воды в растворе. Стандартным расходом этой фибры является 1 кг на кубический метр раствора.
  2. Базальтовая фибра. Она отличается такими качествами, как стойкость к воздействию химических реагентов, нетоксичность и несклонность к горению. В отличие от всех других видов фибры для армирования, этот материал работает немного не так – он не армирует раствор. Базальтовая фибра для бетона растворяется при контакте с цементом и, вступая с ним в реакцию, упрочняет раствор химическим способом. Фибра данного типа получила широкое применение для изготовления жаростойких конструкций из бетона. Расход этого материала при стандартных условиях составляет 1,5 кг на кубический метр бетона. Как и предыдущий материал, фибра из базальта позволяет сократить количество цемента в бетоне на 15% и вод на 20% соответственно.

    Базальтовая фибра фото

  3. Полипропиленовая фирма для бетона. Это самый распространенный материал для армирования бетона – он характеризуется очень высокими показателями и позволяет увеличить прочность обычного бетона в несколько раз. Мало того, полипропиленовая фибра является отличным способом предотвратить растрескивание бетона как в процессе застывания, так и во время его эксплуатации. Характеризуется повышенными техническими характеристиками и позволяет повысить прочность бетона в несколько раз, защищая его от образования трещин. Самое интересное, что фибра этого типа без потери своих качеств служит столько же, сколько и сам бетон. В большинстве случаев полипропиленовая фибра применяется для армирования полов, фундаментов и стен из бетона – ее стандартный расход составляет 1 кг на кубический метр бетона, но в зависимости от необходимых характеристик, может изменяться в большую или меньшую сторону.
  4. Стальная фибра. Еще один популярный материал этого типа, который получил признание благодаря своей низкой стоимости – кроме того, стальная фибра для бетона является универсальным материалом, который может использоваться для изготовления бетоноконструкций любого типа. Как и все другие материалы, эта разновидность фибры в несколько раз увеличивает прочность и надежность бетона – мало того, она защищает его от разрушений, вызванных воздействием природных факторов. Этот материал отличается сравнительно небольшим расходом – как правило, на кубический метр бетона его добавляют порядка 30-40 кг.

    Фибра стальная фото

Существует и еще один вариант фибры, который применяется для усиления угловых соединений в бетонных конструкциях – анкерная фибра, которая представляет собой кусочки проволоки, изогнутые особым образом. Кроме того, все существующие варианты этого материала могут отличаться еще и своими размерами – длина фибры может быть 6, 10, 12, 18 и 20 мм, а толщина варьироваться от 0,3 до 0,5 мм.

Как приготовить фибробетон: особенности процесса

По большому счету, приготовить бетон, армированный фиброй, не так сложно – можно даже сказать, что просто, и этот процесс практически ничем не отличается от технологии изготовления обычного бетонного раствора. Как правило, приготавливаются такие растворы двумя способами.

  1. Сухое смешивание компонентов. Здесь все просто – сначала в бетономешалку всыпаются сухие ингредиенты бетона, которые после тщательного перемешивания дополняются водой. Этот способ подходит для всех типов фибры, кроме базальтового материала.
  2. Предварительное замачивание фибры в воде. Для базальтового материала это оптимальный вариант приготовления – фибра замачивается в воде и после некоторого перемешивания в нее добавляется цемент, благодаря которому она растворяется, а полученный состав служит своеобразным упрочнителем бетона. Дальше, когда фибра разойдется, добавляются все остальные ингредиенты бетона. Этот вариант приготовления раствора не подходит для металлической фибры – для нее лучше использовать сухую технологию смешивания. Для всех других разновидностей этого материала данный способ применять можно.

    Как приготовить фибру для бетона

И тот и другой вариант приготовления бетона с фиброй предусматривает четкое соблюдение пропорций составных частей бетона, в особенности это касается жидкой его составляющей. Слишком много воды приводит к быстрому осаживанию раствора, что влечет за собой ухудшение прочности бетона, а слишком малое количество воды вызывает затруднение при работе с раствором.

И в заключение темы о том, что такое фибра для бетона, скажу несколько слов по поводу особенностей этого материала. В первую очередь, следует отметить такой факт, как длительность замешивания бетона – при добавлении фибры она увеличивается на пару минут. Волокна этого материала должны равномерно разойтись в растворе. Второй момент, заключается в таком явление, как выступающие ворсинки на поверхности бетона не каждый раз, но оно наблюдается. В принципе, штука не страшная, а иногда и полезная – если в последствие поверхность будет облицовываться, то они послужат дополнительным средством увеличения адгезии материала. А если облицовка не предполагается, то эту ворсу можно просто спалить горелкой, если, конечно, она не дает вам покоя. А вообще она маленькая и едва заметная глазу.

Автор статьи Александр Куликов

Бетон, армированный волокном | Озинга

Обзор бетона, армированного волокном

Универсальная смесь, армированный фибробетоном, может использоваться для наземных полов и тротуаров, а также для строительных деталей, таких как балки и столбы, без увеличения стоимости использования арматуры. Эта универсальность обусловлена ​​широким спектром волокон, доступных в различных формах, размерах, длине и составах.

Добавление фибры в бетонную смесь (например, наша серия OzFlat) может уменьшить трещины, повысить ударопрочность и в целом повысить прочность бетона.Благодаря широкому спектру волокон на выбор, железобетон подойдет для чего угодно — от жилых патио и проездов до коммерческих парковок.

Типы волокон

Волокна могут играть важную роль в армировании бетона. Однако не все волокна одинаковы. Хотя многие волокна не могут заменить прочность, полученную за счет стальной арматуры, большинство из них все же может продлить срок службы бетона, а иногда даже добиться определенного вида.

Микросинтетическое (стелс-волокно)

В приложениях, где важен внешний вид бетона, микросинтетические или невидимые волокна могут быть лучшим выбором для вашего проекта.С этим типом волокна вы можете получить множество тех же преимуществ, что и традиционное волокно, сохраняя при этом чистую, почти невидимую поверхность

Макросинтетика (традиционное волокно)

Макросинтетические волокна обладают теми же преимуществами, что и стальные волокна, без риска коррозии, иногда связанной со сталью. Макроволокна повысят ударную вязкость и долговечность бетона и могут быть добавлены с гораздо большей скоростью на единицу объема, чем традиционные стальные волокна.

Стальные волокна

Стальные волокна отлично подходят для тяжелых условий эксплуатации и промышленного применения, где необходимы превосходный контроль трещин и ударопрочность.Стальная фибра разработана для обеспечения долговременных характеристик бетона в зонах интенсивного использования.

Различные типы волокон дают разные преимущества. В то время как стальные волокна могут помочь улучшить общую прочность конструкции и снизить потребность в стальной арматуре, другие волокна, такие как волокна на основе нейлона, могут улучшить сопротивление бетона усадке при отверждении. Большинство волокон также улучшают устойчивость к замораживанию-оттаиванию.

Какое волокно лучше всего подходит для вашего проекта? Свяжитесь с нашей опытной службой поддержки клиентов, чтобы узнать больше.

Почему структурное волокно — это разумный выбор для тонких бетонных покрытий

При сегодняшнем сокращающемся бюджете DOT штата стремятся к долгосрочным альтернативам восстановления дорожного покрытия, которые потребуют меньших затрат на техническое обслуживание в будущем.

Тонкие бетонные перекрытия — одна из таких экономических альтернатив для восстановления бетонных и асфальтовых покрытий с умеренными повреждениями. Толщина этих типов бетонных перекрытий варьируется от 3 до 6 дюймов. Когда толщина меньше или равна 4 дюймам., они называются ультратонкими накладками; иначе они известны как тонкие бетонные перекрытия.

Из-за присущей тонким слоям бетона тенденции к короблению и скручиванию из-за воздействия окружающей среды, тонкие бетонные перекрытия часто строятся из панелей небольшого размера. Кроме того, из-за ограничений по толщине тонкие бетонные перекрытия в основном строятся без дюбелей, перекрывающих поперечные швы; многие транспортные агентства используют структурное волокно в качестве «дюбелей».Было обнаружено, что структурные волокна не только способствуют передаче нагрузки на стыки, но и улучшают характеристики бетона после растрескивания, удерживая трещины (например, продольные, угловые и поперечные) герметичными, что помогает снизить серьезность усталостного растрескивания панели. В целом, эти волокна увеличивают долговечность накладок.

Структурные волокна в настоящее время доступны в материалах разного состава, жесткости, формы и соотношения сторон (AR; отношение длины к эффективному диаметру).Среди различных типов структурных волокон в последние несколько десятилетий преимущественно использовались синтетические волокна из-за простоты обращения, лучших характеристик дисперсии и некоррозионных свойств. В ходе исследования, проведенного в декабре 2016 года Университетом Миннесоты в Дулуте (UMD) для исследовательского проекта, финансируемого Министерством транспорта штата Миннесота, было обнаружено, что 94% перекрытий из фибробетона (FRC) в США были построены из структурных синтетических волокон. , и только 6% содержали стальную фибру (в основном в Иллинойсе).В таблице 1 представлена ​​статистическая сводка проектов, рассмотренных в этом обзоре. Полипропиленовые волокна использовались почти во всех проектах синтетических FRC, а полиолефиновые волокна — в нескольких других. Трудности, связанные с обращением с тяжелыми стальными волокнами во время смешивания, вероятно, являются причиной менее частого использования стальных волокон по сравнению с синтетическими волокнами. В проектах, рассмотренных в этом исследовании (53%), обычно использовались синтетические волокна в дозировке около 3 фунтов / куб. Ярд, но использовались дозы до 6.5 фунтов / куб. Ярд для полипропиленовых волокон и 25 фунтов / куб. Ярдов для полиолефиновых волокон. Сообщалось о нескольких проектах наложения, в которых использовалась стальная фибра, но те, которые действительно сообщали о дозах от 40 до 80 фунтов / куб. Ярдов, с переменным успехом.

Обзор характеристик многих существующих и прошлых бетонных покрытий дает достаточные доказательства качественных преимуществ использования структурных волокон; однако по-прежнему трудно сделать вывод о количественных преимуществах волокон. Между прочим, не было доступных значительных исследований для определения оптимальной дозировки волокон в зависимости от типа волокна.С этой целью в исследовании, проведенном в UMD, изучалось влияние геометрии волокна и его дозировки на характеристики фибробетона после растрескивания. В исследовании сравнивали характеристики нескольких различных типов волокон после образования трещин и устанавливали корреляции между свойствами волокон и остаточной прочностью фибробетона, которая является показателем характеристик после образования трещин.

Рисунок 1. (а) Примеры волокон, использованных в исследовании, (б) фотография свежего образца FRC
Материалы и обрабатываемость

В это исследование были включены одиннадцать различных типов волокон, различающихся по типу, геометрии, длине, соотношению сторон и производителю.Десять из этих волокон были синтетическим полипропиленом, и только одно волокно было стальным. Из одиннадцати волокон в этом исследовании четыре волокна были плоскими, три — тиснеными, два — скрученными, одно волокно — непрерывно гофрированным, а одно — гофрированным на концах (сталь). На рисунке 1 показаны примеры некоторых волокон, использованных в исследовании. Мелкие и крупные агрегаты, использованные в этом проекте, были собраны в карьере компании Duluth Ready Mix недалеко от Каньона, штат Миннесота. Крупный заполнитель представлял собой окатанный могилу, а мелкий заполнитель — промытый песок.В этом исследовании использовался цемент ASTM типа I.

Добавление волокон структурного типа в бетон обычно снижает его удобоукладываемость (например, величину осадки) в зависимости от дозировки волокна, соотношения сторон и геометрии. Уменьшение оседания имеет как преимущества, так и недостатки при укладке дорожного покрытия. В то время как снижение удобоукладываемости является проблемой для достижения требуемого уплотнения, снижение удобоукладываемости может увеличить сцепляемость бетона под бетоноукладчиком со скользящими формами, что может помочь удерживать края тротуара в вертикальном положении.Было обнаружено, что синтетические волокна при дозировках более 0,75% объемной доли (Vf) иногда имеют тенденцию к образованию шариков. На рисунке 2 показан пример образования комков волокон, наблюдаемого при более высоких дозах синтетических волокон.

Рисунок 2. Пример образования комков волокон. Рисунок 3. Прочность на сжатие FRC как функция индекса армирования структурных волокон.
Прочность на сжатие

На рисунке 3 показаны тенденции для сталей и синтетических смесей FRC, испытанных на прочность на сжатие, в зависимости от индекса армирования.Индекс армирования (RI) — это параметр, который объединяет Vf волокна и соотношение сторон (RI = Vf x AR). Можно видеть, что изменение RI не оказало значительного влияния на прочность на сжатие синтетических волокон. Средняя прочность на сжатие для синтетического армированного волокном бетона составила 6810 фунтов на квадратный дюйм со стандартным отклонением и коэффициентом вариации 323 фунтов на квадратный дюйм и 4,74%, соответственно. Прочность на сжатие простого бетона (6960 фунтов на квадратный дюйм) и синтетического FRC были сопоставимы. Напротив, одна испытанная сталь FRC показала значительное увеличение прочности на сжатие и относительно небольшое увеличение модуля упругости при увеличении индекса армирования.Прочность на сжатие стали FRC увеличилась с 7330 до 9320 фунтов на квадратный дюйм при изменении Vf с 0,25% до 0,75%.

Рисунок 4. Фотография, показывающая испытание на изгиб балки из фибробетона в соответствии с ASTM C1609. Рисунок 5. Сравнение кривых зависимости нагрузки от смещения между двумя армированными фибробетоном и простым бетоном.
MOR и RS

Поведение армированного волокном бетона при изгибе было определено путем проведения испытания ASTM C1609 (стандартный метод испытания характеристик изгиба бетона, армированного волокном).Размеры образцов балки составляли 21 дюйм x 6 дюймов x 6 дюймов. Длина пролета составляла 18 дюймов. Для каждой смеси были испытаны пять образцов балки. На рисунке 4 показана фотография этого испытания, проводимого в UMD. В этом испытании, прогиб в середине пролета и приложенная сила собираются для построения кривых зависимости нагрузки от смещения, как показано на рисунке 5. Такие графики можно использовать для вычисления модуля разрыва (MOR), остаточной прочности (RS) и других параметры, характеризующие характеристики изгиба. На рисунке 5 показано влияние волокон на поведение после образования трещин, при этом волокна обладают сопротивлением раскрытию трещин и способностью нести остаточную нагрузку при увеличении смещения.В целом, падение нагрузки после пика для синтетических волокон было больше, чем для стальных волокон.

Модуль разрыва в зависимости от индекса армирования показан на рисунке 6. MOR — это прочность бетона на изгиб, измеренная при пиковой нагрузке. Подобно прочности на сжатие, MOR также не сильно зависел от индекса армирования для синтетических FRC. Среднее и стандартное отклонение MOR для всех синтетических смесей FRC составило 738 фунтов на квадратный дюйм и 35 фунтов на квадратный дюйм, соответственно, с коэффициентом вариации, равным 4.79%. MOR для простого бетона было аналогичным при 720 фунтах на квадратный дюйм. Однако было обнаружено, что MOR для стали FRC увеличивается с увеличением индекса армирования, особенно когда индекс армирования превышает 32,5.

В отличие от модуля разрыва, тип волокна и его дозировка оказывают значительное влияние на остаточную прочность (RS). Согласно ASTM C1609, остаточная прочность — это прочность бетона при смещении 120 мил. Поскольку остаточная прочность измеряется после пиковой нагрузки, этот параметр представляет вклад волокон.Чем выше остаточная прочность, тем выше характеристики после растрескивания или выше сопротивление раскрытию трещин. На рисунке 7 показано соотношение между объемной долей волокна и остаточной прочностью. Данные по различным типам волокон были сгруппированы в зависимости от геометрии волокна (прямое, тисненое, скрученное и непрерывно гофрированное). Видно, что геометрия волокон влияет на остаточную прочность. В целом, тисненые, скрученные и гофрированные волокна в среднем имеют более высокое значение RS, чем прямые синтетические волокна (меньшая поперечная жесткость), а непрерывно гофрированные и рельефные волокна имеют аналогичное и немного лучшее RS, чем скрученные волокна, вплоть до объемной доли 0.60%. RS прямых волокон постоянно ниже. Таким образом, учет геометрии волокна и его жесткости при выборе волокон для бетонных покрытий часто становится экономическим выбором, когда проектировщик должен сбалансировать стоимость, удобоукладываемость и производительность. Что касается влияния материала на остаточную прочность, стальные волокна часто значительно превосходят синтетические волокна. Другие проблемы, такие как жесткость обращения со смесью и возможность коррозии, часто препятствуют использованию стальных волокон в дорожных покрытиях.

Рисунок 6. Модуль разрыва FRC как функция индекса армирования волокон. Рисунок 7. Остаточная прочность FRC с синтетическими волокнами как функция объемной доли волокна и геометрии.
Выводы

Конструкционный бетон, армированный волокнами, показал, что он улучшает характеристики тонких бетонных покрытий, особенно когда они подвергаются интенсивному и интенсивному движению. Дизайнеры дорожных покрытий изо всех сил пытались найти лучший способ выбрать тип волокна и дозировку, учитывая множество вариантов, доступных на рынке.Требовался метод определения смесей, армированных волокном, для тонких бетонных покрытий, уравновешивающих экономичность и производительность. С этой целью в данном исследовании изучалось влияние геометрии волокна и его дозировки на характеристики армированного волокном бетона после растрескивания. В нем сравнивались характеристики испытанных в лаборатории образцов балок, содержащих несколько различных типов волокон, чтобы установить корреляцию между свойствами волокон и остаточной прочностью армированного волокнами бетона.Испытания смесей с синтетическими структурными волокнами показали, что их включение мало влияет на прочность на сжатие и модуль разрыва. Однако стальные конструкционные волокна улучшают оба свойства. Для структурных синтетических волокон также было показано, что объемная доля волокна в бетоне, а также жесткость и геометрия волокон существенно влияют на остаточную прочность. Тисненые, скрученные и гофрированные волокна в среднем работают лучше, чем прямые плоские синтетические волокна.Создавая кривые зависимости объемной доли волокна от остаточной прочности, у проектировщиков теперь есть методика, которую можно использовать для лучшего выбора и дозирования наиболее эффективных и наиболее экономичных структурных волокон для улучшения характеристик их тонких бетонных покрытий.

Бетон, армированный волокнами: преимущества и недостатки

14 апреля

Проблемы, которые беспокоят многих строителей, когда дело касается бетона, — это усадка и растрескивание. Некоторые подрядчики пытаются защитить себя от этих проблем, добавляя в бетон волокна.Стоит ли использовать фибробетон? Вот полезная информация о фибробетоне, а также о преимуществах и недостатках его использования в ваших проектах.

Насколько прочно волокно добавляет бетону?

При добавлении фибры в бетон цель состоит не в увеличении прочности, а в предотвращении растрескивания из-за усадки при высыхании или пластической усадки.

Хотя волокна, добавленные в бетон, могут придать бетону лучшую ударопрочность и прочность на растяжение, они не обязательно делают бетон более прочным в отношении прочности на изгиб.Стальные волокна могут в некоторой степени увеличивать прочность на изгиб, но другие волокна, как правило, этого не делают — и они могут даже немного ослабить ваш бетон.

Какие типы волокон используются для усиления бетона?

Существует четыре категории волокон, которые могут использоваться для армирования бетона, в том числе:

  • Сталь
  • Стекло
  • Синтетика
  • Натуральный

Если вы используете синтетический бетон, армированный волокнами, ваш бетон может состоять из микроволокон или макроволокон.

Микроволокна

разработаны для минимизации растрескивания при пластической усадке. Обычно они сделаны из нейлона, полипропилена, полиэтилена, полиэстера или акрила, хотя можно использовать и другие синтетические волокна. Микроволокна обычно содержатся в бетоне, который используется для подъездных путей, тротуаров, бордюров, полов в гаражах и подвалах и других местах, где вам нужна прочная поверхность с минимальным растрескиванием из-за пластиковой усадки.

Макроволокна — это более длинные волокна, улучшающие прочность на разрыв, а также пластичность.Их основная функция — предоставить доступную альтернативу армированию арматурой или сварной проволокой. Этот тип бетона, армированного фиброй, можно встретить в смотровых колодцах, септических резервуарах и промышленных полах. Обычно его изготавливают из волокна, которое по своим характеристикам аналогично стали, например из полипропилена.

Преимущества и недостатки фибробетона

Как уже говорилось, основным преимуществом фибробетона является уменьшение усадки и растрескивания. Правильный армированный фиброй бетон также может обеспечить ударопрочность, повысить прочность на растяжение и уменьшить пустоты в бетоне.

Недостатком бетона, армированного фиброй, является то, что он может отрицательно повлиять на удобоукладываемость, особенно в случае бетона, армированного стальными волокнами. Беспокойство вызывает равномерное распределение волокон по бетону. Также может возникнуть опасность комкования волокон во время смешивания.

Еще один недостаток, о котором следует знать, заключается в том, что бетон, армированный фиброй, тяжелее, чем бетон, не содержащий волокна. Если вы используете стальную фибру, также существует опасность коррозии. Наконец, бетон, армированный фиброй, обычно дороже обычного бетона, хотя его стоимость может быть компенсирована другими факторами.

Позвольте Union Quarries помочь вам с вашими бетонными потребностями

Если вы не уверены, какой тип бетона вам нужен, или ищете поставщика бетона в центральной Пенсильвании, Union Quarries здесь для вас. Имея более чем полувековой опыт работы в качестве ведущего производителя бетона, камня и асфальта в центральной части штата Пенсильвания, мы уверены, что сможем помочь вам выполнить конкретные требования вашего проекта. Чтобы получить бесплатное ценовое предложение, узнать больше о фибробетоне или разместить заказ, обратитесь в Union Quarries сегодня.

GFRC — Бетон, армированный стекловолокном

Когда кто-то говорит о стекловолокне, мы думаем об изоляции, лодках или корветах, но, возможно, нам следует думать о бетоне. Технически стекловолокно — это просто очень тонкие стеклянные волокна. Материал, используемый для изготовления лодок или других продуктов, хотя и называется стекловолокном, на самом деле представляет собой армированные стекловолокном пластмассовые и стеклянные волокна в полимерной матрице. Если вместо полимера использовать портландцемент и песок, в результате получается бетон, армированный стекловолокном — GFRC или иногда GRC (англичане называют его бетоном, армированным стекловолокном).

GFRC может использоваться для создания прочного и изысканно детализированного декоративного бетона. НЕГ Америка

Столешницы со встроенными раковинами остаются без трещин, если они сделаны из GFRC. Concast Studios — Океано, Калифорния,

Искусственные камни, изготовленные из GFRC, выглядят реально на долю своего веса. Инновационный рок и вода

Проблема использования стекловолокна в качестве арматуры для бетона заключается в том, что стекло разрушается в щелочной среде — а почти нет ничего более щелочного, чем бетон.Возможно, вы слышали о повреждении бетона реактивностью щелочного кремнезема (ASR), когда в заполнителе присутствует реактивный кремнезем. Стекло — это в первую очередь кремнезем. Оригинальный стеклопластик 1940-х годов быстро потерял прочность, так как стекло было разрушено щелочной средой. В 1970-х годах Owens-Corning и Nippon Electric Glass (NEG) усовершенствовали стекловолокно, устойчивое к щелочам (AR), что привело к быстрому увеличению количества применений.

Найти расходные материалы: Смеси GFRC

GFRC использовался в течение последних 30 лет для производства многих бетонных изделий, особенно тонких архитектурных облицовочных панелей, а также для декоративного бетона, такого как купола, статуи, цветочные горшки и фонтаны.Недавно мастера по декоративному бетону открыли для себя преимущества GFRC для декоративных панелей (например, для облицовки каминов), бетонных столешниц и работ из искусственного камня.

Бетон, армированный стекловолокном

ПРОИЗВОДСТВО ДЕТАЛЕЙ GFRC

Панели Rock создаются с использованием напыляемого GFRC. Эльдорадо Валл Ко.

Более крупные архитектурные элементы создаются путем прямого распыления предварительно смешанного GFRC на форму. NEGAmerica

Существует три метода изготовления бетонных элементов с использованием GFRC: традиционное ручное напыление, вибрационное литье и распыляемый премикс.

  • Традиционный и, возможно, лучший способ производства сборных элементов из стеклопласта — это ручное напыление GFRC на форму. Так производится большинство архитектурных облицовочных панелей из сборного железобетона, а также большинство декоративных сборных железобетонных панелей. При использовании метода прямого распыления вам потребуется концентрический измельчитель, который подается катушкой с ровницей GFRC, втягиваемой в измельчитель и смешиваемой в сопле. Эта смесь имеет более высокое содержание волокна (от 4 до 6%), чем может быть достигнуто с помощью премикса, и является рекомендуемым методом для больших панелей.Однако для этого требуются опытные рабочие, дорогое оборудование и строгий контроль качества.
  • Вибрационное литье использует предварительно смешанный GFRC, залитый в форму и подвергнутый вибрации для достижения уплотнения. Это гораздо более простой метод, но он требует водонепроницаемых форм и не работает с каменными формами.
  • Напыляемый предварительно смешанный GFRC с измельченными волокнами в смеси требует перистальтического насоса и специальной распылительной головки. Этот метод требует меньшего опыта, чем метод ручного распыления, и дает более высокую прочность, чем при вибрационном литье.

Найдите ближайших ко мне подрядчиков, работающих с GFRC.

Столешницы лучше всего делать в два слоя. Concast Studios — Океано, Калифорния,

Ручной электрический миксер подходит для GFRC. Collomix

Большинство декоративных элементов из стеклопластика, особенно столешниц или камина, изготавливаются с использованием двухслойного подхода. Облицовочный слой представляет собой тонкий декоративный слой, а резервный слой более толстый и содержит стекловолокно.

  • Лицевое покрытие обычно распыляется в форму с помощью бункера для гипсокартона.Этот слой имеет толщину от 1/8 до 3/16 дюйма.
  • «Один квадратный фут столешницы требует всего около 2 фунтов бетонной смеси для лицевого покрытия, — сказал Майк Веллман, Concast Studios, Океана, Калифорния. — Он довольно тонкий, поэтому с моим миксером я могу покрыть 200 квадратных футов работа — о самой большой кухне из всех существующих. Это позволяет мне делать все одной партией, чтобы обеспечить единообразие цвета ».
  • «Мы даем маске застыть там, где она влажная, но не сдвинемся — от ½ часа до 1 часа», — сказал Веллман.
  • Затем наносится защитное покрытие GFRC. Большинство декоративных подрядчиков либо заливают этот слой, либо затирают его вручную. Толщина этого слоя находится в диапазоне от до 1 дюйма, в зависимости от размера панели и нагрузки, которую она будет нести.
  • Слой GFRC обычно укладывается в два слоя толщиной примерно 3/8 дюйма и уплотняется с помощью роликов или вибростола.
  • Смесители
  • для GFRC должны обеспечивать большой сдвиг как при низкой, так и при высокой скорости перемешивания — высокая для бетонной смеси с низким водоцементным соотношением, а затем низкая, чтобы предотвратить разрушение при добавлении стекловолокна.Power-Sprays — британская компания, представленная в США компанией NEG America, которая специализируется на оборудовании GFRC. Из них получается отличный вертикальный миксер. Вы также можете использовать ручной миксер, например, от Collomix, или даже лопасть миксера на электродрели. «Ограничением для большинства парней является миксер, который может смешивать достаточный объем и способен хорошо перемешать стекловолокно», — сказал Веллман.
  • С добавлением полимера GFRC схватывается довольно быстро. В зависимости от условий панели можно снять и отполировать в течение 24 часов, хотя Wellman ждет 3 дня, пока бетон наберет почти полную прочность

Рекомендуемые товары

Найдите местных поставщиков: Магазины декоративного бетона

ДЕКОРАТИВНЫЙ ДЕКОРАТИВ GFRC

Панелям

GFRC можно придать практически любую декоративную обработку, как обычному бетону.Приложение диктует, что лучше всего работает:

    Декоративные архитектурные акценты могут быть созданы с помощью GFRC. J&M Lifestyles в Рэндолфе, штат Нью-Джерси,

  • Архитектурные панели часто отливают с использованием различных опалубок. Поверхность может быть подвергнута пескоструйной очистке, травлению кислотой или полировке. Различные оттенки серого, белого и желтоватого цвета могут быть достигнуты с помощью цветных цементов или пигментов.
  • Многие декоративные элементы из GFRC отливаются или отливаются с использованием белого цемента и светлых оттенков. Кусочки камня или глиняного кирпича могут быть встроены в панели, хотя следует учитывать различия в характеристиках усадки различных материалов.Многие различные архитектурные элементы лучше всего создавать с использованием GFRC.
  • Столешницы из

    GFRC могут быть отделаны практически любыми декоративными бетонными технологиями. Absolute ConcreteWorks, Сиэтл, штат Вашингтон

  • Столешницы обычно изготавливаются с использованием лицевого покрытия, и часто выбирается однотонный цельный цвет. «Мы используем цельный цвет в лицевом покрытии, — говорит Майк Веллман, Concast Studios, Oceana, Калифорния, который производит столешницы и обрамление каминов. «Иногда мы наносим кислотное пятно, но большинство наших клиентов придерживаются прямого интегрального цвета.«Wellman обычно полирует столешницу до зеркального блеска, но предлагает множество вариантов. Узнайте больше о работе Concast Studios.
  • Хотя конструкция этого скалодрома выглядит как настоящая скала, для лазания предусмотрены модульные поручни. Эльдорадо Валл Ко.

  • Столешницы можно производить без облицовочного покрытия, хотя при полировке волокна будут видны. «Некоторым из наших клиентов нравится показывать волокна», — сказал Майк Веллман из NEG America. «Если он протравлен кислотой или промыт кислотой, они не возражают против волокон, и они действительно сливаются с цветом.«
  • Для лицевых покрытий хорошим выбором является рассыпной заполнитель или встраиваемые декоративные элементы. «Поскольку я распыляю начальное покрытие для лица, я могу транслировать агрегат, который позволяет мне получить плавное движение», — сказал Веллман. «Я могу посыпать стекло или ракушки, и при полировке и экспонировании создается иллюзия движения. С мокрым гипсом сложнее получить это движение и заставить его хорошо выглядеть».
  • Для получения реалистичного вида искусственные камни требуют художественного нанесения цвета.Решения для синтетических пород в Amity, OR

  • В каменных конструкциях обычно используются панели GFRC, которые напыляются на формы, изготовленные с использованием реальных каменных элементов. Стив Холмс, вице-президент Eldorado Wall Company, производителя стен для скалолазания в Боулдере, штат Колорадо, говорит, что первый слой, который они наносят, не содержит стекловолокна. «У рубильного пистолета есть спусковые механизмы только для грязи и грязи и стекла. Первый тонкий слой не имеет волокон, затем мы доводим толщину до дюйма номинальной с помощью смеси GFRC».
  • Для создания скал панели GFRC монтируются на каркас из конструкционной стали.«Панели можно ориентировать в разных направлениях, — сказал президент Eldorado Wall Джон Макгоуэн, — затем мы оштукатуриваем швы и лепим их, чтобы панели соединялись с каменным элементом». По словам Холмса, для создания заплат «мы помещаем планку и арматуру в швы, затем начинаем с царапающего слоя, затем наносим скульптурный слой. Это делается с помощью полевой смеси, основанной на рецепте торкретбетона». Раскрашивание камней выполняется с помощью различных техник, которые Эльдорадо разработала за эти годы.
  • Джим Дженкинс из JPJ Technologies обучает изготовлению искусственного камня.Однако в его методе НЕ используется GFRC, а используется композитный армированный волокном полимербетон, который он изобрел и усовершенствовал. «Наши панели имеют толщину от до ½ дюйма, — сказал Дженкинс, — тогда как панель из GFRC будет иметь толщину 1–1 / 2 дюйма. Наш материал можно легко разрезать дисковой пилой, но он прочнее, чем GFRC. Швы между панелями заделаны тем же материалом, из которого сделаны панели, поэтому они ведут себя, выглядят и окрашиваются одинаково ». Дочерняя компания Synthetic Rock Solutions продает предварительно изготовленные каменные панели, которые можно использовать для сборки каменных элементов.
  • Камин

    — идеальное применение для GFRC. Sierra Concrete Designs

  • Раскрашивание скал и водных объектов требует большого мастерства. Различные цвета и техники смешиваются для создания реалистичного цвета, как описано в разделе «Гео-иллюзии» в выпуске Concrete Décor за декабрь 2007 г. / январь 2008 г.
  • Декоративные облицовки каминов из GFRC стали очень популярными благодаря их легкому весу и долговечности. Узнайте, что Sierra Concrete Designs делает с этим приложением, в статье «Окружение каминов красивыми декоративными бетонными элементами».

Фибробетон — виды, свойства и преимущества

🕑 Время чтения: 1 минута.

Бетон, армированный волокном, можно определить как композитный материал, состоящий из смесей цемента, строительного раствора или бетона и подходящих дискретных, однородно распределенных волокон. Фибробетон бывает разных типов и свойств, обладающих множеством преимуществ. Непрерывные сетки, тканые материалы и длинные проволоки или стержни не считаются дискретными волокнами. Волокно — это небольшой кусок армирующего материала, обладающий определенными характеристическими свойствами.Они могут быть круглыми или плоскими. Волокно часто описывается удобным параметром, называемым «соотношение сторон». Форматное соотношение волокна — это отношение его длины к диаметру. Типичное соотношение сторон составляет от 30 до 150. Фибробетон (FRC) — это бетон, содержащий волокнистый материал, повышающий его структурную целостность. Он содержит короткие дискретные волокна, которые равномерно распределены и беспорядочно ориентированы. Волокна включают стальные волокна, стеклянные волокна, синтетические волокна и натуральные волокна.Внутри этих различных волокон характер армированного волокном бетона изменяется в зависимости от бетона, волокнистых материалов, геометрии, распределения, ориентации и плотности. Фиброармирование в основном используется в торкретбетоне, но может применяться и в обычном бетоне. Нормальный бетон, армированный волокнами, в основном используется для наземных полов и тротуаров, но может применяться для широкого спектра строительных деталей (балок, плоскогубцев, фундаментов и т. Д.) Как отдельно, так и с арматурными стержнями, связанными вручную Бетон, армированный волокнами (которые обычно представляют собой стальные, стеклянные или «пластиковые» волокна), дешевле, чем арматурный стержень, связанный вручную, но при этом многократно увеличивает предел прочности на разрыв.Форма, размер и длина волокна важны. Тонкое и короткое волокно, например, стекловолокно с коротким ворсом, будет эффективным только в первые часы после заливки бетона (уменьшает растрескивание при затвердевании бетона), но не увеличивает прочность бетона на растяжение.

Влияние волокон в бетоне Волокна обычно используются в бетоне для борьбы с растрескиванием при пластической усадке и растрескивании при усадке при высыхании. Они также снижают проницаемость бетона и, таким образом, уменьшают утечку воды.Некоторые типы волокон обладают большей устойчивостью к ударам, истиранию и растрескиванию в бетоне. Как правило, волокна не повышают прочность бетона на изгиб, поэтому они не могут заменить сопротивляющуюся моменту или конструкционную стальную арматуру. Некоторые волокна снижают прочность бетона. Количество волокон, добавленных к бетонной смеси, измеряется как процент от общего объема композита (бетон и волокна), называемый объемной долей (V f ). V f обычно составляет от 0,1 до 3%.Соотношение сторон (l / d) рассчитывается путем деления длины волокна (l) на его диаметр (d). Волокна с некруглым поперечным сечением используют эквивалентный диаметр для расчета соотношения сторон. Если модуль упругости волокна выше, чем у матрицы (вяжущего для бетона или строительного раствора), они помогают выдерживать нагрузку за счет увеличения прочности материала на разрыв. Увеличение аспектного отношения волокна обычно сегментирует прочность на изгиб и ударную вязкость матрицы. Однако слишком длинные волокна имеют тенденцию «комковаться» в смеси и создавать проблемы с удобоукладываемостью.Некоторые недавние исследования показали, что использование волокон в бетоне ограниченно влияет на ударопрочность бетонных материалов. Этот вывод очень важен, поскольку традиционно считается, что пластичность увеличивается при армировании бетона волокнами. Результаты также показали, что микроволокна имеют лучшую ударопрочность по сравнению с более длинными волокнами.

Потребность в фибробетоне
  1. Повышает прочность бетона на разрыв.
  2. Уменьшает воздушные и водяные пустоты, присущую гелю.
  3. Повышает прочность бетона.
  4. Волокна, такие как графит и стекло, обладают отличным сопротивлением ползучести, в то время как для большинства смол это не так. Следовательно, ориентация и объем волокон имеют значительное влияние на характеристики ползучести арматурных стержней / арматуры .
  5. Сам по себе железобетон — это композитный материал, в котором арматура действует как укрепляющая фибра, а бетон — как матрица.Поэтому крайне важно, чтобы поведение двух материалов при термических напряжениях было одинаковым, чтобы минимизировать дифференциальные деформации бетона и арматуры.
  6. Было признано, что добавление небольших, близко расположенных и равномерно распределенных волокон к бетону будет действовать как трещиноподавитель и существенно улучшит его статические и динамические свойства.

Факторы, влияющие на свойства фибробетона

Фибробетон — это композитный материал, содержащий волокна в цементной матрице в упорядоченном или случайном порядке.Его свойства, очевидно, будут зависеть от эффективной передачи напряжения между матрицей и волокнами. Факторы кратко обсуждаются ниже:

1. Относительная жесткость матрицы волокна Модуль упругости матрицы должен быть намного ниже, чем у волокна для эффективной передачи напряжения. Низкий модуль упругости волокна, такого как нейлон и полипропилен, поэтому вряд ли даст улучшение прочности, но способствует поглощению большой энергии и, следовательно, придает большую степень ударной вязкости и сопротивления.Высокомодульные волокна, такие как сталь, стекло и углерод, придают композиту прочность и жесткость. Межфазное соединение между матрицей и волокном также определяет эффективность передачи напряжения от матрицы к волокну. Хорошее сцепление необходимо для повышения прочности композита на разрыв.

2. Объем волокон Прочность композита во многом зависит от количества используемых в нем волокон. На рис. 1 и 2 показано влияние объема на ударную вязкость и прочность.Из Фиг.1 видно, что с увеличением объема волокон примерно линейно увеличиваются прочность на разрыв и ударная вязкость композита. Использование более высокого процента волокна может вызвать расслоение и жесткость бетона и раствора.

Рис.1: Влияние объема волокон при изгибе

Рис.2: Влияние объема волокон при растяжении

3. Соотношение сторон волокна Другой важный фактор, влияющий на свойства и поведение композита, — это соотношение сторон волокна.Сообщалось, что до соотношения сторон 75, увеличение соотношения сторон линейно увеличивает конечный бетон. При превышении 75 относительная прочность и ударная вязкость снижаются. Таблица-1 показывает влияние соотношения сторон на прочность и ударную вязкость. Таблица-1: Соотношение сторон волокна
Тип бетона Соотношение сторон Относительная прочность Относительная вязкость
Обычный бетон 0 1 1
С 25 1.5 2,0
Случайно 50 1,6 8,0
Дисперсные волокна 75 1,7 10,5
100 1,5 8,5

4. Ориентация волокон Одно из различий между обычным армированием и волокнистым армированием состоит в том, что при обычном армировании стержни ориентированы в желаемом направлении, а волокна ориентированы произвольно.Чтобы увидеть эффект случайности, были испытаны образцы раствора, армированные 0,5% объема волокон. В одном наборе образцов волокна были выровнены в направлении нагрузки, в другом — в направлении, перпендикулярном направлению нагрузки, а в третьем — случайным образом. Было замечено, что волокна, расположенные параллельно приложенной нагрузке, обладают большей прочностью на разрыв и ударной вязкостью, чем случайно распределенные или перпендикулярные волокна.

5. Технологичность и уплотнение бетона Введение стальной фибры значительно снижает удобоукладываемость.Такая ситуация отрицательно сказывается на уплотнении свежей смеси. Даже длительная внешняя вибрация не способствует уплотнению бетона. Объем волокна, при котором достигается эта ситуация, зависит от длины и диаметра волокна. Еще одно следствие плохой обрабатываемости — неравномерное распределение волокон. Как правило, удобоукладываемость и стандарт уплотнения смеси улучшаются за счет увеличения водоцементного отношения или за счет использования каких-либо добавок, снижающих уровень воды.

6. Размер крупного заполнителя Максимальный размер крупного заполнителя должен быть ограничен 10 мм, чтобы избежать заметного снижения прочности композита.Волокна также действуют как агрегат. Хотя они имеют простую геометрию, их влияние на свойства свежего бетона сложное. Трение между частицами между волокнами и между волокнами и агрегатами контролирует ориентацию и распределение волокон и, следовательно, свойства композита. Добавки, снижающие трение, и добавки, улучшающие когезионную способность смеси, могут значительно улучшить ее.

7. Смешивание Смешивание армированного фибробетоном требует осторожных условий, чтобы избежать комкования волокон, расслоения и, в целом, затруднений при однородном смешивании материалов.Увеличение соотношения сторон, процентного содержания объема и размера и количества грубого заполнителя усиливают трудности и тенденцию к комкованию. Содержание стальной фибры более 2% по объему и коэффициент пропорциональности более 100 трудно смешать. Важно, чтобы волокна были равномерно распределены по всей смеси; это может быть сделано путем добавления волокон перед добавлением воды. При перемешивании в лабораторном смесителе введение волокон через корзину из проволочной сетки поможет равномерно распределить волокна.Для использования в полевых условиях необходимо использовать другие подходящие методы.

Различные типы бетона, армированного волокном Ниже приведены различные типы волокон, обычно используемые в строительной отрасли.
  1. Бетон, армированный стальным волокном
  2. Цементный раствор и бетон, армированный полипропиленовым волокном (PFR)
  3. GFRC Бетон, армированный стекловолокном
  4. Асбестовые волокна
  5. Углеродные волокна
  6. Органические волокна

1.Бетон, армированный стальным волокном В качестве армирования доступно несколько типов стальной фибры. Круглые стальные волокна, которые обычно используются, производятся путем разрезания круглой проволоки на короткие отрезки. Типичный диаметр находится в диапазоне от 0,25 до 0,75 мм. Стальные волокна прямоугольной формы получают путем заиливания листов толщиной около 0,25 мм. Волокно из тянутой проволоки из мягкой стали. Соответствие стандарту IS: 280-1976 с диаметром проволоки от 0,3 до 0,5 мм практически используется в Индии.Круглые стальные волокна получают путем разрезания или рубки проволоки, плоские листовые волокна, имеющие типичное значение сопротивления / с в диапазоне от 0,15 до 0,41 мм по толщине и от 0,25 до 0,90 мм по ширине, получают путем заиливания плоских листов. Также доступны деформированные волокна, которые неплотно связаны водорастворимым клеем в виде пучка. Поскольку отдельные волокна имеют тенденцию группироваться вместе, их равномерное распределение в матрице часто затруднено. Этого можно избежать, добавив пучки волокон, которые разделяются в процессе смешивания. Также читают: Применение бетона, армированного стальным волокном Приготовление и применение бетонной смеси, армированной стальным волокном

2. Цементный раствор и бетон, армированный полипропиленовым волокном (PFR) Полипропилен — один из самых дешевых и широко доступных полимеров. Полипропиленовые волокна устойчивы к большинству химикатов и представляют собой цементирующую матрицу, которая сначала разрушается при агрессивном химическом воздействии. Его температура плавления высока (около 165 градусов по Цельсию).Так что рабочий темп. Ас (100 градусов по Цельсию) может выдерживаться в течение коротких периодов времени без ущерба для свойств волокна. Полипропиленовые волокна, являющиеся гидрофобными, можно легко смешивать, поскольку они не нуждаются в продолжительном контакте во время смешивания, и их нужно только равномерно растереть в смеси. Полипропиленовые короткие волокна с небольшими объемными долями от 0,5 до 15, коммерчески используемые в бетоне.

Рис.3: Цементный раствор и бетон, армированные полипропиленовым волокном

3. GFRC — Бетон, армированный стекловолокном Стекловолокно состоит из 200-400 отдельных нитей, которые легко склеиваются, образуя подставку.Эти подставки можно разрезать на разную длину или объединить в матерчатые циновки или ленту. Используя обычные методы смешивания для обычного бетона, невозможно смешать более 2% (по объему) волокон длиной 25 мм. Основное применение стекловолокна заключалось в армировании матриц цемента или строительного раствора, используемых при производстве тонколистовых изделий. Обычно используемые разновидности стекловолокна — это электронное стекло. В армированном пластмассе и стекле AR E-стекло имеет недостаточную стойкость к щелочам, присутствующим в портландцементе, тогда как стекло AR имеет улучшенные характеристики устойчивости к щелочам.Иногда в смеси также добавляют полимеры для улучшения некоторых физических свойств, таких как движение влаги.

Рис.4: Бетон, армированный стекловолокном

4. Асбестовые волокна Доступное в природе недорогое минеральное волокно, асбест, успешно комбинируется с портландцементной пастой с образованием широко используемого продукта, называемого асбестоцементом. Асбестовые волокна обладают термомеханической и химической стойкостью, что делает их пригодными для изготовления труб из листового проката, черепицы и гофрированных кровельных элементов.Асбестоцементная плита примерно в два или четыре раза больше, чем неармированная матрица. Однако из-за относительно небольшой длины (10 мм) волокна обладают низкой ударной вязкостью.

Рис.5: Асбестовое волокно

5. Углеродные волокна Углеродные волокна последнего поколения и, вероятно, наиболее впечатляющее дополнение к ассортименту волокон, доступных для коммерческого использования. Углеродное волокно обладает очень высоким модулем упругости и прочности на изгиб. Они обширны.Было обнаружено, что их характеристики прочности и жесткости превосходят даже характеристики стали. Но они более уязвимы к повреждениям, чем даже стекловолокно, и, следовательно, обычно обрабатываются полимерным покрытием.

Рис.6: Углеродные волокна

Также читайте: Бетон, армированный стекловолокном (GFRC) — Свойства и применение в строительных работах

6. Органические волокна Органическое волокно, такое как полипропилен или натуральное волокно, может быть химически более инертным, чем стальное или стеклянное волокно.Также они дешевле, особенно если они натуральные. Для получения композита с множественным растрескиванием можно использовать большой объем растительного волокна. Проблема смешивания и однородного диспергирования может быть решена добавлением суперпластификатора.

Рис.7: Органическое волокно

Подробнее: Факторы, влияющие на долговечность бетона, армированного волокном (FRC) Бетон, армированный волокном в тротуарах

Ассоциация бетона, армированного волокном | Типы волокон

Типы волокон для использования в бетоне, армированном волокном, бывают разных размеров, форм, цветов и вкусов.За дополнительной литературой и рекомендациями по дозировке обращайтесь к соответствующему производителю.
  • Целлюлозные волокна: Целлюлозные волокна, изготовленные из продуктов из переработанной древесной массы, используются таким же образом, как и микросинтетические волокна, для контроля и уменьшения растрескивания при пластической усадке.

  • Стекловолокно: Бетон, армированный стекловолокном (GFRC), в основном использовался в архитектурных приложениях и модифицированных панельных конструкциях на основе цемента.

  • Макросинтетические волокна: Этот новый класс волокон появился за последние 15 лет как подходящая альтернатива стальным волокнам при правильном дозировании. Типичные материалы включают полипропилен и другие смеси полимеров с такими же физическими характеристиками (например, длина, форма), что и стальные волокна. Эти волокна можно дозировать от 3 до 20 фунтов / ярд (от 1,8 до 12 кг / м 3 ).

  • Микросинтетические волокна: Эти волокна обычно используются для защиты и уменьшения растрескивания бетона при пластической усадке.Большинство типов волокон производятся из полипропилена, полиэтилена, полиэстера, нейлона и других синтетических материалов, таких как углерод, арамид и акрил. Эти типы волокон обычно дозируются в небольших объемах от 0,03 до 0,2% по объему бетона — от 0,5 до 3,0 фунтов / ярд (от 0,3 до 0,9 кг / м 3 ).

  • Целлюлозные волокна: Целлюлозные волокна, изготовленные из продуктов переработки древесной массы, используются таким же образом, как и микросинтетические волокна, для контроля и уменьшения растрескивания при пластической усадке

  • Натуральные волокна: Натуральные волокна используются для армирования продуктов на основе цемента в некоммерческих целях по всему миру.Они включают такие материалы, как кокос, сизаль, джут и сахарный тростник, и бывают разной длины, геометрии и характеристик материалов.

  • Волокна из поливинилового спирта (ПВС) : волокна ПВС — это синтетические волокна, которые могут изменять характеристики бетона на изгиб и сжатие при использовании в больших объемах.

  • Специальные волокна: Эта классификация волокон охватывает материалы, не описанные в этом разделе, и обычно относится к недавно произведенным или определенным материалам, не общим для этих категорий.

  • Стальные волокна: Эти волокна обычно используются для придания бетона повышенной прочности и способности выдерживать нагрузки после образования трещин. Эти волокна, как правило, рыхлые или связанные в пучки, обычно изготавливаются из углеродистой или нержавеющей стали и имеют различные геометрические формы, такие как гофрированный, крючковатый или с другими механическими деформациями для закрепления в бетоне. Типы волокна классифицируются в ACI 544 как типы от I до V, их максимальная длина составляет от 1.От 5 до 3 дюймов (от 30 до 80 мм) и может дозироваться от 10 до 100 фунтов / ярд (от 6 до 67 кг / м 3 ).

  • Смеси стали и микро- / макроэлементов: Недавним развитием в области бетона, армированного волокнами, стало сочетание или смешивание стальных и / или макросинтетических волокон с различными типами микросинтетических волокон. Эти смеси помогают контролировать растрескивание при пластической усадке (например, микросинтетику), а также обеспечивают бетон с повышенной ударной вязкостью и несущей способностью после растрескивания, достигаемой только с использованием стали и макросинтетических волокон.Эти волокна обычно дозируются при преобладающем… [НЕОБХОДИМО ОТДЫХ ТЕКСТА]

  • Другие волокна и смеси: Сюда входят комбинации и типы волокон, не классифицированные в этом разделе.

Использование проволочной сетки против волокон с бетоном

Выбор бетона для жилого или коммерческого строительства — отличный способ убедиться, что вы используете прочный и долговечный материал. При всех возможных вариантах использования бетона есть несколько способов убедиться, что ваш бетон имеет правильную прочность для работы.При схватывании бетон меняет плотность, что делает его уязвимым для растрескивания. Бетон также может треснуть из-за изменений температуры или неравномерно распределенного веса или напряжения. При заливке бетона для проездов, фундаментов или полов используются два распространенных способа армирования бетона — использование проволочной сетки или волокон.

Проволочная сетка

Использование проволочной сетки — распространенный метод армирования заливного бетона. Проволочная сетка образует квадратную сетку, которая укладывается перед заливкой бетона.Проволочная сетка обычно представляет собой один слой двумерной сетки, которая проходит по длине и ширине залитого бетона, но не по высоте. В процессе заливки бетона рабочие поднимают уложенную проволочную сетку так, чтобы она проходила по середине высоты бетона. Когда бетон затвердеет вокруг проволочной сетки, внутри бетона останется армирующий материал, который помогает предотвратить растрескивание при изменении температуры и во время схватывания бетона.

Армирование волокном

Добавление волокон для армирования готового бетонного раствора, иногда называемого «волокнистой сеткой», является относительно новой разработкой при заливке бетона.Вместо того, чтобы укладывать проволочную сетку перед заливкой бетона, использование волоконной сетки предполагает смешивание различных волокон, таких как стекло, сталь, синтетические волокна или натуральные волокна. Волокнистая сетка армирует бетон по всей структуре бетона, а не только на одной плоскости. Это комплексное армирование защищает не только от растрескивания из-за колебаний температуры и изменения плотности от схватывания, но также помогает предотвратить вытекание воды из бетона и придает поверхности бетона более высокую ударопрочность.

В дополнение к обеспечению более надежной защиты вашей бетонной заливки, использование волоконной сетки обычно занимает меньше времени, чем использование проволочной сетки. Это связано с тем, что проволочную сетку необходимо тщательно измерить, чтобы она соответствовала месту заливки, и она должна удерживаться на определенном уровне в процессе заливки. И наоборот, волокнистую сетку можно добавлять прямо в смесь, устраняя необходимость в дополнительном шаге во время заливки. Волоконная сетка также более рентабельна, поскольку на заливку уходит меньше времени, а материал используется более эффективно.Некоторые подрядчики высказывали опасения, что метод волоконной сетки может создать «волосатую» отделку из-за того, что некоторые волокна выступают из поверхности.